
Portable Library Support for Irregular Applications

by

Chih-Po Wen

B.A. (National Chiao-Tung University, Taiwan) 1988

M.S. (University of California at Berkeley) 1992

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Katherine A. Yelick, Chair
Professor Susan L. Graham
Professor Stuart Dreyfus

1995

Portable Library Support for Irregular Applications

Copyright 1995

by

Chih-Po Wen

1

Abstract

Portable Library Support for Irregular Applications

by

Chih-Po Wen

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Katherine A. Yelick, Chair

Building portable parallel programs on distributed memory multiprocessors and

workstation networks is a complex task that is greatly facilitated by powerful infrastruc-

ture. In this dissertation, we develop important components of that infrastructure, focusing

on irregular applications such as unstructured mesh computations, search problems, and

discrete event simulation. We use a library-based approach to building such applications.

The library provides a uniform programming interface on multiple platforms and has highly

tuned implementations developed by the library programmer. Therefore, applications built

on the library can be portable both in functionality and in performance.

We describe the major components of our parallel data structure library called

Multipol, including two of the more irregular data structures and one application. The two

data structures are a task stealer for dynamic load balancing and an event graph for discrete

event simulation. The application is a timing-level circuit simulator for combinational

circuits. We analyze the workloads of several applications built by the Multipol group and

quantitatively characterize their irregularities.

The Multipol library is built on a runtime layer consisting of threads as well as

communication mechanisms. The thread layer supports a basic computational abstrac-

tion called �bers, which are code sequences that appear to execute atomically. The �ber

abstraction enables a portable multithreading execution environment for latency hiding.

The thread layer also allows the programmer to supply customized schedulers to enforce

application-speci�c scheduling policies. The communication layer provides portable primi-

tives for expressing irregular communication. It uses a technique called message aggregation

2

to trade the excess parallelism in the application for better communication bandwidth.

We provide a new performance pro�ling toolkit called Mprof to help tune the

performance of irregular parallel programs. Mprof identi�es two major sources of perfor-

mance ine�ciency: overhead and insu�cient parallelism. It uses statistical modeling to

extract reusable cost models from benchmark executions. The cost models are combined

with high-level statistics collected from an actual execution to provide low-overhead pro�l-

ing information. Mprof also provides a performance interface for the library programmer

to customize the pro�ling information and thereby preserve the library abstraction. Using

information from Mprof, we optimize the performance of several irregular applications and

demonstrate the performance portability of the Multipol library and runtime layer.

Professor Katherine A. Yelick
Dissertation Committee Chair

iii

To my parents,

Chih-Huang Wen and Shiao-Lien Tsai,

and my brother,

Chung-Yao Wen

iv

Contents

List of Figures vii

1 Introduction 1

1.1 Overview of Results : 3

2 Building Irregular Applications with Distributed Data Structures 5

2.1 Irregularities in Parallel Programs : 6

2.2 The Multipol Data Structure Library : 8

2.2.1 Bipartite Graph : 9

2.2.1.1 Interface : 9

2.2.1.2 Implementation Techniques : : : : : : : : : : : : : : : : : : 10

2.2.1.3 Example Application { EM3D : : : : : : : : : : : : : : : : 10

2.2.2 Hash Table : 14

2.2.2.1 Interface : 14

2.2.2.2 Implementation Techniques : : : : : : : : : : : : : : : : : : 15

2.2.2.3 Example Application { Tripuzzle : : : : : : : : : : : : : : : 15

2.2.3 Task Stealer : 17

2.2.3.1 Interface : 17

2.2.3.2 Implementation Techniques : : : : : : : : : : : : : : : : : : 19

2.2.3.3 Example Application { Eigenvalue : : : : : : : : : : : : : : 20

2.2.3.4 Example Application { Phylogeny : : : : : : : : : : : : : : 24

2.2.4 Event Graph : 28

2.2.4.1 Interface : 29

2.2.4.2 Implementation Techniques : : : : : : : : : : : : : : : : : : 30

2.2.4.3 Example Application { CSWEC : : : : : : : : : : : : : : : 31

2.3 Summary and Comparison : 34

2.3.1 Application Characteristics : 36

2.3.2 Required Runtime Support : 38

2.4 Related Work : 38

3 Multipol Runtime Layer 41

3.1 Overview : 42

3.1.1 Characteristics of Distributed Memory Architectures. : : : : : : : : 42

v

3.1.2 Our approach : 43

3.2 The Thread Layer : 47

3.2.1 Threads and Fibers : 47

3.2.2 Synchronizing with Split-phase Operations : : : : : : : : : : : : : : 48

3.2.3 Concurrency Control : 49

3.2.4 Scheduling : 50

3.3 The Communication Layer : 52

3.3.1 Asynchronous Communication Primitives : : : : : : : : : : : : : : : 52

3.3.2 Bulk Communication Primitives : 54

3.3.3 Implementation and Optimization : : : : : : : : : : : : : : : : : : : 54

3.4 System Data Structures : 56

3.4.1 Distributed Object Manager : 57

3.4.2 The Snapshot Data Structure : 58

3.5 Implementation of the Communication Layer : : : : : : : : : : : : : : : : : 61

3.5.1 Active Messages : 62

3.5.2 Cooperative Message Passing : 62

3.5.3 Socket : 63

3.6 Related Work : 63

3.7 Summary : 64

4 Mprof: a Performance Pro�ling Toolkit for Multipol Programs 66

4.1 Issues in Performance Pro�ling : 67

4.1.1 The Problems : 67

4.1.2 Our Approach : 68

4.2 Overview of Mprof : 69

4.3 An Example Parallel Program { PIPE : 72

4.4 Measuring the Costs of Data Structures : 74

4.4.1 Characterizing Costs with High-level Statistics. : : : : : : : : : : : : 74

4.4.2 Specifying the Cost Models : 76

4.4.3 Instantiating the Cost Models : 80

4.4.4 An Example: Instantiating the Cost Models of the PIPE program : 81

4.5 Identifying the Dependences between Data Structures : : : : : : : : : : : : 86

4.5.1 De�nition of Observed Latency : 86

4.5.2 De�nition of Critical Path Latency : : : : : : : : : : : : : : : : : : : 88

4.5.3 Measuring Latency : 89

4.5.4 Optimizing the PIPE Program : 90

4.5.4.1 Increasing edge capacity : 91

4.5.4.2 Software Pipelining : 91

4.5.4.3 Selective Flushing of Messages : : : : : : : : : : : : : : : : 94

4.6 Related Work : 94

4.7 Summary : 96

vi

5 Performance Results 98

5.1 Performance Analysis and Optimization : 98
5.1.1 The EM3D program : 99
5.1.2 The Tripuzzle program : 100
5.1.3 The Eigenvalue program : 102
5.1.4 The Phylogeny Program : 103
5.1.5 The CSWEC Program : 105

5.2 Summary : 108

6 Summary and Conclusions 112

6.1 Future Work : 113
6.2 Contributions : 114

Bibliography 116

vii

List of Figures

2.1 Pseudo code of the EM3D program. : 11

2.2 Characteristics of two EM3D executions : 12

2.3 Distribution of �bers and communication events for EM3D : : : : : : : : : 13

2.4 Pseudo code of the Tripuzzle program : 16

2.5 Characteristics of the Tripuzzle execution : : : : : : : : : : : : : : : : : : : 17

2.6 Distribution of �bers and communication events for Tripuzzle : : : : : : : : 18

2.7 Pseudo code of the Eigenvalue program : 22

2.8 Characteristics of the Eigenvalue execution : : : : : : : : : : : : : : : : : : 22

2.9 Distribution of �bers and communication events for Eigenvalue : : : : : : : 23

2.10 Pseudo code of the Phylogeny program : 26

2.11 Characteristics of the Phylogeny program : : : : : : : : : : : : : : : : : : : 26

2.12 Distribution of �bers and communication events for Phylogeny. : : : : : : : 27

2.13 Pseudo code of the CSWEC program : 33

2.14 Characteristics of the CSWEC program : 34

2.15 Distribution of �bers and communication events for CSWEC : : : : : : : : 35

2.16 E�ect of reducing memory allocation on simulation : : : : : : : : : : : : : : 36

2.17 Irregularities in the example applications : 36

2.18 Comparison of the application workloads : 37

3.1 Communication characteristics of 4 distributed memory machines : : : : : : 43

3.2 Improving e�ciency with multithreading and message aggregation : : : : : 45

3.3 Portability layers in the Multipol runtime layer : : : : : : : : : : : : : : : : 46

3.4 Scheduler hierarchy of the runtime layer. : 51

3.5 The structure of the message layer. : 55

3.6 E�ect of message aggregation on the Sparc cluster and the CM5 : : : : : : 57

3.7 The snapshot operation. : 60

4.1 Organization of the Multipol library. : 70

4.2 Performance pro�ling activities. : 71

4.3 Structure of the PIPE program. : 72

4.4 Pseudo code of the PIPE program : 73

4.5 High-level statistics for the PIPE program : : : : : : : : : : : : : : : : : : : 75

4.6 Cost models for the PIPE computational kernel : : : : : : : : : : : : : : : : 78

viii

4.7 Cost models for the runtime layer : 79
4.8 Cost models for the event graph data structure : : : : : : : : : : : : : : : : 79
4.9 Sample script for instantiating the cost models : : : : : : : : : : : : : : : : 82
4.10 Results of the instantiation session : 83
4.11 Distribution of model errors : 84
4.12 PIPE executions on a 32-node CM5 : 85
4.13 De�nition of observed latency. : 87
4.14 De�nition of critical path latency. : 88
4.15 Pro�ling the dependencies in the PIPE execution. : : : : : : : : : : : : : : 91
4.16 E�ect of increasing event graph capacity on the PIPE program : : : : : : : 92
4.17 Software pipelining implementation of the PIPE program. : : : : : : : : : : 93
4.18 E�ect of software pipelining. : 93
4.19 E�ect of selectively
ushing messages. : 94

5.1 Performance pro�les of the EM3D program : : : : : : : : : : : : : : : : : : 100
5.2 Performance pro�les of the initial implementation of the Tripuzzle Program 101
5.3 Running time of the Tripuzzle program. : 101
5.4 Performance pro�les of the initial implementation of the Eigenvalue program. 102
5.5 Running time of the Eigenvalue program. : : : : : : : : : : : : : : : : : : : 103
5.6 Performance pro�les of the initial implementation of the Phylogeny program. 104
5.7 Running time of the Phylogeny program : 105
5.8 Performance pro�les of the initial implementation of the CSWEC Program 106
5.9 Running time of the CSWEC program on the C2670 circuit. : : : : : : : : : 108
5.10 Impact of graph capacity on the performance of the CSWEC program. : : : 109
5.11 Speedups of the Multipol applications : 110
5.12 Speedup curves of the Multipol applications : : : : : : : : : : : : : : : : : : 111

ix

Acknowledgements

I would like to thank my research advisor, Professor Katherine Yelick, for her constant

guidance and support since I joined her group. Kathy is the nicest professor I have ever

met. She helped improve my presentation skills tremendously. She also played an important

role in shaping the direction of my research.

I gratefully acknowledge contributions from other members of the Multipol group.

They are Soumen Chakrabarti, Etienne Deprit, Eun-Jin Im, Je� Jones, and Arvind Krish-

namurthy. Etienne and Soumen participated in the initial design of the Multipol runtime

layer. I thank Professor James Demmel, Professor Stuart Deryfus, and Professor Susan

Graham for serving on my qualifying exam and for reading this dissertation. I also thank

Professor C. V. Ramamoorthy for his support during my �rst year at Berkeley.

My life at Berkeley would have been dull without the friendship of other EECS

graduate students. They are Claudia Chandra, Wan-Teh \Wonton" Chang, Szu-Tzong

Cheng, Sean Huang, Han-Gyo Kim, Joe King, Luis Miguel, Yung-Chul Shim, Huey-Yih

Wang, and Robert Wang. Hanging out with them is a lot of fun. Special thanks go to

Yochai Konig for being my pal and my partner in numerous projects.

Finally, I would like to dedicate this work to my parents, Chih-Huang Wen and

Shiao-Lien Tsai, and my brother, Chung-Yao Wen. Without their encouragement and

sacri�ce this dissertation would not have been possible.

This work was supported in part by the Advanced Research Projects Agency

(DOD) under contract no. DABT63-92-C-0026, by the Department of Energy grant no. DE-

FG03-94ER25206, by the National Science Foundation grant no. CCR-9210260 and NSF

Infrastructure grant nos. CDA-8722788 and CDA-9401156. The information presented here

does not necessarily re
ect the position or the policy of the Government and no o�cial

endorsement should be inferred.

1

Chapter 1

Introduction

Recent research and commercial development e�orts have produced a multitude of

distributed memory parallel machines in the form of dedicated multiprocessors and networks

of workstations. However, there has been a lack of consensus on their programming interface,

and the parallel programming primitives often vary with the machine platform. Due to the

rapid advances in hardware technology, the users of non-portable applications are often

faced with the dilemma of staying with a stale platform or re-developing the applications

for more powerful platforms.

One approach to parallel programming that addresses the portability problem is to

use so-called \heroic" compilers such as parallelizing Fortran compilers [HKT91, ABC+88,

PGH+90] or optimizing compilers for data parallel languages [CMF92, Hig92]. The pro-

grammer relies on the compiler to discover parallelism and to schedule communication and

computation. This approach has had some success on problems such as dense matrix algo-

rithms and regular grid computations, but there are many irregular applications that do not

lend themselves to automatic parallelization or to array-based data parallelism. Examples

of these irregular applications include unstructured mesh computations, divide and conquer

algorithms, and discrete event simulation.

Another approach to parallel programming involves explicit message passing with

message passing layers such as PVM [BDG+91] and MPI [For94]. Such message passing lay-

ers are often used when performance is the most important concern, because they allow the

programmer to have complete control over parallelism and communication. However, the

programming is fairly low-level, and the primitives are designed for cooperative message

passing which makes irregular communication patterns awkward. In addition, although

2

message passing provides functional portability, they do not provide performance portabil-

ity, because the application programs contain implementation details that should vary with

the machine for performance.

Parallel libraries o�er a promising alternative by providing some of the programma-

bility of high-level languages with the performance of message passing. A library may con-

sist of portable communication primitives and computational abstractions, standalone algo-

rithms, or encapsulated data structures. Applications built on the libraries can be portable

without sacri�cing performance, because the library has a uniform programming interface

on multiple platforms, and it has highly tuned implementations developed by the library

programmer. The library is also extensible and can provide domain-speci�c abstractions.

This approach has been used successfully in several areas including dense matrix algo-

rithms [Dem89, ABB+92, CDPW92], unstructured mesh computation [DHU+93, DUSH94,

MSH+95], and adaptive mesh computation [KB95]. While their applications include some

degree of irregularity, these libraries do not handle task parallelism or asynchronous com-

munication.

Multipol [YCD+95] is a parallel data structure library designed for irregular ap-

plications with pointer-based data structures, asynchronous communication, and unpre-

dictable task dependences or computation times. Multipol applications include unstruc-

tured mesh computations, search problems, discrete event simulation, and symbolic algebra

problems. In this dissertation, we address several components in the design and implemen-

tation of Multipol. First, we give an overview of Multipol and its applications, including

two data structures developed by the author, a task stealer for dynamic load balancing

and an event graph for discrete event simulation. Second, we present the design and im-

plementation of a portable runtime layer on which the library is built. The runtime layer

runs on several distributed memory multiprocessors and networks of workstations, and it

provides functional portability as well as performance portability across platforms. Third,

we present Mprof, a performance pro�ling toolkit for Multipol which detects both overhead

and insu�cient parallelism in Multipol applications. Finally, we evaluate the performance

of Multipol and identify several performance tuning techniques for Multipol applications,

using the pro�ling information from Mprof.

3

1.1 Overview of Results

This dissertation addresses the following three questions:

� What programming interface should be used for building irregular applications?

� How should irregular computation and communication patterns be supported on dis-

tributed memory platforms?

� What pro�ling information is useful for detecting performance ine�ciencies in irreg-

ular parallel programs and how can such information be collected e�ciently?

We begin in Chapter 2 by examining the programming abstractions and execution

behaviors of irregular applications. Several non-trivial applications built by members of the

Multipol group are used to illustrate irregularities in parallel programs and the primary

data structures within them. The applications include examples from bulk-synchronous

simulation, divide and conquer algorithms, search problems, and discrete event simulation;

their workload gives a quantitative characterization of the irregularities in parallel programs.

The data structures perform functions such as data distribution, load balancing, scheduling,

communication and synchronization; they suggest the common programming abstractions

used in irregular applications.

We then present the Multipol runtime layer, which provides infrastructure for

building distributed data structures and irregular applications. The runtime layer consists

of threads as well as communication mechanisms. The thread layer supports a basic com-

putational abstraction called �bers, which are code sequences that appear to execute to

completion without preemption or suspension. The �ber abstraction enables a portable

multithreading execution environment for latency hiding. The thread layer also provides

mechanisms for enforcing application-speci�c scheduling policies using customized sched-

ulers. The communication layer provides a machine-independent interface for expressing

irregular communication. It also optimizes irregular communication workloads for e�cient

execution on distributed memory architectures, using a technique called message aggrega-

tion, in which several small messages are packed into one larger message. In asynchronous

applications, message aggregation trades excess parallelism for communication bandwidth,

a tradeo� that we show is essential for performance on platforms with high communication

start-up overhead. The design and the implementation of the Multipol runtime layer is

presented in Chapter 3.

4

Multithreaded programs with unpredictable communication and synchronization

patterns are di�cult to performance tune. We provide a performance pro�ling toolkit

called Mprof to help the programmer tune the parallel program. We identify two common

sources of performance ine�ciency: overhead and insu�cient parallelism. Mprof reports

on the execution costs of data structures and the runtime layer to expose overhead, and

it measures the latency of synchronization events to expose insu�cient parallelism. Mprof

uses statistical modeling to extract reusable cost models from benchmark executions. The

cost models are combined with high-level statistics collected from an actual execution to

provide low-overhead pro�ling information. The use of high-level statistics is particularly

important for pro�ling multithreaded programs, where direct measurement methods are

di�cult to implement and incur high runtime overhead. To pro�le programs built from

Multipol and other data structure libraries, Mprof provides a performance interface which

the library programmer can use to customize the pro�ling information for a particular data

structure. The design and implementation of Mprof is described in Chapter 4 using a simple

running example.

In Chapter 5, we evaluate the e�ectiveness of our performance tools and the Mul-

tipol library using several applications. We show how pro�ling information provided by

Mprof can be used to identify performance ine�ciencies and optimize the applications from

Chapter 2.

Finally, in Chapter 6, we summarize the results in this dissertation and highlight

our contributions. We also draw conclusion about the generality of our work and discuss

future research directions.

5

Chapter 2

Building Irregular Applications

with Distributed Data Structures

There is no silver bullet to the parallel programming problem. Di�erent types

of applications require di�erent programming primitives and optimization techniques. In-

stead of providing a �xed set of abstractions and optimizations in the form of a language,

we adopt a library-based approach to building irregular applications, in which an extensi-

ble library of data structures is provided along with some basic communication and syn-

chronization primitives. The use of a library allows for portability, because the high-level

programming interface provided by the library shields the application programmers from

the implementation details. The library approach has been adopted by PARTI [BSS91],

CHAOS [DHU+93, DUSH94, MSH+95] and LPARX [KB95], which are specialized libraries

for unstructured and adaptive mesh applications. They handle certain irregular data struc-

tures, but are limited to bulk synchronous computation patterns.

In this chapter, we present an overview of the Multipol data structure library and

some of the applications that use the library. The data structures and applications were

developed by members of the Multipol group, including the author. The purpose of the

chapter is two-fold. First, we give a quantitative characterization of irregular applications

to justify the design of the runtime layer, which is discussed in detail in Chapter 3. The

example applications are also used to evaluate the performance of our runtime library in

Chapter 5. Second, we describe two of our own data structures that are interesting in

their own right: the task stealer and the event graph. For each of the data structures, we

6

describe its programming interface and the implementation techniques used to address the

irregularities arising in its use.

The rest of the chapter is organized as follows. Section 2.1 describes the charac-

teristics of irregular parallel programs. Section 2.2 presents four Multipol data structures

and their applications. Two of the data structures and four of the applications are written

by other members of the Multipol group. Section 2.3 summarizes the application charac-

teristics and runtime requirements, and Section 2.4 describes related work.

2.1 Irregularities in Parallel Programs

We call an application \irregular" if it exhibits at least one of the following �ve

characteristics:

� irregular data layout

� an unpredictable communication schedule

� dynamic computation granularities

� unpredictable synchronization patterns

� speculative parallelism

Irregular data layout refers to the use of pointer-based data structures. For exam-

ple, irregular meshes and sparse matrices are often stored in compact pointer-based rep-

resentation instead of arrays with simple layout parameters. Irregular data layout creates

problems for compile-time analysis of access dependencies and data distribution, because

the layout is dependent on the input data. Therefore, optimizing applications with irregular

data layout is often performed manually by the programmer. If the communication sched-

ule of the application is static or changes infrequently, runtime preprocessing tools such as

PARTI or CHAOS can be used to automate data distribution and optimize communication

performance. These tools use an inspector primitive to analyze the data layout and pro-

duce an optimal communication schedule, which is then used by the executor primitive to

perform the actual communication. The inspector/executor model depends on having long

running computations to amortize the cost of running the inspector.

7

An application has an unpredictable communication schedule if the occurrences of

communication events change frequently during its execution. For example, a program that

performs dynamic updates on a distributed hash table may generate an unpredictable num-

ber of hash table accesses that require communication. In contrast, a program that simulates

an irregular mesh generates a �xed communication schedule while the mesh structure is un-

changed. Unpredictable communication schedules are expensive to implement because they

require hand-shaking between the sender and the receiver for each communication event.

Furthermore, on distributed memory architectures with large per-message overheads, an

irregular communication schedule makes it impossible to apply compile-time loop transfor-

mations such as message vectorization [HKT91] or runtime preprocessing techniques such

as the inspector primitive to reduce communication overhead.

Dynamic computation granularities arise when the control structure of the com-

putation is highly dependent on the data. For example, in heuristic search problems, a

node in the search space may generate an unpredictable number of child nodes, depending

on the scheduling and pruning policies. In discrete event simulation, the amount of com-

putation required to simulate an entity may depend on the state of simulation. Dynamic

computation granularities create load imbalance, and therefore often require dynamic load

balancing to sustain processor e�ciency.

An application has a unpredictable synchronization pattern if the processors are

synchronized dynamically, depending on the state of computation. For example, in dis-

crete event simulation, the simulation of an entity may wait for external conditions such

as the arrival of new events and the availability of message bu�ers. In contrast, in uniform

time-step simulation, all entities can proceed independently between barrier synchroniza-

tions. Unlike bulk-synchronous applications, asynchronous applications cannot be clearly

divided into global synchronization phases, which can be synchronized and load balanced

more e�ciently. Programming and optimizing such applications is also considerably more

di�cult.

Finally, applications that exploit speculative parallelism may perform redundant

computation. For example, a search application using imperfect heuristics may explore

parts of the search space that do not contribute to the solution [JY95], and an optimistic

discrete event simulator [Jef85, WY93] may waste time on computations that use stale data.

Redundant computation presents a tradeo� between parallelism and overhead, because an

optimization that increases parallelism may not necessarily improve performance due to

8

a proportional increase in redundant work. Understanding and tuning such applications

requires extensive knowledge of the problem.

2.2 The Multipol Data Structure Library

In this section, we present an overview of four data structures in the Multipol li-

brary. For each data structure, we describe the programming interface, the implementation

techniques, and the driving applications. For each example application, we describe its irreg-

ularities and execution behaviors using measurements from parallel executions. Several of

the applications are described more completely elsewhere [CDG+93, DDR94, JY95, WY95].

The data structures and applications are then summarized and compared in Section 2.3.

We examine four data structures in increasing \degree of irregularity" of their

driving applications: the bipartite graph data structure for bulk-synchronous computa-

tion over an irregular mesh, the hash table data structure for distributed set accesses, the

task stealer data structure for dynamic load balancing, and the event graph data struc-

ture for asynchronous computation over irregular graphs. Five applications are examined:

a 3D electro-magnetic �eld solver (EM3D), a search algorithm solving the tripuzzle game

(Tripuzzle), an eigenvalue solver for symmetric tridiagonal matrices (Eigenvalue), a program

for building phylogeny trees (Phylogeny), and an event-driven timing simulator (CSWEC).

These applications range from the straightforward, bulk-synchronous EM3D program to

the completely asynchronous CSWEC program. We implemented the task stealer data

structure, the event graph data structure, and the CSWEC application, while other data

structures and applications are adapted from the code written by other members of the Mul-

tipol group. These data structures and applications provide a fairly complete picture of the

target applications of the Multipol library, since their workload covers all the irregularities

described in the previous section.

