
E�cient Generation of Local Index Sets for Distributed Arrays

Deborah K. Weisser
�

Abstract

An important component of parallel programs with distributed data structures is local address generation

for various index patterns. In this paper we present a general approach as well as two speci�c algorithms

for common problems to perform this task quickly on distributed arrays. Our algorithms usually run in

O(joutputj) time, which is optimal. We have implemented our algorithms. When the problem size is small,

they perform as well as or better than naive algorithms. When the problem size is large, they outperform

naive algorithms by several orders of magnitude.

1 Introduction

Many parallel programs are built upon some type of parallel loop over distributed data structures, oftentimes

multi-dimensional arrays. Because of resource allocation issues, such as load balancing, the distribution of

data is often complex. A combination of these complex distributions and various access patterns make

calculating indices a non-trivial overhead in parallel programs, particularly since, as remote access time

decreases, it tends less to dominate running time. This paper presents a technique which reduces this

overhead to its theoretical lower bound and can be implemented e�ciently.

We describe a framework for generating regular index patterns for any number of problems, e.g. regular

section, lower triangular, wavefront, and tri-diagonal. We present the speci�cs for algorithms to generate

local addresses for regular section and lower triangular computations.

The �rst problem we discuss is that of computing the regular section of an array. The regular section

A(o�set;max index; stride) is the set of elements A(o�set + k � stride) where stride > 0, o�set � 0, and

0 � k � max index�offset

stride
.

The second problem is that of outputting the array indices of a lower triangular matrix given a slope.

For example, if A is an n x m array, the lower triangular matrix is the elements A(i; j), where i � m
n
j.

Our algorithms achieve the theoretical lower bound when stride � b, where b is the block size, and are

close to the lower bound when stride > b. In addition, they can be implemented e�ciently and perform well

in practice, achieving speedups from several times to several orders of magnitude.

At the heart of any index computation is the data layout. We examine array mapping strategies for

HPF [3] and Split-C [2]. We chose HPF because it is prevalent. In HPF, the user speci�es one level of

array alignment, and the compiler speci�es another. The algorithms we present are thus intended to be

implemented at the compiler level in HPF. We discuss array mapping in Split-C as well because the user

�Computer Science Division, University of California, Berkeley (dweisser@cs.berkeley.edu)

1

a block of data

Figure 1: 5 processors, 20 blocks of data. Blocks owned by processor 1 are highlighted.

explicitly controls the entire array layout. Split-C can be thought of as an intermediate language for a

compiler. Since it is executable we can test our algorithms in Split-C, and then our algorithms can be

implemented inside a compiler for HPF with the same performance and functionality.

The remainder of this paper is organized as follows. Section 2 describes the general framework of our

algorithm. Section 3 describes the one- and two-dimensional array layouts in Split-C and HPF. In Section 4,

we describe the regular section problem and present optimal algorithms to generate the appropriate index

sequences for one- and two-dimensional arrays. Section 5 demonstrates how to generate sequences for the

lower triangle of a two-dimensional matrix. All of the algorithms presented in this paper can be extended to

more than two dimensions. Empirical results are presented in Section 6. A sample implementation is shown

in the Appendix.

2 Algorithmic Overview

We present a simple framework which can be used to generate local indices for various regular access patterns,

such as regular section, lower diagonal, wavefront, and tri-diagonal. Computations for regular section and

lower diagonal are described in detail in Sections 4 and 5.

The technique is quite straightforward but deserves attention for its e�ciency and usefulness in parallel

programs.

The general method is as follows. We create an expression which includes the index pattern and layout

features. We solve the expression for some variable such as the row number. We then compute local starting

and ending o�sets based on the layout. Finally, we compute local indices based on the access pattern.

We build state tables of row and column o�sets, one table for each dimension's block size. Each entry of

the table takes is computed in constant time. The tables can be built in advance or concurrently with the

index generations. The size of each table is at most the block size. Once the table is created, subsequent

indices are generated by a table lookup or an addition.

A key to creating the initial expression is understanding the array layout. In the next section we describe

distributed array layouts in some detail.

