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Abstract

On the Error Analysis and Implementation of Some Eigenvalue Decomposition and

Singular Value Decomposition Algorithms

by

Huan Ren

Doctor of Philosophy in Applied Mathematics

University of California at Berkeley

Professor James Demmel, Chair

Many algorithms exist for computing the symmetric eigendecomposition, the singular value

decomposition and the generalized singular value decomposition. In this thesis, we present

several new algorithms and improvements on old algorithms, analyzing them with respect

to their speed, accuracy, and storage requirements.

We �rst discuss the variations on the bisection algorithm for �nding eigenvalues

of symmetric tridiagonal matrices. We show the challenges in implementing a correct al-

gorithm with 
oating point arithmetic. We show how reasonable looking but incorrect

implementations can fail. We carefully de�ne correctness, and present several implementa-

tions that we rigorously prove correct.

We then discuss a fast implementation of bisection using parallel pre�x. We show

many numerical examples of the instability of this algorithm, and then discuss its forward

error and backward error analysis. We also discuss possible ways to stabilize it by using

iterative re�nement.

Finally, we discuss how to use a divide-and-conquer algorithm to compute the sin-

gular value decomposition and solve the linear least squares problem, and how to implement

Van Loan's algorithm for the generalized singular value decomposition using this divide-

and-conquer algorithm. We show how our implementations achieve good speedups over the

previous implementations. For example, on an IBM RS6000/590, our implementation runs

50 times faster than LAPACK's implementation for computing the bidiagonal SVD, and 13

times faster for computing the dense SVD for 1600� 1600 random matrices.
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Chapter 1

Introduction

1.1 Introduction

The symmetric eigenvalue decomposition (SED) and the singular value decompo-

sition (SVD) are two of the most common problems in numerical linear algebra. There are

many algorithms to compute these two decompositions. We will discuss two popular algo-

rithms which are suitable for serial computers as well as parallel computers: the bisection

algorithm and the divide-and-conquer algorithm.

In this chapter, we introduce some basic concepts and then give an overview of

the thesis.

1.2 Basic Concepts

The eigendecomposition of an n� n real symmetric matrix A is

A = U�UT ;

where U is an n�n orthogonal matrix (UTU = I)and � 2 Rn�n is a diagonal matrix. The

columns of U are the eigenvectors of A and the diagonal elements of � are the eigenvalues

of A. We assume the eigenvalues are in increasing order:

�1 � �2 � � � � � �n:

The singular value decomposition (SVD) of an m� n real matrix B is

B = U�V T ;
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where U 2 Rm�m and V 2 Rn�n are orthogonal matrices, and � 2 Rm�n is a nonnegative

diagonal matrix. The columns of U are the left singular vectors of B, the columns of V

are the right singular vectors, and the diagonal elements of � = diag(�1; �2; : : : ; �n) are the

singular values.

There are important relationships between the singular value decomposition of a

matrix B and the eigendecomposition of BTB;BBT , and

2
4 0 BT

B 0

3
5 [43]. In fact, if the

SVD of B 2 Rm�n(m � n) is given by B = U�V T ; then

V T (BTB)V = �T� = diag (�21; : : : ; �
2
n) 2 Rn�n

and

UT (BBT )U = diag (�21; : : : ; �
2
n; 0; : : : ; 0) 2 Rm�m:

Moreover, if

U = [U1 U2]

where U1 2 Rm�n and U2 2 Rm�(m�n), and we de�ne the (m+ n) � (m+ n) orthogonal

matrix Q by

Q =
1p
2

2
4 V V 0

U1 �U1

p
2U2

3
5

then

QT

2
4 0 BT

B 0

3
5Q = diag (�1; : : : ; �n;��1; : : : ;��n; 0; : : : ; 0):

The linear least squares problem is to compute the x which minimizes

kAx� bk2

where A 2 Rm�n, b 2 Rm and x 2 Rn. If m > n, we have more equations than unknowns,

and the system is overdetermined. If m < n, the system is underdetermined.

The generalized singular value decomposition of two matrices, A 2 Rm�n and

B 2 Rp�n, is a pair of factorizations:

A = U�1[0 R]QT and B = V �2[0 R]QT ;

where U 2 Rm�m, V 2 Rp�p and Q 2 Rn�n are orthogonal matrices. R is an r � r

nonsingular and upper triangular matrix, where r � n is the rank of

2
4 A

B

3
5. �1 is an m�r
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diagonal matrix, �2 is a p� r diagonal matrix, the diagonal elements of both matrices are

nonnegative, and they satisfy

�T
1�1 +�T

2 �2 = I:

1.3 Floating Point Arithmetic

Each arithmetic operation is generally a�ected by roundo� error because the

machine hardware can only represent a subset of real numbers which are called 
oating

point numbers. In more detail, let 
 be one of the operations +;�; �; =. When the true

value of an operation a 
 b can not be represented exactly as a 
oating point number, it

must be approximated by a nearby 
oating point number before it can be stored in memory.

We denote this approximation by fl(a
 b), and the di�erence

a
 b� fl(a
 b)

is the roundo� error. If fl(a 
 b) is the nearest 
oating point number to a 
 b, we say

the arithmetic rounds correctly. IEEE arithmetic [4, 5] has this attractive property. When

rounding correctly and a
 b does not over
ow or under
ow, we can write

fl(a
 b) = (a
 b)(1 + �); (1.3.1)

where j�j is bounded bymachine precision ". In IEEE single precision, " = 2�24 � 6�10�8; in
IEEE double precision, " = 2�53 � 1:1 �10�16. The IEEE standard for binary arithmetic [4]

is used on SUN, DEC, HP and IBM workstations and all PCs. Exceptions include Cray

vector computers, so to accommodate error analysis on a Cray-2, Cray-YMP, or Cray C-90

and Cray T-90, we have to modify our model (1.3.1) to fl(a � b) = a(1 + �1) � b(1 + �2),

fl(a � b) = (a � b)(1 + �3) and fl(a=b) = (a=b)(1 + �4) with j�ij � c � " where c is a small

integer [27, 68].

A 
op is any 
oating point operation a 
 b, where a and b are 
oating point

numbers.

1.4 Algorithms to Compute the Symmetric Eigendecompo-

sition

In general, algorithms for computing the symmetric eigendecomposition proceed

in three steps [43, 27] except Jacobi methods which is slow.
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� Step 1: Tridiagonalization

Given a symmetric matrix A 2 Rn�n, �nd an orthogonal matrix Q such that

QAQT = T

where T is a symmetric tridiagonal matrix and Q is the product of Householder

matrices.

� Step 2: Compute Symmetric Tridiagonal Eigendecomposition

Use an algorithm to get the eigendecomposition of T

T = UT�U:

� Step 3: Computer Eigenvector

Compute eigenvector matrix V = UQ of A.

Therefore, the eigendecomposition of A is given by:

A = (UQ)T�(UQ) = V T�V:

It can be shown that the computed symmetric tridiagonal matrix T̂ from Step 1 satis�es

T̂ = Q̂T (A+ E)Q̂;

where Q̂ is exactly orthogonal and E is a symmetric matrix satisfying kEkF � c"kAkF
where c is a small constant [97, 43].

Step 2 can be accomplished by many algorithms like tridiagonal QR iteration

[80, 27], bisection [43, 27, 80, 30], divide-and-conquer [22, 72, 84, 52, 89], etc. In chapter

2, we will review bisection and discuss several implementations of bisection algorithm. Our

goal in chapter 2 is to prove rigorously the correctness of those implementations under

certain assumptions, e.g. models of 
oating-point arithmetic.

Bisection can be accelerated by a fast algorithm called parallel pre�x [26, 28, 32,

94, 74], reducing the time that bisection takes from O(n) to O(log2 n) on a machine with n

processors and su�cient fast communications. However, it can be very unstable [74, 30]. In

chapter 3 and 4, we will introduce the parallel pre�x algorithm and show many numerical

examples of its instability. We will also analyze its forward and backward stability.
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1.5 Singular Value Decomposition and Least Squares Prob-

lem

The algorithm to compute singular value decomposition of A 2 Rm�n also takes

three steps [41]. The �rst step is to use orthogonal matrices U and V to reduce A to a

bidiagonal matrix B,

A = UBV T ;

and then compute the SVD of B:

B = Q�WT :

Finally, compute the singular vectors ~U = UQ and ~V = VW . The SVD of A is then

computed as

A = (UQ)�(VW )T = ~U�~V :

We will describe this process in details in chapter 5. There are also many algorithms to

compute the SVD of bidiagonal matrix, like QR-iteration [33, 41, 42], QD-iteration [38, 83]

and divide-and-conquer [22, 51, 46, 6, 63].

We will describe the bidiagonal SVD using divide-and-conquer in chapter 5. We

will discuss the implementation of the algorithm and present its performance on a high

performance workstation, the IBM RS6000/590. For a 1600 � 1600 random matrix, our

implementation achieves a 50-fold speedup over LAPACK's QR-iteration based SVD for

step 2, the SVD of a bidiagonal matrix, and a 13-fold speedup for the overall dense SVD.

Given the SVD of A, A = U�V T , we can solve the least squares problem [43, 27, 2]

min
x2Rn

kAx� bk2

by

w = UTb; y =

2
4 ��11

0

3
5w; x = V y;

where �1 = diag (�1; �2; : : : ; �r) and r is the rank of A. This is the most reliable way to solve

the rank de�cient linear least squares problem. The other methods like QR factorization

and Rank-Revealing QR run faster than the SVD solver, but they are not as reliable when

A is rank de�cient. We will introduce various least squares solvers in chapter 5 and show

their performance on an IBM RS6000/590. We will show that our implementation of a least

squares solver using the divide-and-conquer SVD achieves a 28-fold speedup over LAPACK's

DGELSS, the solver based on the SVD with QR-iteration for a 1600� 1600 random matrix.
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1.6 Generalized Singular Value Decomposition

We will discuss two ways to compute the generalized singular value decomposition

in chapter 6, one based on Paige's algorithm [77] and one on Van Loan's algorithm [96].

Paige's algorithm �rst reduces the matrix pair A and B to upper triangular form

by QR factorization, and then use Jacobi rotations to compute the GSVD of the triangular

matrices [77, 10, 2].

Van Loan's algorithm �rst computes the QR factorization of

2
4 A

B

3
5,

2
4 A

B

3
5 =

2
4 Q1

Q2

3
5R;

and then computes the Cosine-Sine Decomposition (CSD) of

2
4 Q1

Q2

3
5,

2
4 Q1

Q2

3
5 =

2
4 U1 0

0 U2

3
5
2
4 �1

�2

3
5V T :

It uses two SVDs in the process of computing the CSD. We implemented Van Loan's algo-

rithm using our implementation of the divide-and-conquer SVD algorithm. We achieve a 54-

fold speedup over LAPACK's implementation of Paige's algorithm on an IBM RS6000/590,

for 500� 500 random matrices. More performance data will be presented in chapter 6.
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Chapter 2

Solving the Symmetric Tridiagonal

Eigenproblem Using Bisection

2.1 Introduction

Bisection is a well known method for �nding eigenvalue of symmetric tridiagonal

matrices [43, 27, 80, 66]. We will review it brie
y below. Bisection relies on a function

which counts the eigenvalues less than x; we call it Count(x). Our goal in this chapter

is to show how an incorrect implementation of Count(x) can cause failure of the bisection

algorithm, and prove the correctness of several implementations of Count(x).

2.2 Review of Bisection

Given an n� n symmetric tridiagonal matrix

T =

2
66666666664

a1 b1

b1 a2 b2
. . .

. . .
. . .

bn�2 an�1 bn�1

bn�1 an

3
77777777775

; (2.2.1)

the symmetric tridiagonal eigenproblem is to �nd the eigendecomposition:

T = U�UT ;
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where � is a diagonal matrix and U is an orthogonal matrix. The diagonal elements of �

are the eigenvalues of T , and the columns of U are the corresponding eigenvectors. This is

a basic problem in numerical linear algebra [27, 43, 80, 91, 97]. In this chapter, we discuss

the bisection algorithm [27, 43, 80] to solve this problem.

Before discussing the bisection algorithm, we introduce a classical result upon

which it is based.

De�nition 2.2.1 The inertia of a symmetric matrix A is a triple of integers: Inertia(A) �
(�; �; �), where � is the number of negative eigenvalues of A, � is the number of zero

eigenvalues of A, and � is the number of positive eigenvalues of A.

Theorem 2.2.1 (Sylvester's Law of Inertia [40]) Let A be a symmetric matrix and X

be a nonsingular matrix. Then A and XTAX have the same inertia.

Suppose A = AT and one does Gaussian Elimination to get A � xI = LDLT

where L is lower triangular and nonsingular, D is diagonal and I is identity matrix. By

Sylvester's Law of Inertia, Inertia(A�xI) = Inertia(D). Therefore, Inertia(A�xI) is trivial
to compute since D is diagonal:

Inertia(A� xI) = (# negative eigenvalues of A� xI;# zero eigenvalues of A� xI;

# positive eigenvalues of A� xI)

= (# eigenvalues of A < x;# eigenvalues of A = x;

# eigenvalues of A > x)

= Inertia(D)

= (# dii < 0;# dii = 0;# dii > 0)

Suppose x1 < x2 and we compute Inertia(A�x1I) and Inertia(A�x2I). Then the number

of eigenvalues in the interval [x1; x2) equals

(#eigenvalues of A < x2)� (#eigenvalues of A < x1):

By de�ning the following function(also called Negcount)

Count(x) = # eigenvalues of A < x;

we can introduce the following algorithm:
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Algorithm 2.2.1 Bisection: Compute all the eigenvalues of A in the interval [left; right)

to the desired accuracy � , given the initial task (left; right; nleft; nright) where nleft =

Count(left), nright = Count(right) .

1: if (nleft = nright or left > right) return; /* no eigenvalues in interval */

2: enqueue (left; right; nleft; nright) on Worklist;

3: while (Worklist is not empty)

4: dequeue (�; �; n�; n�) from Worklist;

5: if ( � � � small enough ) then

6: print \Eigenvalue (�+ �)=2 has multiplicity n� � n�";

7: else

8: mid = (� + �)=2;

9: nmid = Count(mid);

10: if (nmid > n�) then

/* bottom half of interval (�; �) contains eigenvalues */

11: enqueue (�;mid; n�; nmid) on Worklist;

12: end if

13: if (nmid < n�) then

/* top half of interval (�; �) contains eigenvalues */

14: enqueue (mid; �; nmid; n�) on Worklist;

15: end if

16: end if

17: end while

In general, we say � � � small enough if

� � � < min(�;max(j�j; j�j)");

where � is used to bound absolute error and max(j�j; j�j)" is used to bound relative error.

Let �1 � �2 � : : : � �n be the eigenvalues of n � n matrix A. The same idea can

be used to compute �j for j = j0; j0 + 1; : : : ; j1. This is because we know �nleft through

�nright�1 lie in the interval [left; right). Also, by using the Gershgorin Disk Theorem, it is

easy to see that all eigenvalues must lie in the interval [left; eight] where

left = min1�i�n(Aii �
X
j 6=i

jAij j) and right = max1�i�n(Aii +
X
j 6=i

jAij j);
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so that if we let the initial task on the Worklist be (left; right; 0; n), then bisection will

compute all the eigenvalues of A.

Theorem 2.2.2 (Gershgorin Disk Theorem [27, 43]) Let A be an n � n arbitrary

matrix. Then the eigenvalues � of A are located in the union of the n disks.

j�� Akkj �
X
j 6=k

jAkj j

If A were dense, we could implement Count(x) by doing symmetric Gaussian

Elimination [16] with pivoting. But this would cost O(n3) 
ops and thus not be cost

e�ective. On the other hand, Count(x) is quite simple to compute for symmetric tridiagonal

matrix T :

T � xI =

2
66666666664

a1 � x b1

b1 a2 � x b2
. . .

. . .
. . .

bn�2 an�1 � x bn�1

bn�1 an � x

3
77777777775

= LDLT

=

2
66666666664

1

l1 1

. ..
. . .

ln�2 1

ln�1 1

3
77777777775

2
66666666664

d1

d2
. . .

dn�1

dn

3
77777777775

2
66666666664

1 l1

1 l2
. . .

1 ln�1

1

3
77777777775

Therefore, d1 = a1 � x, d1l1 = b1 and thereafter l2i�1di�1 + di = ai � x, dili = bi.

Substituting li = bi=di yields:

d1 = a1 � x

di = ai � x� b2i�1
di�1

Thus, given an n-by-n real symmetric tridiagonal matrix T with diagonals a1; :::; an and

o�diagonals b1; :::; bn�1 (we let b0 � 0), and let �1 � � � � � �n be T 's eigenvalues, then the

following algorithm computes the function Count(x) which returns the number of eigenval-

ues of T that are less than x (for all but the �nite number of x resulting in a divide by zero,

which we call singular points) :
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Algorithm 2.2.2 Count(x) returns the number of eigenvalues of a real symmetric tridiag-

onal matrix T that are less than x.

1: Count = 0;

2: d = 1;

3: for i = 1 to n

4: d = ai � x� b2i�1=d

5: if d < 0 then

6: Count = Count + 1

7: end if

8: end for

(If we wish to emphasize that T is the argument, we will write Count(x; T ) instead.)

Remark 2.2.1 We de�ne Count(x) at singular points to be the number of eigenvalues less

than x. This means that for all x, Count(x) is left continuous at x.

The cost of a single call to Algorithm 2.2.2 is 4n. Therefore, the overall cost to �nd

m eigenvalues is O(mn). To compute the corresponding eigenvectors, we can use inverse

iteration [43, 80, 81, 61].

2.3 Our Goals in This Chapter

The logic of bisection algorithm seems to depend on the simple fact that Count(x)

is a monotonic increasing step function of x, since the number of the eigenvalues in the

half-open interval [�1; �2) is Count(�2) � Count(�1). If its computer implementation,

call it FloatingCount(x), were not also monotonic, so that one could �nd �1 < �2 with

FloatingCount(�1) > FloatingCount(�2), then the computer implementation might well re-

port that the interval [�1; �2) contains a negative number of eigenvalues, namely FloatingCo-

unt(�2) �FloatingCount(�1). This result is clearly incorrect. In section 2.5 below, we will

see that this can indeed occur using the the Eispack routine bisect (using IEEE 
oat-

ing point standard arithmetic [4, 5], and without over/under
ow). There are at least four

reasons why FloatingCount(x) might not be monotonic [30]:

1. the 
oating point arithmetic is too inaccurate,
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2. over/under
ow occurs, or is avoided improperly,

3. FloatingCount(x) is implemented using a fast parallel algorithm called parallel pre�x,

or

4. heterogeneity | processors in a parallel environment may have di�ering 
oating point

arithmetics, or may just compile code slightly di�erently.

In this chapter, we discuss the �rst two challenges to implementing bisection cor-

rectly. In next chapter, we discuss parallel pre�x. For heterogeneity and other parallel

issues, we refer to [30].

We �rst give an example to show how monotonicity can fail, and cause incorrect

eigenvalues to be computed; see sections 2.5 and 2.6.

We then show that as long as the 
oating point arithmetic is monotonic (we

de�ne this in section 2.4.1), and FloatingCount(x) is implemented on a single processor

in a reasonable way, then FloatingCount(x) is also monotonic. A su�cient condition for


oating point to be monotonic is that it be correctly rounded or correctly chopped; thus

IEEE 
oating point arithmetic is monotonic. This result was �rst proven but not published

by Kahan in 1966 for symmetric tridiagonal matrices [66]; here we extend this result to

symmetric acyclic matrices, a larger class including tridiagonal matrices, arrow matrices,

and exponentially many others [31]; see section 2.6.

Finally, we review the roundo� error analysis of FloatingCount(x), and how to ac-

count for over/under
ow, thus rigorously prove several implementations of FloatingCount

function are correct (we will de�ne correctness in section 2.4.3), which is a necessary condi-

tion for an implementation of bisection algorithm (serial or parallel) to be correct [30]; part

of this material may also be found in [31, 66]; see section 2.7.

2.4 De�nitions and Assumptions

Section 2.4.1 de�nes the kinds of matrices whose eigenvalue problems we will con-

sider, what monotonic arithmetic is, and what \jump points" of the functions Count(x) and

FloatingCount(x) are. Section 2.4.2 presents our (mild) assumptions about 
oating point

arithmetic and the input matrices our algorithms will accept. Section 2.4.3 lists the criteria

an implementation of FloatingCount must satisfy to be correct.
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2.4.1 Preliminary De�nitions

In this section, we de�ne some fundamental concepts which we will use through

this chapter.

Symmetric Acyclic Matrices

Algorithm 2.2.2 was recently extended to the larger class of symmetric acyclic

matrices [31], i.e. those matrices whose graphs are acyclic (trees). The undirected graph

G(T ) of a symmetric n-by-n matrix T is de�ned to have n nodes and an edge (i; j), i < j, if

and only if Tij 6= 0. A symmetric tridiagonal matrix is one example of a symmetric acyclic

matrix; its graph is a chain. An \arrow matrix" which is nonzero only on the diagonal, in

the last row and in the last column, is another example; its graph is a star.

2
6666666666664

� �
� �

� �
� �

� �
� � � � � �

3
7777777777775

2
6666666666664

� �
� � �

� � �
� � �

� � �
� �

3
7777777777775

Arrow Matrix Tridiagonal Matrix

From now on, we will assume T is a symmetric acyclic matrix unless we state

explicitly otherwise. Also we will number the rows and columns of T in preorder such

that node 1 is the root of the tree and so accessed �rst; node j is called a child of node

i if Tij 6= 0 and node j is visited after node i by the algorithm (see Algorithm 2.6.1 in

section 2.6, TreeCount, for details). We let C denote the maximum number of children of

any node in the acyclic graph G(T )(C is never larger than the degree of G(T )).
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Monotonic Floating Point Arithmetic

To describe the monotonicity of FloatingCount(x), we need to de�ne monotonic

arithmetic: An implementation of 
oating point arithmetic is monotonic if, whenever a, b,

c and d are 
oating point numbers, 
 is any binary operation, and the 
oating point results

fl(a 
 b) and fl(c
 d) do not over
ow, then a 
 b � c 
 d implies fl(a 
 b) � fl(c
 d).

This is satis�ed by any arithmetic that rounds or truncates correctly such as IEEE 
oating

point arithmetic [4] but not by the 
oating point arithmetic of Cray XMP or YMP [68].

In section 2.6, we will prove that the FloatingCount function (Floating TreeCount) for a

symmetric acyclic matrix is monotonic if the 
oating point arithmetic is monotonic.

Jump Points

We now de�ne a jump-point of the function Count(x). �i is the i
th jump-point of

the function Count(x) if

lim
x!��i

Count(x) < i � lim
x!�+i

Count(x)

Note that �i is actually an eigenvalue of the input matrix T for Count(x). Anal-

ogous to the above de�nition, we de�ne an ith jump-point of a possibly nonmonotonic

function FloatingCount(x) as a 
oating point number �00i such that

FloatingCount(�00i ) < i � FloatingCount(nextafter(�00i ))

where nextafter(�00i ) is the smallest 
oating point number greater than �00i . For a nonmono-

tonic FloatingCount(x) function, there may be more than one such jump-point.

2.4.2 Assumptions Required to Prove Correctness of Bisection

In order to prove correctness of the algorithms, we need to make some assumptions

about the computer arithmetic and the inputs. The following is a list of all the assumptions

we will make; not all our results require all the assumptions, so we must be explicit about

which assumptions we need.

The �rst set of assumptions, Assumption 1, concerns the 
oating point arithmetic.

Not all parts of Assumption 1 are necessary for all later results, so we will later refer to

Assumptions 1A, 1B, etc. Assumption 2 is about the input matrix, and includes a mild

restriction on its size, and an easily enforceable assumption on its scaling.
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Assumption 1 (Properties of Floating Point Arithmetic)

1A. Barring over
ow, the usual expression for roundo� may be extended to include under-


ow as follows [25]:

fl(a
 b) = (a
 b)(1+ �) + � (2.4.2)

where 
 is a binary arithmetic operation, j�j is bounded by machine precision ", j�j
is bounded by a tiny number �!, typically the under
ow threshold ! (the smallest

normalized number which can safely participate in, or be a result of, any 
oating

point operation)1 and at most one of � and � can be nonzero. In IEEE arithmetic,

gradual under
ow lets us further assert that �! = "!, and that if 
 is addition or

subtraction, then � must be zero. We denote the over
ow threshold of the computer

(the largest number which can safely participate in, or be a result of, any 
oating

point operation) by 
.

In this paper, we will consider the following three variations on this basic 
oating

point arithmetic model:

Model 1. fl(a
 b) = (a 
 b)(1 + �) + � as above, and over
ows terminate, i.e. the

machine stops executing the running program.

Model 2. IEEE arithmetic with �1, �0 and NaN, and with gradual under
ow.

Model 3. IEEE arithmetic with �1, �0 and NaN, but with under
ow 
ushing to

zero instead of gradual under
ow.

1B.
p
! � " � 1 � 1=" �

p

. This mild assumption is satis�ed by all commercial 
oating

point arithmetics.

1C. Floating point arithmetic is monotonic. This is true of IEEE arithmetic (Models 2 and

3) but is not true of all arithmetics satisfying Model 1. We don't know any commercial

machine which satis�es Model 1 but violates this assumption.

\Indeed, the builder of any machine which failed to satisfy this assumption should be

ashamed of himself." | Kahan [66].

Assumption 2 (Properties of the input matrix)

1These caveats about \safe participation in any 
oating point operation" take machines like some Crays

into account, since they have \partial over
ow". On Cray, there are numbers for which addition by 1 does

not cause over
ow although multiplication by 1 does [68].



16

Table 2.1: Parameters for Di�erent Arithmetics

IEEE Cray

Parameters Single Single Extended Double Double Extended

" 5:96 � 10�8 � 2:33 � 10�10 1:11 � 10�16 � 5:42 � 10�20 3:55 � 10�15

! 1:18 � 10�38 � 2:23 � 10�308 2:23 � 10�308 � 3:36 � 10�4932 3:36 � 10�4932


 3:40 � 1038 � 1:79 � 10308 1:79 � 10308 � 1:19 � 104932 1:19 � 104932

2A. Assumption on the problem size n: n" � 0:1. For example, in IEEE double precision,

this limits us to matrices of dimension less than 4:5 � 1014, or 450 trillions. Virtually
all numerical algorithms share a restriction like this.

2B. Assumptions on the scaling of the input matrix. Let �B � mini6=j T
2
ij and �M �

maxi;j jTijj.

i. �M �
p

 (largest matrix entry not too large).

ii. �B � ! (smallest o�diagonal matrix entry not too small).

These assumptions may be achieved by explicitly scaling the input matrix (multiplying

it by an appropriate scalar) to adjust �M , and then setting small o�-diagonal elements

T 2
ij < ! to zero and so splitting the matrix into unreduced blocks [30, 8], each of which

satis�es �B � !. By Weyl's Theorem [80], this may introduce a tiny error of amount

no more than
p
! in the computed eigenvalues.

2C. More assumptions on the scaling of the input matrix (that the largest entry is not too

small). These are used to get re�ned error bounds in section 2.7.

i. �M � !=".

ii. �M � 1=("
).

To end this section, we show a table of ", ! and 
 for some arithmetics (table 2.1)

[4, 68].
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2.4.3 De�nition of Correctness of FloatingCount

When we say that an implementation of FloatingCount function is correct, we assert

that it terminates and the following hold:

Let �
(1)00

i ; �
(2)00

i ; : : : ; �
(k)00

i be the ith jump-points of FloatingCount(x) and �i be the i
th

jump-points of Count(x). We assume that FloatingCount(x) satis�es the error bound,

j�(j)
00

i � �ij � �i; 8j = 1; : : : ; k

for some small �i � 0 (usually we require �i to be O(")).

We have permitted that FloatingCount(x) to have a bounded region of possible

nonmonotonicity, where the error bound �i is also a bound on the nonmonotonicity around

eigenvalue �i. Di�erent implementations of FloatingCount(x) result in di�erent values of

�i (see section 2.7). For some of the practical FloatingCount functions in use, we prove in

section 2.7 that they satisfy the correctness property.

We say that an implementation of FloatingCount function is incorrect when the

above fails to hold.