We now introduce some concepts in the Multipol execution model that are used to

characterize the behavior of the application. The Multipol runtime layer supports a MIMD

programming model. The computation on each processor is decomposed into a collection

of independently scheduled threads. The threads can initiate a variety of communication

events such as transferring blocks of memory between processors or starting a thread on

a remote processor. Each thread is constructed from a collection of �bers, each of which

appears to execute to completion without preemption or suspension. Put simply, a �ber

9

is the segment of code executed by a thread between two synchronization events. When a

thread suspends to wait for a synchronization event, the runtime layer can schedule another

thread to hide the synchronization latency. Thread suspension is implemented as a �ber

continuation which is triggered by the completion of a synchronization event. To allow

latency hiding, many data structure operations have a split-phase interface to separate the

issue and completion of remote operations; each of the two or more phases executes as a

�ber.

Threads, �bers, and communication events are described in detail in Chapter 3.

For this chapter, it is su�cient to observe the pattern of their occurrences such as the distri-

bution of the �ber running times, which is a measure of the time between synchronization

events, and the frequency and quantity of data communication. In the sections that follow,

we use these statistics to characterize the application workload.

2.2.1 Bipartite Graph

The bipartite graph data structure was implemented by Etienne Deprit [YCD+95]

based on an implementation by the Split-C group [CDG+93]. It is used to perform bulk-

synchronous computation over an unstructured mesh. Each node in the graph has a color,

which is either red or black and, by construction, edges only connect nodes of di�erent colors.

The state of a node depends on its own state and the states of its neighboring nodes that

have a di�erent color. The application consists of bulk-synchronous iterations that compute

the states of the red nodes and the black nodes in alternate steps. The data structure can

be used in red-black simulation algorithms such as the simulation of electro-magnetic �elds

described in Section 2.2.1.3.

2.2.1.1 Interface

The bipartite graph data structure allows the programmer to build arbitrary sub-

graphs on each processor and then connect them to form a distributed graph. Each node in

the graph has a user-de�ned state. Each directed edge contains a weight and a pointer to

a copy of the state of its source node. The state of a node can be computed as a function

of its own state, the states of its neighboring nodes, and the weights on the edges.

The data structure provides iterators over the nodes and edges for updating of the

node states. After an update, the states modi�ed by one processor may not be visible to

10

the other processors. To force a consistent view of the data structure, the programmer must

explicitly \validate" the edges by calling a split-phase data structure primitive. When the

validation operation completes, all processor views of the graph are up to date.

2.2.1.2 Implementation Techniques

The bipartite graph uses replication to reduce the amount of communication in

accessing the node states. A \ghost node" is allocated on each processor for each node

that has cross-processor edges. The ghost node has a replica of the node state, and all

reads are handled locally using the replica. After a node's state has been updated, the

program must call the validate primitive to ensure consistency of the ghost nodes. The

data structure assumes a bulk-synchronous computation model, so all processors call the

validate operation only after all updates in a phase have been performed. Because of the

presence of ghost nodes, the number of messages for validating a node is bounded by the

number of processors instead of the number of fanout nodes.

The data structure also takes advantage of the structure of the graph to optimize

communication performance. Instead of validating the node states individually, the data

structure packages all the validations from a processor to another processor in one physical

message. The aggregation overhead is justi�ed by the reduction in communication start-

up overhead and message dispatching overhead. Although the Multipol runtime layer is

capable of aggregating messages in an application transparent manner, aggregating at the

application level may lead to better performance, because the aggregated messages tend to

be more compact. The graph structure is assumed to be static, and the implementation

techniques are similar to those used in an inspector/executor model.

2.2.1.3 Example Application { EM3D

The EM3D program computes the
ow of electro-magnetic waves through a three-

dimensional object. Each object is modeled by an unstructured three-dimensional grid of

convex polyhedral cells, which is called the \primary grid." A dual grid is de�ned with

respect to the primary grid having grid points at the centers of the primary grid's cells.

The electric �eld is evaluated for the faces of the primary grid, while the magnetic �eld is

evaluated for the faces of the dual grid. The faces form nodes in a bipartite graph, because

the computation of a face uses data only from the faces of a di�erent grid. The structure

11

Create a thread on each processor:

For all time steps:

Iterate over all local red nodes:

Compute new state of node.

[Validate red nodes]

[Barrier synchronization of all processors]

Iterate over all local black nodes:

Compute new state of node.

[Validate black nodes]

[Barrier synchronization of all processors]

Figure 2.1: Pseudo code of the EM3D program. The statements enclosed in square brackets
are long latency operations that require synchronization.

of the bipartite graph remains static throughout the computation.

The sequential algorithm consists of a series of alternating steps for computing

the electric �eld and the magnetic �eld on the bipartite graph. The change in the electric

�eld of a node is a linear combination of the magnetic �eld of its neighboring nodes. It is

calculated during the �rst step of an iteration. Similarly, the change in the magnetic �eld

of a node is a linear combination of the electric �eld of its neighboring nodes, and it is

calculated in the second step of an iteration. Since the electric �eld and the magnetic �eld

are calculated in di�erent steps, dependencies exist only between steps and never within a

step.

The Multipol implementation of the EM3D program is simply a sequence of bulk-

synchronous phases that alternately compute the states of the two parts of the bipartite

graph. Each phase iterates over all nodes in one part in parallel to update their electric or

magnetic �eld. The update of a node uses the local replica of its neighboring nodes. The

communication and synchronization required for validating the replica are encapsulated in

the bipartite graph. Figure 2.1 shows the pseudo code for the EM3D program.

We ran the Multipol implementation of the EM3D program on a 32 processor

CM5 to collect the statistics shown in Figures 2.2 and 2.3 The computation is performed

on a random bipartite graph with the percentage of cross-processor edges speci�ed by the

user. We tried two settings: 10% and 20% remote edges among all edges in the graph.

12

Remote Number of Total
Edge Threads Fibers Sync Comm. Communication

Events Events Volume

10% 1401 1801 601 1584 2.75 MB

20% 1357 1730 582 1539 4.59 MB

Figure 2.2: Characteristics of two EM3D executions on the CM5. The numbers shown are
the averages over 32 processors.

Each processor has 1000 graph nodes with 20 outgoing edges per node. The processors are

logically arranged as a linear array, and each edge may adjoin nodes that are at most 3

processors away. The computation is performed for 100 iterations. The statistics collected

exclude the construction and preprocessing times of the bipartite graph.

The program features relatively large computations between synchronization events,

which are common in bulk-synchronous applications. Although 80% of the �bers execute in

100 microseconds or less, they consume only a small fraction of the total running time. 80%

of the execution time is spent in �bers that execute for more than 30 milliseconds. These

large �bers compute the new states of the bipartite graph. The rest of the time is spent in

�bers running for several milliseconds which are used to validate the node replicas.

The communication tra�c consists mainly of large messages. When 10% of the

edges are remote, more than 70% of the messages have size greater 2K bytes, and they

contribute to almost all the communication tra�c. Similarly, when 20% of the edges are

remote, the communication tra�c is dominated by messages larger than 3.5K bytes. There

are relatively few synchronization events in the program.

In summary, the EM3D program is a bulk-synchronous program with irregular

data layout. It has a predictable synchronization pattern consisting of bulk-synchronous

phases. The communication schedule is also predictable, because it depends only on the

structure of the graph which remains static throughout the execution. The application is

the least irregular of the �ve applications we examine. Because all accesses to the graph

can be statically predicted, the bipartite graph data structure is able to apply runtime

preprocessing to optimize the communication schedule.

13

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Fiber Granularities

Running Time in seconds

P
er

ce
nt

ag
e

Count (10%)

Count (20%)

Time (10%)

Time (20%)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Communication Events

Size in Bytes

P
er

ce
nt

ag
e

Count (10%)

Size (10%)

Count (20%)

Size (20%)

Figure 2.3: Distribution of �bers and communication events for EM3D. The resolution used
for pro�ling the �ber granularity is 100 microseconds, and the resolution for the communi-
cation event size is 16 bytes.

14

2.2.2 Hash Table

The hash table data structure was implemented by Etienne Deprit [YCD+95]. The

data structure is used to implement a distributed set of key/value pairs. A set can be used

to cache the result of computation or to guarantee the uniqueness of data elements. Its

applications include logic veri�cation algorithms [BRB90] and path counting problems such

as the Tripuzzle application described in Section 2.2.2.3.

2.2.2.1 Interface

A hash table contains a collection of bins for storing distinct data entries. The

assignment of entries to bins and the distribution of bins among the processors are based

on a hash function speci�ed by the programmer.

The data structure supports the standard insert, delete, and lookup operations for

a dictionary-like object. The programmer may also specify a duplicate handler function,

which is invoked when the program attempts to insert an existing item. For example,

the program can keep track of the number of duplicates using a duplicate handler which

increments a integer counter in the hash table entry.

There are two versions of the insert and delete operations: acknowledged and un-

acknowledged. An acknowledged access suspends the caller until the access has taken e�ect,

while an unacknowledged one returns control to the caller immediately after the operation

is issued. The data structure guarantees that unacknowledged accesses take e�ect eventu-

ally, but not immediately upon their return. For example, a lookup operation following an

unacknowledged insert operation may not see the inserted item. Unacknowledged accesses

can be used if data races between the mutator and observer accesses cannot happen, or

if they do not a�ect the correctness of the program. The programmer may use a sync

operation provided by the data structure to force unacknowledged accesses to take e�ect.

The implementation of the sync operation uses the snapshot mechanism provided by the

Multipol runtime layer, which is described in Section 3.4.2.

The data structure also provides iterators over the hash table entries for scanning

the set. Because the hash table is physically partitioned among all processors, di�erent

processors may iterate over di�erent partitions independently to exploit data parallelism

over the set elements.

15

2.2.2.2 Implementation Techniques

The weak semantics of the unacknowledged accesses is designed to reduce syn-

chronization overheads. It eliminates the hand-shaking for the individual insert or delete

operations between the calling processor and the processor containing the bin. A group of

such operations can be acknowledged e�ciently using the sync operation.

2.2.2.3 Example Application { Tripuzzle

The Tripuzzle program computes the number of distinct solutions to the tripuzzle

game. A tripuzzle of size N is a triangular board with N rows. The number of columns

in each row ranges from 1 in the top row to N in the bottom row. Initially, the board is

�lled with pegs in all but one position. A legal move may move a peg 2 positions away in a

row, column, or diagonal direction, as long as the new position is empty and there is a peg

between the old and the new positions. After the move, the peg crossed over by the moved

peg is taken out of the board. A solution is a sequence of legal moves that leads to a board

con�guration with only one peg.

The Multipol implementation of the Tripuzzle program was written by Etienne

Deprit [YCD+95] based on a CM-5 implementation by Kirk Johnson [Joh93]. The program

performs an exhaustive, breadth-�rst search to count all possible solutions. The search

space is a graph of board con�gurations where each directed edge represents a legal move.

The graph is acyclic because all moves are irreversible (pegs taken out of the board are

never put back). It is not necessarily a tree because the same board may be obtained from

di�erent boards with more pegs.

The program consists of a series of bulk-synchronous phases. Each phase enu-

merates all the board con�gurations that can be reached via a legal move from the boards

obtained in the previous phase. That is, each phase traverses one level of the search graph.

The program takes advantage of the symmetry of the board to prune the search space by

a constant factor. To further prune the search space, the program uses a hash table to

eliminate duplicate board con�gurations and thus avoid searching from the same board

twice. Consequently, the number of paths leading to each board con�guration needs to be

recorded to keep track of the number of solutions. This is achieved by the custom duplicate

handler function which accumulates the number of paths for all duplicates in the hash table

entry that represents them.

16

Create a thread on each processor:

Create two empty hash tables called A and B, respectively.

Insert the initial board in A.

Set the variable "previous" to A, and the variable "current" to B.

Set N to the number of pegs in the initial board.

While N is greater than one:

Iterate over all boards in the "previous" hash table:

For all possible moves:

Insert the resulting board in the "current" hash table.

Clear all local entries in the "previous" hash table.

[Sync all insert operations on the "current" hash table]

Swap the values of the variables "previous" and "current".

Decrement N.

Iterate over all boards in the "previous" hash table to count solutions.

Figure 2.4: Pseudo code of the Tripuzzle program. The statements enclosed in square
brackets are long latency operations that may require synchronization.

Figure 2.4 shows the pseudo code of the Tripuzzle program. Two hash tables are

used to hold the board con�gurations enumerated in the previous phase and the current

phase, respectively. Only two hash tables are required for the computation, because there

is no need to keep track of the old states except for those generated in the previous phase.

Unacknowledged insert operations can be used for performance, because all insert operations

commute and the same hash table is obtained regardless of the order of insertions. The

program uses the sync operation to force all insertions to take e�ect before entering the

next iteration.

We ran the Multipol implementation of the Tripuzzle program on a 32 processor

CM5 to collect the statistics shown in Figures 2.5 and 2.6. We use a initial board containing

7 rows of pegs with an empty position in the middle of the 5th row. The results show that

the program is dominated by small �bers for handling the hash table insert operations.

Over 80% of the �bers executes for less than 200 microseconds, and over 80% of the total

�ber running time is contributed by �bers smaller than 600 microseconds. The commu-

nication tra�c in the program is also dominated by messages carrying less than 32 bytes

17

Number of Total
Threads Fibers Sync Comm. Communication

Events Events Volume

22034 27494 1424 19279 0.52MB

Figure 2.5: Characteristics of the Tripuzzle execution. The numbers shown are the averages
over 32 processors.

of data. Finally, the program has a clear phase structure which is delimited by the global

synchronization events for draining the insert accesses using the sync operation. The sync

operations account for almost all of the synchronization events.

In summary, the Tripuzzle program is similar to the EM3D program in that they

are both bulk-synchronous. However, the Tripuzzle program is more irregular because the

communication schedule for accessing the hash tables is unpredictable.

2.2.3 Task Stealer

The task stealer data structure was implemented by the author. It performs

dynamic load balancing, scheduling, and termination detection. It serves as a common

repository for parallel tasks which are represented by a user-de�ned data structures. The

program starts with some initial tasks, which may generate more tasks when processed. The

data structure hands o� tasks to processors until all scheduled tasks have �nished execution

and there are no tasks left in the data structure. The data structure also attempts to

preserve locality by keeping the tasks on the processors that created them. This is important

for applications where migrating a task incurs signi�cant computation or communication

overhead. This data structure can be used in applications with dynamic computation

granularities, such as divide and conquer algorithms or heuristic search problems.

2.2.3.1 Interface

The task stealer data structure is a collection of task pools, one for each processor in

the system. Tasks may be migrated between di�erent task pools to keep the processors busy.

Although the data structure represents a single logical pool of tasks, in the implementation

the logical task pool is distributed over the processors. This distribution shows through the

interface because scheduling is performed separately by the processors, and a processor can

18

0 0.005 0.01 0.015 0.02
20

30

40

50

60

70

80

90

100
Cumulative Distribution of Fiber Granularities

Running Time in Seconds

P
er

ce
nt

ag
e

Count

Time

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Communication Events

Size in Bytes

P
er

ce
nt

ag
e

Count

Size

Figure 2.6: Distribution of �bers and communication events for Tripuzzle. The resolu-
tion used for pro�ling the �ber granularity is 100 microseconds, and the resolution for the
communication event size is 16 bytes.

19

be out of work when there is still task in the system. The interface is di�erent from the

sequential interface proposed by Ho for task parallelism [Ho94].

An application can add and remove tasks in the task pools. Along with the content

of the task, the user may also provide hints for scheduling and load balancing. The hints

include the local scheduling priority of the task, the estimated amount of computation

performed by the task, and the estimated amount of penalty incurred when the task is

migrated. The load balancer uses the latter two estimates to determine what tasks to

migrate. Addition of a task is by default to the local task pool, but the programmer may

also explicitly specify the destination task pool. Tasks are always removed from the local

task pool. If the local task pool is empty, the data structure suspends the calling thread

until more tasks are generated by the local processor or migrated from other processors.

This suspension, like all suspensions in the Multipol runtime layer, is implemented as a

�ber continuation.

The data structure also provides primitives for detecting termination in a multi-

threaded execution environment. Termination is established when all task pools are empty

and no tasks are in progress. The former condition is automatically determined by the data

structure, but the programmer must explicitly establish the second condition by registering

the completion of every task obtained from a given task stealer object. The registration

is performed by calling a noti�cation primitive on the object. By appropriate use of the

noti�cation primitive, termination detection can be performed over multiple task stealer

objects.

2.2.3.2 Implementation Techniques

Although the task stealer data structure uses a priority based scheduler for each

task pool, the semantics of priorities is weakened to increase parallelism. Priorities are

used as a scheduling hint instead of a synchronization mechanism for tasks, since strict

enforcement of priorities would imply centralization and thus limits scalability.

The load balancer attempts to preserve locality by migrating tasks on demand, that

is, when requested by an idle processor. When there is su�cient parallelism in the system,

the processor can retrieve tasks from its local task pool without requiring synchronization.

When the load of a processor drops below a certain threshold, the data structure attempts to

\steal" tasks from its neighboring processors. To enhance locality, tasks with low migrating

20

penalty or tasks that have been migrated at least once are the preferred targets to steal.

The load balancing protocol is completely distributed and thus avoids hot spots.

The programmer can specify a logical network between the task pools for task

migration purposes. For example, the task pools in the system can form a ring, a hypercube,

or a complete crossbar. Tasks migrate only between neighboring processors. Network

topologies with high connectivities may lead to better load balance, but they introduce

more overhead in the load balancing protocol.

If locality is not essential, the programmer may also select a randomized load

balancer that randomly \pushes" tasks to task pools as they are added to the data structure.

Task pushing has been found to achieve better load balance for certain applications we

encountered (such as the Eigenvalue program described below). However, the theoretical

optimality of both types of load balancing protocols have been reported [BL94, CRY94].

Task migration creates problems for termination detection, because some migrated

tasks may be in transit in the network layer when all local task pools are empty. To perform

termination detection, the data structure �rst performs a snapshot on the collection of task

pools by temporarily suspending task migration and forcing the delivery of all migrated

tasks. The state of the individual task pools can then be probed and combined to determine

global termination. If tasks become available when termination detection is taking place,

they can be processed immediately without delay. Although our termination detection

protocol is not fully incremental [CL85] in that it blocks task migration, it does not impact

performance in practice because the protocol is rarely invoked. The snapshot mechanism

used for suspending task migration is described in Section 3.4.2.

2.2.3.3 Example Application { Eigenvalue

The Eigenvalue program computes the eigenvalues of an N by N symmetric tridi-

agonal matrix, which is known to have N real eigenvalues. The program uses the bisection

algorithm [DDR94] to approximate the eigenvalues to an arbitrary precision. Given an

input matrix, it �rst computes an initial interval of real numbers that contains all possible

eigenvalues for the matrix. The interval is then divided into two half-intervals (hence the

name bisection), and the number of eigenvalues in each half is computed. The half-intervals

that do not contain any eigenvalue are discarded. The program then performs bisection

recursively on the useful half-intervals until the desired precision is achieved.

21

The bisection of di�erent intervals can proceed in parallel. The processing of an

interval completes when it produces two useful sub-intervals or when it becomes a leaf

interval. Because the amount of computation required to process an interval is unknown,

the program uses the task stealer data structure to dynamically assign the intervals to

processors. Pointers to the intervals are placed in the task stealer data structure. The

processors repeatedly retrieve pointers from the data structure, fetch the interval, and

perform bisection. Each task repeatedly performs bisection on its interval until two useful

sub-intervals are obtained. The input matrix is replicated on all processors, so the bisection

computation is local once the interval is obtained. The computation kernel of the Eigenvalue

program was written by Soumen Chakrabarti [YCD+95]. Inderjit Dhillion implemented a

CM5 version of the bisection algorithm prior to the Multipol implementation [DDR94].

Figure 2.7 shows the pseudo code of the Eigenvalue program. A main thread

is used to set up the initial interval and perform post-processing after the computation.

A computation thread is created on each processor to process the intervals. Either task

pushing or task stealing can be used to perform dynamic load balancing. For task pushing,

new tasks are added to a random task pool. For task stealing, new tasks are added to the

local task pool.

We ran the program using a 1000 by 1000 random matrix on the CM5 to obtain

the statistics shown in Figures 2.8 and 2.9. We compare two di�erent load balancing

strategies: task pushing and task stealing. The statistics expose the non-uniformity in task

granularities. Although fewer than 5% of the �bers run for more than 50 milliseconds,

they contribute to more than 90% of the running time. The larger �bers are for intervals

where multiple bisections need to be performed to obtain two useful sub-intervals. Their

granularities vary between 50 milliseconds and 160 milliseconds.

Most messages generated by the program are small, and their sizes range from

16 to 144 bytes. For task pushing, the program generates a couple communication events

per task for randomly distributing the task and fetching the intervals. For task stealing,

the program generates slightly more communication because of the task migration protocol.

Detailed performance comparison of the two load balancing strategies is given in Chapter

4.

In summary, the Eigenvalue program consists of a collection of parallel tasks that

can execute independently without communication. However, the tasks have dynamic com-

putation granularities, and the program requires a dynamic load balancer to sustain pro-

22

Create a "main" thread on processor 0:

Compute initial interval

Add pointer to initial interval to local task pool.

[Wait until termination]

Collect and print solutions ...

Create a "compute" thread on each processor:

Repeat

[Remove a task from local task pool]

If task is not generated locally:

[Fetch the interval]

Repeat

Perform bisection on interval.

Until two half intervals are obtained or interval is a leaf.

If size of interval is within tolerance

Record solution ...

Else

Add pointers to half intervals to some task pool.

Figure 2.7: Pseudo code of the Eigenvalue program. The statements enclosed in square
brackets are long latency operations that may require synchronization.

Strategy Tasks Number of Total
Threads Fibers Sync Comm. Communication

Events Events Volume

Stealing 33 421 663 212 163 4.5KB

Pushing 33 321 531 187 135 4.1KB

Figure 2.8: Characteristics of the Eigenvalue execution on the CM5. The numbers shown
are the averages over 32 processors.

23

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Fiber Granularities

Running Time in Seconds

P
er

ce
nt

ag
e

Pushing Count

Stealing Count

Pushing Time

Stealing Time

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Communication Events

Size in Bytes

P
er

ce
nt

ag
e Pushing Count

Pushing Size

Stealing Count

Stealing Size

Figure 2.9: Distribution of �bers and communication events for Eigenvalue. The resolu-
tion used for pro�ling the �ber granularity is 1 milliseconds, and the resolution for the
communication event size is 16 bytes.

24

cessor e�ciency. The program generates a moderate number of messages which are small

in size. The program contains independent synchronization events and does not have a

clear phase structure. There are only a few global synchronization events which are used

for termination detection.

2.2.3.4 Example Application { Phylogeny

A phylogeny tree for a set of species describes the evolutionary history of the

species. Each species is described by a vector of character values called traits. Each charac-

ter describes an attribute of the species such as its skeletal structure or coloring or a DNA

sequence. A perfect phylogeny tree is a special phylogeny tree where no traits in a path

arise more than once. That is, once a species loses a certain trait, its descendent species

can never regain it. The Phylogeny program �nds the maximal character subsets that have

a perfect phylogeny tree for a given set of species. The problem is important to a branch

of biology known as systematics [JY95].

The Multipol implementation of the Phylogeny program is based on the CM-5

implementation written by Je� Jones [JY95]. The program performs a search on the space

of character subsets to �nd the subsets that have a perfect phylogeny tree. The program

takes advantage of two properties of perfect phylogeny trees in pruning the search space.

First, if a set of characters does not have a perfect phylogeny tree (called a failure), none

of its supersets have a perfect phylogeny tree. Second, if a set of characters has a perfect

phylogeny tree (called a success), all of its subsets have a perfect phylogeny tree. The

program maintains a \success store" and a \failure store" of explored character subsets to

prune the search space using the above properties. Each store forms a trie, which is built

using bit strings representing the subsets.

The root of the search tree is the null character subset. Child nodes are formed by

adding one character to their parent node. When exploring a character subset, the stores

are �rst checked to determine if the search subtree rooted at the node can be pruned. If the

node survives pruning, the program attempts to construct a perfect phylogeny tree for it.

If the attempt is successful, the node is added to the success store, and all its child nodes

are generated and scheduled for exploration, since we are interested in the maximal subsets.

Otherwise, the node is added to the failure store and its subtree is pruned from the search

tree. The maximal subsets can be found in the success store when the search completes.

25

The program is similar to the Eigenvalue program except that tasks are not com-

pletely independent. Each character subset is a parallel task. Because the number and

granularities of the tasks cannot be predicted, the program uses the task stealer data struc-

ture to dynamically assign the tasks to the processors. Pointers to the character subsets are

placed in the data structure, and the processor may need to fetch the subset from a remote

processor to process a task. Each processor maintains its own success and failure stores to

prune the assigned tasks.