3 Data Layout

In this section, we discuss layouts and declarations of arrays in Split-C and HPF. For generality, we assume

that the arrays are arranged in a (possibly skewed) block/cyclic fashion.

There are two di�erences in array layouts between Split-C and HPF. First, Split-C is row-major, while

HPF is column-major, i.e. the third element in a 3 x 4 array in Split-C is (2; 0), and in HPF is (0; 2).

2

0

.........

0

1

r−1

Row
Number Processor 0 Processor 1 ... Processor p−1

...

...

...

pb

b−1 b 2b−1 (p−1)b pb−1

2pb−1(2p−1)b(p+2)b−1(p+1)b−1(p+1)b−1

Figure 2: A one-dimensional array

(Assume rows and columns are numbered from 0.) The other di�erence is that in HPF the array mapping is

determined by both user and compiler speci�cations, whereas in Split-C it is entirely speci�ed by the user.

3.1 One-Dimensional Arrays

In a block/cyclic layout, if there are more blocks of data than there are processors, multiple blocks of data

are stored contiguously on a processor (see Figure 1).

We use the following parameters to describe a one-dimensional array layout:

m = array size, a positive integer

procs = number of processors, a positive integer

b = block size, a positive integer

myproc blocks = d m
b�procs

e or b m
b�procs

c, the number of blocks owned by processor myproc.

Each processor myproc owns data elements:

(i � procs � b+ b �myproc); : : : ; (i � procs � b+ b(myproc + 1) � 1) for all 0 � i < myproc blocks (1)

Figure 2 shows an example of a one-dimensional array blocked into b-element one-dimensional blocks.

HPF

In HPF, an array declaration for the array in Figure 2 may be of the form A(m). The size of b is

determined by the compiler. In addition to the type and size, the user may specify a Cartesian grid, or

template, such that element A(i) is aligned to template cell qi + r. The template is distributed across the

processors using a cyclic(b) distribution so template cell j resides on processor (j div b) mod procs.

Split-C

In Split-C, an array declaration is of the form <left indices>::<right indices>, where <left indices>

specify the distribution of the data, i.e. the number and size of dimensions, and <right indices> specify the

units of data distribution. So a one-dimensional array declaration for the array in Figure 2 may be of the

form A[m] :: [b], where m is the number of elements and b is the block size.

In Split-C, a single-dimensional array can use blocks of multiple dimensions. So there may be more than

one dimension of blocking factors bi.

3

0 0 1 1 2 2

3 3 4 4 5 5

0 0 1 1 2 2

3 3 4 4 5 5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10 0,11
0 0 1 1 2 2

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11
3 3 4 4 5 5

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11
0 0 1 1 2 2

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3,11
3 3 4 4 5 5

array element

 processor
which owns it

block_rows_per_proc=2
block_cols_per_proc=2

data_rows=4
data_columns=12

procs=6

proc_columns=3

p
r
o
c
_
r
o
w
s
=
2

b
_
1
=
1

g
r
i
d
_
r
o
w

0

g
r
i
d
_
r
o
w

1

grid_column 0

grid_column 1

A[block_rows_per_proc][block_cols_per_proc][proc_rows][proc_cols]::[b_1][b_2]

on proc_rows*proc_cols processors

b_2=2

Split-C:

HPF: A(4,12)

Figure 3: A six-dimensional array in Split-C, or a two-dimensional array in HPF.

3.2 Two-Dimensional Arrays

First we discuss two-dimensional array layouts in general. We then discuss how two-dimensional arrays are

declared and accessed in HPF and Split-C. Figure 3 shows a two-dimensional array describing most of the

parameters.

In the two-dimensional case, the data can be subdivided into blocks of size b1 x b2. Multiple (proc rows

x proc columns) grids of processors are superimposed on the blocks (see Figure 3). We assume that procs =

proc rows � proc columns.

