
Multi-party Real-time Communication in Computer

Networks

by

Amit Gupta

Ph.D. Dissertation

Report No. UCB/CSD-96-896

Computer Science Division

University of California

Berkeley CA 94720

February 1996

amit@cs.berkeley.edu

Multi-party Real-time Communication in Computer

Networks

Copyright 1995

by
Amit Gupta

3

Abstract

Multi-party Real-time Communication in Computer Networks

Amit Gupta

Doctor of Philosophy in Computer Science

University of California at Berkeley

The Internet has traditionally concentrated on availability: maintaining end-to-
end connectivity in the face of unreliable systems and network congestion. Many emerging
applications, however, require predictable performance and support for multi-party commu-
nication from the network service; at the same time, advances in networking technology have
led to development and deployment of high-speed networks. The combined consideration
of the stringency of the requirements of real-time communication and the high bandwidth
provided by the new network technologies raise an interesting set of scaling and e�ciency
problems. This dissertation investigates mechanisms for supporting multi-party real-time
communication in packet-switching networks.

We �rst present the work done by the Tenet Group at Berkeley in designing and
building network protocols for supporting unicast real-time communication. These protocols
serve as the framework for our research; given the framework, we describe a few salient
issues that arise in multi-party communication: managing multicast group membership,
supporting dynamic changes in these groups, and supporting heterogeneity in receivers.
We then introduce the ideas that form the basis of the research e�ort: exploiting the
characteristics of multi-party communication to improve the e�ciency in using network
resources; providing the network managers with e�ective ability to control the network
resources; and providing a more usable service to the network users.

The traditional approach to supporting real-time communication allocates net-
work resources to individual connections; this approach provides well-de�ned performance
guarantees that are independent of other network tra�c. To improve network resource
utilization without sacri�cing well-de�ned guarantees, we present resource sharing, which
exploits relationships among connections to share resource allocations among them; the
applications maintain complete control over the sharing as they explicitly specify these
relationships. With resource sharing, for large conferences with a bounded number of con-
current speakers, resource requirements do not increase with the number of potential speak-
ers. Therefore, resource sharing is an important tool for economically providing real-time
performance guarantees for large conferences.

For real-time communication services to achieve widespread usage, it is important
that the protocols and schemes provide good capability for the network's management to
control the allocation of resources. For this capability, we present resource partitioning, i.e.,
distributing the di�erent resources available at any system among a number of partitions.
Resource partitioning can then be used to form virtual private sub-networks. These sub-
networks have many applications: the network management can keep a small fraction of
resources for management and fault-handling tra�c, or for non-real-time tra�c; and better
support for mobile computing and for advance reservation of real-time connections.

iii

Conferencing and other important distributed multi-party multimedia applications
would bene�t from a network service that provides support for advance reservations. The
network service clients who wish to set up multimedia multi-party meetings need to schedule
those meetings in advance to make sure that the participants will be able to attend, and
would like to obtain assurances that the network resources will be available for the entire
duration of the meeting. We have devised mechanisms for reserving resources for real-time
connections in advance.

We have devised mechanisms for resource sharing, resource partitioning, and ad-
vance reservations; it is critical that these mechanisms work well together, and with other
components of our real-time communication system (e.g., routing). We have designed and
implemented the Tenet Protocol Suite 2, which incorporates these mechanisms to provide
network support for multi-party real-time communication. Simulation results show that
these mechanisms interact well with one another; preliminary results from a measurement
study show that the protocols are e�ective in supporting guaranteed performance multi-
party applications in an internetworking environment.

To my parents, Shakuntala and Rameshwar

v

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Background : 2

1.1.1 Integrated services packet switching networks : : : : : : : : : : : : : 2

1.1.2 Real-time communication : 3

1.1.3 The previous Tenet Protocol Suite : : : : : : : : : : : : : : : : : : : 4
1.2 Multi-party communication : 7

1.2.1 Key issues in multi-party communication : : : : : : : : : : : : : : : 7

1.2.2 Network service management related issues : : : : : : : : : : : : : : 10

1.3 Thesis overview : 11

2 Resource sharing 14

2.1 Motivation for resource sharing : 15
2.2 Mechanisms for resource sharing : 16

2.2.1 Client-service interface : 17

2.2.2 Admission control : 18

2.2.3 Protection : 19
2.3 Example : 20

2.4 Analysis : 22

2.4.1 Sparse network : 22

2.4.2 Tree-based routing : 24
2.4.3 Examples : 26

2.5 Resource sharing simulations : 27

2.5.1 NSFNET : 30

2.5.2 Tree topology : 33
2.6 Interactions with other components : 36

2.6.1 Resource sharing and local admission control : : : : : : : : : : : : : 37

2.6.2 Resource sharing and tra�c speci�cation models : : : : : : : : : : : 38

2.6.3 Resource sharing and the routing system : : : : : : : : : : : : : : : 38
2.6.4 Resource sharing and advance reservations : : : : : : : : : : : : : : : 39

2.7 Summary : 40

vi

3 Resource partitioning 41

3.1 Introduction : 41

3.2 Resource partitioning tests : 43

3.2.1 Resource partitioning in an EDD-scheduled server : : : : : : : : : : 44

3.2.2 Resource partitioning in a FIFO server : : : : : : : : : : : : : : : : : 46

3.2.3 Resource partitioning in an RCSP server : : : : : : : : : : : : : : : : 47

3.2.4 Resource partitioning in a WFQ server : : : : : : : : : : : : : : : : : 50

3.3 Simulations : 50

3.4 Discussion : 55

3.5 Conclusions : 58

4 Advance reservations 59

4.1 Motivation : 60

4.2 Client requirements : 60

4.3 A distributed advance reservations mechanism : : : : : : : : : : : : : : : : : 62

4.4 Discussion : 65

4.4.1 Service interface : 65

4.4.2 Constraints on advance notice period : : : : : : : : : : : : : : : : : 66

4.4.3 Interactions with resource partitioning : : : : : : : : : : : : : : : : 66

4.4.4 Interactions with routing : 67

4.4.5 Aggregating admission test computations : : : : : : : : : : : : : : : 67

4.5 A simulation-based evaluation : 68

4.5.1 Simulator description : 68

4.5.2 Simulation workload and evaluation metrics : : : : : : : : : : : : : : 69

4.5.3 Simulation experiments : 70

4.5.4 Resource allocation gains : 75

4.6 Summary : 77

5 Implementation: Suite 2 78

5.1 Suite 2 RCAP : 79

5.1.1 The mechanisms : 79

5.1.2 Suite 2 RCAP design : 80

5.1.3 Client interface : 81

5.1.4 Suite 2 RCAP architecture : 82

5.1.5 Connection establishment in Tenet Suite 2 : : : : : : : : : : : : : : : 87

5.1.6 Suite 2 RCAP measurements : 89

5.2 RMTP and RTIP : 90

5.2.1 RTIP changes for multi-party communication : : : : : : : : : : : : : 92

5.2.2 RCAP-RTIP interface : 92

5.2.3 An example : 94

5.3 Summary : 95

vii

6 Related work 97

6.1 ST2 : 98
6.2 Integrated Services Internet Protocols : 99

6.2.1 RSVP : 100
6.2.2 Class Based Queueing (CBQ) : 102

6.3 Other e�orts : 102

7 Summary and suggestions for future work 104

7.1 Dissertation summary : 104
7.2 Suggestions for future work : 106

Bibliography 108

viii

List of Figures

1.1 The Tenet protocol stack : 5

1.2 Two-pass channel establishment : 6

2.1 The 3-user Conference Example : 16

2.2 Implementation of rate control to support resource sharing using (a) individ-
ual allocations; (b) group allocation. : 20

2.3 Resource allocations for the 6-user conference : : : : : : : : : : : : : : : : : 21

2.4 Network with tree-based routing : 25

2.5 Analysis { Allocation gain for constant sharing threshold : : : : : : : : : : 26

2.6 Analysis { Allocation gain for varying sharing threshold : : : : : : : : : : : 27

2.7 Analysis { Allocation gain for constant probability of exceeding the gain
bound : 28

2.8 The NSFNET Network : 29

2.9 NSFNET { Acceptance Rate Vs. Number of Conferences : : : : : : : : : : 30

2.10 NSFNET { Acceptance Rate Vs. Conference Size : : : : : : : : : : : : : : 31

2.11 NSFNET { Acceptance Rate with Di�erent Threshold Value : : : : : : : : 32

2.12 NSFNET { Computational Overhead Vs. Number of Conferences : : : : : 32

2.13 NSFNET { Computational Overhead Vs. Conference Size : : : : : : : : : : 33

2.14 The XUNET Network : 34

2.15 XUNET { Acceptance Rate Vs. Number of Conferences : : : : : : : : : : : 34

2.16 XUNET { Acceptance Rate Vs. Conference Size : : : : : : : : : : : : : : : 35

2.17 XUNET { Acceptance Rate with Di�erent Threshold Value : : : : : : : : : 35

2.18 XUNET { Computational Overhead Vs. Number of Conferences : : : : : : 36

2.19 XUNET { Computational Overhead Vs. Conference Size : : : : : : : : : : 37

3.1 The server model for a node with three links and two partitions : : : : : : 42

3.2 An RCSP server (courtesy Hui Zhang) : 48

3.3 Acceptance ratio vs. relative partition allocation for unicast channels : : : : 52

3.4 Computational overhead vs. relative partition allocation for unicast channels 52

3.5 Acceptance ratio vs. relative partition allocation for the multi-party commu-
nication scenario. The �rst partition is for unicast connections. : : : : : : 54

3.6 Computational overhead vs. relative partition allocation for the multi-party
communication scenario. : 54

ix

4.1 E�ects on the intervals and interval tables of the addition of an advance
channel : 64

4.2 Acceptance ratio for the �rst set of experiments (simple workload) : : : : : 71
4.3 Overhead ratio for the �rst set of experiments (simple workload) : : : : : : 71
4.4 Isolating the e�ects of the two components: acceptance ratio : : : : : : : : 73
4.5 Isolating the e�ects of the two components: overhead ratio : : : : : : : : : 73
4.6 Multiple advance notice periods and conference sizes: acceptance ratio : : 74
4.7 Multiple advance notice periods and conference sizes: overhead ratio : : : : 75
4.8 E�ect of time granularity: acceptance ratio : : : : : : : : : : : : : : : : : : 76
4.9 E�ect of time granularity: overhead ratio : : : : : : : : : : : : : : : : : : : 76

5.1 Real-time communication network with RCAP : : : : : : : : : : : : : : : : 83
5.2 Internal structure of RCAP daemon : 83
5.3 Establishment subsystem : 85
5.4 Resource reservation controller : 86
5.5 Network topology for the experiment : 89
5.6 Software structure of RMTP/RTIP (courtesy Hui Zhang) : : : : : : : : : : 91

x

Acknowledgments

I would like to express my earnest gratitude to my advisor, Professor Domenico
Ferrari, for his guidance and support throughout my research. he provided me a lot of
freedom to explore and investigate the research topics and ideas that I found interested,
and yet he was always available for providing useful direction and advice when I needed; I
am very impressed with the mastery with which he maintained the delicate balance between
these two.

I thank the members of my thesis committee, Professor Randy Katz and Profes-
sor Charles Stone for reading my thesis and making suggestions for improvement. I am
also thankful to Professor Lawrence Rowe for chairing and to Professor Jean Walrand and
Professor Charles Stone for serving on my quals committee.

It has been a great experience for me to work in the Tenet group; I want to thank
Anindo Banerjea for advising me to join the Tenet group. Collaborations with other group
members have been a vital component in my research throughout my Ph.D years. My �rst
project in the group was with Anindo Banerjea on bandwidth-delay bound trade-o�s in
round-robin schedulers; I then worked with Ramon Cecares on congestion control in high-
speed ATM networks, and with Mark Moran and Professor Bernd Wol�nger on Continuous
Media Transport Protocol (CMTP). I would like to thank them for the invaluable experi-
ences and knowledge that they imparted to me. I also bene�ted from the previous research
by the Tenet Suite 1 designers and implementors; in particular, Hui Zhang and Dinesh
Verma designed RTIP, while Anindo Banerjea and Bruce Mah designed RCAP for Tenet
Suite 1; I want to thank them for sharing their expertise with me.

These projects introduced me to the networking research, and �nally led me to the
current thesis topic. In incorporating these ideas in the Tenet protocols (Suite 2), I bene�ted
from discussions with many Tenet members and visitors; these researchers made several sig-
ni�cant contributions to the Tenet Suite 2 project under Professor Ferrari's guidance and
leadership. Key contributors to Suite 2 design and implementation include Riccardo Bettati,
Wolfgang E�elsburg, Wendy He�ner, Winnie Howe, Rebbie Moon, Mark Moran, Eberhard
Mueller-Menrad, Quyen Nguyen, Jean Ramaekers, Paola Rossaro, Clemens Szyperski, Gior-
gio Ventre, Ron Widyono, Raj Yavatkar, and Makiko Yoshida.

I also enjoyed working with Professor Kurt Rothermel on designing fault detection
and recovery mechanisms for real-time communication, with Rolf Oppliger in designing
security schemes for Tenet Scheme 2, with Margaret Tran on hando� rerouting algorithms
for wireless communication. I also thank Winnie Howe and Quyen Nguyen for helping
me with resource sharing simulations; it gave me great joy to work with such talented
and competent researchers. I also gained a lot from my discussion with many other Tenet
members and ICSI researchers; I would like to especially thank Andres Albanese, Luca
Delgrossi, Rahul Garg, Riccardo Gusella, Steve McCanne, Vern Paxson, Fred Templin, and
Dinesh Verma for many interesting, useful, and intellectually stimulating discussions.

I also want to thank Chuck Kalmanek and Srinivas Keshav of AT&T Bell Labora-
tories, Lixia Zhang and Scott Shenker of XEROX Palo Alto Research Center, Sally Floyd
of Lawrence Berkeley Laboratories, Andrew Campbell of Columbia University, Professor

xi

Doug Shephard of Lancaster University, and Professor Lawrence Landweber of University
of Wisconsin for many useful discussions, and for being genuinely interested in my research.
Special thanks go to Roya Ulrich for reading my thesis and providing many useful sugges-
tions.

Finally, I want to thank my family; even though they have been on the other end
of the world all this time, they have provided me with extremely valuable emotional support
and guidance; I could not have �nished this thesis without their support.

1

Chapter 1

Introduction

The increasing speed and connectivity of computer networks and the improvement
of workstation capabilities are enabling a new class of distributed applications. The current
trend is to use the new high-speed networks for the services that had previously required spe-
cial, dedicated networks, while continuing to provide also the more traditional data commu-
nication services. Of special interest are the services for supporting distributed multi-party
real-time communication applications1 such as distributed audio and video conferencing,
distributed classrooms, virtual meetings and electronic town halls. Some less common, but
nevertheless important, applications include real-time monitoring and control, scienti�c vi-
sualization and medical imaging and collaboration applications [110, 13, 71, 84, 109, 48]. It
is widely believed that these applications should be supported in the general framework of
real-time communication[18, 40, 49, 84, 74]. Real-time communication requires predictable
performance (e.g., the end-to-end data delivery delay be bounded); typically, the network
service clients negotiate with the network service provider to obtain a desired Quality of
Service (QoS), which the network service provider guarantees[4, 114, 106, 97, 31, 43].

The combined consideration of real-time and multi-party communication opens
an interesting area of research that is highly relevant for emerging multimedia conferencing
applications. The task of designing e�cient and scalable schemes for providing the network
support for these applications is a challenging one. The stringency of the requirements of
real-time communication and the high bandwidth provided by these new networks raise an
interesting set of scaling and e�ciency problems.

This dissertation is about mechanisms for supporting multi-party real-time com-
munication in these high-speed, integrated-services networks. In this introductory chapter,
we will �rst provide the background information: real-time communication, Integrated Ser-
vices Packet Switching networks, and the �rst set of Tenet algorithms and mechanisms
(Tenet Scheme 1) and the protocols that embody these techniques (Tenet Protocol Suite
1). We will then describe the key issues in multi-party communication along with the key
network service management issues that arise in multi-party environments and conclude
this chapter with a brief overview of this dissertation.

1The term multi-party refers to applications with more than two participants, and the term real-time
implies that the network clients require performance guarantees from the network service provider.

2

1.1 Background

In this section, we provide the background of our investigation by �rst discussing
two of the keywords in the title of this dissertation: Integrated services packet switching
networks, and real-time communication. We also brie
y describe the �rst Tenet protocols,
which supported unicast real-time communication; our work, together with the work of
others, extends these protocols to multi-party environments.

1.1.1 Integrated services packet switching networks

Traditionally, two di�erent types of networks have supported the communication
needs of the users: the telecom networks (including the telephone, cable, and satellite
networks), and the data networks (e.g., the Internet). The telephone networks were designed
(and used) primarily to support high quality audio communication between telephones;
thus, these networks were carefully engineered to provide low delay and �xed-bandwidth
service. On the other hand, the data networks (including the Internet) were designed
primarily to support data exchange between computers. These networks typically support
a spectrum of networking protocols2; these protocols o�er services to facilitate easy exchange
of information over a variety of networks and networking technologies. These protocols have
traditionally provided a \best-e�ort" service; they do not make any performance guarantees
(unlike the �xed-bandwidth service o�ered by the telecom networks) except that they (and
the networks) will try their best to transmit the data through the network as long as there
exist some viable path(s) between the data senders and receivers.

To support these disparate service models, these networks have traditionally re-
lied on di�erent underlying technologies. Traditionally, the telecom networks are based on
\circuit-switching"; in circuit-switching, at the start of the conversation (connection es-

tablishment time), the network determines the connection route, as well as establishes an
end-to-end physical \copper" path from the sender to the receiver. When a connection
set-up signal goes through an intermediate node (\switch"), a physical connection is (con-
ceptually) established between the input line and one (or more) of the output lines. On the
other hand, the data networks are usually based on \packet-switching". Here, no physical
\copper" path need be established between the sender(s) and the receiver(s). Instead, when
the sender has a block of data to send, it sends it to a nearby switch, which receives the
data block (\packet") in its entirety, and then forwards it to the next switch; the switch
may also inspect the packet for possible errors.

The digitization of telephony and the increasing use of multi-media in distributed
computing applications has led to the convergence o of computing and communications; this
convergence has led to the emergence of a single, uni�ed network, the Integrated Services
Packet Network (ISN). Using a single uni�ed telecom infrastructure o�ers many advantages;
of critical importance are the vast economies of scale, and potential support for \integrated
application" that can bene�t from the synergy of this convergence.

2A protocol is a set of rules that dictate how computers communicate and exchange information over a
network.

3

Many important technical (as well as non-technical) issues must be addressed
before we can reap the bene�ts of this convergence. In particular, we need to support
\telephony-like" applications (for example, distributed tele-conferences with multimedia,
medical imaging and collaboration, and so on) in networks that must also support the tra-
ditional data applications equally well. To maintain the statistical multiplexing gains as
in traditional data networks, the new integrated services networks should also use packet-
switching3; on the other hand, the networks must provide better support for distributed
multimedia and related applications (\real-time" applications). These considerations have
led to some very interesting research in supporting real-time applications in Integrated Ser-
vices Packet Networks; we discuss some of the issues in supporting real-time communication
in the next sub-section.

1.1.2 Real-time communication

We now describe some of the principles that embody the Tenet view of the desirable
characteristics of a solution to the problem of real-time communication [44]; in this view,
continuous-media (digital audio, digital video, and so on) communication at the network
and transport layers is considered to be a special case of real-time communication. The key
property of real-time communication is that the clients require predictable performance,
and are sensitive to loss of performance (for example, lost packets, variation in delays in
transmitting data, and so on); to provide predictable performance, the network should o�er
a priori guarantees to the client and ensure that the guarantees cannot be violated. For
providing these guarantees, the clients must specify their performance requirement to the
network; in the current work, all the network-oriented requirements of continuous media
are expressed in terms of bounds on the performance and reliability of the network (e.g.,
bounds on end-to-end delay, delay variation, and so on.; we refer to this set of bounds as
Quality-of-Service (QoS) parameters).

During the design and implementation of the Tenet Protocol Scheme 1 for uni-
cast (i.e., single sender, single destination) real-time communication, the Tenet Group pro-
posed, and adopted, the contract model of client-service negotiations. In this model, at the
connection set-up time, the client provides the network service provider with two sets of
parameters: the tra�c speci�cation and the performance speci�cation; the network service
(after performing some internal, possibly distributed, computations) can accept or refuse
the client's request. If the network accepts the contract, then it promises that the data
transmission service will meet (or exceed) the client-speci�ed performance bounds speci�ed
in the contract, as long as the client-generated tra�c remains within the tra�c bounds (as
speci�ed in the contract). If the client tra�c violates the tra�c bounds, then all bets are
o�, and the network is free to violate the performance bounds, dropping packets if it so
pleases.

Now, these contract-speci�ed QoS guarantees cannot be provided if the network
does not check for saturation before accepting new connections. As the load on the net-
work rises, a point is reached where the admission of a new connection would overload the

3For the purpose of this dissertation, we shall use the term packet-switching to also include cell-switching;
in cell-switching, all packets (or cells) have the same size.

4

system and prevent the network from meeting the performance requirements of this new
connection, or of one of the already established connections, from being satis�ed. Thus, the
network must perform admission control to ensure that guarantees are met. Another way
of viewing admission control is that the network is allocating (\reserving") resources for
the guaranteed-performance connections. Note, however, that reservation does not imply
that the resources remain unused if the reserving client can not use them. In keeping with
the principles of packet-switching and statistical multiplexing, the reserving client only has
the �rst priority in using these resources; if the reserving client does not have data to send,
these resources can (and should) be used by other clients.

The resources (e.g., link bandwidth, node bu�ers etc.) are reserved in the network
on all the nodes that lie on the data transmission path (\route") of a real-time conversation.
This reservation requires knowledge about the client QoS requirements and the connection's
tra�c characteristics. These characteristics are associated with the lifetime of the connec-
tion, and, consequently, so is the lifetime of the resource reservation requirement. Real-time
guarantees can only be met for connections for which resources can be reserved.

Thus, this reservation implies a connection-oriented approach, in which the data
transfer is preceded by a connection establishment phase. During this phase, resources are
reserved on all nodes on the path of the connection. These resources are released at the
end of the conversation, and the resource release process is called the connection tear-down
process.

Another important component of our approach is the protection of real-time con-
nections. Note that the contract speci�es that the network service will meet the given
performance bounds as long as the client tra�c remains within the tra�c speci�cation,
irrespective of the behavior of other clients. Now, this performance cannot be guaranteed
if the connections are not protected from misbehaving (or malicious) real-time and non-
realtime sources. To avoid violating the guarantees made to real-time connections, the
network must either explicitly control the input rates on a per-connection basis, or adopt
scheduling algorithms that will do so automatically in the nodes (e.g., Fair Queueing [38],
Weighted Fair Queueing [89, 90, 88], RCSP [125]).

Based on these principles, the Tenet Group designed the Tenet Protocol Scheme
1 for unicast real-time communication; we describe selected salient features of the Tenet
Scheme 1 (and its embodiment in the Tenet Protocol Suite 1) in the next subsection.

1.1.3 The previous Tenet Protocol Suite

Since 1987, the Tenet Group has worked in providing real-time communication in
computer networks. This research led to the design and development of algorithms (Tenet
Scheme 1) and their embodiment in the Tenet Protocol Suite 1. In this section, we will
brie
y describe the key components of the Tenet Scheme 1, which provides support for
simplex, unicast (i.e., single sender, single destination, unidirectional data
ow) real-time
communication in packet-switching networks.

The key abstraction in the Tenet Scheme 1 is a real-time channel: an end-to-end
simplex, unicast date connection characterized by tra�c and performance bounds speci�ed
by the client. The tra�c values provide an upper bound to the rate at which the send-

5

ing client may put the data on the network; this tra�c speci�cation may be in terms of
the Xmin-Xavg-I-Smax model [117]. The performance speci�cation for a channel includes
bounds on end-to-end delay (delay bound), the variation in the end-to-end delay (jitter
bound), and the probability that end-to-end delay experienced by a packet will be within
the delay bound. As per the contract model, if the network service accepts a client's request
to establish a channel, it must provide performance at least as good as speci�ed by these
performance parameters, as long as the channel tra�c remains within the speci�ed tra�c
bounds, regardless of the behavior of other clients.

The Tenet approach is connection-oriented and reservation-based: before a real-
time channel can be used by its requester, it must be established, (i.e., resources for the chan-
nel must be set aside along its route) so that the guarantees are supported. A key feature of
the Tenet protocols is the separation of data delivery and control: RCAP provides signaling
and RMTP/RTIP support data delivery for real-time communication[4, 3, 129, 126, 124, 46].
These protocols co-exist with the traditional Internet protocols (TCP,UDP,IP); indeed, over
an internetwork, RCAP can use TCP/IP for reliable transmission of signaling messages.
Figure 1.1 shows the Tenet protocol stack.

Data delivery

Data link (ATM, FDDI, ...)

IP

RMTPTCP/UDP

RTIP

R
C

A
P

Signaling

Figure 1.1: The Tenet protocol stack

The Real-time Channel Administration Protocol (RCAP) supports channel set-up,
teardown, and other administrative tasks in response to requests from applications (and
possibly to changes in the network state, e.g., node or link failure). For channel set-up,
RCAP communicates with RTIP entities at each node along the channel's path.

The Real-Time Internet Protocol (RTIP) provides connection-oriented, perfor-
mance guaranteed, unreliable, sequenced delivery of packets. Its services are used by the
Real-time Message Transport Protocol (RMTP) which provides connection-oriented, per-
formance guaranteed, unreliable, sequenced delivery of messages.

Channel establishment (with RCAP) is a distributed process; a message issued by

6

the RCAP daemon at the source (Establishment-message) visits each node (switch, router,
gateway) along the route of the channel. This message causes several admission tests and
computations to be performed at the corresponding RCAP daemon at each node. If the new
channel passes all the tests in a node, the message is forwarded, with some state information
about the current node, to the RCAP daemon at the next node on the route. The �nal tests
are performed by the destination; if they are successful, a channel-establishment message
is sent by the destination RCAP daemon to the RCAP daemon at the source along the
reverse route; when each node is revisited, the message corrects the tentative reservations
made in that node by the forward message, and, on receipt of this message, the RCAP
daemon informs the RTIP entity at that node about the performance bounds assigned to
it. Some of these bounds will be used by RTIP during data transfer operations, others
by RCAP daemon in tests for the admission of future channels, and some in both types
of circumstances. If any of the tests in the nodes or in the destinations fails, the channel
cannot be established, and a channel-reject message is immediately sent back to the source
RCAP daemon. This messages removes in each node it visits the tentative reservations
made for the new channel. This is shown in Figure 1.2.

Reverse pass: relax and confirm tentative reservations

Destination

Source
Reverse pass

Forward pass

Forward pass: resource reservation and admission control

Figure 1.2: Two-pass channel establishment

A new channel's route may be computed by the source (or destination) if this host
has the necessary topological information; knowledge by this host of the current real-time
load (i.e., a measure of how much of each resource is currently earmarked for use by a real-
time channel), and of such additional information as propagation delays and error rates of
the links involved, is also quite useful to increase the probability that the chosen route will
be able to support the new channel. An alternative is the construction of the route in a
hop-by-hop fashion, with individual nodes usually not knowing much beyond the real-time
load of their immediate neighbors.

To complete this general description of Scheme 1, we only have to mention the two

7

special aspects of data transfers: scheduling and distributed rate-control. Most scheduling
policies can be used for real-time communication, under fairly liberal conditions [42]. For
this description, we can assume the Multi-class Earliest-Due-Date (EDD) discipline in its
two versions: the so-called Delay-EDD (or D-EDD) [49, 127] and Jitter EDD (or J-EDD)
[42, 127]. Rate control, either at the periphery of the network or in all of its nodes, is needed
to protect well-behaving channels from the misbehavior of faulty or malicious sources.

1.2 Multi-party communication

In the previous section, we described the key issues and concerns in unicast real-
time communication and how these were addressed in the design of the �rst generation of
Tenet protocols. In this section, we �rst discuss some aspects of the service that the network
must provide, including supporting heterogeneity and decoupling senders and receivers.

In Section 1.2.1, we will brie
y describe some of the key ideas that led to the so-
lutions proposed to address these concerns. Also, the network protocols must address some
network management concerns, especially w.r.t resource allocation policies, fault-handling,
and security; we will discuss these issues in Section 1.2.2. Throughout this discussion, we
will use a distributed video-conference as the canonical example of multi-party real-time
communication.

1.2.1 Key issues in multi-party communication

In this section, we discuss some of the issues in the design of network services for
multi-party communication; these issues arise primarily due to the multi-party nature of
the communication.

Multicast groups: Many multi-party applications involve a large number of recipients
for each data stream; it is clear that multicasting can be used to reduce the tra�c on the
network nodes and links, thereby saving valuable network resources.

Now, a key component of the multi-party communication is the presence of multiple
senders and receivers. A strawman multicast scheme would require that, at connection
establishment time, the sources specify the list of receivers. It is unreasonable to require
that in a large-scale distributed multimedia application (e.g., computer-based conferencing)
the sender (or for that matter, any central application-based authority) know about all
the receivers; it is equally unreasonable to require the receivers to know about all potential
senders for that conference. It is important that the network service support this decoupling
between the di�erent participants; the network should provide the rendezvous among the
participants interested in a common session.

The real-time nature of the conference also favors this separation of the senders
and receivers. It is expected that receivers will be heterogeneous, i.e., that they will vary
in their ability to handle the data, and the QoS requirements that they may have. It is
generally unreasonable to expect the senders to specify these properties for all possible
destinations of their data stream; this will also not scale well to very large conferences.

8

Also, multi-party conferences tend to be long-lived; the presence of multiple senders
and receivers raises another issue: the membership in a multicast group may be dynamic,
i.e., receivers may join to listen to (or leave) a session while it is in progress, and previously
passive participants may become active, i.e., they may start sending data. It is important
that the network service provide support for dynamic changes in group membership, without
disrupting the \in-progress" conference.