2.5 An Incorrect Implementation of Bisection

We give an example of the failure of Eispack's bisect routine [88] which imple-

ments a nonmonotonic FloatingCount(x). Suppose we use IEEE standard double precision


oating point arithmetic [4, 5] with " = 2�53 � 1:1�10�16 and we want to �nd the eigenvalues
of the following 2� 2 matrix:

A =

0
@ 0 "

" 1

1
A :

A has eigenvalues near 1 and �"2 � �1:23 � 10�32. But bisect reports that the interval

[�10�32; 0) contains �1 eigenvalues. No over
ow or under
ow occurs in this case. The

reason for this is bisect's incorrect provision against division by zero (See Algorithm 2.7.1

in section 2.7.2). In section 2.6, in the proof of Theorem 2.6.1, we will show that this cannot

happen for the LAPACK routine dstebz even for more general symmetric acyclic matrices.
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2.6 Proof of Monotonicity of FloatingCount(x)

In 1966 Kahan proved but did not publish the following result [66]: if the 
oating

point arithmetic is monotonic, then FloatingCount(x) is a monotonically increasing func-

tion of x for symmetric tridiagonal matrices. That monotonic 
oating point arithmetic is

necessary for FloatingCount(x) to be monotonic is easily seen by considering 1-by-1 matri-

ces: if addition fails to be monotonic so that x < x0 but fl(a1 � x) < 0 < fl(a1 � x0), then

FloatingCount(x) = 1 > 0 = FloatingCount(x0). In this section, we will extend this proof

of monotonicity of FloatingCount(x) to symmetric acyclic matrices.

As we mentioned before, Algorithm 2.2.2 was recently extended to the symmetric

acyclic matrices. In [31] an implementation of Count(x) for acyclic matrices was given, see

Algorithm 2.6.1 below. The algorithm refers to the tree G(T ) which is the graph of the

n�n symmetric matrix T , where node 1 is chosen (arbitrarily) as the root of the tree, and

node j is called a child of node i if Tij 6= 0 and node j has not yet been visited by the

algorithm. We are also explicit about where roundo� occurs in the algorithm.

Algorithm 2.6.1 TreeCount(x) returns the number of eigenvalues of the symmet-

ric acyclic matrix T that are less than x.

call TreeCount(1; x; d1; s1)

Count = s1

procedure TreeCount(i; x; di; si)

/* i and x are inputs, di and si are outputs */

1: di = fl(Tii � x)

2: si = 0

3: for all children j of i do

4: call TreeCount(j; x; dj; sj)

5: di = fl(di � fl(T 2
ij=dj))

6: si = si + sj

7: endfor

8: if di < 0 then

9: si = si + 1

10: end if
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end TreeCount

Without loss of generality, from now on we ignore roundo� in computing T 2
ij since

we may as well consider T 2
ij as the input data (see assumption 2B).

Clearly, si is the total number of negative dj in the subtree rooted at i (including

di). We may summarize Algorithm 2.6.1 more brie
y by

di = fl(fl(Tii� x)� fl(
X

j2C(i)

fl(
T 2
ij

dj
))) (2.6.3)

si =
X

j2C(i)

sj +

8<
:

0 if di � 0

1 if di < 0
(2.6.4)

where the sums are over the set C(i) of all children of i.

Let x be a 
oating point number, and let x0 denote the next 
oating point number

larger than x. To distinguish the results of Algorithm 2.6.1 for di�erent x we will si and di

as functions si(x) and di(x). The theorem we wish to prove is:

Theorem 2.6.1 If the 
oating point arithmetic used to implement Algorithm 2.6.1 is mono-

tonic, then si(x) � si(x
0), i.e. TreeCount(x) is monotonic.

We introduce some more de�nitions. In these de�nitions, y is always a 
oating

point number.

De�nition 2.6.1 Zeros and Poles:

i. The number y is a zero of di if di(y) � 0 > di(y
0).

ii. The number y is a pole of di if di(y) < di(y
0).

� It is called a positive pole if in addition to being a pole di(y)di(y
0) > 0 or di(y) = 0.

� It is called a negative pole if in addition to being a pole di(y)di(y
0) < 0 or

di(y
0) = 0.

Now we suppose that for some i, si(x) > si(x
0) is decreasing, we want to �nd a

contradiction.

Lemma 2.6.1 Let m be the largest m such that sm ever decreases. This means that for

some y, sm(y) > sm(y
0). Then in fact dm(y) < 0 � dm(y

0), i.e. y is a negative pole of dm.
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Proof. Since m is the largest integer for which sm is decreasing, we must have

sk(y) � sk(y
0) for all children k of m. Now write

0 > sm(y
0)� sm(y)

= fsm(y0)�
X

k2C(m)

sk(y
0)g+ f

X
k2C(m)

sk(y
0)�

X
k2C(m)

sk(y)g

+ f
X

k2C(m)

sk(y)� sm(y)g

� t1 + t2 + t3 :

From (2.6.4) we we conclude t1 � 0 and t3 � �1. From the de�nition of m we conclude

t2 � 0. These inequalities have one solution, namely t1 = t2 = 0 and t3 = �1. From t1 = 0

we conclude that dm(y
0) � 0, and from t3 = �1 we conclude dm(y) < 0. In particular, this

means y is a negative pole of dm.

Lemma 2.6.2 If y is a pole of di, then i must have a child j for which y is either a positive

pole or a zero.

Proof. If y is a pole of di, then for some child j of i we must have

fl(
T 2
ij

dj(y)
) > fl(

T 2
ij

dj(y0)
) (2.6.5)

Otherwise all children would satisfy

fl(
T 2
ij

dj(y)
) � fl(

T 2
ij

dj(y0)
)

and so by the monotonicity of arithmetic

fl(
X

j2C(i)

fl(
T 2
ij

dj(y)
)) � fl(

X
j2C(i)

fl(
T 2
ij

dj(y0)
))

Arithmetic monotonicity further implies

fl(Tii � y) � fl(Tii � y0)

and �nally

fl(fl(Tii� y)� fl(
X

j2C(i)

fl(
T 2
ij

dj(y)
))) � fl(fl(Tii� y0)� fl(

X
j2C(i)

fl(
T 2
ij

dj(y0)
)))



21

or di(y) � di(y
0), contradicting the assumption that y is a pole. Applying arithmetic

monotonicity to (2.6.5) we conclude

T 2
ij

dj(y)
>

T 2
ij

dj(y0)
:

This means either dj(y) � 0 > dj(y
0) (i.e. y is a zero of dj) or dj(y) < dj(y

0) and dj(y) �
dj(y

0) > 0 (y is a positive pole of dj) or 0 = dj(y) < dj(y
0) (y is a positive pole of dj).

Remark 2.6.1 The proof of the last lemma does not depend on the order in which the

additions and subtractions of Tii, y, and T 2
ij=dj are carried out. It is also not damaged by

inserting the line \if jdij < tol then di = �tol" just before \if di < 0 then si = si + 1" in

Algorithm 2.6.1 since we can simply modify the de�nition of zero to: y is a zero of di if

di(y) � tol and di(y
0) � �tol (in fact, this is the de�nition in [66] to prove the monotonicity

of Count(x) for symmetric tridiagonal matrix), and the proof will follow through. This

is done in practice to avoid over
ow and division by zero; see Algorithm 2.7.3 and [3, 66].

However, the proof does not work for the algorithm used to avoid over
ow in the subroutine

bisect [88]. This is because bisect tests if a computed dj is exactly zero, and increases

if it is; this can increase di(y
0) past di(y) even if inequalities (2.6.5) are not satis�ed. The

example in section 2.5 shows that monotonicity can indeed fail in practice.

Lemma 2.6.3 If y is a pole of di, then there must be a node l in the subtree rooted at i

such that y is a zero of dl and for all dj on the path from i to l, y is a positive pole of dj.

Proof. We can apply Lemma 2.6.2 to i to �nd a child l which is either a zero or

a positive pole. If it is a zero we are done, and otherwise we apply Lemma 2.6.2 again to l.

This process must end in a zero since the leaves are of the form dl(x) = fl(Tll � x) and so

can only be zeros by arithmetic monotonicity.

Proof of Theorem 2.6.1: We use proof by contradiction, assume that some si(x)

is not monotonic, we now use Lemma 2.6.1 to conclude that there is a largest m such that

y is a negative pole of dm, and

X
k2C(m)

sk(y) =
X

k2C(m)

sk(y
0) : (2.6.6)

Use Lemma 2.6.3 to conclude that there is some l in the tree rooted at m for which y is a

zero. This means dl(y) � 0 > dl(y
0), so that dl contributes one more to the right hand side
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of (2.6.6) than to the left hand side. So to maintain (2.6.6) there must be another p in the

tree rooted at m with dp(y) < 0 � dp(y
0), i.e. y is a negative pole of dp. By Lemma 2.6.3,

p cannot lie on the path from m to l, since only positive poles lie on this path. Therefore,

again by Lemma 2.6.3, there must be a q 6= l in the tree rooted at p such that y is a zero

of dq. But this means dp and dq together contribute equally to both sides of (2.6.6), and

so cannot balance dl. By the same argument, any other negative pole which would balance

dl has a counterbalancing zero. Therefore (2.6.6) cannot be satis�ed. This contradiction

proves Theorem 2.6.1.

2.7 Roundo� Error Analysis

In last section, we introduced Algorithm 2.6.1 which can be used to compute the

eigenvalues of a symmetric acyclic matrix. In [31] it is shown that barring over/under
ow,

the 
oating point version of Algorithm 2.6.1 has the same attractive backward error analysis

as the 
oating point version of Algorithm 2.2.2. We reproduce the error analysis in [31].

Results are summarized in tables 2.4 and 2.5.

Let FloatingCount(x; T ) denote the value of Count(x; T ) computed in 
oating

point arithmetic. Then FloatingCount(x; T ) = Count(x; T 0), where T 0 di�ers from T only

slightly:

jTij � T 0ij j � f(C=2 + 2; ")jTijj if i 6= j and Tii = T 0ii; (2.7.7)

where " is the machine precision, C is the maximum number of children of any node in the

graph G(T ) and f(n; ") is de�ned by

f(n; ") = (1 + ")n � 1:

By Assumption 2A (n" � :1), we have [97]:

f(n; ") � 1:06n":

(Strictly speaking, the proof of this bound is a slight modi�cation of the one in [31], and

requires that d be computed exactly as shown in TreeCount. The analysis in [31] makes no

assumption about the order in which the sum for d is evaluated, whereas the bound (2.7.7)

for TreeCount assumes the parentheses in the sum for d are respected. Not respecting the

parentheses weakens the bounds just slightly, and complicates the discussion below, but

does not change the overall conclusion.)
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This tiny componentwise backward error permits us to compute the eigenvalues

accurately, as we now discuss. Suppose the backward error in (2.7.7) can change eigenvalue

�k by at most �k. For example, Weyl's Theorem [80] implies that �k � kT � T 0k2 �
2f(C=2+2; ")kTk2, i.e. that each eigenvalue is changed by an amount small compared with

the largest eigenvalue. If Tii = 0 for all i, then �k � ((1 � (C + 4)")1�n � 1)j�kj, i.e. each
eigenvalue is changed by an amount small relative to itself. See [12, 33, 66] for more such

bounds.

Now suppose that at some point in the algorithm we have an interval [x; y), x < y,

where

i = FloatingCount(x; T ) < FloatingCount(y; T ) = j : (2.7.8)

Let T 0x be the equivalent matrix for which FloatingCount(x; T ) = Count(x; T 0x), and T 0y be

the equivalent matrix for which FloatingCount(y; T ) = Count(y; T 0y), Thus x � �i+1(T
0
x) �

�i+1(T )+�i+1, or x��i+1 � �i+1(T ). Similarly, y > �j(T
0
y) � �j(T )��j , or �j(T ) < y+�j .

Altogether,

x� �i+1 � �i+1(T ) � �j(T ) < y + �j : (2.7.9)

If j = i+ 1, we get the simpler result

x� �j � �j(T ) < y + �j : (2.7.10)

This means that by making x and y closer together, we can compute �j(T ) with an accuracy

of at best about ��j ; this is when x and y are adjacent 
oating point numbers and j = i+1

in (2.7.8). Thus, in principle �j(T ) can be computed nearly as accurately as the inherent

uncertainty �j permits.

We now describe the impact of over/under
ow, including division by zero. We

denote the pivot d computed when visiting node i by di. We �rst discuss the way division

by zero is avoided in Eispack's bisect routine [88], then the superior method in Lapack's

dstebz routine [3, 66], and �nally how our alternative Algorithm 2.7.2 (Flcnt IEEE) works

(Algorithm 2.7.2 assumes IEEE arithmetic). The di�culty arises because if dj is tiny or

zero, the division T 2
ij=dj can over
ow. In addition, T 2

ij can itself over/under
ow.

The 
oating point operations performed while visiting node i are

di = fl((Tii � x)� (
X

all children

j of i

T 2
ij

dj
)): (2.7.11)
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To analyze this formula, we will let subscripted "'s and �'s denote independent quantities

bounded in absolute value by " (machine precision) and �! (under
ow threshold). We

will also make standard substitutions like
Qn

i=1(1 + "i) ! (1 + ~")n where j~"j � ", and

(1 + "i)
�1�j ! �j.

2.7.1 Model 1: Barring Over
ow, Acyclic Matrix

Barring over
ow, (2.7.11) and Assumption 2B(ii) leads to

di = f(Tii � x)(1 + "ia) + �1i �
X

all children

j of i

T 2
ij

dj
(1 + ~"ij)

C+1 � (2C � 1)�2ig(1 + "ib) + �3i:

or

di

1 + "ib
= (Tii � x)(1 + "ia)�

X

all children

j of i

T 2
ij

dj
(1 + ~"ij)

C+1 + 2C � �02i + �03i:

or
di

(1 + "ic)
2
= Tii � x�

X

all children

j of i

T 2
ij

dj
(1 + "̂ij)

C+2 + (2C + 1)�i;

where (1 + "ic)
2 � (1 + "ia)(1 + "ib). Let

~di = di=(1 + "ic)
2, �nally,

~di = Tii + (2C + 1)�i � x �
X

all children

j of i

T 2
ij

~dj
(1 + "ij)

C+4: (2.7.12)

Remark 2.7.1 Under Model 2, IEEE arithmetic with gradual under
ow, the under
ow

error (2C + 1)�i of the above equation can be replaced by C�i because addition and sub-

traction never under
ow.

If there is no under
ow during the computations of di either, then (2.7.12) simpli�es to:

~di = Tii � x�
X

all children

j of i

T 2
ij

~dj
(1 + "ij)

C+4:
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This proves (2.7.7), since the ~di are the exact pivots corresponding to T 0 where T 0 satis�es

(2.7.7) and sign( ~di) = sign(di).

Remark 2.7.2 We need to bar over
ow in principle for symmetric acyclic matrix with

IEEE arithmetic, because if in (2.7.11), there are two children j1 and j2 of i such that

T 2
ij1
=dj1 over
ows to 1 and T 2

ij2
=dj2 over
ows to �1; then di will be NaN, not even well-

de�ned.

2.7.2 Models 2 and 3: Eispack's FlCnt bisect, Tridiagonal Matrix

Eispack's FlCnt bisect can over
ow for symmetric tridiagonal or acyclic matrices

with Model 1 arithmetic, and return NaN's for symmetric acyclic matrices and IEEE arith-

metic since it makes no provision against over
ow (see Remark 2.7.2). In this section, we

assume T is a symmetric tridiagonal matrix, whose graph is just a chain, i.e. C = 1. There-

fore, to describe the error analysis for FlCnt bisect, we need the following assumptions:

Assumption 2B(ii): �M � maxi;j jTijj �
p

, and one of

Assumption 1A: Model 2. Full IEEE arithmetic with 1 and NaN arithmetic, and with

gradual under
ow, or

Assumption 1A: Model 3. Full IEEE arithmetic with 1 and NaN arithmetic, but with

under
ow 
ushing to zero.

Algorithm 2.7.1 Eispack FlCnt bisect. FloatingCount(x) returns the number of

eigenvalues of a real symmetric tridiagonal matrix T that are less than x.

1: FloatingCount = 0;

2: d0 = 1;

3: for i = 1 to n

4: if (di�1 = 0) then

5: v = jbi�1j="
6: else

7: v = b2i�1=di�1

8: endif

9: di = ai � x� v
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10: if di < 0 then

11: FloatingCount = FloatingCount + 1

12: endif

13: endfor

Under Models 2 and 3, our error expression (2.7.12) simpli�es to

~di = ai + 3�i � x� b2i�1(1 + "ij)
5

~di�1
:

where ai = Tii and bi�1 = Ti�1;i.

However, FlCnt bisect's provision against division by zero can drastically increase

the backward error bound (2.7.7). When dj = 0 for some j in (2.7.11), it is easy to see that

what bisect does is equivalent to perturbing aj by "jbj j. This backward error is clearly small
in norm, i.e. at most "kTk2, and so by Weyl's Theorem, can perturb computed eigenvalue by

no more than "kTk2. If one is satis�ed with absolute accuracy, this is su�cient. However, it
can clearly destroy any componentwise relative accuracy, because "jbjj may be much larger

than jaj j.
Furthermore, suppose there is some k such that dk over
ows, i.e. jdkj � 
. Since

�M �
p

, it must be b2k�1=dk�1 that over
ows. So ~dk is �sign(b2k�1=dk�1) � 1 which has

the same sign as the exact pivot corresponding to T 0. But this will contribute an extra

uncertainty to ak+1 of at most �M2=
, since jb2k=dkj � �M2=
.

Therefore we get the following backward error for FlCnt bisect:

jTij � T 0ij j � f(2:5; ")jTijj if i 6= j:

and

jTii � T 0iij � "kTk2 +
�M2



+

8<
:

"! Model 2

3! Model 3
:

2.7.3 Models 2 and 3: FlCnt IEEE, Tridiagonal Matrix

The following code can work only for unreduced symmetric tridiagonal matrices

under Models 2 and 3 for the same reason as FlCnt bisect: otherwise we could get T 2
ij1
=dj1+

T 2
ij2
=dj2 =1�1 = NaN . So in this section, we again assume T is a symmetric tridiagonal

matrix. By using IEEE arithmetic, we can eliminate all tests in the inner loop, and so

make it faster on many architectures [34]. To describe the error analysis, we again make
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Assumptions 1A(Model 2 or Model 3) and 2B(ii), as in section 2.7.2, and Assumption 2B(i),

which is �B � mini6=j T
2
ij � !.

The function SignBit is de�ned as in IEEE 
oating point arithmetic, i.e., Sign-

Bit(x) is 0 if x > 0 or x = +0, and 1 if x < 0 or x = �0.

Algorithm 2.7.2 FlCnt IEEE. FloatingCount(x) returns the number of eigenval-

ues of a real symmetric tridiagonal matrix T that are less than x.

1: FloatingCount = 0;

2: d0 = 1;

3: for i = 1 to n

/* note that there is no provision against over
ow and division by zero */

4: di = (ai � x)� b2i�1=di�1

5: FloatingCount = FloatingCount + SignBit(di)

6: endfor

By Assumption 2B(i), b2i never under
ows. Therefore when some di under
ows,

we do not have the headache of dealing with 0=0 which is NaN.

Algorithm 2.7.2 is quite similar to FlCnt bisect except division by zero is permitted

to occur, and the SignBit(�0) function (= 0 or 1) is used to count eigenvalues [30]. More

precisely, if di = +0, di+1 would be �1, so after two steps, Count will increase by 1. On the

other hand, if di = �0, di+1 would be +1, hence Count also increases by 1 after two steps.

Therefore, we can simply change any di = �0 to di = +0, and di+1 = +1 to di+1 = �1,

to eliminate �0 from the analysis. Then using an analysis analogous to the last section, if

we use Model 2(gradual under
ow), T 0 di�ers from T by

jTij � T 0ij j � f(2:5; ")jTijj if i 6= j and jTii � T 0iij �
�M2



+ "!:

Using Model 3(
ush to zero), we have the slightly weaker results that

jTij � T 0ij j � f(2:5; ")jTijj if i 6= j and jTii � T 0iij �
�M2



+ 3!:

Since �M �
p

, so

�M2=

�M

� 1p


� ":

which tells us that �M �
p

 is a good scaling choice.
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2.7.4 Models 1, 2 and 3: Lapack's FlCnt stebz routine, Acyclic Matrix

In contrast to Eispack's FlCnt bisect and FlCnt IEEE, Lapack's FlCnt stebz can

work in principle for general symmetric acyclic matrices under all three models (although

its current implementation only works for tridiagonal matrices). So in this section, T is

a symmetric acyclic matrix. Let B = maxi6=j(1; T
2
ij) � 
, and p̂ = 2C � B=
 (p̂ is called

pivmin in dstebz). In this section, we need the Assumptions 1A (Model 1, 2 or 3) and

2B(ii). Because of the Gerschgorin Disk Theorem, we can restrict our attention to those

shifts x such that jxj � (n+ 1)
p

.

Algorithm 2.7.3 LAPACK Flcnt stebz. FloatingCount(x) returns the number of

eigenvalues of the symmetric acyclic matrix T that are less than x.

call TreeCount(1; x; d1; s1)

FloatingCount = s1

procedure TreeCount(i; x; di; si) /* i and x are inputs, di and si are outputs */

1: di = fl(Tii � x)

2: si = 0

3: for all children j of i do

4: call TreeCount(j; x; dj; sj)

5: sum = sum+ T 2
ij=dj

6: si = si + sj

7: endfor

8: di = (Tii � x)� sum

9: if (jdij � p̂) then

10: di = �p̂
11: endif

12: if di < 0 then

13: si = si + 1

14: endif

15: end TreeCount
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It is clear that jdij � p̂ for each node i, so

jTiij+ jxj+
X

all children

j of i

j
T 2
ij

dj
j � (n+ 2)

p

+ C � B

p̂
� 


2
+ C

B

2C �B=
 = 
:

This tells us that FlCnt stebz never over
ows and it works under all three models. For all

these models, the assignment di = �p̂ when jdij is small can contribute an extra uncertainty
to Tii of no more than 2 � p̂. Thus we have the following backward error:

jTij � T 0ijj � f(C=2 + 2; ")jTijj if i 6= j:

and

jTii � T 0iij � 2 � p̂+

8>>><
>>>:

(2C + 1)�! Model 1

C"! Model 2

(2C + 1)! Model 3

:

The driver routine which calls dstebz scales the input matrix (which is reduced

to tridiagonal T before calling dstebz) such that B = O(!1=2
), therefore, p̂ = 2C �B=
 =

O(
p
!).

2.7.5 Models 1,2 and 3: FlCnt Best Scaling, Acyclic Matrix

Following Kahan[66], let � = !1=4
�1=2 and M = � � 
 = !1=4
1=2. The following

code assumes that the initial data has been scaled so that

�M � Mp
2C

and �M � Mp
2C

:

This code can be used to compute the eigenvalues of general symmetric acyclic matrix, so in

this section, T is a symmetric acyclic matrix. To describe the error analysis, we only need

Assumption 1A. Again because of the Gerschgorin Disk Theorem, the shifts are restricted

to those x such that jxj � (n + 1)M .

Algorithm 2.7.4 FlCnt Best Scaling. FloatingCount(x) returns the number of

eigenvalues of the symmetric acyclic matrix T that are less than x.

call TreeCount(1; x; d1; s1)

FloatingCount = s1
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procedure TreeCount(i; x; di; si) /* i and x are inputs, di and si are outputs */

1: di = fl(Tii � x)

2: si = 0

3: for all children j of i do

4: call TreeCount(j; x; dj; sj)

5: sum = sum+ T 2
ij=dj

6: si = si + sj

7: endfor

8: di = (Tii � x)� sum

9: if (jdij �
p
!) then

10: di = �p!
11: endif

12: if di < 0 then

13: si = si + 1

14: endif

15: end TreeCount

Similar to FlCnt stebz, jdij �
p
! for any node i, so

jTiij+ jxj+
X

all children

j of i

jT
2
ij

dj
j � (n+ 1)M +

Mp
2C

+ C � M
2=2C

!1=2
� 


2
+ C � !

1=2
=2C

!1=2
= 


which tells us over
ow never happens and the code can work �ne under all the models we

mentioned. For all the models, The backward error bound becomes,

jTij � T 0ij j � f(C=2 + 2; ")jTijj if i 6= j:

and

jTii � T 0iij � 2
p
! +

8>>><
>>>:

(2C + 1)�! Model 1

C"! Model 2

(2C + 1)! Model 3

:

2.7.6 Error Bounds For Eigenvalues

We need the following lemma to give error bounds for the computed eigenvalues.
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Table 2.2: Backward Error Bounds for Symmetric Tridiagonal Matrices

Algorithms Model 1 Model 2 Model 3

�(") � �(") � �(") �

FlCnt bisect | | f(2:5; ") "kTk2+
�M
2



+"! f(2:5; ") "kTk2+

�M
2



+3!

FlCnt stebz f(2:5; ") 2p̂+3�! f(2:5; ") 2p̂+"! f(2:5; ") 2p̂+3!

Flcnt Best Scal f(2:5; ") 2
p
!+3�! f(2:5; ") 2

p
!+"! f(2:5; ") 2

p
!+3!

FlCnt IEEE | | f(2:5; ")
�M2



+"! f(2:5; ")

�M2



+3!

Lemma 2.7.1 Assume T is an acyclic matrix and FloatingCount(x; T ) = Count(x, T 0),

where T 0 di�ers from T only slightly:

jTij � T 0ij j � �(")jTijj if i 6= j and jTii � T 0iij � �:

where �(") � 0 is a function of " and � � 0. Then this backward error can change the

eigenvalues �k by at most �k where

�k � 2�(") k T k2 +�: (2.7.13)

Proof. By Weyl's Theorem [80],

�k � kT � T 0k2 � kjT � T 0jk2 � k�(")jT � �j+ �Ik2 � �(")kjT � �jk2+ �:

and

kjT � �jk2 = kT � �k2 � kTk2 + k�k2 � 2kTk2:

where � = diag(di) which is the diagonal part of T . Therefore,

�k � 2�(")kTk2 + �:

In Tables 2.2 through 2.5, we present the backward errors �(") and �, and the cor-

responding error bounds �k for the various algorithms under di�erent models of arithmetic.

2.7.7 Correctness of the Gerschgorin Bound

In section 2.1, we mentioned that to compute all the eigenvalues of an n � n

symmetric tridiagonal matrix T , we need to �nd an interval [left; right), such that

FloatingCount(left) = 0 and FloatingCount(right) = n:
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Table 2.3: Error Bounds �k of Eigenvalues for Symmetric Tridiagonal Matrices

Algorithms Model 1 Model 2 Model 3

FlCnt bisect | [2f(2:5;")+"]kTk2+ �M2



+"! [2f(2:5; ")+"]kTk2+ �M2



+3!

FlCnt stebz 2f(2:5; ")kTk2+2p̂+3�! 2f(2:5;")kTk2+2p̂+"! 2f(2:5; ")kTk2+2p̂+3!

Flcnt Best Scal 2f(2:5; ")kTk2+2
p
w+3�! 2f(2:5;")kTk2+2

p
w+"! 2f(2:5; ")kTk2+2

p
w+3!

FlCnt IEEE | 2f(2:5;")kTk2+ �M
2



+"! 2f(2:5; ")kTk2+ �M

2



+3!

Table 2.4: Backward Error Bounds for Symmetric Acyclic Matrices

Algorithms Model 1 Model 2 Model 3

�(") � �(") � �(") �

FlCnt bisect | | | | | |

FlCnt stebz f(C=2+2; ") 2p̂+(2C+1)�! f(C=2+2; ") 2p̂+C"! f(C=2+2; ") 2p̂+(2C+1)!

Flcnt Best S f(C=2+2; ") 2
p
!+(2C+1)�! f(C=2+2; ") 2

p
!+C"! f(C=2+2; ") 2

p
!+(2C+1)!

FlCnt IEEE | | | | | |

Table 2.5: Error Bounds �k of Eigenvalues for Symmetric Acyclic Matrices, g(") = f(C=2+
2; ")

Algorithms Model 1 Model 2 Model 3

FlCnt bisect | |

FlCnt stebz 2g(")kTk2+2p̂+(2C+1)�! 2g(")kTk2+2p̂+C"! 2g(")kTk2+2p̂+(2C+1)!

Flcnt Best Scal 2g(")kTk2+2
p
w+(2C+1)�! 2g(")kTk2+2

p
w+C"! 2g(")kTk2+2

p
w+(2C+1)!

FlCnt IEEE | |
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function Compute Gerschgorin(n,T ) /* returns the Gerschgorin Interval [gl,gu] */

1: gl = minni=1(Tii �
P

j 6=i jTijj); /* Gerschgorin left bound */

2: gu = maxni=1(Tii +
P

j 6=i jTij j); /* Gerschgorin right bound */

3: bnorm = max(jglj; jguj);

4: gl = gl� bnorm � 2n"� �0; gu = gu+ bnorm � 2n"+ �n; /* see Table 2.6 */

5: gu = max(gl; gu);

6: return(gl,gu);

end function

Figure 2.1: Compute Gerschgorin computes the Gerschgorin interval for T

In this section, we will prove the correctness of the Gerschgorin interval returned by the

function Compute Gerschgorin [30] (see �gure 2.1). We will need assumptions 1A and

the correctness property of FloatingCount(x).

