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Abstract. Retrieving images from very large collections, using image

content as a key, is becoming an important problem. Users prefer to
ask for pictures using notions of content that are strongly oriented to

the presence of abstractly de�ned objects. Computer programs that im-

plement these queries automatically are desirable, but are hard to build
because conventional object recognition techniques from computer vision

cannot recognize very general objects in very general contexts.

This paper describes our approach to object recognition, which is struc-
tured around a sequence of increasingly specialized grouping activities

that assemble coherent regions of image that can be shown to satisfy

increasingly stringent constraints. The constraints that are satis�ed pro-
vide a form of object classi�cation in quite general contexts.

This view of recognition is distinguished by: far richer involvement of

early visual primitives, including color and texture; hierarchical group-
ing and learning strategies in the classi�cation process; the ability to deal

with rather general objects in uncontrolled con�gurations and contexts.

We illustrate these properties with four case-studies: one demonstrat-
ing the use of color and texture descriptors; one showing how trees can

be described by fusing texture and geometric properties; one learning

scenery concepts using grouped features; and one showing how this view
of recognition yields a program that can tell, quite accurately, whether

a picture contains naked people or not.

1 Introduction

Very large collections of images are becoming common, and users have a clear
preference for accessing images in these databases based on the objects that are
present in them. Creating indices for these collections by hand is unlikely to be
successful, because these databases can be gigantic. Furthermore, it can be very
di�cult to impose order on these collections. For example, the California Depart-
ment of Water Resources collection contains of the order of half-a-million images;
a subset of this collection can be searched at http://elib.cs.berkeley.edu.
Another example is the collection of images available on the Internet, which is
notoriously large and disorderly. This lack of structure makes it hard to rely on
textual annotations in indexing - computer programs that could automatically
assess image content are a more practical alternative (Sclaro�, 1995).



Another reason that manual indexing is di�cult is that it can be hard to pre-
dict future content queries; for example, local political �gures may reach national
importance long after an image has been indexed. In a very large collection, the
subsequent reindexing process becomes onerous.

Classical object recognition techniques from computer vision cannot help
with this problem. Recent techniques can identify speci�c objects drawn from
a small (of the order of 100) collection, but no present technique is e�ective
at telling, say, people from cows, a problem usually known as classi�cation.
This paper presents case studies illustrating an approach to determining image
content that is capable of object classi�cation. The approach is based on con-
structing rich image descriptions that fuse color, texture and shape information
to determine the identity of objects in the image.

1.1 Materials and Objects - \Stu�" vs \Things"

Many notions of image content have been used to organize collections of images
(e.g. Layne, 1994). Relevant here are notions centered on objects; the distinction
between materials - \stu�" - and objects - \things" - is particularly important.
A material (e.g. skin) is de�ned by a homogeneous or repetitive pattern of �ne-
scale properties, but has no speci�c or distinctive spatial extent or shape. An
object (e.g. a ring) has a speci�c size and shape. This distinction4 and a similar
distinction for actions, are well-known in linguistics and philosophy (dating back
at least toWhorf, 1941) where they are used to predict di�erences in the behavior
of nouns and verbs (e.g. Taylor, 1977;Tenney, 1987;Fleck, 1996).

To a �rst approximation, 3D materials appear as distinctive colors and tex-
tures in 2D images, whereas objects appear as regions with distinctive shapes.
Therefore, one might attempt to identify materials using low-level image proper-
ties, and identify objects by analyzing the shape of and the relationships between
2D regions. Indeed, materials with particularly distinctive color or texture (e.g.
sky) can be successfully recognized with little or no shape analysis, and objects
with particularly distinctive shapes (e.g. telephones) can be recognized using
only shape information.

In general, however, too much information is lost in the projection onto the
2D image for strategies that ignore useful information to be successful. The
typical material, and so the typical color and texture of an object, is often
helpful in separating the object from other image regions, and in recognizing
it. Equally, the shapes into which it is typically formed can be useful cues in
recognizing a material. For example, a number of other materials have the same
color and texture as human skin, at typical image resolutions. Distinguishing
these materials from skin requires using the fact that human skin typically occurs
in human form.

4 In computer vision, Ted Adelson has emphasized the role of �ltering techniques in

early vision for measuring stu� properties.



1.2 Object Recognition

Current object recognition systems represent models either as a collection of ge-
ometric measurements|typically a CAD or CAD-like model|or as a collection
of images of an object. This information is then compared with image informa-
tion to obtain a match. Comparisons can be scored by using a feature corre-
spondences to backproject object features into an image. Appropriate feature
correspondences can be obtained by various forms of search (for example, Hut-
tenlocher and Ullman, 1986; Grimson and Lozano-P�erez, 1987; Lowe, 1987). A
variant of this approach, due to Ullman and Basri (1991), uses correspondences
to determine a new view of the object, which is de�ned by a series of images,
and overlay that new view on the image to evaluate the comparison. Alterna-
tively, one can de�ne equivalence classes of features, each large enough to have
distinctive properties (invariants) preserved under the imaging transformation.
These invariants can then be used as an index for a model library (examples of
various combinations of geometry, imaging transformations, and indexing strate-
gies include Lamdan et al., 1988; Weiss, 1988; Forsyth et al., 1991; Rothwell et
al., 1992; Stein and Medioni, 1992; Taubin and Cooper, 1992; Liu et al, 1993;
Kriegman and Ponce, 1994).