We use the following parameters to describe the two dimensional layout

data rows = total number of rows of data in the array

data columns = total number of columns data in the array

proc rows = vertical processor dimension

proc columns = horizontal processor dimension

b1 = vertical block dimension (rows of data per block)

b2 = horizontal block dimension (columns of data per block)

Three additional parameters are de�ned using the ones above

procs = number of processors = proc rows � proc columns

block rows per proc = number of rows of data blocks per processor = data rows
proc rows�b1

block columns per proc = number of columns of data blocks per processor = data columns
proc columns�b2

Split-C

A declaration in Split-C may be of the form

A[block rows per proc][block columns per proc][proc rows][proc columns] :: [b1][b2] (see Figure 3.

In Split-C, an element in this type of block/cyclic array is speci�ed as

4

Processor 0 Processor 1 Processor 2

0 1 2 3

24 25 26 27

4 5 6 7

16 17 18 19

8 9 10 11

20 21 22 23

32 33 34 35 36 37 38 39 40 41 42 43

12 13 14 15

28 29 30 31

44 45 46 47

Processor 3

52 53 54 55

68 69 70 71

48 49 50 51 56 57 58 59 60 61 62 63

64 65 66 67 72 73 74 7978777675

Figure 4: A regular section on a one-dimensional array where procs = 4; b = 4; o�set = 1; stride =

5;max index � 80. Elements in the sequence are boxed.

[grid row][grid column][myproc row][myproc column][local row][local column]

where:

� [grid row][grid column] denotes location of the block of processors, which we will refer to as the grid

location (see Figure 3),

� [myproc row][myproc column] denotes the processor within the grid, and

� [local row][local column] speci�es the position within the block.

Thus block [grid row][grid column][myproc row][myproc column] is owned by processor ((myproc row�

proc rows) + proc column).

Array elementA(x; y) is owned by processor (proc columns�((x div b1) mod proc rows))+ ((y div b2) mod proc colum

HPF

In HPF a declaration may be of the form A(data rows; data columns), and the compiler decides what

values to assign to proc rows; proc columns; b1; and b2.

Array elementA(x; y) is owned by processor ((x div b1) mod proc rows; (y div b2) mod proc columns).

4 Regular Section

Now that we have described the layout details, we present the algorithm to generate the sequence of local

memory addresses that a processor accesses while performing its share of the computation on a regular

section. The regular section A(o�set;max index; stride) is the set of elements A(o�set + k � stride) where

stride > 0, o�set(theoriginaloffset) � 0, max index is the maximum index, and 0 � k � max index�offset

stride
.

(See Figure 4.) When the array is of more than one dimension, each dimension has its own o�set, stride,

and maximum index. We describe algorithms for one- and two-dimensional arrays. The techniques can be

extended to arrays of higher dimensions.

5

Some of the divs andmods in the algorithm descriptions can be replaced by simpler operations, but we

include them for clarity. A mod can often be replaced by a multiplication and a subtraction. A div can be

replaced by a shift if the divisor is a power of two, as will often be the case in these algorithms when the

number of processors is a power of two. In addition, max index is frequently the size of the array, which

also simpli�es the computation.

The implementations can be made much more e�cient in practice without compromising the theoretical

running time by building state tables, which we describe at the end of the following section. The state table

can be built in O(b) steps (while generating indices at every step), where b is the block size. Thus after the

�rst b rows' indices are computed, the algorithm generates indices by a table lookup or an addition.

4.1 One-Dimensional Arrays

We now present an algorithm to produce a list of addresses for a given processor.

O(joutputj) is clearly a lower bound on the running time for any algorithm to generate adresses for this

problem, where joutputj is the number of indices generated.

The algorithm presented here runs in time O(joutputj) when stride � b, where b is the block size. When

stride > b, the running time for this algorithm is O(joutputj+ procs). The best previously known algorithm

has time complexity O(joutputj+ b log b+ log(min(stride; procs � b))) [1].

The following parameters vary over a single instance of the regular section problem

myproc = current processor number (0 : : : procs� 1)

row number = current row number

local row o�set = local o�set within a row for a particular processor (0 : : : b� 1)

For a particular processor myproc, we want to output the sequence of indices such that

i � stride + o�set = myproc � b+ row number � procs � b+ local row o�set;

for some choice of row number and local row o�set, where i is a some non-negative integer (see Equation 1).