The salient feature of the program is the impact of locality on the amount of

redundant computation. Task locality is very important for e�ective pruning. For example,

a failure in the �rst child of a node may help eliminate the nodes in the second subtree that

are supersets of the �rst child. By keeping the tasks local, nodes in the same subtree stay

on the same processor and thus share the same failure store.

The speculative nature of the search algorithm also suggests that combining the

stores on di�erent processors may make pruning more e�ective and thereby reduce redun-

dant computation. The program periodically combines the failure stores by performing a

global reduction of the stores on all processors.

Figure 2.10 shows the pseudo code of the Phylogeny program. A main thread

is used to set up the initial tasks and perform post-processing after the computation. A

compute thread is created on each processor to process the tasks. Either task pushing or

task stealing can be used to perform dynamic load balancing. For task pushing, new tasks

are added to a random task pool. For task stealing, the tasks are added to the local task

pool.

The compute thread periodically creates a combining thread to combine the failure

stores. The combine threads �rst perform a barrier among themselves to ensure all proces-

sors are ready to combine the failure stores. The barrier is used to mimic a \consensus"

protocol, and its latency can be overlapped with useful work. When the barrier completes,

all processors suspend their compute threads to perform the combination synchronously.

The combination consists of log(P) iterations, where P is the number of processors in the

system. Each iteration progresses one level up the reduction tree.

We ran the Phylogeny program on a 32 processor CM-5 using an input with 50

characters and 14 species. Figures 2.11 and 2.12 shows the results of two executions which

used task stealing and task pushing, respectively. For task stealing, the computation time

is dominated by �bers running for 10 to 50 milliseconds. For task pushing, almost all �bers

26

Create a "main" thread on processor 0:

Add all single-character subsets to some task pools.

[Wait until termination]

Collect and print solutions.

Create a "compute" thread on each processor:

Repeat

Create a combine thread if necessary.

If combination is in progress

[Wait until combination completes]

[Remove a task from the local task pool]

If task is not generated locally:

[Fetch the character subset]

Process the subset (using the success and failure stores).

If the subset is a success:

Form supersets of current subset by adding one character.

Add supersets to some task pool.

Each "combine" thread does:

[Perform global barrier on all "combine" threads]

/* Combination in progress */

[Perform global reduction on all failure stores]

/* Combination completes */

Figure 2.10: Pseudo code of the PHYLOGENY program. The statements enclosed in square
brackets are long latency operations that may require synchronization.

Strategy Tasks Number of Total
Threads Fibers Sync Comm. Communication

Events Events Volume

Stealing 2838 6636 11694 3288 2609 2.0MB

Pushing 2862 24856 38319 12795 9139 1.9MB

Figure 2.11: Characteristics of the PHYLOGENY program on the CM5. The numbers
shown are the averages over 32 processors.

27

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Fiber Granularities

Running Time in Seconds

P
er

ce
nt

ag
e Pushing Count

Pushing Time

Stealing Count

Stealing Time

0 5000 10000 15000
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Communication Events

Size in Bytes

P
er

ce
nt

ag
e Pushing Count

Pushing Size

Stealing Count

Stealing Size

Figure 2.12: Distribution of �bers and communication events Phylogeny. The resolution
used for pro�ling the �ber granularity is 1 millisecond, and the resolution for the commu-
nication event size is 128 bytes.

28

run for less than 1 millisecond. The task pushing version generates more �bers with smaller

granularities primarily because most tasks are remote, and more synchronization events are

required for fetching the character subsets for the tasks. The task pushing version execute

more tasks than the task stealing version because of the lack of locality in task pushing.

The majority of the communication events are small, but the large messages con-

tribute to most of the communication cost. Over 90% of the messages are less than 128

bytes for task pushing, and over 80% of the messages are less than 128 bytes for task steal-

ing. These messages include those generated by the task stealer for dynamic load balancing

and termination detection, those generated by the application for fetching remote character

subsets, and those used for coordinating the combination of the failure stores. The task

stealing version generates some 4K byte messages for migrating the tasks in batches. Mes-

sages larger than 8.5K bytes are used to fetch the failure stores, and they account for more

than 85% and 70% of the total communication volume for task pushing and task stealing,

respectively. Overall, the tasking stealing version generates fewer small messages because

most tasks can be processed locally.

The program contains independent synchronization events for accessing the task

pool and fetching the character subsets. The program also contains bulk synchronization

events for coordinating the combination of failure stores.

In summary, the Phylogeny program consists of a collection of parallel tasks that

can be scheduled independently, but are most e�cient if they share information. The

tasks have unpredictable quantity and granularity, and the program requires a dynamic

load balancer to sustain processor e�ciency. Some of the tasks are speculative, and the

load balancer must attempt to preserve locality to reduce the amount of communication

and redundant work. The program has a irregular communication schedule which contains

both small and large messages; the majority of the communication events are small, but

large messages contribute to most of the communication cost. The program contains both

independent synchronization events and global synchronization events.

2.2.4 Event Graph

The event graph data structure was implemented by the author. It is used to

perform asynchronous parallel computation on a irregular graph. Unlike the bipartite graph

data structure where the nodes synchronize in a bulk-synchronous manner, nodes in the

29

event graph synchronize independently. Each directed edge in the event graph is essentially

a communication channel for passing event messages from the source node to the sink node.

We use the term event messages to refer to the application-level messages in the event graph,

which are di�erent from the physical messages in the network layer. The data structure

guarantees the event messages are delivered in the order sent, and the maximum number

of outstanding event messages do not exceed a speci�ed threshold (called the capacity).

It also enforces data dependencies and resource dependencies by suspending threads that

attempt to send an event message that over
ows the capacity of an edge or threads that

attempt to retrieve an event message from an empty edge. The data structure can be used

in applications that have pipelined or producer/consumer parallelism such as discrete event

simulation.

2.2.4.1 Interface

The edges of the event graph can be thought of as �xed-sized FIFO bu�ers with

which the nodes send and receive event messages. The size of the bu�ers is called the

capacity of the graph, and is speci�ed by the programmer upon creation of the graph. The

setting of capacity determines the tradeo� between parallelism and memory overhead. The

higher the capacity, the fewer the synchronization events for
ow control and the higher

the parallelism between the sending and receiving nodes. However, if the capacity is too

high, thrashing in the memory hierarchy may occur when the amount of allocated memory

exceeds the physical memory of the system. See Section 5.1.5 for an example.

The nodes in the graph are the end points of communication in the program. They

also represent the units of computation required to process the communication events. The

nodes are statically distributed among the processors by a partitioner function supplied by

the programmer. The partitioner encapsulates the programmer's knowledge of the applica-

tion on the tradeo� between load imbalance and communication overhead.

After the graph is created on all processors, the program can issue four types of

operations: send an event message, examine and/or remove a event message, wait for a new

event message, and take a snapshot of the state of the graph.

When a node sends an event message, the message is multicast along all outgoing

edges of the node. The data structure suspends the sender if any of the outgoing edges

runs out of capacity. When the call returns, the data structure guarantees that the event

30

message will eventually be delivered, and the order of arrival will match the sending order.

The completion of the call does not necessarily imply that the event message has been

received.

The receiving node sees a FIFO queue of event messages for each incoming edge.

The received messages can be examined out of order, but they must be removed in the

order they are sent. The receiving node may suspend itself until some event message is

available. The programmer has the option of resuming the receiver when a message arrives

at an empty edge, or when a message arrives at any edge. The former generates fewer

synchronization events, and it can be used in applications where the event messages must

be processed in order, such as in the CSWEC program described in Section 2.2.4.3.

Because the event graph is distributed, there is no way for a single processor to

determine when the graph is in a globally consistent state, that is, when all event messages

have been received. Certain applications require a consistent snapshot of the graph state to

compute global properties, such as the presence of deadlock or the progress of computation.

To support such applications, the data structure provides a pair of primitives called freeze

and unfreeze, which are used to create a window of time when the state of the graph

is globally consistent. After invoking the freeze operation, the program can examine the

individual node states in an arbitrary order and obtain the same snapshot. The snapshot

mechanism is a component of the runtime layer and is described in detail in Section 3.4.2.

2.2.4.2 Implementation Techniques

The event graph data structure uses the following techniques to improve per-

formance. First, like the unacknowledged accesses in the hash table data structure, the

semantics of a send operation is weakened to reduce synchronization overhead. The weak

semantics eliminates the hand-shaking between the sending and the receiving nodes for

acknowledging event messages. The application can call the freeze primitive to force the

delivery of all event messages, for example, when taking a snapshot of the graph.

The data structure takes advantage of the graph structure to optimize communi-

cation performance. For example, identical event messages that are sent to di�erent nodes

on the same processor are collapsed into one physical message to reduce communication.

The control messages for managing message bu�ers are also collapsed in a similar manner.

The collapsing of messages signi�cantly reduces the amount of communication if the nodes

31

have a large number of fanouts, such as in the CSWEC program described below.

2.2.4.3 Example Application { CSWEC

The CSWEC program was implemented by the author, based on the sequential

SWEC program written by Lin [LMSK91]. The program simulates the voltage output of

combinational digital circuits, that is, circuits without feedback signal paths. The program

partitions the circuit into loosely coupled subcircuits that can be simulated independently

within a time step. The time step size is determined independently for each subcircuit

based on its current state. Longer time steps are used for subcircuits that have infrequent

activities, while shorter time steps are used for highly active subcircuits to maintain the

desired precision. At the end of a time step, if the subcircuit's state cannot be extrapolated

linearly from its previous state within some error margin, the new state is propagated to its

fanout subcircuits. The propagation of subcircuit state is called an event. The event-driven

approach signi�cantly reduces computation because digital signals change infrequently. The

simulation algorithm has been shown to be both accurate and e�cient in the work by Lin

et al. [LMSK91].

The parallel implementation of the CSWEC program is a classical example of

parallel discrete event simulation. We adopt the conservative approach to parallelizing

asynchronous simulation [CM81]. A graph node is allocated for each input signal port and

each voltage point of a subcircuit. A thread is created for each subcircuit to simulate its

time-varying state. The threads communicate and synchronize via the event graph data

structure, which encapsulates the connectivity structure of the circuit.

A thread suspends until all the required inputs are present, that is, when the

minimum time of the input events is no less than the next time step of the subcircuit.

The thread then simulates the subcircuit for a time step, and if the new state needs to

be propagated, it sends the new state via the event graph. The event graph ensures all

events are properly ordered at the receiving end and the memory used by the simulation is

bounded.

Since we target combinational circuits, the data dependence graph of the subcir-

cuits is acyclic, and deadlock due to the lack of global information cannot occur. However,

because the event graph places a upper bound on the number of outstanding event mes-

sages, subcircuits sending new events may wait for its fanout subcircuits to release the

32

required bu�er space, creating resource dependencies. The overall dependence graph of

the subcircuits may have cycles and therefore deadlock due to both data dependencies and

resource dependencies. To ensure the progress of simulation, we use both null messages

and deadlock recovery. A null message is an event that carries only the simulation time.

A subcircuit sends a null message if it progresses for several time steps without producing

any event. Deadlock recovery is used to ensure correctness, but in practice our heuristics

generates enough null messages to eliminate the need for deadlock recovery.

Figure 2.13 shows the pseudo code of the CSWEC program. The event graph

data structure propagates both event and null messages. The compute thread may sus-

pend to wait for new event messages, for bu�er space to send event messages, or for bu�er

space to send null messages. The latency of these operations can be overlapped with the

simulation of other subcircuits. The recovery thread remains inactive until the processor

runs out of compute threads to execute. The thread then performs a global barrier opera-

tion to synchronize with all deadlock recovery threads. If some subcircuit threads become

available for execution, they can be scheduled to overlapped the latency of the barrier, and

thus temporarily suspend the deadlock recovery process which has become unnecessary.

If all processors are out of work, deadlock recovery takes place eventually to unblock the

simulation.

We ran the CSWEC program on a 32 processor CM5 with two input circuits: a 32-

bit register �le (called REGFILE) and an unknown circuit from the ISCAS benchmark suite

(called C2670). The REGFILE circuit has 325 subcircuits and 4832 transistors, and the

C2670 circuit has 2033 subcircuits and 5364 transistors. The results are shown in Figures

2.14 and 2.15.

The computation granularities for the REGFILE circuit follow a bimodal distri-

bution. 70% of the �bers ran for less than 100 microseconds, while the total running time

is dominated by the remaining 30% of the �bers which ran for more than 5 milliseconds.

The non-uniformity of computation granularity comes from the irregularities in subcircuit

size { the circuit contains 32 large subcircuits that take up most of the transistors. The

C2670 circuit also has non-uniform computation granularities. 70% of the �bers run for 100

microseconds or less, and they contribute to only 10% of the total time. The rest of the

time is contributed by �bers running between 0.1 to 10 milliseconds.

Although the �ber granularities are non-uniform for both circuits, they are roughly

proportional to the sizes of the subcircuits they simulate. Therefore, we statically assign

33

1. Create a "compute" thread for each subcircuit to simulate its state:

Repeat

[Wait until a new event message arrives at an empty edge]

While the minimum time event message has time less than next time step:

Incorporate the fanin subcircuit state carried by the message.

Decrease next time step to maintain accuracy.

Advance edge time to message time.

Remove message.

While minimum edge time is no less than next time step:

Compute new state of subcircuit at next time step.

Advance next time step.

If new state cannot be linearly extrapolated from old state:

[Send new state to all fanout subcircuits]

If subcircuit has advanced without generating events:

[Send null messages to all fanout subcircuits]

Until simulation is done.

2. Create a "recovery" thread on each processor for deadlock recovery:

Repeat

[Wait until no subcircuit on the processor can progress]

[Perform global barrier among all deadlock recovery threads]

Find minimum time of all local subcircuits

[Perform reduction to find globally minimum time]

For all local subcircuits:

Advance edge time to globally minimum time if applicable.

Until simulation is done.

Figure 2.13: Pseudo code of the CSWEC program. The statements enclosed in square
brackets are long latency operations that may require synchronization.

34

Circuit Number of Total
Threads Fibers Sync Comm. Communication

Events Events Volume

REGFILE 2376 5656 463 1720 40KB

C2670 73111 113148 10363 59009 1.38MB

Figure 2.14: Characteristics of the CSWEC program on the CM5. The numbers shown are
the averages over 32 processors.

the subcircuits to the processors based on their sizes. Although the actual amount of

computation required by the subcircuits is dependent on the input signals, we chose not to

use a dynamic load balancer because each subcircuit has a substantial amount of state, and

the communication penalty for migrating subcircuits is high.

Almost all communication events are between 16 to 32 bytes in size, and they are

generated by the event graph data structure. By eliminating redundant event messages,

the data structure successfully reduces the number of event messages by more than 95% for

both circuits.

The number of synchronization events depends on the amount of memory allocated

for the simulation. Figure 2.16 shows the characteristics of the executions when the amount

of memory allocated is only 1/4 of that in Figure 2.14. The results show a signi�cant

increase in synchronization events due to the decrease in the parallelism between the sender

and receiver subcircuits.

In summary, the CSWEC program is highly irregular because it exhibits irregular-

ities in data layout, communication schedule, computation granularities, and synchroniza-

tion pattern. The communication tra�c is dominated by small messages, and the program

contains independent synchronization events whose number decreases as the amount of

memory allocated increases. The asynchronous structure of the program also requires a

multithreaded execution model for scheduling and latency hiding. The CSWEC program is

the most challenging application we have examined.

2.3 Summary and Comparison

In this section, we summarize our experiences with the Multipol library and point

out the runtime support required to build irregular applications. We �rst give an reca-

35

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Fiber Granularities

Running Time in Seconds

P
er

ce
nt

ag
e

Count (regfile)

Time (regfile)

Count (c2670)

Time (c2670)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100
Cumulative Distribution of Communication Events

Size in Bytes

P
er

ce
nt

ag
e

Count (regfile)

Size (regfile)

Count (c2670)

Size (c2670)

Figure 2.15: Distribution of �bers and communication events for CSWEC. The resolu-
tion used for pro�ling the �ber granularity is 100 microseconds, and the resolution for the
communication event size is 16 bytes.

36

Circuit Number of Total
Threads Fibers Sync Comm. Communication

Events Events Volume

REGFILE (small) 3815 7920 1405 1959 45KB

C2670 (small) 109937 169567 32200 68719 1.59MB

Figure 2.16: E�ect of reducing the memory allocation on simulation. The amount of memory
is reduced to 1/4 of the original size.

Irregularities Applications
EM3D Tripuzzle Eigenvalue Phylogeny CSWEC

Data Layout Yes Yes { { Yes

Communication schedule { Yes Yes Yes Yes

Computation granularities { Some Yes Yes Yes

Synchronization pattern { { Some Some Yes

Speculative parallelism { { { Yes {

Figure 2.17: Irregularities in the examp le applications.

pitulation of the irregularities arising in the �ve example applications. We then compare

their work load and discuss the performance implication. Finally, we suggest the runtime

infrastructure required to build such applications.

2.3.1 Application Characteristics

Figure 2.17 gives a summary of the irregularities arising in the �ve example ap-

plications. It shows that the data structures in the Multipol library cover a wide range of

irregular applications. Figure 2.18 compares the application workload in the following three

aspects: computation, communication, and synchronization.

The computations in an application can be statically balanced if their granularities

can be predicted (such as in the EM3D program) or reasonably estimated using application-

speci�c heuristics (such as in the Tripuzzle and CSWEC program). Otherwise, a dynamic

load balancer should be used. Choosing the load balancing strategy involves a tradeo�

between load balance and locality. For example, locality has little impact on the Eigenvalue

program with its replicated matrix, so randomized task pushing can be used to improve load

37

Applications Workload
Computation Communication Synchronization

EM3D Statically balanced Some large Predictable
using knowledge of input predictable events global events

Tripuzzle Statically balanced Mostly small Predictable
by randomization unpredictable events global events

Eigenvalue Dynamically balanced, Some small Independent
locality not important unpredictable events events

Phylogeny Dynamically balanced, Some small and large Independent
locality is important unpredictable events and global events

CSWEC Statically balanced Many small Independent
using heuristics unpredictable events events

Figure 2.18: Comparison of application work loads.

balance. However, the Phylogeny program performs better with task stealing, because it

preserves locality and thereby reduces the amount of communication and redundant work.

Communication performance is a�ected by the the total volume of communication

and the nature of the communication events. Communication overhead is less pronounced

if the volume of communication per event is large, as in the EM3D program. The per-

formance of such applications are limited only by the network bandwidth. In comparison,

small, unpredictable communication events incur more overhead, because they require addi-

tional hand-shaking between the sender and the receiver to set up the communication. For

applications with many small unpredictable communication events, such as the Tripuzzle

program and the CSWEC program, the performance is likely to be limited by the commu-

nication start-up overhead.

Synchronization events can take place independently for the individual accesses,

or globally for a collection of accesses. Global synchronization events has less performance

impact if their overhead can be amortized over a large number of accesses. Bulk synchronous

applications such as the EM3D program and the Tripuzzle program are more likely to take

advantage of global synchronization events.

38

2.3.2 Required Runtime Support

Our experiences with the Multipol library and applications suggest the following

runtime infrastructure for building irregular parallel programs.

First, a multithreading execution environment is required for hiding the communi-

cation and synchronization latency. In addition to simple reads and writes, distributed data

structures may perform arbitrary computations on a remote processor, such as a dictionary

lookup. Remote accesses may also wait for synchronization events that have inde�nite la-

tency, such as waiting for event messages or remote bu�er space in the CSWEC program.

Multithreading can be used to hide the latency of such operations.

Second, the overhead of small unpredictable communication events needs to be ad-

dressed. In addition to the hand-shaking overhead involved in setting up an unpredictable

message, most distributed memory architectures have poor bandwidth characteristics for

small messages. To improve performance, the communication workload of applications such

as Tripuzzle and CSWEC must be transformed into a workload that can be e�ciently sup-

ported by the machine platform, using techniques such as automatic message aggregation,

which is discussed in the next Chapter.

Finally, all distributed data structures share the same split-phase interface, which

separates the issue and completion of remote accesses to hide latency. The implementa-

tion of the data structures can also share the infrastructure for naming, data distribution,

concurrency control, and synchronization.

Although none of the applications described in this work make use of dynamic

caching, the Multipol library contains a data structure called the weakly consistent object

layer, which has successfully applied caching to a Gr�obner basis program. The program

uses a kind of speculative parallelism that is similar to a search problem, but with more

subtle forms of pruning [CY93].

2.4 Related Work

Fox [Fox92] classi�ed parallel applications based on their temporal structures.

He put all applications in three categories: synchronous, loosely synchronous, and asyn-

chronous. He described example applications in each category and discussed their degree of

irregularity. Instead of directly classifying applications, we enumerate the common sources

39

of irregularities and use the application workload to quantitatively characterize them. Our

approach provides more insight into the techniques for optimizing irregular applications.

There has been a great deal of work on specialized libraries for scienti�c applica-

tions. Examples include LAPACK [Dem89, ABB+92] and ScaLAPACK [CDPW92], which

are libraries of SPMD algorithms for solving linear algebra problems such as matrix multipli-

cation, matrix factorization, and eigenvalue computations. Unlike the Multipol library, they

contain standalone procedures rather than data structures and they solve mostly regular

problems.

PARTI [BSS91] and CHAOS [DHU+93, DUSH94, MSH+95] (an enhanced version

of PARTI) are runtime layers designed to support simulations on spatially irregular data

structures. They generate optimized communication schedules to reduce the overhead of

accessing such data structures. LPARX [KB95] is a library for adaptive mesh computa-

tion. It provides primitives for building adaptive meshes, partitioning the computation,

and accessing the mesh state. These libraries use various optimization techniques to resolve

the performance ine�ciencies due to irregular data layout and uneven computation gran-

ularities, but they are limited to bulk-synchronous algorithms and numerical applications.

In contrast, Multipol is designed for a more general class of irregular problems which in-

cludes asynchronous algorithms. Out of the �ve applications we examined, only the EM3D

application can be optimized using libraries such as CHAOS or LPARX.

Ho [Ho94] developed a toolbox for parallelizing symbolic applications in Lisp. His

toolbox provides two types of abstractions: parallelism and data sharing abstractions. The

parallelism abstraction is similar to our task stealer data structure. The data sharing

abstractions include automatically locked objects and speculative read-modify-write opera-

tions. The toolbox is similar to the Multipol data structure library in that they both support

irregular, asynchronous applications. However, Ho's toolbox is designed for shared-memory

platforms and emphasizes the importance of a single-threaded, sequential interface for pro-

grammability. Some of the data structures in the Multipol library relax the consistency

requirements and sacri�ce the sequential interface to allow for more e�cient implementa-

tions. For example, the task stealer data structure has a termination detection interface

that exposes the multithreaded execution model.

Many load balancing protocols for distributed memory platforms have been pro-

posed. Their major di�erences are not in the algorithms, but in the surrounding software

support. Languages and runtime layers such as Charm [SK91, KK93] and Cilk [BJK+95]

40

have built-in language mechanisms to allocate parallel tasks that are automatically migrated

by a embedded load balancer. These systems have a �xed set of load balancing and schedul-

ing policies that cannot be easily customized for a particular application. Our experiences

with irregular applications indicate that it is essential to use di�erent load balancing and

scheduling policies for di�erent applications. For example, the Eigenvalue program per-

forms better with task pushing, while the Phylogeny program performs better with task

stealing. Static load balancing is sometimes better, even for problems with unpredictable

task times, as in the CSWEC program where migrating the subcircuits incurs high penalty.

In Multipol, we use the library data structures to perform load balancing. The programmer

can choose from a variety of load balancing policies provided by the library or implement a

customized load balancing policy for a particular application.

41

Chapter 3

Multipol Runtime Layer

Distributed memory multiprocessors have been the dominant architecture for medium

to large scale parallel computing. Workstations connected by high bandwidth networks are

also gaining popularity. However, such architectures tend to encourage programs with bulk,

predictable communication patterns. They do not match the characteristics of irregular ap-

plications with �ne-grained, asynchronous communication. Direct mapping of irregular

communication patterns on distributed memory machines often leads to poor performance.

Portability is also a concern in developing irregular applications. Irregular paral-

lel programs are mostly written with explicit communication primitives from the vendor's

communication library, which varies with the machine. The di�erences in programming

environments create problems for code sharing across machines. MPI [For94] is a message

passing standard which provides a uniform communication interface on distributed mem-

ory platforms. But the MPI primitives are designed for cooperative message passing and

therefore do not support irregular communication patterns well.

