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Abstract

The UltraSPARC-I processor implements, in addition to the SPARC v9 instruction set, a set

of new instructions that accelerate image and video processing { the visual instruction set, or

VIS. These instructions address a number of areas in which traditional instructions perform

poorly for these highly parallel tasks. Although these instructions support a wide variety of

functions, they represent far less implementation e�ort than that needed to design dedicated

imaging hardware because they leverage the design e�orts of the CPU and memory system,

and will continue to provide performance improvements as the processor speed is increased.

Unlike traditional CPU features, the performance bene�ts of such instructions have not

been quanti�ed. We attempt to demonstrate the performance e�ects of the VIS instructions

in the context of typical image processing loops.

For the greatest bene�t, these instructions must be used with an eye to maximizing

various forms of parallelism, including superscalar instruction issue, loop vectorization, and

pipelining in both hardware and software. Currently much of this work must be done by

hand. We propose some ways to automate portions of this process and describe some of

the existing tools.
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1 Introduction

Over the last year, the author and others at the Sun Microsystems Computer Company

(SMCC) have developed high-performance image processing software for a new generation

SPARC CPU { UltraSPARC-I [SME95a], found in the Sun Ultra 1 and 2 systems at the time

of this writing. UltraSPARC-I is the �rst in a projected line of processors implementing the

SPARC v9 instruction set [SPARC94]. A notable feature of this processor is its support for

some of the common operations found in image and video processing algorithms through

the addition a set of new instructions that extend the SPARC v9 speci�cation. These

instructions are documented and available to developers via a kit bundled with SunPro's

SPARCWorks 4.0 compiler [SME95b].

These instructions, known collectively as the UltraSPARC visual instruction set, or sim-

ply \VIS," o�er the potential for high-performance software implementations of many tasks

that previously required additional hardware. Functions such as MPEG [MPEG93] video

decoding can thus be made available as a standard workstation feature, greatly extending

the number of users to whom they are accessible. It is hoped that this in turn will provide

an incentive for software vendors to integrate images and video into their applications. As of

this writing Intel has announced plans to add multimedia instructions to its processors (see

section 2.6). Other vendors such as MIPS are also rumored to have similar plans. Hewlett-

Packard has already demonstrated a real-time software MPEG decoder using several special

instructions added to the PA-RISC architecture [Lee95] (see section 2.5).

The introduction of a complex instruction set extension raises many questions. On the

practical side, there are the problems of generating code that uses the instructions e�ciently

and without undue programming e�ort. Tools such as compilers, debuggers, simulators, and

performance analyzers must be informed of the new instructions and their properties. The

operating system must ensure that any state associated with the instructions is properly

initialized, context switched, and multithreaded. The interaction of the new instructions

and existing methods and tools, such as compiler optimizations, must be understood. As

old bottlenecks are addressed by the new instructions, new ones will come to light and must

be identi�ed and dealt with.

On the philosophical side, questions may be raised as to the viability of such an ap-

proach. How will compatibility be maintained in a world of incompatible extensions? Will

the hardware trade-o�s of today's processors that led to the de�nition of the new instruc-

tions remain constant over the next few processor designs? Can special purpose instructions

coexist with the RISC philosophy of simple instruction sets, or do they represent a return

to the CISC chips of previous decades?

In terms of performance, VIS has been a great success, although its success in the

marketplace remains to be seen. An enhanced CPU that remains mindful of RISC design

principles has the potential to compete with dedicated circuit designs without compromising

overall system performance. Since the enhancements are an integral part of the CPU, the

bene�ts of advanced process technology and high-bandwidth links to memory are leveraged

from the existing CPU design. In addition, today's compiler optimization techniques are

capable of dealing with these enhancements, provided they interact reasonably with the rest

of the instruction set. Finally, although these enhancements required substantial engineering

e�ort to be integrated into library code, techniques exist to create tools to greatly simplify

this process.

In this report, we discuss some of the problems facing the writer of high-performance

image processing code, and some solutions available in historical and current micropro-
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cessor hardware. The visual instruction set is outlined in detail, and its contributions to

performance are analyzed. Compilation techniques which allow access to VIS or similar

instruction set extensions are discussed. We look at a handful of practical applications of

VIS and compare their performance to that of generic C code. Finally, we look at future

enhancements to VIS and some technologies which may help to bridge the gaps between

multimedia hardware and conventional programming paradigms.

2 Accelerated Image Processing

The �eld of image processing is a vast one. It has links to signal processing, computer

graphics, robotics, vision, and remote sensing, and its techniques are used in a wide array

of application areas. The concern of this report is with the computation of various simple

image processing primitives, such as pixel arithmetic, convolution, and resampling. Of

course, for many applications the results of such operations must still be subjected to

further processing, resulting in an interpretation of the data. We will not discuss such

interpretation; it is highly application-speci�c and not necessarily amenable to hardware

acceleration. We will use the term imaging to di�erentiate our more limited task from such

interpretive processing.

Routines to perform many of these imaging tasks have been encapsulated into standard

libraries, such as SunSoft's XIL [SunSoft94] and SGI's ImageVision library (IL) [SGI93].

These libraries o�er an assortment of primitives for, inter alia, arithmetic on pixels, lookup

table operations, resampling and convolution, and display. Both allow hardware-speci�c

reimplementations of their primitives. There is currently no signi�cant cross-platform imag-

ing library standard, although interest in establishing one has been growing.

Many imaging applications, such as Adobe Photoshop, also allow developers to \patch"

their internal functions with high-performance versions. Generally these functions are writ-

ten for maximum performance on a given hardware platform without regard for portability;

hardware designers have thus felt free to introduce incompatible upgrades as implementation

technologies and trade-o�s change.

In this section we discuss some of the recent hardware solutions that have been imple-

mented for the purpose of speeding up imaging tasks and the trade-o�s associated with

various approaches. We look briey at two multimedia-enhanced processors, the Intel i860

and the Hewlett-Packard PA-7100LC, which pre�gure UltraSPARC's use of VIS, and take

note of some of the features of Intel's newly announced MMX enhancements. We then

discuss a few of the positive and negative performance features of UltraSPARC and SPARC

generally; an understanding of these features is necessary in order to be able to take full

advantage of VIS. The section concludes with a formula for estimating VIS performance

and a discussion of benchmarking in the context of the design of VIS.

2.1 Dedicated Imaging Hardware

Support for imaging has recently become an integral part of high performance desktop

workstations. The recent standardization of compressed motion video (e.g., motion JPEG,

MPEG-1, MPEG-2, H.261, and H.263), the proliferation of image capture devices such

as scanners and digital cameras, and the ubiquity of high-bandwidth networks for real-

time image transmission have converged to produce a demand for fast image processing

on general-purpose computers. Because of the real-time demands of video, there has been

an emphasis on special-purpose hardware solutions. Even non-video applications have had
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signi�cant hardware resources applied to them, as in the large market for third party ac-

celerators for various popular image manipulation applications.

Because of the extreme parallelism of most imaging tasks, special purpose hardware

has some obvious strengths. It can perform operations on multiple pixels simultaneously,

its ALUs can be designed to work at exactly the required precision, and it can be tailored

exactly to the application at hand. For example, MPEG decoder hardware may have

dedicated circuitry for Hu�man decoding, motion compensation, and color conversion, as

well as local memory for IDCT tables and inverse quantization matrices. As MPEG grows

in popularity, such hardware will become an ever cheaper commodity.

Most imaging tasks, however, are not as clearly circumscribed as MPEG decoding.

For more general imaging tasks, the variety of operations to be performed demands some

hardware generality. The imaging coprocessor begins to resemble a general-purpose CPU:

it has one or more ALUs, control logic, instruction fetch and decoding, and memory access

ports.

Another class of imaging accelerators use multiple custom or commodity processors

and divide the work between them. This approach is ultimately limited by the available

bandwidth to memory, particularly if the processors reside on an expansion bus.

2.2 Imaging In The Graphics Accelerator

Some imaging functions may share hardware with three-dimensional graphics hardware.

Such hardware typically does not write to main memory, but rather maintains its own

memory bu�ers that are scanned by the video hardware to form the screen display. For

example, texture mapping hardware typically performs bilinear interpolation, which may

be used directly as an image resizing operation when the output is to be displayed. In fact

any perspective transformation, including a�ne transformations such as rotation and skew,

may be realized as a special case of texture mapping. If texturing hardware is built with

some exibility, it may be possible to write microcode to perform other operations that can

be implemented in terms of �xed-point addition and multiplication, such as convolution.

Logical operations may be built on top of existing hardware for window-system support.

The Silicon Graphics ImageVision library accelerates the aforementioned operations on some

SGI graphics devices, particularly the Reality Engine with its real-time texture-mapping

capabilities. Linear color conversion is occasionally included as part of a frame bu�er, in

e�ect simply extending the set of input datatypes it accepts.

One di�culty with frame bu�er-based approaches to imaging is the requirement that

results be placed in frame bu�er memory. Even if the output is not to be displayed, it may

be possible to direct the hardware to output to a non-visible portion of its memory that

may then be operated on further. However, copying from such a bu�er into main memory

will typically be slower than copying between main memory bu�ers since this is not an

important path for most graphics applications, although the X window system does require

that such a path be available. Also, frame bu�er memory is a limited, non-scalable resource,

and is typically signi�cantly more expensive than ordinary DRAM. Multiple processes and

especially multiprocessor systems will have to cope with contention for the available space.

2.3 Interfacing With The Cache

For some time, processor speeds have increased signi�cantly faster than those of DRAM.

This has resulted in a substantial gap between access times for dedicated SRAM memories,
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such as CPU registers, and main memory access times. Modern computers depend heavily

on the presence of data caches, both on-chip (internal, or L1 cache) and o� (external, or

L2 cache), to bridge this gap. A subset of main memory locations is mirrored in a smaller,

faster memory bank, allowing the CPU to access and alter the contents of these locations

in a fraction of the full DRAM access time.

The principal fact that makes caching a valid strategy for most programs is locality.

This is the observation that references to memory tend to involve a relatively small number

of addresses (the working set); this set of addresses tends to change fairly slowly over time.

The contents of the caches are address-value pairs. For each incoming address, it must

be determined whether it is present in cache, and its corresponding value returned or altered.

In order to avoid the need for a fully associative comparison of all address tags against the

incoming address, some intermediate bits of the address are used to select a cache line; this

line holds a number of address-value pairs, where only the bits of the address above those

used for line selection need actually be stored. An associative comparison of these address

bits yields the desired data, or the information that the data are not to be found in cache.

Image processing programs, however, like many scienti�c programs, do not have a con-

veniently small working set. Each operation may be performed over a large (multiple

megabyte) span of memory, with no address being revisited once read. In this case, the

usual caching strategies may behave quite poorly. Image pixels, which are read once, will

tend to overwrite other data such as lookup tables and constants that are read repeatedly,

since the image data spans a large range of addresses, and thus will be scattered across

the entire cache. For this case, a streaming behavior is desirable, in which the cache serves

only as a bu�er between main memory and the CPU. Tiled image representations in which

images are stored as a set of rectangular subpieces can improve cache reuse dramatically,

but tend to require a series of operations to be performed over a given region for maximum

bene�t.

Cache aliasing occurs when multiple data sources repeatedly map to the same cache

lines. This is particularly likely when data are accessed using pointers to addresses with

a constant spacing between them. When this spacing lies near various powers of two or

multiples of the cache size, cache lines �lled only recently with data read from one of the

pointers may be overwritten with data from the other pointer. When the �rst pointer

is again read from, it will incur another cache miss, and so on. Aliasing can usually be

avoided by allocating images and other data at addresses with pseudorandom intermediate

bits, i.e., not all starting on page boundaries, as in the current implementation of XIL. Our

XIL timings (section 8) show some poor cache behavior that is due to this design choice.

The operating system attempts to help in this regard by means of a technique known as

page coloring, in which physical pages are assigned to each virtual page in such a way as to

increase the randomness of the intermediate bits of the physical pointers.

This mismatch between the caching needs of general programs and imaging programs

suggests that imaging hardware might do well to avoid the cache entirely. By accessing main

memory directly, a device may implement its own strategies to cover the memory latency,

such as a stream bu�er or a vectorized load. Since the CPU may also require access to the

same memory addresses, they must not appear in the CPU cache; otherwise the CPU would

be able to see invalidated data values. This is the approach taken, for example, by Sun's SX

imaging coprocessor [Donovan95], found in the SPARCStation 10 and 20 workstations. It

consists essentially of an ALU and register set attached to the system memory controller; it

can access uncached regions of DRAM and VRAM directly using a wide variety of load and

store operations and operate on them using vector-like instructions. The need to remove
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segments of memory from cache introduces a di�cult trade-o�, however. If an application

wishes to perform a mix of SX-accelerated and unaccelerated operations on a given image,

the image must be ushed from cache each time an SX routine is to operate on it, and

gradually brought back into cache as its addresses are referenced by the CPU once again

(there are also additional overheads involved in remapping the virtual address space during

these transitions). This overhead can make use of the SX impractical for some tasks, and

imposes a heavy burden on the writers of SX library or application code to cover all possible

operations. It may be necessary to write SX code that actually underperforms the CPU

on a single operation, simply to avoid the need to process image data using both SX and

non-SX code. These trade-o�s continue to add greatly to the di�culties of maintaining the

body of existing SX code.

2.4 The Intel i860

No direct successor to the SX coprocessor exists; instead, Sun chose to embed imaging

and graphics instructions into their �rst SPARC v9 compliant CPU, UltraSPARC-I. This

approach has roots in the Intel i860 Microprocessor [Intel89], which contains special instruc-

tions to support shading and Z-bu�ered hidden surface elimination. The chief architect of

VIS, Leslie Kohn, was also one of the designers of the i860.

The i860 instruction set includes partitioned arithmetic instructions that perform up

to four simultaneous �xed-point additions on data in a 64-bit oating point register. Also

present are partitioned comparison instructions that allow interpolated depth values to

be compared against previously computed Z-bu�er values. This comparison results in a

bitmask that may be used to control the storage of pixel data. The resulting shaded pixels

must be combined in a special merge register before they may be stored.

The i860 also o�ers a dual-instruction mode, in which a 64-bit instruction word con-

taining both a oating point or graphics instruction and a \core" instruction may be issued

atomically. This o�ers some of the bene�ts of superscalar instruction issue, such as the

ability to perform vectorized oating point operations by loading new data values while

operating on the existing ones. Using a combined multiplication/addition operator, it is

possible to perform operations such as dot products at full FPU bandwidth. These dual

instructions are encoded di�erently from an equivalent pair of separate instructions, and so

must be identi�ed statically.

The pipelining of the i860's oating point units is visible to the programmer; results

are written back to the destination register two or three cycles after instruction initiation.

Although UltraSPARC-I provides interlocks to prevent access to registers scheduled for

writeback, we shall see that observing the pipeline latencies in software remains advanta-

geous. This is not to say that interlocks should be removed; they are essential for binary

compatibility between members of an architectural family as timings (invariably) change.

Although the i860 o�ers an interlocked execution mode, it essentially eliminates all the

bene�ts of pipelining and is not suitable for high-performance code.

2.5 The Hewlett-Packard PA-7100LC

Lee [Lee95] describes a set of multimedia enhancements added to the PA-7100LC, a pro-

cessor used in HP's relatively low-end workstations, to support real-time MPEG-1 decom-

pression. The integer ALUs were partitioned to perform two 16-bit additions, subtractions,

averages, and shift/add combinations; the latter is used to implement multiplication by
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constants. Saturation arithmetic, in which overow values are clamped at the extremes of

the pixel range, was also implemented and was successful in reducing the need to check

for overow in software, an important speedup (see section 5.3). The addition of these

instructions added only 0.2% to the die area, �tting mostly into previously unused space.

HP's implementation of MPEG decoding bene�ted from the presence of color conversion

hardware on the frame bu�er, as well as a special pixel datapath that requires the CPU

to write only 8 bits per pixel; an approximation to 24-bit color is generated on the y.

Section 7.7 describes how VIS may be used to accelerate full 24-bit color conversion for

video streams.

2.6 The Intel MMX Enhancements

As of this writing, Intel has just announced a set of multimedia extensions to Pentium

and later processors, to ship in volume in 1997. Like VIS, MMX operates on partitioned

data values of up to 64 bits. Both signed and unsigned datatypes are supported, in both

overowing and saturating arithmetic modes. Source operands may come from either a

dedicated set of eight registers, which share space with the oating point register �le, or

memory.

In addition to the datatypes supported by VIS, MMX allows most of its operations

to take place directly on 8-bit data. MMX also provides a direct 16 � 16 multiplication

operator, although extracting the bits of interest from the result appears to be slightly

more complex than it is in VIS.

The presence of only eight MMX registers would appear to disallow much of the ad-

vanced instruction scheduling discussed below. We will also see that other factors such as

branch prediction and the degree of superscalarity will have an e�ect on the amount of

speedup attainable through the use of partitioned arithmetic. Because of these factors, it

is di�cult to predict MMX performance without a deeper understanding of its relationship

to the remainder of the Pentium architecture.
A technical overview and reference manual may be found at the URL:

http://www.intel.com/pc-supp/multimed/mmx

2.7 The UltraSPARC-I

UltraSPARC-I, designed by Sun Microelectronics (SME) (formerly known as SPARC Tech-

nology Business, or STB) and manufactured by Texas Instruments, implements the 64-bit

SPARC v9 architecture. The initial chips have clock rates of 143, 167, and 200 MHz (i.e.,

5, 6, and 7 nanosecond cycle times), and contain 5.2 million devices, including 16 kilobyte

internal data and instruction caches. Only 3% of the die area is devoted to VIS-related

gates, and the cycle time is not determined by any of the VIS instructions.
[Greenley95], [Kohn95] and [Zhou95] discuss the design of UltraSPARC and VIS. Several

white papers describing various aspects of UltraSPARC are available at:

http://www.sun.com/sparc/WhitePapersMain.html

UltraSPARC-I has a number of features intended to support high performance and

advanced compiler optimizations, described below in sections 2.7.1 through 2.7.6.
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2.7.1 Superscalar Instruction Issue

A superscalar processor is one that can issue more than one instruction per cycle. We

refer to the collection of instructions issued in a given cycle as sharing an issue slot. The

processor ensures that the results computed by a program fragment obey program order

semantics; that is, they are the same as if the instructions had been issued sequentially. This

restriction may be relaxed somewhat with respect to the order of bus transactions initiated

by the processor, but such di�erences are visible only from another processor. A processor

that issues multiple instructions without program order semantics is probably best thought

of as a VLIW (very long instruction word) machine and not a superscalar. In addition to

being easy to understand, program order semantics allows for binary compatibility between

multiple processors in the same family, an important consideration in the marketplace where

the pain of transition between processor generations must be minimized.
UltraSPARC-I issues up to four instructions per cycle. Hardware interlocks prevent

pairs of instructions that would cause a hazard from issuing together. For example, the
instructions:

mul a, b, c

add c, d, e

would be prevented from being issued in the same cycle since the result of the mul in register

c will not yet be available for use by the add instruction. Some pairs of instructions can

be grouped together despite the presence of hazards if an appropriate forwarding datapath

exists.

In order for UltraSPARC-I to group four instructions together, the last instruction in

the group must be either a branch or a oating point/graphics operation (including most

VIS operations). Since integer codes rarely contain enough parallelism to take advantage

of 4-scalar issue, this is a reasonable trade-o�.

Each instruction dispatched in a given cycle must be sent to a distinct functional unit

to be processed. UltraSPARC-I has two integer units (symmetrical except for the absence

of a shifter in one), a single load/store unit, a branch unit, and two oating point units, one

performing additions and the other multiplications. The divide and square root operations

are processed by additional, specialized units, but must �rst pass through the oating-point

multiplier. Other processing continues while these side units operate so long as their results

are not needed.

2.7.2 Branch Prediction and Following

Up to four instructions per clock are loaded into a 12-entry bu�er and partially decoded.

These instructions are fetched from the predicted execution path; as long as branches are

predicted correctly, the processor will not be starved for instructions.

Branches are sometimes slow on pipelined architectures since the direction of the branch

may depend on values still being computed in the pipeline. Branch prediction mitigates

this by assuming the branch will be taken or not taken and proceeding without penalty.

When the correct branch direction is determined, if it is in accordance with the prediction

nothing need be done; if not, all computation after the branch is prevented from altering

the machine state, including changes to registers or memory and exceptions of all kinds.

If branches can be predicted correctly with high frequency, the extra penalty for backing

out of incorrect predictions will be small. UltraSPARC-I can execute up to 18 instructions

speculatively.
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The prediction of branch direction is based on a classic four-entry state machine. Ini-

tially, branches are marked as taken or not taken based on a bit in their encoding which

is user-settable (the importance of setting this bit is doubtful, since the �rst few times the

instruction is encountered will probably also involve page faults, cache misses, etc.). If the

prediction is correct, the state moves to \strongly taken" or \strongly not taken"; a cor-

rect prediction in either of these states does not change the state. An incorrect prediction

only moves the state back to \lightly taken" or \lightly not taken." Thus two incorrect

predictions in a row are required in general to reverse the sense of the prediction. For the

common case of nested loops, this will result in a single incorrect prediction each time the

inner loop exits. Only one pair of bits is required for every two instruction cache entries

since SPARC does not allow a branch to be followed by another branch in its delay slot. It

is estimated that 87% of SPECint92 and 93% of SPECfp92 branches (see section 2.11) are

correctly predicted using this mechanism. If the code contains a mixture of easy and hard

to predict branches, it may be worthwhile to arrange it so that the hard branches follow

the easy ones.

Each set of four instructions in the instruction cache has a \Next Field" associated with

it, yielding the cache index of the predicted next group. This index is updated dynamically

as branch predictions are evaluated. By storing the predictions in terms of cache lines,

instruction prefetching is greatly simpli�ed. In addition, there is logic that can often join

instructions preceding and following a branch in the dynamic sense into a single group

(depending on memory alignment). This allows a branch to be taken every cycle with

minimal penalty.

The graph in Figure 1 illustrates the e�ects of data-dependent branching. A simple

thresholding loop was timed. It reads bytes from a source array and compares them against

a threshold parameter. If the value read is less than the threshold, 0 is written to the

corresponding byte of the output array. Otherwise, 255 is written. Uniformly distributed

random numbers between 0 and 255 were used as the input data. Thus the branches

involved in performing the threshold operation were essentially random, with taken/not

taken frequencies proportional to the threshold value. The branch predictor requires runs of

branches which are all taken or all not taken, perhaps with occasional single mispredictions.

The length of such runs is maximized at threshold values of 0 and 255 and minimized for a

threshold of 128.

For each possible threshold value, 1,000 iterations were timed and their times averaged.

The input and output arrays were small enough to reside entirely in the on-chip cache.

The graph exhibits the expected characteristics of symmetry (due to the symmetry of the

prediction mechanism) and a central peak, since a threshold of 128 produces the most

unpredictable branches. By contrast, removing the conditional altogether results in a time

of roughly 3 clocks/byte. We see that performance on code with data-dependent conditionals

is subject to wide variation.

2.7.3 Non-Blocking Load/Store Unit

All processors must establish some policy for dealing with cache misses. Many stall the

processor until the data have been read from either a higher level cache, main memory, or

a memory-mapped device. This policy would penalize imaging code, which tends to revisit

cached data only at relatively long intervals, severely. UltraSPARC-I implements a more

lenient policy in which loads are handled asynchronously. As long as the result of the load

is not used, processing continues regardless of whether the data were found in cache. The

8



4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

0 32 64 96 128 160 192 224 256

C
lo

ck
 C

yc
le

s 
P

er
 B

yt
e

Threshold Value

Figure 1: E�ects of data dependence on branch timing.

processor still stalls if a value is used before it has been acquired. Also, values are always

returned in the order the loads were issued.

By separating the loading of a value from its use, code may be made relatively insensitive

to the distribution of data between the various levels of cache. In particular, we may assume

an 8-cycle latency between load and use; if the data are found in the on-chip (L1) cache,

which has a 3-cycle latency, this is overkill, but if the data are found in the o�-chip (L2)

cache they will be returned just in time. The full 30-cycle latency to main memory is still

very di�cult to cover completely, but at any rate the number of stall cycles may be lessened

by this strategy.

2.7.4 Automatic Store Compression

As with loads, store execution is decoupled from the main processor pipelines. Processing

continues regardless of whether or not the store requires a cache writeback and/or allocation.

In addition, multiple stores to adjacent addresses sharing a cache line are combined on-chip

and sent to the cache subsystem in a single transaction. Another bene�t of store compression

is the ability to group loads with loads and stores with stores on the memory bus, avoiding

extra bus turnaround penalties.

2.7.5 Non-Faulting (Speculative) Loads

Modern optimization techniques sometimes require the ability to perform a load specula-
tively, that is, without regard to whether it accesses a legal address. The classic example is
optimizing a guarded load:

if (ptr != NULL)

value = *ptr;
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In order to increase the parallelism of the code, the implicit serialization implied by such

a test must be eliminated. However, it is not safe to simply dereference ptr on most

architectures since a null value will cause a segmentation violation. The non-faulting load

variants allow loads to any address to proceed, returning zero if the load cannot be completed

normally without generating an exception.

For integer codes in one simulation, the average size of instruction groups was increased

by 33% when loads were allowed to be moved past a single branch. For oating point codes,

the size increase was 18%.

In the case of imaging code, non-faulting loads may also be used in circumstances

where data are to be read from addresses slightly outside image boundaries. As we will

see, these reads are artifacts of the need to work with aligned pointers, and the values

they return are of no consequence. The use of non-faulting loads allows such code to be

written straightforwardly, without concern for pathological cases in which page boundaries

are violated. Since the use of non-faulting loads can easily mask the presence of real bugs,

they should be used sparingly in user code. Non-faulting loads may be accessed from C

using techniques described in section 6.1.

A speculative load to an invalid page will still cause a trap, but the trap handler will

exit as soon as the o�ending instruction is identi�ed as non-faulting. The price of these

traps may be acceptable as they occur only at the beginning and end of some images, and

not at all for most images.

2.7.6 Conditional Move Instructions

Another technique for increasing parallelism is the elimination of conditionals. This in-
creases the sizes of basic blocks (section 6.4.1), which are amenable to the most aggressive
scheduling techniques. The conditional move, new to SPARC in v9, replaces constructs
such as:

if (x > 0)

y = z;

with a comparison on x that sets an appropriate condition code, and a conditional move

that copies the value of z into y if the condition code is true. Conditional moves can also

be used to implement min and max operators, which in turn are highly useful for keeping

array references within bounds. For example, a texture-mapping implementation may wish

to repeat the edge values of the texture map if the texture coordinates go out of bounds

(see section 7.8).

2.8 Some UltraSPARC-I Caveats

UltraSPARC-I also has shortcomings in a number of areas. In no particular order, they

include:

� Multi-cycle integer multiplication.

The integer multiplier is not pipelined; it consumes 2 bits from its second argument

per cycle, stalling other processing during its execution. It has an early exit feature

to allow processing to continue as soon as the second argument becomes all zero (or

all ones if performing a signed multiplication); the maximum delay is 18 clocks. In

practice, most multiplications in integer SPEC code involve either constants or very

small values; the former can be rewritten by the compiler as a series of shifts and logical
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\and"s. Unfortunately, �xed point arithmetic uses a large number of bits throughout

the argument range. This di�culty is more than compensated for by the power of the

VIS �xed-point operations, but occasionally some non-VIS multiplications can become

a bottleneck. It is advisable to use the oating point multiplier where possible since

it is fully pipelined. Legacy imaging codes, which make heavy use of the integer

multiplier, will su�er substantially from the lack of pipelining.

If an integer multiplication must be used, it may be advantageous to shift the multi-

plier right to eliminate any known low-order zero bits, e.g., in the case of multiplication

by a scanline stride known to be a multiple of 8. If multiplications are to occur over

a limited range of multipliers a table lookup may be preferable.

� Lack of store forwarding.

A write to a given address followed by a load from that address while the new data is

still in the store bu�er is not detected and forwarded. Instead, a portion of the address

bits of outstanding loads and stores are compared and the loads are stalled until there

is no longer a conict. This strategy is correct, in the sense that older data is never

loaded, but non-optimal in the case where there is a true match. This de�ciency

is especially noticeable when values are to be transferred between the integer and

oating point register �les. It also implies that data spilled to the stack due to lack

of su�cient registers will incur an additional penalty on top of the additional loads

and stores themselves. Fortunately the compiler's register allocation is good enough

to make spills rare.

For those occasions in which processing must be split between the oating point and
integer units, a construct such as isum += (int) fval will most likely incur the
aforementioned penalty, since the value fval will be converted into integer format,
stored to the stack, and loaded into an integer register immediately. It may be ad-
vantageous to split the inner loop, writing out a line of intermediate results that have
been converted to integer format for further processing by a second loop body:

int isum, *buf;

float fval;

/* loop */ {

/* compute fval */

buf[i] = (int) fval; /* convert and store */

}

/* loop */ {

isum += buf[i];

}

In this way, values read by the second loop will have had time to exit the store bu�er,

while still retaining a high likelihood of being found in cache.

� Microtraps for violations of VIS latency.

Latencies of more than one cycle exist between some pairs of VIS instructions. Table 2

in section 4.11 describes these latencies in detail. For some latencies involving cross-

precision operations, violations incur not only a stall but a \microtrap." In e�ect,

the hardware interlocks are optimistic about cross-precision use of registers. When
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this optimism turns out to be unjusti�ed, i.e., a read is attempted on a register whose

value is not up-to-date, the processor state must be cleaned up. This takes 9 cycles.

The modulo scheduler (section 6.4.4) forces these latencies to be respected, inserting

no-ops if necessary. Less sophisticated schedulers do not know how the instructions

will group at run time, and so cannot determine how many no-ops will be necessary.

This can lead to some rude surprises in which small changes in the schedule can result

in large swings in performance.

� No prefetch instruction.

A signi�cant addition to the SPARC architecture for v9 is a prefetch instruction

allowing data at an address to be accessed in the future to be brought into the CPU

without a stall. UltraSPARC-I implements this as a no-op. Future UltraSPARC CPUs

will implement at least some variants of this instruction, which has the potential to

make imaging code highly insensitive to the limitations of the cache.

2.9 The SPARC Register Architecture

Several general features of the SPARC register architecture are worth noting at this point

since they will bear on the discussions of implementation in the sequel. Full details are

found in [SPARC94].