In exact arithmetic,

glexact = min
i
(Tii �

X
j 6=i

jTijj); guexact = max
i
(Tii +

X
j 6=i

jTij j):

So, bnorm = max(jglexactj; jguexactj) = kTk1. Notice that

fl((Tii �
X
j 6=i

jTijj)) = (Tii(1 + �i)
ki �

X
j 6=i

jTijj(1 + �j)
kj ):

Therefore,

jfl(glexact)� glexactj � f(C; ")kTk1 � 2n"kTk1 = 2n" � bnorm:

Similarly, jfl(guexact) � guexactj � 2n" � bnorm. With correctness property of

FloatingCount(x), this proves that if we let

gl = fl(glexact)� 2n" � bnorm� �0; gu = fl(guexact) + 2n" � bnorm+ �n:

then we can claim

FloatingCount(gl) = 0; FloatingCount(gu) = n:
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Table 2.6: Upper Bounds for �k for Di�erent Algorithms under Di�erent Models

Algorithms Matrix Additional Assumptions Bounds of �k
FlCnt bisect Tridiagonal Assumption 2C(i) 11" � bnorm

FlCnt stebz Acyclic Assumptions 2C(i), 2C(ii) (8n+ 6)" � bnorm

Flcnt Best Scaling Acyclic | (4n+ 8)" � bnorm

FlCnt IEEE Tridiagonal Assumption 2C(i) 10" � bnorm

For the algorithms we mentioned in the previous sections, we can obtain the

upper bounds for �k under certain additional appropriate assumptions, which enable us

to give more speci�c and explicit Gerschgorin bounds computed by the routine Com-

pute Gerschgorin (see Table 2.6). For instance, the error bound of FlCnt bisect for

symmetric tridiagonal matrices is at most [2f(2:5; ")+ "]kTk2+ �M2=
+3!, with Assump-

tion 2C(i): �M � !=", we have

[2f(2:5; ") + "]kTk2 + �M2=
+ 3! � (2 � 2:5 � 1:06"+ ")kTk2 +
�M



�M + 3" �M

� 7" � bnorm+ " � bnorm+ 3" � bnorm = 11" � bnorm:

According to Table 2.6, if we let

gl = fl(glexact)�(10n+6)"�bnorm; gu = fl(guexact)+(10n+6)"�bnorm: (2.7.14)

Then we have

FloatingCount(gl) = 0; FloatingCount(gu) = n

in all situations, which shows the Gerschgorin Bound ( 2.7.14) is correct for Eispack's

FlCnt bisect, Lapack's FlCnt stebz, FlCnt IEEE and Flcnt Best Scal.

2.8 Summary

To end this chapter, we present two tables to summarize all the di�erent imple-

mentations of FloatingCount(x) we introduced and all the results we concluded. Tables 2.7

describes the algorithms, and Tables 2.8 describe their properties. For each implementation

of FloatingCount, Table 2.8 lists which parts of Assumptions 1{2 are needed for correctness

property of FloatingCount, and possibly monotonicity, to hold.
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Table 2.7: Di�erent implementations of FloatingCount

Algorithms Description Where

FlCnt bisect algorithm used in Eispack's bisect routine; See section 2.7.2

most 
oating point exceptions avoided by and [88]

tests and branches

FlCnt IEEE IEEE standard 
oating point arithmetic used See section 2.7.3

to accommodate possible exceptions; and [8, 66]

tridiagonals only

FlCnt stebz algorithm used in Lapack's dstebz routine; See section 2.7.4


oating point exceptions avoided by tests and [3]

and branches

Flcnt Best Scaling like FlCnt stebz, but prescales for optimal See section 2.7.5

error bounds and [8, 66]

Table 2.8: Results of Roundo� Error Analysis and Monotonicity

Assumptions about Results Proofs

Arithmetic and Input Matrix

T is symmetric tridiagonal ^ For FlCnt bisect, Correctness Property See section 2.7.2

(1A(Model 2) _ 1A(Model 3)) ^ holds but FloatingCount(x) can be

1B ^ 2A ^ 2B(ii) nonmonotonic

T is symmetric tridiagonal ^ For FlCnt IEEE, Correctness Property See section 2.6

(1A(Model 2) _ 1A(Model 3)) ^ holds and FloatingCount(x) is and section 2.7.3

1B ^2A ^ 2B monotonic

T is symmetric acyclic ^ For FlCnt stebz, Correctness Property See section 2.6

1A ^ 1B ^ 1C ^ holds and FloatingCount(x) is and section 2.7.4

2A ^ 2B(ii) monotonic

T is symmetric acyclic ^ For Flcnt Best Scaling, Correctness See section 2.6

1A ^ 1B ^ 1C ^ Property holds and FloatingCount(x) and section 2.7.5

2A is monotonic
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Chapter 3

The Instability and

Nonmonotonicity of

FloatingCount Implemented

Using Parallel Pre�x

3.1 Introduction

THE Parallel Pre�x operation is very useful to parallelize many numerical linear

algebra algorithms [26, 28, 32]. The bisection algorithm is one of its many applications. In

this chapter, we will present numerical examples to show that when FloatingCount(x) is

implemented using parallel pre�x, it can be nonmonotonic and very unstable.

3.1.1 Another Way to Count Eigenvalues Less Than x

Let Tk be the leading k�k principal submatrix (sometimes called leading principal

minor) of the symmetric tridiagonal matrix T in (2.2.1) and de�ne the polynomials pk(x) =

det(Tk�xI) where I is an k�k identity matrix, for k = 1 : n. Since T is tridiagonal, it can

be easily shown that the sequence pk(x) satis�es the following three term recurrence [43]:

pk(x) = (ak � x)pk�1(x)� b2k�1pk�2(x) (3.1.1)

where we let p0(x) = 1.
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We state the following classical result [43, 97]:

Theorem 3.1.1 (Sturm Sequence Property) If the symmetric tridiagonal matrix T in

(2.2.1) is unreduced, then the eigenvalues of Tk�1 strictly separate the eigenvalues of Tk:

�1(Tk) < �1(Tk�1) < �2(Tk) < : : : < �k�1(Tk) < �k�1(Tk�1) < �k(Tk): (3.1.2)

Moreover, if s(x) denotes the number of sign changes in the sequence (which we call a

Sturm sequence)

fp0(x); p1(x); : : : ; pn(x)g;

then s(x) equals the number of T 's eigenvalues that are less than x. Here the polynomials

pk(x) are de�ned by (3.1.1) and we have the convention that pk(x) has the opposite sign of

pk�1(x) if pk(x) = 0.

The function Count(x) can be computed in a di�erent way from Algorithm 2.2.2 as follows:

Algorithm 3.1.1 Count(x) returns the number of eigenvalues of a real symmetric tridiag-

onal matrix T that are less than x.

1: Count = 0;

2: p0 = 1;

3: p�1 = 0;

4: b0 = 0;

5: for i = 1 to n

6: pi = (ai � x)pi�1 � b2i�1pi�2

7: if (pipi�1 < 0 or (pi�1 6= 0 and pi = 0)) then

8: Count = Count + 1

9: end if

10: end for

(If we wish to emphasize that T is the argument, we will write Count(x; T ) instead.)

Remark 3.1.1 There is a simple relationship between Algorithm 2.2.2 and Algorithm 3.1.1:

pk = d1d2 : : : dk:
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Proc # 0 1 2 3 4 5 6 7

Step 0 x0 x1 x2 x3 x4 x5 x6 x7
Step 1 x0:1 x2:3 x4:5 x6:7
Step 2 x0:3 x4:7
Step 3 x0:7
Step 4 x0:5
Step 5 x0:2 x0:4 x0:6

Figure 3.1: Parallel Pre�x on 8 data items

This relationship can be easily veri�ed by using equation (2.2.2) and noticing that

det(Tk) = det(LkDkL
T
k ) = det(Lk) det(Dk) det(L

T
k )

and

pk = det(Tk); det(Lk) = 1; det(Dk) = d1d2 : : : dk;

where Tk, Lk and Dk are the leading principal submatrices of T , L and D respectively.

3.1.2 Parallel Pre�x

The parallel pre�x operation [26, 28, 32, 94], also called scan, is de�ned as follows:

De�nition 3.1.1 Parallel Pre�x Operation(Scan) Let x0; x1; : : : ; xn be data items,

and 
 any associative operation. Then the scan of these n data items yields another n data

items de�ned by

y0 = x0; y1 = x0 
 x1; : : : ; yi = x0 
 x1 
 : : :
 xi; : : : ; yn = x0 
 x1 
 : : :
 xn: (3.1.3)

We also say yi is the reduction of x0 through xi.

The attraction of this operation, other than its usefulness, is its ease of implementation

using a simple tree of processors [28, 32]. We illustrate in �gure 3.1.2 for n = 8; in the

�gure we denote xi � � �xj by xi:j , i-th column contains all the data held by i-th processor,

and only the data that changes are indicated.

Parallel pre�x can be used to solve linear recurrence relations For example, to

evaluate zi+1 = aizi + bi; i � 0; z0 = 0, we do the following operations [32]:
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Compute pi = a0 � � �ai using parallel pre�x multiplication

Compute �i = bi=pi in parallel

Compute si = �0 + � � �+ �i�1 using parallel pre�x addition

Compute zi = si � pi�1 in parallel

This approach extends to n term linear recurrences zi+1 =
Pn�2

j=0 ai;jzi�j + bi, but the

associative operation becomes n� 1 by n� 1 matrix multiplication.

Similarly, we can use parallel pre�x to evaluate certain rational recurrences zi+1 =

(aizi + bi)=(cizi + di) by writing zi = ui=vi and reducing to linear recurrence for ui and

vi [32]: 2
4 ui+1

vi+1

3
5 =

2
4 ai bi

ci di

3
5 �
2
4 ui

vi

3
5 : (3.1.4)

We may ask more generally about evaluating the scalar rational recurrence zi+1 =

fi(zi) in parallel. Let deg be the maximum of the degrees of the numerators and denomina-

tors of the rational functions fi. Kung [69] has shown that zi can be evaluated faster than

linear time (i.e. zi can be evaluated in o(i) steps) if and only if deg � 1; in this case the

problem reduces to 2�2 matrix multiplication parallel pre�x in (3.1.4). Basic linear algebra

operations which can be solved in this way include tridiagonal Gauss elimination(three term

recurrence), solving bidiagonal linear systems(two term recurrence), Sturm sequence evalua-

tion for the symmetric tridiagonal eigenproblem(three term recurrence), and the bidiagonal

dqds algorithm for singular values(three term recurrence)[38].

The numerical stability of these algorithms is not completely understood. For

some application, it is easy to see that the error bounds are rather worse than the those of

the sequential implementation [85].

For the case of Sturm sequence evaluation for the symmetric tridiagonal eigen-

problem, instead of computing pi as pi = (ai � x)pi�1� b2i�1pi�2, we can do this as follows:

[pi; pi�1] = [pi�1; pi�2] �

2
4 ai � x 1

�b2i�1 0

3
5 = [pi�1; pi�2] �Mi:

Therefore,

[pi; pi�1] = [p0; p�1]M1M2 � � �Mi;

where p0 = 1; p�1 = 0 and b0 = 0. So we can compute M1M2 � � �Mi, for i = 1; : : : ; n,

by parallel pre�x in time (O(log2 n)) on n processors. The (1; 1) element of the product
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M1M2 � � �Mi will give us the pi. From now on, we will denote the product MiMi�1 � � �Mj

byMi:j . Thus we have the following algorithm, which we call Count Pre�x, and computes

Count(x) using parallel pre�x:

Algorithm 3.1.2 Count Pre�x. Count(x) returns the number of eigenvalues of a real

symmetric tridiagonal matrix T that are less than x.

1: Count = 0;

2: p0 = 1;

3: p�1 = 0;

4: b0 = 0;

5: for i = 1 to n

6: Mi =

2
4 ai � x 1

�b2i�1 0

3
5

7: end for

8: Compute M1:i for i = 1; : : : ; n using parallel pre�x.

9: for i = 1 to n

9: pi =M1:i(1; 1)

7: if (pipi�1 < 0 or (pi�1 6= 0 and pi = 0)) then

8: Count = Count + 1

9: end if

10: end for

Several work has been done concerning the numerical stability of the above al-

gorithm [94, 74]. In some cases, the reasonably accurate results can be obtained in prac-

tice [94]. However, Mathias [74] has shown that even for positive de�nite matrices, the

relative error in the computed Sturm sequence can be as large as "�3, where " is machine

precision and � is the condition number for the problem of computing the eigenvalues of T .

Therefore, if we can not �nd a cheap way to detect the instability or to correct the wrong

results, the parallel pre�x algorithm is not a reliable algorithm to use in practice.

In this chapter, we discuss the backward error analysis for general matrices, and

present some numerical experiment results to show the instability and nonmonotonicity of

FloatingCount(x) implemented using parallel pre�x.
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3.2 An Example of Instability of Count Pre�x

In this section, we show that when we use parallel pre�x algorithm (Algorithm

3.1.2) to compute Count(x) instead of using a serial algorithm like Algorithm 3.1.1 or

Algorithm 2.2.2, the computed result can be very inaccurate.

We implement both Algorithm 3.1.2 and Algorithm 3.1.1 in MATLAB1, and use

them to compute the counts for the following matrix:

TWilkinson =

0
BBBBBBBBBBBBBBBBBBB@

32 1

1 31 1
.. .

. . .
. . .

1 1 1

1 1 1
. . .

. . .
. . .

1 31 1

1 32

1
CCCCCCCCCCCCCCCCCCCA
64�64

: (3.2.5)

(Matrix TWilkinson is very similar to the well known Wilkinson W+
21 matrix [97], except that

there are no zeros on the diagonal.)

When we computed the counts for TWilkinson at a few shifts x = 14, 15, 16, 17, 18,

19, the results are very inaccurate. For example, the computed Count(14) is 14 while the

true count should be 27. These shifts are very close to the double eigenvalues of TWilkinson(see

table 3.2).

To explain why this loss of accuracy happens, we consider the shift x = 14 only,

the other shifts can be explained in a similar way. We plotted the computed function

Count(x) in a tiny interval centered at 14, see �gure 3.2. We can observe that the curve of

the computed Count(x) has a very sharp spike at 14, which is clearly incorrect. We can also

look at table 3.2 to see how di�erent the results computed by parallel pre�x algorithm are

from those computed by serial algorithm(for parallel pre�x, pi = 0 for i � 32 while serial

algorithm gets completely di�erent results).

As we mentioned earlier in section 3.1.2, when we use parallel pre�x to compute

the Sturm sequence, we �rst generate a sequence of 2 � 2 matrices, which are denoted by

M1;M2; : : : ;M64, we also use Mi:j to denote the product MiMi+1 : : :Mj .

1IEEE double precision 
oating point arithmetic, with machine precision " = 2�53 � 1:1� 10�16
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order eigenvalues order eigenvalues order eigenvalues

1 -0.4641321726904621 23 11.99999999999999 45 23.00000000000062

2 0.7126628425131144 24 12.00000000000000 46 23.00000000000063

3 1.578164406734629 25 12.99999999999999 47 24.00000000005449

4 2.154730092254134 26 13.00000000000001 48 24.00000000005450

5 2.900771751580554 27 13.99999999999999 49 25.00000000380813

6 3.113723558709666 28 14.00000000000001 50 25.00000000380815

7 3.986274955522141 29 15.00000000000000 51 26.00000020507043

8 4.017639311060099 30 15.00000000000000 52 26.00000020507044

9 4.998968620932772 31 16.00000000000000 53 27.00000815867295

10 5.001192469653752 32 16.00000000000001 54 27.00000815867296

11 5.999953844648227 33 17.00000000000000 55 28.00022568018515

12 6.000050238625582 34 17.00000000000000 56 28.00022568018517

13 6.999998623277990 35 18.00000000000000 57 29.00395200266536

14 7.000001455954138 36 18.00000000000001 58 29.00395200266538

15 7.999999970478815 37 19.00000000000000 59 30.03894111930644

16 8.000000030730062 38 19.00000000000000 60 30.03894111930648

17 8.999999999521551 39 20.00000000000000 61 31.21067864733305

18 9.000000000493216 40 20.00000000000000 62 31.21067864733305

19 9.999999999993923 41 21.00000000000000 63 32.74619418290332

20 10.00000000000622 42 21.00000000000000 64 32.74619418290336

21 10.99999999999993 43 22.00000000000001

22 11.00000000000006 44 22.00000000000001

Table 3.1: Eigenvalues of 64� 64 TWilkinson
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serial pre�x serial pre�x

p1 1.8000e+01 1.8000e+01 p33 6.7763e+04 0

p2 3.0500e+02 3.0500e+02 p34 -8.8578e+05 0

p3 4.8620e+03 4.8620e+03 p35 9.6758e+06 0

p4 7.2625e+04 7.2625e+04 p36 -9.5872e+07 0

p5 1.0119e+06 1.0119e+06 p37 8.5318e+08 0

p6 1.3082e+07 1.3082e+07 p38 -6.7295e+09 0

p7 1.5597e+08 1.5597e+08 p39 4.6254e+10 0

p8 1.7026e+09 1.7026e+09 p40 -2.7079e+11 0

p9 1.6870e+10 1.6870e+10 p41 1.3077e+12 0

p10 1.5013e+11 1.5013e+11 p42 -4.9600e+12 0

p11 1.1842e+12 1.1842e+12 p43 1.3572e+13 0

p12 8.1389e+12 8.1389e+12 p44 -2.2185e+13 0

p13 4.7649e+13 4.7649e+13 p45 8.6124e+12 0

p14 2.3011e+14 2.3011e+14 p46 2.2185e+13 0

p15 8.7278e+14 8.7278e+14 p47 1.3572e+13 0

p16 2.3882e+15 2.3882e+15 p48 4.9600e+12 0

p17 3.9037e+15 3.9037e+15 p49 1.3077e+12 0

p18 1.5155e+15 1.5155e+15 p50 2.7079e+11 0

p19 -3.9037e+15 -3.9037e+15 p51 4.6254e+10 0

p20 2.3882e+15 2.3882e+15 p52 6.7295e+09 0

p21 -8.7278e+14 -8.7278e+14 p53 8.5318e+08 0

p22 2.3011e+14 2.3011e+14 p54 9.5872e+07 0

p23 -4.7649e+13 -4.7649e+13 p55 9.6758e+06 0

p24 8.1389e+12 8.1389e+12 p56 8.8578e+05 0

p25 -1.1842e+12 -1.1842e+12 p57 6.7763e+04 0

p26 1.5013e+11 1.5013e+11 p58 -7.2625e+04 0

p27 -1.6870e+10 -1.6870e+10 p59 -1.0119e+06 0

p28 1.7026e+09 1.7026e+09 p60 -1.4094e+07 0

p29 -1.5597e+08 -1.5606e+08 p61 -2.1040e+08 0

p30 1.3082e+07 1.4006e+07 p62 -3.3522e+09 0

p31 -1.0119e+06 -1.2010e+07 p63 -5.6778e+10 0

p32 7.2625e+04 0 p64 -1.0186e+12 0

Table 3.2: Comparison of Computed Sturm Sequences of 64� 64 TWilkinson Matrix by using
serial and parallel pre�x algorithms at x = 14
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14
12

14
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20

22

24

26

28

30

x = 14

Figure 3.2: Computed Count(x) for 64�64 TWilkinsonMatrix in interval [14(1�200"); 14(1+
200")] by Parallel Pre�x Algorithm

Since each element of TWilkinson is an integer, therefore all the elements of Mi are

integers, so are the elements of any matrix product Mi:j . As we compute the products Mi:j

by parallel pre�x, we �nd that until M1:16, M17:32, M33:48, M49:64, the computed Mi:j are

exactly the same as the corresponding true products(the products computed using exact

arithmetic). However, when we multiply M1:16 and M17:32 together, due to the limited

precision, the computed result of M1:32 is exactly a zero matrix, and so is M33:64. As a

consequence, all of the computed M1:i's, when i � 32, are zero matrices. Therefore, the

computed Sturm sequence pi is zero when i � 32. Since we lost the information for a huge

part(more than half) of the Sturm sequence, it is not surprising that the count dramatically

decreases at the shift x = 14.

More precisely, we have

M1:16 =

0
@ 217586071308601 133116815989000

0 0

1
A ;
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Figure 3.3: Computed Count(x) for 64�64 TWilkinsonMatrix in interval [14(1�200"); 14(1+
200")] by Serial Algorithm

and

M17:32 =

0
@ 33043478329 �2373373752

�54011212472 3879397705

1
A :

When we use IEEE double precision in MATLAB,M1:16�M17:32 is a zero matrix;

on the other hand, the true matrix product M1:32 is the following matrix(we use MATHE-

MATICA with in�nite precision, i.e. exact arithmetic):
0
@ �271 4048

0 0

1
A :

To compare the result of parallel pre�x algorithm, we also use the serial algorithm

to compute the Count(x) in the same tiny interval around 14. The results are plotted in

�gure 3.3. The computed function Count(x) is a monotonicly increasing function and the

count at x = 14 is 27.

To conclude this section, there is an interesting phenomenon we want to mention.

We computed the counts by parallel pre�x for the 
oating-point numbers right before and

after 14, the results turn out to be quite correct: the count for 
oating-point number right

before 14 is 26 and after 14 is 28.
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3.3 Examples of Nonmonotonicity of Count Pre�x

We have found many matrices for which parallel pre�x algorithm computes a

nonmonotonic Count(x). In this section, we show the computed Count(x) for two classes

of test matrices.

� Glued random matrices. These matrices are generated by gluing 4�4 matrices whose

independent random entries are uniformly distributed in [�1; 1]. More precisely, we

generate a series of 4 � 4 random symmetric diagonal matrices, T1; T2; : : : ; Tk, the

glued matrix is: 2
66666666664

T1 �1

�1 T2 �2

�2
. . .

. . .

. . . Tk�1 �k�1

�k�1 Tk

3
77777777775

where �i are small numbers.

� Glued positive de�nite matrices. These matrices are very similar to the examples

in [74]. They are generated by gluing following 2� 2 matrices:

2
4 1 1� �

1� � 1

3
5 :

We use parallel pre�x algorithm to compute Count(x) in a small interval around

the cluster of eigenvalues. Figure 3.4 plots the computed Count(x), by both parallel pre-

�x(dotted red line) and serial algorithm(solid blue line) of a 32� 32 glued random matrix

in an interval contains a cluster of 7 eigenvalues; the magnitude of the eigenvalues are close

to 0.8963, the length of the interval is 4 � 10�6 and we sampled 400 
oating point numbers

in the interval. Similarly, �gure 3.5 plots the computed Count(x) of a 32�32 glued positive

de�nite matrix in an interval contains a cluster of 15 eigenvalues; the magnitude of the

eigenvalues are close to 2, the length of the interval is 2 � 10�5, we also sampled 400 
oating

point numbers in the interval.
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Figure 3.5: Computed Count(x) for 32� 32 Glued Positive De�nite Matrix by Serial (solid
blue line) and Parallel Pre�x (dotted red line) Algorithms
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3.4 Backward Error Analysis

Our goal in this section is to analyze the backward stability of the parallel pre�x

algorithm, from which to see whether we can use the backward error to get some information

of Count(x) even when the computed count is not correct.

When we compute Count(x) for T by either parallel pre�x or serial algorithm,

in exact arithmetic, the Sturm sequence pi (i = 1; 2; : : : ; n) is essentially computed by the

three term recurrence (3.1.1)(without loss of generality, we assume shift x = 0):

pi = aipi�1 � b2i�1pi�2 i = 1; 2; : : : ; n;

where p0 = 1, p�1 = 0 and b0 = 0.

We denote the computed Sturm sequence by p̂i (i = 1; 2; : : : ; n), such that p̂i is

the exact Sturm sequence of a perturbed symmetric tridiagonal matrix T̂ . We denote the

perturbation matrix by �T so that T̂ = T + �T where

�T =

0
BBBBBBBBBB@

�a1 �b1

�b1 �a2 �b2
. . .

. . .
. . .

�bn�2 �an�1 �bn�1

�bn�1 �an

1
CCCCCCCCCCA

:

Thus, for i = 1; 2; : : : ; n, we have

p̂i = (ai + �ai)p̂i�1 � (bi�1 + �bi�1)2p̂i�2;

let �i = maxfj�aij; j�bi�1jg and for i = 1; 2; : : : ; n,

P̂i = aip̂i�1 � b2i�1p̂i�2:

Then the residuals can be bounded as follows by ignoring the second order term �b2i�1:

jp̂i � P̂ij = j�aip̂i�1 � 2bi�1�bi�1p̂i�2j

� �i(jp̂i�1j+ 2jbi�1jjp̂i�2j);

where the equality can be attained when �ai = �i�sign (p̂i�1) and �bi�1 = ��i�sign (bi�1p̂i�2).

Therefore,

�i =
jp̂i � P̂ij

jp̂i�1j+ 2jbi�1jjp̂i�2j
:
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Let � = maxif�ig, which is a componentwise bound for backward error, we have

k�Tk1 = max
i
(j�aij+ j�bij+ j�bi�1j) � 3max

i
�i � 3�:

Since �T is a symmetric tridiagonal matrix, therefore k�Tk2 � k�Tk1 [80]. Hence,

k�Tk2 � k�Tk1 � 3�:

Since � can be estimated very cheaply, we like to know what kind of extra informa-

tion � can o�er, such that we are able to get the correct count even though parallel pre�x

might give us an incorrect one. We discuss two cases: when the computed counts at two

shifts are equal, and when they are not equal.

3.4.1 When Computed Counts at Two Di�erent Shifts are Equal

Assume that we have computed the counts at two di�erent shifts: x and y, with

x < y. The absolute backward error bounds, �, for x and y are denoted by �x and �y

respectively. Also we assume T̂x = T + �Tx and T̂y = T + �Ty, where �Tx and �Ty are

perturbation matrices of T at x and y. Therefore,

k�Txk2 � 3�x

and

k�Tyk2 � 3�y:

For i = 1; 2; : : : ; n, let �̂xi and �̂
y
i be the eigenvalues of T̂x and T̂y and �i be the exact

eigenvalues of T . By Weyl's Theorem [80], we know that for each i, we have the following

bounds:

�i � 3�x � �i � k�Txk2 � �̂xi � �i + k�Txk2 � �i + 3�x: (3.4.6)

�i � 3�y � �i � k�Tyk2 � �̂
y
i � �i + k�Tyk2 � �i + 3�y : (3.4.7)

As before, we denote the computed count by FloatingCount, and the exact count

by Count. Assume FloatingCount(x) = FloatingCount(y) = k, so

�̂x1 � �̂x2 � : : : � �̂xk < x:

From (3.4.6), we know that for i = 1; 2; : : : ; k,

�i � �̂xi + 3�x < x+ 3�x:
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which implies

Count(x+ 3�x) � k:

On the other hand, since FloatingCount(y) = k, thus

�̂
y
k+1 � y:

From (3.4.7), we can conclude that

�k+1 � �̂
y
k+1 � 3�y � y � 3�y;

which implies

Count(y � 3�y) � k:

If �x and �y are small enough, then we can assume that x + 3�x < y � 3�y, therefore, we

have

k � Count(x+ 3�x) � Count(y � 3�y) � k:

Equivalently,

Count(x+ 3�x) = Count(y � 3�y) = k:

This implies that there is no eigenvalue in the interval (x+ 3�x; y � 3�y).

3.4.2 When Computed Counts at Two Di�erent Shifts are Unequal

We make the same assumptions as those in last subsection except we assume that

the computed counts at x and y are k1 and k2 respectly, and k2 � k1 = k.

Since FloatingCount(x) = k1, thus

�̂xk1+1 � x:

From (3.4.6), we have

x� 3�x � �̂xk1+1 � 3�x � �k1+1:

Therefore,

Count(x� 3�x) � k1:

On the other hand, since FloatingCount(y) = k2, so

�̂
y
1 � �̂

y
2 � : : :� �̂

y
k2
< y:
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From (3.4.7), we know that for i = 1; 2; : : : ; k2,

�i � �̂
y
i + 3�y < y + 3�y:

Therefore,

Count(y + 3�y) � k2:

Hence, we know that there are at least k eigenvalues of T in the interval (x� 3�x; y+ 3�y).

However, the numerical experiments show that � is often too large to be useful.

We show the numerical experiments in next subsection.

3.4.3 Numerical Experiments

Besides considering �, an absolute backward error bound, we also consider the

relative backward error. Again, let T̂ = T + �T , but we express �T in a di�erent way:

�T =

0
BBBBBBBBBB@

a1 � 4a1 b1 � 4b1

b1 � 4b1 a2 � 4a2 b2 � 4b2
. . .