In this chapter, we describe the Multipol runtime layer for building irregular ap-

plications on distributed memory architectures. The runtime layer underlies the data struc-

tures described in Chapter 2, but it can also be used directly by the application program-

mer. It has two main components: a thread layer and a communication layer. The thread

layer addresses the performance issue by allowing the programmer to overlap the latency

of remote accesses with local computation. It also simpli�es programming by providing a

remote invocation mechanism. The communication layer addresses the portability issue by

providing the programmer with a uniform programming interface on machines with di�erent

native communication mechanisms. It also optimizes irregular communication schedules for

42

e�cient execution on distributed memory platforms with di�erent computation to commu-

nication cost ratios.

The thread layer and the communication layer are tightly integrated to facilitate

concurrency control and scheduling. The thread system provides a basic programming

abstraction called �bers which have guaranteed atomicity. Communication events take

place asynchronously in the form of remote �ber invocation without disrupting concurrency

control. The �bers can be scheduled using the default schedulers provided by the runtime

layer or the customized schedulers written by the programmer. The runtime layer takes

advantage of semantics of the schedulers to optimize performance.

The runtime layer also provides some system data structures for managing the

distribution of data structures and performing distributed snapshots. They are the basic

build blocks for other higher-level data structures.

The rest of the chapter is organized as follows. Section 3.1 gives an overview of

our approach. Section 3.2 presents the thread layer, covering issues in concurrency control,

scheduling, and programming. Section 3.3 describes the interface and implementation of

the communication layer. Section 3.4 describes the data structures provided by the runtime

layer. Section 3.5 describes the implementation of the runtime layer on di�erent types of

machines. Section 3.6 describes related work, and Section 3.7 summarizes the chapter.

3.1 Overview

In this section, we point out the mismatch between the characteristics of dis-

tributed memory architectures and the workload of irregular applications. We then describe

our approach to resolving this mismatch.

3.1.1 Characteristics of Distributed Memory Architectures.

A distributed memory machine consists of a collection of processors, each of which

has its own memory module. Without a shared address space, accessing remote memory

requires executing code on the processor owning the memory. The accesses can be performed

by cooperative message passing or active messages [vECGS92]. To support messages of an

arbitrary size, the bu�er space used for each message must be explicitly allocated before

the communication takes place.

43

Machine Network Nodes Comm. Layer Overhead Latency Bandwidth

CM5 Fat-tree 32 CMAML 4.3 us 14.5 us 10 MB

Paragon Mesh 8 NX 91 us 164 us 39 MB

SP1 Multi-stage 8 MPLp 44.8 us 68.3 us 8.5 MB

Sparc cluster Crossbar 8 TCP/IP ' 0.8 ms ' 1.6 ms 9 MB

Figure 3.1: Communication characteristics of 4 distributed memory machines. The over-
head is the processor time for sending and receiving a 0-byte message. The latency is the
round-trip time (including overhead) between sending a request message and receiving a
reply message. The bandwidth is the peak point-to-point bandwidth attainable by the
communication library.

The processors can be connected by a variety of networks such as the fat-tree

interconnect of the CM5 [LAD+92], the mesh interconnect of the Paragon [LC95], and the

switched LAN (e.g., Myrinet [BCF+95]) of the Sparc cluster built by the NOW [CLMY96]

group at Berkeley. The native communication libraries on these machines typically have

high start-up overhead, and therefore bandwidth increases with the size of the physical

message. Communication latency varies with the physical distance between the nodes, but

the di�erence is usually negligible compared to the communication overhead.

Figure 3.1 shows the communication performance of the machines used in this

work. For portability, we use the communication libraries provided by the vendors instead

of the research prototypes such as the generic active messages (GAM) [CKK+94] developed

by the NOW group. The measurements for the CM5, the Paragon, and the SP1 are from

Luna [Lun94], and the measurements for the Sparc cluster are from Keeton et al [KAP95].

On every machine, the communication time for small messages is entirely dominated by the

send and receive overheads on each end.

3.1.2 Our approach

Although distributed memory architectures provide high performance and scala-

bility, they do not provide an adequate programming model for irregular applications. Two

issues arise from the distributed memory model, namely the latency of remote operations

and the overhead of communication. As described in Chapter 2, accesses to distributed data

structures are often performed by invoking computation on a remote processor, and the la-

tency observed by the processors for these accesses can be high. Many irregular applications

also generate unpredictable communication events that are small in size, a communication

44

pattern that cannot be supported e�ciently by most message passing libraries. To address

these two issues, the Multipol runtime layer uses the following two techniques: multithread-

ing and message aggregation. Both techniques reply on the availability of excess parallelism

in the application.

The runtime layer provides a simple user-level thread layer for hiding the latency

of remote operations. Instead of waiting for a remote operation to complete, the processor

simply switches to another available thread to continue execution. The threads are built on

an abstraction called �bers which appear to execute without interruption until completion.

Fibers can be scheduled freely to �ll latency gaps.

The runtime layer also performs automatic message aggregation to accumulating

small, asynchronous messages into large physical messages. Message aggregation improves

communication e�ciency by amortizing the communication start-up overhead over a larger

amount of payload. The optimization trades the excess parallelism from the multithreaded

execution model for higher communication bandwidth.

Figure 3.2 illustrates our approach. The left side of the �gure represents the work-

load of a conventional single-threaded program which features many small messages and

synchronization events. The right side of the �gure represents the desirable workload for dis-

tributed memory architectures, which favors bulk communication and synchronization. The

mismatch between the two workloads causes the program to run with poor e�ciency. The

goal of the Multipol runtime layer is to provide the mechanisms for dynamically transform-

ing the program workload into a workload that can be executed e�ciently on conventional

distributed memory machines.

The Multipol runtime layer also enables the same program to execute on a va-

riety of distributed memory machines. Figure 3.3 illustrate the portability layers in the

runtime layer. The applications and data structures are built on a portable programming

interface provided by the runtime layer. The runtime layer itself is also built on a com-

mon machine interface to facilitate porting. The multithreaded execution model and the

optimized communication layer enable Multipol programs to have performance portability,

that is, a single application implementation may be used without changes to achieve high

performance across platforms.

45

 Workload
OP1 OP2 OP3 System

Computation

Comm. per-byte overhead

Comm. start-up overhead

Wait for access

Multithreading + Message aggregation

OP1

OP2

OP3

Inefficient

Workload

Efficient

Figure 3.2: Improving e�ciency with multithreading and message aggregation. Multi-
threading hides the latency of synchronization events (the white area in the left �gure), and
message aggregation reduces the communication start-up overhead (the dark gray area).
The result is the more e�cient workload shown in the right �gure.

46

CMAML

CM5

 NX

Paragon

Common Machine Interface

TCP/IP

Applications

Multipol
Data Structure

Library

use

use

use

port port port port

 NOW

MPLp

SP1/SP2

 Layers
Thread and communication

Runtime Layer Interface

Figure 3.3: Portability layers in the Multipol runtime layer.

47

3.2 The Thread Layer

In this section, we present the Multipol thread layer and illustrate its use in im-

plementing distributed data structures.

3.2.1 Threads and Fibers

The Multipol runtime layer supports a MIMD programming model. The computa-

tion on each processor proceeds by spawning threads that are used for simulated parallelism

on that processor. When a thread suspends to wait for a synchronization event, the runtime

layer schedules another available thread for execution to keep the processor busy.

Threads are not directly supported by the runtime system, but are built from

�bers. Fibers provide the programmer with a computational abstraction that appears to

execute atomically. Each thread then consists of a sequence of �bers separated by synchro-

nization events, with the invocation of a �ber in the sequence acting as a continuation of

the thread. The atomicity of �bers helps concurrency control for accessing data structures

that are distributed over the processors; di�erent �bers can update di�erent partitions of

the data structure concurrently without requiring locking, because each �ber has exclusive

access to its partition when it executes. The non-blocking semantics of �bers also facilitate

scheduling and performance pro�ling. Although the runtime layer does not provide internal

support for thread context management, we provide a set of macros to help the construction

of threads from the �bers. A prototype compiler was developed by Jones and Papavassil-

iou [JP95] to automatically converts programs with blocking accesses into programs with

only split-phase accesses and �bers, but in this thesis, all of our programs use hand-coded

�bers or �bers generated by the macros.

To create a �ber, the programmer speci�es a function and its actual arguments.

Once scheduled, the �ber executes the function with the arguments. Besides a few words of

data for book-keeping purposes,1 the function and the arguments comprise the entire state

of a �ber. Stack frames needed by a �ber are allocated as normal function calls on the

program stack; because �bers run to completion, the registers and stack frames associated

with a �ber never need to be saved. Therefore, the �ber abstraction provides a light-weight

thread layer without requiring machine-dependent code for managing processor states.

Creating a �ber involves allocating its state and copying the input arguments.

1These include the total size of the arguments and a few integers for pro�ling purposes.

48

Since many �bers are used to implement thread continuations, the runtime layer allows a

executing �ber to directly pass on its state to a new �ber upon termination. Creating a

continuation �ber incurs lower overhead because the new �ber simply reuses the space of

the terminated �ber without requiring bu�er allocation or copying.

During the life-time of a �ber it can be in one of three stages { created, enabled,

and executing. Typically, a �ber in the created stage is waiting for a synchronization event.

It has its associated state allocated, but is not eligible for execution until it is explicitly

enabled. A �ber in the enabled stage may be scheduled for execution at any time.

Threads and �bers are used only for latency hiding. They are not meant to be

used as units of true parallelism or load balance and they do not migrate across processors.

Unlike other compilers or runtime systems with built-in load balancers [SK91, BJK+95,

GSC95, MKH91, CR95], load balancing mechanisms are left out of the Multipol runtime

layer so that the programmer can have more control over locality and scheduling. Load

balancing can be performed by the task stealer data structure or other data structures

implemented by the user. The programmer can reduce the runtime overhead for managing

parallelism by creating parallel tasks only when necessary.

3.2.2 Synchronizing with Split-phase Operations

Fibers have names called handles that are generated by the runtime layer at cre-

ation time. A �ber handle can be stored in user data structures to implement any synchro-

nization mechanism. The runtime layer provides one such synchronization data structure

called a counter.

A counter has a current value that can be set or incremented by the �bers. A �ber

can \wait" for a counter to reach a certain value by registering its handle and the desired

value with the counter. The �ber is immediately enabled if the counter's value reaches the

desired value. Whenever the counter value is updated, the system checks and enables the

�bers that are eligible for execution. The runtime layer does not allow a �ber to wait on

multiple counters, so the checking can be implemented inexpensively.

Counters are used to implement split-phase operations. Every split-phase opera-

tion takes a counter argument, which is incremented upon the completion of the operation.

To wait for a split-phase access to complete, a thread creates a �ber as its continuation and

registers the �ber handle with the counter used by the operation. A thread can also wait

49

for the completion of multiple accesses by using an appropriate wait value.

The interface of a split-phase operation provides a \shortcut" synchronization

mechanism when the operation is local. Every split-phase operation returns a status code

which is OK, WAIT, or FAIL. When a split-phase operation can be processed locally, it

simply executes to completion and returns the OK status. If communication is required,

it starts the communication and returns the WAIT status. Otherwise, it returns the FAIL

status indicating an exception. If the return status is WAIT, the calling thread creates a

continuation �ber to perform any remaining computation and synchronization.

3.2.3 Concurrency Control

The �ber abstraction simpli�es concurrency control by reducing locking and avoid-

ing certain deadlock scenarios. The atomicity of �ber executions allows many operations to

be implemented without explicit locks. A remote operation on a distributed data structure

is often a simple read-modify-write operation on one part of the data structure. Such an

operation can be implemented in a single �ber with no locking, because the �ber is the only

observer and mutator of the part when it executes.

The use of �bers also eliminates, by �at, deadlock due to spin-waiting, because

no �ber is allowed to spin on external conditions. For multithreaded programs comprising

multiple data structures, it is generally unsafe to spin-wait. For example, an event graph

send operation cannot spin-wait on the availability of bu�er space, because it may depend

on the execution of another event graph receive operation on the same processor. Programs

with spin-waiting also have lower performance portability, because spin-waiting is a schedul-

ing policy whose bene�ts vary with the machine and the workload. For these reasons, we

require that the �bers complete once they start executing.

The �ber executions need only \appear" atomic, meaning that the result of a

concurrent execution is equivalent to some sequential execution. Preemption can in fact

occur as long as atomicity is preserved at the abstract level. For example, a task stealer

operation may preempt an event graph operation, since they update di�erent data sets and

the result is equivalent to some sequential ordering of their executions. Preemption can be

used to reduce the number of �bers and their associated overheads. Section 3.2.4 discusses

�ber preemption in detail.

50

3.2.4 Scheduling

The best scheduling policy for the �bers depends on the workload. For example, in

speculative computations, �bers that are more likely to lead to useful work should be sched-

uled in preference to other �bers to avoid redundant work. In dynamically load balanced

applications, �bers requesting work for idle processors should be given higher scheduling

priority than local computation �bers. Instead of providing the programmer with a �xed set

of scheduling policies, the runtime layer provides the mechanisms that allow the program-

mer to write customized schedulers. For example, in the CSWEC program, the customized

scheduler can examine the state of simulation to determine when deadlock detection should

take place.

Figure 3.4 depicts the scheduling hierarchy of the runtime layer. The top-level

scheduler is responsible for dispatching the �bers for executions. It selects the next �ber

by making queries to the customized schedulers. The programmer speci�es the customized

scheduler to use for a �ber upon its creation. When a �ber is enabled, the runtime layer

simply hands o� the �ber handle to its designated scheduler. The customized scheduler

enforces its own scheduling policy by giving back the �ber handles to the top-level scheduler

in the appropriate order. Multiple customized schedulers can be present at the same time

to schedule di�erent types of �bers.

A customized scheduler is an arbitrary data structure with two required operations:

deposit and select. The deposit operation takes a �ber handle and stores it in the scheduler's

internal data structure such as a FIFO or a priority queue. The select operation chooses a

�ber handle and deletes it from the data structure. The programmer speci�es the deposit

operation for use when creating a �ber. The programmer also registers the select operation

with the runtime layer so that it is invoked periodically by the top-level scheduler.

In addition to the user-de�ned schedulers, the runtime layer provides three default

schedulers: urgent, FIFO, and preemptive. The top-level scheduler always pick �bers from

the urgent scheduler if available. The urgent scheduler is used for system threads such as

the message handlers and other high-priority application threads such as those that migrate

work to idle processors. The FIFO scheduler is a simple �rst-in-�rst-out scheduler for use

as the default when the �ber does not require sophisticated scheduling. The preemptive

scheduler is used for �bers that can preempt the executing �ber.

Preemption is used primarily as a performance optimization. When a preemptive

51

Runtime layer

Top-level scheduler

FIFO FIFO Priority
Queue ... etc

... etc

Pool of fiber states

Fiber handles

Execute a fiberScheduler
Urgent

Scheduler # 1 Scheduler #2
 (FIFO) (Preemptive)

deposit/select

Scheduler #3

Figure 3.4: Scheduler hierarchy of the runtime layer.

52

�ber is enabled, it simply starts executing in the enabling �ber's context without requiring

state allocation and dispatching. A few restrictions are made to make this optimization

possible while preserving the �ber semantics: the preemptive �ber cannot modify its ar-

guments, cannot have continuations, cannot cause starvation of other �bers, and cannot

disrupt the atomicity of the executing �ber. The �rst two restructions are easily enforced

in programming the �ber. The third restriction states that number of preemptive �bers

cannot grow inde�nitely and requires the programmer to check for recursive �ber invoca-

tions. The last restriction is more subtle. It requires the programmer to know when a

preemptive �ber may execute2 and carefully code the related �bers to preserve atomicity.

Because of the sophistication of use, preemptive �bers are mostly used by the library pro-

grammer in highly optimized data structures. Sections 5.1.2 and 5.1.5 demonstrate the use

of the preemptive scheduler.

When the urgent scheduler has no �bers, the top-level scheduler picks �bers from

the other schedulers in a round-robin manner. If a �ber is scheduled by a fair scheduler,

the runtime layer guarantees that it executes eventually unless the program terminates, as

long as the number of urgent and preemptive �bers does not grow inde�nitely,

Summarizing the above, the Multipol runtime layer decouples scheduling poli-

cies from the main application code by localizing scheduling in the implementation of the

customized schedulers. The programmer can tune the scheduling policies for performance

without restructuring the main application code.

3.3 The Communication Layer

The runtime layer provides a variety of portable communication primitives for

expressing irregular communication patterns. We classify the primitives into asynchronous

communication primitives, which are used in asynchronous applications such as the CSWEC

timing simulator and the Phylogeny program, and bulk communication primitives, which

are used in bulk synchronous applications such as the EM3D program.

3.3.1 Asynchronous Communication Primitives

The runtime layer allows the program to invoke an arbitrary �ber on a remote

processor. The primitive is similar to creating a local �ber, except that no �ber handle is

2To be precise, a preemptive �ber may execute whenever it is enabled or when the network is serviced.

53

returned and the �ber is enabled immediately upon its arrival at the processor. The �ber

invocation does not require any acknowledgement from the remote processor. It returns

immediately after the �ber state is copied into an internal message bu�er so that the caller

can proceed with other computation. The runtime layer guarantees that the �ber invocation

takes place eventually unless the program terminates.

A split-phase operation can be implemented by a sequence of local and remote

�ber invocations as follows. First, the interface function of the operation takes the user

arguments and computes the processor partition with the requested data. If the access can

be satis�ed locally, the function synchronizes with the caller as describe in Section 3.2.2.

Otherwise, it creates a continuation �ber and forwards the request and the continuation to

the remote processor by invoking a �ber. The remote �ber accesses the data and replies

with the result by invoking another �ber on the requesting processor, which synchronizes

with the continuation �ber to resume the remainder of the operation.

Remote �ber invocation is similar to the notion of an active message, in that both

allow the programmer to start computation on a remote processor. Other than that basic

similarity, the two mechanisms are quite di�erent. Active messages are designed as an e�-

cient network layer, not as a computational abstraction [vECGS92], and are insu�cient for

implementing remote operations in the follow respects. First, active messages take a �xed

number of arguments (typically 4 words) for e�ciency, and leave the problems of bu�er

allocation and fragmentation to the upper-level software. A later version of active messages

called generic active messages (GAM) [CKK+94] allows the programmer to invoke the mes-

sage handler with an arbitrary number of arguments, but the upper-level software is still

required to allocate the storage prior to the communication. Second, the handler code must

follow a request/reply protocol to avoid network level deadlock [vECGS92]. For example, a

handler invoked by a request message cannot send another request message. The protocol

limits the types of accesses that can execute in a handler. Finally, the scheduling of the

handler code is coupled with the delivery of the message, which makes it di�cult to im-

plement other scheduling policies. Because active message handlers may execute whenever

the network is serviced, it is also di�cult to enforce concurrency control. For example,

local computation may be preempted by an arbitrary active message handler when it polls

the network. Bu�ering of messages is often required to enforce atomicity without causing

network congestion, due to disabled interrupts or insu�cient polling.

The runtime layer separates the use of remote �bers and network handlers such as

54

active messages. Remote �bers are used to perform computation, while network handlers

are used to e�ciently transfer data between processors and post �bers. Interrupts or polling

need be disabled only in a small set of system routines such as memory allocation and �ber

manipulation. The �bers can send or receive arbitrary messages without compromising

atomicity or causing network deadlock.

3.3.2 Bulk Communication Primitives

Bulk communication primitives such as bulk read, bulk write, and bulk store

transfer blocks of memory between the processors. They provide a global address space on

a distributed memory machine, where a memory location is uniquely identi�ed by its local

address and its processor identi�er.

The read and write accesses are split-phase, and they increment a counter when the

transfer is completed. The store access returns immediately without waiting for the transfer

to take place, and it increments a counter when the source memory can be safely reused.

Upon completion of the transfer, a �ber is invoked on the receiving processor with the

destination address. The �ber may reply to the sender with an acknowledgement message,

although a more typical scenario is to acknowledge multiple store operations at the end of a

phase, such as in the EM3D program. The bulk accesses in our runtime layer are modeled

after the Split-C [CDG+93] bulk accesses and the GAM [CKK+94] store operation, except

that our primitives have a split-phase interface that is integrated with the Multipol thread

layer.

3.3.3 Implementation and Optimization

The communication primitives are translated into the machine primitives by the

communication layer, which handles bu�er allocation and
ow control. The communication

layer also attempts to optimize the handling of the messages based on their sizes and

scheduling semantics.

All messages generated by the communication primitives are put into four cat-

egories depending on their sizes and the underlying machine characteristics. They are

handled di�erently by the communication layer as shown in Figure 3.5.

Large messages are those that transfer more data than the aggregation threshold,

the desired physical message size for achieving good communication bandwidth. Because

55

Active
message

medium

Active
message

Bulk
store

Execute

communication primitives

 Create fiber
 & schedule

 Aggregate

Network

Processor
Remote

Processor
Local

small, preemptive

small

large

Figure 3.5: The structure of the message layer.

56

large messages have good overhead-to-payload ratios, they are sent immediate without

further aggregation. For example, the EM3D program contains mostly large messages and

it would achieve the same performance with or without message aggregation.

Medium messages are those smaller than the aggregation threshold but larger than

an active message (e.g., 4 words). Such messages have poor overhead-to-payload ratio if

they are sent separately. Therefore, the communication layer accumulates medium messages

in a internal bu�er and sends the aggregated message in bulk when the size of the bu�er

exceeds the aggregation threshold. The runtime layer guarantees the messages are delivered

eventually by
ushing the bu�er to the network when the processor runs out of �bers to

execute, or when a certain number of �bers have executed since the last communication

event. The programmer may also
ush the message bu�er explicitly.

Message aggregation uses excess parallelism to reduce the communication start-

up overheads. Figure 3.6 shows the e�ect of message aggregation on the performance of

the CSWEC program running on the Sparc cluster and the CM5. The results shows that

message aggregation can have a signi�cant impact on machines with large communication

start-up overhead, such as the Sparc cluster, but it has a much smaller e�ect on machines

with low communication start-up overhead like the CM5. Aggregating messages may in-

crease the latency of synchronization events and even increase total running time. This

tradeo� between overhead and latency will be discussed further in Chapter 5.

A small message �ts in an active message. On machines that support e�cient

active messages, small messages are sent directly as active messages to save the bu�er

allocation and
ow-control overhead. For remote �ber invocations, the active message

handler simply creates the �ber and deposits the arguments into the �ber's state. If the

�ber is scheduled by the preemptive scheduler (called a small preemptive message), the

active message handler may directly execute the �ber code to avoid the costs of creating a

new �ber. This optimization is similar to the idea of optimistic active messages [WHJ+95].

3.4 System Data Structures

The runtime layer provides two system data structures: the distributed object

manager for naming distributed objects and the snapshot data structure for taking snap-

shots of distributed objects.

57

0 200 400 600 800 1000 1200 1400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Effect of Message Aggregation (Timing Simulation)

Aggregation Size (bytes)

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

CM5

Sparc20 Cluster

Figure 3.6: E�ect of message aggregation on the Sparc cluster and the CM5. The graph
shows the reduction of running time (percentage) due to message aggregation.

3.4.1 Distributed Object Manager

The distributed object manager provides primitives for naming, creating, and ac-

cessing data structures that are distributed over multiple processors.

An instance of a distributed data structure is called an object. The storage for

an object is partitioned over all the processors in the system. The partitions are logically

strung together by the object's unique name, which is allocated by the distributed data

manager.3 The data structure also provides primitives for mapping an object name to its

partition address on the local processor.

The data structure also provides global operations on the partitions of an object,

such as split-phase barrier and reduction. The global operations are used to synchronize

the threads that access di�erent parts of the the same object. Multiple global operations

on di�erent objects can take place at the same time, which makes it easy to compose data

structures. For example, in the Phylogeny program, a barrier operation can be performed on

the task stealer object to detect termination when another barrier operation for combining

the failure stores is taking place.

3The distributed object manager reserves a collection of names for direct allocation by the application
programmer.

58

3.4.2 The Snapshot Data Structure

The snapshot data structure provides a uniform interface for taking \consistent"

snapshots on the states of distributed objects. The snapshot of a distributed object is

consistent if it corresponds to some state of the object when no mutating accesses are in

progress: all mutators have either completed or have been suspended before causing any

side-e�ect.

Because the processors are independently scheduled, taking a consistent snapshot

requires coordinating the accesses issued by di�erent processors. The snapshot data struc-

ture provides a general coordination mechanism that creates a window of time when the

object state is guaranteed to be consistent. The mechanism can be applied to any type of

object. It can also be used for the snapshot of the collective state of multiple objects.

The de�nition of a mutator access is dependent on the data structure and the

property of interest. For example, in detecting the termination of a task stealer object,

the only mutator access is the task migration operation. The task add operation, task

remove operation, and other local computation can proceed concurrently with the snapshot

operation without disrupting termination detection as described in Section 2.2.3.