� Separate Integer and Floating Point Register Files.

Integer and oating point values are stored in completely separate register �les, ac-

cessed by separate instructions. Load and store instructions can access both �les.

There is no way to transfer values between the register �les without passing through

memory.

� Register Windows.

The integer register �le is organized into a number of overlapping sets. At any given

time four ranges, each comprising eight registers, are available: the %g, %i %l, and

%o registers. The %g registers are global. Register %g0 is hard-wired to 0, as in many

RISC processors. Registers %g5-%g7 are used by the operating system and should not

be altered by user code.

Procedures take their arguments via the %i registers and pass arguments to any pro-

cedures they call via the %o registers. The %l registers are local to the procedure.

When a procedure call occurs, the \window" is shifted so that the %o registers of the

caller become the %i registers of the callee, which acquires its own %l and %o regis-

ters. Arguments that do not �t into the %o registers are passed on the stack. Upon

return from the callee, the window is shifted back and the callee's %l and %o registers

become inaccessible. A certain number of shifts are supported by the hardware; if

this number is exceeded the operating system will spill the contents of the windows

as needed. The frequency of such spills is dependent on the dynamic procedure call

depth of the user's code. Languages such as Lisp often require very deep calls, but

C programs have typically required a much lesser dynamic depth. This depth has

decreased further as compilers have come to support function inlining and other in-

terprocedural optimizations. The growing popularity of object-oriented techniques in

C and C++ as well as the increased number of calls to dynamically linked library
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functions (which the compiler is powerless to optimize across) is now causing a rever-

sal of this trend; graphical user interfaces and windowing code are particular culprits

due to the heavy use of inheritance and the separation between device-independent

and device-dependent layers. This illustrates the di�culty of establishing the value of

any architectural feature given the ever-changing demands of software. UltraSPARC-I

does o�er substantially better window spill performance than its predecessors.

The oating point register �le is not windowed. The compiler is responsible for im-

plementing a caller-saves mechanism for values stored in the oating point registers.

Thus only those registers that are live across a procedure call must be saved.

� Register Pairs.

Some instructions refer to a pair of registers, always beginning with an even-numbered

register. On the integer side this is relatively rare, but on the oating point side it

is commonplace. The double-precision register %f(2n) (also written as %d(2n)) shares

space with the single-precision registers %f(2n) and %f(2n + 1). Double-precision

registers %f32 through %f62 have no single-precision counterparts. In e�ect the same

�ve bits of register speci�cation in a oating point instruction are decoded di�erently

depending on the argument precision.

2.10 Estimating UltraSPARC-I Performance

In section 6.4.3 we will explain how to combine work from multiple loop iterations in order

to avoid wasted cycles. Thus, in the context of a loop, the time taken to run a single

iteration in isolation is not necessarily relevant to performance. No matter what sort of

optimization is used, however, there is only a �nite amount of computational bandwidth

available. In particular, each instruction must be issued to a particular functional unit

which is then unable to accept more instructions for the duration of the cycle. By counting

the use of the various functional units, we can estimate the minimum cycle count of a loop

iteration. By combining several such lower bounds and taking the maximum, we obtain a

rough performance metric that is highly useful when making algorithmic decisions:

cycles � max

�
Instructions

4
;
IEU

2
; Shifts;FGA;FGM;LSU

�
+ alignaddrs

IEU stands for the twin integer units, FGA and FGM stand for the oating point/graphics

addition and multiplication units respectively, and LSU stands for the load/store unit. The

alignaddr instruction (section 4.5) does not group with any other instructions, and so

adds a cycle for each invocation (strictly speaking, they should be excluded from the total

instruction count in order for the formula to be correct). Branching is ignored since it

will never be the bottleneck in the sorts of loops we are interested in due to the ease of

correct prediction. The compiler computes a quantity similar to this before attempting loop

scheduling, since any attempt to schedule loop initiations closer together than this minimal

number of cycles will obviously fail.

2.11 The Role of Benchmarking

As in any CPU design process, there is a question as to how various �nite resources are

to be allocated amongst competing functional units. These resources include such things

as die area, power consumption, and critical path length. The main metric of feature
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importance at the present time is the 1992 version of the commercially available benchmark

suite from the Standard Performance Evaluation Corporation (SPEC92) that measures the

speed of a given CPU/compiler pair on a �xed set of 20 programs { 6 integer, 14 oating

point { that are intended to be representative of a variety of common processing tasks.

During the design of a CPU, a hardware feature a�ecting the timing of various operations

is typically evaluated according to how it will a�ect the �nal SPEC weighted average, or

other benchmarks of interest to the designers. While inexact, this process a�ords designers

the opportunity to shift responsibilities for di�erent aspects of the computation between the

CPU and the compiler in any manner they wish. This is a major improvement on earlier

benchmarks that explicitly required compiler optimizations to be disabled in an attempt to

measure \pure" hardware performance, a quantity that has become ever more irrelevant as

hardware design and compiler technology have found common ground.

Since there is neither a standard imaging benchmark suite, nor a compiler capable of

emitting VIS instructions, this sort of quanti�cation was not possible. The designers of

the chip were therefore forced to rely on small hand-written loops and back-of-the-envelope

calculations of their performance. The VIS instructions were also subject to far less testing

than the regular v9 instructions, since no real-world VIS binaries existed (VIS instructions

were however included in randomly-generated test codes). It was left to the imaging library

programmers to test the instructions in the context of actual programs, and to make good

on the promise of performance. Thus the decision to implement the VIS extensions was

not without risk, having the potential to increase the time-to-market without a de�nite

guarantee of performance.

3 Characterization of Imaging Tasks

Although most imaging operators appear simple to specify and code, na��ve implementations

typically su�er from extremely poor performance. The e�ort required to achieve optimal

performance is substantial, as is the size of the optimal code, both in source and binary

form. Maintaining such code can be di�cult, as each incorrect assumption made during the

design propagates throughout a labyrinth of special cases. Finally, some hardware resources

are simply unused or utilized at a fraction of their theoretical capacity, and little can be

done to remedy this.

For the purposes of this section, we will assume code is to be run on a processor sim-

ilar to UltraSPARC-I, without the use of the VIS extensions. A few shortcomings of the

UltraSPARC-I implementation will be ignored when they a�ect the theoretical performance

of the non-VIS code; in particular, we will consider both integer execution units as possessing

shifters, and we will not impose a penalty for using integer conditional move instructions.

In this section we aim to provide the reader with a brief summary of the data formats

used in imaging as well as a look at some of the di�culties involved in writing generic

imaging code with acceptable performance. The observation of these di�culties provides

the motivation for several key operations of VIS for performing data alignment, parallel

arithmetic, and packing and clamping of data.

3.1 Image Data Formats

For the purposes of this report, we will use a straightforward image format. Embellishments

such as tiling (processing images a subrectangle at a time) or non-rectangular regions of

interest (areas to be processed) may be assumed to be implemented on top of this format.
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Pixel data will consist of one or more channels (or bands). Each channel represents

some independent measurement associated with a given pixel's (x; y) position in whatever

coordinate system was sampled to acquire the image. Some common special cases are: a

single channel representing grayscale (i.e., the eye's scotopic response to a scene); a single

channel representing indices into a color table; three channels representing the coordinates of

a three-dimensional color space such as RGB, Y CbCr, or Lab; or four channels representing

the coordinates of a four-dimensional (overspeci�ed) color space such as CMYK. However,

there is no necessary restriction to optical data. For example, a satellite image might

contain information concerning color, temperature, height, and wind velocity at each point.

Our multi-channel images can represent any number of variables, provided they are all

to be represented in the same underlying format. If some channels require oating point

accuracy and others require only 8-bit �xed point, they should be stored in separate images.

Discussions of color spaces may be found in most graphics texts; a comprehensive discussion

may be found in [Foley90].

An image will be represented as a two-dimensional array of (possibly multi-channel)

pixels (a raster). The coordinates increase as we move down and to the right (this is an

arbitrary choice and some systems, e.g., OpenGL increase upwards in the manner of the

Cartesian plane). Each pixel consists of either unsigned bytes or signed shorts, one per

channel. There may be padding bytes between pixels; this is captured in the notion of pixel

stride, which is an integer greater than or equal to the number of bands multiplied by the

size of the image datatype in bytes. This quantity, when added to the byte address of a

given channel within a particular pixel, yields the byte address of the same band within the

pixel's horizontal successor.

Similarly, the separation in bytes between vertically adjacent pixels is recorded as the

image's scanline stride (or \linebytes"). This stride is greater than or equal to the image

width multiplied by the pixel stride, i.e., there may be unused bytes in between adjacent

scanlines.

Our multi-channel format is sometimes referred to as band interleaved format; storing

each band in its own raster is known as band separated format. Both formats are used

extensively, often within the same application.
Given a pointer base to the �rst band of the upper left pixel of a byte image with

pixel stride ps and scanline stride ss, the byte representing channel c of pixel (x; y) may
be indexed as:

*((unsigned char *) base + y*ss + x*ps + c)

Figure 2 illustrates the mapping between a linear range of addresses and a rectangular

raster. For the image shown, the number of channels and the pixel stride are both equal

to 1. The image is 3 pixels wide but has a scanline stride of 4. The highlighted pixel lies

at position (1; 2), and so would be addressed as base + 2*ss + 1. Figure 3 illustrates the

multi-channel case. The number of bands and the pixel stride equal 3. The width is 2 and

the scanline stride is 7 > 6 = 2 � 3. Channel 1 of pixel (1; 1) is highlighted, and is addressed

as base + ss + ps + 1.
For short images, the computation is similar:

*((short *) ((unsigned char *) base + y*ss + x*ps + c*2))

Note that base is assumed to be short-aligned. The quantities ss and ps are represented

in terms of bytes, so it is inappropriate to cast base to (short *) during the address

computation. Alternatively, ss and ps may be divided by two and the computation done

in terms of shorts. Both ss and ps should be even for short images.
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base base + ss base + 2*ss

base

+ 2*ss

= pixel (1, 2)

= base + 2*ss + 1

+ 1

Figure 2: The mapping between an address range and a raster.

base base + ss

= base + ss + ps + 1

base + ps

+ ss

+ ps + 1

base

= pixel (1,1), channel 1

Figure 3: Multichannel image layout.
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Naturally we do not wish to perform three multiplications for each pixel reference. The

technique of strength reduction, either performed manually as part of algorithm develop-

ment or automatically by an optimizing compiler, turns a series of multiplications of an

incrementing argument by a constant into a series of constant additions. For example, the

expression x*ps may be reevaluated by simply adding ps to its previous value each time

x is incremented. Similarly, each time a new scanline is to be processed we add ss to the

previous row pointer to obtain a pointer to the new row.

The \extra" bytes between pixels and scanlines may not be altered by a correct algo-

rithm, although it is legal to read them provided they have no e�ect on the output. This

allows sub-rectangles and/or subsets of the channels to be processed without a�ecting the

remainder of the image. Consider writing to the green channel (c = 1) of a rectangle from

(10; 12) to (19; 19) (inclusive) in an image with pixel stride ps and scanline stride ss.
The base pointer of the new image is computed as:

(unsigned char *) base + 12*ss + 10*ps + c

The \child" image inherits its parents ps and ss parameters, and has a width of 19�10+1 =

10, a height of 19� 12 + 1 = 8, and a single band. It may be processed just like any other

image without the need to consider the fact that it shares pixel data with a larger parent

image.

3.2 Implementing an Algorithm in C

Consider a simple routine to add two images pixelwise, clamping the results between 0 and

255 (in this case only the latter need be considered), shown in Figure 4. Our goal is to

determine how fast this routine may be made to go on an UltraSPARC-I class processor,

using only generic C code; at the same time, we wish to observe the shortcomings of this

approach in order to understand the opportunities for hardware assistance.

The performance of such a simple loop is dominated by the number of load and store

operations. We will show that the obvious techniques for lowering this burden, namely

consolidating output stores and reading multiple input values at once, are ine�ective due to

the large amount of data realignment they require. In e�ect, software is forced to assume

the responsibility for a function normally performed by dedicated hardware within the

load/store unit. VIS introduces several instructions that deal with the problem of alignment.

VIS o�ers instructions for parallel arithmetic. But as we shall see, such a capability is

useless without some e�ective way of bringing appropriate sets of values into the processor

in parallel.

We will also see that the need to perform clamping using conditional branches is a

signi�cant drain on performance. Accordingly VIS provides a facility for unconditional

clamping.

Since three memory references are required per pixel of output, this loop cannot run

faster than three clocks per pixel on a machine with a single load/store unit. The use of C's

\?" selection operator (in the de�nition of min) may require the generation of a conditional

in the assembly output if the compiler does not generate conditional moves, which may also

a�ect performance by preventing some classes of loop optimization. We will ignore this

e�ect for now.

Since the memory references appear to dominate at the moment, consider reducing

them by loading more than one byte at a time. Integer loads of four or eight bytes are

available; however, they require that the source address be aligned according to the size
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#define min(a,b) ((a) < (b) ? (a) : (b))

#define CLAMP255(a) min((a), 255)

void

add_images (unsigned char *im1, unsigned char *im2,

unsigned char *dest,

int width, int height,

int im1_lb, int im2_lb, int dest_lb)

{

int row, col, val;

for (row = 0; row < height; ++row) {

for (col = 0; col < width; ++col) {

val = im1[col] + im2[col];

dest[col] = CLAMP255(val);

}

im1 += im1_lb;

im2 += im2_lb;

dest += dest_lb;

}

}

Figure 4: Na��ve routine to add two images.

of the unit to be loaded. Multi-byte store instructions have the same restriction. In fact

the store restriction is more signi�cant, since extra data may be read harmlessly (within

a valid segment of memory), but only the requested bytes may be written. Even a read-

modify-write strategy is not valid, since the spurious output bytes might be mapped onto a

frame bu�er or other output device where incorrect values must not appear. Accordingly,

we replace the inner loop with three sections of code, shown in Figures 5-7, in preparation

for further optimization. This code deals with the destination alignment only, continuing

to read the source data a byte at a time.

The main loop now contains 9 load and store operations for 4 pixels, potentially allowing

a speedup of 1.33 if memory access remains the resource constraint. There are 4 additions, 3

shifts, and 3 logical \or"s that will require at least 5 cycles to be issued, but this constraint

save_width = width; save_im1 = im1; save_im2 = im2; save_dest = dest;

align = 4 - ((unsigned long) dest & 0x3); /* Number of unaligned bytes. */

if (align > width) align = width;

for (col = 0; col < align; ++col) { /* Work until dest is aligned. */

val = im1[col] + im2[col];

dest[col] = CLAMP255(val);

}

/* Update variables. */

width -= align; im1 += align; im2 += align; dest += align;

dptr_4 = (unsigned long *) dest;

Figure 5: Initial loop to align the destination.
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times = width/4;

for (i = 0; i < times; ++i) {

col = 4*i;

val0 = CLAMP255(im1[col] + im2[col]);

val1 = CLAMP255(im1[col + 1] + im2[col + 1]);

val2 = CLAMP255(im1[col + 2] + im2[col + 2]);

val3 = CLAMP255(im1[col + 3] + im2[col + 3]);

dptr_4[i] = (val0 << 24) | (val1 << 16) | (val2 << 8) | val3;

}

width -= 4*times; im1 += 4*times; im2 += 4*times; dest += 4*times;

Figure 6: Main loop to add and store four pixels at once.

for (col = 0; col < width; ++col) { /* Clean up extra pixels. */

val = im1[col] + im2[col];

dest[col] = CLAMP255(val);

}

/* Increment pointers to the next scanline. */

width = save_width;

im1 = save_im1 + im1_lb; im2 = save_im2 + im2_lb;

dest = save_dest + dest_lb;

Figure 7: Cleanup of �nal three or fewer pixels.

is still overshadowed by the memory constraint.

Figure 8 shows the breakup of the sources and destination into initial and �nal cleanup

regions of fewer than four bytes, and four byte internal regions. The heavy lines show the

division of memory into four byte words.

In order to read sources more than a single byte at a time, it becomes necessary to

account for various alignments of the source relative to the destination. After the initial

loop to align the destination pointer, 16 cases will be needed to account for the various

possible alignments of im1 and im2. Before entering the case structure, the source pointer

o�sets are recorded and 8 bytes are read from the aligned addresses immediately preceding

the source addresses. This is shown in Figure 9.

The four pixels required from each source must lie somewhere within the eight bytes

stored in im1_data0, im1_data1, im2_data0, and im2_data1. We do not have to worry

about reading from an illegal address since the memory protection system controls memory

on a page-by-page basis; if a given address is valid for reading (i.e., it does not cause a

segmentation fault), all other addresses on the same page will also be legal. Aligning an

address by masking out its lower bits does not change its page number as long as no more

than lg(pagesize) bits are masked.

The quantity 4*im1_offset + im2_offsetmay be used to control a switch statement

with cases numbered from 0 to 15. Consider case number 9, for which im1_offset is 2 and

im2_offset is 1. The desired data lie in bytes 2 and 3 of im1_data0, bytes 0 and 1 of

im1_data1, bytes 1, 2 and 3 of im2_data0 and byte 0 of im2_data1, counting from the left.

The �rst four destination bytes can therefore be computed (ignoring clamping) as shown in

Figure 10.
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im1[0]

dest[0] (align = 3)

im2[0]

im1_offset = 2

im2_offset = 3

Figure 8: Aligning source and destination spans to memory.

#define OFFSET(ptr) ((unsigned long) ptr & 0x3)

#define ALIGN(ptr) ((unsigned long) ptr & ~0x3)

im1_offset = OFFSET(im1); im2_offset = OFFSET(im2);

im1_aligned = (unsigned long *) ALIGN(im1);

im2_aligned = (unsigned long *) ALIGN(im2);

im1_data0 = *im1_aligned++; im1_data1 = *im1_aligned++;

im2_data0 = *im2_aligned++; im2_data1 = *im2_aligned++;

Figure 9: Initial alignment of source pixels.

Note that there is no need to mask with 0xff after shifting an argument right by three

bytes. Because results above 255 are to be clamped, the masks must be performed in order

to remove junk bits prior to the addition. If wraparound were permitted, these bits could be

left intact to participate in the (two's-complement) addition, and the sum masked, reducing

the number of mask operations from 6 to 4.

After such a loop iteration, the value of im1_data1 is transferred to im1_data0, and

similarly for the second source image variables. New image data are read through the

aligned pointers into im1_data1 and im2_data1. The pattern of shifts remains invariant

from iteration to iteration.

val0 = ((im1_data0 >> 8) & 0xff) + ((im2_data0 >> 16) & 0xff);

val1 = ((im1_data0) & 0xff) + ((im2_data0 >> 8) & 0xff);

val2 = ((im1_data1 >> 24) ) + ((im2_data0) & 0xff);

val3 = ((im1_data1 >> 16) & 0xff) + ((im2_data1 >> 24) );

/* Clamping would be performed here. */

dptr_4[i] = (val0 << 24) | (val1 << 16) | (val2 << 8) | val3;

Figure 10: Extraction of source pixels.
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im1_data = (im1_data0 << 16) | (im1_data1 >> 16);

im2_data = (im2_data0 << 8) | (im2_data1 >> 24);

Figure 11: One-time extraction of source pixels.

val0 = (im1_data & 0xff000000) + (im2_data & 0xff000000);

val1 = (im1_data & 0xff0000) + (im2_data & 0xff0000);

val2 = (im1_data & 0xff00) + (im2_data & 0xff00);

val3 = (im1_data & 0xff) + (im2_data & 0xff);

dptr_4[i] = val0 | val1 | val2 | val3;

Figure 12: Use of pre-extracted pixel data.

This approach requires 9 shifts, 9 logical operations, and 4 additions for each four bytes.

Assuming, as noted above, that these are all simply IEU operations, 22/2 = 11 cycles will

be required for issue, or 2.75 clocks/pixel, a net slowdown over the read one/write four

approach.
We can simplify things further by forcing val0, etc., to emerge in the proper places

to be joined and stored without additional shifting. For example, val1 and val2 may be
computed as:

val1 = ((im1_data0 << 16) & 0xff0000) + ((im2_data0 << 8) & 0xff0000);

val2 = ((im1_data1 << 16) & 0xff00) + ((im2_data0 << 8) & 0xff00);

The sum val1 (resp. val2) now appears in byte 1 (resp. 2), followed by 16 (resp. 8)

zero bits. The clamping must now be performed against 255 << 16, or 16711680 (resp.

255 << 8, or 65280). Note that where computing val2 previously required only one shift,

it now requires two, eliminating any savings.

Clamping val0 is trickier, since the intermediate result could overow 32 bits. val3

is already in the desired place, so no change in its computation is needed. As a practical

matter, then, only one shift is saved for this case. Other alignment cases may di�er slightly,

with some o�ering more fortuitous positioning than others.

What we are seeing here is the power of the memory system's alignment network. When

a byte is read from memory, this network places it into the proper position of the destination

register. In exchange for reading several bytes at once, the software must perform this

function itself. For each two pixels to be added, two shifts and two logical ands are generally

required for this realignment, as opposed to a single shift for the byte-at-a-time approach.

Given our machine model, we are in rough terms trading one 2 cycle constraint (two loads)

against another (four IEU operations).

Consider the e�ect of a faster alignment technique. The idea is to take data from

im1_data0 and im1_data1 and realign it so that byte 2 of im1_data0 occupies position 0.

This can be performed as shown in Figure 11. Rewriting the computations of val0 through

val3 using these new values, we obtain the code shown in Figure 12.
Here we are ignoring the val0 clamping problem, and in fact all clamping. We still

require 22 IEU operations, however. Suppose now that an alignment operator were available
in hardware. The computation of im1_data and im2_data above would be rewritten as:

im1_data = align(im1_data0, im1_data1, 2);

im2_data = align(im2_data0, im2_data1, 1);
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im1_data = align(im1_data0, im1_data1, 2);

im1_data0 = im1_data1; im1_data1 = *im1_aligned++;

im2_data = align(im2_data0, im2_data1, 1);

im2_data0 = im2_data1; im2_data1 = *im2_aligned++;

dptr_4[i] = clamped_add(im1_data, im2_data);

Figure 13: Use of a hypothetical clamped addition operator.

Assuming each alignment is a single IEU operation, we are down to 18 operations, or a 9

cycle loop minimum. That is, we have �nally broken even. A more signi�cant bene�t is

the ability to collapse the loop from 16 cases back to only one by using im1_offset and

im2_offset as arguments to align in place of hard-coded constants.

A further bene�t is the regularization of the loop body. Imagine collapsing the four lines

in which the additions take place into simply val = im1_data + im2_data. This almost

computes the correct answer, with two caveats: �rst, overow bits will be carried from one

sum to the next; and second, there will be no way to recover the information required for

clamping. If a version of addition were available that dealt with these problems, the entire

loop could be handled simply by the code in Figure 13.

This loop requires 3 load/store instructions, two alignments, and a single clamped ad-

dition for every four pixels. The cost of copying the old data values may be eliminated by

unrolling the loop and renaming the variables in each alternate iteration. The theoretical

performance of this loop is thus most likely around 3 clocks/4 pixels, or .75 clocks/pixel.

This is a factor of 3 over the previous best case. It also occupies signi�cantly less space

than our intermediate attempts. In addition, it is possible to consider reading data in larger

quantities, such as 8 bytes at a time, without any corresponding code size explosion.

3.3 Conclusions

By introducing the alignment and clamped addition operators, we have constructed a loop

that is more similar in spirit to the SPECfp loops than the SPECint ones { data are read

in large blocks which are processed identically, with only simple branching. The artifact

of source alignment no longer dominates performance, and hardware resources such as an

addition circuit are utilized fully. The techniques used to ensure that oating point loops

run fast should also apply to such a loop structure. In the next section, we examine the

VIS instructions, which provide the needed fusion between integer and �xed point imaging

computation and oating point performance.

4 The Visual Instruction Set

This section outlines the various VIS operations and attempts to de�ne their semantics

more precisely than do other existing documents. It does not attempt to be complete in

all respects; those interested in using VIS should consult the VIS Users' Guide [SME95b]

for detailed information. Some memory operations, as well as the edge instructions, have

versions for use on machines that access memory addresses in so-called \little-endian" (byte-

reversed) order, which we will not discuss.
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typedef float vis_f32;

typedef double vis_d64;

typedef unsigned char vis_u8;

typedef char vis_s8;

typedef unsigned short vis_u16;

typedef short vis_s16;

typedef unsigned long vis_u32;

typedef long vis_s32;

typedef void *vis_ras;

Figure 14: VIS type de�nitions.

In the following discussion, single-precision (32-bit) register arguments are pre�xed by

\f" (for \oat") in the instruction de�nitions; double-precision (64-bit) arguments are pre-

�xed by \d." Integer registers are pre�xed by \i" (64-bit integer registers, used by the

array instruction are denoted with an \x").

The VIS 32- and 64-bit datatypes may be manipulated from C as float and double

values (section 6.1.1 discusses some caveats). This relies on the fact that the oating point

load and store instructions do not force their data to adhere to the IEEE 754 oating point

format, but rather transfer data bit for bit. Thus it is possible to move VIS data between

the oating point registers and main memory.

In order to di�erentiate VIS values from ordinary oating point values, we will always

declare such values using the C typedefs shown in Figure 14. The other typedefs aid

in distinguishing the sizes and signed/unsigned status of the various integral types. The

vis_ras type ensures that we cast image pointers to pointers of the appropriate size before

use when writing generic routines, since a (void *) cannot be dereferenced as-is.

4.1 Data Formats and Conversions

VIS operates on register data in �ve distinct formats, shown in Figure 15. Images are

commonly represented either by one 8-bit unsigned byte or one 16-bit signed short per

channel. VIS arithmetic generally requires some expansion before 8-bit data can be used,

although the pdist instruction (see section 4.9) can operate directly on such data. All

signed values are represented in two's-complement format.

4.1.1 The Graphics Status Register

rd %gsr, idst

wr ireg, reg or imm, %gsr

The graphics status register (%gsr) is a 64-bit register containing arguments used im-

plicitly by several VIS operators. Currently two �elds are de�ned, a 3-bit �eld (in bits

2 : : :0) holding an o�set that is set by alignaddr and used by faligndata (section 4.5),

and a 4-bit shift value (in bits 6 : : :3) that must be set via an explicit wr instruction and

which is used by the various fpack instructions (section 4.1.3). Explicit writes to the %gsr

stall the processor for 6 cycles, so changing the shift �eld during processing is best avoided.
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63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Eight unsigned 8-bit values (raw format)

63 48 47 32 31 16 15 0

Four signed 16-bit values

31 16 15 0

Two signed 16-bit values

63 32 31 0

Two signed 32-bit values

31 0

One signed 32-bit value

Figure 15: VIS data formats.

In the sequel we access the wr instruction using an inline template vis_write_gsr (see sec-

tion 6.1). Reading the %gsr is uncommon; in the existing VIS code each routine requiring

a particular setting overwrites the previous value, and resets its value after any subroutine

calls to other VIS routines. In other words, we have chosen a \caller saves" semantics in

which routines are not required to set the %gsr to its previous value on exit. A \callee

saves" semantics would also be possible. Since the %gsr is not part of the SPARC v9 stan-

dard, the SPARC ABI (application binary interface) does not impose a particular choice of

convention, as it does for the other portions of the processor state. Solaris 2.5, the current

version of Sun's operating system, saves and restores the %gsr on a context switch but does

not initialize it to a particular value during process startup.

4.1.2 Expansion

fexpand fsrc, ddst

Raw pixel data may be converted to signed 16-bit format four pixels at a time via

the fexpand instruction, or by an appropriate multiplication operation (see section 4.2.2).

Each byte of the source register fsrc is e�ectively shifted left four places and stored to the

destination ddst in 16-bit signed format. Expansion is necessary if values are to be added,

subtracted, or compared. Figure 16 illustrates the fexpand instruction.

The fexpand instruction is processed by the graphics adder.

4.1.3 Packing

fpack16 dsrc, fdst

fpackfix dsrc, fdst

fpack32 dsrc1, dsrc2, ddst

The inverse of expansion is packing. The fpack instructions convert data from a wide

format to a narrower one, clamping the result at both ends of the legal output range. The

fpack16 instruction takes partitioned 16-bit signed data in dsrc and implicitly positions a
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411
0000      0000

2027
0000      0000

3643
0000      0000

5259
0000      0000

81516232431

Figure 16: The fexpand instruction

binary point before the (7� %gsr) least signi�cant bits of each of the four partitions. Thus

it is possible for data to have between 0 and 7 bits of fractional precision prior to packing.

The result is clamped to 0 if it is negative, and 255 if it overows. Figure 17 illustrates the

operation of the fpack16 instruction.

When data values are multiplied, the number of integral bits of the product is equal

to the sum of the integral bits of each argument. The number of fractional bits is simply

whatever number remains. When multiplying raw pixel data (8 integral bits, 0 fractional

bits) by a 16-bit constant, the output has the same number of fractional bits as the constant

(since the multiply operation may be thought of as implicitly shifting the data right by 8

places, i.e., discarding 8 fractional bits). For example, if the constant were to be created

by an fexpand operation on pixel data, it would have 12 integer and 4 fractional bits, and

so would its product with raw pixel data. Accordingly a %gsr shift of 3 (= 7� 4) would be

used when the results are to be packed.

This example illustrates that the binary point is a somewhat abstract notion; operations

such as addition and multiplication do not care about its location. As long as the program-

mer can establish that adequate precision exists throughout the computation of interest,

the only instructions that require its position to be determined are the fpack instructions.

The fpackfix instruction packs and clamps signed 32-bit data in dsrc into signed 16-bit

format. The e�ective number of bits of fractional precision is (16� %gsr). Data values are

clamped between �32768 and 32767. Figure 18 illustrates the operation of the fpackfix

instruction.
The fpack32 instruction packs and clamps signed 32-bit data in dsrc1 into unsigned 8-bit

format. The e�ective number of bits of fractional precision is (23� %gsr). This instruction
takes a second argument dsrc2 consisting of 8-bit (packed) data, which is shifted left by 8
bits. The results of the fpack32 instruction are inserted into bit positions 0-7 and 32-39
of the result. The intended use of this feature is packing of multiple 32-bit values into a
stream of 8-bit values, as follows:

fpack32 vals_ae, accum, accum ! accum = ...a...e

fpack32 vals_bf, accum, accum ! accum = ..ab..ef

fpack32 vals_cg, accum, accum ! accum = .abc.efg

fpack32 vals_dh, accum, accum ! accum = abcdefgh

Figure 19 illustrates the operation of the fpack32 instruction.