Each case described so far models object geometry exactly. An alternative
approach, usually known as appearance matching, models objects by collections
of images of the object in various positions and orientations and under vari-
ous lighting conditions. These images are compressed, and feature vectors are
obtained from the compressed images. Matches are obtained by computing a fea-
ture vector from a compressed version of the original image and then applying a
minimum distance classi�er (e.g. Sirovich and Kirby, 1987; Turk and Pentland,
1991; Murase and Nayar, 1995).

All of the approaches described rely heavily on speci�c, detailed geometry,
known (or easily determined) correspondences, and either the existence of a
single object on a uniform, known background (in the case of Murase and Na-
yar, 1995) or the prospect of relatively clear segmentation. None is competent to
perform abstract classi�cation; this emphasis appears to be related to the under-
lying notion of model, rather than to the relative di�culty of the classi�cation vs.
identi�cation. Notable exceptions appear in Nevatia and Binford, 1977; Brooks,
1981; Connell, 1987; Zerroug and Nevatia, 1994, all of which attempt to code
relationships between various forms of volumetric primitive, where the descrip-
tion is in terms of the nature of the primitives involved and of their geometric
relationship.

1.3 Content Based Retrieval from Image Databases

Algorithms for retrieving information from image databases have concentrated
on material-oriented queries, and have implemented these queries primarily using
low-level image properties such as color and texture. Object-oriented queries
search for images that contain particular objects; such queries can be seen either



as constructs on material queries (Picard and Minka, 1995) as essentially textual
matters (Price et al., 1992), or as the proper domain of object recognition.

The best-known image database system is QBIC (Niblack et al., 1993) which
allows an operator to specify various properties of a desired image. The sys-
tem then displays a selection of potential matches to those criteria, sorted by a
score of the appropriateness of the match. The operator can adjust the scoring
function. Region segmentation is largely manual, but the most recent versions
of QBIC (Ashley et al., 1995) contain simple automated segmentation facilities.
The representations constructed are a hierarchy of oriented rectangles of �xed
internal color and a set of tiles on a �xed grid, which are described by internal
color and texture properties. However, neither representation allows reasoning
about the shape of individual regions, about the relative positioning of regions
of given colors or about the cogency of geometric coocurrence information, and
so there is little reason to believe that either representation can support object
queries.

Photobook (Pentland et al., 1993) largely shares QBIC's model of an image as
a collage of at, homogeneous frontally presented regions, but incorporates more
sophisticated representations of texture and a degree of automatic segmentation.
A version of Photobook (Pentland et al., 1993; p. 10) incorporates a simple notion
of object queries, using plane object matching by an energy minimization strat-
egy. However, the approach does not adequately address the range of variation in
object shape and appears to require images that depict single objects on a uni-
form background. Further examples of systems that identify materials using low-
level image properties include Virage (home page at http://www.virage.com/),
Candid (home page at http://www.c3.lanl.gov/ kelly/CANDID/main.shtml
and Kelly et al., 1995) and Chabot (Ogle and Stonebraker, 1995). None of these
systems code spatial organization in a way that supports object queries.

Variations on photobook (Picard and Minka, 1995; Minka, 1995) use a form of
supervised learning known in the information retrieval community as \relevance
feedback" to adjust segmentation and classi�cation parameters for various forms
of a textured region. When a user is available to tune queries, supervised learn-
ing algorithms can clearly improve performance given appropriate object and
image representations. In some applications of our algorithms, however, users
are unlikely to want to tune queries.

More signi�cantly, the representations used in these supervised learning al-
gorithms do not code spatial relationships. Thus, these algorithms are unlikely
to be able to construct a broad range of e�ective object queries. To achieve
an object-oriented query system there is a need to go to higher levels of the
representation hierarchy and to encode spatial relationships using higher-level
grouping features. Finally, there is a query mode that looks for images that are
near iconic matches of a given image (for example, Jacobs et al., 1995). This
matching strategy cannot �nd images based on the objects present, because it
is sensitive to such details as the position of the objects in the image, the com-
position of the background, and the con�guration of the objects - for example,
it could not match a front and a side view of a horse.