The interface of the snapshot data structure allows the programmer to de�ne

mutator accesses as follows. First, one snapshot object is associated with each property

to be detected, such as the termination of a task stealer object or the completion of all

insert accesses of a hash table object. The name of the snapshot object is then used by

its corresponding mutator accesses to register their state of execution. Those accesses

that do not use the snapshot object are classi�ed as non-mutators, and they can executely

concurrently with an on-going snapshot operation. For example, to detect termination, the

task migration operations must register their status with their associated snapshot object,

while the task add and remove operations can proceed as usual. The same snapshot object

can be used by di�erent objects to glue together their states. For example, two hash tables

can share the same snapshot object, so that their sync operations return when the insert

accesses on both hash tables have completed.

To guarantee the progress of a snapshot operation, each mutator access must obey

the following protocol. Before an access causes any side-e�ect on the property of interest, it

must call the query operation on the snapshot object to determine if it can proceed with the

mutation. If the return value is OK, the access calls the execute operation on the snapshot

59

object and resumes execution. The execute operation informs the snapshot object that a

mutator access is in progress. Once the access starts to mutate the object, it must guarantee

to complete in �nite time. When an access completes, it calls the complete operation on

the snapshot object to declare its completion. The execute and complete operations may

be called by di�erent processors if the access involves remote computation.

If the query operation returns WAIT, a snapshot operation is already in progress

and the access must suspend itself by creating a continuation �ber. The access then calls

the suspend operation on the snapshot object with the �ber handle. The snapshot object

automatically resumes the suspended access when the snapshot operation completes by

enabling the continuation �ber. When an access is resumed in this manner, it must repeat

the protocol by issuing the query operation again.

When the client application needs to perform a snapshot, it does so in three stages.

First, the client invokes the freeze operation on the snapshot object to temporarily \freeze"

the objects in a consistent state. The freeze operation has a split-phase interface, which

completes when all mutators that have called the execute operation on the snapshot object

have also called the complete operation. The client then reads the states of the objects

to obtain the snapshot. The same snapshot is obtained regardless of the order in which

the partitions are read, because no mutator access can modify the object states when a

snapshot operation is in progress. Finally, the program invokes the unfreeze operation on

the snapshot object to allow resumption of all suspended mutators. Figure 3.7 illustrates

the three stages of a snapshot operation. The snapshot data structure handles all but the

second stage, which requires client-speci�c code to interpret the object state.

The implementation of the freeze operation uses the global operations provided

by the distributed object manager. The operation �rst performs a global reduction on the

snapshot object to compute the number of mutator accesses that have started executing.

Each processor then uses a separate counter to wait for the completion of all its mutator

accesses. Because the freeze operation completes as soon as the calling processor completes

its share of mutator accesses, the programmer may need to perform a barrier operation

after the freeze operation to ensure all processors have left the freeze stage.

The snapshot operation can also be used to perform group acknowledgement in

bulk synchronous programs such as the Tripuzzle program. The snapshot data structure

provides a sync operation, which waits for the completion of all previously issued accesses.

The sync operation is simply a sequence of the three operations: freeze, barrier, and un-

60

call freeze

query = WAIT

call suspend

create cont. fiber

complete

Stage 1

call

freeze

mutate object
execute

query = OK
call

read objects
call unfreeze

... etcquery
resume

fiber X

access B

done
Consistent states

Inconsistent states

access A

Stage 3

Stage 2

Figure 3.7: The snapshot operation. The dashed arrows string together the continuations of
the same thread. The solid arrows denote the dependencies between threads. The snapshot
obtained is the object state after access A completes but before access B takes place.

61

freeze.

Many distributed snapshot algorithms have been proposed, notably the algorithm

by Chandy and Lamport [CL85] for distributed FIFO channels. The Multipol snapshot

data structure is di�erent from these algorithms in that it has stronger semantics. The

data structure does not simply return an arbitrary snapshot; it returns a unique snapshot

which corresponds to the state of the distributed object when the freeze operation is invoked

plus the updates performed by the mutators that have started execution before the freeze

operation. The data structure is also more versatile in that it allows the programmer to take

a snapshot of the high-level state of the object by de�ning the appropriate mutator accesses.

However, the stronger semantics prevents the snapshot algorithm from being incremental

{ all new mutator accesses are suspended when a snapshot operation is taking place. The

data structure also imposes more restrictions on its use to ensure progress.

3.5 Implementation of the Communication Layer

The runtime layer is highly portable because it is built on a common machine inter-

face. Porting the runtime layer to a new machine involves implementing a main procedure

for starting up the processor programs, de�ning a few runtime constants, and implementing

a small set of bulk communication primitives such as barrier, read, write, and store. Most

of the communication primitives are themselves built on the bulk store primitive.

The machine interface also de�nes some \short-cut" primitives for implementing

the optimizations described in Section 3.3.3. The communication layer calls these primitive

to determine if a message can be sent e�ciently as a small or preemptive message. The short-

cut primitives encapsulate knowledge of the underlying machine, so the communication layer

is free of any machine-dependent code.

The runtime layer has been ported on three types of communication libraries:

active messages (CMAML), cooperative message passing (MPLp, NX), and BSD sockets

using the TCP/IP protocol stack. We reuse code from GAM [LC95, CKK+94] and libsplit-

c [Lun94], the communication library for the Split-C language [CDG+93]. Most modi�ca-

tions to their code are for integrating the the communication primitives with the Multipol

thread layer. In the paragraphs that follow, we sketch the implementation of these ports

and describe the source of their overheads. We only present the store primitive, because

read and write are implemented in terms of store.

62

3.5.1 Active Messages

We implemented the store primitive on top of the CMAML active messages. Per-

forming a store operation requires the following steps. First, the sending processor sets up

the local state for the transfer and sends an active message to open a \segment" on the

receiver processor. The segment is used to check the completion of the transfer because

the network may reorder active messages. The store operation then returns immediately

so that the program can proceed with other computation. The segment implementation is

modeled after the implementation of active messages by Thorsten von Eicken [vECGS92].

Upon receiving a send request, the receiver sets up a segment and replies the sender

with the address of the segment using another active message. When the sender receives

the reply, it fragments the message into 4-word packets and injects them into the network.

After the network has received the entire message, the sender synchronizes with the caller

so that the send bu�er can be reused. When the receiving processor receives the entire

message, it creates the speci�ed �ber and frees the segment.

The communication start-up overhead of the store operation is from the active

messages used to set up the segments.

3.5.2 Cooperative Message Passing

In the cooperative message passing model, both the sender and the receiver are

required to initiate the communication, because the receiver determines the destination

address of the message. The model creates di�culties for implementing one-way communi-

cation such as the store operation.

We reuse most of the libsplit-c code for NX and MPLp. The implementation is

similar to the CM5 implementation, except that a receive message must be explicitly posted

when setting up a segment. Because of the multithreaded execution model, a Multipol pro-

grams may have multiple store operations outstanding between the same pair of processors.

To match the send operation with the appropriate receive operation, we use the message

tags provided by the native communication libraries. A receive operation always removes

the message posted by a send operation with the matching tag.

The communication start-up overheads includes the active messages for setting up

the segment and the inherent start-up overhead in the underlying libraries.

63

3.5.3 Socket

The socket implementation is based on the GAM implementation by Lok Tin Liu,

where communication takes place via TCP/IP streams. The port can be used for almost

any UNIX workstation. However, sockets are rather heavy-weight, and sending a message

incurs at least 800 microseconds of overhead on the Sparc cluster.

3.6 Related Work

The �ber abstraction in the Multipol runtime layer is similar to the thread abstrac-

tion in TAM [CSS+91], Cilk [BJK+95], and Nexus [FKOT91], and the chare abstraction

in Charm++ [SK91, KK93]. TAM is a threaded abstraction machine for data-
ow com-

putation. TAM threads are nonblocking units of computation for latency hiding which are

generated by a compiler (each thread corresponds to a basic block in the data-
ow graph

of a function). TAM threads also have �xed scheduling and synchronization mechanisms

that are tailored to data-
ow computation. In comparison, Multipol �bers are higher-level

abstractions used by the programmer. They have more
exibility in scheduling and use.

Cilk threads are also nonblocking and are generated explicitly by the programmer,

but they are mainly used for load balancing instead of latency hiding. The Cilk runtime layer

uses a �xed load balancing and scheduling policy based on task stealing, which is similar

to the works on lazy task creation [MKH91] and stacklet [GSC95]. In contrast, Multipol

�bers are used for latency hiding and do not migrate across processors. Furthermore,

the scheduling policies for Multipol �bers can be customized for a particular application.

For example, the CSWEC program uses a customized scheduler that inspects the state of

simulation to determine if a deadlock detection thread should be scheduled.

Nexus threads are POSIX threads that can block on synchronization events or

voluntarily yield control of the processor. An arbitrary Nexus thread can be invoked on a

remote processor (called remote service request), which is similar to remote �ber invocation.

Nexus targets heterogeneous computing environments and has additional overhead in the

implementation, such as the packing and unpacking operations for placing data in message

bu�ers. Nexus also has little provision for customized scheduling policies.

The chare abstraction in Charm has entry functions that can be invoked by other

chares on a remote processor. Like Multipol �bers, the entry functions must contain non-

64

blocking code. Like Cilk threads, Charm chares are also units of load balance and they may

migrate across processors. The Charm system provides little support for using customized

scheduling policies for the entry function invocations.

There exist many portable communication layers such as MPI (Message Passing

Interface [For94] and active messages [vECGS92]. MPI provides cooperative message pass-

ing primitives for point-to-point and group communication. However, it does not provide

irregular communication primitives such as remote �ber invocation. Active messages are

similar to remote �ber invocation, but impose more restrictions (see section 3.3.1 for detailed

comparison). Neither MPI nor active messages have an integrated thread layer.

Optimistic active messages [WHJ+95] are similar to the small preemptive messages

in Multipol in that they both reduce the thread creation overhead. An optimistic active

message executes as an active message until it blocks on a synchronization event, in which

case a continuation thread is created to execute the remainder of the message handler.

Although optimistic active messages permit the message handlers to execute arbitrary code,

they do not permit the programmer to use application-speci�c scheduling policies.

3.7 Summary

The Multipol runtime layer provides infrastructure for building irregular applica-

tions on distributed memory platforms. It addresses the following issues: programmability,

portability, and performance.

For programmability, the runtime layer provides the �ber abstraction for imple-

menting distributed data structures. The atomicity of �bers facilitates concurrency control,

scheduling, and performance pro�ling. The programmer can also supply customized sched-

ulers to enforce application-speci�c scheduling policies for the �bers. In addition to the basic

computational abstractions and communication primitives, the runtime layer also provides

infrastructure for naming, accessing, and taking snapshots of distributed objects.

For portability, the runtime layer provides a uniform programming interface on

distributed memory platforms. Applications built from the runtime layer can run without

change on a variety of machines including the CM5, SP1, Paragon, and workstation clusters.

The implementation of the runtime layer is also highly portable because it is built on a

common machine interface.

For performance, the runtime layer uses the excess parallelism in the application

65

to hide latency and reduce overhead. It provides a multithreaded execution model in which

the latency of remote operations can be overlapped with useful computation. It also takes

advantage of the scheduling semantics of the communication events and the machine charac-

teristics to optimize communication performance. For platforms with high communication

start-up overhead, the runtime layer performs automatic message aggregation to improve

communication bandwidth.

66

Chapter 4

Mprof: a Performance Pro�ling

Toolkit for Multipol Programs

After the pain-staking process of debugging and testing a parallel program, the

programmer's task is only half-done. To justify the additional investment in processors and

networks, the parallel program must also run e�ciently. Therefore, a signi�cant amount

of time spent in developing parallel programs is in performance tuning. At this stage of

program development, the programmer performs experiments, analyzes the outcomes, and

modi�es the program to improve performance. The tuning process is especially burden-

some for irregular parallel programs, because they often have unpredictable communication

schedules and synchronization patterns that are di�cult to characterize. To increase pro-

ductivity, it is important to provide su�cient pro�ling information to help the programmer

detect and analyze performance ine�ciencies.

In this chapter, we describe a toolkit called Mprof for pro�ling the performance of

Multipol applications. Our toolkit identi�es the two major sources of performance ine�-

ciency: overhead and insu�cient parallelism. Overhead is measured as busy processor cycles

that are unnecessary or redundant. Insu�cient parallelism manifests itself in the amount

of idle time caused by dependencies between the program components. Mprof provides in-

formation on the cost of data structure accesses to detect overheads. It also identi�es long

latency synchronization events to detect the lack of parallelism.

Mprof uses pro�ling data from benchmark executions in modeling the performance

of data structures. Speci�cally, we estimate the performance of a data structure using its

67

runtime access pattern and the unit cost of each access. The access pattern is characterized

by a small set of high-level statistics collected during the execution. The cost of each access

is obtained by statistical modeling based on a parameterized cost model speci�ed by the

library programmer. Although the values of the statistics vary with the executions, the

cost model remains the same for a given machine. By combining runtime statistics and

reusable cost models, we obtain accurate pro�ling information with low runtime overhead.

To help tuning applications that use abstract data structures from a library, we

provide a performance interface for the library programmer to customize the pro�ling in-

formation for each data structure. In the performance interface, the library programmer

speci�es the statistics to collect, their parameterized cost models, and how the costs are to

be summarized for presentation. The information is used by the toolkit to automatically

instantiate the cost models and to produce the pro�ling information after each execution.

The rest of the chapter is organized as follows. Section 4.1 describes the di�cult

issues in pro�ling Multipol applications. Section 4.2 gives an overview of the Multipol

pro�ling toolkit. Section 4.3 introduces an example parallel program called PIPE, which

is used to illustrate our methods throughout the remainder of the chapter. Sections 4.4

and 4.5 describe the techniques we use in pro�ling overhead and insu�cient parallelism,

respectively. Section 4.6 gives an overview of related work in performance pro�ling, and

Section 4.7 summarizes the results in the chapter.

4.1 Issues in Performance Pro�ling

Multipol applications raise new issues in performance pro�ling. In this section,

we discuss these issues and describe how they are addressed by the techniques used in the

Multipol pro�ling toolkit.

4.1.1 The Problems

We categorize the di�cult issues into those arising from the parallel execution

model, the irregularity of applications, and the library abstraction.

First, parallel executions require more extensive pro�ling information than sequen-

tial executions, such as the costs of the individual operations and the synchronization delays

due to their dependencies. The multithreaded execution model in Multipol creates problems

for obtaining such information, since in Multipol, a long latency operation is decomposed

68

into a sequence of �bers. The �bers are scheduled individually and therefore must be pro-

�led separately, which increases the pro�ling overheads. The decomposition of operations

into �bers also obscures the pro�ling information on the operations themselves.

Second, irregular parallel programs often use concurrent data structures with un-

predictable access patterns. The cost of each type of accesses needs to be determined in

order to characterize the cost of the data structure. Unlike timing standalone procedures,

it is di�cult to accurately time concurrent data structure accesses.

Finally, the library imposes an abstraction barrier between the application and

the data structures. Most available pro�ling tools are faced with the dilemma of providing

too much information and thus breaking the abstraction barrier, or providing insu�cient

information and thus preventing performance tuning.

4.1.2 Our Approach

The three features of our approach are:

� Pro�ling both the costs and the dependencies of data structure accesses.

� Measuring high-level statistics instead of absolute running time.

� Preserving the library abstraction with a customizable performance interface.

First, we provide mechanisms for pro�ling the time spent in each data structures

and the amount of idle time caused by dependencies between data structures. The combi-

nation of both types of pro�ling information provides more insights into the performance

ine�ciencies in the execution and the optimization techniques for resolving them.

Second, we characterize parallel executions using a set of high-level statistics in-

stead of the absolute running time. The statistics are combined with their cost models to

produce the �nal pro�ling output after each execution. High-level statistics are easier to

insert than direct timer calls, which have to be carefully placed to ensure well-formedness

and accuracy in pro�ling multithreaded applications. They also incur lower runtime over-

head, because one statistic can be used to represent the costs of multiple �bers or functions.

Although the statistics must be combined with their cost models to produce useful pro�ling

information, the cost models can be built o�-line using benchmark executions and reused

by many applications.

69

Finally, instead of providing a �xed set of pro�ling information, we provide a per-

formance interface for the library programmer to customize the pro�ling information for

each data structure. The pro�ling information can be made independently of the imple-

mentation of the data structures, so the library can be developed and optimized separately

from the applications. The use of a performance interface allows the library programmer

to provide useful pro�ling information while preserving the library abstraction.

Many of the key features in the pro�ling toolkit are enabled by the design of the

Multipol runtime layer, especially the non-blocking semantics of Multipol �bers. The non-

blocking semantics exposes all idle processor cycles to the runtime layer, so that it can

accurately pro�le the amount of idle time and its distribution among the synchronization

events. Isolating idle cycles is also important for the reusability of the cost models, because

the amount of idle time spent in an operation may be workload dependent, while its other

costs are predictable.

4.2 Overview of Mprof

Mprof is used to manage the following activities: program instrumentation, bench-

marking, and modeling. The Multipol library lies in the center of all activities. In addition

to the data structure source code, the library contains the following information: a per-

formance interface for each data structure consisting of its parameterized cost models and

statistics to measure, a database of performance pro�les from benchmark executions, and

a set of instantiated cost models. Figure 4.1 depicts the organization of the library.

The
ow of the activities is illustrated in Figure 4.2. First, the library programmer

speci�es the performance interface for each data structure using a simple language provided

by the toolkit. The interface is transformed into a set of C functions for manipulating the

statistics. The library programmer then instruments the source code using these functions.

Mprof also uses these functions to instantiate the parameterized cost models and produce

the pro�ling output.

Next, the library programmer designs benchmark programs to exercise the data

structures. A program can be used as a benchmark if all its program components have a

performance interface. The benchmark programs are executed, and their measurements are

recorded in the pro�le database for use in instantiating the cost models. The measurements

include the values of the statistics for each data structure and the total execution time of

70

< designed by library

Functional Interface

Execution sample #1:
Runtime statistics of data structures
Total execution time

Execution sample #2, ... etc

Performance Interface
< specified by library

 programmer > programmer >

< instrumented by library

Source code

 profile database >
< obtained using toolkit and

Data structure 0: Runtime system

Data structure 2 etc

Data structure 1: Event graph

 Benchmark

Programs

 programmer >
<written by library

EXECUTE

Profile Database

Instantiated cost models

2. Parameterized cost models
 1. Declaration of statistics

Performance InterfaceFunctional Interface

Source code Instantiated cost models

 programmer >

Figure 4.1: Organization of the Multipol library.

71

Save instantiated

Activities

 & Instrumenting library code

 programs to collect samples

Performance interface

models

Improve cost
 models

Output

Profile database

Instrumented library code

Execute benchmark

Specify performance interface

Instantiated cost models

Instantiate cost models

Figure 4.2: Performance pro�ling activities.

72

(Root Node)

Processor 1 .. P-2

Node P -1

Node 1 .. P-2

Node 0 Processor 0

Processor P-1
Capacity = F

Compute T * N time units

Produce N items

Consume N items

Stop after processing M items

Figure 4.3: Structure of the PIPE program.

the program.

After su�cient samples are obtained, the library programmer starts the modeling

step of the toolkit to automatically instantiate the cost models. The cost models in the

performance interface are parameterized, and the parameters are set by the modeling tool

to match the samples in the pro�le database. The modeling tool provides feedback on

about the quality of the calibrated cost models. If the library programmer is su�ciently

con�dent of the models, they are saved for use in actual pro�ling. Otherwise, the library

programmer improves the cost models and repeat the modeling session or obtain more

samples by executing more benchmarks. The toolkit provides a simple scripting language

for managing the modeling activities.

4.3 An Example Parallel Program { PIPE

We use a small parallel program called PIPE to illustrate our performance pro�l-

ing methods. The PIPE program uses the event graph data structure to exploit pipeline

parallelism. It resembles the kernel of the CSWEC program described in Chapter 2. In this

example, the graph forms a simple path of P nodes, each of which is assigned to a unique

processor as shown in Figure 4.3. All nodes except the root node repeat the following three

73

consume:

repeat

while (fewer than N items removed by current iteration) {

[wait for new items]

remove items (up to N items) from graph

}

perform (N * T) units of computation

issue produce

[wait for produce to complete]

until (M items processed)

produce:

repeat

[enqueue a new item to graph]

until N items enqueued

Figure 4.4: Pseudo code of the PIPE program. The long latency operations are enclosed in
square brackets.

steps: removeN incoming items, compute for T �N time units, and then enqueue N items.

The root node simply �lls the pipeline by enqueueing N items after every T �N units of

computation. The capacity of the event graph is set to F . The program stops after M

items exit the pipeline.

Figure 4.4 shows the pseudo code executed for each graph node. A consume thread

is created for each node. The thread awaits and removes new items from the incoming edge,

performs the computation, and then calls the split-phase operation produce to enqueue new

items. The consume thread blocks until the produce operation has successfully enqueued

all items.

The value N determines the burstiness of the pipeline tra�c, which has to do with

the best setting of F . There is also a tradeo� between the latency and the overhead of

the communication layer. A high degree of message aggregation reduces overhead, but may

increase the latency of propagating items and thus reduce parallelism.

74

4.4 Measuring the Costs of Data Structures

In this section, we describe the techniques we use in measuring the costs of the data

structures. We discuss how high-level statistics can be used to characterize costs, how to

obtain their cost models, and how to summarize the pro�ling output in an implementation

independent manner to preserve the library abstraction.

The techniques described in this chapter are not limited to the Multipol data

structures; they can be used in pro�ling any code module constructed from the Multipol

�bers, such as the Multipol runtime layer. For convenience of discussion, we use the term

data structure to refer to a generic code module.

4.4.1 Characterizing Costs with High-level Statistics.

The behavior of irregular parallel programs can often be characterized by a small

set of high-level statistics. For example, the total computation per node in the PIPE pro-

gram can be characterized by the statistics T , N , and M described in Section 4.3; the time

spent in the runtime layer can be characterized by statistics on the thread and the commu-

nication layers; the time spent in the event graph data structure can be characterized by the

size of the data item, the connectivity structure of the graph, and the pattern of accesses

such as the number of operations. Such high-level statistics can be collected inexpensively

because they occur relatively infrequently in the execution. They also provide more insights

for tuning, because they summarize the costs of high-level objects or operations. The pro-

grammer determines the set of statistics to collect, which is a tradeo� between accuracy

and overhead { the more complete the statistics are, the more accurately they characterize

the behavior of the program and the higher the cost of instrumentation and measurement.

Mprof provides a simple language for specifying the statistics to collect for a data

structure. Figure 4.5 shows the part of the performance interface that declares the statistics

for the PIPE program.1 Each statistic has a symbolic name and a one-line comment on its

meaning. The interface is transformed by Mprof into C functions, which the programmer

manually inserts in the source code.2 There are functions to create, set, and increment the

values of the statistics.

The high-level statistics are not detailed enough for making performance tradeo�s.

1In reality, the performance interface for each data structure is stored in a di�erent �le.
2The transformation is done with Tcl scripts [Ous94].

75

Declare statistics for "pipe"

P -- Partitions per processor (= 1)

T -- Computation

N -- Size of a enqueue or dequeue batch

M -- Total number of items produced

Declare statistics for "rts"

P -- Partitions per processor (= 1)

Sched -- Number of customized schedulers

ThreadAlloc -- Number of threads allocated

ThreadEnable -- Number of threads enabled

ThreadDisp -- Number of threads dispatched

ThreadContext -- Total size of thread contexts

IdleCycle -- Number of idle scheduling cycles

MsgSent -- Number of data messages.

FlowMsgSent -- Number of flow control messages.

ByteSent -- Total number of bytes in the messages.

FastMsgSent -- Number of fast messages.

RemoteOp -- Number of remote communication events.

ByteCopy -- Number of bytes in local communication.

Declare statistics for "graph"

P -- Partitions per processor (= 1)

EltSize -- Size of each element

EdgeCap -- Capacity

Node -- Number of nodes on this processor

Edge -- Number of edges on this processor

NOp -- Number of accesses and queries

NBlock -- Number of suspended accesses

NMsg -- Number of internal messages

EnqSize -- Bytes of data enqueued

DeqSize -- Bytes of data dequeued

Figure 4.5: High-level statistics for the PIPE program. The �gure shows parts of the
performance interfaces of the program's computational kernel (pipe), the runtime layer
(rts), and the event graph data structure (graph).

76

For example, two messages of 4 bytes are not necessarily cheaper than 1 message of 1000

bytes. Therefore, these statistics must be converted into the absolute running time of

their corresponding operations. The conversion is performed using the parameterized cost

models supplied by the programmer, which are to be instantiated against measurements

from benchmark executions. Although the statistics must be dynamically collected, their

cost models remain largely static on the same platform, due to the non-blocking semantics

of Multipol �bers. For example, the number of messages generated by an application varies

with the workload, but the cost of sending a �xed size message (excluding the network

latency) is roughly the same on the same machine.3

The library programmer's task is to �nd the parameterized cost models for each

data structure on a given machine. For example, the cost model of sending a n-byte message

may be de�ned as c1 + c2 � n, where c1 and c2 are the parameters to be instantiated.