The packing instructions are processed by the graphics multiplier.

4.2 Arithmetic Operators

The arithmetic operators o�er 1-, 2-, and 4-way �xed point arithmetic.
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7 - %gsr 
fractional 
bits

0

0

7

15

Figure 17: The fpack16 instruction.

. .
16 - %gsr 
fractional 
bits

0

0

15

31

Figure 18: The fpackfix instruction.

. .
23 - %gsr 
fractional 
bits

031

073239

Figure 19: The fpack32 instruction.
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4.2.1 Addition and Subtraction

fpadd16 dsrc1, dsrc2, ddst fpadd16s fsrc1, fsrc2, fdst

fpadd32 dsrc1, dsrc2, ddst fpadd32s fsrc1, fsrc2, fdst

fpsub16 dsrc1, dsrc2, ddst fpsub16s fsrc1, fsrc2, fdst

fpsub32 dsrc1, dsrc2, ddst fpsub32s fsrc1, fsrc2, fdst

The fpadd16 and fpsub16 instructions perform four-way addition and subtraction of the

partitioned values dsrc1 and dsrc2. They may be thought of as two's complement addition

and subtraction with carries (or borrows) between the partitions suppressed. There is no

detection of overow or underow; instead, the programmer is responsible for maintaining

all intermediate values within the proper range.

fpadd32 and fpsub32 perform the same operations on partitioned 32-bit data. All four

instructions have short variants obtained by adding an \s" to their name that take 32-bit

arguments.

These instructions are processed by the graphics adder.

4.2.2 Multiplication

fmul8x16 fsrc1, dsrc2, ddst

fmul8x16au fsrc1, fsrc2, ddst

fmul8x16al fsrc1, fsrc2, ddst

fmul8sux16 dsrc1, dsrc2, ddst

fmul8ulx16 dsrc1, dsrc2, ddst

fmuld8sux16 fsrc1, fsrc2, ddst

fmuld8ulx16 fsrc1, fsrc2, ddst

All of the multiply instructions perform a multiplication of a set of 8-bit quantities by

16-bit quantities to produce rounded 16-bit results. Rounding is towards positive in�nity.

In e�ect the multiplier computes b(x � y + 128)=256c.

The �rst three variants take four 8-bit pixels, in fsrc1, and multiply them by either

four distinct 16-bit signed coe�cients (fmul8x16) from dsrc2, or a single coe�cient taken

from either the top half (fmul8x16au) or the bottom half (fmul8x16al) of a 32-bit word,

fsrc2. The latter two are useful when �xed coe�cients are to be used, as in convolution and

resampling. The ability to use both halves of a word can reduce the size of �lter tables by

half. Figures 20-24 illustrate the process of multiplication, rounding, and scaling for these

instructions.

The next two variants, fmul8sux16 and fmul8ulx16, are generally used in conjunction

with the fpadd16 instruction to produce an approximation to a 16� 16-bit multiplication

yielding a 16-bit result. Both take two arguments, dsrc1 and dsrc2, each consisting of

partitioned signed 16-bit data. The fmul8sux16 instruction multiplies dsrc2 by the top

8 bits of dsrc1 to produce a 24-bit intermediate result which is rounded and truncated

to 16 bits. The fmul8ulx16 instruction does the same, only using the lower half of each

partition of dsrc1 and implicitly shifting its result right by an additional 8 bits to match the

signi�cance of the �rst product. Note that the sign of the �rst argument is signi�cant in

this process, even when it is the low bits that are being multiplied. An early hardware bug

was caused by the failure of designers to take this into account { both the logic designer

and the writer of the instruction-level simulator made the same mistake, preventing the bug

from being caught until after the initial run of silicon.
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** **

07

015

023
+1/2

015

Figure 20: The fmul8x16 instruction.

** **

0

0

23

0

15

7

1631

+1/2

Figure 21: The fmul8x16au instruction.

** **

0

0

23

0

15

7

015

+1/2

Figure 22: The fmul8x16al instruction.
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** * *

00 0 0

0

0

23

15

+1/2

Figure 23: The fmul8sux16 instruction.

** * *

0|-1 0|-1 0|-1 0|-1

16

0

23

7

+1/2

Figure 24: The fmul8ulx16 instruction.

**

0 0

0

0

23

31 8

Figure 25: The fmuld8sux16 instruction.
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0 0

0

0

23

31 8

Figure 26: The fmuld8ulx16 instruction.

Consider the case where both arguments are positive. Then the sum of the multiplica-

tions is: �
256 bx=256c � y + 32768

65536

�
+

�
(x mod 256) � y + 32768

65536

�

The outer b c operations represent the fact that only 16 bits of the intermediate values are

preserved. On average half a bit of precision is lost in each half of the multiplication, so

overall we lose about one bit. An exhaustive test of all 655362 possible argument pairs shows

that the correct result (by comparison with rint((double) x*(double) y/65536.0)) is

achieved 75.19% of the time. The result, as expected, is never more than 1 away from the

true rounded product; it is too large 549; 658; 624 times (12.80%) and too small 515; 973; 120

times (12.01%).

The �nal variants (fmuld8sux16 and fmuld8ulx16) each implement a true 8 � 16-bit

multiplication, placing their result within a 32-bit partition. The result of fmuld8sux16 is

shifted left by 8 places while the result of fmuld8ulx16 is sign-extended. Taking the sum of

these two results (using fpadd32) yields the desired product. Figures 25 and 26 illustrate

these instructions.

All of the multiply instructions are processed by the graphics multiplier.
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4.3 Logical Operators

fzero ddst fzeros fdst

fone ddst fones fdst

fsrc dsrc1, ddst fsrcs fsrc1, fdst

fnot dsrc1, ddst fnots fsrc1, fdst

for dsrc1, dsrc2, ddst fors fsrc1, fsrc2, fdst

fnor dsrc1, dsrc2, ddst fnors fsrc1, fsrc2, fdst

fand dsrc1, dsrc2, ddst fands fsrc1, fsrc2, fdst

fnand dsrc1, dsrc2, ddst fnands fsrc1, fsrc2, fdst

fxor dsrc1, dsrc2, ddst fxors fsrc1, fsrc2, fdst

fxnor dsrc1, dsrc2, ddst fxnors fsrc1, fsrc2, fdst

fornot1 dsrc1, dsrc2, ddst fornot1s fsrc1, fsrc2, fdst

fornot2 dsrc1, dsrc2, ddst fornot2s fsrc1, fsrc2, fdst

fandnot1 dsrc1, dsrc2, ddst fandnot1s fsrc1, fsrc2, fdst

fandnot2 dsrc1, dsrc2, ddst fandnot2s fsrc1, fsrc2, fdst

The VIS logical operators perform all 16 possible logical operations on zero, one, or two

arguments. In the case of fzero and fone, both arguments are ignored. These instructions

are useful for generating a pattern of all zeros (distinct, at least in principle, from the

oating point constants (float) 0.0 and (double) 0.0) or all ones in a oating point

register.

In the case of fsrc and fnot, only one argument is used. The hardware actually im-

plements two versions of these operators (i.e., copy/negate �rst argument and copy/negate

second argument). The assembler need only provide a mnemonic for one of these variants,

of course, as shown above. The remaining two-argument operations also have some anti-

symmetric cases which are shown (the operations with \1" and \2" in their names). The

redundancies are a result of the implementation of these instructions, which makes direct

use a 4-bit �eld within the instruction word to specify the operation's truth table.

The VIS logical instructions are processed by the graphics adder.

4.4 Merging

fpmerge fsrc1, fsrc2, ddst

The fpmerge operator takes two single-precision arguments, fsrc1 and fsrc2, and inter-
leaves their bytes, as shown in Figure 27. The intended use of fpmerge is conversion from
band interleaved to band separated format and vice-versa. Consider pixel data in (r; g; b; �)
format, where � might represent the transparency of the pixel. The data may be copied
into a separate span for each channel as follows:

fpmerge rgba0,rgba2,tmp1 ! tmp1 = r0r2g0g2b0b2a0a2

fpmerge rgba1,rgba3,tmp2 ! tmp2 = r1r3g1g3b1b3a1a3

fpmerge hi(tmp1),hi(tmp2),rg ! rg = r0r1r2r3g0g1g2g3

fpmerge lo(tmp1),lo(tmp2),ba ! ba = b0b1b2b3a0a1a2a3

The separated channels are now available in hi(rg), lo(rg), hi(ba), and lo(ba), where

hi(x) refers to the even portion of a register pair x and lo(x) refers to its odd portion. If

data are being converted in bulk, this code may be duplicated so as to write eight bytes of

output at a time for each channel.
Reversing the process is equally simple:
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Figure 27: The fpmerge instruction

fpmerge r0,b0,tmp1 ! tmp1 = r0b0r1b1r2b2r3b3

fpmerge g0,a0,tmp2 ! tmp2 = g0a0g1a1g2a2g3a3

fpmerge hi(tmp1),hi(tmp2),rgba01 ! rgba01 = r0g0b0a0r1b1g1a1

fpmerge lo(tmp1),lo(tmp2),rgba23 ! rgba23 = r2g2b2a2r3g3b3a3

Note that the pixel format may be reordered by concatenating these operations with an

appropriate reordering of the inputs to the second half. As we will see, fpmerge has other

uses such as data transposition.

The fpmerge instruction is processed by the graphics adder.

4.5 Alignment Operators

alignaddr isrc1, isrc2, idst

faligndata dsrc1, dsrc2, ddst

The alignaddr instruction sums its integral isrc1 and isrc2 arguments and sets the

alignment �eld of the %gsr to the lower three bits of the result. Typically, the �rst argument

will be a pointer and the second will be a byte o�set. The sum, with its lower three bits

masked to zero, is returned as idst. This value may be subsequently used as an aligned

pointer.

The faligndata instruction takes two 8-byte arguments dsrc1 and dsrc2 and concep-

tually concatenates them into a single sequence of 16 bytes:

p0p1p2 : : : p15

For a %gsr alignment of s, 0 � s � 7, bytes:

psps+1ps+2 : : : ps+7

are selected and stored into the destination, ddst. The combination of alignaddr and
faligndata allows an unaligned span of 8 bytes to be read from an address (ptr + offset)

using the idiom:

alignaddr ptr, offset, aligned_ptr

ldd [aligned_ptr + 0x0], data_hi

ldd [aligned_ptr + 0x8], data_lo

faligndata data_hi, data_lo, data
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Instruction 3 LSBs Left Edge Right Edge

edge8 000 11111111 10000000

edge8 001 01111111 11000000

edge8 010 00111111 11100000

edge8 011 00011111 11110000

edge8 100 00001111 11111000

edge8 101 00000111 11111100

edge8 110 00000011 11111110

edge8 111 00000001 11111111

edge16 00x 1111 1000

edge16 01x 0111 1100

edge16 10x 0011 1110

edge16 11x 0001 1111

edge32 0xx 11 10

edge32 1xx 01 11

Table 1: Generation of left and right edge masks from pointers.

Software is responsible for ensuring that both loads are from valid addresses. The semantics

of aligning pointers was discussed in section 3.2 above; the proper way to align data in a

loop context is discussed below in section 7.1.

The faligndata instruction is processed by the graphics adder. The alignaddr instruc-

tion is processed by the integer unit and currently does not group with other instructions.

The altered %gsr is available for use in the following cycle.

4.6 Edge Masking and Comparison

edge8 isrc1, isrc2, idst

edge16 isrc1, isrc2, idst

edge32 isrc1, isrc2, idst

fcmpgt16 dsrc1, dsrc2, idst

fcmpgt32 dsrc1, dsrc2, idst

fcmple16 dsrc1, dsrc2, idst

fcmple32 dsrc1, dsrc2, idst

fcmpne16 dsrc1, dsrc2, idst

fcmpne32 dsrc1, dsrc2, idst

fcmpeq16 dsrc1, dsrc2, idst

fcmpeq32 dsrc1, dsrc2, idst

4.6.1 Edge Masking

The edge instructions generate 8-, 4-, or 2-bit masks that may be used as arguments to a

partial store instruction based on two pointers isrc1 and isrc2 such that isrc1 � isrc2. The

mask is created so that a write to the (8-byte) doubleword containing the address pointed

to by isrc1 will not a�ect any bytes to the left of isrc1 or to the right of isrc2. There are

two cases: either isrc1 and isrc2 fall in di�erent doublewords, or else they fall in the same
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lmask = 00111111 lmask = 11111111 lmask = 01111111 rmask = 11111100

mask = 01111100

&

Figure 28: Three examples of edge masking.

doubleword. In the former case, only the bytes within the doubleword that are to the left of

isrc1 require masking, so only a left edge mask is used. In the latter case, the two pointers

yield both left and right edge masks, which are logically \and"ed together. Table 1 shows

the set of left and right edge masks generated by the various edge instructions, based on

the 3 least signi�cant bits of the two pointers.

Figure 28 illustrates the edge masking process. The �rst three arrows (reading from

left to right) represent the isrc1 arguments to three edge8 instructions; the �nal arrow

represents their common isrc2 argument. For the �rst two calls, the isrc2 argument is not

relevant since the arguments fall in di�erent words. The shaded regions denote the bytes

covered by the resulting masks. The third call shows the \and"ing of the left and right edge

masks to produce a mask with zeros on both ends.

When isrc2 exceeds isrc1, the results of the edge instructions are unde�ned, and cannot

be counted on to be zero. This means that loops that depend on the edge instruction to

prevent writes beyond the end of a scanline must still take responsibility for terminating

after writing to the doubleword containing the last image byte. In particular, hand-unrolled

loops must contain exit tests after each write, or else must be invoked for fewer operations

and followed by a separate cleanup loop.

The edge masking instructions are processed by the integer unit.

4.6.2 Partitioned Comparison

The comparison operators compare partitioned 16- or 32-bit data in dsrc1 and dsrc2 and

produce a 4- or 2-bit mask in an integer register, idst. This mask may be logically \and"ed

with the mask produced by an appropriate edge instruction, or a user-generated mask, or

used in any other way desired. The \missing" comparisons (� and <) may be synthesized

as pseduo-ops: fcmpge(a; b) � fcmple(b; a) and fcmplt(a; b) � fcmpgt(b; a).

VIS does not possess a selection operator; instead, the result of a comparison may be

realized by writing results that assume the comparison succeeded to memory using the

mask generated using the partial store instruction described in section 4.7. Then results

that assume the comparison failed are written to the same address using an inverted mask.

If these stores are performed to cacheable memory (or to a device which supports this store

mode) without any other stores intervening, the stores will be combined in the store bu�er,

and will not result in separate bus transactions.

The comparison instructions are processed by the graphics multiplier. The results of
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the comparison should not be used until the third following cycle; otherwise a microtrap

(section 2.8) may be generated.

4.7 Partial Stores

stda dsrc, [iaddr]imask, imm asi

The partial store operation stores 8 bytes from dsrc to a properly aligned address iaddr,

just as a regular double-precision oating point store does; however, the partial store uses

an integral mask, imask, to control the replacement of the output bytes. For each bit of

imask that is zero, the data in memory (or on an appropriate memory-mapped device) at

the corresponding postion is left unchanged.

The imm asi �eld determines the ASI (address space identi�er) of the store. ASIs allow

selection among a number of hardware load and store variants, including big- and little-

endian byte ordering and access to primary and secondary address spaces. VIS provides

ASIs that perform partial stores of eight 1-byte, four 2-byte, or two 4-byte quantities. The

mask bits, found in imask, are right-justi�ed in each case.

4.8 Short and Block Loads and Stores

ldda [ireg+ireg]imm asi, ddst

stda dsrc, [ireg+ireg]imm asi

The short load and store instructions allow quantities smaller than four bytes, namely
one and two bytes, to be transferred between memory and the oating point register �le by
means of a non-standard ASI, which is otherwise not possible in SPARC assembly language.
The data need only be aligned on its natural boundary, i.e, even addresses for 2-byte
quantities and arbitrary alignment for 1-byte quantities. The data will be right-justi�ed
within a double-precision oating point register in all cases. Quantities of four or eight
bytes may be loaded and stored using ordinary float and double LSU instructions. These
instructions may be accessed from C via inlines (section 6.1):

vis_d64 vis_ld_u8(vis_ras addr);

vis_d64 vis_ld_s16(vis_ras addr);

vis_d64 vis_ld_u8_i(vis_ras addr, int index);

vis_d64 vis_ld_s16_i(vis_ras addr, int index);

void vis_st_u8(vis_d64 value, vis_ras addr);

void vis_st_s16(vis_d64 value, vis_ras addr);

void vis_st_u8_i(vis_d64 value, vis_ras addr, int index);

void vis_st_s16_i(vis_d64 value, vis_ras addr, int index);

The indexed variants (having names ending with _i) add the index and address arguments

together to produce the load address. This is free since SPARC load and store instructions

calculate their e�ective addresses as the sum of two arbitrary integer registers. In the interest

of performance the index is not scaled when accessing 16-bit data, nor is the resulting pointer

checked for alignment. The enclosing routine is expected to take care of these details.

Other variants of the alternate ASI load and store instructions, known as block loads

and stores, allow transfer of 64 bytes (512 bits) of data between the processor and main

memory (or a suitable device such as the frame bu�er), bypassing the cache. The source or

destination must be a set of 8 contiguous double-precision registers starting with a multiple

of eight, and the memory address must be 64-byte aligned. Load data �ll the destination
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registers over several cycles, and software must be careful not to attempt to perform a

block store involving these registers prematurely in order to ensure correctness. Inserting a

oating point move instruction from the �rst destination register to a dummy register will

create an interlock, forcing a stall until that register's data arrives.

The restriction on register placement, as well as the need for timing-sensitive code,

prevent the use of the block load and store instructions from C. Thus they have not been

used for any of the core imaging routines. However, the system copy routine (memcpy) as

well as frame bu�er copies (e.g., for window movement) do make use of block load and store.

The destination is copied using double loads and stores and the faligndata instruction until

a 64-byte boundary is reached. Two block loads are performed to guarantee the presence of

the desired (unaligned) 64 source bytes, which are copied into an 8-aligned block of registers.

This requires the use of eight sections of code to perform a \crude" alignment, as well as

the faligndata instruction for \�ne-tuning." A new block is loaded, and it along with

the previously loaded block provide the data for the next block store, and so on. The last,

unaligned destination bytes are again copied in the same manner as the initial segment. A

code fragment illustrating this may be found in [Kohn95].

Figure 29 shows the performance of the system memcpy routine for spans of up to

1; 000; 000 bytes. Each copy was performed at least 50 times in order to smooth out any

overhead introduced by the test program, with each call having randomly perturbed source

and destination pointers in order to cover di�erent cases of alignment. We see that spans

greater than 100; 000 bytes or so are copied at a nearly constant speed of around 175

megabytes/second. Below this, performance appears to vary widely. Figure 30 shows the

performance on spans less that 100; 000 bytes in more detail. Since memory copy measure-

ments are often quoted in terms of the aggregate number of bytes read and written across

the bus, one can view the block load and store instructions as providing uncached access to

memory at 350 megabytes/second.

In principle, there are several cycles available within such a copy loop in which the

incoming data may be processed without a�ecting the transfer rate. Possible applications

include lightweight imaging operators, the computation of cryptographic checksums, and

data format conversions such as reversing the data's \endian-ness" (i.e., rearranging bytes

from abcd to dcba order in order to compensate for di�erent CPU preferences), or remapping

pixel channels from the order required by some application or library (e.g., (r; g; b; �)) into

frame bu�er order (e.g., (�; b; g; r)).

In section 9.3.1 we discuss prefetching, which should provide an alternative way for

future processors to copy data at full memory bandwidth without the need for timing-

sensitive software or assembly-language coding.

4.9 Miscellany

array8 xsrc isize idst

array16 xsrc isize idst

array32 xsrc isize idst

pdist dsrc1 dsrc2 dsrc3/ddst

Volumetric imaging is the process of displaying three-dimensional data sampled at a

discrete set of locations in space. Typically a two-dimensional slice is obtained for display

by stepping through the data along a set of lines. In hardware, this amounts to reading

from a sequence of addresses computed from a linear sequence of (x; y; z) coordinates.
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Figure 29: The performance of the system memcpy routine.
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Figure 30: The performance of the system memcpy routine on small spans.
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Figure 31: Layout of �xed point coordinates for the array instructions.

z8 : : :z5 y6+size : : : y6 x6+size : : : x6 z4 : : : z1 y5 : : :y2 x5 : : :x2 z0 y1y0 x1x0

Figure 32: Layout of blocked address o�sets for the array instructions.

The array instructions accelerate volumetric imaging by converting (x; y; z) coordinates

in xsrc into a blocked address, idst, that intermingles the bits of the three coordinates into

a single array o�set. This has the e�ect of equalizing the changes in the o�set as the

sample position moves along any direction (�x;�y;�z). If the bits of the three coordinates

were simply concatenated, say in zyx order, a line of samples moving principally in the x

direction would perform well, since the sequence of addresses would allow full use of each

cache line. Movement in y would yield very poor cache line utilization of only 1-4 bytes per

line (depending on the datatype being sampled). Movement in z would only rarely reuse

cached data and would additionally perform poorly in the TLB (the translation lookaside

bu�er, where virtual page numbers are mapped to physical ones), since each reference would

be to a di�erent page. TLB misses are typically penalized severely, as they require operating

system intervention, providing a powerful incentive for code to keep its page locality high.

The second argument of the array instructions, isize, speci�es the size of the x and y

dimensions of the array, which must be equal powers of two between 64 (size = 0) and 2048

(size = 5). The actual argument is equal to lg(size)� 6.

The xsrc input to the array instructions is a 64-bit (x; y; z) tuple, with 11 bits of

fractional positional precision in each dimension. The layout is illustrated in Figure 31.

Incrementing of the position may be accomplished by the v9 addx instruction, which is

a true 64-bit addition. The result is a 32-bit o�set, which can be used as the o�set for

an ordinary load instruction, shown in Figure 32. The application must preprocess the

volumetric data into this form. The three variants of the array instruction di�er only in

their signi�cance; array16 adds one, and array32 adds two zeros to the right of the blocked

o�set to facilitate access to 16- and 32-bit array data.

Since the array instructions are executed in the IEU, they group naturally with a

load, an addx, and a faligndata for a maximum throughput of one sample per clock

(storing every 8 samples). The use of faligndata to accumulate bytes will be discussed

in section 7.3. Higher quality may be achieved by sampling the corners of a unit cube

surrounding the sample point and interpolating based on the x, y, and z fractions, as

shown in [Kohn95].

For large arrays, TLB misses will still be problematic. Blocking references in software

to small portions of the volume (e.g., 32� 64� 64) can help to reduce TLB misses.

Because Solaris 2.5 is a 32-bit operating system, the top 32 bits of the integer registers

are not saved across context switches. This would mean that the top half of a �xed point

address could disappear at any time as the program is run. Fortunately, it was possible to

arrange to have the entirety of registers %o0-%o7 and the %g registers saved, so it is possible

to use the array instructions. It still requires assembly language coding, both to ensure the

proper register assignments and to use the addx instruction, which the compiler does not

now generate (lacking a true 64-bit datatype).
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The pdist instruction takes two doubles p0 � � �p7 and q0 � � �q7, treating them as eight 8-

bit pixels. Corresponding pixel values are subtracted, and the sum of the absolute values of

the di�erences are added to the existing integral value in ddst: d d+
P7

i=0 jpi � qij. The

main application of pdist is in the calculation of motion estimation during video encoding,

to provide an estimate of the di�erence between corresponding blocks between two frames in

the video sequence. Video compression standards such as MPEG and H.261 (for real-time

video conferencing) can increase compression ratios by locating similarities between frames

and encoding only the di�erences. The comparison need not be performed against raw

image data; for example, in so-called half-pel interpolation one of the sources is allowed to

be interpolated at pixel centers or edge midpoints. An experimental H.261 encoder written

by the author makes use of the pdist instruction, resulting in a dramatic decrease in the

time spent performing motion estimation.

4.10 Useful Pseudo-Operations

A number of inline templates (a mechanism for accessing assembly instructions from C,

described in section 6.1) that do not correspond directly to VIS instructions have been

de�ned. Most deal with access to register pairs. In the SPARC architecture, some of the

oating point registers may be accessed both as a single-precision value or as one half of a

double-precision value. Register pairs always begin with an even-numbered register.
Consider the instruction sequence shown in Figure 33. We require some way to specify

which piece of the loaded data the fexpand instructions are to operate on. We de�ne
inlines vis_read_hi and vis_read_lo as returning, respectively, the high and low parts of
a vis_d64 as a vis_f32. The code in the �gure, except for the �nal store, may then be
expressed in C as:

vis_d64 s1, s1_hi, s1_lo, s2, s2_hi, s2_lo, sum_hi, sum_lo;

vis_d64 *s1addr, *s2addr, *daddr;

vis_f32 pack_hi, pack_lo;

s1 = *s1addr; s2 = *s2addr;

s1_hi = vis_fexpand(vis_read_hi(s1)); s1_lo = vis_fexpand(vis_read_lo(s1));

s2_hi = vis_fexpand(vis_read_hi(s2)); s2_lo = vis_fexpand(vis_read_lo(s2));

sum_hi = vis_fpadd16(s1_hi, s2_hi); sum_lo = vis_fpadd16(s1_lo, s2_lo);

pack_hi = vis_fpack16(sum_hi); pack_lo = vis_fpack16(sum_lo);

We still require a way to combine two vis_f32 variables and store them as a single vis_d64.

For this purpose we de�ne the inline vis_freg_pair.
The �nal store may now be expressed as:

*daddr = vis_freg_pair(pack_hi, pack_lo);

4.11 VIS Instruction Latencies

In Table 2, FGA instructions are: fmov* (register copy), fpadd*, fpsub*, faligndata,
fpmerge, and fexpand. FGM instructions are: fpack*, fmul*, and fcmp*. Numbers in
brackets represent cross-precision latency, as when part of a 64-bit result is used as a 32-bit
argument. A simple example is the sequence:

faligndata %f10,%f12,%f14

fmul8x16 %f14,%f30,%f32

fmul8x16 %f15,%f30,%f34

Since registers %f14 and %f15 are written as a pair and then used by separate instructions,

the latency is 2 rather than 1 (faligndata ! FGM).
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ldd [s1addr+0x0],%f6 ! double load, writes %f6-%f7

ldd [s2addr+0x0],%f30 ! double load, writes %f30-%f31

fexpand %f6,%f10 ! single->double, writes %f10-%f11

fexpand %f7,%f12 ! single->double, writes %f12-%f13

fexpand %f30,%f14 ! single->double, writes %f14-%f15

fexpand %f31,%f16 ! single->double, writes %f16-%f17

fpadd16 %f10,%f14,%f24 ! all arguments double, writes %f24-%f25

fpadd16 %f12,%f16,%f38 ! all arguments double, writes %f38-%f39

fpack16 %f24,%f40 ! double->single, writes %f40

fpack16 %f38,%f41 ! double->single, writes %f41

std %f40,[daddr+0x0] ! double store, writes %f40-%f41 to memory

Figure 33: Assembly code for a simple VIS addition.

Result used by: FGA FGM pdist

fmov* 1 1 [2]

fpadd* 1 1[2] [2]

fpsub*

faligndata

fpmerge

fexpand

fpack 3 1[4] [2]

fmul* 3 3[4] 1

pdist

Table 2: Selected UltraSPARC-I VIS instruction latencies.

5 Sources of Speedups

Although the speedup of a particular operator compared to an equivalent software imple-

mentation is simple to estimate, it is far more di�cult to understand its impact in the

context of real programs. Consider just a handful of the complexities of accelerating real

code:

� The need to make either/or coding decisions, such as the placement of a value in either

an integer or a oating point register, mean that the theoretically fastest operation is

not always available within the context of a given piece of code.

� Instructions that take advantage of parallelism require the existence of appropriate

quantities of parallelizable computation. An algorithm exposing this parallelism may

be slower in other respects, e.g., it might recompute expressions that could otherwise

be shared so as to avoid serializing on their computation.

� Particular compiler optimizations may apply to some instructions and not to others.

Thus a nominally fast approach that defeats a powerful optimization may be slower

in practice than a more na��ve one.

� Some operators involve a trade-o� between speed and accuracy that cannot be de-

termined without human input. Since the operations are not exactly equivalent, the
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notion of speedup is ill-de�ned. The number of operations required may be a function

not only of the quantity of data but of the desired accuracy as well.

� Many algorithms are resource-constrained by their use of a particular functional unit.

Lessening the usage of the other units will not improve performance. In general,

Amdahl's law implies that the speedup attributable to any feature will be limited

by its frequency. Our situation is even worse: the speedup due to lessening use of a

non-limiting resource is zero even though that resource might be used as often as the

limiting resource.

Four features of VIS and UltraSPARC-I stand out as providing clear performance gains.

The superscalar instruction issue of UltraSPARC-I can potentially accelerate all programs;

by using the oating point units for VIS processing, the potential for parallel issue is in-

creased. The alignment and partitioned arithmetic operators operate in tandem to increase

the amount of useful work performed in each instruction cycle. The unconditional clamping

feature of the fpack instructions allows conditionals to be avoided, removing conditional

branches which act as a barrier to some loop optimizations. Lastly, by opening up the

oating point register set to imaging codes, greater parallelism is exposed.

5.1 Superscalarity

The gain in performance due to superscalarity is of course available to all programs. How-

ever, traditional imaging codes make heavy use of the integer units while leaving the oating

point units nearly unused. By placing �xed point capabilities into the FPU, it becomes pos-

sible to issue an addition and a multiplication simultaneously, along with one or two integer

operations for pointer indexing, loop control, and so forth.

Typical integer codes appear to have a limited ability to take advantage of superscalar-

ity { there simply are not enough independent instructions available to keep very many

functional units busy. This has led to some fairly gloomy assessments of the ultimate utility

of superscalar design. Floating point codes fare much better, since they typically perform

most of their computation in tight loops. Advanced schedulers may place instructions from

a number of di�erent loop iterations into a given issue slot in order to keep the processor

busy with useful work. Imaging codes, although they traditionally use little actual oat-

ing point, share these characteristics and are amenable to the same sorts of scheduling

algorithms.