. . .
. . .

bn�2 � 4bn�2 an�1 � 4an�1 bn�1 � 4bn�1

bn�1 � 4bn�1 an � 4an

1
CCCCCCCCCCA

:

Thus,

p̂i = ai(1 +4ai)p̂i�1 � b2i�1(1 +4bi�1)2p̂i�2;

let �i = maxfj4aij; j4bi�1jg and P̂i = aip̂i�1 � b2i�1p̂i�2, then,

jp̂i � P̂ij = jai4aip̂i�1 � 2b2i�14bi�1p̂i�2 � b2i�14b2i�1p̂i�2j

= jai4aip̂i�1 � 2b2i�14bi�1p̂i�2j

� �i(jaijjp̂i�1j+ 2b2i�1jp̂i�2j);

by ignoring the second order term 4b2i�1. Therefore,

�i =
jp̂i � P̂ij

jaijjp̂i�1j+ 2b2i�1jp̂i�2j
:

Finally, the relative backward error bound � can be expressed as follows:

� = max
i

�i = max
i

jp̂i � P̂ij

jaijjp̂i�1j+ 2b2i�1jp̂i�2j
:
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Figure 3.6: Computed Count(x) and Backward Errors for 16� 16 Glued Positive De�nite
Matrix, length of interval = 10�5

We present the numerical experiments for four kinds of test matrices: glued pos-

itive de�nite matrix, glued random matrix, glued Wilkinson-like matrix which is glued by

two 32 � 32 Wilkinson-like matrices, and random matrix with entries independently and

uniformly distributed on [�1; 1]. Each �gure contains four plots, the computed Count(x) by

parallel pre�x, the relative error of computed Count(x), the relative and absolute backward

error bounds � and �. The relative error of computed Count(x) by parallel pre�x means

relative to the serial algorithm. More precisely, let p̂i be the Sturm sequence computed

by parallel pre�x, and let p̂seriali be the Sturm sequence computed by the serial algorithm.

Then the relative error is expressed by the following formula:

Relative Error = max
i

jp̂seriali � p̂ij

jp̂seriali j
: (3.4.8)

Figure 3.6 plots the results of a 16� 16 glued random matrix; �gure 3.7 plots the results of

a 32� 32 glued random matrix; �gure 3.8 plots the results of a 64� 64 glued Wilkinson-like

matrix; and �gure 3.9 plots the results of a 64 � 64 random matrix. Each plot is sampled

at 400 
oating point numbers.

Clearly, for the error analysis in the two previous subsections to be useful, the
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Figure 3.7: Computed Count(x) and Backward Errors for 32� 32 Glued Random Matrix,
length of interval = 4 � 10�6
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Figure 3.9: Computed Count(x) and Backward Errors for 64� 64 Random Matrix, length
of interval = 2 � 12�12

backward error bounds � and � have be small. However, for the �gures we present here,

the backward error bounds are frequently too large to use. For example, in �gure 3.9, even

if parallel pre�x computes a correct count, the backward error bounds are still large.

One can argue that we can use � and � as a criteria to determine whether the

parallel pre�x computes an incorrect count. But, from the numerical experiments, we have

no idea what kind of magnitude we should set for a tolerance � such that if � or � is larger

than � , then we know parallel pre�x might compute an incorrect count.
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Chapter 4

Forward Error Analysis and

Iterative Re�nement

4.1 Introduction

In this chapter, we analyze the instability of the parallel pre�x algorithm by us-

ing forward error analysis, and also discuss using iterative re�nement with parallel pre�x.

We �rst review some results for symmetric positive de�nite tridiagonal matrix [74]. Then

we present a rather complicated error bound for a general symmetric tridiagonal matrix,

and show some examples of computed forward error bounds, and �nally discuss iterative

re�nement.

4.2 Previous Work for Symmetric Positive De�nite Tridi-

agonal Matrix

We review some analysis developed for symmetric positive de�nite tridiagonal ma-

trices by Mathias [74], and compare the results with the results obtained for conventional al-

gorithms [12, 35, 33]. Let M̂i:j be the computed productMi:j , whereMi:j =Mi �Mi+1 � � �Mj ,

and jMi:j j be the matrix whose elements are the absolute values of the elements of Mi:j .

Suppose that during the process of computing M1:r, 1 � r � n, all the matrix multi-

plications are computed exactly except multiplication of Mi+1:j and Mj+1:k . Denote the
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corresponding error by Ei;j;k, so

Ei;j;k = fl(Mi+1:jMj+1:k)�Mi+1:jMj+1:k = M̂i+1:k �Mi+1:k :

Therefore,

M̂1:r =M1:iM̂i+1:kMk+1:r =M1:i(Mi+1:k + Ei;j;k)Mk+1:r =M1:r +M1:iEi;j;kMk+1:r :

Thus,

jE1:rj = jM̂1:r �M1:rj = jM1:iEi;j;kMk+1:r j � jM1:ijjEi;j;kjjMk+1:rj:

Assume we use inner(or outer) products to perform matrix multiplication. From [43], we

know that

jEi;j;kj = jfl(Mi+1:jMj+1:k)�Mi+1:jMj+1:k j � 2"jMi+1:j jjMj+1:kj:

Hence,

jE1:rj � 2"jM1:ijjMi+1:j jjMj+1:kjjMk+1:rj:

We should mention that the indices i, j, k can not be chosen arbitrarily: i and k depend on

j and n. Finally, taking into account the error made for each matrix multiplication during

the process of computing M1:r, and ignoring the second and higher order terms, we have

the following forward error bound:

jM̂1:r �M1:rj � 2"
r�1X
j=1

jM1:ijjMi+1:jjjMj+1:kjjMk+1:rj: (4.2.1)

In particular,

jM̂1:n �M1:nj � 2"
n�1X
j=1

jM1:ijjMi+1:j jjMj+1:kjjMk+1:nj: (4.2.2)

Since the Sturm sequence component pr is the (1; 1) element of the matrix M1:r, the error

jpr � p̂rj in the computed Sturm sequence component p̂r is bounded by the (1; 1) element

of the matrix 2"
Pr�1

j=1 jM1:ijjMi+1:j jjMj+1:kjjMk+1:rj.

De�nition 4.2.1 Given a symmetric tridiagonal n � n matrix T and indices ij satisfying

1 � i1 < i2 < � � � < ik � n� 1,

i. For indices 1 � ij � n � 1, j = 1; 2; : : : ; k, T [i1; i2; : : : ; ik] is a symmetric tridiagonal

matrix such that

Tpq[i1; i2; : : : ; ik] = Tpq for all p and q;
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except

Tijij+1 [i1; i2; : : : ; ik] = 0 for 1 � j � k:

ii. For 1 � i < j � n, T (i : j) is the principal submatrix of rows and columns i; i+1; : : : ; j

of T .

We use \det" to denote the determinant of a matrix. By using the properties of symmetric

positive de�nite tridiagonal matrix, the following inequalities can be proved:

Lemma 4.2.1 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix,

and let i1; : : : ; ik 2 f1; 2; : : : ; n� 1g. Then

det(T ) � det(T [i1; i2; : : : ; ik]) �
�n(A)

k

�1(A) � � ��k(A)
det(T )

where A = DTD and D is any n � n nonsingular diagonal matrix,

Lemma 4.2.2 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix

and let

Mi =

2
4 ai 1

�b2i�1 0

3
5 :

Let 1 � i � j � k � n,

P = jM1:ijjMi+1:jjjMj+1:kjjMk+1:nj;

and

D = det(T (1 : i)) det(T (i+ 1 : j)) det(T (j + 1 : k)) det(T (k + 1 : n)):

Then

D � P11 � 8D;

where P11 is the (1; 1) element of matrix P .

By using these two lemmas and some other properties of symmetric positive de�nite tridi-

agonal matrix, the forward error bounds can be obtained.

Theorem 4.2.1 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix.

Let p̂i be the computed Sturm sequence by parallel pre�x, then for 1 � r � n,

j
pr � p̂r

pr
j � 16"

r�1X
j=1

det(T [i; j; k(r)])

det(T (1 : r))

� 16"
n�1X
j=1

det(T [i; j; k])

det(T (1 : n))
:
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Corollary 4.2.1 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix.

Let p̂i be the computed Sturm sequence by parallel pre�x. Let A = DTD, where D is diagonal

and chosen so that the main diagonal entries of A are all 1. Then for 1 � r � n,

j
pr � p̂r

pr
j � 16(r� 1)

" � �n(A)
3

�1(A)�2(A)�3(A)
:

Moreover, if the smallest eigenvalues of A are close to each other, i.e. �1(A) � �2(A) �

�3(A), then

j
pr � p̂r

pr
j � 16(r� 1)"�3;

where � = �n(A)=�1(A) is the condition number.

In contrast, if we use the conventional serial algorithm, we can get high relative accuracy

results for computing the eigenvalues and singular values. The following theorems can be

found in [12, 33, 35]. Here we present two of them.

Theorem 4.2.2 (Demmel and Veseli�c [35]) Let H = DAD be a symmetric positive

de�nite matrix, and D = diag(H
1=2
ii ) so Aii = 1. Let �H = D�AD be a perturbation such

that k�Ak2 � � < �min(A). Let �i be the ith eigenvalue of H and �̂i be the ith eigenvalue

of H + �H. Then

j
�i � �̂i

�i
�

�

�min(A)
j � �(A) � �;

where �(A) is the condition number of A.

For singular values, we have

Theorem 4.2.3 ((Barlow and Demmel [12], Demmel and Kahan [33]) Let B and

B + �B be bidiagonal with singular values �1(B) � � � � � �n(B) and �1(B + �B) � � � � �

�n(B + �B), respectively. If for all nonzero entries Bij ,

��1 � j
(B + �B)ij

Bij

j � �

for some � � 1, then
1

�2n�1
�
�i(B + �B)

�i(B)
� �2n�1:

Thus, relative perturbations of at most � in the entries of B can cause relative perturbations

of at most �2n�1 in its singular values. If � = 1+� is close to 1, so is �2n�1 � 1+(2n�1)�.

If we use the serial algorithm, the errors in the computed Sturm sequence can be bounded

as follows.
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Theorem 4.2.4 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix.

Let p̂i be the serially computed Sturm sequence values. Let A = DTD, where D is diagonal

and chosen so that the main diagonal entries of A are all 1. If �1(A) � 4", then for

1 � r � n,

j
pr � p̂r

pr
j �

4r"

�1(A)
: (4.2.3)

The theorems we have presented explain why Count(x) computed by parallel pre�x is so

inaccurate, at least when the symmetric tridiagonal matrix is positive de�nite. The forward

relative error for computed Sturm sequence p̂i by parallel pre�x can be as large as "�3,

whereas it can be bounded by "� when computed serially.

Since in general we need to compute the Sturm sequence of T � xI , for x inside

the spectrum of T , T � xI will not be positive de�nite. Therefore, to fully explain the

inaccuracy of computed Count(x) by parallel pre�x, we need to extend the forward analysis

to the general symmetric tridiagonal matrix. In the next several sections, we will present

such a general analysis.

4.3 Numerical Experiments

We �rst present several �gures which plot the Count(x) and the corresponding

forward error bound

2"
n�1X
j=1

jM1:ijjMi+1:jjjMj+1:kjjMk+1:nj (4.3.4)

in some intervals containing some eigenvalue or clusters of eigenvalues. As we did for back-

ward error bounds, we present the numerical experiments for four kinds of test matrices:

glued positive de�nite matrix, glued random matrix, glued Wilkinson-like matrix which is

glued by two 32 � 32 Wilkinson-like matrices, and random matrix with entries indepen-

dently and uniformly distributed on [�1; 1]. Each �gure contains three plots, the computed

Count(x) by parallel pre�x, the relative error (see de�nition in (3.4.8)) and the forward

relative error bound 4.3.4.

Figure 4.1 plots the results of a 16� 16 glued random matrix; �gure 4.2 plots the

results of a 32 � 32 glued random matrix; �gure 4.3 plots the results of a 64 � 64 glued

Wilkinson-like matrix; and �gure 4.4 plots the results of a 64� 64 random matrix.
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Figure 4.1: Computed Count(x) and Forward Error Bound for 16 � 16 Glued Positive
De�nite Matrix, length of interval = 10�5
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Figure 4.2: Computed Count(x) and Forward Error Bound for 32 � 32 Glued Random
Matrix, length of interval = 4 � 10�6



61

10
35

36

37

38

39

40

Computed Count(x)

10

10
0

10
10

10
20

Relative Error
10

10
0

10
10

10
20

Relative Forward Bound
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Figure 4.4: Computed Count(x) and Forward Error Bound for 64 � 64 Random Matrix,
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62

4.4 Some Properties of Symmetric Tridiagonal Matrices

In this section we introduce some interesting relations between singular values of

a symmetric tridiagonal matrix T and T ([i1; i2; : : : ; ik]).

Lemma 4.4.1 Let T be an n � n symmetric tridiagonal matrix and let i1, i2, : : :, ik 2

f1; 2; : : : ; n� 1g. Then

�i(T [i1; i2; : : : ; ik]) � �n(T ) i = 1; 2; : : : ; n;

where �1 � �2 � � � � � �n are the singular values.

Proof. By the Cauchy-Interlace Theorem [80], the eigenvalues of each diagonal block Ti of

T [i1; i2; : : : ; ik] =

0
BBBBBB@

T1

T2
. . .

Tk+1

1
CCCCCCA

satis�es

�1(T ) � �(Ti) � �n(T ):

So for every eigenvalue � of T [i1; i2; : : : ; ik], it must satisfy:

�1(T ) � �(T [i1; i2; : : : ; ik]) � �n(T );

and

j�(T [i1; i2; : : : ; ik])j � max(j�1(T )j; j�n(T )j):

Therefore,

�i(T [i1; i2; : : : ; ik]) � �n(T ):

Lemma 4.4.2 Let T be an n�n symmetric tridiagonal matrix, let i1, i2, : : :, ik 2 f1; 2; : : : ; n�

1g, then

�i�2k(T [i1; i2; : : : ; ik]) � �i(T ) i = 2k + 1; 2k+ 2; : : : ; n:



63

Proof. When k = 1,

T [i1] =

0
@ T1

T2

1
A = T �

0
BBBBBBBBBBBBB@

0
.. .

0 b

b 0
.. .

0

1
CCCCCCCCCCCCCA

:

Without loss of generality, we can assume b > 0. Notice that

T [i1] = T +
1

2

0
BBBBBBBBBBBBB@

0
. ..

b �b

�b b

. . .

0

1
CCCCCCCCCCCCCA

�
1

2

0
BBBBBBBBBBBBB@

0
.. .

b b

b b

. . .

0

1
CCCCCCCCCCCCCA

= T + B1 �B2:

Since B1 and B2 are both semide�nite, rank-1 matrices, by Weyl's Monotonicity

Theorem [80],

�i�1(T ) � �i(T �B2) � �i(T [i1]) � �i(T +B1) � �i+1(T ); (4.4.5)

i.e., �i(T [i1]) 2 [�i�1(T ); �i+1(T )].

It is well known that the singular values of a symmetric matrix are simply the

absolute values of the eigenvalues. Assume that �l(T ) = j�i(T )j for some i. If �i(T ) > 0,

we argue that i � l. In fact, there are n � i of �p(T ) which are larger than �i(T ), namely

�i+1; �i+2; : : : ; �n. Therefore, there are at least n� i singular values are larger than �l(T ) =

�i(T ), hence i � l.

By (4.4.5), we know that �i�1(T [i1]) � �i(T ), therefore, there are at most n� i+1

of �j(T [i1]) which are larger than �i(T ), namely �i(T [i1]); �i+1(T [i1]); : : : ; �n(T [i1]).

Since �l(T ) = �i(T ), there must be l � 1 eigenvalues of T (those eigenvalues

whose absolute values are the singular values �1(T ); �2(T ); : : : ; �l�1(T )) in the interval

(��i(T ); �i(T )); otherwise, it contradicts with the fact that �i(T ) is the l-th singular value

of T . Therefore,

�i�l(T ) � ��i(T ) < �i�l+1(T ):
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By (4.4.5), �i�l+1(T ) � �i�l+2(T [i1]), so we conclude that there are at most i � l + 1 of

�j(T [i1]) which are less than ��i(T ). Therefore, there are at most (n� i+1)+(i� l+1) =

n� l+ 2 of �j(T [i1]) which are greater than �l(T ), which implies

�l�2(T [i1]) � �l(T ):

By doing a similar count, we can prove the above inequality for �i(T ) < 0.

By induction, if the lemma is true for k, then for k + 1, we have

�i(T [i1; i2; : : : ; ik; ik+1]) � �i�2k(T [ik+1]) � �i�2(k+1)(T ):

Lemma 4.4.3 Let T be an n � n symmetric tridiagonal matrix and i1, i2, : : :, ik 2

f1; 2; : : : ; n� 1g. Then

j det(T [i1; i2; : : : ; ik])j �
�2kn (T )

�1(T ) : : :�2k(T )
j det(T )j:

Proof.

j det(T [i1; i2; : : : ; ik])j =
n�2kY
i=1

�i(T [i1; i2; : : : ; ik])
nY

i=n�2k+1
�i(T [i1; i2; : : : ; ik])

� �2kn (T )
n�2kY
i=1

�i+2k(T ) by Lemma 4:4:2

= �2kn (T )
nY

i=2k+1

�i(T )

=
�2kn (T )

�1(T ) : : :�2k(T )
j det(T )j

Lemma 4.4.4 LetH be the n�1�n�1 principal submatrix of rows and columns 1; 2; : : : ; n�

1 or 2; 3; : : : ; n of the symmetric tridiagonal matrix T , Then

�i(H) � �i+1(T ) i = 1; 2; : : : ; n� 1:

Proof. When H is the leading principal matrix,

T =

0
@ H �

�T �

1
A ;
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where � is a vector and � is a real number. Notice that

T 2 = TT � T =

0
@ H2 + ��T 



T �

1
A ;

where 
 is a vector and � is a real number. By the Cauchy-Interlace Theorem and Weyl's

Monotonicity Theorem [80], we know that for i = 1; 2; : : : ; n� 1,

�2i (H) = �i(H
2) � �i(H

2 + ��T ) � �i+1(T
2) = �2i+1(T ):

which implies �i(H) � �i+1(T ).

Similarly, we can prove the same result when H is the principal matrix of rows

and columns 2; 3; : : : ; n.

Lemma 4.4.5 Let H be the (n � 1) � (n � 1) principal submatrix of rows and columns

1; 2; : : : ; n� 1 or 2; 3; : : : ; n of the symmetric tridiagonal matrix T , Then

j det(H)j �
j det(T )j

�1
:

Proof.

j det(H)j =
n�1Y
i=1

�i(H) �
n�1Y
i=1

�i+1(T )

=
nY
i=2

�i(T ) =
j det(T )j

�1(T )
:

4.5 Forward Error Bound for Symmetric Tridiagonal Ma-

trix

In the previous section, we introduced a general forward error bound (4.2.1). In

this section, we discuss in particular how to relate the error bound (4.2.2)

jM̂1:n �M1:nj � 2"
n�1X
j=1

jM1:ijjMi+1:jjjMj+1:kjjMk+1:nj

to the singular values of the symmetric tridiagonal matrix T , i.e. the case of r = n in

(4.2.1). The similar discussion can also be applied to 1 � r < n.
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There is an explicit formula for the matrix product Mi:j =MiMi+1 � � �Mj [74]:

Mi:j =

2
4 det(T (i : j)) det(T (i : j � 1))

�b2i�1 det(T (i+ 1 : j)) �b2i�1 det(T (i+ 1 : j � 1))

3
5 :

Therefore, we can express the following products explicitly:

jM1:ij =

2
4 j det(T (1 : i))j j det(T (1 : i� 1))j

0 0

3
5 ;

jMi+1:j j =

2
4 j det(T (i+ 1 : j))j j det(T (i+ 1 : j � 1))j

b2i j det(T (i+ 2 : j))j b2i j det(T (i+ 2 : j � 1))j

3
5 ;

jMj+1:kj =

2
4 j det(T (j + 1 : k))j j det(T (j + 1 : k � 1))j

b2j j det(T (j + 2 : k))j b2j j det(T (j + 2 : k � 1))j

3
5 ;

jMk+1:nj =

2
4 j det(T (k+ 1 : n))j j det(T (k+ 1 : n � 1))j

b2kj det(T (k+ 2 : n))j b2kj det(T (k + 2 : n� 1))j

3
5 :

So

jM1:ijjMi+1:j j =

2
4 j det(T (1 : i)) det(T (i+ 1 : j))j+ b2i j det(T (1 : i� 1)) det(T (i+ 2 : j))j

0

j det(T (1 : i)) det(T (i+ 1 : j � 1))j+ b2i j det(T (1 : i� 1)) det(T (i+ 2 : j � 1))j

0

3
5 :

and jMj+1:k jjMk+1:nj =

2
4 j det(T (j + 1 : k)) det(T (k + 1 : n))j+ b2kj det(T (j + 1 : k � 1)) det(T (k+ 2 : n))j

b2j j det(T (j + 2 : k)) det(T (k + 1 : n))j+ b2jb
2
kj det(T (j + 2 : k � 1)) det(T (k + 2 : n))j

j det(T (j+1:k)) det(T (k+1:n�1))j+ b2kj det(T (j+1:k�1)) det(T (k+2:n�1))j

b2j j det(T (j+2:k)) det(T (k+1:n�1))j+ b2jb
2
kj det(T (j+2:k�1)) det(T (k+2:n�1))j

3
5 :

Let P = jM1:ijjMi+1:j jjMj+1:kjjMk+1:nj, and let P11 be the (1; 1) element of P ,

which is the inner product of the �rst row of of jM1:ijjMi+1:jj and the �rst column of

jMj+1:kjjMk+1:nj. We denote the �rst row of jM1:ijjMi+1:j j by uT and �rst column of

jMj+1:kjjMk+1:nj by v.

By Lemma 4.4.5,

j det(T (1 : i� 1))j � j det(T (1 : i))j=�min(T (1 : i)):
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and

j det(T (i+ 2 : j))j � j det(T (i+ 1 : j))j=�min(T (i+ 1 : j)):

Therefore, we can bound u by

uT � f(1 +
b2i

�min(T (1 : i))�min(T (i+ 1 : j))
)j det(T (1 : i)) det(T (i+ 1 : j))j;

(1 +
b2i

�min(T (1 : i))�min(T (i+ 1 : j � 1))
)j det(T (1 : i)) det(T (i+ 1 : j � 1))jg;

and bound v by

vT � f(1 +
b2k

�min(T (j + 1 : k))�min(T (k + 1 : n))
)j det(T (j + 1 : k)) det(T (k + 1 : n))j;

b2j (1 +
b2k

�min(T (j + 2 : k))�min(T (k + 1 : n))
)j det(T (j + 2 : k)) det(T (k + 1 : n))jg:

Therefore,

P11 = uT � v

= (1 +
b2i

�min(T (1 : i))�min(T (i+ 1 : j))
)(1 +

b2k
�min(T (j + 1 : k))�min(T (k+ 1 : n))

)�

j det(T (1 : i)) det(T (i+ 1 : j)) det(T (j + 1 : k)) det(T (k + 1 : n))j

+ b2j(1 +
b2i

�min(T (1 : i))�min(T (i+ 1 : j � 1))
)�

(1 +
b2k

�min(T (j + 2 : k))�min(T (k+ 1 : n))
)�

j det(T (1 : i)) det(T (i+ 1 : j � 1)) det(T (j + 2 : k)) det(T (k + 1 : n))j:

Again by Lemma 4.4.5,

j det(T (i+ 1 : j � 1))j �
j det(T (i+ 1 : j))j

�min(T (i+ 1 : j))

and

j det(T (j + 2 : k)j �
j det(T (j + 1 : k))j

�min(T (j + 1 : k))
;

P11 � j det(T [i; j; k])j�

f(1 +
b2i

�min(T (1 : i))�min(T (i+ 1 : j))
)(1 +

b2k
�min(T (j + 1 : k))�min(T (k+ 1 : n))

)

+
b2j

�min(T (i+ 1 : j))�min(T (j + 1 : k))
(1 +

b2i
�min(T (1 : i))�min(T (i+ 1 : j � 1))

)�

(1 +
b2k

�min(T (j + 2 : k))�min(T (k + 1 : n))
)g

� j det(T [i; j; k])j � F (n; i; j; k; T ):
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By Lemma 4.4.3, we can bound j det(T [i; j; k])j by

j det(T [i; j; k])j �
�6n(T )

�1(T ) : : :�6(T )
j det(T )j:

Therefore, we can bound the forward error of parallel pre�x as follows,

jpn � p̂nj

jpnj
� 2"

�6n(T )

�1(T ) : : :�6(T )
�
n�1X
j=1

F (n; i; j; k; T):

In general,

jpr � p̂rj

jprj
� 2"

�6r(T (1 : r))

�1(T (1 : r)) : : :�6(T (1 : r))
�
n�1X
j=1

F (r; i; j; k; T (1 : r)):

Theorem 4.5.1 Let T be a symmetric tridiagonal matrix, let p̂r be the computed Sturm

sequence by parallel pre�x. Then

jpr � p̂rj

jprj
� 2"

�6r(T (1 : r))

�1(T (1 : r)) : : :�6(T (1 : r))
�
n�1X
j=1

F (r; i; j; k; T(1 : r)):

In particular,

jpn � p̂nj

jpnj
� 2"

�6n(T )

�1(T ) : : :�6(T )
�
n�1X
j=1

F (n; i; j; k; T ):

Corollary 4.5.1 Let T be a symmetric tridiagonal matrix, let p̂n be the computed Sturm

sequence by parallel pre�x. Then

jpn � p̂nj

jpnj
� 2"�6 �

n�1X
j=1

F (n; i; j; k; T ):

where � is the condition number of the matrix T .

Proof.

jpn � p̂nj

jpnj
� 2"

�6n(T )

�1(T ) : : :�6(T )
�
n�1X
j=1

F (n; i; j; k; T )

� 2"
�6n(T )

�61(T )
�
n�1X
j=1

F (n; i; j; k; T )

= 2"�6 �
n�1X
j=1

F (n; i; j; k; T ):

The above corollary leads to the following conjecture:
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Conjecture: For general symmetric tridiagonal matrices, the forward relative error for

the computed Sturm sequence by parallel pre�x algorithm can be as large as O("�6),

where � is the condition number of matrix T .

We have done many numerical experiments to search for an example such that the error

bound O("�6) in above conjecture can be attained, but we haven't found one yet. How

large the forward error can be for general symmetric tridiagonal matrix still remains as an

open problem.

4.6 Computing the Sturm Sequence is Equivalent to Solv-

ing A Linear System of Equations

In this section, we prove that computing a Sturm sequence is equivalent to solving

a unit lower triangular banded linear system of equations. Let p̂i and pi be the computed

and exact Sturm sequence, respectively. Let �i be the di�erence of pi and p̂i, i.e. �i = pi� p̂i.

Since

pi = aipi�1 � b2i�1pi�2;

we can write

p̂i + �i = ai(p̂i�1 + �i�1)� b2i�1(p̂i�2 + �i�2)

= aip̂i�1 � b2i�1p̂i�2 + ai�i�1 � b2i�1�i�2:

Let Pi = aip̂i�1 � b2i�1p̂i�2, so

p̂i + �i = Pi + ai�i�1 � b2i�1�i�2:

Equivalently,

b2i�1�i�2 � ai�i�1 + �i = �(p̂i � Pi):

Notice the fact that p0 = 1 = p̂0 and p1 = a1 = p̂1, hence, �0 = �1 = 0.

To solve for �i for i = 2; 3; : : : ; n, all we need to do is to solve the following lower
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triangular linear system of equations:

2
66666666666666664

1

�a3 1

b23 �a4 1
. ..

. . .
. . .

b2i�1 �ai 1
. ..

. . .
. . .

b2n�1 �an 1

3
77777777777777775

2
66666666666666664

�2

�3

�4
...

�i
...

�n

3
77777777777777775

= �

2
66666666666666664

p̂2 � P2

p̂3 � P3

p̂4 � P4
...

p̂i � Pi
...

p̂n � Pn

3
77777777777777775

: (4.6.6)

Denote the coe�cient matrix in (4.6.6) by L, and let

p̂i = 0 i = 2; 3; : : : ; n;

so that �i = pi for i � 2. Therefore, computing the Sturm sequence is equivalent to solving

the following linear system of equations:

L � d � L �

2
66666666666666664

p2

p3

p4
...

pi
...

pn

3
77777777777777775

=

2
66666666666666664

a2a1 � b21

�b22a1

0
...

0
...

0

3
77777777777777775

� e: (4.6.7)

There is no need to solve for p1 since p1 = a1. We summarize our derivation in the following

theorem.

Theorem 4.6.1 In exact arithmetic, the solution components pi for the lower triangular

linear system of equations (4.6.7) form the Sturm sequence of T for i = 2; : : : ; n. Therefore

solving the linear system (4.6.7) is equivalent to computing the Sturm sequence.

Because of the above theorem, we can compute the Sturm sequence in parallel in an alter-

native way: parallel linear equation solver plus iterative re�nement.
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Algorithm 4.6.1 Compute Sturm sequence by parallel linear system solver and itera-

tive re�nement.