For supporting the above-mentioned aspects of multi-party communication, the
key abstraction is the real-time multicast group, for which we use the term \Target set".
The Target set abstraction is the real-time analog of the IP Hostgroup abstraction, in that,
while an IP Hostgroup has, as members, the destinations interested in listening to a common
session, the Target set members are the interested destinations along with the requested
bounds on end-to-end performance (e.g., end-to-end delay, jitter, i.e., variation in the delay,
and so on). A channel logically transmits data from a particular sender to a Target set;
this amounts to transmitting the data from that sender to all members of the Target set.
Receivers can dynamically join and leave a Target set; when they join a Target set, they
start getting data on all channels sending data to the Target set. In this manner, the
Target sets support the decoupling between the senders and the receivers and also provide
a rendezvous mechanism among them.

Supporting heterogeneity: Within one distributed video-conference, the di�erent par-
ticipants may di�er signi�cantly in many respects: the di�erent senders may use di�erent
video/audio encoding schemes, the media streams may have very di�erent data rates, the
di�erent receivers may vary in their ability to handle the data, e.g., due to di�erent com-
puting powers for processing the data streams and/or di�erent capacities for displaying
video data (for example, color vs. monochrome displays). Some participants may be much
further away from the \group" as compared with other participants (for example, most
participants may be based in California while a few participants may be in Japan); these
di�erences would lead to di�erent end-to-end delays to di�erent receivers (from the same
sender) as well as from di�erent senders (to the same receiver). Di�erent links in the net-
work may di�er substantially in latency and available bandwidth. We should not expect
all receivers to request (or require) the same quality of service from the network; the net-
work service should e�ciently and e�ectively support large degrees of heterogeneity in the
participants, in the data streams, as well as in the underlying networking technologies and
link capacities.

For supporting heterogeneity in performance requirements (e.g., end-to-end delay
bounds), the network service should permit di�erent receivers (within the same multicast
group) to independently specify their performance requirements. Also, for e�ectively sup-
porting heterogeneity in link bandwidth in the network, as well as in the display equipment
and other computing resources (for example, hardware support for video decoding), it is
desirable that the senders use hierarchical (or layered) coding[113, 55, 107]. The senders
can then send the data streams (corresponding to the di�erent layers) on di�erent multicast
groups. For example, with two groups, the base layer can be sent to the base Target set,
and the higher layer sent to the optional Target set. All receivers will �rst attempt to get
the base layer (by joining the base Target set). If they want higher resolution, they can
then attempt to join the optional Target set. In this way, receivers along the low-bandwidth

9

paths will get the base layer, while the receivers along the high-bandwidth paths will get
the full video stream [80, 115, 29].

Resource sharing: Traditional real-time network systems (e.g., [44]) treat tra�c on dif-
ferent connections independently when determining their resource requirements; for multi-
party real-time communication, this results in ine�cient over-allocation of resources [62].
For example, consider an audio conference of one hundred persons. In a strawman pro-
posal, the conference is set up by establishing one hundred multicast channels, one from
each speaker (sender) to all listeners (destinations). It is reasonable to expect that only one
person speak at any time. Along common sub-paths (for these hundred channels), it would
be su�cient to reserve resources for two audio channels (to allow some over-speaking). Un-
fortunately, as per the traditional approach, if �fty of these channels overlap along some
common sub-path, the network would reserve enough resources for �fty audio channels; this
is clearly wasteful over-allocation. The resource allocation can be reduced (and the alloca-
tion e�ciency increases) if the network clients can specify these resource sharing properties
to the network, and if the network can use such information to reduce the resource allocation
along common sub-paths.

We have devised the channels groups abstraction for the network clients to inform
the service about such sharing (and other similar) relationships among di�erent channels
[63, 64]; the resource sharing channel groups allow the network clients to specify these
resource sharing relationships to the network [62]. In the above example, the application
would: (a) create a new channel group, and (b) ask the network to include the hundred
audio channels in this channel group. The client would also inform the network that, at
any server in the network, the aggregate resource allocation for all channels should not
exceed two audio channels. During channel establishment for these channels, at any server,
the admission test system can determine if it has already allocated resources for two audio
channels, and, if so, accept this new channel without allocating any more resources. This
mechanism is fully distributed; di�erent servers make this decision independently. Chapter 2
provides an in-depth investigation of resource sharing.

Advance reservations: Conferencing and other important distributed multi-party multi-
media applications would bene�t from a network service that provides support for advance
reservations. The network service clients who wish to set up multimedia multi-party meet-
ings need to schedule those meetings in advance to make sure that the participants will
be able to attend, and would like to obtain assurances that the network connections and
the other required resources will be available for the entire duration of the meeting. In
Chapter 4, we will describe the mechanisms that we designed for the Tenet Scheme 2 to
provide its users with the ability to book network resources (far) in advance of their use[47];
this advance booking requires long-lived state in the network and it thus raises some inter-
esting questions. How is this state stored? If a link goes down, should we also reroute the
advance-reserved channels that are to traverse this link in the distant future? Do we need
separate mechanisms for handling advance reserved channels, or can we e�ectively re-use
mechanisms designed for non-advance channels? These issues are addressed in Chapter 4
as well as [64].

10

1.2.2 Network service management related issues

For real-time communication services to achieve widespread usage, it is important
that network managers be allowed to control the services e�ectively, and that the network
clients be able to usefully and e�ectively utilize the services o�ered. In this section, we
will talk about three issues that impact the usefulness of the service provided: controlling
resource apportionment, handling failures, and security.

Resource partitioning: An important capability concerns resource partitioning, i.e., dis-
tributing the di�erent resources available at any given server (network node or link) among
a number of partitions. For a given connection, the admission control and establishment
computations are completely independent of the connections accepted outside the partition
the connection belongs to. This independence amounts to splitting the server into a number
of sub-servers, where the QoS guarantees can be made to the clients by only considering the
connections belonging to that partition; yet, the promises are valid as long as the admission
tests and rate control schemes for other partitions behave correctly, and these promises
are independent of the individual per-connection establishment decisions and computations
performed in other partitions.

This independence is very useful. The di�erent sub-servers can be put together to
form virtual private sub-networks. The network's management can keep a small fraction of
resources for management and fault-handling tra�c. Another possible application is that
a fraction of the network resources be kept for non-real-time tra�c. Other applications
include fast establishment of real-time connections, support for mobile computing, and
advance reservations of real-time connections.

In Chapter 3, we will describe the techniques that we have devised for resource
partitioning; these techniques require changes only in admission control tests; the per-
packet scheduling discipline remains unchanged. This technique works within the context
of the Tenet protocol schemes: per-partition tests and computations have been shown
to be derivable from those that apply to the entire network in each node; therefore, the
subnetworks de�ned by partitions of each node's resources can be treated during channel
establishment and teardown as though they were independent and isolated networks. The
amount of a resource assigned to a given partition in a node may di�er from the amounts
assigned to the same partition in other nodes.

Failure recovery: The failure-handling sub-system is an integral component of any real-
time communication service; indeed, for an operational network, it is critical that the net-
work services behave gracefully when any component fails. While other researchers have
previously considered failure-handling for non-real-time communication as well as for uni-
cast real-time communication, these failure-recovery techniques must be reexamined in the
light of the changes introduced by the new protocols and services for supporting multi-party
real-time communication. In [64], we describe techniques and mechanisms for maintaining
network services for multi-party real-time communication in the face of failures that may
make parts of the network inaccessible. The key goal is that the protocols should pro-
vide high performance during normal operations (i.e., in the absence of failures), and the
network performance should gracefully degrade in the face of network failures; e.g., in the
presence of failures, the routes selected may not be optimal, connection set-up may take
a little more time, or resource allocation may be less e�cient. This is achieved by setting

11

appropriate policies for storing state information in the network, as well as mechanisms
for re-establishing connectivity for previously established connections and to set up new
connections to existing conferences. [64] also describes a redundancy-based approach, using
forward error correction (FEC), and dispersing the FEC'ed data among disjoint routes.
With these mechanisms, we can make multi-party real-time communication protocols ro-
bust to single and/or multiple failures in the network, without diluting the strength of the
performance guarantees o�ered, or sacri�cing the system performance in the common case,
i.e., when all components work correctly. These failure recovery mechanisms were designed
to work with the multi-party real-time communication techniques proposed and described
in this thesis.

Security: For an operational network, another key consideration is security; the security
concerns encompass several related issues. First, the network must prevent unauthorized
use of its resources (where such use may prevent legitimate users from utilizing the network
services). Second, the network must ensure that malicious and/or mis-behaving clients not
be able to disrupt the service of other, conformant clients. Third, the clients should be able
to control data reception, in that unauthorized users should not be able to listen to other
users' conversations. Also, the receivers should not receive data other than that sent by
authorized senders. Also, such security mechanisms must scale well to large conferences,
and it is desirable that they work even when parts of the network may not be available.
Last, but perhaps most importantly, such security measures should not adversely impact
the richness or the quality of service o�ered by the network, and the overhead (of security
mechanisms and related computations) should not signi�cantly impact the overall network
performance.

In [85], we describe the security mechanisms that we designed for Tenet Scheme
2; these mechanisms were designed to work with the multi-party real-time communica-
tion techniques proposed and described in this thesis. These mechanisms are based on
network-generated pseudo-random keys (public-key cryptography) associated with each ob-
ject (Target Set, Channel, Group) in the network; these keys are provided to the object
creator which can pass these \capabilities" around to other authorized users; these mecha-
nisms also support operations on these keys, to enable the authorized users to pass restricted
privileges to other users.

1.3 Thesis overview

In this research, we study the issues and tradeo�s that impact the design of net-
work services to support multi-party real-time communication in integrated-services packet-
switching networks. We adopt the following research methodology: (a) determine �rst the
requirements for the network service, i.e., what are the services that the users will require
or bene�t from; (b) determine the key properties of multi-party communication; (c) de-
sign new mechanisms that exploit these properties of multi-party real-time applications to
better support the needs of these users; (d) evaluate the proposed mechanisms via anal-
ysis and simulation; and �nally, (e) implement these new technologies and evaluate their
performance in real-time environments.

12

Chapter 2 presents resource sharing; resource sharing is based on the simple ob-
servation that in multi-party conferences, the participants usually co-operate. This co-
operation can be exploited to reduce the network resource allocation for such multi-party
applications; this increased resource allocation e�ciency is critical for supporting large
conferences. In the chapter, we �rst present a simple example that illustrates this co-
operation; we then describe the three components of the resource sharing mechanisms: the
client-service interface for the applications to explicitly specify potential resource sharing,
the changes in the resource reservation and admission control system to support resource
sharing (during the connection set-up phase), and the changes in the data delivery protocol
to ensure that the applications' real-time guarantees are met even when other applications
use resource sharing.

We evaluated the performance gains due to resource sharing by analysis as well
as by simulation. The analysis provides useful lower bounds on performance gains in many
di�erent cases, including sparse networks as well as dense networks with bottlenecks and
hot-spots. The analysis also shows that the routing protocols can signi�cantly impact the
resulting resource sharing gains; dynamic, load-balancing routing algorithms can reduce the
resource sharing gains, while a \sharing-aware" routing system can signi�cantly improve
the resource sharing gains. The simulation results quanti�ed the resource sharing gains
and con�rmed the analytical results: resource sharing is very useful in reducing network
resource allocation.

Resource sharing is a critical and integral component of our multi-party real-time
communication system; it is critical that resource sharing mechanisms work well with the
other components of the full system; we conclude Chapter 2 by discussing these interactions.

Chapter 3 presents resource partitioning. For operational networks, it is important
that the network service managers be able to control the distribution and apportionment of
network resources among groups of users and/or classes of application; our resource parti-
tioning mechanisms provide such capability to the network service providers. Our resource
partitioning techniques work at the connection set-up and resource reservation stage; they
do not a�ect the data delivery protocols at all. Since the resource reservation and admis-
sion test algorithms at a network server depend on the packet scheduling discipline followed
there, the corresponding partitioned admission tests also depend on the packet schedul-
ing discipline. In this chapter, we provide, with proofs, the admission tests with resource
partitioning, for a spectrum of packet scheduling disciplines, including Earliest-Due-Date
(EDD) [49], First-In-First-Out (FIFO) [125], Rate-Controlled-Static-Priority (RCSP) [125],
and Weighted-Fair-Queueing (WFQ) [88].

We evaluated the performance of our resource partitioning mechanisms via
simulation4; the simulations show that our techniques are useful and e�cient, and the
mechanisms work well. The resource allocation fragmentation losses5 are reasonably small,
and these resource partitioning mechanisms can substantially reduce the computational
overhead associated with running admission tests. Also, it is critical that resource par-
titioning mechanisms work well with the other components of the multi-party real-time

4In Chapter 3 (as well as Chapter 4), we duplicate, for ease of reading, the simulation scenario information

that we �rst present in Chapter 2.
5These losses are de�ned and described in Chapter 2.

13

communication service; we conclude Chapter 3 with a discussion of these interactions.
Chapter 4 presents advance reservations. The ability to reserve real-time connec-

tions in advance is essential in distributed multi-party applications using a network which
controls admissions to provide good quality of service. We �rst discuss the requirements
of the clients of an advance reservation service, and a distributed design for such a service.
It is interesting that in addition to providing a much-needed service to these applications,
the advance reservation mechanisms also improve the network service with better planning
(network dimensioning) and routing [47].

We evaluated the performance of our advance reservation mechanisms via simula-
tions; the simulation results demonstrate the usefulness of the mechanisms that we designed.
These simulations also provide useful data about the performance and some of the proper-
ties of these mechanisms. Again, it is critical that advance reservation mechanisms work
well with the other components of the multi-party real-time communication service; we
conclude Chapter 4 with a discussion of these interactions.

In Chapters 2, 3, and 4, we present resource sharing, resource partitioning, and
advance reservations, the three cornerstones of our multi-party real-time communication re-
search. In Chapter 5, we describe how these components �t together to provide multi-party
real-time communication service in the Tenet Scheme 2 (and the associated protocols, the
Tenet Suite 2). We �rst discuss the design goals for the signaling protocol (RCAP) and
describe how these design goals led to our design decisions. We then describe the object-
oriented design of RCAP software and illustrate these interactions with a simple connection
establishment example, along with some preliminary measurements on our prototype imple-
mentation; this implementation includes support for resource sharing, resource partitioning,
and advance reservations.

Supporting multi-party applications also requires two key changes in RTIP, the
real-time data delivery protocol: for multicasting and for resource sharing. We describe
these changes also in Chapter 5, and we conclude that chapter with a discussion of some of
the interactions between resource partitioning and advance reservations in our implemen-
tation.

Chapter 6 reviews related work by other researchers; we contrast our approach
and research with that done by the designers of RSVP and ST2+. We �rst describe the
di�erences in the design goals for each project, and we then describe how these di�erent ob-
jectives led to the di�erences in the selected mechanisms. As ST2+ and RSVP are currently
under development, we primarily restrict this discussion to the current proposals, though,
for a few selected topics, we will also describe the other alternatives under consideration.

Chapter 7 summarizes the dissertation by discussing our contributions and the
weaknesses of our approach. We also outline current research trends as well as the directions
in which this work can be extended.

14

Chapter 2

Resource sharing

Many classes of applications, including distributed multimedia group communi-
cation [84] and traditional distributed processing, require or bene�t from a network com-
munication service that provides well-de�ned performance guarantees. A number of proto-
cols and schemes have been proposed to provide real-time communication services [18, 49].
These schemes are usually connection-oriented, in that they allocate network resources (e.g.,
bandwidth, bu�ers and so on) along the path data packets will travel.

Traditional real-time network systems (e.g., [44]) may over-allocate resources for
two reasons: (1) they allocate resources based on a worst-case prediction of the actual tra�c;
and (2) they treat tra�c on di�erent connections independently when determining resource
requirements. One technique to improve utilization (and hence the connection acceptance
rate) is to measure the actual tra�c parameters of individual connections and to modify the
amounts of resources allocated to the connection dynamically [94]. Another technique uses
performance measurements over aggregations of connections to predict future performance
[18]. The �rst approach still over-estimates aggregate resource requirements, since it fails
to capture some important relationships between connections (e.g., in a conference, usually
only one speaker is active at a time). The second approach will indirectly capture these
relationships, but it fails to provide protection against unrelated tra�c1, and depends on the
assumption that current behavior adequately predicts future behavior for all connections
in the aggregate. This assumption may not be valid when a single connection can have a
signi�cant e�ect on the performance of other connections, e.g., over low-capacity links. In
addition, when measurements are not available (e.g., when a connection is �rst established),
this approach must fall back to the use of independent tra�c characterizations, as in the
�rst approach.

In this chapter, we present resource sharing as a middle ground, by which related

connections can share resource allocations in a controlled manner, so that network utilization
is improved and performance guarantees of established connections are achieved. Resource
sharing di�ers from techniques that rely on statistical multiplexing of (unrelated) network
tra�c, in that the network client speci�es how tra�c from related connections may be

1If tra�c measurements over aggregations are used to predict the future tra�c, the performance seen by

a channel will su�er if other channels (of the aggregate) increase their data rates in excess of the network
prediction.

15

multiplexed. As long as the aggregate tra�c of these related connections does not exceed
this speci�cation, the network service guarantees that well-de�ned performance bounds will
be met for individual channels. As the client speci�es the related connections and their
aggregate tra�c, all sharing is completely client-controlled. Most importantly, performance
guarantees are not dependent on the behavior of unrelated network tra�c. Resource
sharing is an important technique to provide well-de�ned performance guarantees for most
large-scale, multi-party communication paradigms.

In this chapter, we �rst motivate resource sharing with a simple example in Sec-
tion 2.1. In Section 2.2, we describe fully-distributed mechanisms for doing resource sharing
with real-time guarantees in a general internetworking environment; we do so in the context
of the implementation of such mechanisms in the next generation of the Tenet real-time
protocols. We illustrate these mechanisms with a simple example in Section 2.3. In Sec-
tions 2.4 and 2.5, respectively, we present analysis and simulation-based evaluations which
show that resource sharing leads to a large gain in the connection acceptance rate, and
a signi�cant reduction in the computational overhead associated with admission control.
Resource sharing is a key component of our multi-party real-time communication system;
of particular interest are the interactions of resource sharing mechanisms with the other
components of our system. We discuss these interactions in Section 2.6. We conclude this
chapter with a brief summary in Section 2.7.

2.1 Motivation for resource sharing

In this section, we motivate resource sharing with a simple example. We present
a simpli�ed tele-conferencing scenario to motivate the need for resource sharing. Consider
the simple conference scenario presented in Figure 2.1, where a conference is set up among
A, B and C (X is an intermediate node or router). Only the two multicast channels from
A and from B are shown in Figure 2.1.

Due to the cooperative nature of the conference, it is reasonable to require that
only one person speaks at any time. Indeed, in an orderly meeting only one person speaks at
any time; two persons speak simultaneously only when they try to get the
oor; clearly, this
situation lasts for but a short period of time, and it should be acceptable if the performance
degrades during that time period. For simplicity, we restrict the sharing in this example to
audio streams. Similar sharing can be expected in video channels as well, either because
the senders refrain from sending video when they do not have the
oor or if the video
application enforces mutual exclusion, like the dynamic window switching mechanism of vic
[78, 79].

Consider the link X-C; the two multicast channels (from A and from B) can
share the resources on the link X-C. Without resource sharing, the network will make
independent reservations for the two channels, and wastefully over-allocate resources on the
link X-C by 100%. Under resource sharing, the client will inform the network that the
two channels are both part of the same conference, and that the aggregate tra�c on the
channels will not exceed the tra�c due to one source. The network can use this information
to limit the resource reservations on the link X-C.

16

A

B

CX

Can use resource sharing here

From A to B & C

From B to A & C

Figure 2.1: The 3-user Conference Example

This example illustrates a scenario where only one source is active at any time
in the conference. In general, we can have up to n concurrently active sources. We de�ne
the maximum concurrency for a conference as the maximum number of concurrently active
sources; in the example above, the maximum concurrency is equal to one.

While the above example illustrates the need for resource sharing in a simple
conference scenario, it should be noted that resource sharing is equally useful in other
real-time multi-party scenarios such as panel discussions, distributed seminars and so on.
For these multi-party applications, the maximum concurrency is usually smaller than the
number of senders and, most signi�cantly, does not increase with the number of participants.
In such cases, resource sharing leads to more e�cient use of network resources. In fact, since
in most cases we expect the maximum concurrency to remain fairly small even when the
number of participants increases dramatically, resource sharing enables better scalability
for large conferences; the gains increase with the size of the conference.

2.2 Mechanisms for resource sharing

The key motivation for resource sharing is to exploit the known behavior of related
channels in order to reduce the aggregate network resources allocated to these channels. To
be attractive, resource sharing must give network clients the same performance guarantees
that they would have received without resource sharing. The mechanisms we have devised
are completely distributed; hence, they do not restrict the scalability of communication, and
are robust in the presence of node and link failures. Indeed, simulation results (presented
in Section 2.5 as well as in [61],[62]) show that resource sharing improves the scalability of
communication. Three types of mechanisms are required:

� Client-service interface: The network client must inform the network of sharing rela-
tionships between channels. This interface de�nes the contractual agreement between

17

the client and the network.

� Admission control tests: The network admission control tests may use the information
supplied by the client to perform local admission control tests on a group of channels,
rather than on each channel individually.

� Protection: The network must ensure that network resources consumed by the chan-
nels in a group do not exceed the resource allocation of the group.

2.2.1 Client-service interface

To allow the network to share resource allocations between related channels, the
client must specify three kinds of information:

� A list of related channels that may share resources. In [63], we de�ned the channel

groups abstraction to enable clients to specify inter-channel relationships to the net-
work. To specify a list of channels that may share resources, we de�ne a channel
group with a resource sharing relationship. Individual channels then join the channel
group to share resources with other member channels[63].

� Resource requirements for each group. Our assumption is that at any given time the
actual resources required by all group members will not exceed the resources allocated
if the channels were treated independently. To bene�t from this situation, the client
must specify the maximum aggregate resource requirements for the channel group.
Two approaches can be used:

1. The client can specify directly the maximum aggregate resource requirements of
the group of channels, or

2. The client can specify the maximum concurrency between channels, and the
network can compute a maximum resource requirement for the aggregate along
each link.

We have chosen the �rst approach, because, in the case where the maximum con-
currency between channels is greater than one (e.g., when several video channels are
displayed during a seminar), the client may specify a resource requirement for the
combined streams that takes into account gains from statistical multiplexing between
related channels. In the second alternative, the network does not know how tra�c on
separate channels may combine, and thus must treat channels independently of one
another.

� When the group requirements should be used. In the case where the maximum concur-
rency is greater than one, the group requirements may be signi�cantly greater than
the resources required by any individual channel. Therefore, the client must indicate

18

to the network when to use the group speci�cation rather than the individual ones.
We take the simplest approach and specify a sharing threshold that corresponds to the
maximum concurrency of the group. When the number of member channels on a link
equals or exceeds the threshold, the group speci�cation (described above) should be
used. Before that time, resources are reserved for each channel independently of the
others in the group. The alternative approach would be for the network to compare
resource allocations for individual channels with that for the group aggregate and
thus make this decision without the client explicitly specifying a sharing threshold .
However, the network code is greatly simpli�ed when the client explicitly speci�es
the sharing threshold; the network code can ignore this information if it can compare
individual and aggregate resource allocations.

2.2.2 Admission control

The admission control tests determine if a new channel can be admitted without
potentially violating the guarantees given to established channels. As described in [7], the
Tenet protocols utilize a fully-distributed technique for connection establishment and admis-
sion control. The modi�cations to support resource sharing maintain this fully-distributed
property. The key change is that the group resource allocation is used in admission con-
trol tests instead of the individual (per-channel) allocations when the number of member
channels at a server equals or exceeds the threshold. After the sharing threshold has been
reached, no admission tests need be performed to admit additional member channels.

Table 2.1: Link bandwidth allocation for a sharing group vs. number of channels

No. of Threshold Sum of channel specs. Group spec. Reservation
channels (Mbps) (Mbps) (Mbps)

1 3 1.5 4.0 1.5
2 3 3.0 4.0 3.0
3 3 4.5 4.0 4.0

4 3 6.0 4.0 4.0

...
n 3 n * 1.5 4.0 4.0

As noted in Section 2.2.1, we have decided to allocate resources according to the
individual speci�cations until the number of channels using the server reaches the thresh-
old, at which time we will switch to the group speci�cation. Table 2.1 shows an example of
the bandwidth allocated to channels from a sharing group at an arbitrary server2. In this
example, we assume that each channel requires 1.5 Mbps bandwidth, the sharing threshold
is 3, and the maximum bandwidth required by any three channels is 4.0 Mbps (because of
the manner in which the streams are known to multiplex). The table shows the total band-
width allocation for the channels as the number of member channels established through the
server increases. When the �rst channel is established, the threshold has not been reached,

2A server is any network node or link where resources like bu�ers and/or delay may be allocated.

19

so 1.5 Mbps is reserved according to the individual speci�cation of the channel. Likewise,
the second channel reserves 1.5 Mbps according to its individual speci�cation. The third
channel, however, reaches the threshold, so the allocation is changed to the group speci�ca-
tion. As can be seen in Table 2.1, once the threshold has been reached, no tests have to be
performed for new channels in the group. This simple example shows how resource sharing
improves scalability for large conferences.

To simplify changing from individual speci�cations to the group speci�cation, all
channels are given the same local delay bound during establishment, even when the schedul-
ing discipline would allow us to give separate delay bounds per channel (such as with Earliest
Due Date scheduling [75]). If a given channel requires a tighter delay bound than the bound
given to group members, that channel should be established separately from the group at
one or more servers. For example, if the Rate-Controlled Static Priority (RCSP) scheduling
algorithm [125] is used, a channel is assigned a static priority and admission control algo-
rithms ensure that a pre-speci�ed delay bound is met for each priority level. To implement
resource sharing, we substitute the group speci�cation for the individual channel speci�ca-
tions in running the admission tests and delay bound computations. In our implementation
of resource sharing for servers using RCSP scheduling, link bandwidth is allocated to the
entire channel group according to the group speci�cation. Therefore, all channels of the
group receive the same bound on queueing delay.

2.2.3 Protection

In order to provide guarantees, we must ensure that each channel can use the
resources that have been allocated for it. The rate control and scheduling routines do
the policing that provides this protection. The Tenet protocols, for instance, protect the
resource allocations of real-time channels (i.e., channels that make resource reservations) by
giving them higher priority than non real-time channels, and by ensuring that no real-time
channel exceeds its resource allocation. The main mechanism for policing real-time channels
is rate control, i.e. the network ensures that the tra�c for a channel does not exceed its
speci�cation3 . Scheduling priority is protected automatically by the scheduling algorithm,
and bu�er space allocations are protected by allocating bu�ers to real-time channels.

To provide protection in the presence of resource sharing, we must provide the
same level of policing on group aggregate tra�c. To meet this requirement, we allocate
resources to the group: when the group speci�cation is in e�ect, all channels in a sharing
group share common resources. Rate control and scheduling are performed by treating all
tra�c from member channels as belonging to a \super channel" that must obey the group
speci�cation. Only one addition to the normal, per-channel versions of these mechanisms
is required to support resource sharing: when the group threshold has been reached in a
server, rate control and scheduling are performed using the group allocation rather than

3This is not strictly true. In case of EDD, we can allow tra�c for a channel to exceed its speci�cation,
without violating other channels' performance guarantees, by extending the deadlines. Similar results can

be shown for fair-queueing-based scheduling disciplines. We only refer to strict rate-control-based policing

for simplicity of discussion; the techniques described here are equally applicable to the approaches that allow
more tra�c to go through.

20

the allocation for the individual channel. To implement this change, we introduced an
indirection from the channel table to the resource allocation records used by the rate control
and scheduling algorithms. The algorithms themselves do not change. The organization is
shown in Figure 2.2.

Channel Table Resource Allocations

2

3

1
....

....

....
1.5Mbps

1.5Mbps

4.0Mbps

....

....

....

(a)

Channel Table Resource Allocations

2

3

1
....

....

....
1.5Mbps

1.5Mbps

4.0Mbps

....

....

....

(b)

Figure 2.2: Implementation of rate control to support resource sharing using (a) individual
allocations; (b) group allocation.

2.3 Example

In this section, we illustrate, with the help of a simple example, the various aspects
of resource sharing described in the previous section. For simplicity, we consider a simple
conference in a small tree-topology network shown in Figure 2.3.

We assume each conference participant (P1; P2; :::P6) is the source for one video
channel with the bandwidth of 1.5Mbps to all other participants; the maximum aggregate
resource requirement for all channels is 4.0 Mbps; and the sharing threshold is 3. In this case,
the required resource allocations are as given in Table 2.1. For simplicity, we also assume
that all requests are made by a single conference organizer, who could exist anywhere in
the network.

To set up resource sharing, the conference organizer performs the following actions:

� Request the network to create a Multicast Group4 (MG1), and to add each participant
to the Multicast Group.

� Request the network to create one channel from each participant toMG1; all channels
are 1.5 Mbps.

4This multicast group is the real-time analog of the IP HostGroup abstraction[27, 28], in that, in such a

group, we also associate real-time performance requirements with the destinations interested in listening to

a \session". In other papers (as well as later in Chapter 5), we have referred to these multicast groups as
\Target Sets".

21

P1

P2

P3

P4

P5

P6BA

4.
0M

4.0M

4.
0M

1.
5M

1.
5M

1.
5M

4.
0M

4.
0M

1.
5M

4.0M1.5M 4.0M 4.0M 1.5M

Figure 2.3: Resource allocations for the 6-user conference

� Request the network to create a resource sharing group (say RSG1) with aggregate
resource allocation 4.0 Mbps and threshold of 3, and add the channels to the group.

� Request the network to establish these channels.

Below we describe the admission control process for link B ! P6. During estab-
lishment, similar computations take place at other links. At this server, �ve admission con-
trol requests arrived for this conference|one for each channel from participants fP1; :::P5g
to P6. The admission control actions for each of the establishment requests at this server
are listed below:

� First request arrives: The admission control system notes that the request is for
the group RSG1, and that the threshold has not been locally reached. Therefore, 1.5
Mbps is reserved for the channel according to the individual channel speci�cation.

� Second request arrives: The admission control system again notes that the request
was for the group RSG1, and that the threshold has not been reached. Therefore,
another 1.5 Mbps is reserved for the channel according to the individual channel
speci�cation.

� Third request arrives: Since the threshold has now been reached, the allocation is
changed to the group speci�cation of 4.0 Mbps. The protection and tra�c policing is
as shown in Figure 2.2.