,
myproc � b+ row number � procs � b+ local row o�set � o�set

stride
= i

, (myproc � b + row number � procs � b+ local row o�set � o�set) mod stride � 0 (2)

since i can be any non-negative integer.

myproc; b; procs; o�set; and stride are �xed, so we have to �nd values for row number and local row o�set.

The algorithm �rst �xes a value for row number and then checks to see if a value for local row o�set exists

that satis�es (2).

Finding rows when stride < b

When stride is small, i.e. less than procs�b, the algorithm looks in every row starting at o�set div (p�b)

for a solution to equation (2).

Finding rows when b � stride � procs � b

Note that in the special cases where stride = b and stride = procs � b, only one processor will own

elements hit by the stride. It is trivial to determine whether myproc will always or never be hit by the

stride.

6

When b < stride < procs � b, we want to �nd the �rst row number, row, in which myproc is hit by the

stride, i.e. we want to �nd a value for row such that:

(i � stride + o�set � row � ((procs � b) mod stride)) div b = myproc

, i � stride + o�set� row � ((procs � b) mod stride) � myproc � b; and

i � stride + o�set� row � ((procs � b) mod stride) < (myproc + 1) � b

, row �
i � stride + o�set �myproc � b

(procs � b) mod stride
; and (3)

row >
i � stride + o�set � (myproc + 1) � b

(procs � b) mod stride
(4)

To �nd a value for row which satis�es Equations 3 and 4, we cycle throught values for i from 0 to

b
procs�b

stride
c. At each iteration we set

row =

2
666

i � stride + o�set � (myproc + 1) � b

(procs � b) mod stride

3
777

and check to see if Equation 3 is satis�ed. If it is not satis�ed for any i, then there is no row for which

myproc owns an element that is hit by the stride. Note that there are bproc�b
stride

c + 1 = O(procs) maximum

iterations.

Given the row number, to �nd the element's local column, we set

column = (o�set + i � stride � row � ((procs � b) mod stride)) mod b:

Subsequent elements can be found in the same way, using column as the o�set.

This calculation is included to prove the theoretical bound, but in practice it may be faster to look in every

row and avoid the computation of (procs � b) mod stride: If the processors are running bulk-synchronously,

for example, it may pay o� to look at every row.

Finding rows when stride > procs � b

To �nd the �rst element \hit" by the stride, we want to �nd i, the number of iterations of the stride,

such that

(procs � b+ o�set � (procs � b� (stride mod (procs � b))) � i) div b = myproc

, procs � b+ o�set � (procs � b� (stride mod (procs � b))) � i � myproc � b]; and

procs � b+ o�set � (procs � b� (stride mod (procs � b))) � i < (myproc + 1) � b]

, i �
procs � b+ o�set �myproc � b

procs � b� stride mod (procs � b)
; and (5)

i �
procs � b+ o�set� (myproc + 1) � b

procs � b� stride mod (procs � b)
(6)

We can �nd an i which satis�es Equations 5 and 6 by setting

7

i =

2
666

procs � b+ o�set � (myproc + 1) � b

procs � b� stride mod (procs � b)

3
777

and checking to make sure that Equation 5 still holds. Now that we have solved for i, we know which stride

iteration we are interested in. We still need to compute the row and column numbers of this element:

row = (o�set + (stride � i)) div (procs � b) and

column = (o�set + (stride � i)) mod b (7)

Consecutive elements can be calculated similarly, using the current column as the o�set.

This calculation is included to prove the theoretical bound, but in practice it may be faster to look in

every row and avoid the div s and mod s. If the processors are running bulk-synchronously, for example,

it may pay o� to look at every row.

State Transition Table

The algorithm can be implemented more e�ciently by creating a state transition table for each processor

with at most b states. Table[i] contains the number of rows to skip the the next column in the output

sequence, given that the �rst column to be output in the current row is i. For example, in the example in

Figure 4, Processor 1's table would be as follows:

Table[0] = (1; 3)

Table[1] = (0; 0)

Table[2] = (0; 1)

Table[3] = (0; 2)

The �rst index indicates the number of rows to skip, and the second index indicates the �rst column of

the new row that that contains an element in the output sequence.