5.2 Alignment and Partitioned Arithmetic

The alignment and partitioned arithmetic instructions are the most obvious source of

speedups. In practice the need for data conversions, alignment, clamping, packing, and

other overhead instructions cause the code to require more than simply one half or one

fourth as many arithmetic instructions than standard imaging code, so in and of itself par-

titioned arithmetic does not guarantee large speedups. In particular, the time to reformat

data into partitioned format and the time to restore it to its original format must always

be minimized if the bene�ts of partitioned arithmetic are to be realized. For example, if

the data reside in integer registers the time to move them into the oating point register

�le and back may swamp any savings due to partitioning. In such a case a new approach

may be required, rather simply inserting partitioned arithmetic into existing routines.
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5.3 Unconditional Clamping

The value of automatic clamping is di�cult to quantify. By removing the need for a con-

ditional in many loops, optimization is radically improved. Thus simply by removing the

need to consider clamping, a more aggressive treatment of the loop as a whole is enabled.

Of course, conditionals are not the only way to implement clamping. Conditional moves,

lookup tables, and clever sets of logical operations [Granlund92] are also valid techniques.

The cost of these methods in a superscalar context will probably depend most strongly on

the relative use of the functional units in the loop; if the load/store unit is heavily used,

use of a lookup table will add cost, whereas in other loops the additional use would be free.

5.4 Use of Floating Point Registers

Superscalar scheduling techniques make heavy use of registers to store intermediate results.

This is a general consequence of any technique that exposes parallelism. The ability of the

compiler to schedule loops depending on integer registers is limited by the number of avail-

able registers for all but fairly simple loops. The compiler will be forced to adopt looser and

looser schedules until the register pressure becomes manageable. Moving the computation

to the oating point units opens up a large pool of registers that would otherwise be wasted.

This is especially true for the v9 SPARC instruction set architecture, which devotes twice

as many bits to the oating point register set as did v8.

6 Compilation Technology

VIS code, of course, may be written directly in assembly language. This gives the program-

mer full control over timing, register allocation, and the like. However, the need to observe

the grouping rules and instruction/instruction latencies make this a very di�cult task. In

addition, all the usual di�culties of assembly-language coding apply. Given the resources at

hand, an assembly-only XIL port would have had extremely limited functionality. Nonethe-

less, it was considered a serious option since there was no guarantee of adequate compiler

support, and only �nally rejected as the needed support materialized.

In this section we discuss the basic technique which is used to include VIS instructions

in C code, inline assembly language templates. During the development of the VIS XIL

port, a simulation environment was used which we discuss briey.

The performance of VIS in practice is in large part determined by the quality of the

code emitted by the compiler. The code generator relies on a machine model describing

the instruction grouping rules and instruction/instruction latencies; this model allows for

reasonable scheduling of straight-line code, but more importantly serves as a basis for more

sophisticated loop scheduling techniques. We discuss the techniques which are used for

instruction scheduling and register allocation with the aim of clarifying the scope of the

compiler's contribution to performance. This knowledge has proved highly useful in the

process of VIS code development, since it is often preferable to use a simple algorithm that

will be well optimized rather than a more complex one.

6.1 Inline Templates

Since hand-coding in assembly language is unacceptably di�cult, a technique for mixing C

code with VIS instructions is required. Many compilers o�er an asm keyword that allows a
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.inline vis_fpadd16, 4

std %o0,[%sp+0x48] ! A scratch stack location

ldd [%sp+0x48],%f2

std %o2,[%sp+0x48]

ldd [%sp+0x48],%f4

fpadd16 %f2,%f4,%f0

.end

Figure 34: An inline template for the fpadd16 instruction.

! val0 is in registers %f0-%f1

! val1 is in registers %f2-%f3

! sum is in registers %f4-%f5

!

std %f0,[scratchaddr0]

ldd [scratchaddr0],%o0 ! Load into %o0-%o1

std %f2,[scratchaddr1]

ldd [scratchaddr1],%o2 ! Load into %o2-%o3

std %o0,[scratchaddr2]

ldd [scratchaddr2],%f1002

std %o2,[%sp+0x48]

ldd [%sp+0x48],%f1004

fpadd16 %f1002,%f1004,%f1000

fmovd %f1000,%f4

Figure 35: Conceptual code generated by insertion of the template.

short sequence of assembly instructions to be introduced into a C function. Sun's SPAR-

CWorks C compiler uses a variant of this technique in which assembly code is placed in a

separate �le with the su�x .il. An example of such a template is shown in Figure 34. The

\4" in the �rst line refers to the number of input values { double-width values (double and

long long arguments) are presented as an unaligned pair of integer registers. The result

is left in registers %f0 and %f1 by convention.
Consider using this inline within the context of a C function. Given a source statement:

vis_d64 val0, val1, sum;

sum = vis_fpadd16(val0, val1);

the variables val0, val1, and sum may be thought of as residing in some double-precision

registers. The inline template must be called with its (initial) arguments in the %o integer

registers. This is only a convention, and we shall see that it does not a�ect the generated

code. Figure 35 shows the code that would result from a near-literal inclusion of the inline

within the context of the enclosing statement. The arguments to vis_fpadd16 are copied

through memory into integer registers %o0-%o4. Next, the template is inserted with its

registers and scratch addresses renamed to some unique values. This is possible since the

compiler uses virtual register names during code generation in any case. Finally, the result

must be copied into its proper location.
If this code were to be run, there would of course be a large penalty for all this copying.

Fortunately the redundant code is easily eliminated: the pattern std{ldd{std{ldd can be
removed by simply identifying the initial and �nal registers in the sequence. In the example,
%f0 and %f1002 are coalesced, as are registers %f2 and %f1004. The �nal fmovd can also
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be eliminated by coalescing %f1000 and %f4. All that is left is simply:

fpadd16 %f0,%f2,%f4

and no cost is incurred by the use of the inline calling convention.

6.1.1 Prototypes

It is imperative that proper ANSI function prototypes be used at all times. In this case, a
correct prototype would be:

vis_d64 vis_fpadd16(vis_d64, vis_d64)

If no prototype were used, the implicit conversions between int and double would be

employed, resulting in code containing fitod and fdtoi type-conversion instructions. These

conversions will not maintain the �xed-point bit patterns used by VIS, but will instead treat

the data as IEEE 754 oating point. Since we are using a oating point resource, namely

the register �le, to hold non-oating point data, we must always be careful to manipulate

it using only VIS-aware operations, or operations that perform no conversions. Floating

point loads, stores, and moves never alter the bit patterns of the data they handle, and so

are safe to use.

Tables of VIS constants to be generated once and textually included in source code

as array initializers should not be printed using the stdio library routine printf() using

the %lf format conversion operator; even if a particular version of the C library allows a

bit-for-bit round-trip of ordinary double values through printf() and scanf(), this will

not necessarily hold true for today's printf() and some future version of scanf(). Worse,

some VIS constants will not be valid oating point numbers and will print as NaN (not a

number, i.e., an illegal bit pattern) or Infinity and will not be recoverable. The correct

approach is to print the data in an integral format with a well-de�ned byte order; this will

always be recoverable exactly.

In practice, the result of incorrect prototypes or variable declarations often results in

no compile-time error messages due to the standard conversions de�ned by ANSI C. At

runtime, data will typically be completely scrambled. However, an unintended conversion

from oat to double and back may leave data intact and thus remain unnoticed. This is

easily detected by the extreme speed penalty for operations on the denormalized and NaN

patterns being converted, which cause the processor to trap to software routines. A search

through the assembly code for oating point conversion operators will also turn up these

problems.

6.2 Simulating VIS Code

The VIS/XIL development process began prior to the tapeout of UltraSPARC-I. A set of

simulation environments were constructed to allow development to proceed without hard-

ware.

The initial simulators available to the XIL porting group, known as siam and incas,

were implemented by the chip designers as modules of the mpsas simulator framework. Both

implement a model of the UltraSPARC processor running in a nearly bare machine { one

with no operating system services beyond a rudimentary initialization sequence. However,

siam focuses on fast execution, while incas is \nearly cycle-accurate" (hence the \nca" of its

name). Within incas, it is possible to examine the state of the processor pipelines during a
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union vis_dreg_overlay {

vis_d64 d64;

vis_f32 f32[2];

vis_u32 u32[2];

vis_s32 s32[2];

vis_u16 u16[4];

vis_s16 s16[4];

vis_u8 u8[8];

vis_s8 s8[8];

unsigned long long ull;

struct {

vis_ras u, l;

} x;

};

vis_d64

vis_fpadd16 (vis_d64 frs1, vis_d64 frs2)

{

union vis_dreg_overlay op1, op2, dest;

op1.d64 = frs1;

op2.d64 = frs2;

dest.s16[0] = op1.s16[0] + op2.s16[0];

dest.s16[1] = op1.s16[1] + op2.s16[1];

dest.s16[2] = op1.s16[2] + op2.s16[2];

dest.s16[3] = op1.s16[3] + op2.s16[3];

return dest.d64;

}

Figure 36: A portion of the vis sim.c �le.

particular cycle, which is useful in understanding the practical e�ects of the grouping rules.

Cycle accuracy is essential for any performance-oriented work.

A third simulation environment, produced within the XIL porting group, took the form

of a C module, vis_sim.c. A portion of this �le is shown in Figure 36. This module contains

a function corresponding to each VIS inline template, as well as some union datatypes

that allow access to the VIS data using regular integer instructions. When linked with

code using VIS, a portable binary executable is generated that can run on any SPARC

processor. Although such executables run at less than 1=100 the speed of the optimized

UltraSPARC binaries, they allowed the use of existing hardware, compilers, and debugging

tools during the period before those tools became VIS-aware. Even after the hardware

was made available, it was sometimes in short supply. By providing an option in the

project makefiles to produce simulated code, it was possible to work without interruption.

Comparing the results of the simulated code and the production code also provided an

ongoing way to locate compiler bugs, since the older, more stable version of the compiler

would not otherwise have been able to accept VIS code.
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6.3 Instruction Grouping Rules

The legal instruction groupings for UltraSPARC-I are quite complex. Here we attempt to

provide a few simple rules that are of particular interest to the user of VIS.

A number of instructions are always dispatched singly; i.e., they cannot be grouped with

any other instructions. In particular, block load and store and the alignaddr instruction

fall into this category.

Instruction that make use of the integer units must reside in the �rst three slots of a

group. Only one of the integer units contains a shifter, thus only a single shift instruc-

tion may be dispatched per cycle. Similarly, only one array or edge instruction may be

dispatched in a given cycle.

Cycles will be broken if the same destination register (other than %g0) is used multiple

times (i.e., a write-after-write hazard). Read-after-write hazards, in which the destination

register of one instruction is used as a source in a later instruction, also force the breakage

of a group. However, the result of most integer instructions may be forwarded to a store

instruction in the same group.

When using the VIS comparison instructions, care must be taken to place at least two

cycles of separation between the comparison and any instruction that uses the resulting

bit mask. If this is not done, the second instruction may be dispatched prematurely and

allowed to execute up to its writeback stage. It will then be canceled an restarted, resulting

in a 9 cycle overall penalty.

6.4 Superscalar Code Scheduling

Code scheduling algorithms for superscalar machines have been heavily inuenced by tech-

niques from early hardware scheduling algorithms, microcode scheduling, and VLIW. Sur-

veys may be found in [Lam90] and [Johnson91]. It has been appreciated for some time that

simply widening a processor's instruction issue capacity does not result in a commensurate

increase in throughput without aggressive scheduling. Even with such scheduling, many

important integer codes have such high branch frequency that parallelism appears di�cult

or impossible to uncover. Fortunately, imaging codes have ample parallelism and are ex-

cellent candidates for straightforward basic block and loop scheduling techniques. More

advanced techniques, such as trace scheduling, that look beyond branch boundaries, are

probably unnecessary and possibly disadvantageous for the algorithms we are considering;

they will not be discussed here.

6.4.1 Basic Block Scheduling

A basic block is a sequence of instructions that can be entered only from the top and exited

only from the bottom. If one instruction in a basic block executes, they all must execute.

This property, along with the fact that basic blocks are trivial to locate, has made them

a popular focus of optimization for many years. As long as the correct result has been

computed before the block exits the compiler may rearrange the intermediate computation

freely (although exception behavior must still be considered).

Consider the computation described by the dependency graph in Figure 37. This graph

corresponds to the code shown in Figure 33. The nodes of the graph are instructions

(numbered for identi�cation) and the edges represent data dependencies existing between

pairs of instructions. A ow dependency is said to exist between a pair of instructions when

the output register of the �rst instruction is used as an input register of the other. Two other
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Figure 37: Dependency graph for a simple addition loop.

types of dependencies are commonly represented in dependency graphs: anti-dependencies

in which an instruction overwrites an input register used by a previous instruction, and

output dependencies in which two instructions write to the same output register. All three

types of dependencies prevent the pair of instructions from being reordered. The latter two

types are artifacts of the reuse of registers; if we posit an in�nite set of virtual registers,

reuse is no longer necessary and only ow dependencies can occur. There are also control

dependencies that link conditional statements and the instructions they select between;

since we are discussing basic blocks only, these dependencies are not relevant.

Each edge of the dependence graph may be labeled with the number of cycles of latency

between the instructions it connects. For example, if the data to be loaded are in level 2

cache then 8 cycles of separation between the ldd and fexpand instructions will be required

in order to avoid a stall. The other edges have latencies determined by the design of the

various pipelined functional units and any bypasses that may exist between them. In the

case at hand, all the edges between the computational instructions have latency 1. The

results of the fpack16 instructions are available to be written to memory after 3 cycles.

The critical path in a dependency graph is the path of greatest total latency. If a code

sequence is to be executed in isolation, the critical path provides an upper bound on its peak

performance. In the case at hand, there are several critical paths of length 13 extending

from (either) initial ldd instruction to the �nal std instruction. Thus the store can be

performed no earlier than cycle 13. The actual performance will usually be slower than

that implied by the critical path since resource constraints are not considered. Assume

a load is issued in cycle 0. The second load cannot be issued until cycle 1; the fexpand

instructions that depend on it cannot be performed any sooner than cycles 9 and 10. The

data for the �nal store will thus be ready no sooner than cycle 15, 2 cycles after the original

critical path-based estimate.

Finding an optimal schedule given a dependency graph and a model of allowable in-

struction issues is in general NP-complete. Accordingly heuristics are used to achieve

near-optimal schedules quickly. The most popular is list scheduling, �rst described by

Fisher [Fisher79]. This is a greedy approach in which an instruction, once scheduled, is

never moved. The dependency graph is constructed and instructions having no outstanding

dependencies are identi�ed as available for scheduling. Initially these are instructions whose

dependencies have been satis�ed by the code prior to the loop or by previous iterations.
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An available instruction is assigned to the earliest issue slot at which its dependencies are

satis�ed and an appropriate functional unit is available. New instructions are added to the

available list as their dependencies are satis�ed. The key to achieving good schedules is the

priority function that determines which of several available instructions is to be scheduled.

Typically the priority of an instruction is based on the length of its chain of successors in

order to make maximal progress along the critical path.

Any loop may be considered simply as a basic block that happens to be one of its own

dynamic successors, and can be scheduled on that basis. There are, however, substantial

bene�ts to giving loops special consideration in the scheduler, as we will see in the following

sections.

6.4.2 Loop Unrolling

An obvious technique for increasing the throughput of a loop is to replicate the loop body.

This results in a new loop that performs the same computation in a single iteration that the

original loop performed in several iterations. This has at least two bene�ts. First, the time

spent on loop overheads such as comparison, pointer updating, and branching is reduced

in proportion to the unroll factor. On scalar processors, this is the main bene�t and the

original impetus for the technique. Second, the combined loop bodies form a larger basic

block, with an attendant increase in opportunities for scheduling instructions in parallel.

Observe that the critical path length for a set of independent iterations is the same as that

of a single iteration; if some instructions must be performed in one iteration before the next

one can commence, only those instructions lie on the overall critical path. In either case,

we obtain a smaller lower bound on the time to complete the full set of iterations than

that derived from simply multiplying the iteration time by the number of iterations. As a

practical matter, by reducing the loop scheduling problem to one of scheduling basic blocks,

we also leverage the existing optimization capability of the compiler.

As an imaging loop executes, it passes through a number of discrete iterations. At the

beginning of each iteration, values are typically brought in from memory to be operated

on; after a certain latency, some arithmetic expressions involving the data are evaluated.

This evaluation typically involves some independent subexpressions and is thus amenable to

scheduling across multiple units. Eventually the results are written back to main memory.

The resulting pattern of resource usage begins at zero as the iteration begins, climbs to the

loop's peak resource usage level where it plateaus for a while, and �nally descends again to

zero. The e�ect of loop unrolling is to lessen the number of occasions during the lifetime

of the loop where the resource usage drops below its peak { the plateaus are extended and

overall throughput is increased.

Another use for loop unrolling is suggested by the technique of partial evaluation (see

section 9.2.1). If the number of loop iterations (its trip count) can be determined at compile

time, the loop can be unrolled completely, and a near-optimal schedule for that number of

iterations determined. Complete compile-time knowledge of the trip count is not realistic,

but specialized loops for a selection of trip counts may be generated, with the �nal selection

taking place at run time. For some algorithms such as texture mapping (section 7.8) of

small triangles, trip counts of under 10 or so may account for the bulk of the run time.

The usual reliance on asymptotically fast schedules breaks down since the overhead cannot

be amortized over many iterations for these algorithms. Specializing for small trip counts

would appear to o�er a bene�t in such cases.
Some loops contain values that are forwarded between adjacent iterations. For example,
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Iteration: 0 1 2 3 4 5

Prologue stage 0

stage 1 stage 0

stage 2 stage 1 stage 0

Kernel stage 3 stage 2 stage 1 stage 0

stage 3 stage 2 stage 1 stage 0

stage 3 stage 2 stage 1 stage 0

Epilogue stage 3 stage 2 stage 1

stage 3 stage 2

stage 3

Figure 38: The execution of a 4-stage pipelined loop.

the loop in Figure 13 forwards the value im1_data1, copying it into the variable im1_data0
for use by the following iteration. Suppose the loop is unrolled twice. The following code
illustrates how the two variables may be used in alternation to eliminate the need for
copying:

im1_data = align(im1_data0, im1_data1, 2);

im1_data0 = *im1_aligned++;

im1_data = align(im1_data1, im1_data0, 2);

im1_data1 = *im1_aligned++;

6.4.3 Software Pipelining

Software pipelining consists of grouping together instructions from di�erent iterations into

a single loop body. In this way, progress is made on several iterations at once using the

resources at hand. For example, suppose we are computing a dot product. The individual

products of the elements are computed in the multipliers; imagine there is some latency l

before the results are ready to be processed by the adders. Rather than waiting, we can

arrange the computation so that the additions from iteration i � l are performed simulta-

neously with the multiplications of iteration i. Since there is no dependency between them,

they can be issued and processed simultaneously.

Figure 38 shows the execution of 6 iterations of a 4-stage loop. The �rst three lines show

the prologue of the loop in which the �rst three iterations are begun. The kernel of the loop

comes next; three repetitions are shown but any number may be performed. This is the

steady state of the loop, which repeats at some �xed initiation interval (II). The epilogue

of the loop occupies the last three cycles and allows the iterations in progress during the

last kernel iteration to complete.

6.4.4 Modulo Scheduling

The most e�ective software pipelining technique for superscalar processors to date (al-

though originally developed in the context of microcoding and VLIW processing) appears

to be modulo scheduling [Rau81] [Tirumalai96]. Modulo scheduling proceeds by �xing the

initiation interval and attempting to �nd a satisfying schedule. This schedule will serve as

the kernel; the prologue and epilogue are created separately without �xed time constraints.

Processing begins with the minimum initiation interval, which is determined by examining

the resource constraints of the loop (as in section 2.10). An additional bound on the II can
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be found by considering computation that must be performed in a given iteration before

the following iteration can begin. For example, a loop that updates an accumulator will

have such a restriction. This amounts to �nding the maximum weighted path length over

cycles in the dependency graph. Fortunately many imaging loops have iterations that are

independent or nearly so, resulting in a minimum II determined solely by resource usage. If

a schedule with the given II cannot be found, the II is incremented. Eventually a satisfying

schedule must be found; however, at some point other loop scheduling techniques may yield

better performance. In practice the modulo scheduler stops after trying a �xed number of

IIs in the interest of compilation time.

Since the target II is known to the scheduler, its task is to allocate instructions to

particular kernel cycles. A modulo reservation table with II entries is initialized to empty.

Each entry can hold a group of instructions that is subject to the target processor's grouping

rules, i.e., which can jointly occupy a processor issue slot. The instructions placed in entry

i of the table will be executed in cycles i; i+ II; i+ 2II; : : : at run time (counting the �rst

kernel cycle as 0). Conversely, if we wish a particular instruction to be executed in some

cycle j at run time, it must be allocated in cycle j mod II of the table. This is known as

the modulo constraint.

Let us schedule the code from Figure 37. Its minimum II is 6, since there are 6 instruc-

tions that require the graphics adder. For now we will ignore any additional instructions

required to update pointers and loop indices, detect the loop exit, and branch back to the

loop head. These instructions will be simple to schedule later.

Scheduling proceeds much as in list scheduling, with the addition of the modulo con-

straint. The only instructions free of dependencies are the two initial loads. We place them

in slots 0 and 1. This satis�es the dependencies of the four fexpand instructions, which

may now be scheduled beginning in cycles 8 and 9. The modulo constraint maps cycles 8

and 9 to slots 2 and 3 of the modulo reservation table; the requirement to avoid resource

conicts forces us to distribute the instructions across four cycles, say 8, 9, 10, and 11. The

fpadd16 instructions may be placed as soon as the appropriate pair of fexpand instructions

have completed, but again the resource requirements interfere and we �nd that the earli-

est valid times are cycles 12 and 13, which correspond to slots 0 and 1 of the table. The

fpack16 depending on the earlier fpadd16 may be placed in the next cycle, and the other

one cycle later. Three cycles after the conclusion of the two fpack16 instructions, in cycle

17, the std is scheduled. The resulting modulo reservation table is shown in Figure 39,

and three iterations of the resulting loop are detailed in Figure 40. Cycles 12-17 show a

complete copy of the kernel. The primes indicate the iteration to which each instruction

belongs. The number of iterations executing simultaneously is given by dividing the length

of a complete iteration by the kernel size and taking the ceiling; in this case, an iteration

requires 18 cycles and the kernel occupies 6 cycles, so 3 iterations are processed together.

This quantity will become signi�cant when we attempt to assign registers, and is known as

the kernel unroll factor (KUF).

The literature on modulo scheduling contains discussions of hardware schemes such as a

rotating register �le [Rau92] which allows the same kernel code to refer to a di�erent set of

registers during each iteration. On a more conventional processor such as UltraSPARC-I,

the loop kernel must be unrolled KUF times, with each instance of the kernel code using

a distinct set of virtual registers. Of course, the register allocator is free to assign these to

physical registers as it sees �t (see section 6.5.1). The main disadvantages of this technique

are increased code size and register pressure. It is also impractical to modulo schedule all

but the most trivial loops by hand because of this KUF expansion.
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0: ldd(0) fpadd16(6)

1: ldd(1) fpadd16(7) fpack16(8)

2: fexpand(2) fpack16(9)

3: fexpand(4)

4: fexpand(3)

5: std(10) fexpand(5)

Figure 39: The modulo-scheduled loop kernel.

0: ldd 15: fexpand'

1: ldd 16: fexpand

2: 17: std fexpand'

3: 18: fpadd16'

4: 19: fpadd16' fpack16'

5: 20: fexpand'' fpack16'

6: ldd' 21: fexpand''

7: ldd' 22: fexpand''

8: fexpand 23: std' fexpand''

9: fexpand 24: fpadd16''

10: fexpand 25: fpadd16'' fpack16''

11: fexpand 26: fpack16''

12: ldd'' fpadd16 27:

13: ldd'' fpadd16 fpack16 28:

14: fexpand' fpack16 29: std''

Figure 40: The �rst three loop iterations of the modulo scheduled loop.

A loop iteration may require values from one or more previous iterations. The di�erence

in iteration numbers between the producer and consumer of such values is known as 
, and

is included as an annotation to the appropriate arc of the loop's dependency graph. For

small values of 
, it is possible to simply have the code for one iteration use source registers

which are written by a previous iteration of the unrolled kernel. In this way values may be

forwarded from iteration to iteration without additional copying or use of memory.

The modulo scheduling technique as we have described it, and as it is implemented in

the current Sun compiler, does not allow any branching within the loop. This allows the

scheduler full freedom to reorder instructions without concern for any incorrect state that

might be generated following an early exit. In addition, the loop must have a trip count that

can be determined upon loop entry. Use of a for loop with a simple continuation test is

the simplest way to ensure this. The loop bound should be determined by a variable that is

not altered within the loop; use of pointer dereferencing, as in the test count < x->count,

may cause the compiler to fail to recognize the loop as pipelineable. It also appears that

variables of type int should be used for the loop index in order for the loop to be recognized

as pipelineable. Variations on modulo scheduling exist that allow early loop exists and other

branching structures, but the author has not had experience with them.

Sun's modulo scheduler is invoked by default. However, it is desirable to have a way of

determining whether it succeeded in scheduling a particular loop. The compiler option ags

-S -Qoption cg -ms_pipe,-Qms_pipe+D3 will produce an assembler output �le with de-

bugging information, including the achieved II for each scheduled loop. Occasionally a loop

is determined to have a large minimum initiation interval due to pessimistic assumptions
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about aliasing between di�erent pointers in the loop. The compiler provides a mechanism

for informing the scheduler that no data written in a given iteration will be read by any of

the next n iterations, and vice versa. The directive #pragma pipeloop(n) should be placed

on the line prior to the beginning of the loop. A value of 0 for n means that no aliasing

occurs. The results of such a directive when aliasing does in fact exist are unde�ned.

6.5 Register Allocation

Under the assumption that there are in�nitely many registers, it is simple to use the software

pipelining techniques described above to produce optimal schedules. In reality, of course,

registers are a �nite resource. It is important to understand how registers are allocated in

a modern compiler in order to make reasonable estimates of the feasibility of successfully

pipelining a given loop.

All but the simplest allocation problems are NP-complete. Thus we should expect some

register allocation problems to require an exponential amount of work (assuming, of course,

that P 6= NP as is customary). Fortunately, actual instances of register allocation problems

are rarely so intractable. Furthermore, a strictly optimal solution is not always required;

it is acceptable to use more than the minimal number of registers as long as the actual

number of available registers is not exceeded. The code may also be altered slightly if need

be.

Early C compilers used registers mainly to cache intermediate values within an expres-

sion, keeping variables in �xed stack locations and updating them on each assignment.

Programmers could use the register keyword to suggest that a particular variable was

worthy of being kept in a register throughout a particular scope. Inclusion of a language

structure to deal with variable allocation has had the e�ect of training programmers to

minimize the number of variables in a function with the aim of having them all assigned to

registers. We shall see that this strategy may produce suboptimal code in a compiler with

a proper register allocator.

6.5.1 Register Coloring

Chaitin [Chaitin81] [Chaitin82] describes a general technique for allocating variables to

registers using graph coloring. Graph coloring is the assignment of colors to the nodes of a

graph such that no two nodes sharing an edge are assigned the same color. The chromatic

number of a graph is the minimal number of colors su�cient to color it. The famous 4-color

theorem (all maps may be colored with 4 colors so that no two countries sharing a border

are colored alike) is a statement about graph coloring, namely that all planar graphs are

4-colorable.

In the case at hand, the input to the allocator is a piece of intermediate code that uses

an unlimited number of virtual registers. An interference graph is de�ned such that the

nodes correspond to these registers, with an edge between each pair of virtual registers that

cannot be stored in the same physical register due to a conict. Conicts are found by

identifying the live ranges of each virtual register; that is, the section of code in which they

are in use. Two virtual registers conict if their live ranges overlap. If the target machine

has k usable registers, a k-coloring of the interference graph is attempted.

Graph coloring is NP-complete, and so is expected perform exponentially slowly on some

inputs. Surprisingly, determining whether a graph is k-colorable requires only constant

average time, where the average is taken over all possible graphs [Wilf86]. It is unclear
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what e�ect the actual distribution of graphs encountered in register allocation would have

on this result, and the literature generally assumes the necessity of some heuristic approach.

If the allocator fails to �nd a k-coloring, the code is altered, either by spilling (saving and

restoring) some values to memory around each use, by splitting the code into segments to be

colored separately, or by recomputing the value in question (known as rematerialization).

This process repeats until a k-coloring is found. The choice of heuristics to control the

coloring process and to determine which values to spill has been the focus of much research,

and is beyond the scope of this report.

What does the use of such a register allocator mean for the programmer? First, it

renders the register keyword meaningless. Although it is possible to force some compilers

to place a given variable in a register throughout its scope, and to exempt that register

from consideration during the coloring phase, it is likely that the compiler's spill heuristic

will be more accurate than the programmer's judgment. If the coloring succeeds, nothing

has been gained by the register speci�cation, and if it fails there will be spill code that

might be costlier than that of spilling the register variable. Second, fewer variables are

not necessarily better. By reusing the same variable for multiple purposes, the compiler

may be fooled into allocating a single virtual register for that variable. This virtual register

will have a longer live range than necessary, and so will increase the number of interference

edges and possibly the chromatic number of the interference graph. More sophisticated

compiler analysis techniques can avoid this by recognizing that the multiple uses of the

variable may be assigned to di�erent virtual registers.

The use of register pairs introduces an additional di�culty into the register allocation

problem, since some values must be kept in aligned, adjacent registers instead of being free

to be stored anywhere. If single- and double-precision registers are considered on equal

terms during the allocation, the demand for registers will in e�ect be overestimated. Briggs

et al. describe a technique for coloring register pairs [Briggs92] that can avoid some of these

problems.

The SunPro SPARCCompiler 4.0, development versions of which were used for VIS li-

brary work, required a signi�cant engineering investment to deal properly with the allocation

demands of VIS code. In particular, the extensive use of constructs such as vis_read_hi

and vis_freg_pair, which imply the use of register pairs, often resulted in failure to per-

form certain optimizations. The general solution involved better heuristics to determine

when the use of single-precision virtual registers %f(2n) and %f(2n + 1) followed by the

use of a double-precision virtual register %f(2n) was actually required to be mapped to a

physical register pair or was merely a case of masquerading so-called \evil twins." Some

production VIS XIL code is not modulo scheduled due to the existence of this problem in

the compiler used to build the library.