22

� Fourth and �fth requests: Since the threshold has been reached, no tests have to
be performed and the requests are immediately accepted.

2.4 Analysis

For an analytical evaluation of resource sharing bene�ts, we introduce the alloca-
tion gain metric. For a set of connections over a set of links, we de�ne allocation gain as
the ratio of the allocation of a given resource required without resource sharing, to the allo-
cation of that resource required when resource sharing is used. For example, an allocation
gain of 4 means that, under resource sharing, 1

4
as many resources are required as without

resource sharing. We chose allocation gain as the metric for our analysis because, in our
fully-distributed mechanisms, the resource sharing bene�ts accrue on a per-link basis, and
it is di�cult to compute from them the gains in overall channel acceptance. In the next
section, we will use a di�erent metric called acceptance gain for evaluating the resource
sharing bene�ts in the simulation experiments.

A simple example can show that, under some conditions (very dense networks,
adversarial routing, and so on), resource sharing will not provide any useful gains in resource
allocation. Consider a complete network, i.e., direct links connecting all pair of nodes, and
a routing algorithm that ensures that data packets go directly from the source to the
destinations, with no intermediate nodes. If only one sender (of a resource sharing group of
senders) resides on any network node, no link will carry data belonging to more than one
channel; consequently, we cannot obtain any savings by introducing resource sharing in this
case.

However, we do expect that, in sparser computer networks, we will obtain signi�-
cant savings with resource sharing. We present two analyses to demonstrate these savings:
the �rst analysis is for sparse networks, while in the second analysis we assume that, for
each conference, the network routing function creates a single undirected tree and returns
routes along that tree for all connections that constitute that conference. We present useful
results for resource sharing gains under these sets of assumptions.

2.4.1 Sparse network

Wide-area networks (WANs) tend to be rather sparse; for example, the NSFNET
backbone WAN has 32 nodes and only 35 links5. In this analysis, we obtain lower bounds
on resource sharing gains for networks with small cut-sets of links. It should be noted that
sparse networks usually have small cut-sets of links. For the purpose of this analysis, we
assume that the conference participants are homogeneous and are uniformly and indepen-
dently distributed among the network nodes. To keep the analysis general, we make no
assumptions whatsoever about the routing algorithms.

5The NSFNet backbone has been replaced now by a group of \commercial" networks.

23

Lemma 2.1 Consider a network in which channels always traverse at least one link of a

set of links L, with jLj = l. If a conference needs m channels, then a lower bound, g, on

the resource sharing allocation gain is given by

g = m

2tl
,

where t is the sharing threshold speci�ed by the client.

The lemma follows from a simple counting argument: without resource sharing,
at least one reservation for each resource must be made over the links of the set L for each
of the m channels, for a minimum of m reservations over the set L. With resource sharing,
at most t reservations must be made (in each direction) for each link of set L. Since a link
has only 2 directions, a maximum of 2tl reservations are required.

For a conference with 40 channels, t = 2, and l = 5, the allocation gain g always
exceeds (or equals) 2.

Lemma 2.2 Consider a network with a cut-set L of links that divide the network into a set

of subnetworks, such that no subnetwork contains more than a fraction f of the nodes of the

original network. If a channel has n destinations uniformly and independently distributed

among the network nodes, then the probability that the channel traverses at least one of the

links of the cut-set L is given by

prob � 1� fn.

A channel must traverse a link of the cut-set L unless all destinations reside in the
same subnetwork as the source. Assuming a uniform, independent distribution of destina-
tions, the probability that a single destination resides in the same subnetwork as the source
is at most f . Thus, the probability that all n destinations reside in the same subnetwork
as the source is at most fn.

As the number of destinations increases, the probability prob rapidly approaches
1; for example, with f = 0.75, n = 16, probability prob is greater than 0.99.

Theorem 2.1 Consider a network with a small link-set L with jLj = l, where r is the

probability that a channel traverses the link-set L. If a conference has m channels and the

sharing threshold t, the following relation holds:

log(1

1�p
) = mr

2
(1� 2tlg

mr
)2,

where p is the probability that the allocation gain is at least g.

We use the Cherno� bound on a sum of independent Bernoulli trials (�rst described in [14])
to obtain lower bounds on resource allocation gains that result from resource sharing. This
Cherno� bound states that, for independent Bernoulli trials with P [Xi = 1] = pi; pi 2 (0; 1),
and random variable X , where X =

Pn

i=1Xi, and � =
Pn

i=1 pi > 0,

P [X < (1� �)�] < exp(���2=2);

where � is the expected value of X . We rearrange the expression to

P [X � x : x = (1� �)�] � 1� exp(���2=2):

24

Let X be a random variable representing the number of channels (out of the m channels
that comprise the conference) that traverse the link-set L. Here, � = E[X] = mr. From
Lemma 2.1, the gain factor will exceed g i� X > x, where x = 2tlg. Setting x = (1 � �)�
yields � = (1� 2tlg

�
). Substituting � and � into the previous expression,

P [X � x] � 1� exp

"
�mr(1�

2tlg

mr
)
2

=2

#
:

Let p denote the lower bound on the probability P [X � 2tlg]; thus,

p = 1� exp

"
�mr

2
(1�

2tlg

mr
)
2
#
:

Rearranging the above expression, we obtain:

log(
1

1� p
) =

mr

2
(1�

2tlg

mr
)2:

This theorem shows the relationship between m,r,g,t,l, and p; for instance, p
decreases as g increases if the other factors are kept constant. As an example, the probability
p is greater than 0.95 for g = 2, with m = 50, r = 0.99, l = 4 and t = 2.

2.4.2 Tree-based routing

In this section, the analysis shows the strong relationship between routing and
resource sharing gains. We adopt a simple routing strategy that attempts to increase the
sharing gains by selecting the same undirected routing tree for all channels that belong to a
particular conference. One way of looking at this tree selection process is that the routing
system selects a spanning tree T for the network. Figure 2.4 shows a simple network in
which, out of the set of network links (thin lines), the routing system has selected a spanning
tree T (the links in T are shown with thicker lines). Then for every channel, the appropriate
directed subtree t, of T , that connects all destinations to the source is used. This behavior
is exhibited by many current routing algorithms, including Core-Based Trees [1]. In this
analysis, we relax the constraints that we previously imposed on the network topology and
on the distribution of destinations among the network nodes; thus, this analysis is applicable
to arbitrary network and connection topologies.

To keep the analysis simple, we assume that, for a given conference, the routing
algorithm selects the same forwarding tree, regardless of whether resource sharing is used.
Admittedly, a routing algorithm for conferences that do not use resource sharing probably
would not be tree-based, since such an algorithm would tend to cause congestion on the
shared links. However, since our analysis merely calculates the resources required at each
server rather than performing admission control (essentially assuming in�nite resources are
available) the assumption of tree-based routing does not adversely a�ect the analysis.

Consider the subset L of links in the spanning tree T that connect the destinations
for the conference (in Figure 2.4, these links are shown with extra dashes). It is easy to see

25

Network link

destination

destination

destination

Link in spanning tree
Link connecting destinations

Figure 2.4: Network with tree-based routing

that every channel will traverse all links in L exactly once in some direction. We can then
obtain the following corollary of Lemma 2.1.

Corollary 2.1 Consider any link l that belongs to the set of links L which connects the

destinations of the conference as described above. If a conference has m channels and

resource sharing threshold t, a lower bound g on the allocation gain for each link i is given

by

g = m

2t
.

For a conference with 40 channels with a sharing threshold of 2, the allocation
gain is at least 10.

Consider a link i of the spanning tree T that is used for routing channels for a
given conference. The link i divides the tree T into two subtrees. Let the ratio of the
numbers of nodes in the two subtree be ri, with ri > 1. Under the assumption that the
destinations are uniformly and independently distributed among the nodes in the network,
we obtain the following corollary of Lemma 2.2.

Corollary 2.2 If a channel has n destinations, the probability f that a randomly selected

channel will traverse the link l is given by

f = 1�

 �
ri

1 + ri

�n+1

+

�
1

1 + ri

�n+1
!

= 1�
rn+1i + 1

(1 + ri)n+1

26

> 1�

�
ri

1 + ri

�n

= 1�

�
1�

1

1 + ri

�n
> 1� e

n

1+r
i

For example, f > 0:999 for n > 10 � (1 + ri).
The following corollary follows from Theorem 2.1 and Corollary 2.1.

Corollary 2.3 If a conference has m channels and a sharing threshold t, the following

relation holds for all links that belong to the routing tree for that conference:

log(1

1�p
) = mf

2
(1� 2tg

mf
)2,

where p is the probability that the allocation gain is at least g, and f is as given by Corollary

2 above.

2.4.3 Examples

In this subsection, we illustrate the above analytically-derived bounds with some
graphs; we have derived these graphs from Corollary 2.3.

For these graphs, we set the sharing threshold tto2, probability p of Corollary 2.3
to 0.99 and the probability fto0:999 unless otherwise stated.

1

2

3

4

5

6

7

8

9

10

5 10 15 20 25 30 35 40

L
ow

er
 b

ou
nd

 o
n

al
lo

ca
ti

on
 g

ai
n

(t
=

2)

Conference size

p=0.80
p=0.90
p=0.95
p=0.99

Figure 2.5: Analysis { Allocation gain for constant sharing threshold

In Figure 2.5, we �x the sharing threshold at 2, and obtain bounds for the allocation
gains as we vary the conference size; we obtain curves for p varying from 0.8 to 0.99, where
p is the probability that the allocation gain will exceed its bound.

As expected, at �xed probability p, the lower bound g on the allocation gain in-
creases almost linearly with the conference size; also, as the probability p increases (thereby

27

getting us closer to guaranteeing that the allocation gain will exceed the lower bound), the
value of the lower bound g decreases for the same value of conference size.

1

2

3

4

5

6

7

8

9

10

10 15 20 25 30 35 40

L
ow

er
 b

ou
nd

 o
n

al
lo

ca
ti

on
 g

ai
n

(p
=

0.
99

)

Conference size

t=1
t=2
t=3
t=4
t=5

Figure 2.6: Analysis { Allocation gain for varying sharing threshold

In Figure 2.6, we �x the probability p of exceeding the sharing threshold at 0.99,
and obtain lower bounds on the allocation gain as we vary the conference size; we obtain
curves for sharing threshold t varying from one to �ve.

As expected, for a given sharing threshold, the allocation gain increases almost
linearly with the conference size; also, as the sharing threshold increases, the lower bound
on allocation gain goes down.

In Figure 2.7, we �x the sharing threshold at 2, and the probability of exceeding
the allocation bound at 0.99 (i.e., 99% of the time, the actual allocation gain will exceed
g). We obtain lower bounds on the allocation gain as we vary the conference size; we have
plotted curves for f varying from 0.8 to 0.999, where f is the probability given by Corollary
2.

As expected, for �xed probability f , the lower bound on the allocation gain in-
creases almost linearly with the conference size; also, as the probability f increases (implying
that the link is more likely to be traversed by most connections), the lower bound on the
allocation gain increases.

2.5 Resource sharing simulations

In the previous section, we provided analytical bounds for the allocation gain due
to resource sharing. In this section, we present the results of our simulations with resource
sharing. We ran these simulations on Galileo [72], an object-oriented real-time network
simulator. Our goal was to make the experiments realistic so that the results obtained can be

28

1

2

3

4

5

6

7

8

9

10

10 15 20 25 30 35 40

L
ow

er
 b

ou
nd

 o
n

al
lo

ca
ti

on
 g

ai
n

(p
=

0.
99

,t=
2)

Conference size

f=0.8
f=0.9

f=0.95
f=0.99

f=0.999

Figure 2.7: Analysis { Allocation gain for constant probability of exceeding the gain bound

con�dently transposed to our resource sharing implementation in the Tenet Protocol Suite
2 [60]. For this, the network topologies that we used in the simulations are based on two
real wide-area networks { the NSFNET backbone network, and XUNET [53], a high-speed
ATM network that spans across North America from Bell Labs in New Jersey to Berkeley,
California. We assumed the rate of each link to be 45 Mbps and the propagation delay
along each link to be 5 ms. We also made the amount of bu�er space in each server large
enough that the bandwidth or processing power was the limiting resource in all scenarios.

Simulation workload and evaluation metrics

In all the experiments, the sources and destinations for the conferences were uni-
formly and independently distributed among the network nodes. We ran the same simula-
tions with and without resource sharing; in this section, we denote by RS the experiments
with resource sharing and by non-RS the experiments without resource sharing.

To keep comparisons meaningful, we only considered a single type of tra�c stream
(i.e., a compressed video stream with a peak rate of 1 Mbps, 30 frames per second, and four
data packets per frame), and destinations with identical performance requirements (end-to-
end delay bound 400 ms); the average data rate did not matter, because the admission tests
in our simulations only used peak-rate bandwidth allocation. Unless otherwise speci�ed,
the sharing threshold/maximum concurrency equaled one.

We performed many sets of experiments, each time varying one of three workload
parameters: number of concurrent conferences, number of participants per conference, and
sharing threshold. For each of these workloads, several trials have been run, and the results

29

Figure 2.8: The NSFNET Network

obtained are averaged. In the �rst set, we varied the number of conferences, while keeping
the number of participants in a single conference (conference size) �xed at 10. In the second
set of experiments, we varied the conference size, and �xed the number of conferences at
50. We chose this workload to overload the system slightly, since the bene�ts of resource
sharing are greatest under high network utilization.

The main metric for performance evaluation is:

Destination Acceptance Rate =
Number of destinations successfully established

Number of destinations attempted

Here, destinations refer to the recipients in a multicast transmission. For the remainder of
this paper, acceptance rate will refer to the destination acceptance rate, unless otherwise
stated. We also de�ne another metric, called acceptance gain, to be the ratio of acceptance
rates with and without resource sharing respectively.

In addition, we are interested in the speed and computational cost of channel
establishment, for which we use a di�erent metric: the computational overhead associated
with admission control. In the simulations, we use the admission control tests for the
EDD scheduling discipline [49]. The time required to run these tests at a given node
is proportional to n, the number of already accepted resource allocations at that node.
The overall establishment overhead is computed as the sum of these n (already accepted
allocations) at each node along the route of the channel. This component of admission
control computations increases as the real-time network load (number of accepted channels)
goes up. Computational overhead for other activities (for example, for collecting the state
information) does not change when this load increases (though it depends on the route
selected). We therefore focus on this admission test computation overhead for performance

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

A
cc

ep
ta

nc
e

R
at

e

Number of Conferences

Acceptance Rate Vs. Number of Conferences

 RS
 non-RS

Figure 2.9: NSFNET { Acceptance Rate Vs. Number of Conferences

evaluation 6.

With resource sharing, since the established channels at a node can belong to
sharing groups, and if the aggregate tra�c speci�cations for such groups are being used,
the number of individual resource allocations (bu�er space, throughput, scheduling priority)
n can be much smaller than the number of channels. We can therefore expect a considerable
reduction in the computational overhead when resource sharing is used.

2.5.1 NSFNET

In this set of experiments, we ran our simulations on the backbone of the NSFNET
network; we only included the core nodes (CNSS) of the network shown in Figure 2.8.

Results

� Acceptance rate

(i) Increasing the Number of Conferences
With resource sharing, the acceptance rate is consistently higher than without re-
source sharing across a wide range of the number of conferences (from 5 to 100).
From Figure 2.9, when the network is heavily-loaded (40 or more conferences), the
destination acceptance rate with RS is at least 6 times higher than that for non-RS.

6In our comparison, we have ignored the extra overhead associated with accessing and maintaining
resource sharing related information.

31

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14

A
cc

ep
ta

nc
e

R
at

e

Conference Size

Acceptance Rate Vs. Conference Size

 RS
 non-RS

Figure 2.10: NSFNET { Acceptance Rate Vs. Conference Size

(ii) Increasing the Conference Size (Figure 2.10)
With RS, the acceptance rate remains close to 1 even when the size of conferences
approaches the size of the network (in number of nodes), while the acceptance rate
for non-RS degrades substantially as the conference size increases. This behavior is
expected because, with resource sharing, the amount of network resources allocated
to a conference is bounded by the sharing threshold, regardless of the size of the
conference. This experiment illustrates the scalability and the importance of resource
sharing for large multi-party applications.

(iii) Varying the Threshold
In Figure 2.11, we vary the sharing threshold in the sharing speci�cation. In the
graphs, RSi refers to RS with a sharing threshold of i; RS1 denotes the case of
sharing threshold = 1; RS2 denotes the case of sharing threshold = 2, and so on.
A sharing threshold equal to the conference size (RS10 in Figure 2.11) amounts to
turning resource sharing o�. Figure 2.11 shows that, with a lower sharing threshold,
the resource sharing gain is signi�cantly higher, and that RS consistently outperforms
non-RS.

� Computational Overhead

According to Figure 2.12 and Figure 2.13, the admission control computation overhead
for RS is always smaller than the overhead for non-RS. These results indicate that
resource sharing does not add to the establishment overhead; indeed, resource sharing
tends to decrease the establishment overhead. As described in Section 2.2, when
the number of admitted channels in a sharing group reaches the sharing threshold
at a server, the admission control mechanisms at that server will accept subsequent
channels of the same group without performing any additional admission control tests.

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

A
cc

ep
ta

nc
e

R
at

e

Number of Conferences

Acceptance Rate Vs. Number of Conferences

RS10 (non-RS)
RS1
RS2
RS3
RS4
RS5
RS6
RS7
RS8
RS9

Figure 2.11: NSFNET { Acceptance Rate with Di�erent Threshold Value

0

100500

200500

300500

400500

500500

600500

700500

800500

0 20 40 60 80 100

C
om

pu
ta

ti
on

al
 O

ve
rh

ea
d

Number of Conferences

Computational Overhead Vs. Number of Conferences

RS
non-RS

Figure 2.12: NSFNET { Computational Overhead Vs. Number of Conferences

33

20000

120000

220000

320000

420000

4 5 6 7 8 9 10

C
om

pu
ta

ti
on

al
 O

ve
rh

ea
d

Conference Size

Computation Overhead Vs. Conference Size

RS
non-RS

Figure 2.13: NSFNET { Computational Overhead Vs. Conference Size

2.5.2 Tree topology

We ran several simulation experiments with a tree-based topology (in which we
added two extra hosts each at the four sites (Berkeley, Madison, Urbana, and Murray Hill)
to the XUNET network topology of Figure 2.14).

Results

� Acceptance rate
As in the previous section, we compare the acceptance rates obtained with and with-
out resource sharing in a number of di�erent experiments. The graphs (Figure 2.15
- 2.17) show how the system performance changes as we vary three parameters:

(i) the number of conferences (Figure 2.15) ;

(ii) the conference size (Figure 2.16) and

(iii) the sharing threshold (Figure 2.17)

The results are similar to the results that we obtained with the NSFNet topology.
Resource sharing is shown to yield a higher acceptance rate.

� Computational Overhead
Figures 2.18 and 2.19 show the computational overhead of RS and non-RS. The

34

R

R

H

H

H

H

S

S

S

S

R

R

H
H

R

H FDDI

Madison

Urbana Champaign

Chicago

FDDI

H

UC Berkeley, LBL
Murray Hill

HS

S

Host

Router

Switch

Figure 2.14: The XUNET Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

A
cc

ep
ta

nc
e

R
at

e

Number of Conferences

Acceptance Rate Vs. Number of Conferences

 RS
 non-RS

Figure 2.15: XUNET { Acceptance Rate Vs. Number of Conferences

35

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

A
cc

ep
ta

nc
e

R
at

e

Conference Size

Acceptance Rate Vs. Conference Size

 RS
 non-RS

Figure 2.16: XUNET { Acceptance Rate Vs. Conference Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

A
cc

ep
ta

nc
e

R
at

e

Number of Conferences

Acceptance Rate Vs. Number of Conferences

RS10 (non-RS)
RS1
RS2
RS3
RS4
RS5
RS6
RS7
RS8
RS9

Figure 2.17: XUNET { Acceptance Rate with Di�erent Threshold Value

36

20000

120000

220000

320000

420000

0 20 40 60 80 100

C
om

pu
ta

ti
on

al
 O

ve
rh

ea
d

Number of Conferences

Computational Overhead Vs. Number of Conferences

RS
non-RS

Figure 2.18: XUNET { Computational Overhead Vs. Number of Conferences

results are again very similar to those from the NSFNet in that RS in general reduces
the computational overhead during channel establishment.

Simulating heterogeneous tra�c and performance parameters

We deliberately limited our simulation experiments to connections with homoge-
neous tra�c speci�cations; this choice allowed us to de�ne a suitable and sensible evaluation
metric. With heterogeneous tra�c, in our opinion, it is much more di�cult to de�ne such
a metric7. For example, given that bandwidth is not the only resource to be considered, is
a 1 Mbps channel worth 10 times as much as a 100 Kbps channel? Or is it worth a little
less? A lot less? Similarly, if a client requests 100 ms as the bound on end-to-end delay and
another client requests 200 ms, how do we compare their requests according to a common
metric?

2.6 Interactions with other components

Resource sharing is only one component of our system for supporting multi-party
real-time communication in computer networks; thus, it is very important that the resource
sharing mechanisms not only work well, but that they work well with the other components

7The main evaluation metric { acceptance ratio { may also be criticized in the following manner: a

multicast to 10 destinations should not be worth 10 times a unicast. However, we have not been able to
come up with evaluation metrics that are simple and easy to obtain and to justify.

37

6000

106000

206000

2 4 6 8 10 12

O
ve

rh
ea

d
 o

f R
S

Conference Size

Computation Overhead Vs. Conference Size

RS
non-RS

Figure 2.19: XUNET { Computational Overhead Vs. Conference Size

of our multi-party real-time communication system. In particular, resource sharing a�ects
the following components: client-service interactions and interface, admission tests, tra�c
speci�cation models, routing, access control, data forwarding and tra�c policing, advance
reservations, and resource partitioning. In Section 2.2, we discussed a few of these: we talked
about how sharing a�ects client-service interactions, admission tests, and data forwarding
and tra�c policing.

In this section, we will discuss the interactions of resource sharing mechanisms
with the following components of our real-time communication scheme: the local admission
control mechanisms, the routing system, tra�c speci�cation models, and the mechanisms
for supporting advance reservation of network resources. We will describe the interactions
with resource partitioning in Chapter 3.

2.6.1 Resource sharing and local admission control

With resource sharing, the client promises that the aggregate tra�c due to the
related channels will remain within the client-speci�ed bounds, and the network tries to use
this information to reduce the resource allocation. An interesting issue is the interaction of
this globally speci�ed relationship with the admission control decisions that are made locally
at the intermediate nodes (the local decision-making is due to the distributed nature of our
resource sharing technique).

During channel establishment, the Real-Time Channel Administration Protocol
(RCAP) [76] is responsible for admission control and resource reservation at each node.
When the RCAP module at a certain node is reserving resources for a new channel, it
allocates enough bu�ers for handling all potential delay jitter of the data packets from the

38

previous node. This delay jitter bound depends on the resources allocated to the channel at
the previous node (and the scheduling discipline followed at that node). Since channels that
belong to the same sharing group may be allocated di�erent amounts of various resources
at the respective previous nodes, data from di�erent member channels may arrive at a
given node with di�erent delay jitter bounds. Thus, adding a new channel for an already
established group may result in additional bu�er allocation at that node.

2.6.2 Resource sharing and tra�c speci�cation models

For obtaining performance guarantees, the network clients characterize the chan-
nel's tra�c in terms of a tra�c speci�cation model; the characterization is used in running
admission tests and in allocating resources. With resource sharing, the clients also need to
characterize the aggregate tra�c (for a group of resource sharing channels).

For characterizing tra�c for individual channels, many models exist, including
peak rate, �-�, leaky-bucket, Xmin-Xavg-I-Smax, double bucket, and so on [5, 19, 20, 49,
73, 86, 89, 111, 116]. Some of these are not appropriate for specifying aggregate tra�c for
groups with two or more concurrently active senders; this is mainly because packets from
di�erent senders may arrive at the same time (\back-to-back") at some node in the network
{ in this case, we cannot directly use tra�c models8 that specify minimum inter-packet
interval (e.g., Xmin-Xavg-I-Smax, or token bucket); we can use other models like �-�, or
double bucket.

2.6.3 Resource sharing and the routing system

The analysis and simulations described in Section 2.4 support the intuition that
routing techniques a�ect the success of resource sharing. The routing algorithm can increase
resource sharing gains in two ways:

� Routing of channels in the same sharing group along common subpaths.

� Routing channels so that they may have the same local delay bound along common
subpaths.

The �rst e�ect is obvious: if the routing algorithm increases the overlap between multicast
trees for related channels, a higher resource sharing can be achieved. The second e�ect is the
result of our decision (or the requirement of some scheduling algorithms) to give all channels
in a sharing group the same local delay bound. If the routing algorithm is aware of the local
delay bounds given to member channels, it can take these into account. Unfortunately, most
routing algorithms do not enhance the overlap of related multicast trees. In fact, adaptive
routing algorithms may actually push channels of the same group away from each other to
\less loaded" paths [77, 67, 39, 123]. The only way for the routing algorithm to enhance

8For example, with the Xmin-Xavg-I-Smax model, for reasonable values of Xavg, I, and Smax, if the

Xmin value is set to zero (for packets arriving back-to-back), we have to reserve a lot of resources to serve
the packets, thereby reducing most of the resource sharing gains.

39

resource sharing performance is to recognize channels as members of sharing groups, and
to favor shared subpaths between related channels. The Tenet group has devised a routing
algorithm that uses a heuristic to �nd a min-cost route that is likely to satisfy the delay
requirements of all destinations [123]. They have also adapted this algorithm to maintain
state information for each sharing group, both to enhance path overlap and to meet the
delay restrictions speci�ed above.

2.6.4 Resource sharing and advance reservations

We have also devised techniques for providing advance reservations for multi-party
real-time communication [47]. In this service, the clients can make a request for network
resources in advance of their use. A client may, for example, request a connection on Mon-
day for a Wednesday video-conference. The network performs admission control tests and
informs the client on the same Monday whether the desired resources will be available on
Wednesday. Simulation results (described later in Chapter 4) show a synergy between re-
source sharing and advance reservation mechanisms, i.e. advance reservations help increase
resource sharing acceptance gain, under the assumption that larger conferences will be more
likely to make reservations in advance.

An important question involves trading o� computational complexity with admis-
sion control e�ciency: if two (or more) channels, advance booked for di�erent (but possibly
overlapping) time-intervals can share resource allocations, how does the network handle
such sharing? There are at least three alternatives:

� Ignore such sharing relationships

� Make independent decisions (about whether to use individual or aggregate tra�c
speci�cation) for each time interval

� Make the same decision for all time intervals

The �rst option would imply losing all resource sharing gains { this is clearly not
desirable. If we make independent decisions for each time interval, we will obtain the best
possible e�ciencies in resource allocation; however, this would imply that at the interval
boundaries, RCAP will have to contact RTIP to change between group and individual
and aggregate tra�c speci�cations. This introduces undesirably strict timing requirements.
Also, this option would imply storing resource sharing information on a per-time-interval
basis, and that would lead to a tremendous increase in the amount of state information to
be maintained, as well as in the computational overhead associated with admission control.
With the third option, we trade-o� some potential resource allocation e�ciencies to (a)
avoid strict timing requirements, and (b) save on the state information maintained as well
as the computational overhead for running admission tests. We chose this third option for
our Suite 2 implementation.

40

2.7 Summary

Resource sharing exploits known relationships among related channels to allow net-
work resources to be shared without sacri�cing well-de�ned guarantees; most importantly,
for large conferences with a bounded number of concurrent speakers, resource reservations
do not increase with the number of potential speakers. Therefore, resource sharing is an
important tool for providing real-time guarantees for large conferences.

We presented a scheme for sharing resource allocations between guaranteed per-
formance connections in computer networks; this scheme provides a fully-distributed, low-
overhead technique for implementing resource sharing. We evaluated the resource sharing
performance gains by analysis and by simulations; these con�rmed the intuition that re-
source sharing is very useful in saving network resources and quanti�ed these gains. It
achieves both higher connection acceptance rate and lower computational cost for admis-
sion control (than without resource sharing), while still providing guaranteed performance to
the clients, independent of the behavior of other, unrelated, tra�c. This performance eval-
uation also helped us in understanding how di�erent factors (e.g., routing) impact these
gains. As described in [61], we compared the analytical results with the simulation results;
the comparison showed the simulation results correspond fairly well to the analytical values.

We then presented some of the interactions of resource sharing with other com-
ponents of our multi-party real-time communication system; we described the interactions
with the local admission control system, with the choice of tra�c speci�cation models,
with the routing system, and with the advance reservations system. In Chapter 3, we will
describe the interactions of resource sharing with resource partitioning mechanisms.

Resource sharing is a key component of our multi-party real-time communication
system; in the next two chapters, we will describe two other important components: the
resource partitioning system and the advance reservations system. As we will see in these
chapters, our resource sharing mechanisms interact well with the resource partitioning and
advance reservation mechanisms to improve overall system performance. We will then
describe, in Chapter 5, how these components work together in our Tenet Real-time Protocol
Suite 2; we will also present some measurements of our prototype implementation of Suite
2, which show that our techniques work very well in practice. We will also brie
y describe
the channel groups that we use to specify the resource sharing relationships, and contrast
our approach with that taken recently by several other researchers, including the designers
of RSVP[130, 82, 81, 36, 10] and ST2[114, 97, 106, 34, 35, 33, 66, 65].

41

Chapter 3

Resource partitioning

For real-time communication services to achieve widespread usage, it is important
that network managers be allowed to control the services e�ectively. An important man-
agement capability concerns resource partitioning, i.e., distributing the di�erent resources
available at any given server (network node or link) among a number of partitions, where
the admission control and establishment computations for a given connection need to con-
sider only the connections in the same partition, and are completely independent of the
connections accepted in other partitions. Resource partitioning is useful for a number of
applications, including the creation of virtual private subnetworks and of mechanisms for
advance reservation of real-time network services, fast establishment of real-time connec-
tions, and mobile computing with real-time communication.

In this chapter, we present resource partitioning: we describe admission con-
trol tests for resource-partitioned servers with four representative scheduling disciplines,
Earliest-Deadline-First (EDD), First-In-First-Out (FIFO), Rate-Controlled-Static-Priority
(RCSP), and Weighted-Fair-Queueing (WFQ), provide simulation results, and discuss the
key implementation issues. Our simulations con�rm the intuition that resource fragmen-
tation losses due to resource partitioning are small, and that resource partitioning reduces
the admission control computation overhead. An interesting result from the simulation ex-
periments is that, under circumstances that arise naturally in multi-party communication
scenarios, resource partitioning results in higher overall connection acceptance rates.