1: Solve lower triangular equation L � p = e using some parallel method.

2: Compute the residual r = e� L � p̂ where p̂ is the computed solution.

3: while the residual r is above some tolerance � , do

4: Solve L � f = r by the same parallel method.

5: Update the solution p̂ by p̂ = p̂+ f .

6: Compute the residual r = e � L � p̂ where p̂ is the updated solution.

7: end

Several alternatives to the standard substitution algorithm for solving triangular

linear systems have been proposed for parallel computation and several parallel implementa-

tions have been developed [54, 71, 82]. In [58], four parallel triangular linear system solvers

and their stabilities have been discussed: Fan-In algorithm, Block Elimination, Power Se-

ries and Matrix Inversion by Divide-and-Conquer. Based on some results from [58], we will

analyze the errors of Algorithm 4.6.1 by using these four parallel triangular solvers. Our

analysis will be in both conventional norm accuracy style and in Skeel's componentwise

accuracy style [86, 87].

4.7 Four Parallel Triangular Equation Solvers

In this section, we introduce the four parallel triangular linear equation solvers

whose stablity are discussed in [58]: Fan-In algorithm, Block Elimination, Power Series and

Matrix Inversion by Divide-and-Conquer.
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4.7.1 Fan-In Algorithm

Any unit n�n lower triangular matrix L can be factorized L = L1L2 � � �Ln, where

Li equals the identity matrix except for colum i where it matches L:

Li =

2
66666666666666664

1
. . .

1

1

li+1;i 1
...

. . .

ln;i 1

3
77777777777777775

:

Therefore, the solution to a linear system Lx = b can be solved as follows [60]:

x = L�1b = WnWn�1 � � �W1b; (4.7.8)

where

Wi = L�1i =

2
66666666666666664

1
.. .

1

1=lii

�li+1;i=lii 1
...

. . .

�ln;i=lii 1

3
77777777777777775

;

i.e. L�1i equals the identity matrix except for the column i, where the diagonal element is

1=lii and the subdiagonals are the negative of Li divided by lii.

The Fan-In algorithm solves Lx = b by computing the product (4.7.8) in O(log2 n)

steps by the fan-in operation. For example, when n = 7, x can be computed as follows:

x = ((W7W6)(W5W4))((W3W2)(W1b)):

The computation takes log2 n parallel steps using a tree, where each parallel step involves

multiplying n� n matrices, and so takes about log2 n parallel substeps, for a total of log22 n

steps. More precisely, it can be implemented in 1
2 log

2
2 n+

3
2 log2 n+3 steps on 1

68n
3+O(n2)

processors [85]. The error analysis [85] yields an error bound proportional to "�(L)3 where
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�(L) is the condition number; in contrast to the error bound "�(T ) for the conventional

substitution algorithm. The error bound may be pessimistic, but an example can be found

which has an error growing like "�(L)1:5 [32]. Also, the requirement of O(n3) processors to

achieve the maximum speedup is unrealistic for large n.

4.7.2 Block Elimination Algorithm

In addition to the fan-in algorithm, Sameh and Brent [85] introduce a parallel

block elimination algorithm. It requires the same time as the fan-in algorithm but roughly

twice the number of processors. The advantage of this algorithm is that it can be adapted

to band structure [20].

Let L(0) = DL and b(0) = Db whereD = diag (l�111 ; l
�1
22 ; : : : ; l

�1
nn). We formmatrices

D(j), j = 0; 1; : : : ; m� 1, such that if

L(j+1) = D(j)L(j) and b(j+1) = D(j)b(j);

then L(m) = I and x = b(m) = L�1b. For example, when n = 8,

L(1) = D(0)L(0)

= diag (

2
4 1

�l21 1

3
5 ;
2
4 1

�l43 1

3
5 ;
2
4 1

�l65 1

3
5 ;
2
4 1

�l87 1

3
5)L(0)

=

2
6666664

I2

L
(1)
21 I2

L
(1)
31 L

(1)
32 I2

L
(1)
41 L

(1)
42 L

(1)
43 I2

3
7777775
;

b(1) = D(0)b(0);

L(2) = D(1)L(1) = diag (

2
4 I2

�L
(1)
21 I2

3
5 ;
2
4 I2

�L
(1)
43 I2

3
5)L(1) =

2
4 I4

L
(2)
21 I4

3
5 ;

b(2) = D(1)b(1);

and �nally ;

L(3) = D(2)L(2) =

2
4 I4

�L
(2)
21 I4

3
5L(2) = I;

x = b(3) = D(2)b(2) =

2
4 I4

�L
(2)
21 I4

3
5 b(2):
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Thus in log2 n steps L is reduced to the identity matrix and b is transformed to x = L�1b.

If the n � n lower triangular matrix L has bandwidth m + 1, then Lx = b can be solved

in (2 + log2m) log2 n �
1
2
(log22m + log2m) + 3 steps using no more than 1

2
m2n + O(mn)

processors.

4.7.3 Power Series Method

The following method has been discussed by Heller [55] and Orcutt [76]. Let

L = D(I �N) be the n� n lower triangular matrix, where n = 2k, D = diag (L) and N is

the strictly lower triangular part. Then

x = L�1b = (I �N)�1D�1b

= (I +N + � � �+Nn�1)D�1b

= (I +N2k�1)(I +N2k�2) � � �(I +N)D�1b:

We use the fact that Nn = 0 in the above equation. The powers M2;M4; : : : ;M2k�1, are

formed by repeated squaring. This method can be implemented in log22 n + log2 n steps on

n3 + n2 processors [56].

4.7.4 Matrix Inversion by Divide and Conquer

Borodin and Munro [15] and Heller [56] discuss the following method for inverting

a triangular matrix based on the divide and conquer technique:

L =

2
4 L11 0

L21 L22

3
5 ; W = L�1 =

2
4 L�111 0

�L�122 L21L
�1
11 L�122

3
5 :

The size of the diagonal blocks L11 and L22 are about same, the inversion L
�1
11 and L�122 are

computed by the same method recursively. This method can be implemented in O(log2 n)

steps in O(n3) processors.

4.8 Conventional Error Analysis

For the four parallel triangular solvers we introduced in last section section, Higham

proved that they all satisfy a universal forward error bound [58]:

jLx̂� bj � cn"jLjM(L)�1jbj+O("2): (4.8.9)



75

where

M(A) = (mij) =

8<
:

jaiij

�jaij j i 6= j
;

cn is a lower order function of n and x̂ is the computed solution. Let

(L+4L)x̂ = b:

where 4L is the backward error for L, and de�ne

� = inff" : (L+4L)x̂ = b; k4Lk � "kAkg:

where k � k is k � k1. It can be shown that

� =
kLx̂� bk

kLkkx̂k
:

Since

k4Lk1
kLk1

� � =
kLx̂� bk1
kLk1kx̂k1

�
"cnkLk1kM(L)�1k1kbk1

kLk1kx̂k1

�
"cnkLk1kM(L)�1k1kLk1kx̂k1

kLk1kx̂k1
;

therefore,

k4Lk1 � "
kLk1:

where 
 � cnkLk1kM(L)�1k1. For di�erent algorithms, we will have di�erent 
's. Now

we show that if 
 satis�es some constraints, the iterative re�nement in Algorithm 4.6.1 will

converge.

Theorem 4.8.1 If we compute the residual r of Algorithm 4.6.1 by double precision, and

"�1(L)(
 + 1) � c < 1, then the iterative re�nement will converge.

Proof. Let

r = fl(Lx̂i � b) = Lx̂i � b+ f

where jf j � n"2(jLjjx̂ij + jbj) + "jLx̂i � bj � "jLx̂i � bj, because r is computed in double

precision. From previous discussion, we know that the backward error 4L such that

(L+4L)d = r

must satisfy k4Lk1 � "
kLk1.
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Assume that x̂i+1 = x̂i � d be computed exactly, then

d = (L+4L)�1r = (I + L�14L)�1L�1r

= (I + L�14L)�1L�1(Lx̂i � b+ f) = (I + L�14L)�1(x̂i � x+ L�1f)

� (I � L�14L)(x̂i� x+ L�1f)

� x̂i � x� L�14L(x̂i � x) + L�1f

Therefore,

x̂i+1 � x = x̂i � d� x = L�14L(x̂i � x)� L�1f:

and (the following k � k is k � k1)

kx̂i+1 � xk1 � kL�1kk4Lkkx̂i� xk+ kL�1k"kLx̂i � bk

� kL�1kk4Lkkx̂i� xk+ "kL�1kkL(x̂i � x)k

� 
"kL�1kkLkkx̂i � xk+ "kL�1kkLkkx̂i � xk

� "(
 + 1)�1(L)kx̂i � xk1

� ckx̂i � xk1

Since c < 1, we know that the iterative re�nement converges.

By applying the above theorem, we will show under what circumstances Algorithm

4.6.1 will converge when we use the four parallel triangular solvers to solve the linear

equations.

i. Fan-In Algorithm: In [85] it was shown when we use fan-in algorithm to solve the

triangular system, the backward error 4L satis�es:

k4Lk1 � �n"�1(L)2kLk1:

where �n = n2 logn=4 +O(nlogn). From a forward bound in [58]:

jLx̂� bj � dn"jLjjL
�1jjLjjL�1jjLjjxj;

an improved backward error bound can be obtained:

k4Lk1 �
kLx̂� bk1
kx̂k1

� dn"kLk
2
1kL

�1k21kLk1 = dn"�
2
1(L)kLk1:

where dn = an logn, a = O(1). Therefore, 
Fan�In = dn�
2
1(L). By Theorem 4.8.1,

to guarantee the convergence of iterative re�nement, we have to make the following

assumption:

dn"�
3
1(L) < 1:
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ii. Block Elimination: The error bound is about the same as universal bound (4.8.9),

so it is not necessary to discuss further details.

iii. Power Series: As with Block Elimination, the analysis of this algorithm adds nothing

new.

iv. Matrix Inversion by Divide-and-Conquer: This algorithm has the best backward

error bound of the four triangular solvers, let X̂ be the computed inversion of L,

then [58]:

jLX̂ � I j � cn"jLjjX̂j:

and

x̂ = X̂b+ f:

where f is the roundo� error, f = O("). Therefore,

jLx̂� bj � 2cn"jLjjX̂jjbj;

and

k4Lk1 �
kLx̂� bk1
kx̂k1

� 2cn"kLk1kX̂k1kLk1

� 2cn"�1(L)kLk1

Therefore,


Divide�&�Conquer = 2cn�1(L);

which is the best that we can expect. To achieve the convergence of the iterative

re�nement, we need

2cn"�
2
1(L) < 1 i:e: "�21(L) = O(1):

The conventional error analysis can only give us the normwise error bound of

the backward error 4L. However, when we solve the linear system (4.6.7), we want the

componentwise error bound of the solution vector p, so that we can estimate the relative

error of the Sturm sequence pi. The conventional normwise error clearly won't achieve this.

Indeed, We can scale T to be a bit less than 1 in norm, which guarantees �(L) = O(1). But

then the vector of pi is strongly graded, and norm error bounds are irrelevant. Therefore,

in next section, we will discuss the componentwise error analysis of Algorithm 4.6.1.
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4.9 Componentwise Error Bound

In this section, we �rst introduce a universal result which is true for any linear

system solver [57], and then apply this universal result to the four triangular solvers we

have discussed. For an approximate solution x̂ to linear system Ax = b, the componentwise

backward error is de�ned by:

! = minf" : (A+4A)y = b+4b; j4Aj � "jAj; j4bj � "jbjg:

where jAjij = jAij j and jxji = jxij. In [75], Oettli and Prager proved that

! = max
i

jb� Ayji

(jAjjyj+ jbj)i
:

In last section, we showed the error analysis for the iterative re�nement when the residual is

computed in double precision. If we are willing to compute the residual in single precision,

Theorem 4.8.1 does not hold anymore. A lot of error analysis has been done for the iterative

re�nement when the residual is computed in single precision [7, 87, 57], it can be proved

that under certain conditions, iterative re�nement converges after one update [87]. Here we

give a short review of the analysis in [57]. To do this, we need to introduce the measure of

ill-scaling of the vector jAjjxj [86]:

�(A; x) =
maxi(jAjjxj)i
mini(jAjjxj)i

:

We assume the computed solution x̂ of linear system Ax = b satis�es

jb�Ax̂j � "[g(A; b)jx̂j+ h(A; b)]; (4.9.10)

and when compute the residual r = b� Ax̂, the computed residual r̂ satis�es

jr̂ � rj � " � t(A; b; x̂): (4.9.11)

If we use SAXPY [70], to compute r, we can take

t(A; b; x̂) =
�n+1

"
(jAjjx̂j+ jbj): (4.9.12)

where �n+1 = (n+ 1)"=(1� (n+ 1)").

Theorem 4.9.1 (Higham [57]) Suppose we solve the linear system Ax = b with one step

of iterative re�nement. Assume the computed solution x̂ satis�es (4.9.10) and the computed
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residual r̂ satis�es (4.9.11), and t(A; b; x̂) satis�es (4.9.12). If there exist two matrices G

and H whose entries are nonnegative, such that g(A; b) = GjAj and h(A; b) = H jbj, and

"2(h(kGk1 + n + 1) + 2(kGk1 + n + 2)2(1 + "kHk1)2cond(A�1)) � �n+1;

where cond(A�1) = kjAjjA�1jk1, then the re�ned solution ŷ will satisfy:

jb� Aŷj � 2�n+1jAjjŷj:

Corollary 4.9.1 (Higham [57]) Under the assumptions of Theorem 4.9.1, if H = 0, then

if

2"2�(A; ŷ)(kGk1 + n+ 2)2cond(A�1) � �n+1; (4.9.13)

the re�ned solution ŷ will satisfy:

jb�Aŷj � 2�n+1jAjjŷj = O(")jAjjŷj:

Since �n+1 = (n+ 1)"=(1� (n+ 1)") � (n+ 1)", (4.9.13) can be simplied to:

" � �(A; ŷ) � 2
(kGk1 + n+ 2)2

n+ 1
� cond(A�1) � 1: (4.9.14)

Based on the Corollary 4.9.1, we can apply the general error analysis to the four

parallel triangular solvers.

i. Fan-In Algorithm: The computed solution x̂ of Lx = b solved by fan-in algorithm

satis�es [57]

jLx̂� bj � dn"jLjjL
�1jjLjjL�1jjLjjx̂j:

So g(L; b) = (jLjjL�1j)2jLj, therefore,

G = (jLjjL�1j)2 and g = kGk1 = kjLjjL�1jk21:

Because of (4.9.14), to achieve the componentwise accuracy of the corrected solution

ŷ, approximately, the corrected solution ŷ has to satisfy

" � cn � �(L; x̂)kjLjjL
�1jk51 = O(1):

ii. Block Elimination and Power Series: As with the conventional error analysis

presented earlier, we will not discuss the error analysis for these algorithms.
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iii. Matrix Inversion by Divide-&-Conquer: Since the computed solution x̂ satis�es

[58]

jLx̂� bj � 2cn"jLjjX̂jjLjx̂j;

where X̂ is the computed L�1, and

jLX̂ � I j � cn"jLjjX̂j:

It is easy to show that x̂ satis�es

jLx̂� bj � 2cn"jLjjL
�1jjLjx̂j:

Therefore,

G = jLjjL�1j and g = kjLjjL�1jk1:

To achieve the componentwise accuracy of the corrected solution ŷ, we need the fol-

lowing condition to be satis�ed:

" � cn � �(L; ŷ)kjLjjL
�1jk31 = O(1):

Since the matrix L of the triangular system we want to solve is very special, in

fact L has only two subdiagonals(see(4.6.7)), the measure of ill-scaling of the vector jLjjp̂j

is:

�(L; p̂) =
maxi(jLjjp̂j)i
mini(jLjjp̂j)i

=
maxi(jp̂ij+ jaip̂i�1j+ jb2i�1p̂i�2j)
mini(jp̂ij+ jaip̂i�1j+ jb2i�1p̂i�2j)

:

In particular, when the tridiagonal matrix T is a positive de�nite matrix,

�(L; p̂) �
maxi(ai det(T (1 : i� 1)))

mini(ai det(T (1 : i� 1)))
:

Therefore, �(L; p̂) can be arbitrarily large.

From both the conventional and componentwise analysis, we conclude that when

we use fast parallel triangular solvers like the fan-in algorithm, we can not compute the

Sturm sequence with as much guaranteed accuracy as the serial algorithm, when the matrix

is not very well-conditioned. However, inspired by the idea of iterative re�nement to solve

linear system of equations, we can apply this idea for parallel pre�x algorithm which appears

in next section.
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4.10 Iterative Re�nement for Parallel Pre�x Algorithm

In section 4.6, we showed that if �i = pi � p̂i, where pi and p̂i are the exact and

computed Sturm sequence components, then �i satis�es the following relation:

b2i�1�i�2 � ai�i�1 + �i = �(p̂i � Pi):

Or

�i = ai�i�1 � b2i�1�i�2 + ri: (4.10.15)

where Pi = aip̂i�1�b2i�1p̂i�2 and ri = �(p̂i�Pi). Inspired by the idea of iterative re�nement

for solving linear system of equations, if we can solve equation (4.10.15) for the residual

�i in parallel, and iteratively re�ne the computed Sturm sequence p̂i, then after converge,

the computed Sturm sequence should be accurate enough for computing the count. In fact,

equation (4.10.15) can be considered as nonhomogeneous three term linear recurrence, it

can be solved by parallel pre�x operation as follows.

[�i; �i�1; 1] = [�i�1; �i�2; 1] �

2
6664

ai 1 0

�b2i�1 0 0

ri 0 1

3
7775 = [�i�1; �i�2; 1] �Ri (4.10.16)

Therefore,

[�i; �i�1; 1] = [�0; ��1; 1] �R1R2 � � �Ri: (4.10.17)

Hence, we can solve for �i by parallel pre�x as the way we solve for Sturm sequence, except

here we use 3� 3 matrix multiplication instead of 2� 2. So we have the following parallel

pre�x + iterative re�nement algorithm.
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Algorithm 4.10.1 Compute Sturm sequence by parallel pre�x operation and iterative

re�nement.

1: Compute Sturm sequence by 2� 2 parallel pre�x matrix multiplication.

/* denote the computed Sturm sequence by p̂ */

2: Pi = aip̂i�1 � b2i�1p̂i�2.

3: Compute residual ri = Pi � p̂.

4: while the residual ri is above some tolerance � , do

4: Solve �i by 3� 3 parallel pre�x matrix multiplication.

5: Update the solution p̂ by p̂ = p̂+ �i.

6: Pi = aip̂i�1 � b2i�1p̂i�2.

7: Compute the residual ri = Pi � p̂.

8: end

Now the question remains is whether Algorithm 4.10.1 will converge in constant steps or

o(n) steps, where n is the order of the symmetric tridiagonal matrix T .

We implemented Algorithm 4.10.1 in MATLAB, our numerical experiments show

that for certain matrices, it takes O(n) steps for the algorithm to converge, making the

complexity of the parallel algorithm to O(n log2 n), which is even larger than the serial

algorithm.

Table 4.1 shows the sequence of the updated Sturm sequence for a glued 16 � 16

positive de�nite matrix, when we use parallel pre�x to compute the count at x = �2 � 10�8,

the computed count is 1 and the true count is 0. We denote the relative error of the Sturm

sequence by

"i =
jpi � p̂ij

jpij
:

Figure 4.5 plots the sequence of the updated Sturm sequence for a glued 64� 64

positive de�nite matrix and the maximum relative error maxi "i at each iterate, it takes 63

steps to converge. We compute at x = �2 � 10�10, the computed count by parallel pre�x is

7 and the true count is 0.
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Iteration # Computed Count maxi "i
0 1 5.2333e+01

1 1 5.2333e+01

2 1 4.8049e+06

3 3 8.7467e+11

4 5 4.2877e+17

5 5 1.7959e+18

6 5 2.6166e+18

7 4 6.2610e+22

8 4 2.5043e+23

9 3 3.7564e+23

10 3 3.7564e+23

11 2 2.5043e+23

12 1 6.2607e+22

13 1 1.0000e+00

14 0 0

Table 4.1: Iterative re�nement of parallel pre�x algorithm for 16�16 glued positive de�nite
matrix
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Figure 4.5: Iterative re�nement of parallel pre�x algorithm for 64�64 glued positive de�nite
matrix
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4.11 Criterion to Determine the Accuracy of Parallel Pre�x

Parallel pre�x algorithm can be very unstable when being used to compute clusters

of eigenvalues, as we have shown earlier. However, it works well for a random matrix with

entries independently and uniformly distributed in [�1; 1] (see �gure 3.9 and �gure 4.4).

It also works well for several other types of matrices [94]. If we can �nd a criterion which

can estimate the error made by parallel pre�x quite accurately, then we can use a general

technique to take advantage of the superior speed of parallel pre�x algorithm. The technique

is used to deal with the tradeo� between parallelism and stability in order to make the whole

algorithm go as fast as possible, but not sacri�cing much accuracy [28]. It takes the following

three steps:

� Compute the solution for the problem by fast but not very stable parallel algorithm.

� Quickly and reliably con�rm or deny the accuracy of the computed solution.

� If computed solution is denied, recompute the counts by serial algorithm.

The key issue to apply this technique is to �nd a satisfactory criterion. The backward error

� = max
i

�i = max
i

jp̂i � P̂ij

jaijjp̂i�1j+ 2b2i�1jp̂i�2j
:

is a reasonable one, but from our numerical experiments, (�gure 3.6|�gure 3.9), it's di�cult

to decide what magnitude of � is large enough for us to deny the computed solution.

Another reasonable proposal is to use

� = max
i

Pi � p̂i

p̂i
;

but for the same reason as for �, � can not provide enough information for us to decide

when to reject the computed solution. Therefore, to �nd a satisfactory criterion remains as

an open problem.
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Chapter 5

Applying the Divide-and-Conquer

Method to the Singular Value

Decomposition and Least Squares

Problem

5.1 Introduction

Computing the singular value decomposition (SVD) is one of the most important

problems in numerical linear algebra. The SVD reveals a great deal about the structure of

a matrix, e.g. its rank. The most reliable methods to solve a linear least squares problem

are based on the SVD, in particular when the matrix is nearly rank-de�cient [43, 2]. In this

chapter, we discuss the divide-and-conquer method for computing the SVD. We compare

the performance of the divide-and-conquer method with the method based on QR-iteration

[41, 33]. We also compare the performance of various linear least squares solvers:

� xGELS, the fastest and least reliable method based on plain QR decomposition.

� xGELSX, based on QR with column pivoting, runs twice as slowly as xGELS1.

� xGELSY, also based on QR with column pivoting but using BLAS 3, runs 1.3 times as

slowly as xGELS.

1all the performance mentioned here is on an IBM RS6000/590 for 1600 � 1600 random matrices
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� xGELSA and xGELSB, based on rank-revealing QR (RRQR), run 1.1 times as slowly as

xGELS.

� xGELSS, based on SVD using QR-iteration, runs 96 times as slowly as xGELS.

� xGELSF, also based on SVD using QR-iteration but using \factored form", runs only

3.3 times as slowly as xGELS.

� xGELSD, based on divide-and-conquer SVD, runs 3.5 times as slowly as xGELS.

In section 5.6, we show that for 1600� 1600 random matrices whose elements are indepen-

dently and uniformly distributed, our implementation of divide-and-conquer method runs

50 times faster than the QR based SVD for bidiagonal matrices, and 13 times faster for

dense matrices. The least squares solver based on divide-and-conquer SVD runs 28 times

faster than DGELSS, the solver based on QR-iteration SVD.

5.2 Review of the SVD and Least Squares Problem

Given an m�n real matrix A, the singular value decomposition (SVD) of A

is the factorization

A = U�V T ;

where

U = [u1; u2; : : : ; um] 2 R
m�m and V = [v1; v2; : : : ; vn] 2 R

n�n

are orthogonal matrices, and

� = diag(�1; �2; : : : ; �r; 0; : : : ; 0) 2 R
m�n r = min(m;n)

with �1 � �2 � � � � � �r � 0.

The �i are called the singular values of A and for i = 1; : : : ; r, the vectors ui and

vi are called the ith left singular vector and right singular vector respectively. It is easy to

see that

Avi = �iui and ATui = �vi:

If A is complex, then its SVD is A = U�V H where U and V are unitary matrices,

and � is a diagonal matrix with real nonnegative diagonal elements. From now on, we

assume A is real.
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One of the many important applications of the SVD is to �nd the solution of a

(possibly) rank-de�cient linear least squares problem:

min
x2Rn

kAx� bk2; (5.2.1)

where b 2 Rm is a given vector.

In the case m > n and rank(A) = n, i.e., A has full column rank, the problem is

referred to as �nding a least squares solution to an overdetermined system of linear

equations. It is well known that the solution to the problem is unique,

xLS = V (��11 0n�(m�n))U
Tb;

where �1 2 R
n�n is the leading n� n submatrix of �.

In the case m < n and rank(A) = m, there are an in�nite number of solutions

x which satisfy Ax = b. It is often useful to �nd the unique solution x which also mini-

mizes kxk2, and the problem is referred to as �nding a minimum norm solution to an

underdetermined system of linear equations. The solution can be expressed as:

xLS = V

2
4 ��12
0(n�m)�m

3
5UTb;

where �2 2 R
m is the leading m�m submatrix of �.

In the general case when we may have rank(A) < min(m;n), which is called

rank-de�cient linear least squares problem, the solution x should minimize both kxk2 and

kb� Axk2.

The SVD of a dense matrix (we call it dense SVD) is usually computed in two

stages [41]:

Stage 1 The matrix A is reduced to bidiagonal form:

A = UBV T ;

where U and V are orthogonal matrices and B is a bidiagonal matrix. B is upper

bidiagonal when m � n and lower bidiagonal when m < n, so that B is nonzero only

on the main diagonal and either on the �rst superdiagonal (if m � n) or the �rst
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subdiagonal (if m < n):

B =

2
66666664

�1 �1

�2
. . .

. . . �n�1

�n

3
77777775
when m � n

or

B =

2
6666664

�1

�1 �2
. . .

. . .

�n�1 �n

3
7777775
when m < n

Stage 2 Compute the SVD of bidiagonal matrix B (we call this the bidiagonal SVD to

di�erentiate it from the dense SVD):

B = Q�WT ;

where Q and W are orthogonal matrices and � is the diagonal matrix we described

before.

The SVD of A is then computed as

A = (UQ)�(VW )T :

Stage 2 has previously been implemented using QR-iteration [33, 41, 42] or QD-iteration

(singular values only) [38, 83]. This has been the bottleneck of the whole algorithm, it can

take as much as 95% of the total time when n is large (see table 5.10).

Without loss of generality, from now on, we will assume A is an m�n matrix with

m � n, therefore, the bidiagonal matrix B will be upper bidiagonal.

We have implemented a divide-and-conquer algorithm to compute the bidiagonal

SVD to overcome this bottleneck. We call it xBDSDC which follows the LAPACK naming

convention [2]. Based on this, we implemented a dense SVD algorithm, called xGESDD, which

uses xBDSDC SVD algorithm for Stage 2. All the implementations will appear in LAPACK

Release 2.1. The bidiagonal divide-and-conquer algorithm which xBDSDC uses is a variation

of the Gu and Eisenstat algorithm [51], which is based on previous work by Arbenz and

Golub [6], Cuppen [22], Golub [45], Gu and Eisenstat [49], and Jessup and Sorensen [63],
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for computing the SVD of B. Our numerical experiments on an IBM RS6000/590 show

that DBDSDC (double precision implementation) runs at least 47 times faster for n = 1600

than the LAPACK implementation DBDSQR [33, 3] of the traditional QR based algorithm

(see section 5.6 for details on the RS6000/590 con�guration). DGESDD, the implementation

of dense SVD, is from 7.6 to 13.5 times faster than DGESVD (the corresponding LAPACK

implementation [2] for computing the dense SVD) of A when n = 1600. We should mention

that in general, for a bidiagonal matrix, xBDSQR computes the singular values to high relative

accuracy, whereas xBDSDC can only guarantees the absolute accuracy.

xBDSDC uses a \factored form", which allows us to compute the SVD of B in O(n2)


ops by representing Q and W as products of O(log2 n) structured orthogonal matrices [48,

47]. Once A has been reduced to upper bidiagonal form (Stage 2), this new version of

the bidiagonal SVD allows us to �nish the rest of the computation for solving the dense

linear least squares problem in O(mn) 
ops. The implementation of this algorithm is called

xGELSD. Since the cost of Stage 1 is about 4mn2 � 4n3=3 
ops [43], about twice the cost of

computing a QR factorization on A, our result means that the 
op count of the SVD based

least squares solver is only about twice that of the QR based solver. The \factored form"

version is also useful for the case where the least squares solution is subject to some simple

constraints [43].