7 VIS Applications

A number of distinct imaging algorithms have been coded to use the visual instruction set.

Together they illustrate some of the potentials of VIS, as well as its practical complexities.

In the following we will examine a number of algorithms that have been ported to VIS. The

development of this code has been a team e�ort; however, the author had a direct inuence

over all the algorithms shown here. Some of these algorithms also appear (without analysis)

in the VIS User's Guide [SME95b].

We discuss eight areas in which VIS has been used with success: clamped addition, alpha
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blending, table lookup, convolution, bicubic and bilinear resampling, color space conversion,

and texture mapping.

7.1 Addition With Clamping

We saw above in section 3.2 how to implement clamped addition of two images in C. Of

course, this example was somewhat contrived since the desired behavior corresponds exactly

to that of VIS, but the function is nonetheless required by XIL and other libraries. The main

purpose of this section is to describe the alignment and edge masking operations common

to most simple VIS loops; modifying this loop to perform some other bytewise arithmetic

or logical operation is trivial.

To add pixel values in VIS, the image data must be converted from 8- to 16-bit format.

This can potentially be done in three ways:

� Use the fexpand instruction to convert a value x to 16x (i.e., insert 4 zero bits before

and after the bits of x);

� Use the fpmerge and fzero instructions to intermingle zero bytes with the image

bytes; or,

� Use the fmul8x16, fmul8x16al, or fmul8x16au instructions to multiply each value

by some constant, usually a power of two.

The fexpand and fpmerge instructions are both processed by the graphics adder, so

there is no distinction between them in terms of performance. Using a multiplication, even

by 16�256 = 4096 (mimicking fexpand), may sometimes be advantageous in order to balance

the resource usage of an otherwise FGA-heavy routine.

Assume for the moment that the input and output data are stored in doubleword-aligned

bu�ers, i.e., arrays of vis_d64s. Then a simple loop su�ces, shown in Figure 41.

The resource constraints on this loop are 3 loads and stores, 6 graphics adder instruc-

tions, and 2 graphics multiplier instructions (the fpack16s). Changing two of the fexpands

into fmul8x16al operations balances the use of the graphics units at 4 operations each.

Thus this loop can potentially process 8 bytes in 4 clocks, or :5 clocks/byte.

Real images will not be conveniently aligned. Consider writing to a contiguous but

unaligned set of width destination bytes starting at an address dptr; either single-byte

stores or partial stores will be necessary to write some of the output. The partial store

case illustrates the use of the edge8 instruction to generate the masks. Before entering the

loop, the address of the last byte is computed as dlast = dptr + width - 1; forgetting

to subtract 1 is a common programming error. The edge8 instruction is used with dptr

and dlast to generate an initial mask. Note that the correct mask will be generated even

if width is small enough that the entire image span is contained in a single doubleword.

This mask will be used in the initial loop iteration. Once this mask has been generated,

the pointer dalign is computed by masking o� the lower 3 bits of dptr. This will be the

address used by the �rst store.
After data are written to the memory at dalign, it is incremented by 8 and the edge8

instruction is used again to generate the next mask. Although the edge8 instruction gener-
ates a condition code that could be used to exit the loop, it is di�cult to make use of it from
C as well as undesirable from an optimization point of view, since the trip count becomes
unpredictable as explained in section 6.4.3. Instead, the total number of loop iterations is
computed in advance as:
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void

add_images (vis_d64 src1[], vis_d64 src2[], vis_d64 dst[], int count)

{

int i;

vis_d64 s1, s2, ss1_hi, ss1_lo, ss2_hi, ss2_lo, dd_hi, dd_lo;

vis_write_gsr(3 << 3); /* Shift right 7 - 3 = 4 places. */

for (i = 0; i < count; ++i) {

s1 = src1[i];

s2 = src2[i];

ss1_hi = vis_fexpand(vis_read_hi(s1));

ss2_hi = vis_fexpand(vis_read_hi(s2));

dd_hi = vis_fpadd16(ss1_hi, ss2_hi);

ss1_lo = vis_fexpand(vis_read_lo(s1));

ss2_lo = vis_fexpand(vis_read_lo(s2));

dd_lo = vis_fpadd16(ss1_lo, ss2_lo);

dst[i] = vis_freg_pair(vis_fpack16(dd_hi), vis_fpack16(dd_lo));

}

}

Figure 41: Using VIS to add data from aligned arrays.

times = ((unsigned long) dlast >> 3) - ((unsigned long) dalign >> 3) + 1

The resulting function is showed in Figure 42.
All that remains is to deal with varying source alignments. Instead of the aligned

pointers src1 and src2, the source data will be presented as unaligned pointers sptr1 and
sptr2. A given span of eight source bytes beginning at an unaligned pointer sptr1 may
be processed by aligning sptr1 to form salign1, and reading data from *(salign1) and
*(salign1 + 1). Alternatively, we can use array notation: salign1[0] and salign1[1].

These two data values are then realigned using an faligndata instruction; the %gsr o�set
must be set to the o�set of sptr1. This process may be summed up as:

salign1 = vis_alignaddr(sptr1, 0);

sptr1 += 8;

s1a = salign1[0];

s1b = salign1[1];

s1 = vis_faligndata(s1a, s1b);

This alignment must take the destination alignment into account as well, since the �rst
several bytes being written may actually precede dptr (and be masked away by the initial
edge_mask). It is possible to deal with all cases in a straightforward manner by prepending
each source with some \virtual" bytes, equal in number to the \virtual" (masked) destina-
tion bytes. This number is equal to dptr - dalign, which in turn is just the lower three
bits of dptr. This o�set needs to be subtracted from sptr1 before beginning the source
alignment process:

d_offset = (unsigned long) dptr & 0x3;

salign1 = vis_alignaddr(sptr1, -d_offset);
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void

add_images (vis_d64 src1[], vis_d64 src2[], vis_u8 *dptr, int width)

{

int i, times, edge_mask;

vis_u8 *dlast;

vis_d64 *dalign;

vis_d64 s1, s2, ss1_hi, ss1_lo, ss2_hi, ss2_lo, dd_hi, dd_lo, result;

vis_write_gsr(3 << 3); /* Shift right 7 - 3 = 4 places. */

dlast = dptr + width - 1;

edge_mask = vis_edge8(dptr, dlast);

dalign = (vis_d64 *) ((unsigned long) dptr & ~0x3);

times = ((unsigned long) dlast >> 3) - ((unsigned long) dalign >> 3) + 1;

for (i = 0; i < times; ++i) {

s1 = src1[i];

s2 = src2[i];

ss1_hi = vis_fexpand(vis_read_hi(s1));

ss2_hi = vis_fexpand(vis_read_hi(s2));

dd_hi = vis_fpadd16(ss1_hi, ss2_hi);

ss1_lo = vis_fexpand(vis_read_lo(s1));

ss2_lo = vis_fexpand(vis_read_lo(s2));

dd_lo = vis_fpadd16(ss1_lo, ss2_lo);

result = vis_freg_pair(vis_fpack16(dd_hi), vis_fpack16(dd_lo));

vis_pst_8(result, dalign, edge_mask);

++dalign;

edge_mask = vis_edge8(dalign, dlast);

}

}

Figure 42: Addition using the edge8 operation.

The second source is treated similarly.

The computation of d_offset, salign1 and salign2 may be performed outside of the

loop. The %gsr must be set anew prior to each invocation of faligndata, however. Al-

though the alignaddr instruction is the fastest way of accomplishing this, we note that

the return value is not particularly interesting since in a given iteration i we will always

read from salign1[i] and salign1[i + 1]. All that is really required is the o�set of

sptr1 - d_offset, which remains constant as sptr1 is incremented by 8 bytes. Ac-

cordingly, this quantity may be computed once and stored in s1_offset; future uses of

alignaddr will have a null pointer as their �rst argument. Figure 43 shows this process.
A further optimization is to recycle the value s1b for use as s1a in the following iteration:

s1b = salign1[i + 1];

(void) vis_alignaddr((void *) 0, s1_offset);

s1 = vis_faligndata(s1a, s1b);

s1a = s1b;
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int s1_offset = ((unsigned long) sptr1 - d_offset) & 0x3;

for (i = 0; i < times; ++i) {

s1a = salign1[i];

s1b = salign1[i + 1];

(void) vis_alignaddr((void *) 0, s1_offset);

s1 = vis_faligndata(s1a, s1b);

/* Perform the rest of the computation. */

}

Figure 43: Use of a constant source alignment factor.

This has the e�ect of reducing the load bandwidth back to one load per source per iteration.

Copying s1b into s1a may even be free if the loop is to be unrolled or software pipelined,

as explained in sections 6.4.2 and 6.4.3.

The above transformation has a further bene�t: since the loads from salign1 involve a

linear sequence of addresses, it is simple for the compiler to apply loop optimizations that

reorder the loads with respect to the other instructions of the loop body. In the case where

the result of the alignaddr instruction is used, the compiler will treat the alignaddr as an

opaque operation and accordingly the pointer will be available for dereferencing only after

it has completed. This places a constraint on which portion of the loop may contain the

load. In terms of the dependency graph of the loop, the loads have become descendents of

the alignaddr, and not only the faligndata instruction. This will tend to increase the

initiation interval of the loop, by restricting the exibility of the scheduler.

Since the faligndata instructions require the use of the graphics adder, we now have 8

adder cycles (2 faligndata, 4 fexpand and 2 fpadd16) and 2 multiplier cycles (2 fpack16)

in use. Thus it is optimal to convert 3 of the fexpand instructions into fmul8x16au instruc-

tions. This yields a minimum initiation interval of 7, since the 2 alignaddr instructions each

occupy an entire cycle on their own. Thus the peak speed of this loop will be 7=8 = 0:875

clocks/pixel. In practice the current modulo scheduler �nds a schedule with an initiation

interval of 10 cycles, for a peak performance of 10=8 = 1:25 clocks/pixel. The �nal loop is

shown in Figure 44.
It is possible to support child images with a subset of their parents' channels by allowing

only the bytes corresponding to the desired channels to be written to the output. An
additional mask is maintained and logically \and"ed with edge_mask in the partial store
instruction. This mask is then rotated left 8 positions at the end of the loop for use by the
next iteration. Initializing the mask is best done by a small precomputed table indexed by
the image's pixel stride and the subset of bands to be written. This adds two shifts and
three logical operations to the overall loop computation, which in the present case would
not involve the loop's FGA/FGM resource constraint and would accordingly not a�ect
performance. The rotation proceeds identically for images of any reasonable pixel stride,
subject to the constraint that there exist some valid mask length x, 8 � x � 32 which is a
multiple of the stride. The bitmask will have x valid bits; the rotation is relative to these
bits only. An expression to perform the rotation in terms of shifts and logical operations is:

mask = ((mask >> (x - 8)) & 0xff) | (mask << 8);

Another variation on the above loop is adding a set of constants, one per channel,

to a single source. The constants may be stored in expanded format and substituted for
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the ss2_hi and ss2_lo in the arguments to the fpadd16 instructions. Naturally, all the

code dealing with the second source is eliminated. The only di�culty is adding the proper

constant for each band. For a 1-banded image, the constant may simply be expanded four

times into a single constant, which is used for all additions. Images with 2 or 4 bands

are handled similarly, replicating the constants twice or using them as-is, respectively. For

3-banded images (containing, say, RGB data), the lack of a common factor between 3 and

8 (the number of bytes processed in a loop iteration) forces the loop to be unrolled 3 times.

Three constants are generated, containing the constants corresponding to RGBR, GBRG,

and BRGB, respectively. Each constant will be used twice during the loop. A similar

unrolling is required if some bands are to be masked out; three 8-byte masks are generated

prior to the loop entry, each with a di�erent bit pattern corresponding to RGBRGBRG,

BRGBRGBR, and GBRGBRGB.

Timing data are presented in section 8.1.

7.2 Blending Using a Mask Image

The process of blending (or compositing) two images using an alpha image is used in imaging

whenever a portion of an image is to be superimposed on another1. Simply selecting each

output pixel from one of the two images results in harsh and unrealistic edges; more subtle

edges are produced by accounting for the relative areas within each output pixel covered by

each of the sources. Compositing is frequently used for this purpose within the context of

interactive image editing, and so can bene�t greatly from hardware performance enhance-

ment. The handling of multiple channels and edges is identical to that of the addition loop

and we will not dwell on it further.

The compositing function we wish to implement is given by the linear interpolation

formula:

pout = (1� �)pin1 + �pin2

In practice, � is taken from an 8-bit image, and lies within the range [0; 255], so we can

rewrite this as:

pout = (1�
�

255
)pin1 +

�

255
pin2

= pin1 +
�

255
(pin2 � pin1)

It is tempting to approximate division by 255 by a division by 256, which can be replaced
by a shift. Indeed, the VIS multiplier performs this shift implicitly. This suggests the code:

ss1 = vis_fexpand(src1);

ss2 = vis_fexpand(src2);

prod = vis_fpsub16(vis_fmul8x16(alpha, ss2),

vis_fmul8x16(alpha, ss1));

blend = vis_fpadd16(ss1, prod);

result = vis_fpack16(blend);

which does indeed produce an answer within 1 of the correct result.

A possible di�culty with this method is that it systematically underestimates � by

dividing it by 256 rather than by 255. Repeated compositing may allow small errors to

accumulate and ultimately exhibit visible error. Worst of all, an � value of 255 can result in

1The code example in this section is similar to code developed by Xiaoping Hu.
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void

add_images (vis_u8 *sptr1, vis_u8 *sptr2, vis_u8 *dptr, int width)

{

int i, times, edge_mask;

int s1_offset, s2_offset, d_offset;

vis_u8 *dlast;

vis_d64 *s1align, *s2align, *dalign;

vis_d64 ss1_hi, ss1_lo, ss2_hi, ss2_lo, dd_hi, dd_lo, result;

vis_d64 s1a, s1b, s1, s2a, s2b, s2;

vis_f32 sixteen;

vis_write_gsr(3 << 3); /* Shift right 7 - 3 = 4 places. */

*((short *) &sixteen) = 16 << 8; /* fmul8x16au shifts right by 8. */

dlast = dptr + width - 1;

edge_mask = vis_edge8(dptr, dlast);

dalign = (vis_d64 *) ((unsigned long) dptr & ~0x7);

d_offset = (unsigned long) dptr & 0x7;

s1align = vis_alignaddr(sptr1, -d_offset);

s1_offset = ((unsigned long) sptr1 - d_offset) & 0x7;

s1a = s1align[0];

s2align = vis_alignaddr(sptr2, -d_offset);

s2_offset = ((unsigned long) sptr2 - d_offset) & 0x7;

s2a = s2align[0];

times = ((unsigned long) dlast >> 3) - ((unsigned long) dalign >> 3) + 1;

for (i = 0; i < times; ++i) {

s1b = s1align[i + 1];

(void) vis_alignaddr((void *) 0, s1_offset);

s1 = vis_faligndata(s1a, s1b);

s1a = s1b;

s2b = s2align[i + 1];

(void) vis_alignaddr((void *) 0, s2_offset);

s2 = vis_faligndata(s2a, s2b);

s2a = s2b;

ss1_hi = vis_fexpand(vis_read_hi(s1));

ss2_hi = vis_fmul8x16au(vis_read_hi(s2), sixteen);

dd_hi = vis_fpadd16(ss1_hi, ss2_hi);

ss1_lo = vis_fmul8x16au(vis_read_lo(s1), sixteen);

ss2_lo = vis_fmul8x16au(vis_read_lo(s2), sixteen);

dd_lo = vis_fpadd16(ss1_lo, ss2_lo);

result = vis_freg_pair(vis_fpack16(dd_hi), vis_fpack16(dd_lo));

vis_pst_8(result, dalign, edge_mask);

++dalign;

edge_mask = vis_edge8(dalign, dlast);

}

}

Figure 44: The �nal VIS addition loop.
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errors since b(255 � 255+128)=256c= 254. A pure white pixel in the second input image (of

value 255) lying under a mask � value of 255, which is meant to denote \no change," will

be darkened to a value of 254. If the blend operation is to be used as part of a sequence,

this may be a serious aw; areas outside the area to be composited should not be changed.

An application allowing the user to drag an object to be composited would not be able to

simply composite the object with the background using the bounding box of the masked

area but would have to use a hard selection mask as well. Even so, the overall computation

will have more error than we might like. However, this low-precision loop is still quite

useful, e.g., as a way of compositing image layers directly prior to display, since the errors

will be purely visual and will not be magni�ed by further processing.

Timing data are presented in section 8.1.

7.3 16- to 8-Bit Table Lookup

Even a non-arithmetic operation such as table lookup can bene�t from the use of VIS2. We
de�ne a 16- to 8-bit table lookup as follows:

vis_s16 *src;

vis_u8 *dst;

vis_u8 table[65536], *table_base;

table_base = &table[32768]; /* Middle of table. */

for (i = 0; i < count; ++i) {

dst[i] = table_base[src[i]];

}

The source pixels are in the range [�32768; 32767]. This operation is useful for display of 16-

bit images on an 8-bit frame bu�er. A �xed mapping such as x0 = (x+32768)=256 does not

allow for dynamic adjustment of the image contrast. If the image contains important details

with values in the range [1000; 2000] they will map to the range [131; 135] { not enough to see

much detail. Instead, a piecewise-linear mapping (a window leveling or contrast-stretching

function) like the one shown in Figure 45 is frequently used.

Additional re�nements such as a non-linear mapping to compensate for monitor gamma

or lighting conditions may also be employed; using a lookup table allows all of these possi-

bilities to be combined arbitrarily at a �xed cost.

This loop can potentially operate at a rate of 3 clocks per pixel on UltraSPARC-I, since

there are 3 load/store unit operations involved. Although the loads from the table cannot

be reduced, the source loads and destination stores can be combined. Ideally we could

store 8 pixels at once, necessitating 16 bytes worth of loads. Although theoretically two

loads would su�ce, we will use four since the C compiler does not yet use v9 instructions

to handle 64-bit integers. We thus obtain a limit of 13 loads and stores for 8 pixels, for a

maximum throughput of 1.625 clocks/pixel, a speedup of (3=1:625)� 1:8�.
In order to implement this idea, we require something more than the techniques we

tried in section 3.2, which resulted in a large quantity of shifts, o�setting any bene�ts.
Fortunately VIS provides an alternative way to join the output pixels together. We can use
short loads (section 4.8) to load bytes from the table into double registers. A newly loaded
value may be joined to a set of previously accumulated values by the statement:

accum = vis_faligndata(value, accum);

2The code examples in this section were developed collaboratively with Peter Farkas.
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Figure 45: A piecewise-linear mapping to perform window leveling.

with a �xed %gsr alignment of 7.
Note that the values must be inserted in reverse:

vis_d64 byte0, byte1, /* ... */, byte7, *dst;

int offset0, offset1, /* ... */, offset7;

byte7 = vis_ld_u8_i(table, offset7); /* Do the same for 6, ..., 1. */

byte0 = vis_ld_u8_i(table, offset0);

accum = vis_faligndata(byte7, accum); /* Do the same for 6, ..., 1. */

accum = vis_faligndata(byte0, accum);

*dst++ = accum;

Since there are more loads and stores than faligndata instructions, the latter should not

add to the execution time. In addition, the fact that we are loading into the oating

point register �le increases the odds that the loop can be pipelined with minimal initiation

interval, even with a large latency assumed for the loads. Similar approaches involving the

use of fpmerge or fpack32 to intermingle the output bytes are also possible.

The input data remain to be aligned. Since we are loading 2-byte quantities in 4-byte

groups, there are two possible cases of alignment. If the input is aligned we load and use

four words; in the unaligned case we will initially load �ve words use half of the �rst and last

words. The last word is recycled and four new words are read in each iteration. Figure 46

illustrates this process.

The double shifts are required in order to properly sign-extend the lower halves of word0,

� � �, word4. Since there are 12 shifts and 13 loads and stores, the loop may be scheduled

with an initiation interval of 13.

Timing data are presented in section 8.2.
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switch(align) {

case 0:

offset0 = word0 >> 16; offset1 = (word0 << 16) >> 16;

offset2 = word1 >> 16; offset3 = (word1 << 16) >> 16;

offset4 = word2 >> 16; offset5 = (word2 << 16) >> 16;

offset6 = word3 >> 16; offset7 = (word3 << 16) >> 16;

/* Perform table lookup. */ break;

case 1:

offset0 = (word0 << 16) >> 16; offset1 = word1 >> 16;

offset2 = (word1 << 16) >> 16; offset3 = word2 >> 16;

offset4 = (word2 << 16) >> 16; offset5 = word3 >> 16;

offset6 = (word3 << 16) >> 16; offset7 = word4 >> 16;

/* Perform table lookup. */ break;

}

Figure 46: Aligning the sources for 16- to 8-bit lookup.

7.4 Convolution With Small Kernels

Convolution, with its heavy demand for both addition and multiplication, provides a good

test case for VIS3. Consider convolution with a general 3� 3 kernel, conceptually requiring

9 multiplications and 8 additions. Utilizing partitioned arithmetic, we require 18 multipli-

cations, 16 additions, and 2 fpack16 operations to process eight bytes of output (ignoring

reads for the moment). The FGM thus dominates, yielding a theoretical performance of

2.5 clocks/byte. Things are not so rosy, however { the source row will be require some

alignment before it can be used. Perhaps more than one alignment will be required since

the additions will require their sources to be relatively aligned. An upper bound on this

process is one alignment per kernel element for each eight bytes of output, since we can

simply grab spans of bytes from the source and align them without regard to duplication.

This adds 9 FGA operations to the mix. It also adds a number of alignaddr instructions,

each occupying a full cycle.

A straightforward approach to implementing general n � n convolution with VIS is

to read n2 (overlapping) spans of image data, multiplying each one by the appropriate

coe�cient, summing the products, and storing the result. This approach naturally takes

advantage of the parallel addition and multiplication capabilities of VIS to produce a span

of output pixels simultaneously. The total VIS computation required to apply an n � n

kernel (3 � n � 7) to an 8-pixel span is 2n2 fmul8x16, 2(n2 � 1) fpadd16, and 2 fpack16

operations. The factors of two derive from the fact that 8 = 2 � 4 values are being processed

using 4-way operations.

We can assume that the destination span is doubleword-aligned, performing a small non-

VIS startup loop otherwise. The input data will require realignment using the alignaddr

and faligndata instructions. A simple approach to reading the input is to calculate the

desired (unaligned) address for each load and to use the alignaddr instruction to set the

%gsr and to produce and aligned address. Two doublewords are then read starting at this

address, and the results are processed by an faligndata instruction. The problems with

this approach are threefold. First, it requires n2 alignaddr instructions, each occupying

a full cycle. Second, the overlapping of the source data reads are increased even further;

3The code examples in this section were inspired by code written by Steve Howell, Ray Roth, and Jaijiv

Prabhakaran. Algorithms to deal with symmetry were suggested by Alex Mou.
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a total of 2n2 loads are needed in order to acquire only n2 + 7n unique bytes (8 + n � 1

bytes from each of n scanlines), and no values are reused between loop iterations. Third,

the addresses of the loads cannot be known until after the alignaddr instruction has been

issued (see section 7.1), increasing the height of the loop's dependency graph.

A better way to deal with the inputs is to read a new doubleword from each of the

n scanlines with each loop iteration, using n loads, and align it to the destination with n

alignaddr and n faligndata instructions. The bu�ered data may be used as-is for the

multiplications with the entries along the left edge of the kernel but must be realigned

using �xed o�sets of 1; � � � ; n� 1 for each scanline; the %gsr is set to each value once and n

alignments are performed. The result is a total of n+(n�1) = 2n�1 alignaddr instructions

and n + n(n � 1) = n2 faligndata instructions. We save 2n2 � n loads and n2 � 2n + 1

alignaddr instructions at the cost of maintaining some bu�ered values. Since performance

will be determined mainly by the 2n2 � 2 fpadd16 instructions, the n2 faligndata, and

the 2n � 1 alignaddr instructions, the theoretical performance is 3n2 + 2n � 3 cycles per

8 pixels. At 167 MHz, this yields a theoretical peak speed of 44.5, 16.2, and 8.4 million

convolutions per second for kernels of width 3, 5, and 7 respectively.

Figure 47 illustrates the alignment process described above for a 3 � 3 kernel. The

variables offset0, offset1, and offset2 contain the o�sets of the initial pixels of the

three source rows contributing to the convolution, and salign0, salign1, and salign2

contain pointers to the rows that have been aligned to an 8-byte boundary. Note that in

the context of an application, where the layout of images can be controlled, forcing the

scanline stride of the source image to be a multiple of 8 will ensure that all vertically

neighboring pixels share the same alignment; in the example at hand, this would eliminate

the need for two of the alignaddr instructions. In the context of a library where general

image layouts are to be accommodated, this optimization may not be possible. We do not

use this optimization in the VIS XIL code timed below.

The �rst section of the loop sets the %gsr and aligns previously read values sa0 and

sb0 to produce a new value s00_next, which is properly aligned for multiplication by the

upper-left kernel entry. The raw value sb0 is copied into sa0 for use during the following

iteration, with sb0 acquiring a new value from memory. The next two blocks perform the

same operation for the other two input rows.

The values s00 and s00_next (and their counterparts for the following scanlines) must

now be combined to form input spans suitable for multiplication by the middle and right

columns of the kernel, using constant alignment factors of 1 and 2. This produces values

s01, s11, etc. Finally s00_next is copied into s00 and similarly for the other rows. The

remainder of the loop multiplies each of the spans by a corresponding �xed-point kernel

element and sums the partial results. The �nal value is written to the destination.

The convolution algorithm described thus far does not take advantage of any special

features that the kernel may possess. For example, some common image-processing kernels

contain many zero elements. For these elements, it is unnecessary to produce the aligned

spans and to perform the corresponding multiplication and addition.

Another common special case is symmetry. Consider a kernel symmetric along its

vertical axis:

k =

2
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One way to speed up convolution with such a kernel is to note that we compute sums of
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for (i = 0; i < times; ++i) {

(void) vis_alignaddr((void *) 0, offset0);

s00_next = vis_faligndata(sa0, sb0); sa0 = sb0; sb0 = salign0[i + 2];

(void) vis_alignaddr((void *) 0, offset1);

s10_next = vis_faligndata(sa1, sb1); sa1 = sb1; sb1 = salign1[i + 2];

(void) vis_alignaddr((void *) 0, offset2);

s20_next = vis_faligndata(sa2, sb2); sa2 = sb2; sb2 = salign2[i + 2];

(void) vis_alignaddr((void *) 0, 1);

s01 = vis_faligndata(s00, s00_next);

s11 = vis_faligndata(s10, s10_next);

s21 = vis_faligndata(s20, s20_next);

(void) vis_alignaddr((void *) 0, 2);

s02 = vis_faligndata(s00, s00_next);

s12 = vis_faligndata(s10, s10_next);

s22 = vis_faligndata(s20, s20_next);

s00 = s00_next; s10 = s10_next; s20 = s20_next;

/* Multiply s_ij by k_ij, sum, and store to destination. */

}

Figure 47: Aligning sources during a 3� 3 convolution.

the form a � pi�1 + b � pi + a � pi+1, which may be rewritten as a � (pi�1 + pi+1) + b � pi.

This transformation eliminates a multiplication at the cost of an addition. Such a trade-o�

appears attractive at �rst, but in fact the loop as written is already bound by the instruction

issue limitation of the graphics adder (since faligndata is processed there). Furthermore,

raw pixel values may not be added without �rst performing expansion, negating any gain.

Another possible way to take advantage of symmetry is to notice that certain values

are computed multiple times as the kernel moves across the source data. For example, with

the symmetrical kernel described above, the value a � pi+1 will be computed on behalf of

the convolution centered at pixel pi and well as that centered at pixel pi+2; if this partial

product could be forwarded between iterations, a multiplication would be saved. Note that

a kernel with both horizontal and vertical symmetry contains at most three distinct values,

so in principle only three multiplications per source pixel are required. However, the fact

that we are processing 8-pixel spans means that the forwarded value will not be meaningful

for the next loop iteration, so we cannot take direct advantage of this approach either.

Vertical symmetry may be utilized within the context of the scheme outlined above.

Since the �rst and last rows of the kernel are the same, the sum of products involving

s00, s01, and s02 may be reused two rows later. Since the overall alignment scheme

requires horizontal motion through the source in order to properly amortize the cost of the

readahead, the sum of the products from the �rst row will have to be stored in a bu�er that

will be reused two row in the future. Since this bu�er is internal to the convolution code,

no additional alignment will be required.

Separable convolutions are those which may be rewritten as the product of two one-

dimensional convolutions:2
64
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For example, the kernel generated by [1 2 1]T �[1 2 1] is a useful, nearly rotationally symmetric

low-pass �lter.

Each row of the input is multiplied by the n elements of the row vector, and the products

are added using n�1 additions; the results are themselves multiplied by the elements of the

column vector and added together. In principle, a separable convolution thus requires only

2n multiplications and 2n � 2 additions, as opposed to the n2 multiplications and n2 � 1

additions for the general case.

The basic algorithm for separable convolution is to perform a single new convolution

with the horizontal kernel per row; the results of the previous n such convolutions are

then convolved with the vertical kernel. It is easiest to move vertically through the data,

although bu�ering is also possible. In the case of VIS there are some complications, since

the result of a product of 8-bit pixel data and a 16-bit kernel coe�cient will be in 16-bit

form. Multiplying this by a kernel element will require two multiplications and an addition

(using fmul8sux16 and fmul8ulx16). The total number of multiplications is therefore 3n.

The number of additions similarly rises to 3n� 3.

Convolution by a separable kernel with a symmetrical vertical part may partake in

both sorts of optimizations described, since the result of the horizontal convolution may be

multiplied immediately by the repeated vertical kernel element prior to bu�ering. When

the bu�er entry is reused this multiplication will not have to be performed again.

Some performance �gures for the general 3� 3 case are given in section 8.3.

7.5 Resizing Using Bicubic Interpolation

The task of image resampling (\zooming" or \shrinking") is ideally suited to VIS accel-

eration. It is related to convolution, the main di�erence being that the �lter kernels are

applied to a set of source positions dependent on both scaling and translation factors for

each axis. For general information about image resampling, see [Wolberg90]. This section

will illustrate the use of multiple stages and bu�ering to implement a complex algorithm

using VIS.