3.1 Introduction

We use the term resource partitioning to refer to the set of techniques and mech-
anisms that provide the network managers with the ability to distribute the di�erent re-
sources available at any network node or link among a number of partitions. In this sense,
a \partition" is a virtual network in which real-time connections can be created; a partition
consists of the resources allocated to it in various nodes and links of the physical network.
In the sequel, the term \partition" will be sometimes used to refer also to the fraction of a
node's or a link's resources allocated to the corresponding network-wide partition.

With resource partitioning, the admission control and establishment computations

42

for a particular connection are independent of the connections accepted outside that con-
nection's partition. This independence amounts to splitting the server into a number of
sub-servers, each o�ering QoS guarantees only to the connections within it; the guarantees
are valid as long as the admission tests and rate control schemes for all sub-servers are cor-
rect, and are independent of the resource reservation decisions and computations performed
in other partitions. Figure 3.1 illustrates this issue: (a) shows a network node with three
links; (b) shows the node model with one CPU server and one link server per outgoing link
in each of the two partitions.

Link Server B

CPU Server

Link Server A Link Server C

Partition 2

(a) (b)

Link Server B

CPU Server

Link Server A Link Server C

Partition 1

Figure 3.1: The server model for a node with three links and two partitions

This server/partition independence is very useful, as it can be used for the follow-
ing:

� The di�erent sub-servers can be used to form virtual private subnetworks.

� Network managers can keep a small fraction of resources for management and fault-
handling tra�c.

� A fraction of the network's resources may be kept for non-real-time tra�c.

� The network can implement fairness constraints on network accessibility (preventing
one set of clients from hogging up network resources).

In addition to advance reservations [47], which we will discuss in Chapter 4, other
resource partitioning applications include fast establishment of real-time connections and
support for mobile computing [57]. We will describe these applications in Chapter 7; the
interested reader is referred to [45] for a more detailed description of these applications.

43

Many important concerns can be raised regarding resource partitioning: for in-
stance, whether we can design e�cient mechanisms for resource reservation, and whether
these mechanisms can be designed for di�erent scheduling disciplines and admission control
procedures. The e�ciency concern encompasses two related issues. First, the computational
expense associated with admission control should not appreciably increase under resource
partitioning (in fact, it is expected to decrease, due to reasons to be explained later). Sec-
ondly, any partitioning scheme is a�ected by resource fragmentation losses. For example,
if a link can support 50 connections, and the resources at this link are divided into three
equal partitions, then each partition can only support sixteen connections. Thus, the link
can now only support 48 connections, and this corresponds to a fragmentation loss of two
connections.

Note that, as will be seen in Section 3.2, the derivation of some admission tests for
a partition is nontrivial, due to the same reason that makes it hard to derive those admission
tests in general: while testing against the still available amounts of bandwidth and bu�er
space in a server is easy if the amounts of these resources required by the channel to be
established are known, verifying the schedulability of packets in a bounded-delay context
after the addition of a new channel can be more complicated.

In the following sections, we illustrate our approach to network resource partition-
ing in the framework of the Tenet real-time communication protocols [44]. As described
before, these protocols are based on the real-time channel communication abstraction. The
Tenet approach is connection-oriented and reservation-based: before a real-time channel can
be used by its requester, it must be established (i.e., resources for the channel must be set
aside along its route), so that the desired performance guarantees can be provided. While
our design, simulations and implementations were done in the framework of the Tenet-style
connection establishment, the principles are equally applicable to other connection setup
protocols and techniques, including those followed by ST-2 [97], RSVP [130] and OPWA
[108].

This chapter is organized in the following manner. In Section 3.2 we discuss
resource-partitioning-oriented admission control tests for four packet scheduling disciplines:
Earliest Deadline First (EDD), First In First Out (FIFO), Rate Controlled Static Prior-
ity (RCSP), and Weighted Fair Queueing (WFQ). Section 3.3 presents a simulation-based
evaluation of resource partitioning algorithms in a multi-party communication environment.
We discuss implementation issues in Section 3.4, and Section 3.5 concludes this chapter.

3.2 Resource partitioning tests

What parts of an admission control algorithm do we need to modify to make net-
work resources partitionable according to our approach? Our ideal objective is to subdivide
a network (or, more generally, an internetwork) into a certain number of virtual networks
(or internetworks), each one of which can be treated totally independently of the others,
even though they all share the same hosts, nodes, and links. This is equivalent to saying
that we would like to con�ne our admission tests to the resources assigned to, and the chan-
nel created within, the partition to which a new channel is requesting admission, without

44

in any way involving the channels and the resources belonging to the other partitions. Net-
work resources can be partitioned in this sense if, given a number of partitions and suitable
admission tests to each partition, we can prove that all channels established in all parti-
tions always satisfy the admission tests for the full network. In this section, we show that
this goal can be reached for many packet-scheduling disciplines; we present the partitioned
admission tests for four packet scheduling disciplines: EDD, FIFO, RCSP, and WFQ. By
examining these disciplines, we show that our resource partitioning techniques are general,
as they apply to a wide spectrum of scheduling policies, and also to internetworks with
heterogeneous (e.g., multi-vendor) nodes, as well as to nodes modeled with several servers1

using di�erent scheduling disciplines. EDD is an excellent but relatively expensive policy;
RCSP and WFQ are good and less expensive; RCSP is a static-priority discipline, WFQ is
a member of the round-robin family; FIFO is not very good but probably the cheapest to
implement. Since some of the admission tests depend on the packet scheduling discipline,
the corresponding partitioned tests are also scheduler-dependent.

Note that, to be accepted, a request for a new channel must pass also, besides
the tests we discuss below, a bu�er space test in each server [45]. This test is very easy to
derive, and will be omitted for the sake of brevity throughout our discussion.

3.2.1 Resource partitioning in an EDD-scheduled server

In an EDD-scheduled server, an established channel k with a deterministic delay
bound is characterized by tk, the maximum service time for any packet belonging to this
channel, and by dk, the local delay bound (which is the maximum amount of time that
any packet on this channel will stay in this server) [117]. In addition, the load at the
server is characterized by t�, the maximum service time for any packet (real-time or best-
e�ort) serviced. We assume, for brevity of explanation, that the local admission control
process maintains the list of already established channels sorted by non-decreasing local
delay bounds (di � dj if i � j). To a new resource request R with maximum packet service
time tnew 2 we can assign a delay bound dnew, inserting the new channel into the list without
any violations of the local delay bounds if, after adding this new connection,

di �
iX

l=1

tl + t�; (3.1)

where the index i goes over all real-time channels in the server, including the new one. [49].

The test ensures that, when a packet arrives over a channel k, the maximum
amount of time it could possibly wait (before being transmitted) is bounded above by the
delay bound dk.

To determine the form of the delay bound computation if we have resource parti-
tioning, we need to introduce a few de�nitions and theorems.

1As mentioned before, a server is a network component that has resources to be allocated, e.g., a link.
2
tnew depends on the maximum packet size and the service rate at the server.

45

De�nition 3.1 A schedule S in an EDD server is a set of channels C1; C2; ::Cm with local

delay bounds d1; d2; ::dm such that d1 � d2 � :: � dm.

De�nition 3.2 Schedule S is \acceptable for �" in an EDD server if

dk �
1

�

kX
l=1

tl + t�(k = 1; 2; ::m); (3.2)

where 0 � �j � 1, tk is the maximum service time for a packet on channel Ck in the server,

and t� is the maximum service time that any packet can have in this server.

De�nition 3.3 Two or more schedules are said to be disjoint if all their pairwise intersec-

tions are empty.

Lemma 3.1 If schedule S is acceptable for � in an EDD server, then S is acceptable for all

� such that � � � � 1.

Proof: Follows directly from (3.2).

Theorem 3.1 If disjoint schedules S1; S2; ::Sr are acceptable for �1; �2; ::�r, respectively, in

an EDD server, so that
rX

h=1

�h � 1; (3.3)

then the combined schedule S = S1 [S2 [::[Sr is acceptable for
Pr

h=1 �h.

Proof: We shall prove that the theorem holds for two disjoint schedules; the extension
of the proof to r disjoint schedules is trivial. Let Ck be the k-th channel in the combined
schedule S. Without loss of generality, we assume that the channel Ck was the k1-th channel
in schedule S1. Then, k2 = k � k1 is the number of channels in schedule S2 that precede
Ck in S. Since S1 is acceptable for �1, we must have

dk1 �
1

�1

k1X
l=1

tk1 + t�; (3.4)

since S2 is acceptable for �2, and Ck follows the channel with delay bound dk2 in S,

dk1 � dk2 �
1

�1

k2X
l=1

tl + t�; (3.5)

Thus,

dk1 �
1

�1 + �2

k1X
l=1

tl +
k2X
l=1

tl

!
+ t�: (3.6)

46

Q.E.D.

We now state the admission control tests for an EDD server with resource parti-
tioning. Consider an EDD server with partitions P1; :::Pn, partition Ps being allocated a
fraction �s of the \schedulability" (or \delay") resources, so that

Pn

s=1 �s � 1. The EDD
server will guarantee this delay bound to all packets of partition Ps (with allocation �s) if

dh �
1

�s

hX
l=1

tl + t�; (3.7)

where the index h goes over all channels in partition Ps.

Note that, for EDD servers, there is also a separate bandwidth test, whose adap-
tation to the partitioning case is, however, trivial and will not be described here. The
interested reader can �nd the description and the proof in [45].

3.2.2 Resource partitioning in a FIFO server

We now describe the admission control test for a FIFO server without resource
partitioning. In a FIFO server, all real-time connections are assigned the same local delay
bound, say d. Let tra�c over a real-time connection be characterized at the network
layer by the quadruple (Xmin;Xave; I; Smax), where Xmin is the minimum interpacket
interval, Xave is the minimum average interpacket interval, I is the averaging interval, and
Smax is the maximum packet size. To a new resource request R with tra�c speci�cation
(Xmin;Xave; I; Smax) we can assign local delay bound d without violating the delay
bounds of existing connections if, after adding this new connection,

X
i

d
d

Xmini
e � Smaxi + Smax� � d � ServiceRate: (3.8)

where the index i goes over all real-time channels at that server, Smax� is the size of the
largest packet (either real-time or best-e�ort) that is to be serviced by this server, and
ServiceRate is the server speed (say in bps).

The test [125] ensures that, when a packet arrives, the maximum amount of time
it could possibly wait (before being transmitted) is bounded above by the delay bound d

associated with that server. It is easy to see that

0 < Smax� � d � ServiceRate: (3.9)

We now introduce the FIFO admission control tests with resource partitioning.

Theorem 3.2 Consider a FIFO server with delay bound d, and partitions P1; :::Pn, with

partition Ps allocated a fraction �s of the server resources such that

nX
s=1

�s � 1: (3.10)

47

The FIFO server will guarantee delay bound d to all packets of partition Ps (with allocation

�s) if

X
i

d
d

Xmini
e � Smaxi + Smax� � �s � d � ServiceRate � �s; (3.11)

where the index i goes over all channels in partition Ps.

ProofWe say that the test in (3.11) is valid if it only admits channels to the given partition
that always satisfy the test in (3.8) applied to the entire population of channels. The validity
of (3.11) can be observed by adding the admission control tests over all partitions to obtain

X
i

d
d

Xmini
e � Smaxi + Smax� �

nX
s=1

�s � d � ServiceRate �

nX
s=1

�s; (3.12)

where the index i goes over all connections in the FIFO server. Substituting (3.9) and (3.10)
in (3.12), we obtain

X
i

d
d

Xmini
e � Smaxi + Smax� � d � ServiceRate; (3.13)

that is, the resource-partitioning test in (3.8). Q.E.D.

3.2.3 Resource partitioning in an RCSP server

Hui Zhang and Domenico Ferrari designed the RCSP packet scheduling discipline
and described the admission control tests for RCSP servers (without resource partitioning)
in [125]. We �rst provide a brief introduction to RCSP, and then we describe admission
tests for partitioned RCSP servers.

A brief introduction to RCSP

Figure 3.2 shows an RCSP server for a node with x input links and a single output
link; additional links can be added by replicating the scheduler portion of the server. Only
the handling of real-time tra�c is shown in the �gure; non-real-time tra�c is collected from
the input links into per-output-link queues, each of which has the lowest static priority
among the queues for the corresponding outgoing link.

An RCSP server has two components: a rate controller and a static-priority sched-
uler. The rate controller shapes the input tra�c from each connection (so that the packets
do not violate the tra�c speci�cation when they go into the scheduler); the scheduler orders
the transmissions of the packets from all connections. By neatly separating the rate-control
and delay-control functions in this manner, RCSP achieves
exibility in allocation of delay
and bandwidth, as well as simplicity of implementation.

Conceptually, a rate controller consists of a set of regulators corresponding to each
of the connections traversing the switch; each regulator is responsible for shaping the input

48

Link
traffic)

(real-time
Input Links

on an output link

Rate Controller Scheduler

Output

1
Priority Level

Real-time Packet Queues

...

Regulator 1

Regulator 2

...

Regulated Traffic

One regulator for each
of the h connections

Regulator h n

Figure 3.2: An RCSP server (courtesy Hui Zhang)

tra�c of the corresponding connection into the desired tra�c pattern. Regulators control
the interactions between switches and reduce or eliminate jitter. Regulators achieve this
control by holding data packets for the appropriate amount of time before handing them to
the scheduler.

The scheduler services packets using a non-preemptive static-priority discipline:

� when the server chooses the next packet to transmit, the packet at the head of the
highest-priority non-empty real-time queue is chosen; the packets in each real-time
queue are serviced on a �rst-come-�rst-served basis;

� non-real-time packets are transmitted only when there are no real-time packets in the
scheduler;

� the transmission of a lower-priority packet is not preempted by the arrival of a higher-
priority packet.

RCSP admission control tests

We �rst describe the admission control tests for RCSP servers without resource
partitioning. Consider an RCSP scheduler with L priority levels, and with di as the local
delay bound associated with priority level i. To a new resource request R with tra�c
speci�cation (Xmin;Xave; I; Smax)we can assign a local delay bound dm (the delay bound
associated with priority level m) without violating the delay bounds of existing connections
if, after adding this new connection, for all priority levels l, 1 � l � L,

49

X
i

d
dl

Xmini
e � Smaxi + Smax� � dl � ServiceRate: (3.14)

where the index i goes over all channels at or above the priority level l, and Smax� is the
largest packet size that is to be serviced by this server3.

Intuitively, the tests ensure that, when a packet arrives (for a connection at priority
level l), the maximum amount of time it could possibly wait (before being transmitted) is
bounded above by the delay bound dl associated with that priority level.

We now introduce the admission control tests for RCSP servers with resource
partitioning. Consider an RCSP scheduler with L priority levels, a partition with a fraction
� of the server's resources, and with di as the delay bound associated with priority level i.
We assume, for simplicity, that the same fraction � that characterizes a partition in a server
applies to all L priority levels (each partition may have channels assigned to all priority
levels). The RCSP server will guarantee these delay bounds to all packets of this partition
if, for all priority levels l, 1 � l � L,

X
i

d
dl

Xmini
e � Smaxi + Smax� � � � dl � ServiceRate � �; (3.15)

where the index i goes over all channels in that partition, as long as the sum of the fractions
� of resources allocated to all partitions does not exceed unity.

Theorem 3.3 Consider an RCSP server with delay bounds d1; d2; :::; dL, and partitions

P1; :::Pn, with allocation �s to partition Ps. Under the condition:

nX
s=1

�s � 1; (3.16)

the RCSP server will guarantee these delay bounds to all packets of each partition Ps(s =
1; 2; :::; n) if the tests in (3.15) are satis�ed.

Proof: From the resource partitioning tests (3.15) above, we know that, for all levels
t; 1 � t � l, for all partitions Ps; 1 � s � n, the following condition holds:

X
i

d
dl

Xmini
e � Smaxi + Smax� � �s � dl � ServiceRate � �s; (3.17)

where the index i goes over all channels in partition Ps at or above the priority level t, and
Smax� is the largest packet size that is to be serviced by this server.

At level t, we add up tests (3.15) for all partitions, and we obtain

X
i

d
dl

Xmini
e � Smaxi + Smax� �

nX
s=1

�s � dl � ServiceRate �
nX

s=1

�s (3.18)

3Note that this inequality is the same as (3.8), but d is replaced by dl, and index i goes over all channels
at the same or higher priority.

50

where the index i now goes over all channels in all partitions at that server at or above the
priority level t, and Smax� is again the largest packet size that is to be serviced by this
server.

Since we have

Smax� � dl � ServiceRate; (3.19)

for all levels l; 1 � l � L, substituting (3.19) and (3.16) into (3.18), we obtain

X
i

d
dl

Xmini
e � Smaxi + Smax� � dl � ServiceRate; (3.20)

that is, the resource partitioning tests in (3.14). Q.E.D.

3.2.4 Resource partitioning in a WFQ server

We brie
y describe the admission control test for a simple Weighted-Fair-Queueing
(WFQ) server with and without resource partitioning. In WFQ, the server assigns, to each
real-time channel i being requested, a weight �i such that

X
j

�j � 1; (3.21)

where j goes over all channels in that server.
Depending on the assigned weight �j and the channel tra�c parameters, the server

computes the performance parameters it can o�er to this new channel [88].
Resource partitioning imposes a small change to this procedure. Instead of the

inequality (3.21), for a partition Ps with a fraction �s of resources, we haveX
j

�j � �s (3.22)

where j goes over all channels in that partition, including the one being requested.

3.3 Simulations

In the previous section, we demonstrated that our resource partitioning techniques
can be applied to many scheduling disciplines. In this section, we show that these techniques
are useful and e�cient.

We performed many simulation experiments to evaluate the performance of the
resource partitioning algorithms. The simulation experiments con�rmed our intuitive feel-
ings and expectations about the system's behavior under resource partitioning. Our goal
was to make the experiments as real-life as possible, so that we could con�dently predict
the behavior of our implementation of resource partitioning in the Tenet Protocol Suite 2
[60]. For example, we used the NSFNET backbone network topology (shown in Figure 2.8)
in our simulations. We assumed the rate of each link to be 45 Mbps, the propagation delay

51

along the diameter to be 40 ms, and we also assumed that we could allocate up to 80% of
the resources to real-time communication, so that non-real-time tra�c would get at least
20% of the total resources. We made the amount of bu�er space in each server large enough
that the bandwidth or processing power was the limiting resource in all servers and all
scenarios.

In all experiments, the sources and destinations for the channels were chosen uni-
formly and independently among the network nodes. To keep comparisons meaningful, we
only considered a single type of tra�c stream (i.e., a compressed video stream with a peak
rate of 1 Mbps, 30 frames per second, and four data packets per frame), and destinations
with identical performance requirements (i.e., end-to-end delay bound 400 ms); the aver-
age data rate did not matter, because the admission tests in our simulations used peak-rate
bandwidth allocation. The main metric we adopted for evaluation and comparison was
the acceptance ratio, de�ned as the ratio between the number of destinations reached with
resource partitioning and the number of destinations reached without resource partitioning.
We were also interested in comparing the computational overhead associated with admission
control, with and without resource partitioning. For this, we adopted the overhead ratio

metric, which, as in Chapter 2, is de�ned as the ratio between the computational overhead
with resource partitioning and without resource partitioning.

In this section, we present two sets of simulation experiments: one characterized
by homogeneous requests, and the other one by requests of two types, for unicast channels
and for conferences using multicast channels.

Homogeneous requests

In the �rst set of experiments presented here, we ran our simulations with sim-
plex unicast connections alone; with these connections, quantitative comparisons using the
metrics described above are particularly easy to make.

We compared the following two scenarios:

� 300 simplex unicast connections, all in the same partition, which is allocated 80% of
the network's bandwidth; we call this the \without resource partitioning" case; and

� two partitions with 150 simplex unicast connections each, and varying partition al-
locations, so that the total resource allocation for these partitions equals 80% of the
network's bandwidth; this is the \with resource partitioning" case.

We deliberately chose this workload to saturate the network, because we wanted
to observe the network's behavior under heavy real-time load.

In all �gures, we report on the horizontal axis the fraction f of the total resources
that is allocated to one of the partitions. The other partition's allocation is 100(0:8� f)%
of the total resources.

As we mentioned in Section 3.1, with resource partitioning we can expect fragmen-
tation losses; in Figure 3.3, we observe fragmentation losses of up to about 20%, depending
on the relative resource allocations to the partitions. This graph also veri�es that the

52

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

ep
ta

nc
e

ra
ti

o

Resource allocation to one partition

Figure 3.3: Acceptance ratio vs. relative partition allocation for unicast channels

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rh
ea

d
 r

at
io

Resource allocation to one partition

Figure 3.4: Computational overhead vs. relative partition allocation for unicast channels

53

partitioning scheme may be made to work fairly well, since, if the allocations are appropri-
ately chosen (i.e., if they are suitable for the actual requests), the fragmentation losses are
minimal (about 2-3%). As all channels are identical and equally distributed between the
two partitions, the best choice is that of identical allocations. Note that this curve is, as
expected, symmetrical with respect to the vertical line at f = 0:4.

Resource partitioning reduces the computational overhead associated with admis-
sion control because, during admission control tests for a new connection, we only have
to consider other connections within the same partition; without resource partitioning, we
would have to consider all the connections at that server. In this experiment, we expected
resource partitioning to lead to a reduction of about 50% in computational overhead, and
the simulation results in Figure 3.4 veri�ed this intuition.

Heterogeneous requests: multi-party communication

In the second set of experiments, we considered heterogeneous requests. Here,
some requests were for simplex unicast connections; the others were for conferences, where
the participants could share resources [62]. We considered the case where the conference
requests were all served by one partition, while the unicast connection requests were served
by the other partition. This segregation may be a natural consequence of some aspects of
multi-party communication, for instance advance reservation requirements [47].

We compared the following two scenarios:

� 150 simplex unicast connections and 50 10-person conferences, all in the same parti-
tion, which was allocated 80% of the network's resources; as above, this is called the
without resource partitioning case; and

� two partitions, with 150 simplex unicast connections in the �rst partition, and 50
10-person conferences in the second partition; partition allocations were varying, but
their total resource allocation was always equal to 80% of the network's resources.

The graph in Figure 3.5 shows an interesting phenomenon, which could be inter-
preted as the reverse of fragmentation. There is a fairly large region in which the overall
channel acceptance ratio is higher than one, i.e., the acceptance rate is higher with resource
partitioning than without resource partitioning. In these simulations, we observed reduc-
tions in computational overhead similar to those obtained in the �rst set of experiments
[58].

The above-observed phenomenon (increased channel acceptance) is easily ex-
plained in the following manner. First, resource allocation requests have varying e�ciencies
in using resources. As we saw in Chapter 2, with resource sharing, the resource require-
ments do not increase with allocation requests for additional channels [62]; this implies that
conference requests are more e�cient in using resources than isolated connections. Second,
as we mentioned before, partitioning provides protection for allocation among partitions;
in this case, partitioning ensures that the resources allocated to the �rst partition will only
be used for conferences, and not for isolated connections. As the conferences use resources
more e�ciently, the acceptance gains with conferences may be large enough to o�set and

54

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

ep
ta

nc
e

ra
ti

o

Resource allocation for first partition

Figure 3.5: Acceptance ratio vs. relative partition allocation for the multi-party communi-
cation scenario. The �rst partition is for unicast connections.

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rh
ea

d
 r

at
io

Resource allocation to the first partition

Figure 3.6: Computational overhead vs. relative partition allocation for the multi-party
communication scenario.

55

more than compensate for the fragmentation losses that we observed in the previous set of
experiments.

Resource partitioning leads to higher connection acceptance when the network is
overloaded (i.e., when the total request for resources exceeds the supply, and thus, the
admission control has to refuse some requests) and when the partitions that accommodate
resource-sharing requests do not service a large number of isolated connections.

3.4 Discussion

In the previous sections, we provided the admission control tests, with resource par-
titioning, for various packet scheduling disciplines, including EDD, FIFO, RCSP, and WFQ.
We also presented the results of our simulation experiments; these con�rm the intuition that
resource fragmentation losses due to resource partitioning are small, that resource parti-
tioning reduces admission control computational overhead, and that under circumstances
that arise naturally in multi-party communication scenarios, resource partitioning leads to
higher overall acceptance rates.

These simulations also showed that, by choosing wrong resource allocations for dif-
ferent partitions, we can seriously degrade the system performance; inappropriate resource
allocations can lead to signi�cantly lower acceptance rates. This problem can be handled
by making dynamic changes; these can be

� moving channels between partitions,

� \borrowing" resources between partitions,

� dynamically changing partition resource allocations.

Resource partitioning is an integral component of a multi-party real-time com-
munication system; for good overall system performance, it is important that the resource
partitioning mechanisms interact well with the other components of the system. including
the routing system and the mechanisms for resource sharing.

In this section, we describe the interactions of resource partitioning with the re-
source sharing mechanisms and the routing system; we also describe dynamic adaptation
mechanisms that ensure high connection acceptance rates.

Resource sharing

The simulations with multi-party communication described in Section 3.3 showed
that the resource partitioning mechanisms interact very well with the resource sharing
mechanisms; indeed, the increase in acceptance rate, which we observed in these simulations,
arose directly from the manner in which these mechanisms worked together. The protection
provided by the resource partitioning mechanisms helps protect the conference channels,
which, due to resource sharing, are more e�cient in using network resources.

56

There is at least one other interesting scenario. In some applications (e.g., dis-
tributed simulations [10]), channels belonging to di�erent sessions can share resource allo-
cations. What do we do when we learn that two (or more) channels can share resources,
though they belong to separate partitions? We can do one of the following:

� ignore resource sharing relationships across partition boundaries;

� if resource sharing can be used to save resource allocations, move all such channels to
one partition;

� allow di�erent partitions to contribute their respective share to the aggregate group
allocation.

The �rst approach is the simplest to implement, though it may lead to some
ine�ciencies in resource allocation. The other approaches lead to more book-keeping and
add complexity to the code, especially when channels are torn down.

In our initial implementation, we have taken the �rst approach mainly because it
is the simplest to implement. In the future, it would be interesting to investigate the other
approaches as well.

Routing

The routing subsystem is a key component of any multi-party real-time communi-
cation system. Good, e�cient, and robust distributed routing techniques are hard to design;
the complexity increases due to real-time performance bounds and also due to multicasting.
In addition, as we discussed in Chapter 2, resource sharing has a signi�cant impact on the
routing mechanisms. Resource partitioning adds to this complexity.

With resource partitioning, we create multiple independent subnetworks; this af-
fects routing in two manners:

� The routing service can treat di�erent partitions (subnetworks) independently. This
implies that the routing system must keep information on a per-partition basis. This
implies more bookkeeping. In addition, the routing system must re-compute state
information if the network moves channels between partitions.

� Changing partition allocation amounts to changing the characteristics (capacity) of
the corresponding servers, and the routing service must re-compute state information
accordingly.

Changing the partitions of existing channels

In our system, admission control can be viewed as an accounting system that en-
sures that the network has enough resources to support the various requests for guaranteed-
performance connections. In this view, resource partitioning can be seen as dividing a

57

server's resources among the partitions for accounting purposes, and channel requests as
identifying the account that should be debited. In this view, it is easy to see that by appro-
priate accounting, we can transfer resource requests between the servers (just charge the
resources to another account; if this is feasible, just release the resources from the previous
account). Since resource partitioning only a�ects connection establishment (and is com-
pletely invisible to the packet scheduling and data transfer functions), existing channels can
change partitions without a�ecting data transmission and delivery.

However, changing partitions raises two related issues: access control and the
interface for specifying these changes. Clearly, for changing over to a new partition, the
clients must have authorization to use the resources of that partition. Also, the network
has to de�ne interfaces for supporting this change. In particular, the establishment and
partitioning techniques can permit a channel to traverse a network, while, depending on
resource availability, charging resources to di�erent partitions on di�erent nodes along the
channel route.

\Borrowing" resources between partitions

As the simulation experiments in Section 3.3 have shown, connection acceptance
can be reduced by the wrong choice of the amounts of resources allocated to each partition;
the acceptance ratio goes down whenever one partition refuses channel requests because it
is already \overloaded" while there exists another partition in which the resource supply
exceeds the demand. One solution would be to support fast dynamic changes in partition
allocation; we will discuss it later in this section. Another possible solution would be
to permit \resource borrowing" between partitions (as in CBQ [121]); in this case, the
overloaded partition would borrow resources from the underloaded one, with the promise
that the resources would be returned if the second partition needed them.

Such borrowing would be feasible if we could predict that the second partition will
not need the resources for some time in the near future, and that the resources are lent only
for that time interval (of course, the overloaded partition can attempt borrowing resources
again at the end of this time interval). Unfortunately, this solution does not work well with
service guarantees; when the network accepts a channel request, it does not know when
the channel resources will be released (except for advance reservation requests, which we
will describe in Chapter 4). Also, the network cannot guarantee that no channel requests
will arrive for a partition in the near future. Due to these reasons, such borrowing appears
infeasible for guaranteed services.

There is one case in which the network can guarantee these \predictions". For
advance-reserved connections, the network service provider(s) can set up, as a policy deci-
sion, the minimum advance notice period; in this case, the network can con�dently claim
that no additional advance reservation requests will arrive for using resources for this mini-
mum advance notice period, and it can therefore permit such \borrowing" from a partition
of advance channels.

58

Dynamically changing partition resource allocations

As the simulations in Section 3.3 show, choosing incorrect resource allocations
can lead to underutilization of resources. One way to eliminate these losses would be to
dynamically permit changes in partition resource allocations, so that setup errors could
be corrected, and that the network could adapt to dynamic changes in resource allocation
requests.

Partitions may be owned by the network or by a client organization. A real-time
service cannot allow uncontrolled changes in partition resource allocations; the owner of a
partition has to decide if the partition's resource allocations can be reduced, and, if so, what
are the limits to the reduction. The contract to be stipulated between a partition owner
and the network managers may include clauses that will in
uence the destinations of the
resources possibly released by the partition's owner. For example, the owner of partition
A might decide that its allocation can be reduced by no more than 10% if partition B
needs extra resources, and no more than 5% if partition C needs extra resources; also, that
no reduction is allowed for any other partitions. The network must provide an interface
that will allow network managers to specify these constraints. Also, a request for dynamic
reduction of the resource allocation for a partition may not succeed if the needs of the
existing channels in that partition would exceed the reduced resource allocations.