Demmel [29, 48] implemented a technique for representing the SVD using QR-

iteration in factored form, originally suggested in [21], and also known to Rutishauser in

the context of Jacobi's method [83]. The idea is to store all the Givens rotations produced

during bidiagonal QR iteration and apply them directly to the solution vector, rather than

accumulating them. This simple change to the current LAPACK routine xGELSS for solving

the least squares problem with the SVD, also reduces the 
op count to just twice that of

QR decomposition, but at the cost of O(n2) storage. This new implementation is called

xGELSF.

Based purely on operation counts, we expect either of our two least squares algo-

rithms, xGELSD and xGELSF to take only about twice as long as the fastest method (QR

decomposition). However, when using optimized ESSL BLAS on the RS6000, the new SVD

based least squares solvers are about 2.9 to 3.6 times slower than QR decomposition for

n = 1600, not twice as slow. This is because the QR decomposition can be reorganized to

do almost all its 
oating point operations by calls to Level 3 BLAS [36], whereas Stage 1

of the SVD does half its 
ops in the Level 3 BLAS and half in Level 2 BLAS [37].
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It may be possible to break the \BLAS 2" barrier in reduction to bidiagonal form

by exploiting successive band reduction techniques proposed for the symmetric eigenproblem

[14], but we have not yet pursued this.

The new routines we mentioned above are implemented by a group of people. In

particular, xBDSDC is implemented by Ming Gu, the root �nder is implemented by Rencang

Li, xGELSF is implemented by James Demmel, xGESDD is implemented by author, and xGELSD

is implemented by Ming Gu and author.

5.3 xBDSDC and \Factored Form"

xBDSDC recursively divides B into two subproblems as follows [48, 47]:

B =

0
BBB@

B1 0

�ke
T
k �ke

T
1

0 B2

1
CCCA ; (5.3.2)

where B1 2 R(k�1)�k and B2 2 R(n�k)�(n�k) are upper bidiagonal matrices, and ej is the

j-th column of an identity matrix with appropriate dimension. We take k = bn=2c.

Remark 5.3.1 xBDSDC actually uses the dividing strategy used in [6]; the algorithm in [51]

takes out a column (instead of a row) of B at a time.

Assume that we are given the SVDs of B1 and B2:

B1 = Q1(D1 0)WT
1 and B2 = Q2D2W

T
2 ;

where Qi and Wi are orthogonal matrices of appropriate dimensions, and the Di's are non-

negative diagonal matrices. Let (lT1 �1) be the last row of W1, and let fT2 be the �rst row

of W2. Plugging these into (5.3.2), we get

B =

0
BBB@

Q1 0 0

0 1 0

0 0 Q2

1
CCCA

0
BBB@

D1 0 0

�kl
T
1 �k�1 �kf

T
2

0 0 D2

1
CCCA

0
@ W1 0

0 W2

1
A
T

: (5.3.3)

Note that the middle matrix is quite simple in that its entries can be non-zero only on the

diagonal and in the k-th row. We will discuss the computation of its SVD later in this
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section. Let S�GT be the SVD of the middle matrix. Plugging it into (5.3.3), we get the

SVD of B as

B = Q�WT ;

with

Q =

0
BBB@

Q1 0 0

0 1 0

0 0 Q2

1
CCCAS and W =

0
@ W1 0

0 W2

1
AG :

To compute the SVDs of B1 and B2, this process can be recursively applied until the

sizes of the subproblems are su�ciently small2. These small subproblems are then solved

using a QR type algorithm (xBDSQR in LAPACK). There can be at most O(log2 n) levels of

recursion.

xBDSDC also has a recursion for computing just the singular values. Let fT1 be the

�rst row of W1; let l
T
2 be the last row of W2; and let fT and lT be the �rst and last rows

of W , respectively. Suppose that Di, fi, li, and �1 are given for i = 1; 2. Then we can

compute �, f , and l by computing the SVD of the middle matrix in (5.3.3) as S�GT , and

computing

fT = (fT1 0)G and lT = (0 lT2 )G :

The \factored form" version of bidiagonal divide-and-conquer is based on the sin-

gular value recursion. We store S and G for each subproblem in the recursion, and never

explicitly form any Q and W at any level, except the bottom level where we use a QR type

algorithm.

In order to compute the SVD of the middle matrix in (5.3.3), we note that, by

permuting the k-th row and column to the �rst row and column, this matrix can be written

as

M =

0
BBBBBB@

z1 z2 � � � zn

d2
. . .

dn

1
CCCCCCA

; (5.3.4)

where di's are the diagonal elements of D1 and D2; and zi's are entries of the k-th row of

the middle matrix, with z1 being the (k; k) entry. We permute the matrix M so we can

2Strictly speaking, this process is not quite recursive since, unlike B, B1 is not a square matrix. This is
true for the following singular value recursion also. See [51] for the complete recursions.



92

write D = diag (d1; d2; : : : ; dn) with
3 0 � d1 � d2 � : : :� dn, and z = (z1; z2; : : : ; zn)

T . We

further assume that

dj+1 � dj � �kMk2 and jzj j � �kMk2 ; (5.3.5)

where � is a small multiple of " speci�ed in [51]. Any matrix of the form (5.3.4) can be

reduced to one that satis�es these conditions by the de
ation procedure described in [51].

The following lemma characterizes the singular values and singular vectors of M .

Lemma 5.3.1 (Jessup and Sorensen [62]) Let S�GT be the SVD of M with

S = (s1; : : : ; sn) ; � = diag (�1; : : : ; �n) and G = (g1; : : : ; gn) ;

where 0 < �1 < : : : < �n: Then the singular values f�igni=1
satisfy the interlacing property

0 = d1 < �1 < d2 < : : : < dn < �n < dn + jjzjj2 ;

and the secular equation

f(�) = 1 +
nX

k=1

z2k
d2k � �2

= 0 :

The singular vectors satisfy

si =

 
�1; d2z2

d2
2
� �2i

; : : : ;
dnzn

d2n � �2i

!T ,vuut1 +
nX

k=2

(dkzk)2�
d2k � �2i

�2 ; (5.3.6)

gi =

 
z1

d2
1
� �2i

; : : : ;
zn

d2n � �2i

!T ,vuut nX
k=1

z2k�
d2k � �2i

�2 : (5.3.7)

On the other hand, given D and all the singular values, we can construct a matrix

with the same structure as (5.3.4).

Lemma 5.3.2 (Gu and Eisenstat [51]) Given a diagonal matrix D = diag (d1; d2; : : : ; dn)

and a set of numbers f�̂igni=1
satisfying the interlacing property

0 � d1 < �̂1 < d2 < : : : < dn < �̂n ; (5.3.8)

there exists a matrix

M̂ =

0
BBBBBB@

ẑ1 ẑ2 � � � ẑn

d2
. . .

dn

1
CCCCCCA

3d1 is introduced to simplify the presentation.
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whose singular values are f�̂igni=1
. The vector ẑ = (ẑ1; ẑ2; : : : ; ẑn)

T is determined by

jẑij =

vuuut��̂2n � d2i
� i�1Y
k=1

�
�̂2k � d2i

�
�
d2k � d2i

� n�1Y
k=i

�
�̂2k � d2i

��
d2k+1

� d2i

� ; (5.3.9)

where the sign of ẑi can be chosen arbitrarily.

We use the root-�nder provided by R.-C. Li [73] to �nd approximate singular values

f�̂kgnk=1
. Following [51], we then compute fẑkgnk=1

by using (5.3.9) and compute the left

and right singular vectors of M using (5.3.6) and (5.3.7), except we replace zk by ẑk using

the sign of zk. It has been shown [51] that this procedure is numerically stable, provided

that one computes the di�erences di� dj to high relative accuracy, for 1 � i � j � n. This

assumption is automatically satis�ed on most modern computers except some earlier Cray

machines (Cray XMP, YMP, C90 and 2) which do not have a guard digit. We overcome

this di�culty by using the following technique provided by Kahan [67]. Before the singular

values are computed, we �rst compute

di := (di + di)� di for i = 1; : : : ; n :

On machines with a guard digit, this does not change di at all (barring over
ow), but it

chops o� the last bit of di on the above mentioned Cray machines. After doing so, the

di�erences di � dj can be computed to high relative accuracy even on these machines. To

the best of our knowledge, our code should work on any commercially signi�cant modern

North America computers.

Since S and G are generally dense matrices, storing them explicitly will take O(n2)

storage for the whole recursion. However, we note that they can be reconstructed from

fẑkgnk=1
, f�̂kgnk=1

, and fdkgnk=1
whenever they are needed4. Hence in our implementation,

we store these data rather than S and G themselves. This increases the cost of xBDSDC by

O(n2) overall, but reduces the memory requirement from O(n2) to O(n log2 n), since there

are O(log2 n) levels of recursion.

5.4 Computing the Dense SVD

In the current version of LAPACK [2], xGESVD, in Stage 1 of the SVD compu-

tation (see Section 1.1), the matrices U and V are generated as products of Householder

4
The actual implementation is slightly more complicated for e�ciency and stability reasons.
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transformations, and in Stage 2, the matrices Q and W are generated as products of Givens

rotations. When the full SVD of A is desired, U and V are explicitly computed and the

Givens rotations in Q and W are applied to U and V as soon as they are generated.

In contrast, in xGESDD, we �rst compute the matrices Q and W explicitly, by

organizing the computation to use level 3 BLAS as much as possible, and then compute UQ

and VW by applying the sequence of Householder transformations toQ andW , respectively.

This approach is similar to that used for computing the full eigendecomposition of a dense

symmetric matrix by using Cuppen's divide-and-conquer algorithm [84].

If m � n, it may be more e�cient to �rst perform a QR factorization of A, and

then to compute the SVD of the n� n upper triangular matrix R. Since

A = QR and R = U�V T ;

therefore the SVD of A is given by

A = (QU)�V T :

For the implementation of xGESDD, we select a threshold �. When m � � � n,
we �rst perform a QR factorization, and then compute the SVD of the triangular matrix;

otherwise, we compute the SVD of A directly. The magnitude of the threshold � is based

on the 
op count of the QR factorization, bidiagonal reduction (Stage 1) and generation of

left and right singular vector matrices. To generate left and right singular vectors, there are

two choices. One is to store the orthogonal matrices U and V by sequence of Householder

vectors, and apply the Householder vectors to the singular vectors of bidiagonal matrix: Q

and W , this will be computed by calling LAPACK routine xORMBR. The other way is to

generate U and V explicitly by calling LAPACK routine xORGBR, then perform two matrix

multiplications U �Q and V �W by calling BLAS routine xGEMM.

The QR factorization is computed by LAPACK routine xGEQRF, the bidiagonal

reduction is computed by xGEBRD. Since the 
op count is di�erent for complex arithmetic

from real arithmetic, we will consider both real and complex cases. Table 5.1 shows the 
op

count of several routines for real and complex arithmetic. Table 5.2 shows the 
op count for

the real dense SVD of dimension m� n using di�erent combinations of routines and table

5.3 shows the 
op count for the complex SVD. In both tables, we exclude the 
op count for

SBDSDC since it is same in all cases.
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Real Arithmetic

Routine Description Flops

SGEBRD bidiagonal reduction 2n2(2m� 2

3
n)

SGEQRF QR factorization 2n2(m� n
3
)

SORMBR applying Householder transformations 2n2(2m� n)

SORGBR generate orthogonal matrix from Householder 2n2(m� n
3
)

transformations

SGEMM matrix-matrix multiply 2mn2

Complex Arithmetic

CGEBRD bidiagonal reduction 8n2(2m� 2

3
n)

CGEQRF QR factorization 8n2(m� n
3
)

CUNMBR applying Householder transformations 8n2(2m� n)

CUNGBR generate unitary matrix from Householder 8n2(m� n
3
)

transformations

CGEMM matrix-matrix multiply 8mn2

Table 5.1: Flop Count of LAPACK Routines

Paths Combinations of Routines Flops

Direct SVD 1 SGEBRD + 2 SORMBR 8mn2 � 4

3
n3

Direct SVD 2 SGEBRD + 2 SORGBR + 2 SGEMM 8mn2 + 4

3
n3

(QR + SVD) 1 SGEQRF + SGEBRD + 2 SORMBR + SGEMM 4mn2 + 6n3

(QR + SVD) 2 SGEQRF + SGEBRD + 2 SORGBR + 3 SGEMM 4mn2 + 26

3
n3

Table 5.2: Flop Count of Real SVD Excluding SBDSDC for Di�erent Paths

Paths Combinations of Routines Flops

Direct SVD 1 CGEBRD + 2 CUNMBR 32mn2 � 16

3
n3

Direct SVD 2 CGEBRD + 2 CUNGBR + 4 SGEMM 28mn2 + 4

3
n3

(QR + SVD) 1 CGEQRF + CGEBRD + 2 CUNMBR + CGEMM 16mn2 + 24n3

(QR + SVD) 2 CGEQRF + CGEBRD + 2 CUNGBR + CGEMM + 4 SGEMM 16mn2 + 80

3
n3

Table 5.3: Flop Count of Complex SVD Excluding SBDSDC for Di�erent Paths
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If A is real, since the path Direct SVD 2 is always more expensive than Direct

SVD 1, and (QR + SVD) 2 is more expensive than (QR + SVD) 1, we only need two paths

for SGESDD. By comparing the 
op count, when m � 11

6
n, Direct SVD 1 is more expensive

than (QR + SVD) 1. Therefore, we pick threshold � = 11=6 and use (QR + SVD) 1 if

m � � � n; otherwise, we use Direct SVD 1.

In the case when A is complex, we need three paths. Again, by comparing the 
op

count, we derive two thresholds, �1 =
5

3
n and �2 =

17

9
, such that:

� When m � �2 � n, we use (QR + SVD) 1.

� When �1 � n � m < �2 � n, we use Direct SVD 2.

� Otherwise, when m < �1 � n, we use Direct SVD 1.

5.5 Solving Linear Least Squares Problem

In this section, we discuss various linear least squares solvers which are based on

SVD using divide-and-conquer, SVD using QR-iteration, and QR factorization.

5.5.1 SVD Least Squares Solver Based on Divide-and-Conquer

When we solve the linear least squares problem (5.2.1) using the SVD, LAPACK's

xGELSS [2] computes the solution xLS using the SVD A = (UQ)�(VW )T as follows [43, 48]:

x1 � UT
1 b; x2 � QTx1; x3 � ��1

1
x2; xLS � (VW )x3; (5.5.10)

where U1 is the �rst n columns of U . x1 is computed by applying the Householder transfor-

mations directly to b, x2 is computed by applying the Givens rotations directly to x1, and

xLS is computed by explicitly forming the matrix VW , as is done in the dense SVD case,

and then applying VW to x3. We note that computing VW takes O(n3) 
ops in general.

To compute the least squares solution xLS more quickly using the SVD, we use

the \factored form" version of bidiagonal divide-and-conquer. After Stage 1, A is reduced

to the upper bidiagonal matrix B, with the orthogonal transformations U and V returned

as products of Householder transformations. We then compute x1 as in (5.5.10). This can

be done in O(mn) 
ops [43]. To compute x2, we note that Q is represented as a product of

O(log2 n) orthogonal matrices, the i-th of which is block diagonal with the diagonal blocks
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being 1's and left singular vector matrices on the i-th level in the recursion. Since there are

2i�1 submatrices on the i-th level with each submatrix having size O(n=2i�1), the cost of

applying the transposes of these matrices to a vector is

O

��
n=2i�1

�2�
� 2i�1 = O

�
n2=2i�1

�
;

summing all these costs up, the cost for computing x2 = QTx1 is

O(log2 n)X
i=1

O
�
n2=2i�1

�
= O(n2)


ops. Computing x3 takes O(n) 
ops. To compute xLS from x3, we do not explicitly form

VW . Instead, we compute

x4 � Wx3 and xLS = V x4 : (5.5.11)

By the same argument as above, x4 can be computed in O(n
2) 
ops. Finally, it is again well

known that computing xLS as V x4 takes O(n2) 
ops [43]. Overall, computing xLS after

Phase I takes O(mn) 
ops.

The routine for solving the least squares problem using divide-and-conquer is called

xGELSD; this name will be used in section 5.6.

5.5.2 SVD Least Squares Solver Based on QR Iteration

It turns out that explicit computation of VW can be avoided even with the QR

based SVD algorithms [48, 29], as originally noted in [21]. Instead of computing xLS as

(VW )x3, we can again compute xLS as in (5.5.11). x4 can be computed by saving all

O(n2) Givens rotations performed in computing the SVD of B, and applying them to x3

in reverse order; xLS can then be computed as V x4 as above. Let t be the total number of

such Givens rotations. Then the cost of computing xLS after Stage 1 is O(mn + t) 
ops.

Since we usually expect t = O(n2), this cost is again O(mn) 
ops. One drawback with

this approach, however, is that it requires O(t) storage, and we cannot bound t exactly

beforehand.

The routine implementing this idea is called xGELSF (for \factored form") this

name will be used in section 5.6.

Recall that xBDSQR computes the singular values to high relative accuracy, whereas

xBDSDC can only guarantee the absolute accuracy. Therefore it seems that there is still some
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room left to improve the performance of xGELSF since in general we only need absolute

accuracy to solve a least squares problem.

5.5.3 Least Squares Solvers Based on QR Factorization

The least squares problem can be also solved using QR factorization. The solvers

based on QR factorization usually run much faster than SVD based methods. However,

they are not as reliable as those based on SVD, since they are not as accurate when the

problem is rank-de�cient. Of all the methods for solving least squares problem, the fastest

as well as the least reliable one is the plain QR which we now describe.

Assume the QR factorization of A is given by

A = Q

2
4 R

0

3
5 = (Q1 Q2)

2
4 R

0

3
5 ; m � n;

where R is an n�n upper triangular matrix, Q is an m�m orthogonal matrix, Q1 consists

of the �rst n columns of Q and Q2 the remaining m� n columns.

If A has full column rank, since

kb� Axk2 = kQTb�QTAxk2 = k
2
4 c1 �Rx

c2

3
5 k2;

where c1 = QT
1
b and c2 = QT

2
b, xLS is then computed by solving the upper triangular

system

Rx = c1:

This algorithm is implemented in LAPACK. The name of the routine is xGELS.

When A is not of full rank, or the rank of A is in doubt, we can perform a QR

factorization with column pivoting, which was introduced by Businger and Golub [17, 44].

It is more reliable than plain QR, but it is slower.

The QR Factorization with column pivoting is given by

A = Q

2
4 R

0

3
5PT ; m � n;

where Q and R are as before and P is a permutation matrix, such that

jr11j � jr22j � � � � � jrnnj
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and for each k,

jrkkj � kRk:j;jk2 for j = k + 1; : : : ; n:

In exact arithmetic, if rank(A) = k, then the submatrix R22 in rows and columns k + 1

to n would be 0. However, in 
oating point arithmetic, we can only expect that we can

determine an index k, such that the leading principal matrix in the �rst k rows and columns

is well conditioned, and R22 is negligible:

R =

2
4 R11 R12

0 R22

3
5 '

2
4 R11 R12

0 0

3
5 :

Then k is the e�ective rank of A. The solution to the least squares problem is then given

by

xLS = P

2
4 R�1

11
c1

0

3
5 ;

where c1 contains the �rst k elements of c = QT b. The QR factorization with column pivot-

ing does not enable us to compute a minimum norm solution to a rank-de�cient linear least

squares problem, unless R12 = 0. However, by applying further orthogonal transformations

from the right to the upper trapezoidal matrix (R11 R12), R12 can be eliminated:

(R11 R12)Z = (T11 0):

This gives the complete orthogonal factorization

AP = Q

2
4 T11 0

0 0

3
5ZT :

Thus, the minimum norm solution can be computed as

xLS = PZ

2
4 T�1

11
c1

0

3
5 :

This algorithm is implemented in LAPACK's routine xGELSX [3].

QR with column pivoting works well in practice for general matrices, but it can fail

in pathological cases [65]. To overcome this, several more sophisticated \Rank-Revealing

QR" algorithms have been developed [18, 93, 50, 46, 19, 79, 59].

LAPACK's routine xGELSX is based on xGEQPF, which implements QR with column

pivoting using Level 2 BLAS [37]. Recently, Bischof et al [39] developed a variant algorithm
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of the QR factorization with pivoting which allows the use of Level 3 BLAS [36], thus

increasing cache data locality while enabling the use of the most e�cient BLAS kernels

but it takes much longer in the worst case although this rarely happens. The routine for

computing the least squares problem based on this new algorithm is called xGELSY.

Bischof and Quintana-Orti also implemented two rank-revealing QR least squares

solvers [13]. One is related to Chandrasekaran and Ispen's algorithm [19], which is called

xGELSA. The other is related to Pan and Tang's algorithm [79], which is called xGELSB.

The implementations xGELSY, xGELSA, xGELSB are available through Bischof5.

5.6 Numerical Experiments on the RS6000/590

We ran our numerical experiments on an IBM RS6000/590 with a 66.5 Mhz clock

and 256KB cache. We compiled using xlf with the -O3 optimization option. The optimized

BLAS were those in IBM's Engineering and Scienti�c Subroutine Library (ESSL)[1]. All

experiments were run in double precision, i.e. 64-bit, IEEE 
oating point arithmetic. We

let " = 2�53 denote the machine precision.

Table 5.4 lists the names of the subroutines we test and what they do. The reader

may want to refer to this table to interpret the following performance tables.

5.6.1 Performance of the BLAS and basic LAPACK decompositions on

the RS6000

Table 5.5 reports on the speed in Mega
ops of the BLAS, DGEMV (matrix{vector

multiplication) and DGEMM (matrix-matrix multiplication). It also reports the speeds of LU

decomposition (DGETRF), QR decomposition (DGEQRF) and bidiagonal reduction (DGEBRD). It

does this both for Fortran BLAS and ESSL BLAS. All matrices are dimensioned (LDA,N),

where LDA = 1601. The block size NB in the blocked algorithms for DGETRF, DGEQRF

and DGEBRD was 32. It is interesting to see that the performance of DGEMV is a strongly

nonmonotonic function of matrix dimension. This is because the cache size for RS6000/590

is 256KB, when the matrix size is small, the matrix �ts in cache; otherwise, cache misses

will occur.

5
email: bischof@mcs.anl.gov
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Table 5.4: Names and descriptions of routines tested

Name Description Status

Fundamental Routines

xGEMV Matrix-vector multiply Level 2 BLAS

xGEMM Matrix-matrix multiply Level 3 BLAS

xGETRF LU decomposition in LAPACK

xGEQRF QR decomposition in LAPACK

xGEBRD Reduction to bidiagonal form in LAPACK

Bidiagonal SVD

xBDSQR Compute complete SVD of a bidiagonal matrix using QR in LAPACK

iteration

xBDSDC Compute complete SVD of a bidiagonal matrix using new routine

divide-and-conquer

Dense SVD

xGESVD Compute complete SVD of a dense matrix using QR iteration in LAPACK

xGESVF Compute complete SVD of a dense matrix using QR iteration, in ESSL

version of DGESVD optimized for RS6000

xGESDD Compute complete SVD of a dense matrix using new routine

divide-and-conquer

Linear Least Squares Solvers

xGELS Solve the LS problem using QR decomposition in LAPACK

xGELSX Solve the LS problem using QR decomposition with column in LAPACK

pivoting

xGELSY Solve the LS problem using QR decomposition with column new routine

pivoting implemented by BLAS 3 (Bischof et al [39])

xGELSA Solve the LS problem using Rank-Revealing QR based on new routine

the method related to Chandrasekaran and Ipsen's

algorithm (Bischof et al [13, 19])

xGELSB Solve the LS problem using Rank-Revealing QR based on new routine

the method related to Pan and Tang's algorithm

(Bischof et al [13, 79])

xGELLS Solve the LS problem using QR decomposition with column in ESSL

pivoting, version of DGELSX optimized for RS6000

xGELSS Solve the LS problem using the SVD based on QR-iteration in LAPACK

xGESVS Solve the LS problem using the SVD based on QR-iteration, in ESSL

version of DGELSS optimized for RS6000

xGELSF Solve the LS problem using the SVD based on QR-iteration new routine

but where the left singular vectors are left factored

xGELSD Solve the LS problem using the SVD based on new routine

divide-and-conquer
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Table 5.5: Speed of BLAS and LAPACK Routines on RS6000 (NB = 32, LDA = 1601)

Speed in mega
ops using ESSL BLAS

Dimension

Routine Description 50 100 200 400 800 1600

DGEMV matrix-vector multiply 128.4 205.1 114.6 116.5 117.4 120.3

DGEMM matrix-matrix multiply 210.3 229.2 224.0 228.6 229.1 233.5

DGETRF LU decomposition 42.4 119.1 151.8 163.8 152.2 171.8

DGEQRF QR decomposition 60.2 96.7 139.3 171.3 189.5 197.7

DGEBRD Bidiagonal reduction 33.8 135.1 102.0 113.2 125.4 138.0

Speed in mega
ops using Fortran BLAS

Dimension

Routine Description 50 100 200 400 800 1600

DGEMV matrix-vector multiply 68.7 81.2 62.9 65.1 67.0 68.3

DGEMM matrix-matrix multiply 70.9 80.0 64.9 65.3 67.4 68.6

DGETRF LU decomposition 41.7 56.7 68.9 71.0 70.2 65.5

DGEQRF QR decomposition 50.5 69.0 78.2 77.9 80.0 76.0

DGEBRD Bidiagonal reduction 48.8 65.9 58.7 63.6 64.4 61.4

5.6.2 Performance of the Bidiagonal SVD on the RS6000

We report on the speed of the bidiagonal SVD (computing all singular values

and left and right singular vectors). We used four types of test matrices, all generated by

LAPACK test matrix generator DLATMS:

Type 1. These bidiagonal matrices were randomly generated with singular values dis-

tributed arithmetically from " up to 1.

Type 2. These bidiagonal matrices were randomly generated with singular values dis-

tributed geometrically from " up to 1.

Type 3. These bidiagonal matrices have 1 singular value at 1 and the other n�1 clustered
at ".

Type 4. These bidiagonal matrices were generated by taking a dense matrix with indepen-

dent random entries uniformly distributed in (�1; 1), and reducing it to bidiagonal

form.

Table 5.6 shows the speedup of DBDSDC, the bidiagonal SVD based on divide-and-

conquer, with respect to DBDSQR, the bidiagonal SVD based on QR-iteration (all singular
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Table 5.6: Speedup of DBDSDC over DBDSQR on RS6000

Speedup using ESSL BLAS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 0.93 1.29 2.11 3.16 5.16 30.91 47.78

type 2 0.91 0.83 1.78 3.60 5.92 37.38 67.14

type 3 1.06 6.67 22.00 48.00 58.57 365.56 938.83

type 4 1.11 1.29 1.89 3.43 5.59 33.00 50.51

Speedup using Fortran BLAS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 1.00 1.31 1.31 2.03 2.82 15.45 20.33

type 2 0.76 0.90 1.17 2.70 4.30 26.61 42.06

type 3 1.00 24.69 38.00 83.83 67.69 361.54 927.03

type 4 1.00 1.00 1.25 2.26 2.97 16.50 21.86

values and left and right singular vectors are computed). As can be seen, the speedup is large

and a growing function of matrix dimension. For n = 1600, the speedup is 50 for matrices

of type 4 and over 900 for matrices of type 3, when using ESSL BLAS. Also, the speedup is

better when using the optimized BLAS rather than Fortran BLAS, because DBDSDC spends

much of its time in DGEMM, whereas DBDSQR cannot even use Level 2 BLAS. In general,

DBDSDC can only compute the singular values to high absolute accuracy; in contrast, DBDSQR

can compute the singular values to high relative accuracy [33].

Figure 5.1 shows the performance of DBDSQR and DBDSDC in MFLOPS for type 2

and 4 matrices using ESSL BLAS, where DBDSQR is plotted by blue line and DBDSDC by

red line. We can see that the MFLOPS of DBDSDC is a growing function of matrix size

whereas the MFLOPS of DBDSQR peaks around n = 400 then drops very quickly. When

n = 1600, for matrices of type 4, DBDSDC achieves 117 MFLOPS whereas DBDSQR runs only

at 14 MFLOPS.

5.6.3 Performance of the Dense SVD on the RS6000

We report on the speed of the dense SVD (computing all singular values and left

and right singular vectors). We used the same four test matrix types as before, but now all

are dense. We compared DGESDD and DGESVD with ESSL's SVD routine DGESVF; see tables

5.7 and 5.8. We also compared the performance of DGESDD and DGESVD using Fortran BLAS,
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Figure 5.1: Performance of DBDSQR and DBDSDC in MFLOPS

see table 5.9. For all four types of matrices, DGESDD achieved a good speedup over DGESVF.

For n = 1600, the speedup of DGESDD over DGESVF ranges from 6.3 to 14.5. For matrices

of types 1,2,4, the speed of DGESVD is comparable to DGESVF. However, DGESVF achieved a

good speedup over DGESVD for matrices of type 3. This is because DGESVD computes the

singular values of the bidiagonal matrix to high relative accuracy whereas DGESVF does not.