4.2 Two-Dimensional Arrays

In this section we show how to extend the method of Section 4.1 to two-dimensional arrays. The algorithm

generates a sequence of local addresses for a particular processor.

Our algorithm runs in time O(joutputj), which is of course the lower bound.

We require the following parameters:

stride 1 = vertical stride

stride 2 = horizontal stride

o�set 1 = vertical initial o�set

o�set 2 = horizontal initial o�set

max index 1 = vertical maximum index

max index 2 = horizontal maximum index

8

slope =

n

m

m
−n

Figure 5: A calculation involving the lower triangle of a matrix

4.2.1 Split-C

Block [grid row][grid column][myproc row][myproc column] contains an element hit by the stride if and

only if

((grid row � proc rows � b1 +myproc row � b1 + o�set1 + local row o�set) mod stride1 � 0)

for some integer local row o�set such that 0 � local row o�set < b1, and

((grid column � proc rows � b2 +myproc column � b2 + o�set2 + local column o�set) mod stride2 � 0)

for some integer local column o�set such that 0 � local column o�set < b2:

We use the technique described in Section 4.1 to �nd local row o�set and local column o�set. As in Sec-

tion 4.1, the algorithm looks only in rows and columns that contain elements hit by the stride. Speci�cally, it

looks only in rows where grid row = (i�stride1+o�set1) div (proc rows�b1) andmyproc row = (i�stride1+

o�set1) mod (proc rows�b1) for integers i � 0. The algorithm considers columns where grid column = (j �

stride2+o�set2) div (proc columns�b2) and myproc column = (j�stride2+o�set2) mod (proc columns�

b2) for integers j � 0.

We build tables as described in Section 4.1, one table for each processor in each dimension to make the

implementation e�cient.

5 Lower Triangular Matrices

In this section we describe an optimal algorithm to generate local addresses for each processor for an operation

on the lower triangle of a matrixA(data rows; data columns). In this case, we use the diagonal from element

(0; 0) to element (data rows� 1; data columns � 1), although with minor modi�cations any diagonal could

be used. The running time for this algorithm is O(joutputj), which is the lower bound.

Suppose we have a two-dimensional array arranged as described in Section 3.2. We want to output all

elements (i; j) where i � data columns
data rows

j.

An important part of the algorithm is �nding starting rows and ending columns. To do so, we examine

the position of a block with respect to the diagonal. There are three types of data blocks, those which lie

9

entirely above the diagonal, those on or below the diagonal, and those which have some elements above and

some below the diagonal.

Let [row][column] denote the position of a block within the data rows
b1

x data columns
b2

array of blocks. Thus

for a block [grid row][grid column][myproc row][myproc column] in Split-C, row = grid row�proc rows+

myproc row, and column = grid column�proc columns+myproc column. AnA(i; j) is in block [i div b1][j div b2].

A block [row][column] lies entirely above the diagonal if its lower left corner is above the diagonal, i.e.

(row + 1)b1 <
data rows

data cols
column � b2 (8)

Block [row][column] lies entirely within the lower triangle if its upper right corner is on or below the

diagonal, i.e.

(row � b1) �
data rows

data cols
(column+ 1)b2 (9)

Finally, block [row][column] has elements above and below the diagonal if Equations (8) and (9) are both

not satis�ed.

Let [u][column] be the �rst data block belonging to processor [row][column] that is not entirely above

the diagonal.

(u+ 1)b1 �
data rows

data cols
(column � b2) (from Equation (8))

) u �
data rows � column � b2

data cols � b1
� 1

Substituting u = row + i � proc rows for some integer i:

i =

�
1

proc rows

�
data rows � column � b2

data cols � b1
� 1� row

��
(10)

Thus we can compute i and set u = row + i � row.

6 Computational Results

6.1 Stride

We have implemented the one-dimensional regular section problem in Split-C. 1 (see Section A at end),

which we will refer to as table lookup. We compare the running time table lookup to that of a program

running the conventional algorithm, henceforth referred to as naive, which looks at every element hit by the

stride and checks to see whether the desired processor owns that element. Once the state transition table

is built, table lookup generates each index only by a table lookup or an addition. Table lookup runs from

several times to several orders of magnitude faster, depending upon the number of index calculations and,

less importantly, the table size.