We will discuss these mechanisms in Chapter 5.

3.5 Conclusions

For real-time communication services to achieve widespread usage, it is important
that network managers be allowed to control the services e�ectively. Resource partitioning
provides one such important capability.

In this chapter, we described our techniques for resource partitioning in real-time
networks. In our mechanisms, the partitioning computations are limited to channel estab-
lishment time; per-packet scheduling and data forwarding are not a�ected by partitioning.
These resource partitioning techniques apply to many scheduling disciplines; we presented
partition-oriented admission control algorithms for EDD, FIFO, RCSP and WFQ packet
schedulers. We also presented the results of our simulation experiments; these veri�ed the
usefulness of our techniques. These simulations also showed that resource partitioning can
substantially reduce the computational overhead associated with admission control for real-
time connections. Also, under circumstances like those described in Section 3.3, resource
partitioning techniques result in higher overall connection acceptance ratios.

Resource partitioning is an integral component of our multi-party real-time com-
munication system; it is useful for many applications, including the creation of virtual pri-
vate subnetworks and of mechanisms for advance reservation of real-time network services,
fast establishment of real-time connections, and mobile computing with real-time commu-
nication. In the next chapter, we will describe how resource partitioning mechanisms work
with the advance reservation mechanisms. In Chapter 7, we will describe some of the other
applications.

59

Chapter 4

Advance reservations

In the previous two chapters, we discussed resource sharing and resource partition-

ing; resource sharing mechanisms provide e�cient support for large-scale conferences while
resource partitioning provides an e�ective tool for the network managers to control and
distribute resource allocation among the various network service clients. In this chapter,
we will discuss the third cornerstone of out multi-party real-time communication research:
advance reservations. The ability to reserve real-time connections in advance is essential in
all distributed multi-party applications (i.e., applications involving multiple human beings)
using a network that controls admissions to provide good quality of service.

Providing advance reservations raises many important issues that encompass all
aspects of multi-party real-time communication. For example, advance booking requires
modi�cations in the client-service interface, the admission tests system, and the routing
system, among others. We will discuss each in turn in this chapter. We will �rst discuss the
requirements of the clients of an advance reservation service, and then describe a distributed
design for such a service. The description will be in the framework of the Tenet Suite 2,
which o�ers advance reservation capabilities to its clients based on the principles and the
mechanisms described here. Simulation results providing useful data about the performance
and some of the properties of these mechanisms are also presented. This chapter describes
a viable approach to constructing an advance reservation service within the context of the
Tenet Suites as well as that of other solutions to the multi-party real-time communication
problem.

We have organized this chapter in the following manner. Section 4.1 motivates
the current research in advance reservations, while Section 4.2 discusses the service re-
quirements for advance reservations. In Section 4.3, we describe the distributed advance
reservations mechanisms we have designed for, and are implementing in, the Tenet Suite 2
[60]. The principles on which our mechanisms are based, however, are easily portable to
other approaches and protocols for real-time communication. Section 4.4 describes several
important system issues, including the interaction of our advance reservation mechanisms
with those for resource partitioning, as well as with the routing system. We also present
several simulation results in Section 4.5, and conclude this chapter with a brief summary in
Section 4.6.

60

4.1 Motivation

Some of the important multimedia applications of integrated services networks
require that advance reservations be possible. The clients who wish to set up multimedia
multi-party meetings (i.e., meetings involving multiple human beings) need to schedule those
meetings in advance to make sure that all or most of the participants will be able to attend;
at the time the meeting is scheduled, they must also be certain that the network connections
and the other resources required will be available when needed and for the entire duration of
the meeting. Unfortunately, distributed multimedia applications must be supported by real-
time communication services, which are to provide the necessary quality-of-service (QoS)
guarantees, and these services cannot admit an arbitrary number of connections. Thus,
there is no guarantee that the resources for a pre-scheduled meeting will be available at the
time the meeting is expected to start, unless they can be reserved in advance.

To our knowledge, advance reservation services are not available within any of the
existing schemes for real-time communication (see for example [2, 9, 18, 97, 102, 130]). For
example, in the client-service interface of the Tenet Suite 1 [2], there is no way a client
can request the establishment of a real-time channel in advance. At any time before the
beginning of a conference, a request could arrive that is accepted and that saturates the
real-time capacity of one or more of the network's resources; this allocation, which cannot
be prevented in any practical and e�cient way1, may preclude the establishment of one
or more of the channels on which the conference depends, thereby causing the attempt to
set up the conference to fail. Nor is it possible to predict when the resources needed by
the conference will all be available, as real-time channels are to be established as soon as
possible and for an inde�nite duration.

We address here the problem of extending the Tenet scheme to allow for advance
reservations of real-time channels. Our study has been performed within the context of a
profound revision of the Tenet scheme, which has resulted in the design and development
of a second-generation protocol suite, the Tenet Suite 2. Since this suite has been built to
provide e�ective support to multi-party applications, the advance reservation service must
be regarded as one of its essential new features.

4.2 Client requirements

The only true requirement network clients with multi-party applications have, in
the area we are investigating here, is that they be allowed to specify in advance their needs
in terms of real-time channels as though these channels were to be created immediately,
and to obtain in this way a guarantee that the resources for those channels will be available
at the future time they have speci�ed. Clients will accept the necessity to reserve channels
in advance if they can convince themselves that this is the only way to avoid the risk of
partial (or total) rejection of their requests at the time they need to use the network.

1An alternative approach would be to provide pre-emption of existing channels; however, we believe that
a good service should not be pre-emptible.

61

The service model in the existing proposals and realizations of real-time commu-
nication services, including that in the Tenet Suite 1 [2], assumes that real-time channels
are requested (and established) for an inde�nite duration. Clients are not asked to specify
for how long such channels (to be called immediate channels in the sequel) will be alive,
and this non-negligibly simpli�es their tasks. When advance reservations are introduced
into such a service, the provider has to do some planning for future allocations of resources,
and this planning would be easier if the expected durations of the channels were known.
A limitation of this duration would also allow more clients to reserve channels in advance,
thereby increasing the sharing and the utilization of the resources. This modi�cation of the
service model for channels reserved in advance (henceforth to be called advance channels)
is consistent with the practice of booking other types of facilities, for example, meeting
rooms, which may never be reserved for an inde�nite amount of time. For this reason,
clients should be expected to accept this service model and conform to it without too much
di�culty, especially if negotiating an extension of the channel's duration is su�ciently easy
and inexpensive.

The same meeting-room analogy can be used to argue that, if the service provider
found it useful to adopt a coarse granularity for time, i.e., to accept only starting times and
durations that are integral multiples of, say, �ve minutes, clients would �nd it fairly easy
to conform. Similarly, clients would probably accept, though perhaps not enthusiastically,
reasonable values for the minimum and maximum advance notice with which reservation
requests can be submitted (e.g., not less than one hour and not more than six months) if
such limits were imposed by the provider.

Even with advance reservations, there is the possibility that a request be rejected.
The signi�cant di�erence with respect to the case in which a request for the immediate
creation of a channel is rejected is that there is still time to reschedule or cancel the meeting
without any great disruption of the participants' lives. A multi-party multimedia application
usually requires the establishment of many real-time channels, even if each one of them is
a multicast channel. If one or more of those channels cannot be reserved in advance for the
starting time and the duration speci�ed by the client, the client would certainly appreciate
being informed by the service provider about other values of the starting time and/or of
the duration that would make it possible to set up all the channels requested.

One way the provider could encourage advance reservations is to o�er lower charges
for an advance channel than for the equivalent immediate channel. These discounts could be
justi�ed with the same arguments that are the basis of similar discounts for airline tickets,
i.e., easier and more e�ective planning.

Thus, to summarize, an advance real-time channel will be requested by specifying,
besides the parameters that de�ne an immediate channel, the following two quantities:

(i) the starting time, and

(ii) the duration.

These two times may have to be (or to be transformed into) integral multiples of a
time granule, and the starting time may have to satisfy the constraints (if any) on advance
notice, as mentioned above. In the case of a rejection of the request, the client should be

62

noti�ed of the reason for the rejection, and of what changes to which parameters, including
(i) and (ii) above, would be e�ective in getting the request accepted.

4.3 A distributed advance reservations mechanism

A key decision concerns the organization of our advance reservation service. A
natural choice in this area is the centralized one. Most of the advance reservation services
in other �elds are centralized (e.g., hotel rooms, meeting facilities), or at least make use
of a single database (e.g., theater or airplane seats). A centralized solution for a real-time
network running the Tenet protocols is feasible, but would su�er from the problems usually
associated with centralization: the creation of a performance and reliability bottleneck, poor
scalability, and the need to keep in the central reservation agent an up-to-date view of the
present and future resource allocations throughout the network. The last problem could
be solved by centralizing all channel setups, including those of the immediate channels;
however, this would be a major departure from the Tenet approach, which, being targeted
to large internetworks, has always tried to maximize distribution of control operations.
We have therefore adopted a distributed procedure also for the establishment of advance
channels, which we now describe.

In a distributed approach, the advance reservation information must be stored in
the servers2 of the network: each server has to keep track of how much of each of its resources
has been reserved at various future times, besides knowing how much of each resource is
set aside for those channels that already exist at the present time. This increase in the
amount of state information to be recorded in each server certainly makes fault recovery
more complicated and time-consuming; however, this important problem is outside the
scope of this dissertation.

We divide the future-time axis of a server into intervals characterized by the fol-
lowing two properties:

(i) an interval does not include any instant at which a channel traversing the server starts
or ends its life; these events delimit intervals but never occur within them;

(ii) the allocations of resources to the server's partition are constant throughout an interval;
they can only change (i.e., the boundaries for some of the resources in a server can
only be moved) at the transition point from an interval to the next.

The basic mechanism used to manage the resources in a server partition is the
interval table, which lists all the channels that will traverse the server during a future
interval, together with the requirements for each of the server's resources (cf. Figure 4.1).
The interval table, an example of which is shown in Table 4.1, includes also the amounts
of each resource that are available to the partition during the interval, as well as the totals
that have been allocated to channels.

2As described before, a server is a network node or link.

63

Channel id Bu�er space Processing power

312 14 800

174 8 144

586 11 650

Resources allocated 33 1594

Resources available 50 2000

Start time 002041735

End time 002641735

Table 4.1: An example interval table in a server

Table 2 assumes that the scheduling discipline the server implements is one that
requires only bu�er space and processing power to be considered as resources (if a deadline-
based discipline is used, we need to consider also the \schedulability" or \delay" resource
[45]). In the table, bu�er space is expressed as a number of packet-sized bu�ers, and
processing power in kbits/s; times are measured in milliseconds. We have omitted several
columns that contain local bounds and other channel parameters.

When the partition in a server is empty, there is only one interval table; its top
row is empty, its start time is inception, and its end time is eternity. When an advance
channel request is received from a client, the source sends out an advance establishment
message containing, together with all the usual tra�c and QoS parameters, the start and
end times of the reservation.

The arrival of this message at an empty server causes the only existing interval to
be subdivided into three intervals: (inception, start), (start, end), and (end, eternity). For
each interval, the corresponding interval table is created; the �rst and the third have the top
rows empty, whereas the second has just the requested channel in it (assuming the available
resources are su�cient to accept the channel, i.e., assuming that the request passes all the
tests against the available resources).

The situation remains as described until a message relating to the same channel
comes back from the destination(s), assuming, for simplicity of description, that no other
establishment request is received by the server before this time. If the returning message
is a channel-accept one (i.e., at least one destination has accepted the request), then the
reservation is con�rmed; only some of the values in the second table are modi�ed to adjust
the reservations and set the local bounds. If, on the other hand, the returning message is a
channel-reject one, then the three tables are re-merged into the initial empty table.

This procedure is repeated at the arrival of every successive request at the server.
In general, such an arrival will �nd the future-time axis of the server subdivided into n

intervals, and its expected lifetime will cover completely a fraction of them, but its birth
and death may split up to two of the existing intervals; for example, in Figure 4.1, tables T01
and T56 will not be a�ected by the addition of the new channel, while T12 will be relabeled
T110 (its end time will change from t2 to t10) and T45 will be renamed T405 (its start time
will become t40 instead of t4); T23 and T34 will be updated by the simple addition of a
row corresponding to the new channel, and T102 and T440 will be created from T12 and T45,

64

respectively, in the obvious way.

resource

100%

’

0%
tt t t t t t

0 1 2 3 4 5 6
tt

1 4

New Request

’

Figure 4.1: E�ects on the intervals and interval tables of the addition of an advance channel

Thus, after the arrival of the new request, the server will have two more interval
tables; to put a curb on the proliferation of tables, we use the time granules that have been
mentioned in Section 4.2 and earlier in this section, with the provision that a client-speci�ed
time not satisfying this rule will be modi�ed to coincide with that of the nearer inter-granule
transition. Of course, if the return message is a channel-reject one, the new interval tables
(e.g., T102 and T440) will be deleted, and the others restored to their previous state.

When the current time becomes equal to the start time of an interval, the table
of the previous interval is deleted3, and the table of the next interval becomes the current
table. Those advance channels whose start time coincides with the start time of the current
interval, i.e., with the current time, can spring to life automatically in all the servers they
traverse without any need for establishment, thereby producing the illusion of being con-
nectionless, while in reality they were established in advance. This result can be smoothly
achieved in networks whose nodes have clocks that are kept in approximate synchrony by,
for instance, protocols such as NTP. Note that the intervals have variable lengths so as to
minimize the number of tables in a server. In fact, this number at any time is bounded
from above by twice the number of advance channels established in the server at that time.

3And the \initial" interval extended to include the time covered by the \previous" interval

65

4.4 Discussion

In the previous section, we described the interval-table-based mechanism for pro-
viding advance reservations for real-time channels. In this section, we will discuss several
important system issues that concern these advance reservation mechanisms. We �rst talk
about the client-service interface: the set of services that can be o�ered to the clients and
the alternatives that we decided to support in our initial implementation. We will then
talk about the constraints that the network service provider may impose on the advance
notice period as well as on the time granularity; also how placing such limits can be useful
to the network. We will then discuss how the resource partitioning mechanisms can be used
to provide a more e�cient and e�ective advance reservation service; we will conclude this
section with a discussion of aggregation, by which the admission tests for multiple servers
in a subnet can be run at the same physical node.

4.4.1 Service interface

As we discussed in Section 4.2, when advance reservations are introduced in a real-
time communication service, the service provider has to do some planning for the future
allocation of resources, and this planning would be easier if the expected durations of the
channels were known. This determination may be made by either (a) requiring the clients
to explicitly specify the start time and the duration for the advance-reserved channel, or
(b) estimating the call duration (\holding time") based on long-term tra�c analysis. For
our advance reservations service, we chose the �rst approach, mainly because we could not
rely on the estimates for the call holding time in a guaranteed-performance environment.

An important interface issue concerns the set of services o�ered. The resource
reservations can be classi�ed on two orthogonal criteria: (a) immediate vs. advance reser-
vations, and (b) whether the reservation is for a limited or unlimited time duration. This
leads to four possible sets of reservation types: (I) immediate channels with unlimited dura-
tion, (II) immediate channels with limited duration, (III) advance channels with unlimited

duration, and (IV) advance channels with limited duration. The mechanisms described in
Section 4.3 support all four options; for immediate channels, the start time should be set
to the current time, while, for unlimited duration channels, the end time is set to eternity.
It is a policy issue as to whether a particular network will provide only a subset of the
above services. For example, the current Suite 2 implementation, as described in Chapter 5
only permits the clients to specify options (I) and (IV), though option (II) is available as
a network-provided option; if the client makes a request for an immediate channel with
unlimited duration, and if the requested resources are only available for a limited time, the
network can o�er the client this option. The client, of course, is free to reject this o�er.

The network activities for setting up real-time channels include admission control
and resource reservation (RCAP), as well as setting up state information for data forwarding
in the switches (RTIP). Admission control is done at reservation request time, but the
RTIP state set-up should be done at the start of channel lifetime. For setting up this state
information, there are two alternatives: (a) at the start of data transmission time, RCAP
sends a message to set up the desired state, or (b) the client sends another message (\state

66

set-up") before starting data transmission; this messages causes the establishment of the
desired state at the servers along the channel path. We chose option (a), mainly because it
preserves uniformity between advance and immediate channels.

4.4.2 Constraints on advance notice period

The mechanisms described in Section 4.3 support reservation requests with arbi-
trarily large (or small) advance notice, as well as any \time-granularity". On the other
hand, in Section 4.2, we stated that the clients would probably accept reasonable limits
on the minimum and the maximum advance notice with which reservation requests can be
submitted if such limits were imposed by the provider. We now present several reasons why,
as a policy matter, the network service provider may impose these limits:

� The service charges may be determinable for a reasonable time duration only; the
network cannot reasonably commit the service rates for channels that will be used ten
years from now. Due to this reason, the network should limit the maximum advance
notice that a reservation request may have.

� If the service provider o�ers lower charges for advance channels than for equivalent
immediate channels, then it is important that the clients not be able to cheat the
service provider by providing very little advance notice for their reservation requests
(for example, a few seconds).

� By placing reasonable limits on advance notice period as well as on time granular-
ity, the network can limit the proliferation of interval tables; this reduces both the
computational overhead and the storage space required for maintaining the interval
tables.

4.4.3 Interactions with resource partitioning

In our real-time communication service, immediate channels co-exist with advance
channels; this co-existence leads to the following two concerns:

� Acceptance of advance-reserved channels in a server can lead to proliferation of time
intervals in the interval table; also, the immediate channels (with inde�nite duration)
span the time intervals. The combination implies that accepting advance channels
and immediate channels in the same server may lead to a signi�cant increase in the
computational overhead for running admission tests for immediate channels. For ex-
ample, with 40 channels accepted in advance, the interval table may contain up to
80 time intervals; this implies that, for an immediate channel, the computational
overhead would be about 80 times higher than if no advance channels had been ac-
cepted. Higher computational overhead implies higher establishment latency, which
is especially undesirable for immediate channels.

67

� An added concern is that the advance requests may starve out immediate channels (or
vice versa). For real-time communication services to achieve widespread usage, it is
important that the networkmanagers be allowed to control the services e�ectively; this
implies that the network service managers be able to control the amount of resources
that the advance requests may be able to reserve.

The resource partitioning mechanisms described in Chapter 3 can address the is-
sues raised here in the following manner: we can partition the resources at a server (to divide
the one physical server into two virtual sub-servers) and use one partition for supporting
advance channels and the other for supporting immediate channels. With this set-up, the
admission test computation for immediate channels is not a�ected by the advance reserved
channels; also, the managers can control the total resources that can be reserved in advance.
The dynamic partition allocation change mechanisms (described in Section 3.4) allow the
network managers to control the \borrowing" of resources between immediate and advance
partitions. Also, if the immediate partition is full, the network can \move" the channel to
the advance partition, thereby providing the option III described in Section 4.4.1

4.4.4 Interactions with routing

Advance reservations have an interesting implication for the routing system. If the
routing decisions are dynamic and load-dependent, then for an advance reserved channel,
these decisions should take into account the network load during the channel's lifetime. At
channel establishment time, the routing system does not have full information about the
network load during the channel's lifetime. At best, the network knows about some other
advance reserved channels4 overlap with that of the current request; the routing system
should use this information to make the routing decisions. This is the mechanism that we
proposed for the Tenet Suite 2 implementation [7].

On the other hand, advance reservations make rerouting channels much easier.
If a channel fails admission tests at a particular server, the network can \reroute" that
channel, or other advance-reserved channels holding reservations at that server, around
that server before data is transmitted on that channel. This \rerouting in advance" is much
easier, as the network has a lot more
exibility. The network does not have to worry about
mis-ordered and/or duplicate packets in this case.

4.4.5 Aggregating admission test computations

As we mentioned in Section 3.4, admission control can be viewed as an accounting
system that ensures that the network has enough resources to support the various requests
for guaranteed-performance connections. With resource partitioning, we can separate this
accounting and bookkeeping for immediate and advance channels. In Chapter 1, we de-
scribed a fully-distributed technique for establishing channels and for running admission
tests. A key motivation5 for a fully-distributed approach for setting up immediate channels

4These are the channels that have already been requested.
5This is in addition to all advantages of having a fully-distributed mechanism.

68

is that the system has to set up state along the channel path anyway; we cannot save much
by more centralized decision-making. On the other hand, for advance-reserved channels,
the network can gain by \aggregating" the decision-making. For example, a server can \as-
sign" its admission control decision-making to a remote node. In a sub-network, all nodes
can assign the admission control decision-making for all advance channels to a single node,
thereby choosing more localized/centralized decision-making.

This localization can be very useful:

� It reduces the establishment latency, as the admission tests for all servers in this sub-
network are made at a single node, without requiring multiple inter-node messages.
The results in [7, 59] show that inter-node messages dominate connection set-up la-
tency.

� Fault-handling becomes more di�cult in advance reservation systems; a key concern is
that the advance reservation information be saved in stable storage. With a centralized
approach, the information can be put in stable storage at this particular node; it
is more di�cult to ensure that information is stored on stable storage in a fully
distributed system (distributed consensus is required in this case).

� Rerouting, as described in Section 4.4.4, becomes easier if all resource reservation
information is available at a single node.

Thus, the network can gain by aggregating the resource reservation decision-
making, accounting and book-keeping in a pre-selected set of network nodes.

4.5 A simulation-based evaluation

We performed a number of simulation experiments to evaluate the performance of
our advance reservation mechanisms. For this discussion, we have selected four interesting
sets of simulation experiments. In the �rst set, we ran simulations of unicast channel re-
quests, with and without the advance reservation mechanisms. To distinguish the e�ects of
the two components of our advance reservation mechanisms, (namely partitioning-induced
protection and priority changing) which we describe below, we repeated the previous ex-
periments with workloads that eliminated the e�ect of one of these two components. The
third set of experiments considered multi-party advance reservation requests that varied in
conference size and in advance notice period, while the fourth set evaluated the e�ect of
time granularity on the performance of our advance reservation mechanism. In this sec-
tion, we describe the simulation scenario, the workload, and the results obtained with these
experiments.

4.5.1 Simulator description

We ran these simulations on an enhanced version of Galileo [72], an object-oriented
real-time network simulator. This version provides complete support for multi-party real-
time communication protocols, including support for advance reservations.

69

Our goal was to make the experiments as realistic as possible, so that we could
con�dently predict the behavior of our implementation of the advance reservation service
in the Tenet Suite 2 [60]. For example, we used the NSFNET backbone network topology
in our simulations (see Figure 2.8). We assumed 45Mbps for each link, and we set the
propagation delay along the diameter to 40 ms6 . In all our experiments, we created a
partition for non-real-time tra�c containing 20% of the resources in each server; this left up
to 80% of the resources for real-time communication. We also made the amount of bu�er
space in each server large enough that the bu�er space test would always be successful, and
we chose the delay bounds large enough so that schedulability would never be a problem (for
the Earliest-Due-Date (EDD) scheduling discipline that we used in our simulations). Thus,
bandwidth or processing power was the limiting resource in all servers and all scenarios.

4.5.2 Simulation workload and evaluation metrics

In all the experiments, the sources and destinations for the channels were uniformly
and independently distributed among the network nodes. We ran the same simulations
without advance reservations and with advance reservations for di�erent resource allocations
to the two partitions.

To keep comparisons meaningful, we only considered relatively homogeneous work-
loads, where all channels have identical tra�c descriptions, and all destinations specify
identical performance requirements:

� Deterministic delay bound D = 400 ms ;

� Deterministic jitter bound J = 16 ms;

� Minimum inter-packet time Xmin = 8 ms;

� Maximum packet size = 8 Kbits.

The tra�c description corresponds to that of a compressed video stream at a peak
rate of 1 Mbps, at 30 frames per second, with four data packets per frame ; the average rate
did not matter, because bandwidth was allocated according to the peak rate, and bounds
were deterministic. The start times and the durations of the channels varied randomly and
uniformly within speci�ed time intervals.

We performed many sets of experiments with varying workload parameters; for
each of these workloads, we ran many simulation experiments, and averaged the results
thus obtained.

The main metric we adopted for evaluation and comparison was the acceptance
ratio, de�ned as follows:

Acceptance ratio =
Number of destinations reached with advance reservation

Number of destinations reached without advance reservation
:

6The simulation workload and evaluation metrics are the same as those for the simulation experiments

for resource sharing and resource partitioning, in Section 2.5 and Section 3.3 respectively; this information
is provided here only for completeness.

70

We were also interested in the timeliness and the computational cost of channel
establishment, for which we used a di�erent metric: the computational overhead associ-
ated with admission control. In the simulations, we use the admission control tests for the
EDD scheduling discipline [49]. The time required to run these tests at a given node is
proportional to n, the number of already accepted resource allocations at that server when
a new request arrives. The overall establishment overhead is computed as the sum of these
n (already accepted allocations) at each node along the route of the channel. This com-
ponent of admission control computations increases as the real-time network load (number
of accepted channels) goes up. Computational overhead for other activities (for example,
for collecting the state information) does not change when this load increases (though it
depends on the route selected). We therefore focus on this admission test computation
overhead for performance evaluation. This led us to the following metric for comparing
computational overheads:

Overhead ratio =
Total computational overhead with advance reservation

Total computational overhead without advance reservation
:

4.5.3 Simulation experiments

First set: Simple workload

In the �rst set of experiments, we compared the following two scenarios:

� without advance reservations: 150 simplex unicast connections, and 50 10-person con-
ferences (each conference requiring 10 9-destination multicast channels), all in the
same partition, which was allocated 80% of the network's bandwidth; and

� advance reservations: two partitions, with 150 simplex unicast connections in the
immediate partition, and 50 10-person conferences in the advance partition; with
varying partition allocations, so that the total resource allocation for these partitions
equals 80% of the network's bandwidth.

In these (and subsequent) experiments, the channel duration varied uniformly
between two and three hours for conference channels, and between 30 minutes and ten
hours for unicast channels. The advance notice period varied uniformly between three and
four hours (in the third set of experiments, the advance notice period varied from six to
seven hours for large conference). The reservation request arrival time was chosen from a
uniform, random distribution over about ten hours. We deliberately chose this workload
to saturate the network, because we wanted to observe the network's behavior under heavy
real-time load. It should also be observed that, in this workload, all conferences are of the
same size, and that there exist resource sharing relationships among the conference channels
(only up to 2 of the 10 channels constituting a conference may be active at any given time)
so that they can share resource allocations [62, 63].

71

In Figures 4.2-4.9, we report on the horizontal axis the fraction f of the total
resources that is allocated to the immediate partition. The advance partition's allocation
is 100(0:8 � f)% of the total resources. Note that the boundary between the partitions
remained �xed for the duration of each simulation run.

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

ep
ta

nc
e

R
at

io

Resource allocation to the immediate partition

Figure 4.2: Acceptance ratio for the �rst set of experiments (simple workload)

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rh
ea

d
 R

at
io

Resource allocation to the immediate partition

Figure 4.3: Overhead ratio for the �rst set of experiments (simple workload)

In Figure 4.2, we observe that there is a large region in which the acceptance
ratio is higher than 1, i.e., in which the acceptance rate is higher with advance reservation

72

mechanisms than without these mechanisms. However, there is also a large region in which
the ratio is lower than 1. Thus, moving the resource allocation boundary is necessary
whenever the workload is such that the boundary falls in an area with low acceptance ratio.

Figure 4.3 shows that our advance reservation mechanisms reduce the computa-
tional overhead of admission control for all allocations. As we increase the allocation to the
immediate partition, the overhead increases (due to resource sharing, the computational
overhead is higher for single channels than for channels that belong to a conference [62]; the
overhead increases because we accept more individual channels at the expense of conference
channels). However, after reaching a peak value, the overhead starts decreasing (the over-
head reduction due to the increasing rejection rate of conference channels starts dominating
and o�setting the overhead increase due to the growing acceptance of individual channels).

Second set: Isolating the e�ects of two components

Our advance reservation mechanisms a�ect resource reservations in two ways: �rst,
resource partitioning provides isolation and protection between the advance requests and
the immediate requests; second, advance reservation provides higher priority to connections
that come with larger advance-notice periods. In the second set of experiments, we ran
additional simulations to separate the e�ects of the resource partitioning mechanisms from
the e�ects of priority changes. For this, we added the following scenario to those considered
in the previous set of experiments:

� only partitioning: two partitions, with 150 simplex unicast connections in the �rst
partition, and 50 10-person conferences in the second partition, where resources are
not reserved in advance;

As the graphs of Figure 4.4 show, the gains (and losses) observed in Figure 4.2 arise
primarily from the isolation and protection provided by the resource partitioning mecha-
nisms, since the two curves (\advance reservations" and \resource partitioning") essentially
coincide. However, we should remember that, in our simulations, all conferences were of
the same size (10 members each); it would be more realistic to simulate di�erent-sized
conferences, as we did in the third set of experiments discussed below. As shown in the
second diagram in Figure 4.4, the overhead of admission control is substantially lower in
the only partitioning case than in the advance reservations case, where multiple tables are
manipulated.

Third set: Multiple conference sizes and advance notice periods

In the third set of experiments, we considered di�erent types of conferences, under
the assumption that larger conferences tend to be requested with larger advance notice
periods. To reduce the simulation time, we decided to leave the immediate partition empty;
this did not a�ect our results because we were interested only in the e�ects of the priority
changes on the channels expected to be usually reserved in advance.

73

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

ep
ta

nc
e

R
at

io

Resource allocation to the immediate partition

 Advance reservations
 Only partitioning

Figure 4.4: Isolating the e�ects of the two components: acceptance ratio

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rh
ea

d
 R

at
io

Resource allocation to the immediate partition

 Advance reservations
 Only partitioning

Figure 4.5: Isolating the e�ects of the two components: overhead ratio

74

We compared the following three scenarios:

� 10 50-person conferences, and 50 10-person conferences, all in the same partition,
which was allocated 80% of the network's bandwidth; we call this the without advance
reservations case;

� two partitions: the �rst partition empty; 10 50-person conferences and 50 10-person
conferences in the second partition, where resources are not reserved in advance; we
call this the only partitioning case; and

� two partitions: the �rst partition empty; 10 50-person conferences and 50 10-person
conferences in the second partition, where resources are reserved in advance; we call
this the advance reservations case.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

ep
ta

nc
e

R
at

io

Resource allocation to the immediate partition

Advance reservations
Only partitioning

Figure 4.6: Multiple advance notice periods and conference sizes: acceptance ratio

As the graphs in Figure 4.6 show, when we consider conferences with di�erent
sizes, the higher priority provided by the advance reservation mechanisms leads to a consid-
erable increase in the acceptance ratio. Thus, the experiments show that, in general, both
components of our advance reservation mechanisms help improve the connection acceptance
rate. The overhead ratio also increases, due to the higher acceptance ratio, and, because of
the absence of immediate requests, does not have a maximum for an intermediate value of
the relative resource allocation.