Unlike standalone procedures, for data structure access functions, it is usually impossible

to obtain the cost model by devising a benchmark that exercises only a particular type of

access. For example, the PIPE program, although very simple in construction, consists of

three interacting modules: the Multipol runtime layer, the event graph data structure, and

the computational kernel of the program. Therefore, we use an equation solving method

to instantiate the parameters in the cost models based on pro�ling data from multiple

executions. In the sections that follow, we describe the meaning of the cost models and how

Mprof instantiates them.

4.4.2 Specifying the Cost Models

Assuming that the running time of a benchmark program is completely character-

ized by the time spent in its data structures, we can set up the equations for instantiating

the cost models as follows. Let E be the set of all samples in the pro�le database. Let

De be the set of data structures used in the sample e, which has a total running time of

te. Let sed be the set of statistics collected for the data structure d in the sample e. Let

fd(sd) be the parameterized cost model that computes the time spent in the data structure

d, given the set of measured statistics sd. We can then derive the following equations from

the pro�le database:

3The cost of sending a �xed size message may vary with the workload if the network interface is blocking.

77

8e 2 E;

2
4te =

X

8d2De

fd(s
e
d)

3
5 (4.1)

The cost model can be further re�ned to provide more details on the costs of the

data structure accesses. We use the term access category to denote a collection of accesses,

functions, or any user-de�ned entities in a data structure. The cost model can be re�ned

to give the cost of each access category as follows. Let Od be the set of access categories in

the data structure d. Let fd;o compute the time spent in the access category o, given the

measured statistics sd. We have

fd(sd) =
X

8o2Od

fd;o(sd) (4.2)

Equations 4.1 and 4.2 provide a method for obtaining the cost models by execut-

ing benchmarks and solving equations. Ideally, if the total number of free parameters in

the model is N , they can be solved perfectly using N samples from the pro�le database.

However, the models are merely approximations, and there may be errors in measuring the

running time, so the equations may be inconsistent. Therefore, we seek a \best-e�ort" cost

model that best �ts the samples in the pro�le database.

Let x be some setting of the model parameters, and let tex be the running time of

the sample e indicated by the cost model with setting x. A feasible criterion for assessing

the quality of the cost model is its sum of square errors (SSE) on the samples:

SSE =
X
e2E

(tex � te)2 (4.3)

Direct use of SSE gives more weights to samples with long running times. To give

equal weights to all samples, the samples can be normalized with respect to their running

time before the model instantiation process begins.4

The \best" model is then the one with the minimum SSE. If we assume the mea-

surement error is a normally distributed random variable with zero mean, the model that

minimizes SSE is also the maximum likelihood estimator of the true model. The normal

distribution assumption is intuitively attractive because, according to the central limit the-

orem, the sum of many small, independent random variables (e.g., system e�ects) roughly

4To be precise, each term in the cost model is divided by the total running time of the sample.

78

Declare terms for "pipe"

Comp -- Units of computation per node.

{ Comp = M * T; }

Declare access categories and their terms for "pipe"

STARTUP -- Start-up cost

{ P }

COMP -- Computation cost

{ Comp }

Figure 4.6: Cost models for the PIPE computational kernel

follows a normal distribution. We adopt this statistical interpretation of the samples because

it gives us more detailed information about the quality of the cost models.

The method of �nding the minimum SSE model has much to do with the char-

acteristics of the functions comprising the model. When the model is a linear function of

its free parameters, the best parameter settings can found by many well-known numerical

algorithms. We use the family of linear functions for fd and fd;o, not only because they are

easier to solve, but also because we intend to interpret each free parameter as the unit cost

of some operation, which is usually multiplied by a scalar indicating its frequency and then

summed with the costs of other operations, and both of these are linear operators on the

parameters.

Figures 4.6, 4.7 and 4.8 show the part of the performance interface that speci�es

the parameterized cost models for the PIPE program and its data structures. The �rst

section of each �gure contains the declaration and de�nition of terms. The declaration of

each term consists of its symbolic name and a one-line comment describing its meaning.

The de�nition of each term can be an arbitrary C function of the data structure's declared

statistics, such as those de�ned in Figure 4.5. The terms are linear components of the costs

of the access categories, which are de�ned in the second section. Each access category has a

symbolic name, a one-line comment describing its meaning, and a list of terms that comprise

its cost. The costs represented by the access categories must be mutually exclusive, and no

term can appear in more than one access category.

Each term is associated with a distinct free parameter that denotes its unit cost.

The cost of each access category is the sum of the products of its terms and parameters, and

79

Declare terms for "rts"

Thread -- Thread costs

{ Thread = ThreadAlloc + ThreadEnable + ThreadDisp; }

Idle -- Idle time

{ Idle = IdleCycle * Sched; }

Msg -- Messages

{ Msg = MsgSent + FlowMsgSent; }

Declare access categories and their terms for "rts"

STARTUP -- Start up cost

{ P }

THREAD -- Thread costs

{ Thread ThreadContext }

IDLE -- Idle time

{ Idle }

COMM_ALPHA -- Communication startup costs

{ RemoteOp Msg FastMsgSent }

COMM_BETA -- Inverse communication bandwidth

{ ByteSent }

COMM_LOCAL -- Local communication

{ ByteCopy }

Figure 4.7: Cost models for the runtime layer

Declare terms for "graph"

Op -- Costs of control

{ Op = NOp + NBlock + NMsg; }

Data -- Costs of data movement

{ Data = EnqSize + DeqSize; }

Declare access categories and their terms for "graph"

STARTUP -- Start up cost

{ P }

OP -- Control cost

{ Op }

DATA -- Data movement cost

{ Data }

Figure 4.8: Cost models for the event graph data structure

80

the cost of the data structure is the sum of the costs of all its access categories. Formally,

let Rd;o be the set of terms for the access category o of the data structure d, cr be the free

parameter associated with the term r in Rd;o, and fr be the function represented by the

term r, we have

fd;o(sd) =
X

r2Rd;o

cr � fr(sd) (4.4)

Only the costs of the access categories are presented to the application program-

mer. The access categories, which are customized by the library programmer, provide high-

level pro�ling information that is independent of the implementation of the data structure.

For example, in Figure 4.7, the THREAD category summarizes the costs of the thread system,

while the COMM ALPHA and COMM BETA categories summarize the start-up overheads and the

per-byte cost of communication, respectively. The cost models can be improved during the

instantiation step without invalidating the samples in the pro�le database, as long as the

set of high-level statistics remain the same.

In the next section, we describe our choice of algorithm for solving the system of

equations, and how feedback from the solutions can be used to improve the quality of the

parameterized cost models.

4.4.3 Instantiating the Cost Models

We use the Singular Value Decomposition method (SVD) to �nd the best cr [PTVF92].

The method is robust in the presence of linearly dependent terms and nearly identical sam-

ples. Linearly dependent terms do not contribute to the expressiveness of the model, and

should be merged into fewer terms. For example, the thread related statistics are merged

into the same term Thread to simplify the model, because they are usually linearly depen-

dent. Nearly identical samples occur quite often because it is di�cult to design experi-

ments that always produces new combinations of statistics. Such samples lead to numerical

problems when solving the model equations. Fortunately, the SVD method has internal

mechanisms for �ltering out such samples.

Developing the right models and experiments is not an easy task. It is often a

repetitive process, using the programmer's knowledge of the source code as well as feedback

from the model instantiation tool. Using the statistical meaning of SSE, Mprof provides

the following feedback about the quality of �t:

81

� The sum of square errors of the �t. Assuming unit variance of the measurement

errors, the SSE follows a �2 distribution with n �m degrees of freedom, where n is

the number of samples and m the number of free parameters. Although direct use

of the �2 probability is di�cult, we can use it to compare the quality of di�erent

instantiations of the cost models.

� The mean relative error (MRE) of the �t [Bre94]. MRE is de�ned as the geometric

mean of the error ratios (1+ jtex� tej=te) over all samples. It gives the expected error

of the �tted model on new samples, assuming the samples in the pro�le database

represent the \common" workload.

� The singular values from the SVD algorithm. The number of non-zero singular values

represents the rank of the model equations. If it is less than the number of free

parameters, more experiments must be performed to fully instantiate the model.

� The con�dence intervals of the �tted parameters. The 90% con�dence interval for

the �tted parameter c with mean uc and variance vc (estimated from the samples) is

uc+�
p
vc� t[0:95;n�m], where t[0:95;n�m] is the 95% quantile of the Student's T-

distribution with n�m degree of freedom [Jai91].5 If the con�dence interval contains

0, the parameter is not signi�cantly di�erent from zero, and the corresponding term

should be omitted from the model.

The statistical approach to modeling the performance of parallel programs has

been taken by other researchers such as Brewer [Bre94] and Crovella [Cro94]. However, their

work targeted standalone procedures and a �xed set of overhead categories, and they did not

address the composition of concurrent data structures. Also, their applications are regular,

bulk-synchronous programs whose performance can be predicted prior to the computation.

We target the class of irregular applications whose behavior depends on the input data, and

our work addresses post-mortem performance analysis instead of performance prediction.

4.4.4 An Example: Instantiating the Cost Models of the PIPE program

The toolkit provides a simple scripting language to help the programmer man-

age the instantiation process. Figure 4.9 shows a example script for modeling the PIPE

5In practice, we use the unit normal distribution to approximate the T-distribution, assuming su�ciently
large samples (n�m > 30). The 95% quantile is thus 1.645.

82

FitDatabase: "stats-cm5-p4.db"

FitDatabase: "stats-cm5-p32.db"

TestDatabase: "stats-cm5-p16.db"

ImportParameter: Rts "cm5.model" Thread ThreadContext Idle

ImportParameter: Rts "cm5.model" RemoteOp Msg FastMsgSent

ImportParameter: Rts "cm5.model" ByteSent ByteCopy

IgnoreTerm: Rts P

Figure 4.9: Sample script for instantiating the cost models of the PIPE program and the
event graph data structure.

program and the graph data structure on the CM5. The scripting language contains the

following primitives: FitDatabase, TestDatabase, ImportParameter, and IgnoreTerm.

The FitDatabase and TestDatabase directives specify the pro�le databases containing the

samples and the test cases, respectively. The ImportParameter directive instructs Mprof

to load from a �le the parameter values that have been instantiated in a previous modeling

session. In this example, we have instantiated the cost models of the runtime layer in a

previous session, and the resulting parameter values are stored in the �le cm5.model. There-

fore, we use these stored values instead of recomputing them. The IgnoreTerm directive

instructs Mprof to ignore certain terms in setting up the equations. In this example, we

decided to eliminate the runtime layer start-up cost term, because we found in a previous

session that it did not contribute to the quality of the cost models.

Figure 4.10 shows the results of the instantiation process. The sample database

contains 64 executions of the program on 4 and 32 processors, and the test database contains

32 executions on 16 processors. The �tted model achieves a MRE of 0.64% over 64 samples,

and 0.78% over 32 test cases (the distribution of errors is shown in Figure 4.11). The singular

values indicate that the rank of the equations is 4, which is less than 5, the number of free

parameters. The insu�ciency in rank implies that there is redundancy or inconsistency in

the equations. By examining the con�dence intervals, we discovered that the singularity

was caused by the start-up costs, which are not signi�cantly di�erent from 0. Removing

these two parameters from the models led to a rank of 4 for 4 terms and eliminated the

problem.

The model instantiation process can be repeated after more pro�ling data is avail-

83

Chi-square: 0.011286

Singular values: 619696.111767 264664.578557 26991.463260 0.000000 6.533606

Sample MRE: 0.637338%

Test MRE: 0.779667%

pipe:P: 0.000862786 +- 0.0128065

pipe:Comp: 4.55768e-06 +- 1.5201e-07

graph:P: 0.00595816 +- 0.00391284

graph:Op: 1.40086e-05 +- 8.42826e-07

graph:Data: 1.52405e-07 +- 4.41832e-08

Figure 4.10: Results of the instantiation session. The tool gives general feedback on the
quality of the cost models, as well as the �tted parameter values and their 90% con�dence
intervals.

able or further improvements are made on the cost models. When the library programmer

is su�ciently con�dent of the models (judging by the coverage of the experiments and the

model error), the models are saved for use in pro�ling real executions. Mprof transforms

the instantiated models into C functions that are linked into the Multipol library to provide

timing information on the executions.

Figure 4.12 shows the pro�ling output for three PIPE executions on the CM5 which

di�er only in their degrees of message aggregation (10,000, 1000, and 0 bytes, respectively).

The estimated running times of the access categories are summed over all 32 processors. The

results show the tradeo� between overhead and latency { lowering the degree of aggregation

reduces the amount of idle time (indicated by IDLE), but increases the other overheads

such as the communication start-up cost (indicated by COMM ALPHA) and
ow control costs

(indicated partly by THREAD, COMM BETA, and OP). Aggregating 1000 bytes achieves a good

balance of overhead and latency, a result that is also supported by other experiments of

message aggregation for the PIPE program. The results also show that the estimated

running time from the cost models tracks the actual running time reasonably well { the

estimation error is 4.8%, 5.2%, and 4.6%, respectively.

We have described the techniques we use for pro�ling the costs of data structure

accesses, which provides insight into the overhead of the parallel implementation. In the

next section, we describe our approach to pro�ling dependencies between data structure

84

−4 −3 −2 −1 0 1 2 3 4
0

2

4

6

8

10

12

Percent Error

In
st

an
ce

s

Distribution of Errors on Samples

−8 −6 −4 −2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

Percent Error

In
st

an
ce

s

Distribution of Errors on Test Cases

Figure 4.11: Distribution of model errors. The percent errors are obtained by applying the
�tted model to the samples and the test cases.

85

% pipe-cm5 32 10000 10 100 15 100 10000

*** Cost Profile ***

Id 0: THREAD= 38.287 IDLE=187.911 COMM_ALPHA= 7.146 COMM_BETA= 51.635

Id 3: COMP=149.078

Id 1: ACCESS= 15.382 DATA= 4.713

Time: Model= 454.151, Total= 433.928

% pipe-cm5 32 10000 10 100 15 100 1000

*** Cost Profile ***

Id 0: THREAD= 45.912 IDLE=147.729 COMM_ALPHA= 10.317 COMM_BETA= 53.037

Id 3: COMP=149.078

Id 1: ACCESS= 16.539 DATA= 4.713

Time: Model= 427.325, Total= 406.569

% pipe-cm5 32 10000 10 100 15 100 0

*** Cost Profile ***

Id 0: THREAD= 97.915 IDLE=126.807 COMM_ALPHA= 42.902 COMM_BETA= 59.666

Id 3: COMP=149.078

Id 1: ACCESS= 21.024 DATA= 4.713

Time: Model= 502.105, Total= 480.787

Figure 4.12: PIPE executions on a 32-node CM5. The command line arguments are the
number of processors, M , N , T , F , the size of each element, and the degree of aggregation.
The times are summed over all 32 processors.

86

accesses for detecting performance ine�ciency due to insu�cient parallelism.

4.5 Identifying the Dependences between Data Structures

Unlike standalone parallel algorithms, the dependencies among data structures

cannot always be put in simple forms. Data structures are like components in reactive

systems { they react to events in their environment. For example, the PIPE program has

di�erent types of dependencies, namely the data dependencies among the consume threads

between adjacent nodes, the resource dependencies of the enqueue operations on the dequeue

operations, and other dependencies due to split-phase calls. The synchronization pattern is

data-dependent and cannot be predicted in advance.

The previous section described the techniques for pro�ling overhead, the �rst major

source of performance ine�ciency. The second major source of performance ine�ciency

arises from the dependencies between data structures. In this section, we describe the

techniques used in Mprof in pro�ling dependencies. Mprof not only detects the existence of

dependencies, but also computes their contribution to the total idle time. It also provides an

abstraction mechanism for the library programmer to summarize the pro�ling information

of a large number of synchronization events.

We start by presenting two metrics for characterizing dependencies, observed la-

tency and critical path latency. Observed latency exposes all potential dependencies whose

optimization may lead to performance improvements, while critical path latency exposes

only those dependencies that directly contribute to the idle time. We then use the PIPE

program as an example to show how the metrics help identify the sources of dependencies

and provide insights into optimizations.

4.5.1 De�nition of Observed Latency

The observed latency of a split-phase access or a thread6 is de�ned as the processor

idle time from the time it begins to the time it completes. In multithreaded executions,

split-phase accesses have a negative e�ect on performance only if their latency cannot be

6A split-phase access is always implemented as a thread. Therefore, we do not distinguish between
the terms \access" and \thread" for the rest of the section. An access is an abstract concept unknown
to the runtime layer, whereas a thread is a runtime layer abstraction whose properties can be measured
automatically.

87

REQUEST Wait for REPLY REPLY

REQUEST REPLY

Processor Time

OP1 Latency

OP2 Latency

Observed latency of OP1 and OP2

OP2

OP1 Wait for REPLY

Figure 4.13: De�nition of observed latency.

overlapped with other computation. The observed latency measures exactly the part of

unoverlapped latency to expose problematic accesses.

Figure 4.13 illustrates the de�nition of observed latency. The �gure shows two

split-phase accesses that are pipelined for latency hiding. The total latency of each access

is the time between its request and reply phases. The observed latency of both accesses is

the amount of processor idle time during their lifetime when no threads are available for

execution.

Observed latency is charged to every access whose lifetime contains the latency.

Intuitively, it exposes all accesses whose reduction in latency is likely to reduce the total

running time, assuming such an optimization does not cause other overheads. The pro-

grammer can use this information to identify the candidates for optimization. For example,

for the execution in Figure 4.13, the observed latency metric exposes both OP1 and OP2

as potential targets for further optimization.

Observed latency is also charged to the synchronization event that contributes to

the latency. A synchronization event is an ordered pair of accesses where the �rst access

enables the second for execution, or equivalently, the second access awaits certain condition

posted by the �rst. The programmer can use this information to traverse the chains of

dependencies and identify the source of ine�ciency.

88

REQUEST

First fiber to execute

REPLY

REQUEST REPLY

Processor Time

OP2

OP1

OP1 Latency

OP2 Latency

Critical path latency of OP1

Wait for REPLY

Wait for REPLY

Figure 4.14: De�nition of critical path latency.

4.5.2 De�nition of Critical Path Latency

The critical path latency of a split-phase access is like its observed latency, except

the critical path latency is incurred only if the access is the �rst to resume execution after

a period of idle time. The metric exposes the accesses that \directly" contribute to the

processor idle time. Figure 4.14 illustrates the de�nition of critical path latency. In this

example, OP1 has a nonzero critical path latency, while OP2 has 0 critical path latency.

OP1 directly contributes to the amount of processor idle time corresponding to its critical

path latency, because it lies on the critical delay path in the execution.

Intuitively, the critical path latency exposes the accesses that contribute to the

delay in the critical path of the execution. Unlike observed latency, the idle time is charged

to exactly one access. Therefore, critical path latency is easier to interpret than observed

latency, because it uniquely identi�es the problematic access for each period of idle time.

Critical path latency is dependent on the local scheduling policies used in the

execution as well as the available parallelism in the application. It merely points out one of

the many possible paths of delay. Other long latency accesses that are not on the particular

delay path may be left undetected, although their optimization may also reduce the total

running time. For example, the operation OP2 has 0 critical path latency, but reducing

its latency may also reduce the processor idle time. Therefore, critical path latency should

be used in combination with observed latency to thoroughly pro�le dependencies. As with

observed latency, critical path latency is also charged to the synchronization events to expose

89

them for tuning.

4.5.3 Measuring Latency

The non-blocking semantics of Multipol �bers exposes all idle time in the number

of idle scheduler cycles. With a minimal amount of bookkeeping on these idle cycles, we

can exactly measure observed latency and critical path latency.

Two integer counters Ctotal and Ccharged are used by each processor to record,

respectively, the total number of idle cycles and the number of idle cycles that have been

charged to a thread. The runtime layer also records the identity of the executing thread.

When a thread is created, the value of Ctotal is recorded in its control block. When a thread

is enabled, the identity of the executing thread (that is, its enabling thread) is also recorded

in its control block.

When a thread executes, the di�erence between the current value of Ctotal and the

value in its control block is charged to its observed latency. The di�erence is also charged

to the synchronization event formed with its enabling thread. Note that value of Ctotal is

the same when the thread is enabled as when the thread executes, because there can be no

enabled thread in an idle scheduler cycle. Therefore, the di�erence is the exact amount of

idle time the thread observes.

To compute the critical path latency of a thread, we simply take the di�erence

between the current values of Ctotal and Ccharged. The di�erence is also charged to the

corresponding synchronization event. We charge the critical path latency to a thread only

if it waits for a synchronization event, that is, only if it has a non-zero observed latency.

This ensures that critical path latency is not all charged to remotely invoked �bers, which

provides little insight for tuning. After the critical path latency is computed, the value of

Ccharge is set to the value of Ctotal to avoid charging the same period of idle time to multiple

threads.

A real application may generate too many threads and synchronization events to be

pro�led separately. Therefore, our pro�ling toolkit provides primitives for grouping threads

into access categories (as in pro�ling costs of accesses), and Mprof records dependencies

only at the level of access categories. We call this process abstraction of the dependence

pro�le. When a thread executes, it declares the identity of its corresponding access category,

which is used in place of its own identity for pro�ling dependencies. Because the identity is

90

dynamically declared, the observed latency and the critical path latency related to a thread

cannot be computed prior to its execution.

We use the PIPE program to illustrate the abstraction process. The program

itself is naturally decomposed into the consume category and the produce category, which

corresponds to the consume thread and the produce operation in Figure 4.4, respectively.

Operations on the event graph data structure are put into two access categories: ENQ and

DEQ. The ENQ category includes threads to wait for the bu�er space, ship new items over the

network, and inform the receiving nodes of the arrival. The DEQ category includes threads

to wait for new items, remove the items, and inform the sending node of the availability of

the bu�er space. Other unclassi�ed threads such as those created by the runtime system

itself are not pro�led.

4.5.4 Optimizing the PIPE Program

We now show how the pro�ling information can be used in analyzing and opti-

mizing the PIPE program. We start by identifying the operations that have long observed

latency and critical path latency. We then use their synchronization events to traverse the

chains of dependencies and locate the source of ine�ciency.

We focus on optimizing the PIPE execution with 1000 bytes of message aggrega-

tion, the best con�guration found from pro�ling overheads in Figure 4.12. The pro�ling

information produced by the runtime layer is shown in Figure 4.15. For each access cate-

gory whose dependencies are pro�led, Mprof shows its total observed latency and critical

path latency (in seconds). These are decomposed into the latencies associated with the

category's synchronization events.

The category with the longest latency is consume, which is the main program

thread. By examining its observed latency, we can trace backwards from the synchronization

events on consume and �nd two problematic event sequences: ENQ ! DEQ ! consume, and

DEQ! ENQ! produce! consume. Event sequence 1 is due to data dependencies between

the pipeline stages. Event sequence 2 is due to the resource dependencies in the event

graph data structure's
ow-control protocol. The critical latency shows that both data

dependencies and resource dependencies are responsible for the idle time in the execution.

The data dependencies can be partly resolved with message aggregation, whose

e�ect was shown in Figure 4.12. We now concentrate on �xing the resource dependencies.

91

% pipe-cm5 32 10000 10 100 15 100 1000

*** Cost Profile ***

Id 0: THREAD= 45.912 IDLE=147.729 COMM_ALPHA= 10.317 COMM_BETA= 53.037

Id 3: COMP=149.078

Id 1: ACCESS= 16.539 DATA= 4.713

Time: Model= 427.325, Total= 406.569

*** Observed Latency ****

ENQ1 = 47.337 -- DEQ1: 47.337

DEQ1 = 92.700 -- ENQ1: 92.700

produce3 = 47.337 -- ENQ1: 47.337

consume3 = 134.063 -- DEQ1: 92.700 produce3: 41.363

*** Critical Latency ****

ENQ1 = 47.337 -- DEQ1: 47.337

DEQ1 = 92.700 -- ENQ1: 92.700

Figure 4.15: Pro�ling the dependencies in the PIPE execution.

4.5.4.1 Increasing edge capacity

We can easily remove resource dependencies by allocating a large number of bu�ers

in the event graph data structure. Figure 4.16 shows the result of the execution when the

capacity is increased from 15 to 1000. The increase in capacity reduces the running time

by 24%, and the
ow control event sequence has practically disappeared. The remaining

1.723 seconds of resource dependencies is possibly from processor 0, which does not have

a consume thread. The idle time caused by data dependencies is also reduced by the

elimination of resource dependencies, because their latency are mutually dependent in the

PIPE program.