Table 5.10 shows what fraction of time the dense SVD spends on doing the bidi-

agonal SVD. The most signi�cant result is that the bidiagonal fraction takes 91% to 96%

Table 5.7: Speedup of DGESDD over DGESVF on RS6000

Speedup using ESSL BLAS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 1.11 1.25 1.63 2.31 3.06 11.62 14.47

type 2 0.82 0.67 0.85 1.54 2.05 5.34 6.32

type 3 0.30 0.64 0.89 1.64 2.13 5.78 7.03

type 4 0.82 1.00 1.41 2.28 3.13 11.36 14.20
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Table 5.8: Speedup of DGESVF over DGESVD on RS6000

Speedup using ESSL BLAS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 0.90 0.88 1.00 0.84 0.80 0.90 0.93

type 2 1.17 1.46 1.36 0.99 0.85 1.13 1.20

type 3 3.23 3.70 3.63 2.22 1.67 2.62 3.11

type 4 1.15 1.05 1.00 0.83 0.80 0.94 0.95

Table 5.9: Speedup of DGESDD over DGESVD on RS6000

Speedup using Fortran BLAS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 1.08 0.93 1.08 1.36 1.55 5.26 5.99

type 2 0.88 0.86 0.90 1.20 1.29 3.58 4.00

type 3 1.03 2.56 2.31 2.38 2.26 7.67 9.54

type 4 0.88 0.92 1.04 1.28 1.47 5.29 6.03

of the total time for DGESVD to at most 27% for DGESDD, for large matrices. For matrices of

type 3, DBDSDC only costs 2% of the total time in contrast to 96% by DBDSQR, which means

bidiagonal SVD is never the bottleneck in the dense SVD.

Thus, any signi�cant further improvements in the speed of the dense SVD for large

matrices must come from speeding up the non-bidiagonal part of the computation. One

way to do this is to abandon computing the singular vectors explicitly, leaving them in the

factored form provided by the algorithm. We exploit this possibility in the next section.

Table 5.11 shows how well the performance of DGESVD, DGESVF and DGESDD as well

as DGEBRD, DORGBR and DORMBR compares to the speed of DGEMM (ESSL), the measure we

used is run-time(dense SVD)/run-time(DGEMM of same matrix size). We can see that

when n = 1600, the run-time of computing a dense SVD is reduced from over 90 matrix

multiplications to under 7 matrix multiplications. This is a big improvement.

Figure 5.2 shows the performance of DGESVD and DGESDD in MFLOPS for type 2

and 4 matrices, where DGESVD is plotted by blue line and DGESDD by red line. Again, we

can see that for matrices of type 4, when n = 1600, DGESDD achieves nearly 150 MFLOPS
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Table 5.10: Fraction of time Dense SVD spends in Bidiagonal SVD (ESSL BLAS on RS6000)

Fraction of DGESDD spent in DBDSDC

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 0.72 0.58 0.56 0.46 0.39 0.32 0.27

type 2 0.50 0.50 0.35 0.25 0.19 0.14 0.10

type 3 0.64 0.26 0.11 0.06 0.05 0.04 0.02

type 4 0.58 0.52 0.53 0.44 0.35 0.30 0.25

Fraction of DGESVD spent in DBDSQR

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 0.67 0.68 0.73 0.75 0.82 0.95 0.96

type 2 0.48 0.43 0.53 0.58 0.64 0.89 0.91

type 3 0.70 0.72 0.76 0.75 0.75 0.95 0.96

type 4 0.68 0.63 0.71 0.80 0.79 0.94 0.94

whereas DGESVD runs at only 20 MFLOPS.

5.6.4 Performance of Solvers for the Linear Least Squares Problem on

the RS6000

We consider solving least squares problems with single right hand sides. We use

the same four test matrices as before. The algorithms we consider are

� DGELS { QR decomposition (currently in LAPACK)

� DGELSX { QR decomposition with column pivoting (currently in LAPACK)

� DGELSY { QR decomposition with column pivoting but implemented using BLAS 3

[39]

� DGELSA { Rank-Revealing QR based on method related to Chandrasekaran and Ipsen's

algorithm [13, 19]

� DGELSB { Rank-Revealing QR based on method related to Pan and Tang's algorithm

number 3 [13, 79]

� DGELSS { SVD based on QR iteration (currently in LAPACK)
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Table 5.11: Ratios of run-time(dense SVD) to run-time(DGEMM(ESSL)) on RS6000

Time(DGESVD) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 60.65 37.18 29.80 22.40 21.43 80.09 89.77

type 2 37.34 24.57 17.19 13.02 12.50 39.15 44.17

type 3 65.19 46.69 33.23 22.40 19.64 77.85 102.88

type 4 63.28 39.96 27.50 21.00 21.42 78.74 88.63

Time(DGESVF) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 67.31 42.07 29.79 26.60 26.79 88.37 96.89

type 2 31.89 16.83 12.60 13.16 14.64 34.68 36.76

type 3 20.18 12.62 9.17 10.08 11.79 29.75 33.06

type 4 55.00 37.86 27.50 25.20 26.79 83.89 93.47

Time(DGESDD) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 60.55 33.65 18.33 11.48 8.75 7.61 6.70

type 2 38.85 22.23 14.90 8.54 7.14 6.49 5.81

type 3 67.31 19.60 10.31 6.16 5.54 5.15 4.70

type 4 67.31 37.86 19.48 11.06 8.57 7.38 6.58

Time(DGEBRD) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

all types 10.40 4.78 3.25 2.94 2.64 2.45 2.25

Time(DORGBR) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

all types 3.73 2.01 1.49 1.06 0.90 0.86 0.84

Time(DORMBR) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

all types 4.67 2.69 1.83 1.37 1.22 1.270 1.18
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Figure 5.2: Performance of DGESVD and DGESDD in MFLOPS

� DGELSF { SVD based on QR iteration but maintaining the left singular vectors of the

bidiagonal matrix as a list of O(N2) Givens rotations

� DGELSD { SVD based on divide-and-conquer, factored form

� DGELLS { QR decomposition with pivoting (currently in ESSL)

� DGESVS { SVD based on QR iteration (currently in ESSL)

We present square problems only, since M -by-N problems with M � N are generally

reduced to an N -by-N problem by an initial QR decomposition, and this dominates all

later computations. All the computations are done in single precision.

In addition to measuring the speedup of DGELSD and DGELSF over DGELSS, we

measure times relative to DGELS, the fastest, and least reliable, of all the methods. This

quanti�es the tradeo� between speed and reliability inherent in this problem. Results shown

in tables are for ESSL BLAS only.

Table 5.12 shows that both new least squares solvers, DGELSF and DGELSD, are

signi�cantly faster than the older DGELSS. For matrices of size n = 1600, DGELSF and

DGELSD achieves the speedup ranges from 15 | 40.
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Table 5.12: Speedups of New SVD-based Least Squares Solvers (using ESSL BLAS on

RS6000)

Speedup of DGELSD over DGELSS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 1.15 1.00 1.21 1.69 2.58 19.41 29.00

type 2 1.06 0.87 1.00 1.67 2.29 12.31 15.91

type 3 1.02 3.50 4.50 3.85 4.56 29.09 40.74

type 4 0.89 0.75 1.00 1.61 2.63 18.82 28.00

Speedup of DGELSF over DGELSS

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 1.26 1.30 1.70 2.20 3.20 22.00 30.21

type 2 1.14 1.33 1.29 1.86 2.40 12.31 15.91

type 3 1.22 1.30 1.64 2.08 3.04 21.33 34.02

type 4 1.09 1.00 1.60 2.13 3.16 21.33 29.17

Table 5.13 shows that a fully reliable SVD-based solution to the linear least square

problem now costs no more than 3.46 times as much as the fastest solver (DGELS), whereas it

used to cost at least 48 times more for n = 1600. This is a big improvement. In particular,

for matrices of type 1 and 3, it takes more than 100 times as much as DGELS, we believe

this is due to DBDSQR runs at a very low MFLOPS rate when matrices are large.

Table 5.15 shows how well the performance of the various least squares solvers

compares to the speed of DGEMM(ESSL). The measures we used is run-time(least squares

solver)/run-time(DGEMM of the same matrix size). We can see that for the matrices with

dimension as large as n = 1600, DGELSF and DGELSD takes less than 3 matrix multiplications

to solve a least squares problem fully reliably, whereas the older solver DGELSS has to take

at least 40 matrix multiplications.

5.6.5 Accuracy Assessment on the RS6000

We use two measures of accuracy of the computed SVD A = X�Y T : the resid-

ual maxi kAyi � �ixik=("�1) and the orthogonality of the singular vectors max(kY Y T �
Ik="; kXXT � Ik="), where " is machine precision. Ideally these two measure should be

O(1) for any dimension, but we would not be unhappy to get numbers growing with N ,

perhaps as O(N), although we cannot prove so tight a bound. In fact, the QR based SVD
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Table 5.13: Timings of Least Squares Solvers relative to DGELS (using ESSL BLAS on

RS6000)

Time(DGELSX) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 2.29 2.00 1.75 1.50 2.14 2.16 2.11

type 2 2.56 1.72 2.00 1.55 2.10 2.31 2.28

type 3 1.59 1.26 1.50 1.78 2.11 2.11 2.08

type 4 2.54 1.74 1.20 1.60 1.96 2.08 2.00

Time(DGELSY) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 2.29 2.33 1.50 1.50 1.63 1.53 1.40

type 2 2.56 2.00 2.00 1.36 1.75 1.59 1.48

type 3 1.71 1.42 1.50 1.56 1.56 1.45 1.39

type 4 2.54 1.93 1.20 1.50 1.59 1.47 1.31

Time(DGELSA) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 2.99 2.79 2.00 1.50 1.21 1.21 1.14

type 2 3.41 2.40 2.00 1.27 1.49 1.44 1.45

type 3 1.95 1.34 1.25 1.11 1.12 1.05 1.07

type 4 3.56 2.33 1.40 1.30 1.16 1.16 1.10

Time(DGELSB) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 2.99 2.33 1.75 1.30 1.20 1.16 1.14

type 2 2.68 2.00 1.50 1.27 1.33 1.41 1.41

type 3 2.32 2.00 1.75 1.78 1.47 1.24 1.18

type 4 3.22 2.33 1.00 1.30 1.20 1.16 1.10

Time(DGELLS) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 1.84 1.93 1.25 1.50 1.96 2.08 2.07

type 2 1.06 1.12 1.25 1.09 1.93 2.00 2.00

type 3 1.22 1.26 1.50 1.89 2.28 2.53 2.07

type 4 1.44 1.30 1.00 1.40 1.96 2.08 2.00
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Table 5.14: Continued: Timings of Least Squares Solvers relative to DGELS on RS6000

Time(DGELSF) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 5.75 6.28 5.00 5.00 4.46 3.95 3.43

type 2 3.54 3.00 3.50 3.17 3.51 3.33 3.03

type 3 5.61 5.40 5.50 5.33 4.21 3.95 3.46

type 4 7.80 6.98 4.00 4.70 4.46 3.95 3.31

Time(DGELSD) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 6.32 8.14 7.00 6.50 5.54 4.47 3.57

type 2 3.78 4.60 4.50 3.55 3.68 3.33 3.03

type 3 6.71 2.00 2.00 2.89 2.81 2.89 2.89

type 4 9.49 9.30 6.40 6.20 5.35 4.47 3.45

Time(DGELSS) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 7.24 8.14 8.50 11.00 14.29 86.84 103.57

type 2 4.02 4.00 4.50 5.91 8.42 41.03 48.28

type 3 6.83 7.00 9.00 11.11 12.81 84.21 117.86

type 4 8.47 6.98 6.40 10.00 14.11 84.21 96.55

Time(DGESVS) / Time(DGELS)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 6.32 6.98 8.00 11.00 14.29 15.00 15.00

type 2 3.17 3.40 4.00 5.00 7.89 8.72 8.62

type 3 2.20 2.00 2.50 4.56 6.49 7.37 7.50

type 4 7.80 8.14 6.80 10.00 13.57 14.47 14.14
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Table 5.15: Ratios of run-time(least squares solver) to run-time(DGEMM(ESSL)) on RS6000

Time(DGELS) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 9.78 3.62 2.29 1.40 1.00 0.85 0.80

type 2 8.28 4.21 2.29 1.54 1.02 0.87 0.83

type 3 8.28 4.21 2.29 1.26 1.02 0.85 0.80

type 4 5.95 3.62 2.86 1.40 1.00 0.85 0.83

Time(DGELSX) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 20.02 7.24 4.01 2.10 2.14 1.83 1.68

type 2 21.19 7.24 4.58 2.38 2.14 2.01 1.88

type 3 13.12 5.30 3.44 2.24 2.14 1.79 1.65

type 4 15.14 6.31 3.44 2.24 1.96 1.77 1.65

Time(DGELSY) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 20.18 8.41 3.44 2.10 1.63 1.30 1.11

type 2 21.19 8.41 4.58 2.10 1.79 1.39 1.23

type 3 14.13 5.97 3.44 1.96 1.59 1.23 1.11

type 4 15.14 6.98 3.44 2.10 1.59 1.25 1.08

Time(DGELSA) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 26.24 10.10 4.58 2.10 1.21 1.03 0.91

type 2 28.26 10.10 4.58 1.96 1.52 1.25 1.20

type 3 16.15 5.64 2.86 1.40 1.14 0.89 0.85

type 4 21.19 8.41 4.01 1.82 1.16 0.98 0.91

Time(DGELSB) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 26.24 8.41 4.01 1.82 1.20 0.98 0.91

type 2 22.20 8.41 3.44 1.96 1.36 1.23 1.17

type 3 19.17 8.41 4.01 2.24 1.50 1.05 0.94

type 4 19.17 8.41 2.86 1.82 1.20 0.98 0.91
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Table 5.16: Continued: Ratios of run-time(least squares solver) to run-time(DGEMM(ESSL))

on RS6000

Time(DGELLS) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 16.15 6.98 2.86 2.10 1.96 1.77 1.65

type 2 8.78 4.71 2.86 1.68 1.96 1.75 1.65

type 3 10.09 5.30 3.44 2.38 2.32 2.15 1.65

type 4 8.58 4.71 2.86 1.96 1.96 1.77 1.65

Time(DGELSS) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 63.58 29.45 19.48 15.40 14.29 73.83 82.64

type 2 33.30 16.83 10.31 9.10 8.57 35.79 39.90

type 3 56.51 29.45 20.63 14.00 13.04 71.59 94.04

type 4 50.46 25.24 18.33 14.00 14.11 71.59 79.80

Time(DGELSF) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 50.46 22.72 11.46 7.00 4.46 3.36 2.73

type 2 29.27 12.62 8.02 4.90 3.57 2.90 2.51

type 3 46.42 22.72 12.60 6.72 4.29 3.36 2.76

type 4 46.42 25.24 11.46 6.58 4.46 3.36 2.73

Time(DGELSD) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 55.50 29.45 16.04 9.10 5.54 3.80 2.85

type 2 31.28 19.35 10.31 5.46 3.75 2.91 2.51

type 3 55.50 8.41 4.58 3.64 2.86 2.46 2.31

type 4 56.51 33.65 18.33 8.68 5.36 3.80 2.85

Time(DGESVS) / Time(DGEMM)

Dimension

Test Matrix 20 50 100 200 400 800 1600

type 1 55.50 25.24 18.33 15.40 14.29 12.75 11.97

type 2 26.24 14.30 9.17 7.70 8.04 7.61 7.12

type 3 18.17 8.41 5.73 5.74 6.61 6.26 5.98

type 4 46.42 29.45 19.48 14.00 13.57 12.30 11.68
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routines exhibit measures as large as N=5 for N = 400, whereas the measures for divide-

and-conquer routines never exceeds 10. Therefore, the divide-and-conquer based SVD is

not only faster but more accurate than the QR based approach.

The above results are for dense matrices. It turns out one can prove tighter

relative error bounds for singular values and singular vectors for the QR-based bidiagonal

SVD [33, 24]. We currently cannot guarantee this high relative accuracy with divide-and-

conquer, just the absolute accuracy described in the last paragraph.

By comparing the residuals and orthogonality, in most cases, we observed that the

computational routines in ESSL like DGESVS are not as accurate as those in LAPACK or

the new ones. For example, for dense SVD, DGESDD and DGESVD are almost one decimal

digit more accurate than ESSL's DGESVF.
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Chapter 6

Generalized Singular Value

Decomposition

6.1 Introduction

Since it was introduced by Van Loan [95], generalized singular value decompo-

sition(GSVD) has been found to be a very useful tool in numerical linear algebra. Its

applications in many generalized problems are in the same spirit as the SVD in correspond-

ing standard problems [9], such as in �nding the intersection of the null spaces of two

matrices [43], in the generalized eigenvalue problem arising from signal processing [90], in

computing the Kronecker form of matrix pencil A��B [64], in the constrained least squares

problem [43], in the least squares problem with Tikhonov regularization [53], and so on.

In this chapter, we �rst discuss two improvements we made on the LAPACK's

xGGSVD which implemented a variation of Paige's algorithm [77] by Bai and Demmel [10].

One is in the stopping criteria, the other is in \postprocessing". We then discuss an imple-

mentation of Van Loan's algorithm [96] which is based on the divide-and-conquer SVD and

the QR decomposition. We show that our implementation achieves good speedups over the

SGGSVD.
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6.2 Review of GSVD

The generalized(or quotient) singular value decomposition of an m � n

matrix A and a p� n matrix B is given by the pair of factorizations [78, 2]

A = U�1[0 R]QT and B = V �2[0 R]QT ; (6.2.1)

where U 2 Rm�m, V 2 Rp�p and Q 2 Rn�n are orthogonal matrices. R is an r � r

nonsingular upper triangular matrix, where r � n is the rank of

2
4 A

B

3
5. �1 is an m � r

diagonal matrix, �2 is a p� r diagonal matrix, the diagonal elements of both matrices are

nonnegative, and satisfy

�T
1�1 +�T

2 �2 = I:

Let

�T
1 �1 =

2
6666664

�2
1

�2
2

. . .

�2
r

3
7777775

and �T
2�2 =

2
6666664

�2
1

�22
. . .

�2r

3
7777775
;

where 0 � �i; �i � 1. The ratios
�1

�1
;
�2

�2
; : : : ;

�r

�r

are called the generalized singular values of the matrix pair A;B. If �i = 0, then the

generalized singular value �i=�i is in�nite.

More precisely, if m� r � 0, then

�1 =

0
BBB@

k l

k I 0

l 0 C

m�k�l 0 0

1
CCCA and �2 =

0
@

k l

l 0 S

p�l 0 0

1
A: (6.2.2)

Here l is the rank of B, k = r�l, C and S are both diagonal matrices satisfying C2+S2 = I ,

and S is nonsingular. We may also identify

�1 = � � � = �k = 1; �k+i = cii

and

�1 = � � � = �k = 0; �k+i = sii
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for i = 1; : : : ; l. Thus the �rst k generalized singular values

�1

�1
;
�2

�2
; : : : ;

�k

�k

are in�nite, and the remaining l generalized singular values are �nite.

When m� r < 0,

�1 =

0
@

k m�k k+l�m

k I 0 0

m�k 0 C 0

1
A; �2 =

0
BBB@

k m�k k+l�m

m�k 0 S 0

k+l�m 0 0 I

p�l 0 0 0

1
CCCA (6.2.3)

Again, l is the rank of B, k = r� l, C and S are diagonal matrices satisfying C2 + S2 = I ,

S is nonsingular, and

�1 = � � � = �k = 1; �k+i = cii; �m+1 = � � �= �r = 0;

�1 = � � � = �k = 0; �k+i = sii; �m+1 = � � � = �r = 1:

for i = 1; : : : ; m� k. Thus, the �rst k generalized singular values

�1

�1
;
�2

�2
; : : : ;

�k

�k

are in�nite, and remaining l generalized singular values are �nite.

In particular, if B is the identity matrix, the GSVD gives the SVD of A. There

are several other important special cases of GSVD [2].

� If B is square and nonsingular, then r = n and the GSVD of A and B is equivalent

to the SVD of AB�1, where the singular values of AB�1 are equal to the generalized

singular values of the pair A;B:

AB�1 = (U�1RQ
T )(V�2RQ

T )�1 = U(�1�
�1

2
)V T :

� If the columns of

2
4 A

B

3
5 are orthonormal, then r = n, R = I and the GSVD of A and

B is equivalent to the CS decomposition [23, 92, 43] of

2
4 A

B

3
5:

2
4 A

B

3
5 =

2
4 U 0

0 V

3
5
2
4 �1

�2

3
5QT :
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� The generalized eigenvalues and eigenvectors of ATA � �BTB can be expressed in

terms of GSVD. Let

X = Q

2
4 I 0

0 R�1

3
5 ;

Then

XTATAX =

2
4 0 0

0 �T
1�1

3
5 and XTBTBX =

2
4 0 0

0 �T
2�2

3
5 :

Therefore, the columns of X are the generalized eigenvectors of ATA � �BTB, and

the eigenvalues are the squares of the generalized singular values.

6.3 SGGSVD and the Stopping Criterion

LAPACK's SGGSVD [2, 10] computes the generalized singular value decomposition

of a pair of matrices A and B using a variation of Paige's algorithm [77]. It uses a 2 by 2

triangular GSVD algorithm [10] to provide high accuracy.

Assume A is m-by-n and B is p-by-n. The computation proceeds in the following

two steps:

i. Preprocessing

A subroutine SGGSVP is used to reduce the matrices A and B to triangular form:

UT
1 AQ1 =

0
BBB@

n�k�l k l

k 0 A12 A13

l 0 0 A23

m�k�l 0 0 0

1
CCCA ; V T

1 BQ1 =

0
@

n�k�l k l

l 0 0 B13

p�l 0 0 0

1
A

where A12 and B13 are nonsingular and upper triangular, and A23 is upper triangular.

If m� k � l < 0, then the bottom zero block of UT
1
AQ1 does not appear, and A23 is

upper trapezoidal. U1, V1 and Q1 are orthogonal matrices. l is the rank of B, and

k + l is the rank of

2
4 A

B

3
5.

ii. Compute GSVD of triangular matrices

The generalized GSVD of two l�l upper triangular matrices A23 and B13 is computed

using STGSJA, which uses a Jacobi-like method [10, 77]:

A23 = U2CRQ
T
2 and B13 = V2SRQ

T
2 :
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Here, U2, V2 and Q2 are orthogonal matrices, C and S are both real nonnegative

diagonal matrices satisfying C2+S2 = I , S is nonsingular, and R is upper triangular

and nonsingular.

The reduction to triangular form, performed by SGGSVP, uses QR decomposition

with column pivoting for numerical rank determination [11].

In fact, what STGSJA does is to use Jacobi rotations such that the rows of UT
2
A23Q2

are parallel to the corresponding rows of V T
2 B13Q2. To compute how parallel two vectors

x and y are, we de�ne a measure par(x; y) to be the smallest singular value of the n � 2

matrix (x; y). In STGSJA, par(x; y) is computed by a small subroutine SLAPLL, which does

a QR decomposition of (x; y) using SLARFG, and then computes the smaller singular value

of the resulting 2� 2 upper triangular matrix using SLAS2.

The stopping criterion in STGSJA is:

par(Ai; Bi) � n �min(tolA; tolB): (6.3.4)

where Ai and Bi are i-th row of A and B, i.e. if (6.3.4) is satis�ed, then we consider Ai to

parallel to Bi. tolA and tolB are de�ned as

tolA = max(m;n) �max(kAk; �) � "

tolB = max(p; n) �max(kBk; �) � "

where � is the under
ow threshold and " is the machine precision.

From now on, we will consider square matrices A and B only, i.e. m = n = p.

Thus the stopping criterion becomes:

par(Ai; Bi) � " � n2 �min(kAk; kBk): (6.3.5)

It is not hard to see that n2 on the right hand of (6.3.5) might be too large for a

stopping criterion when n is large. For example, if the entries of A and B are uniformly

randomly distributed in [�1; 1], and if n = 500, then in IEEE single precision, i.e. " �
1:1921� 10�7, the right hand side of (6.3.5) is approximately 8, which makes the stopping

criterion meaningless.

We tested SGGSVD with the following three types of matrix pairs A and B:

Type 1 The elements of A and B are uniformly randomly distributed on [�1; 1].
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Type 2 A = U � D � X and B = V � E � X , where U and V are orthogonal matrices

generated from random matrices1,X is a randommatrix whose elements are uniformly

distributed on [�1; 1],D and E are diagonal matrices, for some i,Dii=Eii is quite large,

for some other i, Dii=Eii is quite small, and for the other i, Dii=Eii is O(1).

Type 3 Almost as the same as Type 2 except that X is produced randomly with geomet-

rically distributed singular values.

Given the GSVD of A and B:

UT �A �Q = �1 �R and V T �B �Q = �2 �R;

we de�ne the residuals

resA =
kUT �A �Q� �1 �Rk

" � kAk � pn ; resB =
kUT �B �Q� �2 �Rk

" � kBk � pn ; (6.3.6)

and

orthU =
kUT � U � Ik

" � pn ; orthV =
kV T � V � Ik

" � pn ; orthQ =
kQT �Q� Ik

" � pn : (6.3.7)

Table 6.1 shows the residuals of the GSVD computed by sggsvd. We can see that

as n increases, the residuals of A and B become very large, which shows that the stopping

criterion may not be appropriate when matrix size is fairly large.

After observing the original stopping criterion is not appropriate when n is fairly

large, we change the stopping criterion to:

par(Ai; Bi) � min(tolA; tolB) = " � n �min(kAk; kBk): (6.3.8)

We did the computation again, table 6.2 shows the results.

From Table 6.2, we can notice that residuals are much smaller with the modi�ed

stopping criterion, however, it takes more CPU time. For example, for matrix pairs of Type

1, it runs almost twice as slowly as the original code. It is not surprising since to satisfy the

more rigorous stopping criterion, it takes more Jacobi sweeps to converge. For matrices of

Type 1, it takes twice as many Jacobi sweeps to converge.

For three di�erent types of matrix pairs and for both original and the modi�ed

stopping criteria, �gure 6.1 plots max(resA; resB) versus n, �gure 6.2 plots max(orthU ,orthV ,

orthQ) versus n and �gure 6.3 compares the timing.
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Types dimension 50 100 200 300 400 500

Time(secs) 3.7E-1 2.3E0 1.8E1 9.4E1 3.0E2 6.2E2

resA 5.6E1 3.8E2 1.7E2 1.3E4 1.0E4 9.3E3

Type 1 resB 7.6E1 8.1E1 2.7E2 1.1E4 1.2E4 9.6E3

orthU 4.7E1 7.4E1 1.3E2 1.0E2 1.1E2 1.4E2

orthV 4.8E1 7.3E1 1.2E2 1.0E2 1.2E2 1.5E2

orthQ 4.7E1 6.8E1 1.1E2 1.2E2 1.5E2 1.7E2

Time(secs) 2.8E-1 1.6E0 1.2E1 6.1E1 1.6E2 1.9E2

resA 4.4E1 2.2E3 3.9E3 5.6E3 4.2E4 8.2E4

Type 2 resB 4.9E1 6.9E1 9.7E1 1.2E2 2.4E2 6.5E1

orthU 4.3E1 6.4E1 1.1E2 1.3E2 9.7E1 7.4E1

orthV 3.6E1 5.9E1 1.0E2 1.3E2 9.4E1 6.7E1

orthQ 4.2E1 6.2E1 1.0E2 1.3E2 1.3E2 1.3E2

Time(secs) 1.7E-1 8.6E-1 4.2E0 9.2E0 2.1E1 4.8E1

resA 4.0E1 6.9E1 4.4E2 2.0E4 1.7E4 1.4E4

Type 3 resB 3.7E1 8.0E1 2.5E2 1.0E4 4.7E3 3.3E3

orthU 3.6E1 5.2E1 7.1E1 6.3E1 7.1E1 8.0E1

orthV 3.4E1 4.8E1 7.0E1 5.5E1 6.1E1 6.8E1

orthQ 3.5E1 4.9E1 7.1E1 7.5E1 9.0E1 1.0E2

Table 6.1: Speed and Accuracy of SGGSVD on RS6000 with ESSL BLAS (LDA = 501) with

Original Stopping Criterion
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Types dimension 50 100 200 300 400 500

Time(secs) 5.0E-1 3.0E0 2.4E1 1.9E2 6.0E2 1.2E3

resA 7.5E1 9.7E1 1.5E2 1.8E2 2.0E2 2.2E2

Type 1 resB 7.8E1 1.0E2 1.5E2 1.8E2 2.0E2 2.3E2

orthU 6.5E1 1.0E2 1.7E2 2.3E2 2.7E2 3.3E2

orthV 6.5E1 1.0E2 1.7E2 2.3E2 2.7E2 3.5E2

orthQ 5.9E1 8.8E1 1.4E2 1.8E2 2.2E2 2.5E2

Time(secs) 2.8E-1 2.1E0 1.5E1 1.0E2 3.2E2 8.8E2

resA 4.4E1 7.5E1 1.1E2 1.5E2 1.5E2 2.0E2

Type 2 resB 4.9E1 9.0E1 1.3E2 1.9E2 2.7E2 2.4E2

orthU 4.3E1 9.0E1 1.5E2 2.4E2 2.3E2 3.8E2

orthV 3.6E1 8.4E1 1.4E2 2.3E2 2.0E2 3.4E2

orthQ 4.2E1 7.6E1 1.2E2 1.7E2 1.8E2 2.4E2

Time(secs) 1.6E-1 1.1E0 5.4E0 1.6E1 3.8E1 8.2E1

resA 4.0E1 7.5E1 1.2E2 2.2E2 2.6E2 3.3E2

Type 3 resB 3.7E1 8.3E1 2.5E2 3.5E2 3.8E2 4.5E2

orthU 3.6E1 7.0E1 9.7E1 1.2E2 1.4E2 1.5E2

orthV 3.4E1 6.6E1 9.6E1 1.2E2 1.3E2 1.5E2

orthQ 3.5E1 5.9E1 8.5E1 1.0E2 1.2E2 1.4E2

Table 6.2: Speed and Accuracy of SGGSVD on RS6000 with ESSL BLAS (LDA = 501) with

Modi�ed Stopping Criterion
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From our numerical experiments, we found that with the new stopping criterion,

resA and resB are mainly produced by orthogonal transformations (include Jacobi rota-

tions), not by the stopping criterion. To illustrate this, we need to introduce some notations.