Fourth set: E�ect of time granularity

In the fourth set of experiments, we decided to observe the e�ects of time granu-

larity in advance reservations.

75

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rh
ea

d
 R

at
io

Resource allocation to the immediate partition

Advance reservations
Only partitioning

Figure 4.7: Multiple advance notice periods and conference sizes: overhead ratio

We ran our tests on the advance reservations and without advance reservations

scenarios of the third set while varying the granularity of start times and durations from
1 minute to 15 minutes. We assumed that the users would ask for connections with start
times and durations that vary randomly and uniformly within speci�ed time intervals.

As in all of the experiments described above, we created a partition for non-real-
time tra�c containing 20% of the resources in each server. Figures 4.8 and 4.8 show that the
acceptance ratio and the overhead ratio decrease slightly as we increase the time granularity.
However, the lower acceptance ratio may be due to the assumption made in the simulations
that the start times are completely random within a small time interval. So, we conclude
that time granularity does not appreciably a�ect the performance of our mechanisms.

4.5.4 Resource allocation gains

With advance reservations, we obtain resource allocation gains from two distinct
sources: the protection provided by resource partitioning, and the priority change provided
by the advance reservation mechanisms. The fundamental source of resource allocation gains
is resource sharing; due to resource sharing, the conference channels are more e�cient in
allocating resources. These two factors merely enhance/facilitate this extra e�ciency. This
increase (in allocation e�ciency) occurs because these factors cause the admission system
to favor the conference channels, at the expense of non-conference channels. For example,
in the second set of experiments, without advance reservations, the system rejected about
12% of the unicast channels and one or more destinations of about 91% of the conference
channels (about 51% of conference destinations not reached); under advance reservations,
with the advance partition allocated 40% of the resources and the immediate partition
allocated 40% of the resources, the system rejected about 25% of the unicast channels and

76

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
cc

ep
ta

nc
e

R
at

io

Resource allocation to the immediate partition

Granularity = 1 minute
Granularity = 5 minute

Granularity = 10 minute
Granularity = 15 minute

Figure 4.8: E�ect of time granularity: acceptance ratio

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rh
ea

d
 R

at
io

Resource allocation to the immediate partition

Granularity = 1 minute
Granularity = 5 minute

Granularity = 10 minute
Granularity = 15 minute

Figure 4.9: E�ect of time granularity: overhead ratio

77

one or more destinations of about 20% of the conference channels (about 18% of conference
destinations not reached). If there were no conference channels, then we would observe no
extra allocation gains with advance reservations. However, if the system has a workload
mix that has either a mixture of conference and non-conference channels, or conferences
with di�erent sizes and di�erent advance notice periods, we expect results similar to those
obtained in these simulations.

In our fully-distributed advance reservation service, the allocation gains at a server
depend only on the real-time load at that server. These allocation gains depend on the
network topology, the routing system, the session holding times, the request arrival patterns,
and other such factors only because these factors in
uence the real-time load. If these
factors change but the real-time load remains the same, then the results should remain the
same. For example, simulations of Chapter 2 show that the allocation gains are similar for
networks with very di�erent topologies.

4.6 Summary

In this chapter, we presented a fully-distributed scheme for advance reservations
of real-time connections. We also presented the results of our simulation experiments; these
veri�ed the usefulness of our techniques. These experiments show that our distributed
mechanisms work, and their cost is a�ordable. An interesting feature of our advance reser-
vation mechanisms is that they favor channels that belong to conferences (and, because
larger conferences usually have larger advance notice periods, our mechanisms favor larger
conferences over smaller conferences). Conferences may not be held if there are no ad-
vance reservations; for example, a conference may not be held at all if all its channels, or a
substantial fraction of them, are not established.

In the last three chapters, we have described resource sharing, resource partition-
ing, and advance reservations; these three constitute the core of our multi-party real-time
communication system. In the next chapter, we will describe how we put these mechanisms
together in Suite 2, our multi-party real-time protocol suite.

78

Chapter 5

Implementation: Suite 2

In the previous three chapters, we discussed the three key components of our
multi-party real-time communication research: resource sharing, resource partitioning, and
advance reservations. Resource sharing mechanisms provide e�cient support for large-
scale conferences; resource partitioning provides an e�ective tool for the network managers
to control and distribute resource allocation among the various network service clients;
advance reservations enhance the service usability, and at the same time, can help improve
the network performance with better planning and o�-line routing potential.

As we mentioned before, it is critical that these components work well together,
and with other components of our real-time communication system (e.g., routing); over the
last four years, we have designed the Tenet Protocol Scheme 2 and implemented the Scheme
2 algorithms and techniques in the Tenet Protocol Suite 2. These protocols incorporate the
ideas discussed in the previous chapters to provide network support for multi-party real-
time communication. In this chapter, we describe these Tenet protocols. For the sake of
brevity, we will not distinguish between Scheme 2 and Suite 2; the former term refers to
the algorithms and techniques designed, while the latter refers to the incorporation of these
mechanisms in a set of protocols. We will focus our attention on the resource sharing,
partitioning, and advance reservations related aspects of the design and implementation;
we will only brie
y outline the other components.

In designing this second generation of Tenet protocols, we tried to minimize the
changes from the previous generation (unicast) Tenet protocols. We kept the same sepa-
ration of real-time data delivery and control protocols between RMTP/RTIP and RCAP
(as described in Chapter 1 and illustrated in Figure 1.1); within this overall framework, we
completely re-designed the signaling protocol (RCAP) for supporting multi-party commu-
nication. We brie
y describe the new Scheme 2 RCAP in Section 5.1. We will illustrate
this design with a simple connection establishment example in Section 5.1.5. Supporting
multi-party communication required two changes in RTIP: for multicasting, and for resource
sharing; we discuss these topics in Section 5.2.

79

5.1 Suite 2 RCAP

In this section, we describe RCAP, the signaling protocol for multi-party real-
time communication. In the unicast protocols, RCAP's primary tasks were connection
establishment and teardown; the connection establishment also included mechanisms for
rendezvous between the sender and the receiver. In multi-party communication, these
primary tasks become more di�cult because of the multiplicity of senders and receivers;
in addition to previously described issues as service usability and network management
and control, we also face critical concerns in security and access control, scalability, and
reliability. The signaling protocol occupies the center stage where we address these key
concerns.

In this section, we �rst describe the key design goals and trade-o�s in this design;
we will then describe the RCAP design and its embodiment in the Tenet Suite 2. We will also
illustrate the interaction of various components and modules with a simple connection set-up
example. We will conclude this section with some preliminary performance measurements
over our prototype implementation.

5.1.1 The mechanisms

In Chapter 2, we described the resource sharing mechanisms; we also described
resource partitioning and advance reservation mechanisms in Chapter 3 and Chapter 4
respectively. In this subsection, we will brie
y review these mechanisms in the Tenet Suite
2 framework.

The resource sharing mechanisms a�ect RCAP as well as RTIP; for RCAP, resource
sharing requires two sets of changes: (a) RCAP is now required to maintain resource sharing
information, i.e., the di�erent resource sharing groups, their respective aggregate tra�c
speci�cation(s), and the member channels that belong to each group; and (b) during channel
set-up at any RCAP daemon, the daemon must determine if resource sharing can be used
to reduce the resource allocation at that node. If the RCAP daemon uses resource sharing,
RTIP requires enhancements to support tra�c policing and rate control for these resource
sharing channels on the group aggregate tra�c speci�cation.

The resource partitioning and advance reservation mechanisms do not a�ect RTIP
at all; they only require changes in RCAP. Supporting resource partitioning requires changes
to admission control tests (as described in Chapter 3) as well as management software for
creating new partitions and for setting/changing the resource allocations to these partitions.
As described in Chapter 4, the basic mechanism for supporting advance reservations is the
interval table, which lists all the advance channels that will traverse the server during a
future interval, together with their requirements for each of the server's resources. The
interval table includes also the amounts of each resource that are available to the advance
partition during the interval, as well as the totals that have been allocated to advance
channels.

80

5.1.2 Suite 2 RCAP design

RCAP design goals included the following, in addition to the design goals and
objectives described in the previous chapters (for devising mechanisms for resource sharing,
partitioning and advance reservations):

� Modi�able and extensible: An important design consideration was that the proto-
cols be easily modi�able and extensible, for example, to incorporate new tra�c speci-
�cation models, packet scheduling disciplines, failure-handling techniques, underlying
network technologies etc. To achieve this modi�ability, we decided to minimize the
set of assumptions that we make about the underlying network; we also spent con-
siderable time and e�ort in designing the interfaces between modules to ensure this
extensibility.

� Speed: Although we do not need hard-real-time guarantees on RCAP requests (e.g.,
RCAP will establish connectivity within 50 ms), it is desirable that the connection
establishment be fast; most real-time clients cannot a�ord long waits for their trans-
mission to start [41]. These factors led to our single round-trip connection establish-
ment procedure; we described this procedure for unicast channels in Chapter 1; we
will describe the corresponding establishment procedure for multi-party channels in
Section 5.1.5.

� Ease of use, management, and implementation: It is important that the ser-
vices provided should be \easy-to-use" for the clients; it is also important that the
mechanisms designed should permit the network managers to e�ectively control the
network, and that the mechanisms be easy to implement. These factors are critical for
our research e�ort, because we can learn a lot from using (and running experiments
on) a prototype implementation.

� Location independence: In our model, a typical conference may be organized by
a party (the organizer) who may not otherwise participate in the conference. This
implies that a channel may be set up (or torn down) by a user who is not located
at either the source or any of the destination(s) for that channel. Thus, RCAP
must support the users making the channel set-up/modi�cation/teardown calls from
anywhere in the network, and all the network's behavior should be independent of
where the calling user is located.

These considerations led to our object-oriented design for RCAP; we now enumer-
ate some salient components and features of this design:

� Partial establishment semantics: Multicasting raises an important concern re-
garding connection establishment semantics: a channel establishment request may
only be able to obtain resources along the paths to a subset of destinations. At least
two alternatives exist: (a) the network can declare that the connection establishment
succeeded (partially), or (b) the network can declare that the connection establish-
ment failed (all-or-nothing).

81

The �rst option simpli�es the implementation and provides \best-e�ort" connectiv-
ity; the second option provides stronger semantics (if the connection establishment
succeeds, the sender knows that all destinations' performance requirements are met).
We chose the �rst option, mainly due to ease of implementation and scalability con-
siderations.

� Location and naming service: Location independence requires that clients be
able to set-up and/or manipulate the channels from anywhere. This implies that all
network entities (including multicast groups, channels, entities for resource sharing,
and so on) be addressable and accessible from anywhere in the network; these entities
must have globally unique identi�ers (\names"), and the naming service should be
able to return the location of the node where that entity resides1.

For our prototype implementation, we chose a simple naming convention to address
this issue; all names are 64-bit long, where the �rst 32 bits provide the location
address; this greatly simpli�es the location and naming system (LNS), though it also
implies that these entities can not migrate between nodes in the network.

� Ranges for performance parameters The Tenet Scheme 2 allows the users to
specify ranges of performance parameters (instead of single values); for example, the
user speci�es a desired value for end-to-end delay bound as well as upper limit on
acceptable values for the delay bound. If the network can not meet the desired ser-
vice but can provide service within the acceptable range, the channel establishment
succeeds. In many cases, the use of ranges avoids repeated re-negotiations between
the network and the client [112, 60, 99, 100].

5.1.3 Client interface

Suite 2 RCAP is an object-oriented distributed system for supporting multi-party
real-time applications. We now describe how the three components { resource sharing,
resource partitioning, and advance reservations { a�ected the client interface that RCAP
provides. As we described before, RCAP provides a location-independent service; the result
of an RCAP request is independent of the network node (and the RCAP daemon) that
received the user's request.

Logically, a channel transmits data from a single sender to a Target set; thus, to
establish communication, the organizer(s) must �rst create a Target set2 and then only can
the organizer set up the appropriate channel(s) and any resource sharing group(s).

Resource sharing introduces a naming problem: To specify resource sharing rela-
tionships, we need to specify the channels that can share resource allocations; this requires
the clients to specify the channel-ids for these channels. Now, in the previous-generation
RCAP, these channel-ids were returned as a result of the channel establishment process; in

1Some of these entities can be distributed. For ease of explanation, in this discussion, we assume that

these entities are not distributed.
2As mentioned before, the object creator gets the authorization key to access and manipulate that object;

the creator can pass the key to other authorized users.

82

our case, we need to specify these sharing relationships (and thus, the channel-ids) before
we establish the channels. To get around this problem, we separated the channel creation
(and naming) from the channel establishment: the client �rst invokes the network to create
the channel (and to return the channel-id to the caller); the client then invokes channel-
establishment (specifying the channel-id in this call). In between these calls, the client can
provide the resource sharing related information.

We now illustrate this client interface with a simple example. Consider a client
who wishes to set up three channels, all advance channels, of which two can share resource
allocations. The sequence of client requests for this case can be:

1. Create Target Set(): This call takes no parameters and returns Target Set Id, say
TS1 in this case.

2. Create Channel(): This call takes the following parameters: Target Set Id (TS1),
channel source node (say A) and the partition whose resource the channel can use; it
returns Channel Id, say ChA in this case.

3. Create Channel(): Two more calls, to create ChB and ChC respectively.

4. Set Advance(): This (optional) call is only required for advance-reserved channels.
It takes two parameters: Channel Id and the channel start and end time. In our case,
the client will make three calls, once for each channel.

5. Create Group(): This call takes two parameters: the aggregate tra�c speci�cation
and the maximum concurrency (as described in Chapter 2). It returns Group Id, say
G in this case.

6. Include(): This call takes two parameters: Channel Id and Group Id and informs
the network that the speci�ed channel belongs to the speci�ed group. In our case,
the client will make two calls, once with parameters (ChA,G) and the other with
parameters (ChB,G).

7. Establish Channel(): This call takes one parameter, the Channel Id. In our case,
the client will make three calls, once for each channel.

5.1.4 Suite 2 RCAP architecture

Figure 5.1 shows the real-time communication system: there exists one RCAP
daemon on every network node and each RCAP daemon talks with the RMTP and RTIP
entities at that node. Each RCAP daemon also talks with the applications at that node, as
well as with other (remote) RCAP daemons. In addition, each RCAP daemon talks with
the routing system through its Routing Stub Object; in this manner, this design isolates
the RCAP daemon from changes in the routing system. Any changes in the routing system
are re
ected only in the Routing Stub Object.

83

RTIP RMTP

RCAP daemon

RTIP RMTP

RCAP daemon

RTIP RMTP

RCAP daemon

Figure 5.1: Real-time communication network with RCAP

Message

dispatcher

LNS

Socket

Object

Object

Object
Group

Channel

Target Set Target Set

Channel

Group

Manager

Manager

Manager

Establishment Controller

Partition ControllerMessage
Queue

Figure 5.2: Internal structure of RCAP daemon

84

In this section, we will describe the internal structure of RCAP; we will describe
the various components of RCAP as well as their interactions; in this description, for ease
of explanation, we present a slightly simpli�ed (and abridged) view of the internal RCAP
structure and interactions. Figure 5.2 shows the internal structure of the RCAP daemon.
The RCAP daemon design is object-oriented; each daemon consists of a collection of RCAP
objects (i.e., the objects inside an RCAP daemon) along with a message dispatcher and a
Location and Naming Service (LNS). For example, there exists one Target set object for
each user-created Target set, one Channel object for each created channel, and one Group
object for each channel group (for resource sharing). At each RCAP daemon, there also
exist one manager object for each of these object classes (Target set, Channel, Group); upon
user requests, these managers dynamically create (and destroy) objects of their respective
classes. At each RCAP daemon, there also exist several other objects, including a Partition
Controller (for managing partition allocation consistency), and an Establishment Controller
(for handling channel setup and teardown requests).

In RCAP, all inter-object communication is conducted through RCAP messages
(regardless of whether the objects are located on the same RCAP daemon or not); this choice
greatly reduces the coding complexity and helps avoid deadlocks. Additionally, a network-
generated pseudo-random key is associated with each object for security and access control;
the interested reader is referred to [85] for more information about the security scheme.

When a message arrives at an RCAP daemon, the RCAP dispatcher contacts the
LNS to determine if the addressed object resides on a remote node; if so, the message is
forwarded to that node. Else the LNS returns a pointer to that object and the dispatcher
hands over the message to that object.

The RCAP daemon may also be divided into two subsystems: one for managing
multi-party communication information, including that relating to Target sets, channels,
and groups; the other subsystem for managing system resource allocation, resource parti-
tioning, channel establishment, and running admission tests. The multi-party information
management system includes the following objects:

� Target set object: There exists one Target set object for each Target set in the sys-
tem. Typically, the Target set object is located at the RCAP daemon that received the
request to create the Target set. Each Target set object maintains information about
the destinations (addresses and performance requirements) as well as the channels
that belong to that Target set. When a user requests RCAP to establish a channel,
the corresponding Channel object contacts its Target set object to obtain the destina-
tion membership list and then contacts the routing system to obtain the (multicast)
route for the destinations. When a new destination joins a Target set, the Target
set object contacts all established channel(s) (actually, their corresponding Channel
object(s)) to request them to extend (\partial establishment") the connection to this
new destination as well.

� Channel object: There exists one Channel object for each channel; in the current
prototype, the Channel object is co-located with its Target set object (i.e., these two
objects are located on the same RCAP daemon), though a new proposal suggests that

85

the Channel object should be located at the channel's source [64]. The Channel object
maintains the following information about the channel: (a) source node, (b) tra�c
parameters, (c) the partition whose resources the channel can use, (d) for channels
with resource sharing, the groups whose resources the channel can share in, (e) for
advance-reserved channels, the channel start and end time, (f) current establishment
state, and so on. The Channel object handles establishment and teardown, including
incremental establishment/teardown when new destinations join (or existing destina-
tions leave) the same channel, which is \live".

� Group object: There exists one Group object for each channel group; these group
objects currently maintain resource sharing information: for each group, the corre-
sponding Group object maintains the aggregate tra�c speci�cation and the sharing
threshold as well as the list of member channels. These Group objects also maintain
other information for optimizing routes to enhance resource sharing gains.

Object
Establishment

State
Local

Controller
Partition

RRC - P1 Link 1

RRC - P2 Link 1

RRC - P1 Link 2

RRC - P2 Link 2

Figure 5.3: Establishment subsystem

Figure 5.3 shows RCAP daemon's establishment subsystem. When a Channel
object receives a channel-establishment message, it sends a Channel-establishmessage to the
Establishment object located at the channel source node. The establishment signaling and
admission tests are performed by the establishment sub-system; this sub-system includes
the following objects:

� Establishment Controller: There exists one Establishment controller per RCAP
daemon. All establishment-related messages (to establish a new channel, to tear down
an existing channel, or to make dynamic, incremental changes) go to the Establish-
ment Controller (EC) on that node. The EC looks up the partition and routing

86

information in the message to determine the servers that need to run the admission
control tests, and contacts the Partition Controller to obtain pointers to the appropri-
ate Resource Reservation Controllers (RRCs), each RRC performs admission control
for one partition on one server. The EC obtains the results of admission control from
the RRC, sets up the appropriate local state information in Local State objects (see
below), and sends appropriate messages to the EC on the next node(s).

� Partition Controller : There exists one Partition Controller (PC) at each RCAP
daemon; the PC maintains information about the various partitions on the local
servers. It is responsible for storing creating new partitions, for controlling changes
in allocations to the di�erent partitions, and for ensuring consistency among these
allocations during these changes. The PC knows about all the RRCs that exist at the
node, and returns this information when EC requests it.

� Resource Reservation Controller : There exists one Resource Reservation Controller
(RRC) per partition per server (CPU or outgoing link); for any partition on a server,
the corresponding RRC maintains admission control information; this information
includes:

{ list of resource sharing data for channels that belong to this partition-server

{ current resource allocations; this information is maintained as an interval table,
with a pointer to the appropriate admission control server for each time interval.

Admission controlTime interval

Admission controlTime interval

Admission controlTime interval

Admission controlTime interval

Admission controlTime interval

Admission controlTime interval

control

admission

RCSP

admission

control

EDDsharing

Resource

information
sharing

Resource

information

sharing

Resource

information

Partition

&

Server

information

allocation

control

admission

WFQ

admission

control

HRR

Controller

Figure 5.4: Resource reservation controller

Figure 5.4 shows the block diagram of an RRC; the RRC is responsible for main-
taining information about resource sharing on a per-partition-per-server basis and for
coordinating the admission control tests among the admission control server objects

87

(see below). If the tests succeed, it also sets up tentative reservations in the interval
table(s) and informs the EC whether the tests succeeded or failed, along with the
tentative reservations (if the tests succeeded).

� Admission Control Server (one per interval table):

The admission control server maintains state information for an interval table, and
provides admission control methods for the same; these admission control methods
depend on the scheduling discipline; in the same node, di�erent admission control
servers (ACS) may use di�erent scheduling disciplines.

� Local State Object(s): In addition to the objects described above, the Establish-
ment system includes local state objects that maintain information about the existing
channels, including their tra�c speci�cations, routes, and so on. This information is
used for subsequent processing (changing the speci�cations, dynamically changing a
channel's destinations, tearing down connection requests, and so on.)

5.1.5 Connection establishment in Tenet Suite 2

We now illustrate the sequence of RCAP activities for connection establishment
with a simple example; we will use the example of Section 5.1.3.

At Step 1, the RCAP daemon receiving the Create Target Set request sends the
request to the local Target Set Manager; this manager creates a new Target Set object and
returns the object-id (TS1) to the client, along with the object's secret key. At Step 2,
the RCAP daemon receiving the Create Channel call forwards the request to the daemon
where TS1 is located; at this daemon, the request is forwarded to the Channel Manager
which creates a new Channel object, records the relevant information (channel source node,
partition, tra�c speci�cation and so on.) and returns the object-id (ChA) to the client (along
with the channel's secret key); the Create Channel calls of Step 3 are handled in a similar
manner. The calls in Step 4 are forwarded to the appropriate Channel objects, which record
the information provided (advance channel, start time, end time) within themselves.

At Step 5, the RCAP daemon receiving the Create Group request sends the request
to the local Group Manager; this manager creates a new Group object, records the group
tra�c speci�cation and threshold, and returns the object-id (G) to the client (along with the
group's secret key). The Include calls of Step 6 are forwarded to the appropriate Channel
objects, which record the Group Id (G) within themselves.

The Establish Channel requests of Step 7 are forwarded to the appropriate Chan-
nel objects. For channels with resource sharing, the Channel objects contact the Group
object(s) (in our case, G) to get the group tra�c and threshold speci�cation; these channel
objects also obtain routing-related information for maximizing route overlaps among them-
selves. The Channel object then contacts the routing system (via the Routing Stub object)
to obtain a multicast route. It then composes a Channel-establish message; this message
includes the channel tra�c, partition, resource sharing related information (if any), and,
for advance reserved channels, the start and end times. It then sends this Channel-establish
message to the Establishment object at the channel source node.

88

At each node along the (multicast) route, the Establishment object parses the
establishment message and requests the Establishment system to perform admission tests
(we will describe that procedure a little later in this section), and, if successful, to make
the reservations. If the tests fail, a channel reject message is sent back along the path;
otherwise, the Establishment object updates and forwards the Channel-establishmessage to
the Establishment objects at the next node(s) down along the multicast route. This process
continues hop-by-hop to the various destinations; at each destination, the Establishment
system performs admission tests to determine if end-to-end performance bounds can be
met. Depending on these results, either a channel accept or a channel reject message is sent
back to the previous node.

At each node along the return path, resources are committed for each branch
along which at least one destination was reached, and released otherwise. When replies
are received from all downstream branches, a channel accept message is sent back to the
previous upstream node, except if all messages received were of the channel reject type, in
which case a channel reject message is sent back. The Establishment object at the channel
source then reports the results to the Channel object, which then returns this information
to the client.

We now describe, in detail, the sequence of actions in the Establishment system
for admission control during connection establishment.

1. From the Channel-establishment message, the EC determines the Partition that the
channel belongs to, along with the routing information, from which it determines the
servers on which the admission tests should be run.

2. The EC contacts the Partition Controller (PC) with the < PartitionId; ServerId >

tuple(s), and obtains the pointers to the appropriate RRCs.

3. The EC invokes the RRC, passing the channel parameters (e.g., tra�c, reservation
time parameters, resource sharing).

4. The RRC determines whether resource sharing can be used to bypass running admis-
sion tests; if not, the RRC determines the intervals over which the tests should be
run. This process may also split up to two interval tables.

5. The RRC invokes admission control servers for all appropriate time intervals, and
invokes a resolver on the returned results, which include information about whether
the tests succeeded, and, if the tests succeeded, the local performance parameters,
including bounds on delay and jitter; the resolver selects the bounding value for the
results.

6. If all tests succeed, the RRC sets up tentative reservations in the interval table(s).

7. The RRC returns the admission control results to the EC, which, if the admission
control tests succeed, sets up local state information and sends an updated channel-

establishment message to the next node along the channel route. If the admission
control tests fail, the EC sends back an establishment-fail message.

89

Source

Destination Node

icsib27

icsib31

icsib12icsib83

icsib84

icsib41

icsib27

Figure 5.5: Network topology for the experiment

8. When the channel-establishment message reaches a node which is also a destination
for the channel, the EC invokes destination tests to determine whether the end-to-
end performance requirements were met, and sends back establishment-success or
establishment-fail message accordingly.

9. When a node receives all establishment-success/fail messages from the downstream
nodes, it sends back an establishment-success/fail messages back to the upstream
node; an establishment-fail message is sent back only if establishment failed for all
downstream nodes.

5.1.6 Suite 2 RCAP measurements

One concern often expressed about admission control is that the admission tests
might add considerably to the cost of connection establishment. To address this issue,
we measured round-trip delay, per-hop latency, and the time spent in running admission
tests on a prototype implementation; this implementation (over 40K lines of C++ code)
includes the resource sharing, resource partitioning, and advance reservation mechanisms
that we described in the previous three chapters. We now report the results obtained with
a network of Sun Sparc 1 class workstations. The measurements were collected using the
logical topology shown in Figure 5.5, which contains one branch node and three destination
nodes; the longest path contains four hops. The measurements were collected using a simple
tree topology with one branch node and three destination nodes; the maximum number of
hops (from source to any destination) is four. Table 5.1 shows the typical ranges of measured
establishment delays; in this Table, the start-up latency includes the time from the Channel
object receiving the Establishment request to the time the Channel-establish messages is
sent to the Establishment object.

For this tree topology (over ethernet) the total round-trip delay for channel es-
tablishment is 110 to 130 ms; the channel establishment time is dominated by message
transport delays and the user-kernel overhead. We broke down the channel establishment

90

Round-trip Start-up Per-node Communication
delay latency latency overhead (TCP/IP)

Non-advance 110 - 125 8 - 10 Forward : 5 - 7 50 - 60
Reverse : 1.5 - 2.5

Advance 115 - 130 8 - 10 Forward : 5 - 7 50 - 60
Reverse : 1.5 - 2.5

Table 5.1: Channel establishment times (ms)

latency into per-node components; as mentioned in Table 5.1, setting up the state informa-
tion during the forward pass takes about 6ms per node, and the con�rmation on the reverse
pass takes about 2ms per node. The admission tests take less than 1ms per node, which is
small compared to the channel establishment latency3.

These results are similar to the connection establishment latency for Tenet Suite
1 without advance reservations, where the establishment time was about 80 to 90 ms for
unicast channels with six hops4 [7].

These measurements were made on our un-optimized initial prototype; the exces-
sive communication overhead (50-60ms) is due to the manner in which we implemented
inter-RCAP communication in this prototype, which is done via reliable TCP messages.
In our prototype implementation, for simplicity and ease of implementation, the RCAP
daemon opens a new TCP connection whenever it wants to send a message to another
RCAP daemon, and closes this TCP connection after sending the message. Thus, every
RCAP message transmission picks up this extra TCP connection open/close overhead. We
believe that we can reduce the connection establishment time by 30-35ms by keeping open
the TCP connections used for signaling (for example, to adjoining neighbors or by caching
these connections).

5.2 RMTP and RTIP

RTIP is the network layer data delivery protocol in the Tenet protocols; RTIP
operates at each host, switch and gateway along the channel's route, and performs rate
control, jitter control, packet scheduling, and data transfer functions [118, 126, 129]. As
described before, RTIP provides simplex, sequenced, unreliable, performance-guaranteed
packet delivery service. A packet may not be delivered correctly to a connected destination
for two reasons: (a) the packet may be corrupted during transmission, or (b) due to bu�er
over
ow (for example, if the channel tra�c exceeds the pre-negotiated tra�c bounds). As
the client data is not checksummed, the packets may get corrupted in transmission (\bit-
errors on the wire").

3We obtained similar results with our measurements on a network of DEC 5000 (20-40MIPS) workstations.

4The Suite 1 measurements were over a wide-area-network, where the propagation delays contributed
about 30ms to the channel establishment latency.

91

RMTP is the transport layer data delivery protocol in the Tenet protocols; RMTP
operates at the end-nodes (senders and destinations) and uses RTIP to provide a simplex,
end-to-end, unreliable, in-order, performance guaranteed message delivery service. RMTP
tasks include message fragmentation and re-assembly, and tra�c policing. Figure 5.6 shows
the software structure for RMTP/RTIP. As RMTP does not require any changes for sup-
porting multi-party communication, we will not discuss it any further in this chapter.

Kernel
Space

User
Space

drivers

Application

RCAP

Socket layer

TCP UDP

RTIPIP

RMTP

ATM/FDDI etc.