4.5.4.2 Software Pipelining

For applications with large event graphs such as the CSWEC program, increasing

edge capacity may not always be possible. Therefore, instead of eliminating the
ow control

dependencies, we try to hide their latency using a technique called software pipelining,

which is also used in advanced compilers for exploiting instruction-level parallelism [Lam87,

Joh91].

92

% pipe-cm5 32 10000 10 100 1000 100 1000

*** Cost Profile ***

Id 0: THREAD= 38.905 IDLE= 51.779 COMM_ALPHA= 6.753 COMM_BETA= 52.388

Id 3: COMP=149.078

Id 1: ACCESS= 15.518 DATA= 4.713

Time: Model= 319.134, Total= 307.305

*** Observed Latency ****

ENQ1 = 1.723 -- DEQ1: 1.723

DEQ1 = 37.503 -- ENQ1: 37.503

produce3 = 1.723 -- ENQ1: 1.723

consume3 = 37.503 -- DEQ1: 37.503

*** Critical Latency ****

ENQ1 = 1.723 -- DEQ1: 1.723

DEQ1 = 37.503 -- ENQ1: 37.503

Figure 4.16: E�ect of increasing event graph capacity on the PIPE program. The running
time is decreased by 24%.

We observe that the computation in iteration i is independent of the produce

operation in iteration i � 1, although the enqueue operations must be performed in order

as required by the semantics of the event graph data structure. Therefore, we can pipeline

di�erent iterations as long as we insert su�cient synchronization primitives to enforce the

order of the produce operations. Figure 4.17 shows such an implementation of the PIPE

program, where the latency of the produce operation can be partially overlapped with the

computation in the next iteration.

Figure 4.18 shows the results of the new program. Surprisingly, the running time

is increased by 6%. Although the consume operation waits less frequently for the produce

operation, as indicated by the observed latency of their synchronization event, both of their

latencies have increased.

One possible explanation of this e�ect is the delay in propagating messages. Mes-

sages smaller than the speci�ed aggregation size are not forced out to the network until the

processor is idle. Therefore, keeping the processor busy for a longer period of time may

actually reduce parallelism, due to the tight dependencies between the pipeline stages. As

a result, the bene�t of software pipelining is completely o�set by the increase in message

latency. The performance result indicates that a di�erent tradeo� must be made between

93

consume:

repeat

while (fewer than N items removed by current iteration) {

[wait for new items]

remove items (up to N items)

}

perform (N * T) units of computation

[wait for previous produce to complete]

issue produce

until (M items processed)

produce:

< same as the non-pipelined version >

Figure 4.17: Software pipelining implementation of the PIPE program.

% pipe-swp-cm5 32 10000 10 100 15 100 1000

*** Cost Profile ***

Id 0: THREAD= 46.586 IDLE=167.977 COMM_ALPHA= 10.152 COMM_BETA= 53.341

Id 3: COMP=149.078

Id 1: ACCESS= 16.990 DATA= 4.713

Time: Model= 448.838, Total= 429.008

*** Observed Latency ****

ENQ1 = 79.898 -- DEQ1: 79.898

DEQ1 = 121.554 -- ENQ1:121.554

produce3 = 79.898 -- ENQ1: 79.898

consume3 = 152.208 -- DEQ1:121.554 produce3: 30.653

*** Critical Latency ****

ENQ1 = 57.342 -- DEQ1: 57.342

DEQ1 = 101.695 -- ENQ1:101.695

Figure 4.18: E�ect of software pipelining. The running time is increased by 6%.

94

% pipe-flush-cm5 32 10000 10 100 15 100 1000

*** Cost Profile ***

Id 0: THREAD= 45.757 IDLE= 90.608 COMM_ALPHA= 12.377 COMM_BETA= 52.902

Id 3: COMP=149.078

Id 1: ACCESS= 16.118 DATA= 4.713

Time: Model= 371.552, Total= 354.731

*** Observed Latency ****

ENQ1 = 18.982 -- DEQ1: 18.982

DEQ1 = 62.669 -- ENQ1: 62.669

produce3 = 18.982 -- ENQ1: 18.982

consume3 = 77.398 -- DEQ1: 62.669 produce3: 14.728

*** Critical Latency ****

PE31: ENQ1 = 18.982 -- DEQ1: 18.982

PE31: DEQ1 = 62.669 -- ENQ1: 62.669

Figure 4.19: E�ect of selectively
ushing messages. The running time is decreased by 13.5%.

the latency of the produce operation and the latency of the messages.

4.5.4.3 Selective Flushing of Messages

The results from the software pipelining implementation led us to another possible

optimization based reducing the delays in message delivery. Instead of using a uniform

aggregation size throughout the execution, we can dynamically adjust the aggregation size

by
ushing messages at selected points of the program. The best place to
ush messages is

immediately before the computation of each node, because the processor may remain busy

for an arbitrary amount of time in the computation, causing messages to be queued for a

long time.

Figure 4.19 shows the result of the optimization. The running time is improved by

13.5% relative to the original implementation, due to the reduction in the latency of both

data dependencies and resource dependencies.

4.6 Related Work

Many performance pro�ling tools have been developed for event tracing and visu-

alization. They include PICL/ParaGraph [GHPW90], Pablo [RAN+93], and Vista [Hal95].

95

These tools collect a trace of communication activities and other user-de�ned events from

the execution and use the trace to generate multiple views of the program's activities over

time. Such tools feature large quantities of low-level pro�ling information. In comparison,

Mprof produces pro�ling information immediately after the execution without requiring a

trace �le. Furthermore, Mprof provides high-level pro�ling information instead of raw event

traces. However, Mprof provides summary information about the entire execution, and it

cannot provide information about a particular time period in the execution.

Instrumentation and sampling methods are popular alternatives to event trac-

ing. Research in this area includes Paradyne [MCC+95] and the work by Crovella and

LeBlanc [CL93]. The Paradyne toolkit instruments the program binaries to collect perfor-

mance statistics. It allows the programmer to specify conditions to dynamically control

the degree of instrumentation. Uninstrumented code can be used for program components

that do not contribute to performance ine�ciencies. The binary instrumentation approach

has the least programming overhead for performance pro�ling, but it is platform-dependent,

and it incurs higher overhead because it collects too much low-level information. In compar-

ison, Mprof requires the programmer to instrument the source code, but the instrumented

code has less overhead because Mprof uses high-level statistics instead of direct timer calls.

Mprof also provides more information on the interaction of di�erent data structures than

the Paradyne toolkit.

Crovella and LeBlanc used a set of performance predicates to detect performance

ine�ciencies. A designated processor periodically samples the values of a set of global status

variables such as the amount of work in the system and the status of each processor. The

values of the variables are used to determine the truth of the performance predicates, which

are statements about the state of the system such as the presence of load imbalance. The

frequency of occurrences of such predicates can be used to identify signi�cance performance

ine�ciencies. Their work was restricted to shared memory platforms where global variables

can be updated and probed with low overhead, and they did not address the interaction of

data structures.

The statistical approach to performance modeling has been taken by Brewer [Bre94]

and Crovella [Cro94] in predicting the performance of bulk-synchronous programs. As in

Mprof, they assume the cost models are linear combinations of terms. Brewer used statisti-

cal models to predict the performance of di�erent implementations of the same procedure.

The prediction is used to select the best implementation for a given input. In addition

96

to choosing implementations, Brewer also used numerical methods to automatically tune

the selected implementation. Crovella used statistical models to predict the \lost cycles"

in a program, which are overhead categories such as the amount of idle time caused by

load imbalance. He also developed various tools to help the programmer improve the cost

models. The major di�erence between their toolkits and Mprof is that they model the per-

formance of standalone procedures, but not concurrent data structures. Crovella showed

limited reuse of the cost models when the new program consists of simple sequential or par-

allel compositions of existing programs, but he did not address the irregular composition

of data structures. On the other hand, their toolkits provide performance prediction, while

Mprof only provides post-mortem performance pro�les. To make performance prediction

possible, the statistics in their cost models cannot be computed values.

Hollingsworth [HM92] compared several performance metrics for detecting prob-

lematic program components which include the critical path metric [YM88] and the NPT

metric [AL90]. The critical path metric measures the amount of time spent by each proce-

dure in the longest running path of the execution. The NPT metric measures the amount of

\normalized" execution time for each procedure, where the time is normalized with respect

to the amount of available parallelism at the time of measurement. The metric assigns more

importance to procedures that cause serial bottlenecks in the execution. Both the critical

path metric and the NPT metric contain idle cycles as well as busy cycles. In comparison,

Mprof reports on the busy cycles (overhead) and the idle cycles (insu�cient parallelism)

separately. The former is given by the cost of accesses, and the later by the observed latency

and the critical path latency of the accesses.

4.7 Summary

Pro�ling the performance of Multipol applications presents many challenges. The

multithreaded execution model in Multipol makes it di�cult to use direct measurement

methods such as inserting timer calls, because an operation may be decomposed into multi-

ple �bers that execute at di�erent times. Automatic instrumentation methods also cannot

be applied, because they break the library abstraction by providing pro�ling information

about the implementation details of the data structures, such as the running times of the

internal functions.

Mprof resolves these problems by collecting user-de�ned statistics that characterize

97

the costs of high-level operations. The statistics are combined with reusable cost models to

provide accurate pro�ling information with low overhead. The cost models are automatically

instantiated by the Mprof toolkit using data from benchmark executions, and they can be

reused by many applications because all Multipol computations are built from non-blocking

�bers. Mprof also provides a performance interface for the library programmer to customize

the pro�ling information and thereby preserve the library abstraction.

In addition to measuring library and runtime overhead, Mprof also detects insuf-

�cient parallelism in the application. It uses two metrics, observed latency and critical

path latency, which identify problematic synchronization events in the execution. The

non-blocking semantics of Multipol �bers permits the toolkit to accurately measure these

metrics.

98

Chapter 5

Performance Results

The previous chapters describe the Multipol runtime library and pro�ling support

for building irregular applications. In this chapter, we conduct experiments to evaluate

the e�ectiveness of our approach. We use the �ve applications from Chapter 2 to assess

the performance of the Multipol runtime library. We also show how these applications can

be analyzed and optimized using the pro�ling information provided by Mprof. Section 5.1

describes the analysis and optimization of Multipol applications, and Section 5.2 summarizes

the optimization techniques and the performance of the applications

5.1 Performance Analysis and Optimization

For each application, we analyze its performance pro�le, locate the performance

ine�ciencies, and apply suitable optimization techniques to improve performance. We as-

sume the parallel executions use the maximum number of processors in the system, which

is 32 for the CM5 and 8 for the Paragon and SP1. We also quote performance results for

a 8 processor Sparc cluster when available. The speedup of the parallel execution is taken

with respect to the sequential execution that uses the same program on one processor, be-

cause the sequential implementations of the programs are either unavailable, or they do not

show consistent performance gain over the parallel implementation (such as the CSWEC

program [WY95]).

We start with the initial implementations of the applications, which use the fol-

lowing con�guration of the Multipol runtime library:

� The runtime layer attempts to aggregate 1K bytes of data for each physical message.

99

� The runtime layer uses small messages and small preemptive messages for the com-

munication events whenever applicable (see Section 3.3.3).

� The task stealer data structure uses the urgent scheduler for scheduling task migration

threads. All other data structures use the FIFO scheduler for their accesses.

We use the pro�ling information from Mprof to locate the performance ine�cien-

cies. The performance pro�le of an execution includes the overhead of the thread layer,

the communication start-up overhead, and the data transfer overhead. The performance

pro�le also includes the observed latency and the critical path latency of the data structure

accesses, which we use to identify the synchronization events that contribute signi�cantly

to the processor idle time. The overheads and latencies are estimated by Mprof using the

instantiated cost models of the runtime layer for the CM5, Paragon, and SP1. After locat-

ing the performance ine�ciencies, we apply the corresponding optimization techniques and

assess their performance impact.

5.1.1 The EM3D program

We run the EM3D program with two di�erent settings of the bipartite graph:

10% and 20% remote edges. A graph with 0% remote edges (the best case input, although

unrealistic) is also used for comparison. Each processor has 1000 graph nodes with 20

outgoing edges. The processors are logically arranged as a linear array, and each edge may

adjoin nodes that are at most 3 processors away. The computation is performed for 100

iterations, and the results exclude the construction and preprocessing of the bipartite graph.

The performance of the initial implementation is shown in Figure 5.1.

The running times of the program with 0% remote edges are 6.84, 4.10, and 1.45

seconds for the CM5, Paragon, and SP1, respectively. The Paragon achieves the least

e�ciency loss relative to the best case (0% remote edges), which is 37% and 25% for 10%

and 20% remote edges, respectively. The CM5 and the SP1 su�ers e�ciency loss of more

than 85% when 10% of the edges are remote. Increasing the percentage of remote edges to

20% also has greater impact on the CM5 and the SP1, raising their e�ciency loss to more

than 140%.

The performance degradation comes from the computation and communication

overheads for validating the bipartite graph and the idle time caused by the barriers between

100

10% Remote Edges

Machine Time Runtime Layer Synchronization E�ciency
Total Idle Threads Communication Events Loss

CM5 12.9 1.87 0.07 0.13 / 1.63 1.79 / 1.79 (barrier) 86%

Paragon 5.14 0.45 0.08 0.43 / 0.11 0.40 / 0.40 (barrier) 25%

SP1 2.72 0.17 0.04 0.18 / 0.55 0.16 / 0.16 (barrier) 88%

20% Remote Edges

Machine Time Runtime Layer Synchronization E�ciency
Total Idle Threads Communication Events Loss

CM5 16.6 1.44 0.07 0.13 / 2.80 1.33 / 1.33 (barrier) 143%

Paragon 5.61 0.46 0.08 0.43 / 0.15 0.40 / 0.40 (barrier) 37%

SP1 3.97 0.51 0.04 0.18 / 0.93 0.50 / 0.50 (barrier) 174%

Figure 5.1: Performance pro�les of the EM3D program. The times (in seconds) are averaged
over all processors in the system. The communication overheads are the message start-up
overhead and the data transfer overhead. The long latency events are annotated with their
observed latencies and critical path latencies. The e�ciency loss is the slowdown relative
to the graph with no cross-processor edges (0% remote).

phases (named \barrier" in the �gure). The program performs better on the Paragon,

because the Paragon has a higher communication bandwidth, which is demonstrated by its

lower data transfer overhead. The communication overhead cannot be reduced by message

aggregation because each processor exchanges at most one bulk message with any remote

processor in a phase, leaving no room for aggregation. The barriers are also required to

enforce the data dependencies between phases. Because the bipartite graph data structure

has performed most of the important optimizations, we do not �nd any further optimization

for this program.

We note that the Split-C implementation of the EM3D program is slightly faster

than the Multipol implementation on the CM5. This is possibly because the Split-C im-

plementation does not have the overhead of multithreading, and it makes use of the CM5

control network for fast barrier synchronizations. The Multipol runtime layer does not pro-

vide accesses to the CM5 control network because it is machine-dependent, and its interface

is blocking, which is inconsistent with the �ber semantics.

5.1.2 The Tripuzzle program

We use a initial board containing 7 rows of pegs with an empty position in the

101

Machine sequential Parallel Time Runtime Layer Synchronization
Time Total Idle Threads Communication Events

CM5 122.9 7.69 2.10 0.86 0.14 / 1.17 1.91/1.91 (sync)

Paragon 66.9 17.60 6.81 1.71 0.91 / 1.70 6.70/6.70 (sync)

SP1 40.2 9.66 2.11 1.22 0.43 / 1.64 2.09/2.09 (sync)

Figure 5.2: Performance pro�les of the initial implementation of the Tripuzzle program.
The times (in seconds) are averaged over all processors in the system. The communication
overheads are the message start-up overhead and the data transfer overhead. The long
latency events are annotated with their observed latencies and critical path latencies.

Execution CM5 Paragon SP1

FIFO Scheduler, 1K byte aggregation 7.69 17.6 9.66

Preemptive Scheduler, 1K byte aggregation 6.55 16.4 8.70

Preemptive Scheduler, 4K byte aggregation 5.59 14.1 7.90

Figure 5.3: Running time of the Tripuzzle program.

middle of the 5th row. The performance of the initial implementation is shown in Figure

5.2. The program achieves speedups of 16, 3.8, and 4.2 on the CM5, Paragon, and SP1,

respectively. The major loss of e�ciency results from the latency for draining all hash

table insert accesses. The other overheads include the thread and communication layer

overheads for accessing remote partitions of the hash table. The communication overhead

may be reduced by using a higher degree of message aggregation. To reduce the thread

overhead, we examine the source code for the hash table data structure and locate the

threads that may be scheduled by the preemptive scheduler while preserving atomicity (see

Section 3.2.4 for details on the preemptive scheduler). We make minor modi�cations to

the data structure and the application so that the preemptive scheduler can be used for all

insert accesses without compromising atomicity. Figure 5.3 summarizes the performance

results.

Exploiting the scheduling semantics reduces the running time by 10% in certain

cases. Increasing the degree of message aggregation further reduces the running time by

more than 10% due to the reduction in both the communication start-up overhead and

the thread overhead for handling the messages. Combining these optimizations, the best

implementation of the Tripuzzle program achieves speedup of 22 on the CM5, 4.7 on the

102

Task Stealing

Machine sequential Parallel Time Synchronization Events
Time Total Idle

CM5 43.5 2.77 1.47 1.38/1.37 (term), 0.68/0.01 (remove)

Paragon 10.9 4.11 2.80 2.62/2.05 (term), 2.12/0.20 (remove),
0.40/0.38 (fetch)

SP1 12.3 4.63 2.70 2.70/0.05 (term), 0.89/0.87 (remove),
1.79/1.66 (fetch)

Task Pushing

Machine sequential Parallel Time Synchronization Events
Time Total Idle

CM5 43.5 3.22 1.88 1.78/0.48 (term), 1.09/0.83 (remove),
0.49/0.47 (fetch)

Paragon 10.9 2.91 1.50 1.31/0.17 (term), 0.39/0.36 (remove),
0.83/0.78 (fetch)

SP1 12.3 2.84 1.15 1.14/0.10 (term), 0.20/0.16 (remove),
0.89/0.88 (fetch)

Figure 5.4: Performance pro�les of the initial implementation of the Eigenvalue program.
The times (in seconds) are averaged over all processors in the system. The runtime layer
overheads are omitted due to their insigni�cance. The long latency events are annotated
with their observed latencies and critical path latencies.

Paragon, and 5.1 on the SP1.

5.1.3 The Eigenvalue program

We use a 1000 by 1000 random matrix as input to the Eigenvalue program. Two

load balancing strategies are compared: task stealing and task pushing. Figure 5.4 shows

the performance of the initial implementation. For task stealing, the observed latency of

the operations show that both the termination detection operation (named \term" in the

�gure) and the removal of tasks (named \remove") contribute signi�cantly to the idle time.

Fetching remote tasks (named "fetch") also contributes to the idle time, but to a lesser

extent on the CM5 and the Paragon, because task stealing attempts to preserve locality.

Critical path latency is not as useful as observed latency for the Eigenvalue program, because

critical path latency is primarily charged to the termination detection operation, which

always runs in the background and overlaps with all other accesses. The performance of

the task stealing version may be improved by reducing the task removal latency using a

103

Execution CM5 Paragon SP1

Stealing, initial implementation 2.77 4.11 4.63

+ no aggregation 2.77 2.32 2.68

Pushing, initial implementation 3.22 2.91 2.84

+ no fetches and no aggregation 3.19 1.89 2.06

Figure 5.5: Running time of the Eigenvalue program.

lower degree of message aggregation, since the communication overheads are insigni�cant

and can be traded for the reduction in latency.

For task pushing, fetching remote tasks contributes signi�cantly to the idle time,

because task pushing destroys the locality of tasks. we observe that for task pushing, there

is no advantage in using pointers to the intervals (instead of the intervals themselves) for the

task pools, since most tasks migrate exactly once. Therefore, we can eliminate the remote

fetches by using the intervals for the tasks and letting the task stealer data structure send

the intervals directly to their destination processors. For task stealing, it is generally a good

idea to use pointers for tasks and migrate the data required by the tasks on demand, since

tasks may move more than once.

Figure 5.5 shows the results of the optimizations. The optimizations work better

on the Paragon and SP1 than on the CM5, possibly because the parallelism in the pro-

gram is not su�cient to keep the 32 processors on the CM5 busy. Task stealing performs

worse than task pushing on the Paragon and the SP1 because the small protocol messages

generated by task stealing cannot be propagated as e�ciently as on the CM5, which has

lower communication overhead and latency. Overall, the optimized implementation achieves

speedups of 14.6, 4.70 and 4.59 for task stealing, and speedups of 15.6, 5.77, and 5.97 for

task pushing, on the CM5, Paragon, and SP1, respectively.

We note that the number of tasks generated by the program varies with the ma-

chine. The CM5 and SP1 generate the same number of intervals, but the Paragon generates

fewer intervals. This is due to di�erences in the
oating point arithmetic.

5.1.4 The Phylogeny Program

We use an input with 50 characters and 14 species. Each processor creates a

combine thread to combine the failure stores whenever its local task pool runs out of task.

104

Task Stealing

Machine sequential Parallel Time R untime System
Time Total Idle Threads Communication

CM5 1089 137.6 37.5 0.79 0.32 / 1.66

Paragon 516 151.75 77.5 0.69 0.04 / 0.00

SP1 308 50.3 4.22 0.67 0.29 / 0.31

Machine Task Stealing: Synchronization Events

CM5 30.8/30.4 (fetch), 1.05/0.96 (remove), 5.43/5.38 (comb)

Paragon 2.07/2.07 (fetch), 74.0/73.1 (remove), 1.21/1.16 (comb)

SP1 6.10/2.73 (fetch), 0.37/0.26 (remove), 1.90/1.00 (comb)

Task Pushing

Machine sequential Parallel Time R untime System
Time Total Idle Threads Communication

CM5 1089 434.4 170.9 3.03 1.75 / 1.30

Paragon 516 305.1 119.6 5.83 12.9 / 1.80

SP1 308 156.9 49.0 3.87 4.34 / 1.28

Machine Task Pushing: Synchronization Events

CM5 95.1/95.1 (fetch), 33.3/28.6 (remove), 46.8/46.8 (comb)

Paragon 103/103 (fetch), 13.2/9.71 (remove), 6.61/6.61 (comb)

SP1 43.3/43.3 (fetch), 3.7/3.7 (remove), 34.8/1.95 (comb)

Figure 5.6: Performance pro�les of the initial implementation of the Phylogeny program.
The times (in seconds) are averaged over all processors in the system. The communication
overheads are the message start-up overhead and the data transfer overhead. The long
latency events are annotated with their observed latencies and critical path latencies.

We compare two load balancing strategies: task stealing and task pushing. Figure 5.6 shows

the performance pro�le of the initial implementation.

The speedups for the task stealing implementation are 7.9 on the CM5, 3.4 on the

Paragon, and 6.1 on the SP1. On the CM5 and the SP1, the speedups are mainly limited by

the latency of fetching remote tasks (named \fetch" in the �gure). Removing tasks (named

\remove") and combining the failure stores (named \combine") incur less idle time. On the

Paragon, the speedup is limited by the latency for removing tasks, which is caused by load

imbalance. The latencies of removing and fetching tasks may be reduced by lowering the

degree of message aggregation.

105

Optimizations CM5 Paragon SP1

Initial implementation 137.6 151.8 50.2

+ no aggregation 112.3 164.0 50.0

Figure 5.7: Running time of the Phylogeny program

The speedups for the task pushing implementation are considerably worse than

the task stealing implementation. The lack of locality caused by task pushing not only

increases the number of remote task fetches, but also decreases the opportunities for pruning

the search space and consequently increases the amount of redundant computation. On

average, the task pushing version generates 50% to 100% more tasks than the task stealing

version.

Figure 5.7 shows the performance of the optimized task stealing implementation.

Disabling message aggregation improves the running time by almost 20% for the CM5, but

it slightly slows down the Paragon execution and has no obvious e�ect on the SP1. We did

not perform the optimizations on the task pushing version, because task stealing is clearly

the better load balancing strategy to use.

The Split-C implementation of the Phylogeny program [JY95] showed better speedup

than the Multipol implementation on the CM5. We noticed that the performance of the

Multipol implementation is very sensitive to the load balancing and scheduling parameters.

We think its performance can be improved with further tuning in scheduling.