Both programs are compiled with optimization, and naive uses loop hoisting to remove unnecessary divs

and mods.

10

0

1

2

3

4

5

6

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

T
im

e
(s

ec
)

Elements per Processor

Time for index set generation for varying array sizes

Block size 512
Stride 2

naive
table driven

Figure 6: Vary size of problem

We assume that we are making only one pass over the data. If we were making more than one pass, we

could store the table and eliminate the (minimal) overhead of its construction.

In Figure 6, we vary the number of elements per processor from 1000 to 256,000 while keeping all other

parameters constant. Even when the problem size is very small, table lookup outperforms naive. Thus the

overhead of table construction is negligible. Even if the table is always \under construction" and we never

get a chance to do table lookups, table lookup outperforms naive.

In Figure 7, we vary the block size from 16 to 16,000. In the �rst picture, the programs are run on

problems where each processor has 20 blocks. In the second picture, each processor has 200 blocks. As

the block size increases, the number of elements each processor accesses, or output set size, increases. We

see that the running time of naive increases linearly with block size, while the running time of table lookup

increases negligibly, even when each processor has only 20 blocks.

In Figures 8 and 9, we vary the stride. In Figure 8, we don't adjust the problem size, so the output set size

decreases as the stride increases. As the output set size decreases, the relative performance of table lookup

becomes less important. In this case, the output set size varies from 512 down to 1. In Figure 9, the problem

size is adjusted as the stride increases so that the output set size remains constant. As expected, the running

time of table lookup remains relatively constant.

7 Conclusions and Future Work

In this paper we have presented e�cient algorithms to generate sequences of local memory addresses for sev-

eral common functions on parallel arrays. The theoretical running times are optimal or close to optimal. The

algorithms can be implemented e�ciently so that the running times of the kernel problems yield extremely

1In the �nal version, we will show results for the two-dimensional regular section and lower triangular problems.

11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18

T
im

e
(s

ec
)

Block Size (in K elements)

Time for small index set generation for varying block sizes

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18
T

im
e

(s
ec

)
Block Size (in K elements)

Time for large index set generation for varying block sizes

Figure 7: Vary block size. Each proc keeps same number of blocks.

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400

T
im

e
(s

ec
)

Stride

Time for index set generation at varying strides

Array size held constant
so output set shrinks as stride grows

naive
table driven

Figure 8: Change stride, causing output set size to decrease

12

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

T
im

e
(s

ec
)

Stride

Time for index set generation at varying strides

naive
table driven

Figure 9: Change stride, but increase problem size to keep output set size constant.

good results. Even when the number of indices each processor generates is low, our algorithms outperform

the naive algorithms. When the number in indices to generate is high, they outperform the naive algorithms

by several orders of magnitude.

The techniques used to generate indices can be extended to higher dimensions and to other problems

as well. For example, they could be used at the compiler level to generate local indices for remote accesses

(see [4].)

References

[1] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Teng. Generating local addresses and communi-
cation sets for data-parallel programs. In ACM PPOPP, pages 149{158, 1993.

[2] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel programming in split-c. In Proceedings of the
Supercomputing '93 Conference, Nov. 1993.

[3] High Performance Fortran Forum. High Performance Fortran Language Speci�cation Version 0.4, 1992.

[4] Charles Koelbel. Compile-time generation of regular communications patterns. In Proceedings of Super-
computing '91, Nov. 1991.

13

Variable Name Meaning

max index upper bound of the loop

my proc processor that loop is running on
nprocs number of processors
b2 block size
table table to store next column o�set
delta row table to store next row o�set
num els size of the array
offset lower bound of the loop
stride stride

Table 1: Parameters used in code fragments.

Variable Name Meaning

cur block current element's block
poff previous o�set
coff current element's o�set
max row maximum row in the block

Table 2: Temporary variables introduced by the transformation.

A Code for the One-Dimensional Regular Section

Here we present the code used for handling the one-dimensional regular section problem. There are two pos-
sible transformations for the one-dimensional stride case. If the stride and block size (b2) can be determined
at compile time and stride < b2, then the streamlined transformation in Section A.1 is used. Otherwise, the
transformation in Section A.2 is used. In both cases, they share an essential routine: get offset presented
in Section A.3.