Figure 5.6: Software structure of RMTP/RTIP (courtesy Hui Zhang)

To illustrate the changes in RTIP for supporting multi-party communication, we
�rst present a simpli�ed view of the unicast Suite 1 RTIP. Real-time channels must be
established before they can be used to transmit data. For setting up the channel at a
particular node, the RCAP daemon must inform the RTIP at that node5. This invocation
sets up the mapping from incoming Virtual Channel Identi�er (VCI) to the outgoing link and
VCI in the RTIP forwarding table. During this invocation, the RCAP daemon passes the
following information to the RTIP entity: the incoming VCI, the outgoing VCI, the outgoing
link-id, the channel tra�c speci�cation (for tra�c policing), and the local performance
bounds.

When RTIP receives a packet, it performs the following functions:

1. Compute packet header checksum; verify header consistency.

2. Use the incoming VCI to look up current state (for tra�c policing) and the forwarding
table to determine the next node6 and VCI.

5The RCAP daemon is a user-level process; the RTIP entity is in the kernel. This invocation is accom-

plished via a setsockopt call.
6Please note that this is RTIP for unicast channels.

92

3. Check the clock and compute the packet deadline7 and holding time; update tra�c
policing state.

4. Update the headers (next node VCI); recompute header checksum

5. Schedule packet for transmission in the priority queue.

5.2.1 RTIP changes for multi-party communication

RTIP requires two changes to support multi-party communication: (a) multicast-
ing requires that RTIP send copies of incoming packets on multiple outgoing links at branch
nodes, and (b) supporting resource sharing requires changes in the tra�c policing and data
forwarding mechanisms8. We now discuss each of these changes in turn.

Multicasting: Multicasting requires RTIP to forward incoming packets on mul-
tiple outgoing links at the branch nodes. To support this multiplicity in forwarding infor-
mation in the Suite 2 RTIP, the forwarding table is modi�ed to provide a linked list, where
each element provides an outgoing link and VCI. When a packet is received, in principle,
RTIP looks up the forwarding table, determines the number of outgoing links, makes that
many copies of the incoming packet, and schedules each copy for transmission on the ap-
propriate outgoing link. In practice, RTIP code is designed to avoid making unnecessary
multiple copies.

Resource sharing: As described in Section 2.2, to support resource sharing,
RTIP must support tra�c policing and rate control on the aggregate group tra�c speci-
�cation. Before resource sharing, RTIP could set up the tra�c policing and rate control
state information on a per-channel basis (and index it by VCI); with resource sharing, RTIP
must set up this state information on a per-group basis for the channels with group resource
reservation, and also allow these di�erent channels to share this state information.

Supporting this shared \group state" information requires an additional indirection
in the RTIP code. Instead of the forwarding table including (and providing direct access to)
the policing-related state information, we now have a separate \state table" which maintains
the policing state information, and the forwarding table includes pointers to this state table.
This state table has one entry for each group of channels, and one entry for each channel
that is currently not in any resource sharing relationship. The same entry in this state table
can be pointed to by many di�erent channels in the forwarding table; in this way, the state
information can be shared.

5.2.2 RCAP-RTIP interface

As we described in the previous sub-section, the RCAP-RTIP interface in Suite 1 is
via setsockopt calls; we now describe how these calls change for multi-party communication.
In Suite 1, the setsockopt call for channel setup is

7Assuming that deadline scheduling is used.
8As we mentioned before, RTIP does not require any changes for supporting advance reservations and/or

resource partitioning; these mechanisms only require changes in RCAP.

93

setsockopt(sock, IPPROTO_RTIP, RTIP_SPEC, rtip_spec, length)

where the rtip spec data structure includes: (a) the incoming VCI, (b) the outgoing VCI,
(c) the outgoing link-id, (d) the channel tra�c speci�cation (for tra�c policing), and (e)
the local performance bounds.

For channel teardown, the setsockopt call is

setsockopt(sock, IPPROTO_RTIP, RTIP_RELEASE, vci, length)

where vci provides the incoming VCI for the channel at that node.

As we mentioned in the previous sub-section, there are two changes in RTIP: for
multicasting and for resource sharing; the new RCAP-RTIP interface must provide for these
changes.

For multicasting, we can set up an initial forwarding table entry, and later add
more entries for the same channel (adding new branches to the multicast tree when a new
destination joins). Similarly, an existing destination can leave a multicast distribution tree;
in this case, RCAP needs to remove one branch of the tree without disrupting the data

ow to the other destinations. To support resource sharing, the RCAP-RTIP interface
must allow RCAP daemon to pass sharing-related information to the RTIP entity in the
kernel; for a resource sharing channel, this includes the group-id for the group whose \tra�c
policing state information" that channel should use, along with the group aggregate tra�c
speci�cation. Also, this interface is required to support dynamic changes in the channel
tra�c speci�cation [94, 93, 92, 91]; this implies that RCAP be allowed to change the tra�c
speci�cation of \live" channels9.

In designing the new interface, a key concern was to minimize the potential error
states as well as the interface complexity. Another key consideration was compatibility with
the existing RCAP-RTIP interface; in principle, Suite 1 RCAP should be able to talk to
Suite 2 RTIP, with minimal changes (or through a simple \�lter").

For channel setup, Suite 2 adds one parameter to the rtip spec data structure
in the setup (RTIP SPEC) setsockopt call: AllocId. A channel (at a node) is uniquely
identi�ed by its AllocId; in addition, at every node at which a resource sharing group is
used, that resource sharing group is uniquely identi�ed by its AllocId, which thus relates
(for resource sharing) di�erent channels. When there is resource sharing, all channels (that
belong to that group) use the same AllocId (the group's AllocId). The tra�c speci�cation
corresponds to the AllocId speci�ed in that call.

The teardown (RTIP RELEASE) call adds one new parameter: the outgoing link-
id. When RTIP gets the RTIP RELEASE call, it releases the resources associated with the
channel at that outgoing link. However, the state information associated with the channel
is maintained till all outgoing links go away. Similarly, each \tra�c policing state" entry
keeps track of the number of channels sharing that entry; when the number goes down to
zero, the state entry is deleted.

9This dynamic change will also take place when a channel switches between using channel and group
tra�c speci�cation.

94

5.2.3 An example

We now describe a simple example to illustrate the RCAP-RTIP interface, along
with the sequence of actions in RTIP for setting up the forwarding tables. We assume
requests for three channels in a node, each with tra�c requirement 1.5 Mbps10 where these
channels can share resources, with overall group requirement 4.0 Mbps; this is similar to the
example presented in Table 3.1 in Chapter 2. We also assume that the sequence of channel
setup requests at this RCAP daemon is:

1. Channel A, to outgoing link L1

2. Channel A, to outgoing link L2

3. Channel B, to outgoing link L1

4. Channel C, to outgoing link L1

The last request (for Channel C) will trigger resource sharing for outgoing link L1.
Table 5.2 shows the sequence of setup (RTIP SPEC) calls with the corresponding

parameter values.

Table 5.2: Sequence of setup (RTIP SPEC) call parameter values

Due to For Link Tra�c spec. AllocationID
call channel (Mbps)

1 A L1 1.5 A
2 A L2 1.5 A
3 B L1 1.5 B
4 C L1 4.0 G

4 A L1 4.0 G

4 B L1 4.0 G

The sequence of events in RTIP is as follows:

1. When RTIP receives the �rst call, since it has never seen Channel A before, it sets
up a new forwarding table entry; it also adds a forwarding entry for link L1 in this
table. Since RTIP has not seen AllocationID A for link L1 before, it sets up a new
State table entry for this channel, and sets up the pointer from the forwarding table
to this entry.

2. When RTIP receives the second call, since it has seen Channel A before, it re-uses the
existing forwarding table entry; it adds a forwarding entry for link L2 in this table.
Since RTIP has not seen AllocationID A for link L2 before, it sets up a new State
table entry for this channel, and sets up the pointer from the forwarding table to this
entry.

10For ease of explanation, we are using a simpli�ed tra�c speci�cation that only uses peak-rate bandwidth;
the actual tra�c speci�cation is more complex.

95

3. When RTIP receives the third call, since it has never seen Channel B before, it sets
up a new forwarding table entry; it also adds a forwarding entry for link L1 in this
table. Since RTIP has not seen AllocationID B for link L1 before, it sets up a new
State table entry for this channel, and sets up the pointer from the forwarding table
to this entry.

4. When RTIP receives the fourth call, since it has never seen Channel C before, it sets
up a new forwarding table entry; it also adds a forwarding entry for link L1 in this
table. Since RTIP has not seen AllocationID G11 for link L1 before, it sets up a new
State table entry for this channel, and sets up the pointer from the forwarding table
to this entry.

5. When RTIP receives the �fth call, since it has seen Channel A before, it re-uses the
existing forwarding table entry; furthermore, since the forwarding entry for link L1
exists, it changes that entry's state table pointer to point to the State table entry for
AllocationID G.

6. When RTIP receives the sixth call, since it has seen Channel B before, it re-uses the
existing forwarding table entry; furthermore, since the forwarding entry for link L1
exists, it changes that entry's state table pointer to point to the State table entry for
AllocationID G.

5.3 Summary

In the previous three chapters, we described resource sharing, resource partition-
ing, and advance reservations; these constitute the core of our multi-party real-time com-
munication system. In this chapter, we described, with the help of several examples, how
we integrated these mechanisms in the Tenet Protocol Suite 2 to provide network support
for multi-party real-time communication.

Supporting resource sharing required signi�cant changes in the client interface; we
separated channel creation from channel establishment, and this separation also simpli�ed
the client interface for specifying advance reservation of network resources; this interface
also mapped well to our RCAP daemon organization. The resource partitioning and ad-
vance reservation-related information is maintained at the Channel object while the resource
sharing-related information is maintained at the Group object; this sharing-related infor-
mation is collected by the Channel object at connection establishment time, and shipped
in the Channel establishment message. In keeping with our design principles, all resource
sharing-related decisions are made in a fully-distributed manner; the partition and advance
reservation-related decisions are also made in a fully-distributed manner. For example, if a
partition does not have the resources to support a channel, the RCAP daemon may decide
to borrow resources from another partition for supporting a new channel request12. This

11AllocationID G is for the resource sharing group.
12This borrowing is subject to network administration and management policies, as described in [45, 58].

96

design also promotes high
exibility and independence in decision-making, as di�erent out-
going links on the same node may make di�erent decisions. We then showed how the client
application requests are mapped to the various activities in the network communication
system for supporting multi-party real-time communication.

97

Chapter 6

Related work

In the previous chapters, we discussed the three key components of our multi-
party real-time communication research: resource sharing, resource partitioning, and ad-

vance reservations, and how these components work together in Tenet Suite 2 to provide
e�cient and useful network services for for multi-party real-time applications. Resource
sharing mechanisms provide e�cient support for large-scale conferences; resource partition-
ing provides an e�ective tool for the network managers to control and distribute resource
allocation among the various network service clients; advance reservations enhance the ser-
vice usability, and at the same time, can help improve the network performance with better
planning and o�-line routing potential.

Network support for multi-party real-time communication has been a very actively
researched area for the last several years; several other researchers have designed techniques
and mechanisms that take alternative approaches and trade-o�s for supporting these appli-
cations. Though it is instructive to see how the di�erent design goals and considerations
led to the di�erences in the mechanisms designed, a comprehensive discussion of all the
issues and approaches and mechanisms in this area would be too long. For this chapter, we
therefore decided to restrict ourselves to the work directly related to the three components
of this research: resource sharing, resource partitioning, and advance reservations.

Analogs to resource sharing exist in the �lters of Resource reSerVation Protocol
(RSVP) and in the bandwidth sharing stream groups of the Stream Transport 2+ (ST2+).
Similarly, Class-Based-Queueing (CBQ) may be viewed as being somewhat similar to re-
source partitioning. Advance reservation mechanisms have been proposed for ST2 [102, 37]
as well as for RSVP [30]. However, the overall framework and design goals signi�cantly
impact the design choices; also, it is important to see how these mechanisms work together
to provide a useful and e�cient service to the multi-party applications. Due to these rea-
sons, we have organized this chapter on a per-scheme basis. We will �rst compare and
contrast the ST2 design with ours. We will then conclude this chapter with a discussion of
Integrated Services Internet Protocols (ISIP), under which the RSVP and CBQ protocols
are being designed by the Internet research community.

98

6.1 ST2

IP multicasting provides support for multi-party communication but it does not
provide any kind of QoS assurances. ST (Stream Transport Protocol) was the �rst attempt
to provide some kind of QoS assurances in the multi-party communication environment.
The speci�cation of the �rst version of ST was published in the late 1970's and the protocol
was used during the 1980's for experimental voice and video transmission. The experience
gained in those experiments led to ST-II, the revised Stream Transport protocol. This work
was done primarily by the Internet Engineering Task Force, and a comprehensive description
of ST-II can be found in [114]. The ST-II standard has been substantially modi�ed in the
new release; the protocol is now dubbed ST2+[31]. We will use the name ST2 to refer to
the features and the mechanisms that are common to both these protocols.

ST2 permits a sender to establish a multicast connection (tree) to one or more
receiving targets. Nodes in the tree represent ST2 agents which execute the ST2 protocol.
The sender can send a continuous stream of packets that are appropriately forwarded by
the ST2 agents following the pre-de�ned routes.

ST2 was designed to inter-operate with a wide variety of networks. Consequently, it
made few assumptions about the services provided by the underlying data-link and physical
layers, and when any assumptions were made, the designers attempted to de�ne correct
behavior in the event that the underlying network did not provide those features. Thus,
while ST2 can use any QoS assurances provided by the underlying layers, it also puts in a
lot of e�ort to ensure that the protocol can run (without o�ering any guarantees, of course)
over networks that cannot provide such guarantees.

In the original ST2 transport model, the source speci�es the QoS requirements for
the stream at connection establishment time. Each ST2 agent that receives the speci�cation
makes appropriate reservations, after possibly modifying the QoS request if it cannot provide
the requested QoS. These messages
ow downstream, to the destinations, which decide
whether the �nal QoS assurances are acceptable. If a target accepts the connection, the
�nal QoS speci�cation is propagated back to the source. In the newer versions (modi�ed
ST2 as well as ST2+), if the senders sets the permissions appropriately, the receivers can also
specify their QoS requirements, and join data streams without an explicit sender noti�cation
[31, 34, 36].

The initial ST-II protocol did not have any provision for resource sharing even
though it speci�ed Stream groups which were equivalent to the channel groups that the
Tenet protocols use to specify resource sharing. ST2+ permits the applications to de�ne
bandwidth sharing stream group(s); these groups can be used for specifying resource sharing
relationships. In the ST2+ protocol, the resource sharing speci�cation is very restricted.
The application merely speci�es Nmax, the maximum concurrency; the network then com-
putes the aggregate tra�c speci�cation by multiplying Nmax with the bandwidth required
by the most demanding application to compute the aggregate bandwidth required. This
can also lead to a potential problem in that specifying such bandwidth sharing may actually
result in a request being denied when, without such sharing speci�cation, the same request
would have been accepted. Also, the resource sharing system is not integrated with the
rest of the network; therefore, the routing system cannot attempt to maximize the resource
sharing gains.

99

Several researchers have investigated providing advance reservations under ST2.
[102] proposes a signaling protocol for this purpose; the mechanism is similar to our interval-
table based advance reservation system, except that it relies on �xed-size intervals. The
�xed size intervals can lead potentially to very high computational and state management
overhead for accessing and maintaining the interval tables; we described this problem in
Chapter 4. [37] provides a good description of the various issues in reserving resources in
advance, in the context of ST2. However, we are not aware of any implementations (or even
simulations) of advance reservation mechanisms done by the authors of that paper.

The heavy emphasis on compatibility was ST2's strong point; it was also ST2's
undoing. The lack of good multi-party applications and hardware platforms severely hin-
dered the ST2 designers. ST2 also permitted \subset" implementations to allow for easy
implementation and experimentation. Unfortunately, this led to more than �fteen di�erent
implementations of ST2 which were mutually incompatible! This situation was recti�ed in
ST2+ which mandated that all \correct" implementations must support the full protocol.

6.2 Integrated Services Internet Protocols

A di�erent approach has been taken by the Internet researchers; the protocol suite
is called Integrated Services Internet Protocols (ISIP) and the project includes researchers
from MIT, Xerox PARC BBN, USC/ISI and Stanford University. In this approach, the
system architecture is divided into �ve components:

1.
ow speci�cation, which describes both the characteristics of the tra�c stream sent
by the source, and the service requirements of the application; the proposed
ow spec

is described in [96];

2. routing, which refers to the mechanisms that provide good unicast and multicast paths
for data
ow; the routing protocols under consideration include Protocol-Independent
Multicast (PIM) [21, 24, 25, 23, 22] and Distance Vector Multicast Routing Protocol
(DVMRP) [1, 17, 39, 26, 120, 122];

3. resource reservation protocol, which refers to the protocol by which the resources are
reserved inside the network for providing the QoS assurances; this ongoing research
has led to the design of RSVP [130, 108];

4. admission control, which refers to the algorithm that determines which reservation
requests to grant and which to deny, thereby maintaining the network load at an
appropriate level [69]; and

5. packet scheduling, which refers to the algorithm for selecting the next packet that
is serviced at a particular node, and when that packet may be served; two such
scheduling disciplines are FIFO+ [18] and WFQ [88].

The overall framework for this research is the Integrated Services (int-serv) Work-
ing Group of the Internet Engineering Task Force (IETF) [9]. The int-serv group's goal is

100

to provide support for guaranteed as well as \predictive" and other services in a consistent,
integrated manner in an inter-network. A key component of this approach is the use of CBQ
to logically support multiple virtual subnetworks with di�erent sets of requirements [121].
The work is currently in progress and it is yet not clear how well these di�erent modules
will work together; we will limit this discussion to CBQ and RSVP because they are the
only relevant ones to the subject of this dissertation.

6.2.1 RSVP

RSVP takes a very di�erent approach to \
ow"1 setup and management. Instead
of requiring the senders to manage the
ow, RSVP has each receiver manage its part of the

ow's distribution tree. This receiver-oriented design was prompted by the following seven
design goals at the initial stages in the RSVP design process [130]:

1. Accommodate heterogeneous receivers.

2. Adapt to changing multicast group membership.

3. Exploit the resource needs of di�erent applications to use network resources e�ciently.

4. Allow receivers to switch channels.

5. Adapt to changes in the underlying unicast and multicast routes.

6. Control protocol overhead so that it does not grow linearly (or worse) with the number
of participants.

7. Make the design modular to accommodate heterogeneous underlying technologies.

RSVP introduced several interesting features: receiver-oriented reservation as well
as maintaining \soft state" in the network2. Soft-state is information that is periodically
refreshed by the interested parties; in this case, the senders and the receivers are required to
periodically update the state at the routers. This allows the protocol to recover gracefully
from system failures in the network; it also allows the protocol to dynamically adapt to
changes in the network routing system. The problem, though, is that the reservations are
no longer guaranteed. When the routes change, there are no reservations along the new
paths till the state is refreshed (typically about 30 ms); also, there is no guarantee that
resources will be available along the new path.

RSVP is being designed as a component of the ISIP protocols; a key design goal
is that it be able to work with other existing (and future) technologies used in the Internet
and other networks. To achieve this independence from the routing system, RSVP merely
queries the routing system and uses the routes that the routing system provides. The routing
system is free to change these routes at any time; for each
ow, RSVP periodically queries

1the
ows in RSVP are somewhat similar to the streams of ST2 and the channels of the Tenet protocols.
2Soft-state was �rst described in [16]; RSVP was the �rst protocol to use soft state.

101

the routing system to dynamically adapts to these route changes. RSVP also depends on
the IP multicasting to correctly forward all packets; it merely sets up the reservations that
provide better service to these packets. Thus, the conference participants must �rst use
IP multicasting to set up a \best-e�ort" conference and then invoke RSVP to set up (and
periodically refresh) the reservations along these paths.

The receiver-oriented RSVP requires that the resource sharing relationships be
speci�ed by the receivers; for specifying these relationships, RSVP supports at least three
distinct \�ltering styles". With Fixed �lters, the receivers specify a list of senders, along
with the distinct reservation for each sender. With Shared Explicit, the receivers specify a
list of senders, along with the shared reservation for the group of senders. With Wildcard

�lters, the receivers specify a multicast group (for example, the IP HostGroup), with the
shared reservation. All senders sending data to that multicast group automatically become
eligible for sending data using that �lter. The initial RSVP speci�cation also supported
Dynamic �lters, but the dynamic �ltering style has been removed3 due to the problems in
implementing the software for supporting it.

RSVP receivers send these reservation messages (RESV) upstream to the senders
the senders for that \session". The RESV messages belonging to the same IP multicast
groups are merged together4as they travel upstream; this merging is essential for reducing
the network tra�c overhead to manageable levels. By using these receiver-speci�ed �lters
and by merging these �lters as the RESV messages move upstream, RSVP avoids the
problem of managing and accessing the Sharing Group object of the Tenet Suite 2. This
avoidance becomes especially useful as RSVP does not have to worry about handling failures
that may make this Group object unavailable; all information is available at the receivers
and this design is thus in keeping with the fate-sharing principle [16].

On the other hand, this avoidance has associated costs. It is quite possible that
di�erent receivers may specify di�erent reservation levels for the same set of senders. Since
many data streams cannot be scaled arbitrarily without serious degradation in perceived
quality (e.g. [87]), we feel that the source should specify the resource requirements (at least
in terms of bandwidth). Receiver control over bandwidth requirements can be obtained by
using layered coding schemes [80, 101, 54, 12, 119] and putting each layer in a separate shar-
ing group. Also, if di�erent receivers specify di�erent sets of senders in their speci�cations,
the merging can cause the system to violate the performance guarantees provided to the
users. Finally, merging Wildcard �lters can cause some serious looping problems [6]. The
current RSVP proposal handles this problem by introducing \SCOPE" objects which list
the set of senders in the RESV messages; this can lead to signi�cant scalability problems.

[30] proposed an advance-reservation service for predictive service under RSVP.
Since this work did not include any resource partitioning mechanisms, they ran into serious
starvation problems (advance reservations starving out immediate requests). This advance
reservation proposal has not been accepted by the RSVP Working Group at the IETF.

3Downgraded to \for further study" in the RSVP Working Group meeting [10]
4Di�erent �ltering styles are incompatible; hence, RESV messages with di�erent �ltering styles are not

merged together.

102

6.2.2 Class Based Queueing (CBQ)

Sally Floyd and Van Jacobson have devised Class-Based-Queueing (CBQ) as a
\link-sharing" scheme [50, 121, 51]. The key design goal for their e�ort was to provide a
network with the ability to support a reasonable distribution of network resources between
the di�erent entities paying for the network. Connections belonging to each paying entity get
classi�ed into a separate class. With their scheduling discipline, they provide a per-packet
data tra�c monitoring and control facility for ensuring that during congestion, the di�erent
paying classes (or customers) can obtain their expected share of the link bandwidth. When
a particular class does not require its share of link bandwidth, the same is made available to
the connections belonging to other classes. The basic link-sharing idea has been extended
to include support for hierarchies of classes.

For guaranteed-performance communication, the CBQ scheme is fairly similar to
our resource partitioning scheme; the main di�erence is that we designed our scheme for
connection-oriented real-time protocols, while CBQ is designed to work with connectionless
protocols. This is why CBQ needs a packet classi�er at each node during data delivery; we
can use the connection identi�ers that are already available to us. Due to this di�erence,
CBQ interacts with packet scheduling (for packet classi�cation) while our resource parti-
tioning scheme works without a�ecting data delivery at all. Also, because of the distinction
between channel identi�ers and partition identi�ers, we can change a channel's partition
dynamically without a�ecting the packet delivery in any manner; CBQ will require adding
an extra level of indirection to permit the same. Our routing system interacts with the
resource partitioning system to generate feasible routes; to the best of our knowledge, these
interactions have not been studied for CBQ.

6.3 Other e�orts

Pasquale et al. have proposed a stream �lter that is \... an executable module
which may be placed on a port, and implements a function which takes a speci�c set of
streams associated with that port and produces a new stream" [98]. These �lters perform
an application-level transformation of one or more streams. A multiplexing �lter could
perform a function similar to resource sharing by taking in streams from upstream nodes
and multiplexing them on to a single output stream. It should be noted, however, that
our resource sharing design does not require application-level modules within the network.
Also, we are not aware of any implementation or any further research on these �lters.

Some researchers believe that guarantees are too expensive to provide and that
most people will be willing to tolerate occasional degradation in the QoS provided if that
results in a signi�cantly cheaper network service [18, 105, 95]; they have consequently
devised other techniques and mechanisms to support these applications without providing
performance guarantees [70, 69]. It is not yet clear if these mechanisms will su�ce, or if
these mechanisms will provide cheaper service than that with performance guarantees, or if
these adaptive mechanisms will be stable.

Although Asynchronous Transfer Mode (ATM) [11, 15] is expected to be the domi-
nant technology in the near future for supporting real-time applications, the ATM standards

103

are currently under development; the current standards do not support multi-party applica-
tions and consequently the resource sharing and advance reservation issues have not arisen
yet. Our concept of partition is similar to that of virtual path (VP) in ATM networks
[104, 68, 103, 52], in that both a VP and a partition can be regarded as a set of connec-
tions. However, the connections in all partitions are real-time connections, whereas the
virtual circuits in a VP do not have to be real-time Virtual Channels; our approach applies
only to the real-time part of the tra�c. Also, while a VP is de�ned over a speci�c route,
which is the route of all its VCs, a partition can be de�ned over any fraction of the network
(or internetwork), including the whole network; thus, a set of VPs, such as those forming
a virtual private network (VPN), can be de�ned as a single partition. Another di�erence
between partitions and VPs is that VP identi�ers are used by switches to route cells, while
partitions do not in
uence switching, routing, or forwarding, as they are a purely setup-time
concept. Finally, while partitions can be nested (i.e., a partition can be subdivided into
sub-partitions, and so on), the VP-VC hierarchy has been designed to have only two levels.

104

Chapter 7

Summary and suggestions for

future work

7.1 Dissertation summary

In this research, we study the issues and tradeo�s that impact the design of net-
work services to support multi-party real-time communication in integrated-services packet-
switching networks; this dissertation presents some novel mechanisms for supporting multi-
party real-time communication in packet-switching networks.

In Chapter 1, we presented the prior work done by the Tenet Group at Berkeley in
designing and building network protocols for supporting unicast real-time communication.
These protocols serve as the framework for our research; with this framework, we described
a few salient issues that arise in multi-party communication: managing multicast group
membership, supporting dynamic changes in these groups, and supporting heterogeneity in
receivers. We then introduced the ideas that form the basis of this research e�ort: exploiting
the characteristics of multi-party communication to improve the e�ciency in using network
resources; providing the network managers with e�ective ability to control the network
resources; and providing a more usable service to the network users.

The traditional approach to supporting real-time communication allocates net-
work resources to individual connections; this approach provides well-de�ned performance
guarantees that are independent of other network tra�c. To improve network resource uti-
lization without sacri�cing well-de�ned guarantees, Chapter 2 described resource sharing;
resource sharing is based on the simple observation that in multi-party conferences, the
participants usually co-operate. This co-operation is then exploited to reduce the network
resource allocation for such multi-party applications; this increased resource allocation e�-
ciency is critical for supporting large conferences. We described the three components of the
resource sharing mechanisms: the client-service interface for the applications to explicitly
specify potential resource sharing, the changes in the resource reservation and admission
control system to support resource sharing (during the connection set-up phase), and the
changes in the data delivery protocol to ensure that the applications' real-time guarantees

105

are met even when other applications use resource sharing.

We evaluated the performance gains due to resource sharing by analysis as well as
by simulation. The analysis provided useful lower bounds on performance gains in many
di�erent cases, including sparse networks as well as dense networks with bottlenecks and
hot-spots. The analysis also showed that the routing protocols can signi�cantly impact the
resulting resource sharing gains; dynamic, load-balancing routing algorithms can reduce the
resource sharing gains, while a \sharing-aware" routing system can signi�cantly improve
the resource sharing gains. The simulation results quanti�ed the resource sharing gains
and con�rmed the analytical results: resource sharing is very useful in reducing network
resource allocation.

Resource sharing is a critical and integral component of our multi-party real-time
communication system; it is critical that resource sharing mechanisms work well with the
other components of the full system; we concluded Chapter 2 by discussing some of these
interactions.

Chapter 3 presented resource partitioning. For operational networks, it is impor-
tant that the network service managers be able to control the distribution and apportion-
ment of network resources among groups of users and/or classes of application; our resource
partitioning mechanisms provide such capability to the network service providers. These
partitioning techniques work at the connection set-up and resource reservation stage; they
do not a�ect the data delivery protocols at all. Since the resource reservation and admis-
sion test algorithms at a network server depend on the packet scheduling discipline followed
there, the corresponding partitioned admission tests also depend on the packet scheduling
discipline. In this chapter, we provided, with proofs, the admission tests with resource
partitioning, for a spectrum of packet scheduling disciplines, including Earliest-Due-Date
(EDD) [49], First-In-First-Out (FIFO) [125], Rate-Controlled-Static-Priority (RCSP) [125],
and Weighted-Fair-Queueing (WFQ) [88].

We evaluated the performance of our resource partitioning mechanisms via simula-
tion; the simulations show that our techniques are useful and e�cient, and the mechanisms
work well. The resource allocation fragmentation losses1 are reasonably small, and these
resource partitioning mechanisms can substantially reduce the computational overhead as-
sociated with running admission tests. Again, it is critical that resource partitioning mech-
anisms work well with the other components of the multi-party real-time communication
service; we concluded Chapter 3 with a discussion of these interactions.

The ability to reserve real-time connections in advance is essential in distributed
multi-party applications using a network which controls admissions to provide good quality
of service. Chapter 4 presented the design and evaluation of our mechanisms for supporting
advance reservations. We �rst discussed the requirements of the clients of an advance
reservation service, and a distributed design for such a service. It is interesting that in
addition to providing a much-needed service to these applications, the advance reservation
mechanisms also improved the network service with better planning (network dimensioning)
and routing [47].

We evaluated the performance of our advance reservation mechanisms via sim-
ulations; the simulation results demonstrated the usefulness of the mechanisms that we

1These losses are de�ned and described in Chapter 3.

106

designed. These simulations also provided useful data about the performance and some of
the properties of these mechanisms. Again, it is critical that advance reservation mech-
anisms work well with the other components of the multi-party real-time communication
service; we concluded Chapter 4 with a discussion of these interactions.