The main work to be performed for each destination pixel is a two-dimensional interpola-

tion to compute the image value at a backward-mapped source location. This interpolation

may sample the single source pixel whose center is closest to the backwards-mapped loca-

tion, in which case it is known as nearest-neighbor interpolation; it may sample a four-pixel

neighborhood using horizontal and vertical distances to the pixel centers for weighting (bi-

linear interpolation); or it may sample a sixteen-pixel neighborhood using weights derived

from a cubic polynomial (bicubic interpolation). Various polynomial �lters may be used,

generally combining a windowed sin(x)=x function and some sort of sharpening. The �lters

used are separable; that is, they may be computed equivalently as a single two-dimensional

convolution or two one-dimensional convolutions. This has the e�ect of reducing the ef-

fective kernel size from n2 to 2n for �lters of width n. In practice, the results of the �rst

convolution are reduced down to 8 bits for processing by the second convolution (with some

loss of precision). This makes the two convolution steps symmetric in terms of their input

and output data formats, reducing the resampling problem to two independent phases, one

horizontal and one vertical. The process is illustrated in Figure 48. Figure 49 compares

the e�ects of nearest-neighbor, bilinear, and bicubic sampling on a low-resolution synthetic

bitmap of the letter `A'; the bitmap was scaled by a factor of two using nearest-neighbor,

bilinear, or bicubic resampling and then nearest-neighbor resampled in order to show the

individual pixels. It should be noted that for natural scenes, which tend to have few sharp
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Figure 48: Separable resampling using a 4� 4 neighborhood.

edges, the artifacts of these techniques are less noticeable. Figure 50 shows the e�ects of

resampling a photographic image with a large scale factor. Note the directional artifacts

around bright areas in the bilinearly resampled image; this is the primary reason why bilin-

ear resampling is frequently considered visually unacceptable. The bicubically resampled

image also shows better de�nition and greater extremes of light and dark.

Consider the vertical phase �rst, even though it will occur after the horizontal pass

during the actual resampling process. A weighted sum of several scanlines is performed,

and the results packed and stored to the destination. Assuming the source and destina-

tion images have identical widths and pixel formats, the processing proceeds in lockstep,

consuming one byte from each source scanline for each byte of the destination. Each byte

of a particular source is multiplied by a �lter coe�cient that remains constant over the

destination scanline. Figure 51 illustrates this process in pseudo-code.

Since the �lter product is independent of j, it can be trivially vectorized. All that

remains is the determination of the �lter coe�cients. Ward [Ward89] suggests precomputing

coe�cients for a �xed number of \bins," i.e., quantized subpixel positions. As long as the

scale factor is small in comparison to the number of bins, the error can be made comparable

to that introduced by rounding. This technique reduces the �lter computation to a one-time

polynomial evaluation plus a single per-scanline lookup. The selection of source scanlines

is obvious except at edges, where at least three reasonable strategies exist: refuse to write

output scanlines for which not all source lines are available; clamp source indices to the

extremes of the image, in e�ect replicating the bordering pixels of the source data; or treat

values outside the source as constant, say zero. These schemes are simple to implement

in the context of a two-pass algorithm since the selection of source scanlines is performed

explicitly. The source scanline pointers may simply be duplicated in order to implement

replication, or a pointer to an array of zeros provided to implement zero-padding.
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Figure 49: A comparison of three types of resampling for a synthetic image.

Figure 50: A comparison of three types of resampling for a natural image.

The determination of the source position for each output row may also be performed

before processing on the image begins. Four tables, containing horizontal and vertical

positions and �lters, are computed by a utility routine and the main resampling routine is

driven by these tables. This allows the routine to be interfaced to di�erent applications with

slightly di�erent semantics by writing a new interface routine that computes the positions

and the �lter coe�cients. This approach has been used successfully to provide conformance

to both XIL and Adobe Photoshop scaling semantics.

A VIS implementation for the case where the �lter width is four is shown in Figures 52-

53. The source rows are assumed to be aligned and padded on both ends to allow reading 8

bytes before and 16 bytes after the actual source data. Since they are the result of a prior

horizontal resampling pass, this can be guaranteed. A user-supplied channel mask is used

to mask output writes along with the usual edge masking. The �lter data are presented

with 2 integer and 14 fractional bits. When multiplied by the 8-bit pixel data, the result

has 10 integral and 6 fractional bits. Accordingly, a %gsr shift value of 1 is used, shifting

the data right by 6 = 7� 1 places.

The performance of the vertical resampling loop is limited by the use of the graphics

adder, which executes 12 operations (4 faligndata and 8 fpadd16). The graphics multiplier

executes 10 operations (4 fmul8x16au, 4 fmul8x16al, and 2 fpack16), and the load/store

unit performs 4 loads and 1 store. This suggests that expanding the vertical pass to generate
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w = width of the vertical �lter

c = width of the source and destination images in bytes

For each output scanline:

Calculate reverse-mapped vertical source position

Calculate �lter coe�cients fi, 0 � i < w based on subpixel position

Determine which source scanlines si are required, 0 � i < w

For each byte j of the output, 0 � j < c:

Compute
P

0�i<w
(fi � si;j) and clamp the result

Figure 51: Pseudocode for vertical resampling.

more than one destination row at a time (reusing some source loads) will not be worthwhile.

Suppose we attempt to generate two output rows from the same set of four input rows. We

will still execute 4 loads, but now we require 2 stores, 24 FGA, and 20 FGM operations.

The loop produces twice as much output but takes twice as long, producing no net bene�t.

In general we are best o� writing simple loops that can be optimized thoroughly rather

than trying to use brute force to increase the work per iteration of the loop.

The horizontal pass is complicated by the desire to deal with di�erent input and out-

put formats without excessive code duplication. The various end conditions must also be

handled; unlike the vertical case, for which it su�ces to substitute pointers, the horizontal

case requires either special-casing the processing around the edges or else copying data into

an intermediate bu�er, since it would be illegal to write replicated values or zeros around

the edges { even if the original values are replaced, segmentation violations are possible.

Fortunately, an intermediate bu�er solves both problems at once.

Consider applying a �lter to a span of source pixels. The actual work performed at each

byte di�ers considerably depending on the image formats in question and which bands are

to be scaled. In addition, it is unclear how to take advantage of parallelism. In order to

circumvent these problems, the source image data is transposed bytewise as it is copied into

ibuf, an array of vis_d64s. Figures 54 and 55 show eight rows of 3-banded image data

before and after such a transposition.

The input transposition process is illustrated in Figures 56-60. We wish to create a

bu�er of 8-byte entries, one for each byte along the width of the source image, such that

entry i of the bu�er holds the data from the ith byte of 8 adjacent source rows. The �rst

8 entries of the bu�er contain data from the �rst 8 bytes of each row, the second 8 entries

contain data from the second 8 bytes, and so forth. Figure 56 shows two source rows being

copied into the initial bu�er ibuf, skipping eight entries after each group of eight bytes.

The transposition will take place in 8� 8 blocks in order to take advantage of locality and

to use VIS instructions. If we were to read 8 bytes from each source row and transpose

the resulting block we would have to perform alignment for each source for every block.

Reading an arbitrary 8-byte span in isolation requires two loads, an alignaddr instruction,

and a faligndata instruction. Since the alignaddr instruction, which sets the alignment

�eld of the %gsr, occupies a cycle by itself, it is preferable to avoid performing it with such

frequency. Instead, we set the %gsr once per source, align it, and copy the 8-byte aligned

groups into every eighth entry of the bu�er. This requires one alignaddr per row, as well as
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void

resampleV_4 (vis_ras dptr, /* Pointer to destination row. */

int width, /* Destination width in pixels, */

int bpp, /* Bytes per pixel. */

vis_d64 *row0, vis_d64 *row1, /* Source rows, aligned & padded. */

vis_d64 *row2, vis_d64 *row3,

vis_f32 f01, vis_f32 f23, /* Filter coefficients. */

int mask /* Channel selection mask. */)

{

int i, times, offset, align, edge_mask, masklen;

vis_ras dptr_last;

vis_d64 sumhi, sumlo, result, half;

vis_d64 r0, r0a, r0b, r1, r1a, r1b, r2, r2a, r2b, r3, r3a, r3b;

vis_d64 t0hi, t1hi, t0lo, t1lo, t2hi, t2lo, t3hi, t3lo;

*((vis_s16 *) &half) = *((vis_s16 *) &half + 1) =

*((vis_s16 *) &half + 2) = *((vis_s16 *) &half + 3) = 32; /* For rounding. */

dptr_last = (vis_ras) ((vis_u8 *) dptr + width*bpp - 1); /* Last byte. */

edge_mask = vis_edge8(dptr, dptr_last); /* Left edge mask. */

offset = ((vis_u32) dptr & 0x7); /* Compute alignment. */

dptr = (vis_ras) ((vis_u32) dptr & ~0x7); /* Align dptr. */

align = (8 - offset) & 0x7;

vis_write_gsr(1 << 3); /* Use 14 fractional bits. */

(void) vis_alignaddr((vis_ras) 0, align); /* Set %gsr alignment. */

/* Realign mask to correspond to realigned destination pointer. */

masklen = bpp*((8 + bpp - 1)/bpp); /* Multiple of 8 greater than bpp. */

mask = ((mask >> (masklen - align)) & 0xff) | (mask << align);

mask &= (1 << masklen) - 1;

/* If dptr is not aligned, we begin reading before the actual source data. */

if (align != 0) {

--row0; --row1; --row2; --row3;

}

/* Read initial source data. */

r0a = row0[0]; r0b = row0[1]; r1a = row1[0]; r1b = row1[1];

r2a = row2[0]; r2b = row2[1]; r3a = row3[0]; r3b = row3[1];

times = ((vis_u32) dptr_last >> 3) - ((vis_u32) dptr >> 3) + 1;

Figure 52: Prologue for vertical resampling with a �lter width of 4.
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for (i = 0; i < times; ++i) {

/* Read and align input rows. */

r0 = vis_faligndata(r0a, r0b);

r0a = r0b; r0b = row0[i + 2];

r1 = vis_faligndata(r1a, r1b);

r1a = r1b; r1b = row1[i + 2];

r2 = vis_faligndata(r2a, r2b);

r2a = r2b; r2b = row2[i + 2];

r3 = vis_faligndata(r3a, r3b);

r3a = r3b; r3b = row3[i + 2];

/* Compute filter products. */

t0hi = vis_fmul8x16au(vis_read_hi(r0), f01);

t1hi = vis_fmul8x16al(vis_read_hi(r1), f01);

t2hi = vis_fmul8x16au(vis_read_hi(r2), f23);

t3hi = vis_fmul8x16al(vis_read_hi(r3), f23);

t0lo = vis_fmul8x16au(vis_read_lo(r0), f01);

t1lo = vis_fmul8x16al(vis_read_lo(r1), f01);

t2lo = vis_fmul8x16au(vis_read_lo(r2), f23);

t3lo = vis_fmul8x16al(vis_read_lo(r3), f23);

/* Sum up the products, adding a rounding factor. */

sumhi = vis_fpadd16(half, t0hi);

sumhi = vis_fpadd16(sumhi, t1hi);

sumhi = vis_fpadd16(sumhi, t2hi);

sumhi = vis_fpadd16(sumhi, t3hi);

sumlo = vis_fpadd16(half, t0lo);

sumlo = vis_fpadd16(sumlo, t1lo);

sumlo = vis_fpadd16(sumlo, t2lo);

sumlo = vis_fpadd16(sumlo, t3lo);

/* Pack and store result using edge mask and channel mask. */

result = vis_freg_pair(vis_fpack16(sumhi), vis_fpack16(sumlo));

vis_pst_8(result, (vis_ras) dptr, edge_mask & mask);

/* Increment dptr, compute new edge mask. */

dptr = (vis_ras) ((vis_d64 *) dptr + 1);

edge_mask = vis_edge8(dptr, dptr_last);

/* Rotate channel mask left 8 positions. */

mask = ((mask >> (masklen - 8)) & 0xff) | (mask << 8);

}

Figure 53: Main loop for vertical resampling with a �lter width of 4.
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row[0] = r00g00b00r01g01b01 : : : r0(n�1)g0(n�1)b0(n�1)

row[1] = r10g10b10r11g11b11 : : : r1(n�1)g1(n�1)b1(n�1)

...

row[7] = r70g70b70r71g71b71 : : : r7(n�1)g7(n�1)b7(n�1)

Figure 54: The �rst 8 source rows before transposition into ibuf.

ibuf[0] = r00r10r20 : : : r70

ibuf[1] = g00g10g20 : : : g70

ibuf[2] = b00b10b20 : : : b70

ibuf[3] = r01r11r21 : : : r71

ibuf[4] = g01g11g21 : : : g71

ibuf[5] = b01b11b21 : : : b71
...

ibuf[3(n� 1)] = r0(n�1)r1(n�1)r2(n�1) : : :r7(n�1)

ibuf[3(n� 1) + 1] = g0(n�1)g1(n�1)g2(n�1) : : : g7(n�1)

ibuf[3(n� 1) + 2] = b0(n�1)b1(n�1)b2(n�1) : : : b7(n�1)

Figure 55: Data in ibuf after bytewise transposition.

one load and one faligndata instruction per 8 source bytes. The function copy_span_skip

shown in Figure 57 illustrates this process. In addition, this function exhibits the technique

of performing one loop iteration fewer than necessary in order to avoid excessive readahead.

This is necessary here since the source data come from a user-supplied image whose bounds

must not be exceeded in any way. Removing the iteration requires that extra code be added

in the case that the number of iterations collapses to zero. Lastly, a �nal alignment without

readahead must be performed following the loop.

The horizontal resampling of the transposed data is shown in Figure 61. The source

data enter in the bu�er ibuf and are sampled according to the table src_col. The �lter

format is the same as for the vertical pass. Since we process a band at a time, it is possible

to rearrange the order of the bands without extra cost; the src_band, dst_band, and

num_bands arguments specify the mapping between the bands of the two images. Figure 62

illustrates the contents of mbuf and obuf during this process; each entry of mbuf contains

a column of values each belonging to the same channel. Four entries are combined using

a function fi(a; b; c; d) representing a weighted average fi0a + fi1b + fi2c + fi3d. The

source pixels for destination pixel i are determined by a backwards-mapping function p(i)

corresponding to the src_col array. The coe�cients fi come from the input arrays f01s

and f23s. Both arrays are computed once per image, as described earlier.
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Figure 56: Copying two source rows using copy span skip.

void

copy_span_skip (vis_d64 *dst, vis_ras src, int count, int skip)

{

int i, doubles = (count + 7)/8;

vis_d64 s0, s1, *salign;

salign = vis_alignaddr(src, 0);

/* Be careful about very short source counts. */

if (doubles == 1 && salign == 0) {

*dst = *salign;

return;

}

s0 = *salign; s1 = *++salign;

for (i = 0; i < doubles - 1; ++i) {

*dst = vis_faligndata(s0, s1); s0 = s1; s1 = *++salign;

dst += skip;

}

*dst = vis_faligndata(s0, s1); /* Write last double. */

}

Figure 57: Copying source data into every eighth entry of a bu�er.
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pi = ai0ai1ai2ai3ai4ai5ai6ai7

m04 = h(p0)� h(p4) = a00a40a01a41a02a42a03a43

m26 = h(p2)� h(p6) = a20a60a21a61a22a62a23a63

m15 = h(p1)� h(p5) = a10a50a11a51a12a52a13a53

m37 = h(p3)� h(p7) = a30a70a31a71a32a72a33a73

m0426 = h(m04)� h(m26) = a00a20a40a60a01a21a41a61

m1537 = h(m15)� h(m37) = a10a30a50a70a11a31a51a71

o0 = h(m0426)� h(m1537) = a00a10a20a30a40a50a60a70

o1 = l(m0426)� l(m1537) = a00a11a21a31a41a51a61a71

Figure 58: The process of transposition.

a0 b0 c0 d0 e0 f0 g0 h0
a1 b1 c1 d1 e1 f1 g1 h1
a2 b2 c2 d2 e2 f2 g2 h2
a3 b3 c3 d3 e3 f3 g3 h3
a4 b4 c4 d4 e4 f4 g4 h4
a5 b5 c5 d5 e5 f5 g5 h5
a6 b6 c6 d6 e6 f6 g6 h6
a7 b7 c7 d7 e7 f7 g7 h7

i0 j0 k0 l0 m0 n0 o0 p0
i1 j1 k1 l1 m1 n1 o1 p1
i2 j2 k2 l2 m2 n2 o2 p2
i3 j3 k3 l3 m3 n3 o3 p3
i4 j4 k4 l4 m4 n4 o4 p4
i5 j5 k5 l5 m5 n5 o5 p5
i6 j6 k6 l6 m6 n6 o6 p6
i7 j7 k7 l7 m7 n7 o7 p7

)

a0 a1 a2 a3 a4 a5 a6 a7
b0 b1 b2 b3 b4 b5 b6 b7
c0 c1 c2 c3 c4 c5 c6 c7
d0 d1 d2 d3 d4 d5 d6 d7
e0 e1 e2 e3 e4 e5 e6 e7
f0 f1 f2 f3 f4 f5 f6 f7
g0 g1 g2 g3 g4 g5 g6 g7
h0 h1 h2 h3 h4 h5 h6 h7

i0 i1 i2 i3 i4 i5 i6 i7
j0 j1 j2 j3 j4 j5 j6 j7
k0 k1 k2 k3 k4 k5 k6 k7
l0 l1 l2 l3 l4 l5 l6 l7
m0 m1 m2 m3 m4 m5 m6 m7

n0 n1 n2 n3 n4 n5 n6 n7
o0 o1 o2 o3 o4 o5 o6 o7
p0 p1 p2 p3 p4 p5 p6 p7

Figure 59: Transposing data from ibuf into mbuf by blocks.
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void

transpose_in (vis_u8 *rh[8], vis_d64 *ibuf, int width, int height)

/* Transpose a portion of a source image up to 8 scanlines tall.

ibuf must contain space for 8*floor((src->w + 7)/8) vis_d64s. */

{

vis_d64 p0, p1, p2, p3, p4, p5, p6, p7;

vis_d64 *buf, m04, m26, m15, m37, m0426, m1537;

int i, blocks = (width + 7)/8;

for (i = 0; i < min(height, 8); ++i) /* Copy sources into entries of ibuf. */

copy_span_skip(ibuf + i, rh[i], width, 8);

for (i = 0; i < blocks; ++i) { /* Transpose blocks of 8 using 24 fpmerges. */

p0 = ibuf[8*i]; p1 = ibuf[8*i + 1]; p2 = ibuf[8*i + 2];

p3 = ibuf[8*i + 3]; p4 = ibuf[8*i + 4]; p5 = ibuf[8*i + 5];

p6 = ibuf[8*i + 6]; p7 = ibuf[8*i + 7];

m04 = vis_fpmerge(vis_read_hi(p0), vis_read_hi(p4));

m26 = vis_fpmerge(vis_read_hi(p2), vis_read_hi(p6));

m15 = vis_fpmerge(vis_read_hi(p1), vis_read_hi(p5));

m37 = vis_fpmerge(vis_read_hi(p3), vis_read_hi(p7));

m0426 = vis_fpmerge(vis_read_hi(m04), vis_read_hi(m26));

m1537 = vis_fpmerge(vis_read_hi(m15), vis_read_hi(m37));

ibuf[8*i] = vis_fpmerge(vis_read_hi(m0426), vis_read_hi(m1537));

ibuf[8*i + 1] = vis_fpmerge(vis_read_lo(m0426), vis_read_lo(m1537));

m0426 = vis_fpmerge(vis_read_lo(m04), vis_read_lo(m26));

m1537 = vis_fpmerge(vis_read_lo(m15), vis_read_lo(m37));

ibuf[8*i + 2] = vis_fpmerge(vis_read_hi(m0426), vis_read_hi(m1537));

ibuf[8*i + 3] = vis_fpmerge(vis_read_lo(m0426), vis_read_lo(m1537));

m04 = vis_fpmerge(vis_read_lo(p0), vis_read_lo(p4));

m26 = vis_fpmerge(vis_read_lo(p2), vis_read_lo(p6));

m15 = vis_fpmerge(vis_read_lo(p1), vis_read_lo(p5));

m37 = vis_fpmerge(vis_read_lo(p3), vis_read_lo(p7));

m0426 = vis_fpmerge(vis_read_hi(m04), vis_read_hi(m26));

m1537 = vis_fpmerge(vis_read_hi(m15), vis_read_hi(m37));

ibuf[8*i + 4] = vis_fpmerge(vis_read_hi(m0426), vis_read_hi(m1537));

ibuf[8*i + 5] = vis_fpmerge(vis_read_lo(m0426), vis_read_lo(m1537));

m0426 = vis_fpmerge(vis_read_lo(m04), vis_read_lo(m26));

m1537 = vis_fpmerge(vis_read_lo(m15), vis_read_lo(m37));

ibuf[8*i + 6] = vis_fpmerge(vis_read_hi(m0426), vis_read_hi(m1537));

ibuf[8*i + 7] = vis_fpmerge(vis_read_lo(m0426), vis_read_lo(m1537));

}

}

Figure 60: Transposing the strided input data in blocks of 8.
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void

resampleH_4 (vis_d64 *ibuf, vis_d64 *obuf, /* Transposed buffers. */

vis_f32 f01s[], vis_f32 f23s[], /* Filter coefficients. */

int src_col[], /* Source columns to resample. */

int src_band[], /* Source channels to resample. */

int dst_band[], /* Destination channels. */

int num_bands, /* Number of channels to work on. */

int sbpp, int dbpp, /* Bytes per pixel. */

int width) /* Dest width in pixels. */

{

int col, band, p;

vis_d64 pix0, pix1, pix2, pix3, acc_hi, acc_lo, half;

vis_f32 f01, f23;

vis_write_gsr(1 << 3);

*((vis_s16 *) &half) = *((vis_s16 *) &half + 1) =

*((vis_s16 *) &half + 2) = *((vis_s16 *) &half + 3) = 32;

for (band = 0; band < numbands; ++band) {

ibuf += src_band[band]; obuf += dst_band[band];

for (p = 0; p < width; ++p) {

col = src_col[p];

pix0 = ibuf[col]; pix1 = ibuf[col[p] + sbpp];

pix2 = ibuf[col + 2*sbpp]; pix3 = ibuf[col[p] + 3*sbpp];

f01 = f01s[p]; f23 = f23s[p];

acc_hi = vis_fpadd16(half, vis_fmul8x16au(vis_read_hi(pix0), f01));

acc_hi = vis_fpadd16(acc_hi, vis_fmul8x16al(vis_read_hi(pix1), f01));

acc_hi = vis_fpadd16(acc_hi, vis_fmul8x16au(vis_read_hi(pix2), f23));

acc_hi = vis_fpadd16(acc_hi, vis_fmul8x16al(vis_read_hi(pix3), f23));

acc_lo = vis_fpadd16(half, vis_fmul8x16au(vis_read_lo(pix0), f01));

acc_lo = vis_fpadd16(acc_lo, vis_fmul8x16al(vis_read_lo(pix1), f01));

acc_lo = vis_fpadd16(acc_lo, vis_fmul8x16au(vis_read_lo(pix2), f23));

acc_lo = vis_fpadd16(acc_lo, vis_fmul8x16al(vis_read_lo(pix3), f23));

obuf[p*dbpp] = vis_freg_pair(vis_fpack16(acc_hi), vis_fpack16(acc_lo));

}

/* Restore ibuf, obuf pointers to their true positions. */

ibuf -= src_band[band]; obuf -= dst_band[band];

}

}

Figure 61: Loop for horizontal resampling with a �lter width of 4.
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: : : : : :

rp(i);0 rp(i);1 : : : rp(i);7 fi(rp(i);0; rp(i)+1;0; rp(i)+2;0; rp(i)+3;0)

gp(i);0 gp(i);1 : : : gp(i);7 fi(gp(i);0; gp(i)+1;0; gp(i)+2;0; gp(i)+3;0)

bp(i);0 bp(i);1 : : : bp(i);7 ) fi(bp(i);0; bp(i)+1;0; bp(i)+2;0; bp(i)+3;0)

rp(i)+1;0 rp(i)+1;1 : : : rp(i)+1;7 fi+1(rp(i+1);0; rp(i+1)+1;0; rp(i+1)+2;0; rp(i+1)+3;0)

gp(i)+1;0 gp(i)+1;1 : : : gp(i)+1;7 fi+1(gp(i+1);0; gp(i+1)+1;0; gp(i+1)+2;0; gp(i+1)+3;0)

bp(i)+1;0 bp(i)+1;1 : : : bp(i)+1;7 fi+1(bp(i+1);0; bp(i+1)+1;0; bp(i+1)+2;0; bp(i+1)+3;0)

: : : : : :

Figure 62: Resampling channels from mbuf into obuf.

The horizontal resampling loop exempli�es the principle of eliminating conditionals.

Even though we may read the same entry of ibuf multiple times, it would be slower to

check for this case than to simply reread the data. The resource constraint on this loop is

the use of the graphics multiplier, since there are 10 multiplications, as compared with 8

additions and 5 loads and stores. In the case of smaller �lter widths, the loads and stores will

become more signi�cant. Specialized code for integer bilinear scales, which have predictable

patterns of source reads and can be rearranged to reuse the result of a multiplication of a

pixel by a given �lter coe�cient, does produce some increase in performance.

The input image data are acquired into a bu�er 8 scanlines at a time. Only rows

that are required by the vertical resampling pass are read. The input rows are transposed

in place, horizontally resampled into a second bu�er, and transposed into a third bu�er.

This process is performed twice, resulting in two 8-scanline bu�ers. Vertical resampling is

performed using data from these bu�ers; when the scanlines contained in the �rst bu�er

are no longer in use, it is re�lled. This bu�ering scheme increases the locality of memory

references for large images, preventing excessive cache misses. It also would provide a

natural way to divide computation across several processors since the �lling and draining

of the bu�ers is a somewhat asynchronous process.

Now that the data have been copied into every eighth entry of the bu�er, the bu�er may

be transposed in place a block at a time. The function transpose_in shown in Figure 60

calls copy_span_skip up to 8 times and then transposes the bu�er block by block. Part of

the transposition process itself is illustrated in Figure 58. The notations h(x) and l(x) are

used to denote the high and low portions of a double register, respectively. The remaining

six outputs follow a similar pattern. Figure 59 illustrates the e�ects of this transposition.

Note how each entry of mbuf comprises bytes from a single channel and column of the

source, and how successive entries represent successive bytes.

Performance data are provided in section 8.4.

7.6 Bilinear Scaling by Two

Image resampling libraries typically provide some special-cased code for common resizing

cases. Especially important is bilinear scaling by a factor of two, which is commonly used

to increase the output size of MPEG or other video streams. Since the resulting pixels

are computable as simple combinations of four neighboring pixels, this has the potential to

run very quickly. VIS implementations for the case of 1- and 4-banded images have been

written. The 1-banded case makes use of the fpmerge instruction to transform pixel data

of the form p0p1p2p3 : : : into p0p0p1p1p2p2 : : : and p0p1p1p2p2p3 : : :. Adding these together
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with proper scaling yields a stream of outputs:

p0;
p0 + p1

2
; p1;

p1 + p2

2
; : : :

Averaging these horizontally resampled scanlines vertically, using a bu�ering scheme to

cache previous values, allows the computation of:

p0 + p00
2

;
p0 + p1 + p00 + p01

4
;
p1 + p01

2
;
p1 + p2 + p01 + p02

4
; : : :

where the p0 values are taken from the bu�er. This process is able to scale a 512 � 512

1-banded image onto a 1024� 1024 window at around 77 frames per second, corresponding

to a computation rate of 2:16 clocks per pixel of output. The speed is ultimately limited

by the frame bu�er pixel write rate. Four cases are needed, depending on the whether the

upper-left hand pixel samples the upper-left corner, center, top edge center, or left edge

center of a source pixel.

A portion of the C code implementing this approach is shown in Figure 63. In the

interest of space we abbreviate vis_read_hi and vis_read_lo as v_r_hi and v_r_lo. The

constant f1_4 is equal to 256=4 = 64 and so has the e�ect of a multiplication by 1=4. A

comparison with a generic but e�cient C implementation is presented in section 8.5.

7.7 Conversion From YUV to RGB Color Space

Conversion from subsampled YUV to RGB color space is frequently the most time consum-

ing portion of a software MPEG decoder. We describe an algorithm that uses a combination

of table lookup and partitioned arithmetic to accelerate this process4. Color space conver-

sion is sometimes provided as a hardware feature, see for example [Lee95].

In order to reduce the quantity of data to be transmitted and stored, the MPEG stan-

dard de�nes a number of subsampled image formats. In these formats, luminance informa-

tion (the Y channel) is represented at higher resolution than chroma (U and V channels).

This makes e�cient use of the available bandwidth since the visual system itself samples

these quantities at di�erent resolutions. We will discuss the so-called 4 :2 : 0 case, in which

there are four Y samples for each (U, V) sample pair.

The transformation between YUV and RGB color spaces is given by:

2
64
R

G

B

3
75 =

2
64
1:1644 0 1:5966

1:1644 �0:3920 �0:8132

1:1644 2:0184 0

3
75 �
2
64

Y � 16

U � 128

V � 128

3
75

where Y 2 [16; 240] and U; V 2 [16; 235].