Since the preprocessing is done by QR decomposition, which is a very stable pro-

cess, we only consider how large the error can be in STGSJA, the major computation sub-

routine. Let A and B be the input matrices to STGSJA, i.e. A and B are upper triangular

matrices, and let Â and B̂ be the transformed matrices satisfying the stopping criterion

after several Jacobi sweeps, and U , V , Q be the orthogonal matrices accumulated by Jacobi

rotations. i.e.

UT �A �Q = Â and V T �B �Q = B̂:

In STGSJA, Â and B̂ are considered to be \parallel", i.e. their corresponding rows are

parallel, and after the postprocessing, Â = C �R and B̂ = S �R where C and S are diagonal

matrices in (6.2.2) and (6.2.3). In principle, as long as the perturbations to make the

corresponding rows exactly parallel are smaller than the error produced by Jacobi rotations,

1
First, we generate a random matrix G whose elements are uniformly distributed on [�1; 1], then we do

a QR Decomposition of G, i.e. G = Q � R. We then let U = Q.
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Figure 6.4: max(rA
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) versus n, the residual is measured

in ulps

the stopping criterion is a satisfactory one.

Let

rAjacobi =
kUT �A �Q� Âk

" � kAk ; and rBjacobi =
kUT �B �Q� B̂k

" � kBk :

and

rAparallel =
kÂ� C �Rk
" � kAk ; and rBparallel =

kB̂ � S �Rk
" � kBk

We only show the results for Type 1 here, since the other two types are similar. For

both the original stopping criterion and the modi�ed one, for n = 10, 20, 30, 40, 50, 60, 70,

80, 90, 100, 200, 300, 400, 500, �gure 6.4 plots max(rA
parallel

; rB
parallel

) and max(rA
jacobi

; rB
jacobi

)

versus n with a log scale for the vertical axis, �gure 6.6 plots the tolerance of the stopping

criteria "n2min(kAk; kBk) (old) and "nmin(kAk; kBk) (new), and maxi(par(Ai; Bi)) after

stopping criterion has been satis�ed versus n, �gure 6.5 plots max(rA
jacobi

; rB
jacobi

) versus

n, and �gure 6.7 shows the Jacobi sweeps need to be taken. The algorithm with original

stopping criterion is represented by blue lines, and the algorithm with modi�ed stopping

criterion is represented by red lines.
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From �gure 6.4, we can see that with the new stopping criterion, max(rA
parallel

,

rB
parallel

) is well below max(rA
jacobi

; rB
jacobi

), indicating that the orthogonal transformation

is the major contributor to the residual. In contrast, with the old stopping criterion,

max(rA
parallel

; rB
parallel

) is much larger than max(rA
jacobi

; rB
jacobi

). Figure 6.5 plots max(rA
jacobi

;

rB
jacobi

) in a normal scale, which indicates that max(rA
jacobi

; rB
jacobi

) is of O(n), therefore, the

error produced from Jacobi rotations is O(" � n �max(kAk; kBk)).
Another issue about the stopping criterion (for both the old one and the new one)

is min(kAk; kBk) on the right hand side. If kBk is signi�cantly smaller than kAk, then the

stopping criterion may never be met. The reason is that we cannot guarantee the relative

accuracy of the smallest singular value of (Ai; Bi). An alternative approach is to use[9, 10]

par(
Ai

kAik
;
Bi

kBik
) � �

where Ai and Bi are the i-th rows of A and B and � is some tolerance. However, this

stopping criterion may be too strict in some cases, which results in taking unnecessarily

more Jacobi sweeps to converge and making the code to run much longer (see Section 6.5).

So we propose to scale the matrix pairs A and B such that O(kAk) � O(kBk) at the �rst
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step of preprocessing, it will only take time of O(n2) whereas one Jacobi sweep takes time

of O(n3).

6.4 Postprocessing

After modifying the stopping criterion to the new one, STGSJA still can get very

inaccurate results even after we scale the matrix in some cases. The problem is with the

postprocessing. In the original code, the postprocessing is done as follows:

Algorithm 6.4.1 Postprocessing of STGSJA

Input: two n � n upper triangular matrices A and B whose corresponding rows

are considered to be parallel.

Output: The diagonal matrices �1 and �2, and upper triangular matrix R such

that A = �1 �R and B = �2 �R and �1 = diag (�i) and �2 = diag (�i) where

�i=�i are generalized singular values.

1: do i = 1; n

2: a1 = Aii

3: b1 = Bii

4: if (a1 6= 0) then

5: 
 = b1=a1

/* change sign if necessary */

6: if (
 < 0) then

/* change the sign of i-th row of B */

7: B(i; :) = �B(i; :)
/* change the sign of i-th column of V which is the orthogonal

matrix in GSVD, see (6.2.1) */

8: V (i; :) = �V (i; :)
9: end if

10: Compute �i and �i such that 
 = �i=�i and �
2
i + �2i = 1.

/* produce upper triangular matrix R */

11: if (�i � �i)

12: R(i; :) = A(i; :)=�i

13: else
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14: R(i; :) = B(i; :)=�i

15: end if

16: else /* a1 = Aii = 0 */

17: �i = 0

18: �i = 1

19: R(i; :) = B(i; :)

20: end if

21: end do

What the postprocessing does is loop over the rows of A and B, and for the i-th

rows Ai and Bi, mistakenly compares only the diagonal elements Aii and Bii instead of

the corresponding rows. If Aii 6= 0, it computes �i and �i such that �i=�i = Bii=Aii,

�2

i + �2i = 1, and �i; �i � 0 (�i=�i is the generalized singular value). To make �i; �i � 0

when Bii=Aii < 0, the code changes the sign of Bi, and at the same time, changes the sign

of a column of V correspondingly to keep consistency, where V is the orthogonal matrix in

GSVD (see (6.2.1)). The i-th row of R, Ri, is computed as Ai=�i if �i � �i or computed

as Bi=�i otherwise.

Clearly, if Aii and Bii are signi�cantly smaller than the other entries of the same

rows, then �i and �i could be very inaccurate, thus produces the big errors in Ri. Also,

the sign of Bii=Aii is not accurate enough to tell the sign di�erence of the corresponding

rows. We constructed an example such that STGSJA fails due to the inappropriate postpro-

cessing(see �gure 6.8).

We propose two changes to �x the postprocessing problem:

� How to compute �i and �i.

Instead of using the diagonal entries, we use the norms, i.e. we compute �i and �i

such that �i=�i = kAik=kBik, �2

i + �2i = 1, and �i � 0, �i � 0.

� How to decide to change the sign of Bi.

Instead of using the ratio of diagonal entries Bii=Aii to decide whether we should

change the sign, we use the inner product of Ai and Bi, denoted by < Ai; Bi >: we

don not change the sign unless < Ai; Bi > is less than 0.
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Figure 6.8 plots the max(rA
parallel

; rB
parallel

) for the example we constructed, for both

original postprocessing and modi�ed one. The matrices we constructed are two random

upper triangular matrices A and B, the o�diagonal elements of A are uniformly distributed

on [�1; 1], the diagonals are 10". B is the same as A except the diagonals of B are twice

as large as those of A.

6.5 Stability of STGSJA

In this section, we prove the backward stability of STGSJA. We assume the scaling

is done in preprocessing, and we ignore the errors resulting from the preprocessing since it

uses a stable algorithm | QR decomposition. In other words, we assume the input matrix

pair (A;B) are upper triangular matrices and therefore, we will only do error analysis for

STGSJA. We also assume O(kAk) � O(kBk).
As in section 6.3, we denote the transformed upper triangular matrices after the

stopping criterion being satis�ed by Â and B̂. U , V and Q are orthogonal matrices accu-
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mulated from Jacobi rotations and satisfying:

UT �A �Q = Â and V T �B �Q = B̂;

where the i-th rows of Â and B̂, Âi and B̂i, are considered to be parallel because

par(Âi; B̂i) � " � n �min(kAk; kBk)

for i = 1; 2; : : : ; n. So after postprocessing, we can write Â = �1 � R and B̂ = �2 � R,
where R is an upper triangular matrix, �1 and �2 are nonnegative diagonal matrices and

�2

1
+�2

2
= I .

As we already observed in Section 6.3, rA
jacobi

and rB
jacobi

are O("�n�min(kAk; kBk)),
independent of the stopping criterion. So what we are really concerned about is whether the

residuals rA
parallel

and rB
paralel

would be small if the new stopping criterion (6.3.8) is satis�ed.

From the construction of the Algorithm 6.4.1 and by the properties of norms [43],

we know that

rAparallel � g(n)max
i

kAi � �i=�i �Bik
" � kAk = g(n) max

i with Ri is constructed from Bi

kAi � �i=�i �Bik
" � kAk ;

(6.5.9)

where �i=�i � 1, and

rB
parallel

� g(n)max
i

kBi � �i=�i �Aik
" � kBk = g(n) max

i with Ri is constructed from Ai

kBi � �i=�i �Aik
" � kBk ;

(6.5.10)

where �i=�i > 1. Here g(n) is a low order polynomial in n.

We can only consider rA
parallel

, since rB
parallel

is similar. Let ~rA
parallel

= " � rA
parallel

,

therefore

~rAparallel = max
i with Ri is constructed from Bi

kAi � �i=�i �Bik
kAk (6.5.11)

From the previous analysis, if ~rA
parallel

is of O(" �n), we know we have the backward stability,

and the backward error is O(" � n � kAk).
For di�erent i's, there are four cases to be considered:

� kAik; kBik are both very tiny compared with kAk, i.e. kAik; kBik = O(" � n � kAk).
This is an easy case since

kAi � �i=�i �Bik
kAk � kAik+ �i=�i � kBik

kAk � kAik+ kBik
kAk = O(" � n)
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� kAik = O(" � n � kAk), kBik is not tiny compared to kAk.
By our new postprocessing, we know that �i=�i = kAik=kBik, hence,

kAi � �i=�i �Bik
kAk � kAik+ �i=�ikBik

kAk =
kAik+ kAik=kBik � kBik

kAk =
2kAik
kAk = O("�n)

� kBik is tiny whereas kAik is not.
This is impossible since we know that kAik=kBik = �i=�i � 1.

� Neither Ai nor Bi is tiny compared to kAk.
Let the QR decomposition of (Ai; Bi) be

(Ai; Bi) = Q �R = Q �
2
4 r11 r12

0 r22

3
5 ; (6.5.12)

let �min be the smallest eigenvalue of RTR, and �min be the smallest singular value

of R. Thus,

�2min = �min =
a+ b�

p
(a+ b)2 � 4(ab� c2)

2
; (6.5.13)

where a = r2
11
, b = r2

12
+ r2

22
and c = r11r12. Let � = " � n � kAk, so from the stopping

criterion, we know that

�min = par(Ai; Bi) � " � n �min(kAk; kBk) � �: (6.5.14)

From (6.5.13) and (6.5.14), we have

�min =
a+ b�

p
(a+ b)2 � 4(ab� c2)

2
� �2:

Therefore,

a+ b�
q
(a+ b)2 � 4(ab� c2) � 2�2

Equivalently,

a+ b� 2�2 �
q
(a+ b)2 � 4(ab� c2)

Take squares on both sides,

(a+ b)2 � 4�2(a+ b) + 4�4 � (a+ b)2 � 4(ab� c2)

Hence

ab� c2 � (a+ b)�2 + �4: (6.5.15)
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To simplify the computation, from now on, we will use 2-norm. By the invariance of

k � k2 under orthogonal transformation, we have

a = r211 = kAik22; b = r212 + r222 = kBik22: (6.5.16)

Let

~rAi

parallel
=
kAi � �i=�i �Bik2

kAk2
;

since Q is an orthogonal matrix, therefore,

~rAi

parallel
=

kQf
2
4 r11

0

3
5� �i

�i

2
4 r12

r22

3
5gk2

kAk2

=

k
2
4 r11

0

3
5� �i

�i

2
4 r12

r22

3
5 k2

kAk2
:

To show ~rAi

parallel
is tiny, we need

Lemma 6.5.1 In the QR Decomposition (6.5.12) of (Ai; Bi), if r11 = kAik, with the

new postprocessing, we can conclude r12 � 0. Otherwise, if r11 = �kAik, then r12 � 0.

Proof. We only prove the lemma for the case when r11 = kAik, the other case can be

proved similarly. Let x = Ai and y = Bi. Assume the Householder orthogonal matrix

is

Q = I � 2u � uT :

where the Householder vector is

u =
x� kxk2e1

kx� kxk2e1k2
;

where e1 = (1; 0; : : : ; 0)T . Therefore we can write Q as

Q = I � 2

kx� kxk2e1k22
aaT ;

where a = x� kxk2e1. We know that (Qx)T = (kxk2; 0; : : : ; 0)T by the construction.

Now we need to compute (Qy)1 which equals to r12.

Qy = y � 2aTy

kx� kxk2e1k22
a = y � 2(xTy � kxk2y1)

kx� kxk2e1k22
a:



134

Therefore,

r12 = (Qy)1 = y1 �
2(xTy � kxk2y1)
kx� kxk2e1k22

(x1 � kxk2)

= y1 �
2(xTy � kxk2y1)
kxk2

2
� x1kxk2

= y1 �
2(xTy � kxk2y1)
kxk2(kxk2 � x1)

= y1 �
kxk2y1 � xT y

kxk2
=

xT y

kxk2
:

Our postprocessing guarantees that xTy � 0, therefore, r12 � 0.

From now on, without loss of generality, we will assume r11 = kAik2, hence r12 � 0.

In order for ~rAi

parallel
to be tiny, the following quantity

k
2
4 r11

0

3
5� �i

�i

2
4 r12

r22

3
5 k22 = (r11 �

�i

�i
r12)

2 + (
�i

�i
r22)

2;

has to be tiny. From (6.5.16) and c = r11r12, (6.5.15) can be simpli�ed to

r211r
2

22 � �2(r211 + r212 + r222) + �4:

Or,

kAik22r222 � �2(kAik22 + kBik22) + �4: (6.5.17)

Therefore,

(
�i

�i
r22)

2 =
kAik22r222
kBik22

� �2(
kAik22
kBik22

+ 1) +
�4

kBik22
� 3�2;

where we use the facts that kAik2=kBik2 = �i=�i � 1 and kBik2 � � = " � n � kAk2,
since otherwise if kBik2 < " � n � kAk2, it is the case we previously discussed. By

(6.5.17)

r222 � �2(1 +
kBik22
kAik22

) +
�4

kAik22
:

Therefore,

r212 = kBik22 � r222 � kBik22 � �2(1 +
kBik22
kAik22

)� �4

kAik22
:

Thus,

r2
11
� �2

i

�2i
r2
12

= kAik22 �
kAik22
kBik22

r2
12
� �2(

kAik22
kBik22

+ 1) +
�4

kBik22
� 3�2:

Again, we use the facts that kAik2=kBik2 = �i=�i � 1 and kBik2 � � = " � n � kAk2.
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Hence,

(r11�
�i

�i
r12)

2 =

(r2
11
� �2

i

�2i
r2
12
)2

(r11+
�i

�i
r12)2

� (3�2)2

(r11+
�i

�i
r12)2

� 9�4

r2
11

= 9�2
�2

kAik22
� 9�2:

Here, we use the fact that kAik2 � � = " � n � kAk2.

Therefore,

k
2
4 r11

0

3
5� �i

�i

2
4 r12

r22

3
5 k22 = (r11 �

�i

�i
r12)

2 + (
�i

�i
r22)

2 � 3�2 + 9�2 = 12�2;

and

~rAi

parallel
=

k
2
4 r11

0

3
5� �i

�i

2
4 r12

r22

3
5 k2

kAk2
�
p
12�

kAk2
= 2

p
3" � n = O(" � n):

From the analysis for the above cases and equations (6.5.9) and (6.5.10), we infer the

following theorem:

Theorem 6.5.1 In STGSJA, with the input matrices A and B are scaled such that O(kAk) �
O(kBk), with the new stopping criterion and the new postprocessing, we have

max(rAparallel; r
B
parallel) = f(n):

where f(n) is a low order polynomial in n.

Remark 6.5.1 As we mentioned in Section 6.3, theoretically, a much more rigorous stop-

ping criterion is proposed,

par(
Ai

kAik
;
Bi

kBik
) � �;

where � is some tolerance. However, from the �rst case we discussed above, when kAik
and kBik are very tiny compared to kAk and kBk, we don not require the above rigorous

stopping criterion to be satis�ed to get backward stability. So if we only want the backward

stability (what we normally can expect in general), the above rigorous stopping criterion is

not practical.

Using classical error bounds for the error in a product of Givens rotations, it can

be shown that

max(rAjacobi; r
B
jacobi) � ~f(n);
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where f(n) is a low degree polynomial in n, so the residual satis�es

max(
kUT �A �Q� C �Rk

" � kAk ;
kV T �B �Q� S �Rk

" � kBk )

� max(rAjacobi; r
B
jacobi) + max(rAparallel; r

B
parallel) � h(n);

where h(n) = f(n) + g(n) is a low degree polynomial in n. Therefore, we end the section

with the following theorem:

Theorem 6.5.2 For STGSJA, with the input matrices A and B are scaled such that O(kAk) �
O(kBk), with the new stopping criterion and the new postprocessing, STGSJA is backward

stable.

6.6 Van Loan's Algorithm Implemented by Divide-and-Con-

quer SVD

Van Loan's algorithm [96] is based on the observation that if a well-conditioned

matrix has nearly orthogonal columns, then it can be safely diagonalized by the QR factor-

ization [9]. The observation can be described in the following theorem:

Theorem 6.6.1 (Van Loan [96]) Assume that the m � k matrix Y = (y1; y2; : : : ; yk)

satis�es

Y TY = D2 + E

where D = diag (ky1k; ky2k; : : : ; kykk), and let

Y = QR

be the QR factorization of Y , where Q 2 Rm�k is an orthogonal matrix, and R 2 Rk�k is

upper triangular. Let Yi be the �rst i columns of Y . Then for all i and j (j > i), we have

jRij j � minfkyjk;
kEk

�min(Yi)
g:

Given the matrix pair A and B which both have n columns, the �rst step of the

algorithm is a preprocessing step to compute the QR decomposition of G =

2
4 A

B

3
5:

G =

2
4 A

B

3
5 = QR =

2
4 Q1

Q2

3
5R:
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Then we compute the CSD of Q1 and Q2 [23, 92, 96]:2
4 Q1

Q2

3
5 =

2
4 U1 0

0 U2

3
5
2
4 �1

�2

3
5V T ;

where �1 and �2 are the nonnegative diagonal matrices satisfying �T
1
�1 +�T

2
�2 = I , and

U1, U2, V are orthogonal matrices. Therefore,

A = U1�1V
TR; B = U2�2V

TR:

If we want this decomposition to be of the form in (6.2.1), we can do a postprocessing step.

We compute W = V TR, and then compute the RQ factorization of W :

W = ~R ~Q:

In the second step, we search for a well-conditioned submatrix among Q1 and Q2

to do the diagonalization by the QR decomposition as in Theorem 6.6.1, and use the SVD

to diagonalize the remaining ill-conditioned submatrix[9]. In more detail, we �rst compute

the SVD of Q2:

Q2 = U2SV
T
2

where U2 and V2 are orthogonal matrices, and S is diagonal whose elements are increasing

0 � s1 � s2 � � � � � sk � � < sk+1 � � � � � sn;

and where � is certain tolerance which can be speci�ed by user.

Then we do a QR factorization of the product Q1V2:

Q1V2 = U1R1:

In exact arithmetic, since

(Q1V2)
T (Q1V2) = I � (Q2V2)

T (Q2V2) = I � STS;

by Theorem 6.6.1, R1 would be a diagonal matrix. However, because of roundo�, we may

only have

R1 =

2
4 diag (c1; c2; : : : ; ck) 0

0 R2

3
5 ;

where R2 is n� k by n� k and

RT
1R1 + STS = I:
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By Theorem 6.6.1, the �rst k columns of R1 correspond to \large" singular values of Q1.

Now compute the SVD of submatrix R2,

R2 = ~U1diag (ck+1; : : : ; cn) ~V
T
1
;

and the QR factorization of n�k by n�k matrixW1 = D ~V1, where D = diag (sk+1; : : : ; sn),

W1 = ~U2R3:

We then have

R3 = diag (sk+1; : : : ; sn);

since sk+1; : : : ; sn are \large". Combining all the previous steps, we have

Q1 = U1

2
4 I 0

0 ~U1

3
5�1(V2

2
4 I 0

0 ~V1

3
5)T ;

Q2 = U2

2
4 I 0

0 ~U2

3
5�2(V2

2
4 I 0

0 ~V1

3
5)T ;

where �1 = diag (c1; : : : ; cn) and �2 = diag (s1; : : : ; sn). This is the desired CSD of Q1 and

Q2.

Remark 6.6.1 The tolerance � is chosen as the dividing threshold between the large and

small singular values. When � = 1=
p
2, it minimizes a backward error bound [9]. One may

wish to adjust this tolerance under certain circumstances since the overall amount of work

depends on the size of the index k. Large k will result in smaller subproblems, and reduce

the total amount of work, but may increase the backward error. In our implementation, we

use � = 1=
p
2.

6.7 Performance of Van Loan's Algorithm

We implemented Van Loan's algorithm using our new divide-and-conquer SVD

implementation SBDSDC(see chapter 5). We call our routine SGGSDC. We use the same three

types of test matrices as in section 6.3. We ran all the tests in single precision using SGGSVD

with the modi�ed stopping criterion and the postprocessing as described in sections 6.3

and 6.4. As we mentioned there, with the new stopping criterion, SGGSVD is likely to run

twice as slowly as the original SGGSVD because it takes almost twice as many Jacobi sweeps
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Table 6.3: Speedup of SGGSDC over SGGSVD on RS6000

Speedup using ESSL BLAS

Dimension

Test Matrix 50 100 200 300 400 500

type 1 5.10 8.38 13.16 34.55 50.00 54.55

type 2 4.83 8.80 10.67 23.81 34.41 52.35

type 3 2.43 3.93 3.63 3.78 3.98 4.89

to converge. The new postprocessing does not a�ect the performance since it takes O(n2)

time. We ran the tests on an IBM RS6000/590 using ESSL BLAS for n � n matrix pairs

with n = 50; 100; 200; 300; 400; 500.

Table 6.3 shows the speedup of SGGSDC over SGGSVD. Figure 6.9 shows the run

time of SGGSDC and SGGSVD, �gure 6.10 shows the residuals of GSVD max(resA; resB) and

�gure 6.11 shows the residual of orthogonality max(orthU; orthV; orthQ)(see (6.3.6) and

(6.3.7) for de�nitions of the residuals). In all the �gures, we plot the data of SGGSVD by

blue line, SGGSDC by red line; the data of matrices of Type 1 are plotted by solid line, data

of Type 2 are plotted by dashdot line and data of Type 3 are plotted by dashed line.

We can see that SGGSDC achieves a solid speedup over SGGSVD. When n = 500,

the speedup is over 50 for random matrix pairs (see table 6.3). Also, SGGSDC computes the

GSVD more accurately, see �gures 6.10 and �gure 6.11.

Our implementation of Van Loan's algorithm needs O((m+p)n) workspace whereas

SGGSVD only needs max(3n;m; p) + n [2]. Therefore, we recommend to use Van Loan's

algorithm with divide-and-conquer SVD to compute the GSVD of A and B if we have

enough workspace; otherwise, we use SGGSVD. How to reduce the workspace needed by Van

Loan's algorithm needs further investigation.

When we use Van Loan's algorithm to compute the GSVD of A and B, the prescal-

ing of A and B such that O(kAk) � O(kBk) before calling SGGSDC is necessary since other-

wise if kBk � kAk, then when we do a QR factorization of

2
4 A

B

3
5, most information of B

will be lost.

Let � > 0 and � > 0 be two scalars such that k�Ak = k�Bk and the GSVD of �A
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and �B is given by

�A = U�1[0 R]QT ;

�B = V �2[0 R]QT :

Therefore,

A = U(
1

�
�1)[0 R]QT ;

B = V (
1

�
�2)[0 R]QT :

Let

D = (
1

�2
�T
1
�1 +

1

�2
�T
2
�)

1

2 ;

and

�̂1 =
1

�
�1D

�1; �̂2 =
1

�
�2D

�1:

Since

�̂T
1 �̂1 + �̂T

2 �̂2 = D�1(
1

�2
�T
1�1 +

1

�2
�T
2�2)D

�1 = D�1D2D�1 = I;
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the GSVD of A and B is then given by

A = U �̂1[0 DR]QT ;

B = V �̂2[0 DR]QT :
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Chapter 7

Conclusions

In this thesis we have discussed a variety of algorithms for computing the eigende-

composition of a symmetric matrix, the singular value decomposition of a general matrix,

and the generalized singular value decomposition for a pair of matrices. The main work

concerns on the correctness, the stability and the e�ciency of these algorithms.

In chapter 2, we discuss the correctness of the bisection algorithm for �nding

the eigenvalues of symmetric matrices. We focus on the function Count(x) which returns

the number of eigenvalues less than x. We present examples to illustrate the incorrect

implementations, and explain why they fail. We rigorously prove the correctness of several

implementations, such as LAPACK's DSTEBZ.

In chapters 3 and 4, we discuss the parallel pre�x algorithm which accelerates the

bisection algorithm by reducing the complexity of Count(x) from O(n) to O(log2 n). We

present numerical experiments to show the instability of the parallel pre�x algorithm. We

discuss its backward and forward error analysis, and discuss possible ways to improve its

stability such as iterative re�nement. Two problems remain open. The �rst is to �nd a tight

bound on the forward error of the computed results by parallel pre�x can be for a general

symmetric tridiagonal matrix. The second is to �nd a cheap criterion to decide when the

results computed by parallel pre�x are too inaccurate to use.

In chapter 5, we discuss an implementation of a divide-and-conquer algorithm for

computing the singular value decomposition. We have achieved good speedups over the

previous LAPACK implementation using QR-iteration. We also compare the linear least

squares solver based on our implementation of SVD with other solvers including plain QR,

QR with pivoting, rank-revealing QR, etc. We show that the solver based on divide-and-
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conquer SVD (xGELSD) and the solver based on QR-iteration with \factored form" (xGELSF)

make great improvements over the previous implementation in LAPACK. In fact, xGELSF

runs a little faster than xGELSD in several cases, but it requires O(n2) storage in contrast

to O(n log2 n) for xGELSD. Therefore in the future LAPACK release, the SVD-based linear

least squares solver should be based on xGELSF and xGELSD, with a switch such that when

there is enough storage, use xGELSF; otherwise, we use xGELSD.

In chapter 6, we discuss two algorithms for computing the generalized singular

value decomposition. We �rst discuss two improvements on LAPACK's implementation

in order to maintain backward stability, and then we discuss a faster algorithm which

we implemented using the divide-and-conquer SVD. Our implementation, xGGSDC, achieves

good speedups over LAPACK's xGGSVD. However, it requires O(n2) storage whereas xGGSVD

only needs O(n). Therefore, the GSVD routine in the future LAPACK release should be

based on xGGSVD and xGGSDC: when there is enough storage, use xGGSDC; otherwise, we use

xGGSVD.
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