In Chapters 2, 3, and 4, we present resource sharing, resource partitioning, and
advance reservations, the three cornerstones of our multi-party real-time communication
research. In Chapter 5, we described how these components �t together to provide multi-
party real-time communication service in the Tenet Scheme 2 (and the associated protocols,
the Tenet Suite 2). We �rst discussed the design goals for the signaling protocol (RCAP)
and described how these design goals led to our design decisions. We then described the
object-oriented design of RCAP software and illustrated these interactions with a simple
connection establishment example, along with some preliminary measurements on our pro-
totype implementation.

Supporting multi-party applications also requires two key changes in RTIP, the
real-time data delivery protocol: for multicasting and for resource sharing. We described
these changes also in Chapter 5, and we concluded that chapter with a discussion of some of
the interactions between resource partitioning and advance reservations in our implemen-
tation.

Chapter 6 reviewed related work by other researchers; we contrast our approach
and research with that done by the designers of RSVP and ST2+. We �rst described the
di�erences in the design goals for each project, and we then described how these di�erent
objectives led to the di�erences in the selected mechanisms.

7.2 Suggestions for future work

Although we have made important progress in understanding issues and tradeo�s
in the design of network protocols for supporting multi-party real-time communication, a
number of issues still need to be explored further.

We have shown that resource sharing can signi�cantly improve network resource
utilization. However, a few important concerns remain. Firstly, when the RCAP daemon
(or, the Local Resource Manager of ST2+) decides to \switch" from using individual re-
source allocations to group resource allocations (and vice versa), the packets in transit may
experience extra jitter and/or re-ordering, especially if this transition requires changing
some of the local performance parameters. This phenomenon also depends on the packet
scheduling policy followed; with EDD, it is relatively simple to use extra bu�ers to ad-
dress this problem. It will be interesting to analyze other scheduling disciplines to design
mechanisms and/or policies to address this issue.

Recently, some researchers have argued that for e�ciently supporting guaranteed
performance channels, the network must handle dynamic changes in the channel tra�c
speci�cation [56, 128]; several other researchers have designed mechanisms for supporting
these dynamic changes [83, 32]. It will be useful and interesting to extend these mechanisms
to support dynamic changes in group tra�c speci�cation.

The simulation experiments used very simple, synthetic workloads; it would be

107

interesting to see the results of experiments with more realistic, complex workload models.
In particular, the simulations of Chapter 4 assumed a model in which the advance requests
were for conferences and the larger the conference, the longer the advance notice period.
We will gain useful knowledge by running experiments with di�erent workload models.
Collecting realistic workload traces and understanding the relationships between tra�c
model and real data are important areas to be explored.

It will be useful to characterize the user behavior when a resource request is re-
jected. For conference channels, establishment relationships [63] may exist among the con-
ference channels; for example, if user A is not getting the audio channel from user B, then,
at least in some scenarios, A will not be interested in seeing the video from B either. In
this case, rejecting the audio from B leads to the client rejecting the video as well, thereby
reducing the network resource allocation. Another scenario is that the users will repeat the
reservation request; this can lead to congestion with many users repeating requests that can
not be ful�lled. It is nor clear how the RCAP protocols can handle these situations.

The simulation models chose a simple, relatively homogeneous workload model;
this permitted us to reasonably compare the system performance under various conditions.
It would be useful to run simulations with more heterogeneous load distribution, especially
with di�erent receivers requesting di�erent QoS. To evaluate the performance under such
models, we will �rst need to de�ne appropriate price functions that re
ect the revenues that
the network can expect for setting up those connections.

In the near future, we can expect the emergence of small network service providers
with bandwidth leased from telcos and other communication infrastructure owners (using
resource partitioning, for example); these network providers will be able to quickly change
their network size by making appropriate requests to the telcos. This will have some in-
teresting implications on routing, network provisioning, and service pricing. For example,
if the telcos support unlimited, penalty-free changes, these network service providers will
only request the resources that they need. They will also select routes based solely on the
prices and the telcos will have to dynamically adapt the prices to the demand and availabil-
ity of resources. The interactions of these mechanisms will provide many interesting and
challenging problems.

When resources allocated at a network server (under resource partitioning) get
close to the total resource available at that server (\real-time resource congestion"), the
network system has several options: (a) the server can request an increase in resource
allocation; (b) the routing system can route channels away from that server; (c) the network
can re-route some of the existing channels away from that server; (d) the network can
dynamically migrate resources using techniques similar to those described in [8]; or (e) with
media-scaling, request the channels passing through that server to reduce their data rates.
It will be interesting and useful to study the interaction of these diverse mechanisms and
to investigate the policies for selecting among these options.

108

Bibliography

[1] Tony Ballardine, Paul Francis, and Jon Crowcroft. Core Based Trees (CBT): an
architecture for scalable inter-domain multicast routing. In Proceedings of SIGCOMM

93, San Francisco, CA, September 1993.

[2] Anindo Banerjea, Domenico Ferrari, Bruce Mah, Mark Moran, Dinesh Verma, and
Hui Zhang. The Tenet real-time protocol suite: Design, implementation, and ex-
periences. Technical Report TR-94-059, International Computer Science Institute,
Berkeley, California, November 1994. Also to appear in IEEE/ACM Transactions on
Networking, 1995.

[3] Anindo Banerjea and Bruce Mah. The design of a real-time channel administration
protocol, June 1991. Internal technical report.

[4] Anindo Banerjea and Bruce Mah. The real-time channel administration protocol. In
Proceedings of the Second International Workshop on Network and Operating System

Support for Digital Audio and Video, pages 160{170, Heidelberg, Germany, November
1991. Springer-Verlag.

[5] Arthur W. Berger, Samuel P. Morgan, and Amy R. Reibman. Statistical multiplexing
of layered video streams over ATM networks with leaky-bucket tra�c descriptors,
1993. preprint.

[6] Steven Berson and Daniel Zappala. Looping and wildcard �lters. "Pre-print", March
1995.

[7] Riccardo Bettati, Domenico Ferrari, Amit Gupta, Wendy He�ner, Wingwai Howe,
Quyen Nguyen, Mark Moran, and Raj Yavatkar. Connection establishment for multi-
party real-time communication. In Proceedings of Fifth International Workshop on

Network and Operating Systems Support for Distributed Audio and Video, Durham,
NH, April 1994.

[8] Riccardo Bettati and Amit Gupta. Dynamic resource migration for multi-party real-
time communication. Technical Report TR-95-060, International Computer Science
Institute, Berkeley, California, October 1995.

109

[9] Robert Braden, David Clark, and Scott Shenker. Integrated services in the internet
architecture: an overview. Request for Comments (Informational) RFC 1633, Internet
Engineering Task Force, June 1994.

[10] Robert Braden and Lixia Zhang. Minutes of the RSVP Working Group. In IETF

meeting, Danvers, NH, April 1995.

[11] CCITT proposed recommendation i.311, June 1991.

[12] Navin Chaddha, Mohan Vishwanath, and Philip A. Chou. Hierarchical vector quan-
tization of perceptually weighted block transforms. In Proceedings of the Data Com-

pression Conference, Snowbird, UT, 1995.

[13] Jolly Chen, Ray Larson, and Michael Stonebraker. The Sequoia 2000 object browser.
Technical Report S2K-91-04, Sequoia 2000 project, University of California at Berke-
ley, 1991.

[14] H. Cherno�. A measure of asymptotic e�ciency for tests of a hypothesis based on
the sum of observations. Annals of Math. Stat., 23:493{509, 1952.

[15] Israel Cidon, Je� Derby, Inder Gopal, and Bharath Kadaba. A critique of ATM from
a data communication perspective. Journal of High Speed Networking, 1(2), March
1993.

[16] David Clark. The design philosophy of the DARPA internet protocols. In Proceedings

of ACM SIGCOMM'88, pages 106{114, Stanford, CA, August 1988.

[17] David Clark. Policy routing in Internet protocols, May 1989. RFC 1102, SRI Network
Information Center.

[18] David Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applications in
an integrated services packet network: Architecture and mechanism. In Proceedings

of ACM SIGCOMM'92, pages 14{26, Baltimore, Maryland, August 1992.

[19] Rene L. Cruz. A calculus for network delay, part I : Network elements in isolation.
IEEE Transaction of Information Theory, 37(1):114{121, 1991.

[20] Ying dar Lin, Tzu chieh Tsai, San chiao Huang, and Mario Gerla. HAP: a new model
for packet arrivals. In Proceedings of SIGCOMM 93, San Francisco, CA, September
1993.

[21] S. Deering, D. Estrin, D. Farinacci, B. Fenner, V. Jacobson, and A. Helmy. Interop-
erability architecture and mechanisms for PIM-SM. Internet Draft, June 1995.

[22] S. Deering, D. Estrin, D. Farinacci, and V. Jacobson. Protocol independent multicast
(PIM), dense mode protocol : Speci�cation. Internet Draft, March 1994.

[23] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. Protocol
independent multicast (PIM), sparse mode protocol : Speci�cation. Internet Draft,
March 1994.

110

[24] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei, P. Sharma, and
A. Helmy. Protocol independent multicast (PIM) : Motivation and architecture. In-
ternet Draft, May 1995.

[25] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei, P. Sharma, and
A. Helmy. Protocol independent multicast (PIM): Speci�cation. Working Draft, June
1995.

[26] Stephen Deering, Deborah Estrin, Dino Farinacci, and Van Jacobson. An architecture
for wide-area multicast routing. In Proceedings of SIGCOMM '94, University College
London, London, U.K., September 1994. ACM.

[27] Stephen E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis,
Stanford University, December 1991.

[28] Steve Deering. Host Extensions for IP Multicasting. Arpanet Working Group Re-
quests for Comment, DDN Network Information Center, SRI International, Menlo
Park, CA, August 1989. RFC-1112.

[29] Steve Deering. Internet multicast routing: State of the art and open research issues,
October 1993. MICE Seminar.

[30] Mikael Degermark, Torsten Kohler, Stephen Pink, and Olov Schelen. Advance reser-
vations for predictive service. In Proceedings of Fifth International Workshop on

Network and Operating Systems Support for Distributed Audio and Video, Durham,
NH, April 1995.

[31] L. Delgrossi and L. Berger. Internet stream protocol version 2 (ST2) protocol spec-
i�cation - version ST2+. Request for Comments (Standard) RFC 1819, Internet
Engineering Task Force, August 1995.

[32] Luca Delgrossi, Christian Halstrick, Dietmar Hehmann, Ralf Guido Herrtwich, Oliver
Krone, Jochen Sandvoss, and Carsten Vogt. Media scaling with HeiTS. IBM European
Networking Center, Heidelberg, Germany, March 1993.

[33] Luca Delgrossi, Christian Halstrick, Ralf Guido Herrtwich, and Heinrich St�uttgen.
HeiTP: a transport protocol for ST-II. In Proceedings of GLOBECOMM, pages 1369{
1373 (40.02), Orlando, Florida, December 1992. IEEE.

[34] Luca Delgrossi, Ralf Guido Herrtwich, , Frank Oliver Ho�mann, and Sibylle Schaller.
Receiver-initiated communication with ST-II. Multimedia Systems, 2(4):141{149, Oc-
tober 1994.

[35] Luca Delgrossi, Ralf Guido Herrtwich, and Frank Oliver Ho�mann. An implementa-
tion of ST-II for the Heidelberg transport system. Journal of Internetworking Research
and Experience, September 1993.

111

[36] Luca Delgrossi, Ralf Guido Herrtwich, Carsten Vogt, and Lars C. Wolf. Reservation
protocols for internetworks: A comparison of ST-II and RSVP. In Proceedings of the

Fourth International Workshop on Network and OS Support for Digital Audio and

Video, Lancaster, U.K., November 1993. ACM.

[37] Luca Delgrossi, Sibylle Schaller, Hartmut Wittig, and Lars Wolf. Issues of reserving
resources in advance. In Proceedings of Fifth International Workshop on Network

and Operating Systems Support for Distributed Audio and Video, Durham, NH, April
1995.

[38] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation of a fair
queueing algorithm. In Journal of Internetworking Research and Experience, pages
3{26, October 1990. Also in Proceedings of ACM SIGCOMM'89, pp 3-12.

[39] Deborah Estrin. Policy requirements for inter administrative domain routing, Nov
1989. RFC 1125, SRI Network Information Center.

[40] Domenico Ferrari. Real-time communication in packet-switching wide-area networks.
Technical Report TR-89-022, International Computer Science Institute, Berkeley, Cal-
ifornia, May 1989.

[41] Domenico Ferrari. Client requirements for real-time communication services. IEEE

Communications Magazine, 28(11):65{72, November 1990.

[42] Domenico Ferrari. Design and applications of a delay jitter control scheme for packet-
switching internetworks. In Proceedings of the Second International Workshop on

Network and Operating System Support for Digital Audio and Video, pages 72{83,
Heidelberg, Germany, November 1991. Springer-Verlag. Also in Computer Commu-

nications 15(6):367-373, July-August 1992.

[43] Domenico Ferrari. Real-time communication in an internetwork. Journal of High

Speed Networks, 1(1):79{103, 1992.

[44] Domenico Ferrari, Anindo Banerjea, and Hui Zhang. Network support for multimedia:
a discussion of the Tenet approach. Computer Networks and ISDN Systems, pages
1267{1280, July 1994.

[45] Domenico Ferrari and Amit Gupta. Resource partitioning in real-time communication.
In Proceedings of IEEE Symposium on Global Data Networking, pages 128{135, Cairo,
Egypt, December 1993.

[46] Domenico Ferrari, Amit Gupta, Mark Moran, and Bernd Wol�nger. A continuous
media communication service and its implementation. In Proceedings of GLOBECOM
'92, Orlando, Florida, December 1992.

[47] Domenico Ferrari, Amit Gupta, and Giorgio Ventre. Distributed advance reservation
of real-time connections. In Proceedings of Fifth International Workshop on Network

and Operating Systems Support for Distributed Audio and Video, Durham, NH, April
1995.

112

[48] Domenico Ferrari, Joe Pasquale, and George Polyzos. Network issues for Sequoia
2000. In Proceedings of COMPCOM 92, pages 401{406, San Francisco, CA, February
1992.

[49] Domenico Ferrari and Dinesh Verma. A scheme for real-time channel establishment in
wide-area networks. IEEE Journal on Selected Areas in Communications, 8(3):368{
379, April 1990.

[50] Sally Floyd. Issues in
exible resource management for datagram networks. In Pro-

ceedings of the 3rd Workshop on Very High Speed Networks, Maryland, March 1992.

[51] Sally Floyd. Link-sharing and resource management models for packet networks.
Unpublished, September 1993.

[52] Shivi Fotedar, Mario Gerla, Paolo Crocetti, and Luigi Fratta. ATM virtual private
networks. Communications of the ACM, pages 101{109, February 1995.

[53] Alexander G. Fraser, Chuck R. Kalmanek, A.E. Kaplan, William T. Marshall, and
R.C. Restrick. Xunet2: A nationwide testbed in high-speed networking. In Proceedings
of INFOCOM'92, Firenze, Italy, May 1992.

[54] Mark W. Garrett and Martin Vetterli. Joint source/channel coding of statistically
multiplexed real-time services on packet networks. IEEE/ACM Transactions on Net-

working, 1(1):71{80, February 1993.

[55] M. Ghanbari. Two-layer coding of video signals for VBR networks. IEEE Journal on

Selected Areas in Communications, 7(5):771{781, June 1989.

[56] Matt Grossglauser, Srinivas Keshav, and D. Tse. The case against variable bit rate
service. In Proceedings of Fifth International Workshop on Network and Operating

Systems Support for Distributed Audio and Video, Durham, NH, April 1995.

[57] Amit Gupta. Real-time communication with mobile hosts - rerouting for hando�s.
CS292J Class Report, University of California at Berkeley, May 1993.

[58] Amit Gupta and Domenico Ferrari. Resource partitioning for multi-party real-time
communication. Technical Report TR-94-061, International Computer Science In-
stitute, Berkeley, California, November 1994. Also in IEEE/ACM Transactions on
Networking, October 1995.

[59] Amit Gupta and Domenico Ferrari. Admission control for advance-reserved real-time
connections. In Proceedings of IEEE HPCS 95, Mystic, CT, August 1995.

[60] Amit Gupta, Wendy He�ner, Mark Moran, and Clemens Szyperski. Multi-party real-
time communication in computer networks. In Collected abstracts of 4th International
Workshop on Network and Operating Systems Support for Digital Audio and Video,
pages 37{39, Lancaster, UK, November 1993.

113

[61] Amit Gupta, Wingwai Howe, Quyen Nguyen, and MarkMoran. Evaluation of resource
sharing bene�ts. Technical Report TR-94-051, International Computer Science In-
stitute, Berkeley, California, October 1994.

[62] Amit Gupta, Winnie Howe, Mark Moran, and Quyen Nguyen. Resource sharing in
multi-party realtime communication. In Proceedings of INFOCOM 95, Boston, MA,
April 1995.

[63] Amit Gupta and Mark Moran. Channel groups: A unifying abstraction for specify-
ing inter-stream relationships. Technical Report TR-93-015, International Computer
Science Institute, Berkeley, California, March 1993.

[64] Amit Gupta and Kurt Rothermel. Fault handling for multi-party real-time com-
munication. Technical Report TR-95-059, International Computer Science Institute,
Berkeley, California, October 1995.

[65] D. Hehmann, R. G. Herrtwich, W. Schultz, T. Sch�utt, and R. Steinmetz. Implement-
ing HeiTS: Architecture and implementation strategy of the Heidelberg high-speed
transport system. In Proc. Second International Workshop on Network and Operat-

ing System Support for Digital Audio and Video, pages 33{44, Heidelberg, Germany,
November 1991.

[66] Ralf Guido Herrtwich and Luca Delgrossi. Beyond ST-II: ful�lling the requirements
of multimedia communication. In Third International Workshop on network and op-

erating system support for digital audio and video, pages 23{29, San Diego, California,
November 1992. IEEE Computer and Communications Societies.

[67] Kelvin K. Y. Ho. Comparative analysis of virtual-circuit routing control for isdn
frame-relay networks. In IEEE Global Telecommunications Conference, number
GlobeCom'90, pages 800.6.1{800.6.5, San Diego, California, December 1990.

[68] Jay M. Hyman, Aurel A. Lazar, and Giovanni Paci�ci. Modeling VC, VP, and VN
bandwidth assignment strategies in broadband networks. In Proceedings of the 4th

International Workshop on Network and Operating System Support for Digital Audio

and Video, pages 99{110, Lancaster, U.K., November 1993. Lancaster University.
Lecture Notes in Computer Science 712, Springer Verlag.

[69] Sugih Jamin, Peter Dantzig, Scott Shenker, and Lixia Zhang. A measurement-based
admission control algorithm for integrated services packet networks. In Proceedings

of SIGCOMM 95, Cambridge, MA, August 1995.

[70] Sugih Jamin, Scott Shenker, Lixia Zhang, and David Clark. An admission control
algorithm for predictive real-time service. In Proceedings of the Third International

Workshop on Network and Operating System Support for Digital Audio and Video,
pages 349{356, San Diego, CA, November 1992.

[71] Ahmed Karmuch, Luis Orozco-Barbosa, Nicolas D. Georganas, and Morris Goldberg.
A multimedia medical communications system. IEEE Journal on Selected Areas in

Communications, 8(3):325{339, April 1990.

114

[72] E. W. Knightly and G. Ventre. Galileo: a tool for simulation and analysis of real-
time networks. In Proceedings of IEEE 1993 International Conference on Network

Protocols, pages 264{271, San Francisco, CA, October 1993.

[73] Jim Kurose. On computing per-session performance bounds in high-speed multi-hop
computer networks. In ACM SigMetrics'92, 1992.

[74] Jim Kurose. Open issues and challenges in providing quality of service guarantees in
high-speed networks. ACM Computer Communication Review, 23(1):6{15, January
1993.

[75] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of ACM, 20(1):46{61, January 1973.

[76] Bruce Mah. A mechanism for administration of real-time channels. Master's thesis,
Tech. Report UCB/CSD-93-735, University of California, Berkeley, CA, March 1993.

[77] N.F. Maxemchuck. Dispersity Routing in Store and Forward Networks. PhD disser-
tation, University of Pennsylvania, May 1975.

[78] Steven McCanne and Van Jacobson. VIC: video conference. Lawrence Berkeley Lab-
oratory and University of California, Berkeley. Software on-line2.

[79] Steven McCanne and Van Jacobson. vic: a
exible framework for packet video. In
Proceedings of ACM Multimedia '95. ACM, November 1995.

[80] Steven McCanne and Martin Vetterli. Joint source/channel coding for multicast
packet video. IEEE International Conference on Image Processing, October 1995.

[81] Danny Mitzel, Deborah Estrin, Scott Shenker, and Lixia Zhang. An architectural
comparison of ST-II and RSVP. In Proceedings of INFOCOM 94, Toronto, CANADA,
June 1994.

[82] Danny Mitzel and Scott Shenker. Asymptotic resource consumption in multicast
reservation styles. In Proceedings of SIGCOMM 94, London, UK, September 1994.

[83] Rebbie Moon. Dynamic tra�c management in Scheme 2 of the Tenet real-time pro-
tocols. Master's thesis, University of California, Berkeley, CA, December 1995.

[84] Mark Moran and Riccardo Gusella. System support for e�cient dynamically-
con�gurable multi-party interactive multimedia applications. In Proceedings of Third

International Workshop on Network and Operating System Support for Digital Audio

and Video, pages 143{156, San Diego, CA, November 1992.

[85] Rolf Oppliger, Amit Gupta, Mark Moran, and Riccardo Bettati. A security archi-
tecture for Tenet Scheme 2. Technical Report TR-95-051, International Computer
Science Institute, Berkeley, California, August 1995.

2ftp://ftp.ee.lbl.gov/conferencing/vic

115

[86] Antonio Ortega and Martin Vetterli. Multiple leaky buckets for increased statistical
multiplexing of ATM video. In Proceedngs of Packet Video Workshop, Portland, OR,
September 1994.

[87] Pramod Pancha and Magda El Zarki. A look at the MPEG video coding standard
for variable bit rate video transmission. Proc. IEEE INFOCOM '92, May 1992.

[88] Abhay Kumar J. Parekh. A Generalized Processor Sharing Approach to Flow Con-

trol in Integrated Services Networks. PhD dissertation, Massachusetts Institute of
Technology, February 1992.

[89] Abhay Kumar J. Parekh and Robert G. Gallager. A generalized processor sharing
approach to
ow control - the single node case. In Proceedings of the INFOCOM'92,
1992.

[90] Abhay Kumar J. Parekh and Robert G. Gallager. A generalized processor sharing
approach to
ow control in integrated services networks: The multiple node case. In
Proceedings of the INFOCOM'93, pages 521{530, San Francisco, CA, March 1993.

[91] Colin Parris. Dynamic connection management for real-time networks. PhD disser-
tation, University of California at Berkeley, August 1994.

[92] Colin Parris and Domenico Ferrari. A dynamic connection management scheme for
guaranteed performance services in packet-switching integrated services networks.
Technical Report TR-93-005, International Computer Science Institute, Berkeley, Cal-
ifornia, January 1993.

[93] Colin Parris, Giorgio Ventre, and Hui Zhang. Graceful adaptation of guaranteed
performance service connections. In Proceedings of IEEE GLOBECOM'93, Houston,
TX, November 1993.

[94] Colin Parris, Hui Zhang, and Domenico Ferrari. Dynamic management of guaranteed
performance multimedia connections, April 1993. To appear in ACM Journal of
Multimedia Systems.

[95] Craig Partridge. Isochronous applications do not require jitter-controlled networks,
September 1991. RFC 1157.

[96] Craig Partridge. A proposed
ow speci�cation. Request for Comments (Informational)
RFC 1363, Internet Engineering Task Force, September 1992.

[97] Craig Partridge and Stephen Pink. An implementation of the revised internet stream
protocol (ST-2). In Journal of Internetworking Research and Experience, pages 27{54,
1992.

[98] Joseph Pasquale, George Polyzos, Eric Anderson, and Vachaspati Kompella. The
multimedia multicast channel. In Proceedings of Third International Workshop on

Network and Operating Systems Support for Distributed Audio and Video, San Diego,
CA, November 1992.

116

[99] Jean Ramaekers and Giorgio Ventre. Client-network interaction in a real-time com-
munication environment. In Proceedings of GLOBECOMM '92, pages 1140{1144,
Orlando, Florida, December 1992.

[100] Jean Ramaekers and Giorgio Ventre. Quality-of-service negotiation in a real-time com-
munication network. Technical Report TR-92-023, International Computer Science
Institute, Berkeley, California, April 1992.

[101] Kannan Ramchandran, Antonio Ortega, K. Metin Uz, and Martin Vetterli. Multires-
olution broadcast for digital HDTV using joint source/channel coding. IEEE Journal

on Selected Areas in Communications, 11(1):6{23, January 1993.

[102] Wilko Reinhardt. Advance reservation of network resources for multimedia applica-
tions. In Proceedings of ICAWA 94, Germany, October 1994.

[103] Ken-Ichi Sato, Satoru Ohta, and Ikuo Tokizawa. Broadband ATM network architec-
ture based on virtual paths. IEEE transactions on communications, pages 1212{1222,
August 1990.

[104] J. M. Schneider, T. Preu�, and P. S. Nielsen. Management of virtual private networks
for integrated broadband communications. In Deepinder P. Sidhu, editor, Proceedings
of SIGCOMM 1993, pages 224{237, San Francisco, California, September 1993. ACM.
also in Computer Communication Review 23 (4), Oct. 1992.

[105] Henning Schulzrinne. Dynamic con�guration of conferencing applications using
pattern-matching multicast. In Proceedings of the Fifth International Workshop on

Network and OS Support for Digital Audio and Video, Durham, NH, April 1995.
ACM.

[106] Karen Seo. ST-II { new release, November 1991. Connection IP (cip) mailing list.

[107] Jerome M. Shapiro. Embedded image coding using zerotrees of wavelet coe�cients.
IEEE Transactions on Signal Processing, 41(12):3445{3462, December 1993.

[108] Scott Shenker and Lee Breslau. Two aspects of reservation establishment. In Pro-

ceedings of SIGCOMM 95, Cambridge, MA, August 1995.

[109] Michael Stonebraker. An overview of the Sequoia 2000 project. In Proceedings of

COMPCOM 92, San Francisco, CA, February 1992.

[110] Michael Stonebraker, Jolly Chen, Nobuko Jathan, Caroline Paxson, and Jiang Wu.
Tioga: Providing data management support for scienti�c visualization applications.
In Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993.

[111] Fore Systems, June 1994. ATM Switch Speci�cation.

[112] Clemens Szyperski and Giorgio Ventre. A characterization of multi-party interactive
multimedia applications. In High Performance Network Research Report, January
1993.

117

[113] David Taubman and Avideh Zakhor. Multi-rate 3-D subband coding of video. IEEE
Transactions on Image Processing, 3(5):572{588, September 1994.

[114] Claudio Topolcic. Experimental internet stream protocol, version 2 (ST-II), October
1990. RFC 1190.

[115] Thierry Turletti and Jean-Chrysostome Bolot. Issues with multicast video distribution
in heterogeneous packet networks. In Proceedings of the Sixth International Workshop

on Packet Video, Portland, OR, September 1994.

[116] Jonathan Turner. New directions in communications(or which way to the information
age?). IEEE Communication Magazine, 24(10), October 1986.

[117] Dinesh Verma. Guaranteed Performance Communication in High Speed Networks.
PhD dissertation, University of California at Berkeley, November 1991.

[118] Dinesh Verma and Hui Zhang. Design documents for RMTP/RTIP, May 1991. Un-
published internal technical report.

[119] Mohan Vishwanath and Phil Chou. An e�cient algorithm for hierarchical compression
of video. IEEE International Conference on Image Processing, November 1994.

[120] D. Waitzman, C. Partridge, and S. Deering. Distance Vector Multicast Routing Pro-

tocol. Arpanet Working Group Requests for Comment, DDN Network Information
Center, SRI International, Menlo Park, CA, November 1988. RFC-1075.

[121] Ian Wakeman, Atanu Ghosh, Jon Crowcroft, Sally Floyd, and Van Jacobson. Imple-
menting real-time packet forwarding policies using streams. In Proceedings of USENIX
1995 Technical Conference, Nashville, TN, January 1995.

[122] L. Wei and D. Estrin. The trade-o�s of multicast trees and algorithms. In Proceedings

of the 1994 international conference on computer communications and networks, San
Francisco, September 1994.

[123] Ron Widyono. The design and evaluation of routing algorithms for real-time channels.
Technical Report TR-94-024, International Computer Science Institute, Berkeley, Cal-
ifornia, June 1994.

[124] Bernd Wol�nger and Mark Moran. A continuous media data transport service and
protocol for real-time communication in high speed networks. In Proceedings of the

Second International Workshop on Network and Operating System Support for Digital

Audio and Video, pages 171{182, Heidelberg, Germany, November 1991. Springer-
Verlag.

[125] Hui Zhang and Domenico Ferrari. Rate-controlled static priority queueing. In Proceed-
ings of IEEE INFOCOM'93, pages 227{236, San Francisco, California, April 1993.

[126] Hui Zhang and Tom Fisher. Preliminary measurement of RMTP/RTIP. In Proceed-

ings of the Third International Workshop on Network and Operating System Support

for Digital Audio and Video, San Diego, CA, November 1992. Springer-Verlag.

118

[127] Hui Zhang and Srinivasan Keshav. Comparison of rate-based service disciplines. In
Proceedings of ACM SIGCOMM'91, pages 113{122, Zurich, Switzerland, September
1991.

[128] Hui Zhang and Ed Knightly. A new approach to support delay sensitive VBR video in
packet switched networks. In Proceedings of Fifth International Workshop on Network

and Operating Systems Support for Distributed Audio and Video, Durham, NH, April
1995.

[129] Hui Zhang, Dinesh Verma, and Domenico Ferrari. Design and implementation of the
real-time internet protocol. In Proceedings of the IEEE Workshop on the Architec-

ture and Implementation of High Performance Communication Subsystems, Tucson,
Arizona, February 1992.

[130] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.
RSVP: A new resource reservation protocol. IEEE Networks Magazine, 31(9):8{18,
September 1993.