Any linear transformation y =M � x may be expanded as:

yi =
X
j

Mi;j � xj

This suggests the obvious algorithm in which each element of y is computed as a dot product

between x and the appropriate row of M. An alternative approach is to multiply a column

4The algorithm described in this section is due to C. Zhou [Zhou95] and has been submitted by Sun for

patent protection.
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soff = ((unsigned long) src) & 0x7; sa = (vis_d64 *) ((unsigned long) src & ~0x7);

prev = sa[1]; vis_alignaddr(0, salign); p0_p7 = vis_faligndata(sa[0], prev);

for (i = 0; i < times; ++i) {

next = sa[i + 2]; /* Read ahead horizontally, create p8_p15 and p1_p8. */

vis_alignaddr((void *) 0, soff); p8_p15 = vis_faligndata(prev, next);

vis_alignaddr((void *) 0, 1); p1_p8 = vis_faligndata(p0_p7, p8_p15);

p0p0_p3p3 = vis_fpmerge(v_r_hi(p0_p7), v_r_hi(p0_p7));

p0p1_p3p4 = vis_fpmerge(v_r_hi(p0_p7), v_r_hi(p1_p8)); /* Merge together */

p4p4_p7p7 = vis_fpmerge(v_r_lo(p0_p7), v_r_lo(p0_p7)); /* spans of bytes. */

p4p5_p7p8 = vis_fpmerge(v_r_lo(p0_p7), v_r_lo(p1_p8));

p0p0p1p1_2 = vis_fmul8x16al(v_r_hi(p0p0_p3p3), f1_4);

p0p1p1p2_2 = vis_fmul8x16al(v_r_hi(p0p1_p3p4), f1_4);

p2p2p3p3_2 = vis_fmul8x16al(v_r_lo(p0p0_p3p3), f1_4);

p2p3p3p4_2 = vis_fmul8x16al(v_r_lo(p0p1_p3p4), f1_4); /* Scale by 1/4. */

p4p4p5p5_2 = vis_fmul8x16al(v_r_hi(p4p4_p7p7), f1_4);

p4p5p5p6_2 = vis_fmul8x16al(v_r_hi(p4p5_p7p8), f1_4);

p6p6p7p7_2 = vis_fmul8x16al(v_r_lo(p4p4_p7p7), f1_4);

p6p7p7p8_2 = vis_fmul8x16al(v_r_lo(p4p5_p7p8), f1_4);

p0_01_1_12 = vis_fpadd16(p0p0p1p1_2, p0p1p1p2_2);

p2_23_3_34 = vis_fpadd16(p2p2p3p3_2, p2p3p3p4_2); /* Add horizontally */

p4_45_5_56 = vis_fpadd16(p4p4p5p5_2, p4p5p5p6_2); /* shifted values. */

p6_67_7_78 = vis_fpadd16(p6p6p7p7_2, p6p7p7p8_2);

interp0 = vis_fpadd16(buf0[i], p0_01_1_12);

interp1 = vis_fpadd16(buf1[i], p2_23_3_34); /* Compute vertical */

interp2 = vis_fpadd16(buf2[i], p4_45_5_56); /* interpolants. */

interp3 = vis_fpadd16(buf3[i], p6_67_7_78);

buf0[i] = p0_01_1_12; buf1[i] = p2_23_3_34; /* Buffer values */

buf2[i] = p4_45_5_56; buf3[i] = p6_67_7_78; /* for later use. */

/* Pack and store the first output row. */

result0 = vis_freg_pair(vis_fpack16(p0_01_1_12), vis_fpack16(p2_23_3_34));

result1 = vis_freg_pair(vis_fpack16(p4_45_5_56), vis_fpack16(p6_67_7_78));

*((vis_d64 *) dptr0++) = result0; *((vis_d64 *) dptr0++) = result1;

p0_01_1_12 = vis_fpadd16(p0_01_1_12, p0_01_1_12);

p2_23_3_34 = vis_fpadd16(p2_23_3_34, p2_23_3_34); /* Double. */

p4_45_5_56 = vis_fpadd16(p4_45_5_56, p4_45_5_56);

p6_67_7_78 = vis_fpadd16(p6_67_7_78, p6_67_7_78);

/* Pack and store the second output row. */

result2 = vis_freg_pair(vis_fpack16(p0_01_1_12), vis_fpack16(p2_23_3_34));

result3 = vis_freg_pair(vis_fpack16(p4_45_5_56), vis_fpack16(p6_67_7_78));

*((vis_d64 *) dptr1++) = result2; *((vis_d64 *) dptr1++) = result3;

prev = next; p0_p7 = p8_p15; /* Cycle sources. */

}

Figure 63: Bilinear resampling by two.
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Figure 64: The input data for a single loop iteration.

of M by a particular element xi, producing a column vector. The sum of these products is

y:

y =
X
j

M�;j � xj

Since the xi are integers in the small range [0; 255], it is possible to precompute all of

these column products for a given matrix M. This table will contain 256 entries for each

of Y, U, and V, so it is not excessively large. Each entry consists of three 16-bit signed

�xed-point products and so requires 6 bytes of storage. In practice we require 8-byte entries

since accesses must be aligned and since VIS will operate on groups of 4 anyway. The frame

bu�er also requires a padding byte. Adding these entries together and converting the data

to 8-bit format requires two fpadd16 and one fpack16 instruction.

As with any table lookup approach, the source data must be acquired into integer

registers. We read 4 bytes each of U and V information, and 16 bytes of Y that are taken

apart using shifts and logical operations. Since the color conversion phase takes its input

from a previous decoder phase that has also been ported to VIS, we can arrange for the

data to be properly aligned. The input data are illustrated in Figure 64.

Figure 65 illustrates the conversion process. Four bytes of u and v information are read,

along with eight bytes of y data (in the variables y and z). The top two values from y

and z are used as table o�sets, along with the �rst u and v values. An expression such

as ((y >> 13) & 0x7f8) is equivalent to ((y >> 16) & 0xff) << 3, i.e., extracting the

second byte of y and shifting it left 3 places in order to form a proper index into y_table.

By doing this we save a shift.
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for (i = 0; i < width; ++i) {

u = U[i]; v = V[i]; /* Read u, v once for the entire loop iteration. */

y = yptr[2*i]; z = zptr[2*i]; /* Read first four bytes of y, z. */

y0_yuv = *((vis_d64 *) (y_table + (y >> 21))); /* Use bytes 0-1 */

y1_yuv = *((vis_d64 *) (y_table + ((y >> 13) & 0x7f8))); /* of y, z, byte 0 */

z0_yuv = *((vis_d64 *) (y_table + (z >> 21))); /* of u, v. */

z1_yuv = *((vis_d64 *) (y_table + ((z >> 13) & 0x7f8)));

u0_yuv = *((vis_d64 *) (u_table + (u >> 21)));

v0_yuv = *((vis_d64 *) (v_table + (v >> 21)));

uplusv = vis_fpadd16(u0_yuv, v0_yuv);

sumhi = vis_fpadd16(y0_yuv, uplusv); sumlo = vis_fpadd16(y1_yuv, uplusv);

vis_std_fpack16(sumhi, sumlo, rgb++); /* Store two values to rgb. */

sumhi = vis_fpadd16(z0_yuv, uplusv); sumlo = vis_fpadd16(z1_yuv, uplusv);

vis_std_fpack16(sumhi, sumlo, rgbnext++); /* Store two values to rgbnext. */

/* Do the same using bytes 2-3 of y and z and the byte 2 of u, v. */

y = yptr[2*i + 1]; z = zptr[2*i + 1]; /* Read four more bytes of y, z. */

/* Do the same using bytes 0-1 of y and z and the byte 3 of u, v. */

/* Do the same using bytes 0-1 of y and z and the byte 4 of u, v. */

}

Figure 65: The main loop for YUV to RGB color conversion.

Next, the results of the u and v table lookups are added together, and their sum is

added to the four y and z table lookups to produce four (X;B;G;R) quadruples (the

X byte is unused), which are packed into 8-bit format and stored. The inline template

vis_std_fpack16 encapsulates the action of packing two values to a register pair and

storing them atomically in order to avoid problems with the compiler's handling of complex

register pair operations.

The complete loop, processing 16 pixels, requires 2 source reads for U and V, 4 source

reads for Y, 24 table reads, and 8 stores, a total of 38 LSU operations. Thus the maximum

data rate is 2.375 clocks/pixel. In practice, cache misses and loop pipelining overhead

appear to cause the loop to run substantially more slowly. The speedup for this function

is di�cult to estimate since it has no direct counterpart in XIL and no research has been

done to determine the best algorithm for a non-VIS UltraSPARC implementation.

7.8 Gouraud Shading and Texture Mapping

VIS has applications in 3D rendering as well as imaging5. Like the i860, VIS may be

used to calculate interpolated shading values along a triangle span, an important primitive.

The partitioned comparison and partial store operations may also be used to implement a

software z-bu�er. This potential has not been pursued at SMCC to date, since a much more

e�cient solution for z-bu�ering and shading has been implemented in the form of Creator,

a low-cost 24-bit frame bu�er. This frame bu�er uses a new DRAM technology [Deering94]

that eliminates the need for a read-modify-write cycle for z comparisons. In the following

example follows we assume the use of such a frame bu�er, in which a 32-bit color and a

32-bit z (depth) value may be presented to the frame bu�er as a single unit. The frame

5The code examples in this section were inspired by code written by Grace Wang.
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Figure 66: Texture mapping a �ve-pixel span.

bu�er is assumed to reject the write silently if the z value exceeds the previous value at the

same screen location.

One area of 3D graphics where VIS has been used is texture mapping. By omitting

direct support for texture mapping from the frame bu�er, its cost is greatly reduced. Since

most users of graphics hardware currently make light use of texture mapping, this appears

to be a valid trade-o�. As texture mapping becomes more popular this evaluation is of

course subject to change.

Texture mapping comes in many forms and we will only deal with a few simple cases.

The object is to draw a horizontal span of pixels with values taken from a straight (not

necessarily horizontal) line in a texture image. In the general case this amounts to an

a�ne mapping between the source and destination coordinate spaces. The texture samples

are taken at points with a �xed spacing (�x;�y) within the texture map. Initially we

will simply take the value of the pixel within the texture image (the texel) whose center is

closest to the sample point (nearest neighbor interpolation). This will cause severe aliasing

that may be avoided by taking a weighted average of texels near the sample point. We will

also ignore edge conditions. An example of acquiring texel values for a span of 5 pixels is

shown in Figure 66.

The current position and increment of the sample within the texture map are each

represented by a pair of integer variables with a set number FRAC of fractional bits. The

texture image must have a power-of-two scanline stride; the y position is shifted left and

added to the x position (shifted left two places to account for the fact that the texture

has 4 bytes per pixel) to yield the texture o�set. The z value is also interpolated linearly

across the span, and is fed to the frame bu�er at each point. Although integer arithmetic

could be used to maintain the z value, it is more convenient to maintain it as a true oating

point value since we must send it to the frame bu�er along with the texture value in one

atomic store operation. We de�ne a new inline vis_fstoi that allows access to the SPARC

fstoi instruction to convert the z value from a oat to an integer (within a oating point

register). Figure 67 shows a version of this function.

A few minor optimizations may be made to this function to reduce the number of shifts.

First, ixpos may be shifted right by FRAC - 2 and logically \and"ed with ~0x3 as long as

FRAC is greater than 2. A similar optimization may be performed for iypos.

Instead of simply copying the texture values onto the screen, we may modulate them
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void

unlit_texture (float fxpos, float fypos, float fdx, float fdy,

float fz, float fdz,

vis_d64 *fb_addr, vis_f32 *texture,

int y_shift, int count)

{

int ixpos, iypos, idx, idy, i;

vis_f32 value;

ixpos = (int) (fxpos*(1 << FRAC)); iypos = (int) (fypos*(1 << FRAC));

idx = (int) (fdx*(1 << FRAC)); idy = (int) (fdy*(1 << FRAC));

for (i = 0; i < count; ++i) {

value = *(texture + ((iypos >> FRAC) << y_shift) + ((ixpos >> FRAC) << 2));

*fb_addr++ = vis_freg_pair(value, vis_fstoi(fz));

ixpos += idx; iypos += idy; fz += fdz;

}

}

Figure 67: Unlit texture mapping.

with other linearly interpolated values. It is simple to implement Gouraud (linearly interpo-

lated) shading [Foley90]; a vis_d64 is maintained to represent a color in 16-bit �xed-point

format. This color is initialized at the top vertex, and interpolated according to a delta

along the triangle edges. A horizontal color delta is also computed. These deltas correspond

to the partial derivatives of the plane connecting the three vertex colors in RGB space and

so are constant over each triangle. This is useful since the divisions required to obtain them

will be relatively expensive. Within a span, an fpadd16 and an fpack16 su�ce for updat-

ing the value. Alternatively, the 64-bit color may be used as a coe�cient modulating the

texture value by means of the fmul8x16 instruction. Finally, a specular component with

the color of the light source may be interpolated and added to the modulated texture value

prior to packing (although not physically correct, the use of a pure light-source colored

highlight is a common approximation in computer graphics).

For higher-quality texturing, bilinear and trilinear interpolation are frequently used.

Bilinear interpolation involves reading four texture values surrounding the sample point

and averaging them according to the point's horizontal and vertical subtexel coordinates.

The easiest way to generate the necessary coe�cients, as in the case of resampling (sec-

tion 7.5), is to index a table of precomputed width 2 �lters. The lower-order bits of the

texture coordinate are used as the index. The �lters are best stored as complementary pairs

of coe�cients (f; 1� f) which may be accessed using the fmul8x16au and fmul8x16al in-

structions. Two multiplies and two additions result in two horizontally interpolated texture

values, which must then be averaged according to the vertical �lter. Either two 16� 16-bit

multiplications (costing two multiply instructions each) may be used, or else the horizontal

interpolates may be packed and multiplied using 8 � 16 multiplication instructions. The

latter approach uses two fewer additions since the results of the multiplications do not need

to be added together.

The main instruction requirements for unlit texture mapping with bilinear interpolation

(ignoring the z interpolation) are thus: 4 loads to acquire the texels and 2 loads to acquire
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the coe�cients; 4 multiplications, 2 additions, and 2 packs for horizontal interpolation; 2

multiplications, 1 addition, and 1 pack for vertical interpolation; and a store to the frame

bu�er. The total is 7 LSU, 9 FGM, and 3 FGA instructions. At 167 MHz, this corresponds

to peak performance of 18.5 million 4-element bilinear interpolations per second.

Trilinear interpolation, which introduces an interpolation between di�erent levels in a

hierarchy of subsampled versions of the texture (a MIP-map), takes 9 FGM operations

for each of the two levels, plus an additional 3 to combine them (the decision of which

MIP-map levels to use is decided once per span). Thus the peak performance of trilinear

interpolation is determined by the need for 21 FGM operations, yielding 7.9 million 4-

element interpolations per second.

If it is possible for the interpolated source texture coordinates to exceed the bounds of

the rectangular texture map itself, some sort of clipping must be performed. Clipping is

probably best done outside the main texture mapping loop in order to avoid the need for

conditionals (or conditional moves, lookups, or any other alternative implementation). If the

source positions of the endpoints of the span lie within the texture, the interpolated values

must as well, so it is safe to proceed after clipping the endpoints without further checks.

The need to clip may sometimes be avoided entirely if the entire backwards-mapped �gure

can be shown not to cross a texture boundary, e.g., if the vertices of a polygon all map

within the texture. In any case clipping need not cause any slowdown of the inner loop.

8 Timing Comparisons

The above examples (except for 4 : 2 : 0 color conversion and texture mapping) perform

functions that are available as part of SunSoft's XIL imaging and video library. XIL pro-

vides both generic C implementations of its functions, as well as hooks to allow them to

be reimplemented on a speci�c device. The generic code (known as the \memory" driver

since it manipulates image data in main memory as opposed to a specialized device; strictly

speaking, the XIL VIS driver is a memory driver as well) will serve as our base refer-

ence. Although this is an imperfect benchmark, it does represent the performance a typical

customer would have seen on the current generation of Sun hardware were VIS not imple-

mented. Note that this code is generally written for portability and genericity across image

formats, and is additionally not scheduled for UltraSPARC; it is certainly possible to write

more e�cient C code in the context of an application with �xed image formats and target

processor.

Several other potential code bases are available to us for comparison. The XIL memory

code running on an UltraSPARC processor represents real-world library performance, but is

not highly optimized. The VIS XIL port is substantially faster, but for historical reasons is

not always fully optimized according to the principles outlined in this report. We may also

wish to time generic code which attempts to make optimal use of the non-VIS portion of the

processor (e.g., through use of the modulo scheduler). Finally, we will time a custom VIS

routine based on the code fragments shown in section 7 when its performance meaningfully

exceeds that of the XIL implementation. We make no attempt to draw comparisons with

any non-UltraSPARC platforms.

All the timings were performed on a Sun Ultra 1 workstation with a 167 MHz processor

and 96 megabytes of RAM. A simple test harness function was constructed that times

the operation of interest on a pair (or triple) of images of a given size. The images were

initialized to uniformly-distributed random values { no attempt was made to simulate \real
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images." The sizes were varied between 100 and 1000 pixels in both the horizontal and

vertical directions in order to observe any size-dependent e�ects such as loop overhead,

cache aliasing, and so forth. The test program was then run, calling each implementation in

turn, producing a measurement of megapixels processed per second. The resulting data were

�tted with an interpolating cubic spline, and plotted with up to �ve distinguished contour

levels (depending on readability) by the freely-distributed GNUPLOT plotting package.

The same compiler, SPARCWorks SPARCCompiler 4.0 was used throughout, with the

options -fast -O4 -xchip=ultra -xarch=v8plusa. These options produce code opti-

mized using the compiler's UltraSPARC machine model, and allow non-SPARC v9 instruc-

tions, including VIS, in the generated code.

8.1 Addition and Alpha Blending

The three-dimensional graphs produced by the XIL memory, XIL VIS, and custom VIS

implementations of addition share a common trait { at least within the domain of images

smaller than 1000�1000, the total image size is the crucial factor in determining performance

and not the exact image dimensions. This can be seen by observing the shape of the

isocontours, which appear to follow curves of constant product, i.e., y = k=x. In particular,

the code produced by the modulo scheduler does not appear to be excessively dependent

on high trip counts.

The XIL memory and XIL VIS addition performance graphs (Figures 68-69) show a

strong oscillation. This is a result of two factors. First, they are not modulo scheduled;

loads and uses are not always separated enough to mitigate the e�ects of cache misses. As

the alignment of source lines in memory changes, these cache misses will occur at di�erent

load instructions, some of which will result in longer stalls than others. In the case of the

memory routine, each loop iteration processes a single pixel; at the top edge of the graph,

each iteration requires approximately 167=13 � 12:8 cycles; at the bottom edge, roughly

167=9 � 18:5 cycles are used. Consider the �rst two pronounced troughs, comprising image

dimensions of 129-157 and 182-203 pixels. In both cases, the added quantity of source data

is around 16K (since 2 � (1572 � 1292) = 16016 and 2 � (2032 � 1822) = 16170), and this

pattern continues, suggesting the 16K internal cache as the source of the oscillation.

The non-modulo scheduled VIS code (Figure 69) follows the same oscillating pattern;

in addition we see the e�ects of overhead (pointer arithmetic, edge masking, etc.) for small

images in the form of a descending \tail" in the left corner of the plot.

The second, more signi�cant factor causing oscillation is XIL's policy of allocating im-

age memory starting at page boundaries, increasing cache line aliasing. A second set of

experiments was performed, in which each image was allocated at a random o�set within

a page. This had the e�ect of reducing contention for cache lines. Figures 70 and 71 show

the results of this change. The plots display some random variation, but overall show none

of the oscillation seen previously.

The modulo-scheduled VIS code (Figure 72) displays a much greater insensitivity to the

precise cache dimensions, even though no special steps were taken to randomize the pointer

o�sets or scanline strides. For very small images (under 200 pixels on a side), the low loop

trip counts cause some performance uctuation. The next major change in performance

occurs slightly above 400 pixels; the external 512kb cache is theoretically capable of just

holding three such images, since
p
(512 � 1024)=3 � 418. Still, even the lowered performance

exceeds the peak performance of the non-modulo scheduled loop. At the peak performance

of around 130 megapixels/second, each 8-pixel loop iteration takes approximately 10.3 cy-
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cles; at the sustained, large image performance of around 60 megapixels/second, 22.3 cycles

are consumed, a di�erence of 12 cycles. This suggests that the external cache is being missed

(with a 22 cycle penalty, since 8 of the 30 cycles are covered by the modulo scheduler) every

two iterations or so. This is reasonable, since a cache miss that brings in 32 bytes of data

from one source image during one iteration guarantees that the next three iterations will

�nd their data in cache. Since there are two source images, on average one half of the

iterations will feature a cache miss.

The timings of all �ve methods are compared directly by taking diagonal cross-sections

of the previous plots, in e�ect considering square images only. The results are displayed in

Figure 73.

The alpha blending timings (Figures 74-77) tell a similar story to those for addition.

The relevant cuto� point for �lling the external cache is now
p
(512 � 1024)=4 � 362. The

same 16K cyclic behavior is present; the 8-pixel cycle count at the small image performance

of roughly 75 megapixels/second is 17.8 cycles; the large image performance of roughly 40

megapixels/second represents a 33.4 cycle loop iteration. Assuming that each source image

faults around every fourth iteration, we would expect to spend 22=4 = 5:5 additional cycles

for each of the three images, or a total of 16.5 cycles per iteration, which is not far from

the \eyeballed" di�erence of 15.6. The same trick of randomizing the data pointers would

work here as well; we preserve the oscillation in order to show its universality.
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Figure 68: Times for the XIL memory implementation of addition.
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Figure 69: Times for the XIL VIS implementation of addition.
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Figure 70: Times for the (randomized) XIL memory implementation of addition.
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Figure 71: Times for the (randomized) XIL VIS implementation of addition.
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Figure 72: Times for the (non-XIL) VIS implementation of addition.
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Figure 73: Comparison of �ve implementations of addition (Figures 68-72).
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Figure 74: Times for the XIL memory implementation of alpha blending.
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Figure 75: Times for the XIL VIS implementation of alpha blending.
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Figure 76: Times for the VIS implementation of alpha blending.
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Figure 77: Comparison of three implementations of alpha blending (Figures 74-76).
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8.2 16- to 8-Bit Table Lookup

The lookup function is sensitive to the lookup table size. Three sets of data were collected, in

which the source values were restricted to [�512; 511], [�8192; 8191], and [�32767; 32767]

(the full range). The largest and smallest ranges are displayed in the three-dimensional

plots, while the intermediate range may be seen in the cross-sectional plots. The random

source data form a worst case for table lookup; real images will exhibit locality.

The �rst experiment, showing the performance of the XIL memory implementation is

shown in Figures 78-79. This implementation appears to be mainly instruction-bound, due

to its general nature and lack of processor-speci�c scheduling. For very small images, loop

overhead slows its performance noticeably; or larger images, it performs at a nearly constant

rate. This rate is, however, dependent on the lookup table size. The cache miss cycles occur

with su�cient uniformity to produce a smooth performance decrease.
The second two experiments, shown in Figures 80-81 and Figures 82-83, are of identical

C code for the speci�c case of lookup at hand, scheduled for UltraSPARC. The code is
essentially the same as the initial example of section 7.3, which reads and writes a pixel at
a time. The second set of experiments were compiled with the additional ag:

-Qoption cg -ms_pipe,-Qms_pipe+non_float_loop_ld=8

This ag informs the modulo scheduler to use a delay of 8 between loads and their uses even

for integer loops; integer loads would otherwise be assigned a delay of 2 cycles by default.

The fourth experiment uses the VIS code developed in section 7.3. We see from the

contours of Figures 84-85 that the times are not quite symmetric with respect to the x

and y dimensions of the images; on the left side of the plots, representing \thin" images,

performance drops o� somewhat. This is due to the presence of low trip counts, the e�ects

of which are made pronounced by the routine's large dependence on the high-latency LSU.

In other words, the loops perform a great deal of loads but little computation, so the initial

wait for data during the prologue has a noticeable e�ect on the loop timing as a whole.

In general the modulo-scheduled codes, VIS or non-VIS, display the same characteristic

\bowl" shape seen in the previous examples. For images that �t in cache, near-theoretical

performance is achieved, while for larger images the cache misses add a constant number of

cycles to each group of iterations. The presence of a lookup table adds an additional factor,

in that arbitrary cache lines may need to brought in at any time, possibly overwriting image

data that will be needed in the future and vice versa. Only very small images can totally

avoid overwriting entries of the 64K table, as seen in the initial high-performing \necks" of

Figures 81, 83, and to a lesser extent, Figure 85.

The cross-sections of the four experiments are shown together, in Figures 86-89. The

di�erences between the performance for table sizes of 1K and 64K must be due to the

contention for cache lines between image and table data. The 1K table uses a negligible

fraction of the external cache, while the 64K table uses one 1=8 of it. Assume, therefore,

that a given source read has a 1=8 chance of missing due to a table entry occupying the

same line as a source pixel. In the case of the memory code with a load delay of 8, this

would translate into (30 � 8)=8 = 2:75 cache miss cycles per source read. However, we

observe a sustained performance loss of 167=31� 167=38 � 1 cycle per iteration between

the at portions of the top and bottom curves in Figure 88. Accounting for this factor of

2:75 would require a better model of the interactions between image and table data. When

the table size is increased, the VIS performance drops from around 167 � 8=55 � 24 cycles

to 167 � 8=44 � 30 cycles per iteration for images that do not �t in cache. This suggests an

extra cache miss every (30� 8)=6 � 3:66 iterations.
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Figure 78: Times for the XIL memory implementation of lookup, range=[�512; 511].
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Figure 79: Times for the XIL memory implementation of lookup, range=[�32768; 32767].
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Figure 80: Times for the memory (2) implementation of lookup, range=[�512; 511].
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Figure 81: Times for the memory (2) implementation of lookup, range=[�32768; 32767].
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Figure 82: Times for the memory (8) implementation of lookup, range=[�512; 511].
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Figure 83: Times for the memory (8) implementation of lookup, range=[�32768; 32767].
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Figure 84: Times for the VIS implementation of lookup, range=[�512; 511].
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Figure 85: Times for the VIS implementation of lookup, range=[�32768; 32767].
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Figure 86: Relative speeds of XIL memory lookup for varying table sizes (Figures 78-79).
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Figure 87: Relative speeds of memory (2) lookup for varying table sizes (Figures 80-81).
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Figure 88: Relative speeds of memory (8) lookup for varying table sizes (Figures 82-83).
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Figure 89: Relative speeds of VIS lookup for varying table sizes (Figures 84-85).
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8.3 Convolution With Small Kernels

In this section we time a simple 3 � 3 convolution routine which does not use symmetry,

separability, or any information about any special form the kernel might possess. This algo-

rithm rereads each input line three times during three contiguous horizontal passes. Thus

any cache miss on the source image will be amortized over three iterations, and accordingly

will have a less dramatic e�ect than we saw for the previous, computationally simple, ex-

amples. This observation is borne out as we observe the memory and VIS XIL timing data,

shown in Figures 90-91. The non-XIL VIS implementation did not run substantially faster

than its XIL counterpart, and so is not displayed here.

Both plots show almost no dependence on the vertical image size, instead depending

on the loop trip counts and the amount of horizontal data reuse. The horizontal oscillation

displayed by the VIS code is due to the fact that as the image width increases, a full iteration

is required for every eight additional pixels; dividing the stairstep function of time by the

linear function of width yields the observed period-8 sawtooth pattern. The other obvious

feature of both plots is the canyon-like depressions around 7002 pixels. These appear to be

caused by cache aliasing as the input image size almost matches the external cache size and

begins to alias with itself.

Although the VIS loop is not modulo scheduled, probably because of excessive size

and register pressure, it does not display the extreme oscillation of the simpler algorithms

described in the previous sections. This is due to the large amount of computation relative

to the number of loads and stores, reducing the relative impact of cache misses.

One strategy to increase convolution performance would be to break the loop up into

a series of smaller, pipelineable stages. The results of each stage will be available in the

internal cache for the next stage, so memory bandwidth per se need not be a source of

performance degradation. If the amount of data passed between stages is excessively large,

the number of load and store instructions will limit performance; this should be taken into

account when deciding where to place the breaks between each pair of stages. Separable

convolution would lend itself naturally to such an approach.

The practical results of such an approach may be seen below in section 8.4, as it is

similar in spirit to the two-pass resampling discussed in section 7.5. Both the horizontal

and vertical passes are modulo scheduled separately and interact through a relatively small

bu�er containing only a few scanlines worth of data. This multipass approach succeeded

in producing an optimal schedule for each pipeline phase, with no additional arithmetic

instructions. The extra loads and stores are irrelevant since they do not limit instruction

execution and never cause cache misses. There is thus essentially no additional overhead

beyond the cost of the loop prologues and epilogues.

The large number of instructions involved in convolution presents a di�cult problem

in instruction scheduling. The input data must be realigned before they can be handed to

the multiplier. As the multiplier results become available, they may be accumulated by the

adder in many di�erent orders. The current paradigm of hard-coded VIS inlines implicitly

requires the programmer to choose a particular dependency structure for the alignments,

multiplications and additions that make up the computation. The compiler's role is then

simply to schedule the tree of dependencies it has been given. A truly optimal approach

would seem to require a search over at least a portion of the space of possible trees, which

is impractical with current tools, or else a theoretical understanding of which dependency

structures will result in the best �nal output. We will revisit this problem of algorithmic

overspeci�cation in a variety of guises in section 9, below.
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Figure 90: Times for the XIL memory implementation of convolution.

"visxil_convolve"
    24.2
    21.2
    18.1
      15
      12

5

10

15

20

25

30

X Dimension

Y Dimension

Megapixels Per Second

Figure 91: Times for the XIL VIS implementation of convolution.
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Figure 92: Comparative performance of two implementations of convolution (Figures 90-91).

8.4 Resizing Using Bicubic Interpolation

Figures 93 and 94 show the actual speeds of memory and VIS image resizing (using nearest

neighbor, bilinear, and bicubic interpolation) as implemented in XIL. Rather than varying

the image sizes as before, here we vary the magni�cation in order to highlight a di�erent

aspect of performance. The input image was large enough (1536�1024) to more than �ll the

640�480 output image even at 50% magni�cation. The speeds are given in terms of output

megapixels/second, where each pixel contains three bands. The VIS nearest-neighbor case

uses a similar algorithm to the one described in section 7.5; horizontal resampling is ac-

complished simply by copying entries from mbuf into obuf and vertical resampling uses the

system memcpy routine (which uses block loads and stores, as described in section 4.8) to

copy each scanline into its place within the destination. The nearest neighbor and bilinear

algorithms contain some special-case code: VIS at 100%, and memory at 200%. The 200%

memory code operates at 29.8 megapixels/second for nearest-neighbor and 9:8 megapix-

els/second for bilinear, well outside the range displayed in Figure 93. These special cases

will be ignored for the purposes of the discussion in this section.