5.1.5 The CSWEC Program

We assess the performance of the CSWEC program using two input circuits: a

32-bit register �le, called REGFILE, and an unknown circuit from the ISCAS benchmark

suite, called C2670. The REGFILE circuit features 32 very large subcircuits among a

total of 325 subcircuits, so its speedup is essentially limited to 32. The C2670 circuit

contains 2033 subcircuits of roughly equal size. The capacity of the event graph is set to

64. Figure 5.8 shows the performance of the initial implementation. For the REGFILE

circuit, the program achieves speedups of 26.4, 7.73, and 7.15 on the CM5, Paragon, and

SP1, respectively. The speedup on the CM5 is less than ideal due to the idle time caused by

load imbalance (named \term" in the �gure), insu�cient capacity (named \resource"), and

106

The REGFILE Circuit

Machine sequential Parallel Time Runtime Layer
Time Total Idle Threads Communication

CM5 515 19.5 4.18 0.20 0.02 / 0.10

Paragon 396 51.2 1.82 0.55 0.11 / 0.18

SP1 214 29.9 2.24 0.36 0.05 / 0.15

Machine The REGFILE Circuit: Synchronization Events

CM5 0.8/0.8 (term), 3.21/0.58 (resource), 10.4/2.78 (data)

Paragon 0.20/0.20 (term), 0.76/0.05 (resource), 6.32/1.51 (data)

SP1 0.11/0.11 (term), 5.88/0.10 (resource), 18.1/2.01 (data)

The C2670 Circuit

Machine sequential Parallel Time Runtime Layer
Time Total Idle Threads Communication

CM5 990 42.9 8.84 4.17 0.52 / 3.32

Paragon 28172 248 63.5 18.3 8.0 / 8.5

SP1 361 62.3 2.07 10.03 1.70 / 6.75

Machine The C2670 Circuit: Synchronization Events

CM5 0.46/0.46 (term), 52.5/1.53 (resource), 185/6.59 (data)

Paragon 0.42/0.42 (term), 1843/5.4 (resource), 1175/57.6 (data)

SP1 24.5/0.36 (resource), 47.0/1.62 (data)

Figure 5.8: Performance pro�les of the initial implementation of the CSWEC program.
The times (in seconds) are averaged over all processors in the system. The communication
overheads are the message start-up overhead and the data transfer overhead. The long
latency events are annotated with their observed latencies and critical path latencies.

data dependencies (named \data"). The Paragon and the SP1 achieves higher e�ciency

because they have only 8 processors, and parallelism in the circuit is su�cient to keep all 8

processors busy.

The performance of the program for the C2670 circuit is less regular. The program

achieves speedups of 23.1 on the CM5 and 5.79 on the SP1. However, the speedup on the

Paragon is over 100. This is due to paging in the single-processor case, when the memory

required for the simulation exceeds the physical memory of the machine. In this case,

the pro�ling information provided by Mprof is not accurate, because it fails to model the

performance of the virtual memory system. On the CM5 and the SP1, the performance is

107

limited by the overhead of the thread and communication layers as well as the idle time due

to dependencies. The thread overhead may be reduced if the preemptive scheduler is used

for the event graph accesses. As in the Tripuzzle program, we examine the source code of

the event graph data structure and the CSWEC program and make minor changes to use

the preemptive scheduler. The communication overhead may be improved by increasing

message aggregation, but at the cost of increasing access latency.

Figure 5.9 shows the results of the optimizations for the C2670 circuit. Exploiting

the scheduling semantics improves performance by almost 10% in certain cases. Increasing

the degree of message aggregation improves performance on the CM5 and the SP1, but not

on the Paragon. The performance degradation on the Paragon results from the increase

in idle time, which is already high in the initial implementation. These results agree with

the results from our prior work on the CSWEC program [WY95],1 which shows that the

optimal degree of message aggregation varies with the platform. For the C2670 circuit, the

best implementation of the program achieves speedups of 26.8, 117 (super-linear due to

paging), and 7.3 for the CM5, Paragon, and SP1, respectively.

The performance of the program may be further improved by increasing the ca-

pacity of the event graph. Figure 5.10 shows the results from our prior work on the e�ect of

memory allocation on the CSWEC program. The e�ect of increasing capacity is dependent

on the input and the machine con�guration. In general, a large capacity improves perfor-

mance by increasing concurrency, and consequently reduces the number of null messages

that have to be sent to avoid deadlock. The increase in concurrency also provides more

threads for hiding latency, as well as more opportunities for message aggregation. The

results show that C2670 is less sensitive to the initial increase of capacity than REGFILE,

because it has more subcircuits and therefore more parallelism. A large capacity, however,

may degrade the performance of the memory hierarchy because it requires more memory.

This is demonstrated by the running time of C2670 on Paragon, which increases by a factor

of 3 when the edge capacity is too large.

1The experiment settings in the paper are slightly di�erent from the settings here in the version of the
runtime layer used and the amount of memory allocated to the simulation.

108

Optimizations CM5 Paragon SP1

Initial implementation 42.9 248 62.3

+ preemptive scheduler 38.3 241 56.7

+ more aggregation (4K byte) 36.9 245 49.5

Figure 5.9: Running time of the CSWEC program on the C2670 circuit.

5.2 Summary

In this chapter, we used information from Mprof to identify performance bottle-

necks in the Multipol applications and then applied the following optimizations:

� Exploiting scheduler semantics to reduce the thread layer overhead (Tripuzzle and

CSWEC).

� Reducing synchronization events by sending data instead of fetching data, thereby

avoiding a roundtrip message (Eigenvalue).

� Decreasing message aggregation to reduce access latency (Eigenvalue and Phylogeny).

� Increasing message aggregation to reduce overhead (CSWEC).

� Preserving locality in task stealing to increase the e�ectiveness of pruning and thereby

reduce the amount of redundant work (Phylogeny).

The best performance of the applications is summarized in Figures 5.11 and 5.12.

The EM3D program is not included because the program uses di�erent random graphs for

di�erent number of processors. We note that the di�erent machine characteristics require

di�erent optimizations. For example, task stealing performs better than task pushing on

the CM5, but not on the Paragon and SP1, which do not handle small messages e�ciently.

Increasing message aggregation for the CSWEC program improves performance on the CM5

and the SP1, because it reduces the communication overhead, but not on the Paragon, where

the performance is limited by the access latency. The optimal degree of message aggregation

also changes with the workload. The pro�ling information provided by Mprof helps identify

the performance ine�ciencies and the appropriate optimization techniques to use.

109

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Effect of Graph Capacity on REGFILE

Capcacity (events per edge)

N
or

m
al

iz
ed

 ti
m

e
CM5

SP1

Paragon

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
Effect of Graph Capacity on C2670

Capcacity (events per edge)

N
or

m
al

iz
ed

 ti
m

e

CM5, SP1

Paragon

Figure 5.10: Impact of graph capacity on the performance of the CSWEC program. All
running times are normalized with respect to the running time with the least capacity.

110

Program Platform (Number of Processors)
CM5 (32) Paragon (8) SP1 (8) Cluster (8)

Tripuzzle 22.0 4.7 5.1 NA

Eigenvalue 14.6 5.8 6.0 NA

Phylogeny 9.7 3.4 6.1 NA

CSWEC (REGFILE) 23.6 7.7 7.2 6.0

CSWEC (C2670) 26.8 117 7.3 3.0

Figure 5.11: Speedups of the Multipol applications

The good performance achieved by the Multipol applications on multiple plat-

forms indicates that the Multipol library and runtime layer are performance portable. Per-

formance portability is achieved through the use of a multithreaded execution model, the

optimized communication layer, and the
exibility in customizing the implementation pa-

rameters such as the scheduling policy, the load balancing strategy, and the degree of

message aggregation.

111

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30
Speedups on the CM5

Processors

S
pe

ed
up

REGFILE

C2670

Tripuzzle

Eigenvalue

Phylogeny

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8
Speedups on the Paragon

Processors

S
pe

ed
up

REGFILE

Tripuzzle

Eigenvalue

Phylogeny

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8
Speedups on the SP1

Processors

S
pe

ed
up

REGFILE
C2670

Tripuzzle

Eigenvalue

Phylogeny

Figure 5.12: Speedup curves of the Multipol applications. The implementation of the store-
combining algorithm of Phylogeny requires that the number of processors be a power of
two. The Paragon speedup of CSWEC on the C2670 circuit is not reported, because the
sequential execution has poor performance due to paging.

112

Chapter 6

Summary and Conclusions

Our work addressed three important issues in developing irregular applications:

programming abstraction, runtime infrastructure, and performance pro�ling.

We studied the programming abstractions used by several irregular applications

and their distributed data structures from the Multipol library, and we described the in-

terfaces of these data structures and their implementation techniques. We also used the

application workload to quantitatively characterize the irregularities that arise in parallel

programs. The study led to insights into the runtime infrastructure for building irregular

applications.

We developed the Multipol runtime layer to support irregular applications on

distributed memory platforms. The runtime layer provides a multithreaded execution model

and portable communication and synchronization abstractions. It can be easily customized

to match the requirements of a particular application and machine. The runtime layer also

performs extensive optimizations such as dynamic message aggregation to reduce overhead.

To help the programmer tune the performance of irregular parallel programs, we

developed a performance pro�ling toolkit called Mprof. Mprof provides high-level pro�ling

information that can be customized for each data structure. In addition to measuring the

cost of operations from the library and runtime layer, Mprof also identi�es problematic

synchronization events to detect insu�cient parallelism. The design of the runtime layer

enables Mprof to accurately pro�le the executions with low overhead.

Finally, we evaluated the e�ectiveness of the Multipol performance tools using

the Multipol applications. We showed how pro�ling information from Mprof can be used to

identify performance ine�ciencies and how the corresponding optimizations reduce these in-

113

e�ciencies. The applications exhibit high performance on three di�erent platforms, thereby

demonstrating the performance portability of the library and runtime layer.

6.1 Future Work

The performance tools we built for Multipol provide a framework for further re-

search on the programming and tuning of irregular parallel applications. In the paragraphs

that follow, we describe extensions of our work and suggest future research directions.

The atomicity of Multipol �bers facilitates concurrency control, scheduling, and

performance pro�ling, but large-granularity �bers may adversely a�ect performance. For

example, once a speculative �ber starts executing, it cannot be preempted by a high pri-

ority �ber. Therefore, the programmer is burdened with task of decomposing long-running

threads into �bers with reasonable granularities. Better linguistic support and compilation

tools would ease the programming task. The prototype compiler developed by Jones and

Papavassiliou [JP95] is the �rst step towards such a goal.

The reusability of the cost models depends on the availability of a non-blocking

communication interface on the machine so that the overhead of sending a message of

a given size can be approximated by a �xed value. With CMAML active messages, for

example, this property does not hold, because the sender may be blocked for an arbitrarily

long time if the network is congested. Our conclusion from this work is that a non-blocking

communication interface is essential for latency hiding and performance portability.

Our performance models do not account for the e�ects of the memory hierarchy,

such as paging and caching. For standalone procedures, detailed models can be developed to

take these e�ects into account, because when the procedures run, they have exclusive access

to memory resources. In contrast, when data structures are composed the memory resources

are shared, and their access cost depends on the interaction of the data structures. Because

each performance interface describes a data structure in isolation, it cannot be used to

characterize the access cost of memory resources. Modeling the performance of the memory

hierarchy in the presence of interacting program modules is a di�cult research problem

whose importance is not limited to parallel programming.

Our framework would bene�t from more detailed models of all Multipol data

structures, whereas this dissertation only includes a detailed model for the runtime layer.

Ultimately, our performance interface could be extended to describe performance problems

114

speci�c to a data structure and the optimization techniques for resolving them. For example,

the runtime layer could use information from the performance interface to dynamically

adjust the degree of message aggregation based on the pro�ling data from Mprof. The

extended performance interface would document the library programmer's intuition about

optimizing the data structure and is the �rst step towards automatic performance tuning.

6.2 Contributions

Our work produced a comprehensive study of irregular parallel applications and

three integrated software components for building them: a data structure library, a runtime

layer, and a performance pro�ling toolkit. We summarize our contributions in each area.

Irregular applications: We studied several nontrivial applications to quantitatively

characterize the irregularities in parallel programs. The study covered a wide spectrum

of irregular problems. We also implemented the CSWEC application, which is the most

irregular application described in the dissertation. Our CSWEC implementation achieved

high e�ciency on all the platforms we examined.

Data structure library: We developed the task stealer and the event graph data struc-

tures. The task stealer data structure has been used by many applications including the

Eigenvalue program and the Phylogeny program; it is useful for applications with severe

load imbalance such as divide-and-conquer and branch-and-bound problems. The event

graph data structure is used by the CSWEC program, and is applicable to any discrete

event simulation problem.

Runtime layer: We designed and implemented the Multipol runtime layer. We de-

vised mechanisms for implementing split-phase operations and application-speci�c schedul-

ing policies. We also developed a novel mechanism for taking distributed snapshots, the

snapshot data structure, which is used by all the data structures described in this disser-

tation. In the implementation of the communication layer, we demonstrated the use of

automatic message aggregation for trading o� parallelism and communication bandwidth.

Performance pro�ling: We developed the Mprof performance pro�ling toolkit which

detects both overhead and insu�cient parallelism in irregular parallel programs. We ap-

115

plied statistical techniques in modeling the performance of concurrent data structures, and

we devised two new metrics, observed latency and critical path latency, which can be used

to identify problematic synchronization events. The toolkit exploits the atomicity of �bers

to accurately measure these metrics. We also developed a performance interface for cus-

tomizing the pro�ling information to preserve the library abstraction.

The Multipol library, runtime layer, and pro�ling toolkit provide a unique environ-

ment for implementing and optimizing irregular applications. They give programmers a set

of reusable abstractions and performance analysis tools for developing portable programs

on distributed memory platforms.

116

Bibliography

[ABB+92] E. Anderson, Z. Bai, C. Bischo�, James Demmel, Jack J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchev, and D. Sorenson.

LAPACK Users' Guide. SIAM, 1992.

[ABC+88] Frances E. Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne

Ferrante. An overview of the PTRAN analysis system for multiprocessing.

Journal of Parallel and Distributed Computing, 5(5):617{640, October 1988.

[AL90] T. Anderson and E. Lazowska. Quartz: A tool for tuning parallel program per-

formance. In Proc. 1990 ACM SIGMETRICS Conference on the Measurement

and Modeling of Computer Systems, May 1990.

[BCF+95] N. J. Baden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W. K. Su. Myrinet - a gigabit-per-second local-area network.

IEEE-Micro, 15, February 1995.

[BDG+91] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A users'

guide to PVM parallel virtual machine. Technical Report ORNL/TM-11826,

Oak Ridge National Laboratory, Oak Ridge, TN, July 1991.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreaded

runtime system. In Principles and Practice of Parallel Programming, 1995.

[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-

putations by work stealing. In Proceedings of the 35th Annual Symposium on

Foundations of Computer Science (FOCS '94), pages 356{368, Santa Fe, New

Mexico, November 1994.

117

[BRB90] K.S. Brace, R.L. Rudell, and R.E. Bryant. E�cient implementation of a BDD

package. In 27th ACM/IEEE Design Automation Conference, Orlando, FL,

June 1990.

[Bre94] Eric Brewer. Portable High-Performance Supercomputing: High-Level

Platform-Dependent Optimization. PhD thesis, Department of Electrical Engi-

neering and Computer Science, Massachusetts Institute of Technology, Septem-

ber 1994.

[BSS91] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive sci-

enti�c algorithms on distributed memory multiprocessors. Concurrency: Prac-

tice and Experience, pages 159{178, June 1991.

[CDG+93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-

murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Par-

allel programming in Split-C. In Supercomputing '93, pages 262{273, Portland,

Oregon, November 1993.

[CDPW92] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear

algebra library for distributed memory concurrent computers. In Symposium on

the Frontiers of Massively Parallel Computation, McLean, VA, October 1992.

[CKK+94] David Culler, Kim Keeton, Cedric Krumbein, Lok Tin Liu, Alan Mainwar-

ing, Rich Martin, Steve Rodrigues, Kristin Wright, and Chad Yoshikawa. The

generic active message interface speci�cation. Technical report, Computer Sci-

ence Division, University of California, Berkeley, 1994.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global

states of distributed systems. ACM Transactions on Computer Systems, 1985.

[CL93] M. Crovella and T. LeBlanc. Performance debugging using parallel performance

predicates. In 3rd ACM/ONRWorkshop on Parallel and Distributed Debugging,

May 1993.

[CLMY96] David Culler, Lok T. Liu, Richard Martin, and Chad Yoshikawa. LogP perfor-

mance assessment of fast network interfaces. IEEE Micro, 1996.

118

[CM81] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a se-

quence of parallel computations. Communications of the ACM, 24(11), April

1981.

[CMF92] Thinking Machines Corporation. CM Fortran Reference Manual, December

1992.

[CR95] Martin C. Carlisle and Anne Rogers. Software caching and computation mi-

gration in Olden. In Proceedings of the 5th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, July 1995.

[Cro94] M. Crovella. Performance Prediction and Tuning of Parallel Programs. PhD

thesis, Computer Science Department, University of Rochester, August 1994.

[CRY94] Soumen Chakrabarti, Abhiram Ranade, and Katherine Yelick. Randomized

load balancing for tree-structured computation. In Proceedings of the Scalable

High Performance Computing Conference, Knoxville, TN, May 1994.

[CSS+91] D. Culler, A. Sah, K. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain

parallelism with minimal hardware support: A compiler-controlled threaded

abstract machine. In Proc. of 4th Int. Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, Santa-Clara, CA, April 1991.

[CY93] Soumen Chakrabarti and Katherine Yelick. Implementing an irregular applica-

tion on a distributed memory multiprocessor. In ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, San Diego, California,

May 1993.

[DDR94] J. Demmel, I. Dhillon, and H. Ren. On the correctness of parallel bisection in

oating point. Technical Report UCB//CSD-94-805, UC Berkeley Computer

Science Division, March 1994.

[Dem89] James Demmel. LAPACK: A portable linear algebra library for supercomput-

ers. In Proceedings of the 1989 IEEE Control Systems Society Workshop on

Computer-Aided Control System Design, Tampa, FL, Dec 1989.

[DHU+93] R. Das, Y. Hwang, M. Uysal, J. Saltz, and A. Sussman. Applying the

CHAOS/PARTI library to irregular problems in computational chemistry and

119

computational aerodynamics. In Proceedings of the Scalable Parallel Libraries

Conference, Starkville, MS, 1993.

[DUSH94] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communica-

tion optimizations for irregular scienti�c computations on distributed memory

architectures. Journal of Parallel and Distributed Computing, September 1994.

[FKOT91] Ian Foster, Carl Kesselman, Robert Olson, and Steve Tuccke. Nexus: An

interoperability toolkit for parallel and distributed computer systems. Technical

Report ANL/MCS-TM-189, Argonne National Laboratory, 1991.

[For94] Message Passing Interface Forum. MPI: A message-passing interface standard.

Technical Report Computer Science Department Technical Report CS-94-230,

University of Tennessee, Knoxville, TN, May 5 1994. Also appeared in the

International Journal of Supercomputing Applications, Volume 8, Number 3/4,

1994.

[Fox92] G. C. Fox. Hardware and software architectures for irregular problems. Un-

structured Scienti�c Computation on Scalable Multiprocessors, 1992.

[GHPW90] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user's guide

to PICL: A portable instrumented communication library. Technical Report

ORNL/TM-11616, Oak Ridge National Laboratory, October 1990.

[GSC95] Seth C. Goldstein, Klaus E. Schauser, and David E. Culler. Enabling primitives

for compiling parallel languages. In Third Workshop on Languages, Compil-

ers, and Run-Time Systems fo r Scalable Computers, Rensselaer Polytechnic

Institute, NY, May 1995.

[Hal95] Robert H. Halstead Jr. Understanding the performance of parallel symbolic pro-

grams. In Proceedings of the Parallel Symbolic Languages and Systems Work-

shop, Beaune France, October 1995.

[Hig92] High Performance Fortran Forum. High Performance Fortran Language Speci-

�cation, Version 0.4, 1992.

120

[HKT91] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimiza-

tions for Fortran D on MIMD distributed-memory machine. Supercomputing,

pages 86{100, November 1991.

[HM92] Je�rey K. Hollingsworth and Barton P. Miller. Parallel program performance

metrics: A comparison and validation. In Supercomputing '92, Minneapolis,

1992.

[Ho94] Kinson Ho. High-level Abstractions for Symbolic Parallel Programming (Parallel

Lisp Hacking Made Easy). PhD thesis, Computer Science Division, University

of California at Berkeley, 1994.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley

and Sons, Inc., 1991.

[Jef85] D. R. Je�erson. Virtual time. ACM Transactions on Programming Languages

and Systems, 7(3), July 1985.

[Joh91] M. Johnson. Superscalar Microprocessor Design. Prentice-Hall, 1991.

[Joh93] K. L. Johnson. Private communication. Available via anonymous ftp from

cag.lcs.mit.edu as /pub/tuna/tripuz-entry, November 1993.

[JP95] J. Jones and V. Papavassiliou. A compiler for Multipol. Project report for

CS264: Implementation of Programming Languages, 1995.

[JY95] J. Jones and K. Yelick. Parallelizing the phylogeny problem. In Supercomputing

'95, December 1995.

[KAP95] K. Keeton, T. Anderson, and D. Patterson. LogP quanti�ed: The case for

low-overhead local area networks. In Proceedings of Hot Interconnects III: A

Symposium on High Performance Interconnects, Stanford, CA, August 1995.

[KB95] Scott R. Kohn and Scott B. Baden. A parallel software infrastructure for

structured adaptive mesh methods. In Proceedings of Supercomputing '95, San

Diego, CA, December 1995.

121

[KK93] L. V. Kale and Sanjeev Krishnan. Charm++ : A portable concurrent object

oriented system based on C++. In Proceedings of the Conference on Object

Oriented Programming Systems, Languages and Applications, September 1993.

[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,

Mahesh N. Ganmukhi, Je�rey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,

Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and

Robert Zak. The network architecture of the Connection Machine CM-5. In

ACM Symposium on Parallel Algorithms and Architectures, June 1992.

[Lam87] Monica S. Lam. A Systolic Array Optimizing Compiler. PhD thesis, School of

Computer Science, Carnegie Mellon University, May 1987.

[LC95] Lok T. Liu and David E. Culler. Evaluation of the Intel Paragon on active

message communication. In Proceedings of Intel Supercomputer Users Group

Conference, June 1995.

[LMSK91] Shen Lin, M. Marek-Sadowska, and E.S. Kuh. SWEC: A stepwise equivalent

conductance timing simulator for CMOS VLSI circuits. In Proceedings of the

European Conference on Design Automation, Amsterdam, Netherlands, Febru-

ary 1991.

[Lun94] Steve Luna. Implementing an e�cient portable global memory layer on dis-

tributed memory multiprocessors. Master's thesis, Computer Science Division,

University of California at Berkeley, 1994.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K.

Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,

and Tia Newhall. The Paradyn parallel performance measurement tools. IEEE

Computer, November 1995.

[MKH91] E. Mohr, D. A. Kranz, and R. H. Halstead Jr. Lazy task creation: a tech-

nique for increasing the granularity of parallel programs. IEEE Transaction on

Parallel and Distributed Systems, 1991.

[MSH+95] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers, and J. Saltz. E�cient

support for irregular applications on distributed-memory machines. In Pro-

122

ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, July 1995.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Com-

pany, 1994.

[PGH+90] Constantine Polychronopoulos, Milind B. Girkar, Mohammad R. Haghighat,

Chia L. Lee, Bruce P. Leung, and Dale A. Schouten. The structure of Parafrase-

2: An advanced parallelizing compiler for C and Fortran. In Languages and

Compilers for Parallel Computing. MIT Press, 1990.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 1992.

[RAN+93] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A. Shields,

Bradley Schwartz, and Luis F. Tavera. Scalable performance analysis: The

Pablo performance analysis environment. In Proceedings of the Scalable Parallel

Libraries Conference, 1993.

[SK91] Wei Shu and L. V. Kale. Chare kernel { a runtime support system for parallel

computations. Journal of Parallel and Distributed Computing, March 1991.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser. Active messages: a mechanism for integrated communication and

computation. In International Symposium on Computer Architecture, 1992.

[WHJ+95] Deborah A. Wallach, Wilson C. Hsieh, Kirk Johnson, M. Frans Kaashoek, and

William E. Weihl. Optimistic active messages: A mechanism for scheduling

communication with computation. In Proceedings of the 5th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 1995.

[WY93] Chih-Po Wen and Katherine Yelick. Parallel timing simulation on a distributed

memory multiprocessor. In International Conference on CAD, Santa Clara,

CA, November 1993. An earlier version appeared as UCB Technical Report

CSD-93-723.

123

[WY95] Chih-Po Wen and Katherine Yelick. Portable runtime support for asynchronous

simulation. In International Conference on Parallel Processing, Oconomowoc,

Wisconsin, August 1995.

[YCD+95] K. A. Yelick, S. Chakrabarti, E. Deprit, J. Jones, A. Krishnamurthy, and

C. Wen. Parallel data structures for symbolic computation. In Workshop on

Parallel Symbolic Languages and Systems, October 1995.

[YM88] C. Yang and B. P. Miller. Critical path analysis for the execution of paral-

lel and distributed programs. In 8th International Conference on Distributed

Computing Systems, San Jose, CA, 1988.