A.1 Stride known and less than block size

The transformation of the for loop depends on the layout parameters, de�ned in Table 1. The temporary
variables used by the transformed code are de�ned in Table 2.

Using these parameters a loop is transformed as follows (for stride < b2):
for (i = offset; i<max_index; i += stride) {

... A[i] ...

}

=)

if (table[b2] == -1) /* is table precalculated? */

table_init0(stride,offset,max_index,my_proc,nprocs,b2,table,num_els);

prev_offset=b2;

max_row=table[b2+2];

for (cur_block = table[b2+1]; cur_block <= max_row; cur_block ++) {

for (poff=coff=table[poff]; coff<b2; coff+=stride) {

... A[cur block][co�] ...

}

}

table_init0 initializes the �nite state machine used by the transformed loop statements.

14

void table_init0(int stride, int offset, int max_index, int my_proc,

int nprocs, int b2, int *table, int num_els)

{

int start_row, max_index_row;

int cur_block;

int cur_offset, prev_offset;

int global_row; /* global row size */

global_row = nprocs*b2;

if (offset>global_row)

start_row = offset/global_row;

else

start_row=0;

if (num_els<=max_index)

max_index_row = (num_els-1)/global_row;

else

max_index_row = (max_index-1)/global_row;

table[b2+1] = start_row;

table[b2+2] = max_index_row;

prev_offset = b2;

for(cur_block = start_row; cur_block<= max_index_row; cur_block++) {

cur_offset=get_offset(my_proc,b2,global_row,offset,stride,cur_block);

if (cur_offset != -1) {

table[prev_offset] = cur_offset;

if (table[cur_offset] != -1) break;

prev_offset = cur_offset;

}

}

}

A.2 One-dimensional stride when stride unknown

When the stride is greater than the block size, or if the stride is unknown, a slightly less e�cient mechanism
is used to generate the indices.

for (i = offset; i<max_index; i += stride) {

... A[i] ...

}

=)

if (table[b2] == -1) /* is table precalculated? */

table_init(stride,offset,max,my_proc,nprocs,b2,table,delta_row,num_els);

max_row=table[b2+2];

poff=b2;

for (cur_block=table[b2+1]; cur_block <= max_row; cur_block += delta_row[prev_offset]) {

for (poff=coff=table[poff]; coff<b2; coff+=stride) {

... A[cur block][co�] ...

}

}

The table initialization routine is table_init.

15

void table_init(int stride, int offset, int max, int my_proc, int nprocs,

int b2, int *table, int *delta_row, int num_els)

{

int global_row; /* global row size */

int start_row, max_row;

int cur_row;

int cur_delta_row;

int cur_offset, prev_offset;

global_row=nprocs*b2;

if (offset>global_row)

start_row = offset/global_row;

else

start_row=0;

if (num_els<=max)

max_row = (num_els-1)/global_row;

else

max_row = (max-1)/global_row;

table[b2+1] = start_row;

table[b2+2] = max_row;

prev_offset = b2;

cur_delta_row=1;

for(cur_row = start_row; cur_row<= max_row; cur_row++)

{

cur_offset=get_offset(my_proc,b2,global_row,offset,stride,cur_row);

if (cur_offset != -1) {

table[prev_offset] = cur_offset;

delta_row[cur_offset]=cur_delta_row;

cur_delta_row=1;

if (table[cur_offset] != -1) break;

prev_offset = cur_offset;

} else {

cur_delta_row++;

}

}

}

A.3 Code for get offset

.
The most important calculation is performed by the get_offset routine.

int get_offset(int my_proc, int b2, int global_row, int offset, int stride,

int cur_row)

{

int temp;

int cur_offset;

temp = (my_proc*b2 + cur_row*global_row - offset) % stride;

if (temp > 0) {

cur_offset = stride-temp;

if (cur_offset >= b2) cur_offset = -1;

} else {

cur_offset=0;

}

return(cur_offset);

}

16