Bilinear resampling is mathematically identical to the bicubic case except for the use

of �lters of width 2 throughout; the memory code makes use of the fact that the �lters are

simple triangles, whereas the VIS code is designed to use arbitrary coe�cient tables. The

general upward trend in all the VIS curves is due to the lesser quantity of input data that

must be read and horizontally resampled to generate each output frame. The memory code

displays a more constant pro�le, suggesting that it is compute bound throughout the range

of scale factors displayed here. This constancy is also consistent with the use of a one-pass
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approach, which does not reuse any previous results.

Figure 95 shows the ratio of VIS performance to that of the memory implementation for

each form of interpolation. We observe performance increases of up to 10:5� for nearest-

neighbor, even though no �ltering is performed { pixels are simply copied. The advantage

comes from factors including:

� Reading and writing multiple bytes at a time.

The source data is read in a strictly horizontal fashion into the input bu�ers, and as

mentioned above the output writes use block loads and stores to transfer data from

the horizontally resampled bu�ers to the output image very rapidly.

� Reuse of horizontally resampled scanlines.

The work of horizontal resampling is performed at most once per input scanline, and

the results are reused (trivially, in this case) by the vertical pass. This optimization

pays o� increasingly for higher magni�cations.

� Preselection of input rows and columns to avoid branching.

The XIL memory code uses a Bresenham scheme [Foley90] to determine which input

row and column to sample from at each output pixel. The VIS XIL code makes this

decision once for each row and column, placing the results into tables. These tables

may be used during the actual resampling to select input pixels and �lter coe�cients

without the need for conditionals.

� Fixed data formats.

By writing code speci�cally for a given input and output format, loop nesting is

reduced and opportunities for parallelism are increased (see section 9.2.1 for more

on this idea). The XIL VIS code, as discussed above, can accept arbitrary formats

but converts them into a �xed internal format as part of the bu�ering process. By

contrast, the XIL memory code deals with arbitrary band formats, and must operate

on data one byte at a time even within its innermost loops.

� Modulo Scheduling.

The bene�ts of modulo scheduling are identical here to the previous examples.

We thus see that even a routine that might be categorized as computationally light

may bene�t signi�cantly from a good choice of algorithm, proper consideration of system

behavior, and use of compiler optimizations.

The speedups for bilinear and bicubic resampling at 300% magni�cation are 31� and

85�, respectively. The same factors described above in the nearest neighbor case still

apply (with the exception of the use of block load and store), but additionally the use of

partitioned arithmetic and clamping come into play.

As the magni�cation increases, the VIS resampling routines achieve an asymptotic per-

formance determined mainly by the vertical resampling rate, since the amount of source

data to be read and horizontally resampled becomes insigni�cant. The nearest-neighbor

algorithm achieves an asymptotic rate of around 57 megapixels/second, bilinear achieves

around 29 megapixels/second, and bicubic achieves around 25 megapixels/second.
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Figure 93: XIL memory resize speed as a function of magni�cation.
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Figure 94: XIL VIS resize speed as a function of magni�cation.
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Figure 95: Ratios of VIS to memory resize performance.

8.5 Bilinear Scaling by Two

In order to test the bilinear scale function at a scale factor of two, a Sun-developed medical

imaging testbed known as qdxtool (written by John Zimmerman) was used. This program

displays a repeating sequence of images and optionally performs scaling, convolution, and

contrast adjustment. A 136-frame sequence of 512�512 grayscale (one-banded) images was

zoomed up to 1024� 1024 and displayed. The XIL memory code's observed peak perfor-

mance was 23:12 megapixels/second, although this includes the cost of copying its output

to the frame bu�er. This code is quite well written, and targets exactly the case at hand,

as noted in the previous section. The frame bu�er copy uses a routine equivalent to memcpy

(see section 4.8), and normally operates at around 150 megabytes/second. Therefore we

estimate that the true bilinear scaling performance was around 1=(1=23:12�1=150) = 27:33

megapixels/second. This is roughly consistent with the speed of 9:8 megapixels/second ob-

served on a three-banded image in the previous section, implying a one-banded performance

of 9:8 � 3 = 29:4 megapixels/second.

The VIS XIL code, which follows the outline described in section 7.6, operated at 72.17

megapixels/second (writing directly to the frame bu�er). We thus estimate a speedup of

2:64�.

8.6 Summary of Timing Results

Table 3 shows the results of the previous sections in tabular form. Each operation is

represented by its average speed and standard deviation across the entire set of sample

points, and the speedup is computed as the ratio of the average speeds (except for resize,
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where approximate bounds on the performance ratios are used). Clearly, the speedups

for addition, blending, and lookup may be substantially increased by the use of tiling (or

prefetching in future UltraSPARCs) in order to lower the cache miss rate. As we have seen,

the modulo-scheduled VIS code is capable of achieving near-optimal performance for images

that are contained entirely in the external cache.

Operation XIL Memory Speed � VIS Speed � Speedup

Addition 9:6 3:5 88:3 30:5 9:2�

Blending 4:4 1:2 51:4 14:2 11:7�

Lookup (1K) 23:9 2:4 64:9 12:5 2:7�

Lookup (64K) 13:5 0:8 48:8 7:6 3:6�

Convolution 2:5 0:1 21:5 4:2 8:6�

Nearest Resize 3:7 1:7 23:4 8:7 2:3� 10:5�

Bilinear Resize 0:66 0:6 11:5 4:1 5:2� 30:9�

Bicubic Resize 0:15 5e�4 9:7 3:3 16:4� 85:8�

2x Resize 27:3 n/a 72:2 n/a 2:6�

Table 3: Summary of VIS versus memory timings

9 Enhancements and Future Directions

Sun has announced a long-term commitment to VIS. Currently it has been implemented

without changes in the immediate successor to UltraSPARC-I and is being implemented

with enhancements in that chip's successor. Backwards compatibility has been an absolute

requirement at all stages, although the details of timing will change. In this section we

relate some experiences and observations with respect to the process of reimplementation

and enhancement as seen from a software designer's perspective. The details of future

enhancements are still in ux at the time of this writing.

9.1 Enhancing VIS

During the course of VIS development, the author solicited ideas from other graphics soft-

ware developers for new instructions and enhancements to existing instructions. Most

suggestions related to small perceived defects in VIS or operations that would have been

useful at one time or another during development. Some ideas from the list were:

� Floating point to integer register move instruction

� Support for two-dimensional or non-square arrays using the array instruction

� Partitioned shifting capability

� Detection or clamping of overow and underow

� Instructions to improve data formatting and rearrangement

� Various small enhancements to existing instructions
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After discussion with the VIS architects and various proposals and evaluations of hard-

ware complexity, the list was revised substantially. Some ideas, such as an instruction to

move data between the register �les, was rejected as being too di�cult given the existing

SPARC architecture. Instead, the hardware designers indicated that they were planning to

implemented forwarding between the load and store bu�ers, which would have much the

same e�ect. Other ideas were rejected as being amenable to software implementation. In

particular, the array instruction will require software blocking for good performance; the

software can present an array of arbitrary dimensions to the core rendering engine as a set

of square blocks with minimal padding. Two dimensional texture mapping, as we have seen,

can be performed e�ciently with existing instructions and would not bene�t greatly from

the blocked style of the array instruction. Other proposed instructions dealt with issues of

precision and overow; however, for speed it is generally necessary to perform arithmetic in

a way that guarantees that overow cannot occur. Implementing a partitioned shifter was

seen as simply too expensive to justify without a concrete application.

Some other proposed instructions were able to be implemented in terms of others. In

particular, a general capability to shu�e bytes can stand in for a number of other suggested

reformatting instructions and is amenable to hardware implementation.

Although few new instructions will ultimately have resulted from this process, it did

provide an opportunity for software and hardware developers to exchange ideas about the

proper division of responsibility for performance between the two and to forge an ongoing

relationship. Hardware design cycles are such that designers are well along in their future

plans by the time �rst silicon is available to software developers. It is up to software

developers to gain experience with new hardware as quickly as possible and to provide

feedback during the small remaining window of opportunity to inuence future designs. In

the author's case, simply being present at meetings where enhancements were discussed

resulted in several opportunities to critique and alter proposals made by the hardware

architects that would have been detrimental to VIS performance. Had VIS hardware and

software designers simply interacted from a distance, the news of these proposals might

have come too late to a�ect their fate.

When proposing enhancements, it is critical to understand their impact on performance.

In general it was di�cult to interest the hardware designers in any feature without a concrete

demonstration of the speedup it would provide for some typical loop. In some cases, the cost

of implementing a hardware feature would be increased latency for some class of operations

with which it shares hardware resources. While software pipelining can limit the e�ects of

latency on execution time, ultimately there will be some loops that are barely schedulable

using the existing latencies due to high register pressure. These loops will slow down

considerable if the relevant latencies are perturbed. Since it is di�cult to know which loops

fall into this category, the e�ects of increased latency are very hard to predict.

9.1.1 Characterizing VIS

During this process, there was a need to understand \what is VIS"? What principles did

the current instruction set adhere to? Only by answering these questions is it possible to

add new features that will coexist with the existing ones.

The properties characterizing the successful VIS instructions appear to be similar to

those that characterize RISC in general. Instructions are pipelined and a new instruction

may be issued and an old one completed every cycle under good conditions. Instructions

operate between registers, and use extra data such as condition codes and the %gsr only
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when absolutely necessary. Memory is accessed in the normal way, so interaction with other

routines and the operating system is simple. Regular SPARC instructions are responsible for

address generation, alignment maintenance, conditional execution, and loop control, using

simple addressing modes and regular arithmetic instructions. The key to VIS is that it

identi�es primitives that are useful in many settings and lets software put them together by

means of ordinary instructions, unlike monolithic hardware that presents an all-or-nothing

proposition to the programmer.

9.2 Towards Automatic Generation of VIS Code

Currently the compiler does not generate any VIS instructions except those explicitly in-

voked by means of an inline template. The programmer must structure loops especially for

VIS, dealing with alignment issues, unrolling to generate 4 or 8 output values, readahead,

and so forth. Clearly it would be desirable to have a tool to convert a simple speci�cation

of a desired function into \optimal" VIS code. In this section we discuss some techniques

that could ultimately make such a tool possible.

9.2.1 Partial Evaluation

Partial evaluation refers to the specialization of programs with respect to some of their

arguments. A program p with arguments in1 and in2 computes some output:

out = [[p]] [in1; in2]

A specializer is run on p and in1 to yield a new program pin1 with a single argument in2.

This program obeys the equation:

[[pin1]] in2 = [[p]] [in1; in2]

The resulting specialized program may be substantially faster than the original (although

only by a linear factor). Jones et al. [Jones93] survey many aspects of this topic.

Specialization is typically de�ned by syntactic induction on the grammar of a language.

For example, an expression with constant components may itself be reduced to a constant.

A construction if (a) b else c can be specialized to simply c if the specializer knows

that the expression a evaluates to 0. A for loop with a known trip count may be unrolled

completely. A switch statement with a known value may be replaced by the relevant case

or cases being selected. Code that can be shown never to be called can be eliminated. So

far these optimizations are within the reach of traditional optimizing compilers. However,

partial evaluation is capable of combining and integrating these simple transformations to

a greater degree than traditional compilation, sometimes resulting in radically altered code.

The classic example of the power of partial evaluation is the observation that specializing an

interpreter for a language L written in a language I for a particular program is equivalent

to compiling that program into language I; specializing the partial evaluator itself with

respect to the interpreter results in a compiler from L to I for arbitrary programs!

The potential for application of partial evaluation to imaging is great. Many hand

optimizations that have proven useful can easily be viewed as instances of partial evaluation.

For example, conditionals in a loop whose arguments will be constant over the lifetime of

the loop may be eliminated by generating multiple versions of the loop. The ability to

write such conditionals would simplify the maintenance of code dependent on factors such

106



as �lter width and number of channels. An unrolled loop with conditionals may lose its

conditionals when unrolled if those conditionals vary in a repeating pattern (perhaps based

on alignment). These transformations o�er library programmers an opportunity to avoid

massive special casing along multiple axes and thus save coding time, avoid bugs, and

simplify maintenance without run-time penalty. In e�ect the existing bene�ts of high-

level programming are rei�ed by the introduction of a further level of abstraction over and

above that of compilation. The programmer need no longer avoid particular structures

due to a perceived impact on performance. Although the object code size of an imaging

library using these techniques will be increased, the actual portion of the object used by a

particular application will probably not grow by much, since each application tends to use

a small subset of the library's functionality.

A concrete example of the special casing discussed above is the choice of �lter width

during image resampling. In practice, using a for loop and array indexing to implement the

process of convolving a series of pixels with a �lter was rejected as unacceptably slow since

the ability to schedule the outer loop would be impaired. Instead, a common piece of code

was macro processed to create separate functions for each possible width from 2 to 8. Had it

been possible to direct the compiler to translate the for loop into a set of special cases plus

a single general case, code maintenance would have been simpli�ed signi�cantly. Partial

evaluation could also potentially automate some of the code transformations described in

section 8.4, where we observed a 10� performance increase largely due to specialization on

image format and hoisting of redundant computation out of the inner loops.

A more advanced use of partial evaluation is automatic combination of imaging func-

tions. XIL supports the notion of a molecule, which is a single procedure implementing a

sequence of atomic operations. Molecules are implemented by deferring execution of each

called primitive and inserting it into a DAG (directed acyclic graph) structure describing

the work to be done. Pattern-matching is performed on this DAG to locate sequences cor-

responding to prede�ned molecules. Certain events, such as device input and output or the

reading of a pixel value, force evaluation to occur.

An example of a useful molecule is conversion of a sequence of horizontal and vertical

convolutions into a single separable convolution. In this case, the code implementing the sep-

arable convolution may di�er substantially from the code implementing the one-dimensional

convolutions. For many other possible molecules, such as calculation of a simple arithmetic

expression involving several images, it would be desirable to combine the existing routines

for each operation into a custom molecule. Such molecules would make fewer memory ref-

erences, since there would be no need to write and read from an intermediate image. This

would not only reduce instruction count but would lessen the routines' cache footprint. Also,

combining the code would allow the optimizer to locate a greater degree of parallelism, e.g.,

between the graphics adder and multiplier, as well as to perform other optimizations such

as elimination of the common subexpressions and dead code. Common subexpressions will

most likely exist since each loop performs similar computations such as pointer updating;

dead code arises from the fact that some routines may check for cases their predecessors

never generate. Techniques from vector processing, such as loop fusion, could be used to

force all the code into a single nested loop. Since there are too many potential combinations

of primitive routines to provide code for all of them, some mechanism for users to request

speci�c combinations would be useful. Source-to-source transformation techniques inspired

by those of partial evaluation will most likely be needed to perform ambitious automatic

combination of code.

The success of partial evaluation depends somewhat on language features. Functional
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languages are the simplest to specialize; imperative languages, particularly those with

heavy aliasing such as C are much harder. An imperative but restrictive language such

as Java [JavaSoft95] or a subset of C combined with partial evaluation could o�er sub-

stantial bene�ts to the imaging coder. In general, a more exible approach to source-level

transformation could ease many programming tasks.

9.2.2 Automatic Loop Parallelization

The common form of many VIS loops may potentially be derived from any suitable array-
processing loop by a proper vectorizing code generator. Consider a code generator that
combines work from adjacent loop iterations, emitting vector loads, stores, and arithmetic
operators. The vectors, initially the length of the destination row, may be divided into a
series of 8-vectors and an optional �nal vector of length 7 or less (strip-mining). This may
be performed automatically without di�culty. The alignment of the destination vectors
can be ensured by suitable prologue code. The source vector loads may be synthesized as:

ptr_a = vis_alignaddr(ptr, 0); ptr += 8;

tmp_hi = *(ptr_a);

tmp_lo = *(ptr_a + 1);

val = vis_faligndata(tmp_hi, tmp_lo);

This construct, in the context of a loop, may be optimized by noting that ptr_a increases

by 8 when ptr increases by 8; by hoisting the initial alignment of ptr_a out of the loop

and treating ptr_a[] as a �rst-class array we can use standard array analysis techniques to

recognize that tmp_hi is equivalent to ptr_a[i] and tmp_lo is equivalent to ptr_a[i + 1].

Furthermore, we see that tmp_lo is equal to tmp_hi from the previous iteration; this allows

us to reduce the load requirement to one per iteration. If the alignment of ptr is known at

compile time to equal 0, the vector load can be rewritten as an ordinary load.

The generation of VIS arithmetic instructions involves thornier issues. In particular,

the semantics of the VIS multiplication instructions do not match those of any standard

programming language. The programmer will probably still have to declare the desired

precision and range of any intermediate values in order to generate reasonable code.
It should be possible to reimplement much of the existing body of VIS code using a

simple, array-oriented notation with properly speci�ed intermediate precisions. After all,
the problem of clamped addition described in section 7.1 may be speci�ed as simply:

D = clamp(S1 + S2)

in a language possessing an image datatype and providing semantics for addition and clamp-

ing identical to those of VIS. Many common functions can be similarly expressed using only

a handful of arithmetic primitives, and it would be highly desirable to be able to pro-

duce optimal code for them on future architectures without the need for rewrites or special

hardware expertise.

VIS code generation frequently involves choices between various functionally equivalent

ways of computing the same result that have di�erent hardware requirements and/or de-

pendency structures. Choosing between fmul8x16al and fexpand is one example; summing

a set of values using either a tall or wide addition tree is another. In both cases, it is not

possible to make an informed choice between them without looking forward somewhat in

order to take the schedule constraints into account. This is an instance of the more general

problem of phase ordering during code generation; any allocation of the code generator's

job into phases will produce a suboptimal result in general since the consequences of deci-

sions made by one phase cannot be fully known until a future phase. A classical example
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is the ordering of scheduling and register allocation; if register allocation takes place �rst,

antidependencies will be created that are detrimental to scheduling. If scheduling takes

place �rst, it will be unable to take spilling into account.

A recent technique known as mutation scheduling, proposed by Novack and Nico-

lau [Novack94] o�ers a way to make code generation decisions within the scheduler. Al-

ternative translations for intermediate code structures are supplied by the compiler-writer.

At compile time, each expression is represented by a set of possible \mutations," i.e., syn-

onymous translations with possibly di�erent resource requirements. Instruction selection

and placement as well as register allocation, spilling, and rematerialization are performed

concurrently. Architectural features such as the combined multiply-add of the Intel i860

(which requires both instructions to be launched in the same cycle) are represented by of-

fering two translations of a multiply-add expression, one using separate instructions with

no issue constraint and one in which the instructions are combined. The combined form

will be used only if it leads to a better overall schedule during the optimization phase.

Such integrated, heuristic-driven techniques appear to have great promise to bridge the gap

between parallel algorithms expressed in high-level notation and the �ne-grain parallelism

of VIS-like instructions.

The challenge of all automated code-generation techniques is to �nd a balance between

speci�city and generality. A highly specialized, VIS-only code generator would greatly

simplify VIS coding but would not port easily to other acceleration architectures. A general

vector-based code generator could be specialized to many platforms but would have di�culty

with the peculiarities of each particular architecture. This is an issue that must be tackled

if VIS or its successors are to be used across multiple platforms.

9.3 Implementing VIS in Future Generations of SPARC

As was mentioned earlier, VIS will be a feature of multiple SPARC designs spanning several

processor generations. In this section, we discuss some of the practical rami�cations of this

fact for the VIS software developer.

9.3.1 Prefetching

The SPARC v9 instruction set provides a prefetch instruction, allowing data to be read

from memory into cache or some other bu�er memory for future use. Such an instruction

appears ideal for use in imaging code, with its highly predictable memory access patterns.

Since the exact order in which source pixels will be read is known advance for most important

algorithms (although perhaps not in, say, an image warping algorithm), there is no di�culty

in issuing a prefetch for pixels to be used many cycles later { in particular, longer than

the delay imposed on a cache miss. This would allow code to bypass the cache entirely,

providing near-constant performance on image data anywhere in main memory. In fact, the

prefetch instruction allows the data to be fetched and deliberately not placed in cache; this

allows the cache to be used preferentially for data such as lookup tables which are accessed

non-sequentially without the problems of overwriting discussed in section 2.3.

The issues surrounding prefetching, such as the ideal number of pixels one should read

ahead of the current one and the secondary e�ects of not placing images in cache (slow-

ing down code which does not use prefetching) have yet to be examined in the context

of VIS imaging. In particular, there are trade-o�s of performance and implementation

complexity between the use of hardware prefetch, in which the processor attempts to de-
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tect the stride between adjacent loads and automatically anticipates the next load address;

compiler-generated prefetches, which should be correct for straightforward loops such as

those that are currently modulo scheduled, but which may have di�culty extending beyond

inner loops; and manually inserted prefetch instructions, which can make use of the pro-

grammer's understanding of an algorithm's memory access patterns. Experimentation is

required to determine the relative merits of these options.

A processor which implements prefetching may also have some disadvantages, in that it

may be less aggressive than UltraSPARC-I about continuing to do work during cache miss

cycles. Thus prefetching may be a practical necessity for good performance and not merely

an additional option.

9.3.2 Hardware Implementation Complexity

The VIS instructions account for only a small portion of the gate count of the UltraSPARC-I

processor. However, one must take into account the fact that both the instruction de�nitions

and their implementation were determined in tandem.

As an example of this principle, consider suppressing some of the carries in an adder

in order to obtain a partitioned version. This may require few additional gates for the

particular adder design used in one generation of processors. If future hardware designers

wish to use a more sophisticated design with a highly optimized carry chain for the main

oating point adder, they may be forced to include a separate partitioned adder in order to

avoid extra gate delays in the main adder's carry chain. Thus the small initial investment

in gates may become substantial over time.

Fortunately the capacity of processors will continue to increase substantially from gen-

eration to generation, so the need for some extra gates is not fatal in and of itself. However,

some architectural changes may incur performance penalties that cannot easily be allevi-

ated by increased hardware. For example, the edge instructions are de�ned to produce a

condition code when their arguments point to the same word of memory. This behavior was

essentially free since the edge instructions make use of the UltraSPARC-I's existing integer

comparator. In a future UltraSPARC design currently being architected, the form of the

edge instructions requires them to be processed in a special functional unit, rather than the

integer unit, if the overall chip architecture is not to be violated. This unit would not oth-

erwise contain comparison hardware. Worse, a condition code generated in this unit would

not be available for several cycles, requiring the processor to stall on each edge instruction,

whether or not it is used. As noted above, the condition code is di�cult to use from C and

the trip count for most VIS loops is easily computed. In order to avoid paying a penalty

for the unused functionality, additional edge variants that do not generate condition codes

may be required. Even with this addition to VIS, old code will have to be modi�ed to use

the new, non-backwards compatible variants in order to realize a speed increase. Thus we

see that it is possible to introduce architectural features whose cost is only realized several

generations in the future.

Certainly any problem of this sort can be solved with enough additional hardware {

e.g., edge instructions could have their own custom unit. The price for this sort of solution

goes beyond mere increased gate count, however. Increased design and simulation resources,

area, and power consumption all add to the cost. The mere possibility that a new critical

path might be introduced will cause substantial design time to be spent on optimization.

Extra complexity must be added to the instruction decode and grouping logic to deal with

the new units. All this adds greatly to the exposure of the entire design in terms of time-
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to-market and bug count. It is di�cult in the extreme to justify this exposure for any but

the most critical aspects of the processor architecture.

9.3.3 Binary Compatibility

In a multigeneration family of processors, binary compatibility is typically a top priority,

with the proviso that buggy programs need not fail in precisely the same ways. In the

case of superscalar processors, this means that program order semantics must be rigorously

maintained since code cannot be depended on to obey instruction latencies and grouping

rules. Beyond the question of compatibility, however, lies the murky area of legacy code

performance.

Part of the RISC philosophy is the notion that hardware and software (e.g., compilers)

must work together to optimize resource usage. In the commercial world, however, recom-

pilation is not the trivial process that it may appear to be. It takes time for a software

vendor to qualify a new compiler for use in their production environment, and the logistics

of maintaining and shipping several compiled versions of their applications may be unde-

sirable. Thus it would be a mistake for hardware designers to benchmark their designs

using only custom-compiled code. Conversely, techniques such as out-of-order execution

and register renaming that attempt to dynamically reschedule code may provide a solution

to this problem, but at unacceptable design cost.

In the case of VIS, these problems are exacerbated by several factors. First, the lack

of good benchmarks makes it di�cult to begin to quantify the e�ects of a design decision

on either legacy or recompiled code. Second, the VIS instructions are completely opaque

to the compiler. An operation such as summing a set of oating point numbers may be

rearranged by a compiler that understands that addition is transitive and commutative;

such rearrangement can uncover parallelism by allowing additions to be scheduled as their

arguments become available, rather than relying on an arbitrary order imposed by the

parser-generated syntax tree. In the VIS case the compiler has no information about the

meaning of fpadd16, say, and so cannot perform any restructuring on the dependency graph.

VIS code that has been hand-optimized to provide a good match to existing hardware will

not be able to take the best advantage of future hardware without some rewriting. Even

advanced techniques like those described in section 9.2.2 will not help unless some higher-

level abstractions are used to insulate code from the speci�cs of one implementation of

VIS.

10 Conclusions

A number of very high-performance functions have been written using VIS. By and large

these functions substantially exceed initial performance estimates, mainly due to the im-

provements in compiler optimization between the time that VIS was designed and the

present. Complex routines such as interpolated scaling outperform the previous generation

of imaging hardware (e.g., the SX) by 20� 40�, and generic CPU implementations by up

to 85�. Early results of video compression experiments appear extremely promising. Not

only arithmetic but other areas of data-parallel processing are fair game for instruction set

enhancements. Even within imaging, many tasks are limited by the need to shu�e bytes

rather than by arithmetic. For example, extraction of data with an odd number of bands

into separate images cannot be performed conveniently using the fpmerge operation, but

could bene�t from a more general permutation capability.
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The implementation cost of VIS is low but not non-negligible. Functionality that �ts into

the leftover die space of one processor generation (because it requires only small additions

to existing hardware) will not necessarily continue to do so as the fundamental hardware

is redesigned, even as dies become ever more capacious. This raises the specter that the

need to provide backward-compatible support for VIS might someday force other important

functions out of the hardware or materially delay an implementation.

As more aggressive designs attempt to shorten the chip's critical paths, VIS paths may

eventually have an e�ect on processor speed. It will be extremely di�cult to weigh the

importance of VIS against a decrease in SPEC performance should this occur. In any case,

designers who wish to implement special instructions must understand that this entails a

long-term commitment of design resources, and is not the relatively trivial undertaking it

may appear to be.

The VIS instructions work well with the general RISC principles of the rest of the

instruction set { they are for the most part fully pipelined, use a �xed amount of hardware

resources, leverage the existing memory interface, and do not cause any exceptions. Thus

they are not di�cult to integrate with the compiler's machine model. Instructions lacking

these properties would be extremely di�cult for the optimizer to handle. Although it is

possible to imagine larger-scale instructions to perform multi-cycle tasks such as an entire

MPEG decoding stage, the ability to integrate VIS with regular processing appears to

outweigh the programming convenience of such an approach.

It is doubtful whether instruction set extensions are worthwhile unless they are sup-

ported by the compiler. Given a choice of speeding up generic code by a factor of 2 or

3 from general tuning and turning on optimization ags, and writing VIS-like code from

scratch and achieving a speedup of 4 or 5, the former approach becomes tempting. The

speedup for using VIS must be in addition to, not instead of, that which is achieved by

the optimizer in order to justify the man-years required for algorithm development, coding,

tuning, and debugging any non-trivial amount of VIS code.

The experience at SMCC has shown that assembly coding is not realistic, even with

a dedicated team of skilled programmers. Only a handful of assembly routines were suc-

cessfully written and debugged, as the compiler performance began to exceed that of the

initial hand-written loops. Several assembly routines were abandoned and rewritten in C

because they showed a net performance disadvantage. This came as a surprise to those who

associate hand-coding with speed; indeed, this belief has been well justi�ed until recently.

Modern processors, and in particular superscalar processors, demand a greater amount of

parallelism to be made explicit for optimal performance than a hand-coder is likely to be

able to provide. The amount of bookkeeping required to emulate the modulo scheduling

algorithm, for example, by hand is massive and error-prone, and all intermediate results

must be discarded if there is even a tiny change to the code. Since bugs will always be

present, it is infeasible to leave performance tuning for the last minute. Instead, the pro-

grammer must make performance a priority from the time algorithms are chosen until the

code is shipped. Even switching compiler ags is fraught with hazards since the optimizer's

support for any new piece of hardware will have bugs that must be uncovered as early as

possible in the design cycle. Only by consistently exercising the same tool set (simulator,

compiler, optimizer, debugger, assembler, pro�ler) throughout the process will the required

degree of integration with the new hardware be realized.

A crucial bene�t of leveraging the compiler is the ability to reuse code between pro-

cessor generations. Future processors from SME, although they will o�er complete binary

compatibility with v9 and VIS, will have somewhat di�erent grouping rules and latencies
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between instructions. Certain speci�c features of UltraSPARC-I such as non-blocking loads

may be replaced by other mechanisms such as prefetching. It is impossible to write code

that is completely insensitive to such changes, but C code with inlined VIS instructions

does provide a fairly high level of abstraction that will allow future compilers to reschedule

the code as well as insert some prefetching instructions automatically. Some coding deci-

sions, such as the replacement of fexpands by multiplications, are speci�c to the functional

units of the current processor and may back�re in future designs. If these decisions are

documented appropriately, however, they will not be di�cult to reverse as the need arises.

Still, the desire to run existing code as-is in the future should not be underestimated.

The true philosopher's stone of CPU-based imaging is automatic generation of VIS-like

instructions from regular, high-level source code in a serial language. This is an intrinsi-

cally di�cult task; much of the existing VIS code required clever algorithmic choices, an

understanding of the memory model with respect to faults, and an analysis of precision re-

quirements. Still, there is some hope that the relatively simple ad-hoc routines used by many

imaging applications could be generated automatically from a limited number of algorithmic

templates. The literature does contain some automatic loop parallelization techniques that

could in principle be adapted to such a task. C, with its unrestricted pointer arithmetic, is

a particularly di�cult source language for such algorithms, but a more restrictive language

(e.g., Java, which disallows all pointer arithmetic and most types of aliasing) might o�er

adequate facilities for developing imaging code while allowing su�cient automated analysis

to recognize opportunities for complex instructions to be used. A number of interesting

threads within the compiler literature that have been largely abandoned since the advent

of RISC, might fruitfully be picked up again by a new generation of researchers.
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