2 A Grouping Based Framework for Object Recognition

Our approach to object recognition is to construct a sequence of successively ab-
stract descriptors, at an increasingly high level, through a hierarchy of grouping
and learning processes. At the lowest level, grouping is based on spatiotempo-
ral coherence of local image descriptors{color, texture, disparity, motion{with
contours and junctions extracted simultaneously to organize these groupings.
There is an implicit assumption in this process, that coherence of these image
descriptors is correlated with the associated scene entities being part of the same
surface in the scene. At the next stage, the assumptions that need to be invoked
are more global (in terms of size of image region) as well as more class-speci�c.
For example, a group that is skin-colored, has an extended bilateral image sym-
metry and has near parallel sides should imply a search for another such group,
nearby, because it is likely to be a limb.

This approach leads to a notion of classi�cation where object class is in-
creasingly constrained as the recognition process proceeds. Classes need not be
de�ned as purely geometric categories. For instance in a scene expected to con-
tain faces, prior knowledge of the spatial con�guration of eyes, mouth etc can be
used to group together what might otherwise be regarded as separate entities. As
a result, the grouper's activities become increasingly specialized as the object's
identity emerges; constraints at higher levels are evoked by the completion of
earlier stages in grouping. The particular attractions of this view are:

{ that the primary activity is classi�cation rather than identi�cation;
{ that it presents a coherent view of combining bottom-up with top-down
information ow that is richer than brute search;

{ and that if grouping fails at some point, it is still possible to make statements
about an object's identity.

Slogans characterizing this approach are: grouping proceeds from the local to

the global; and grouping proceeds from invoking generic assumptions to more

speci�c ones. The most similar ideas in computer vision are those of a body
of collaborators usually seen as centered around Binford and Nevatia (see, for
example Nevatia and Binford, 1977; Brooks, 1981; Connell, 1987; Zerroug and
Nevatia, 1994), and the work of Zisserman et al., 1995. Where we di�er is in:

1. o�ering a richer view of early vision, which must o�er more than contours
extracted by an edge detector (an approach that patently fails when one
considers objects like sweaters, brick walls, or trees).

2. attributing much less importance to the recovery of generalized cylinders as
the unifying theme for the recognition process.

3. attempting to combine learning with the hierarchical grouping processes.

A central notion in grouping is that of coherence, which is hard to de�ne well but
captures the idea that regions should (in some sense) \look" similar internally.
Examples of coherent regions include regions of �xed color, tartan regions, and
regions that are the projection of a vase. We see four major issues:



1. Segmenting images into coherent regions based on integrated re-

gion and contour descriptors: An important stage in identifying objects
is deciding which image regions come from particular objects. This is sim-
ple when objects are made of stu� of a single, �xed color; however, most
objects are covered with textured stu�, where the spatial relationships be-
tween colored patches are an important part of any description of the stu�.
The content-based retrieval literature cited above contains a wide variety of
examples of the usefulness of quite simple descriptions in describing images
and objects. Color histograms are a particularly popular example; however,
color histograms lack spatial cues, and so must confuse, for example, the
English and the French ags. In what follows (Sec. 3), we show three im-
portant cases: in the �rst, features extracted from the orientation-histogram
of the image are used for the extraction of coherent texture regions. This
allows distinctions between uniform background and textured objects, and
leads to higher-level information which can guide the recognition task. In the
second, the observation that a region of stu� is due to the periodic repetition
of a simple tile yields information about the original tile, and the repetition
process. Such periodic textures are common in real pictures, and the spatial
structure of the texture is important in describing them. Finally, measure-
ments of the size and number of small blobs of color yield information about
stu� regions - such as �elds of owers - that cannot be obtained from color
histograms alone.

2. Fusing color, texture and shape information to describe primitives:

Once regions that are composed of internally coherent stu� have been identi-
�ed, 2D and 3D shape properties of the regions need to be incorporated into
the region description. In many cases, objects either belong to constrained
classes of 3D shapes - for example, many trees can be modeled as surfaces of
revolution - or consist of assemblies of such classes - for example, people and
many animals can be modeled as assemblies of cylinders. It is often possible
to tell from region properties alone whether the region is likely to have come
from a constrained class of shapes (eg Zisserman et al., 1995); knowing the
class of shape from which a region came allows other inferences. As we show
in Sec. 4, knowing that a tree can be modeled as a surface of revolution sim-
pli�es marking the boundary of the tree, and makes it possible to compute
an axis and a description of the tree.

3. Learning as a methodology for developing the relationship between

object classes and color, texture and shape descriptors Given the
color, texture and shape descriptors for a set of labeled objects, one can
use machine learning techniques to train a classi�er. In section 5, we show
results obtained using a decision tree classi�er that was trained to distinguish
among a number of visual concepts that are common in our image database.
A novel aspect of this work is the use of grouping as part of the process
of constructing the descriptors, instead of using simple pixel-level feature
vectors. Interestingly, the output of a classi�er can itself be used to guide
higher level grouping. While this work is preliminary, it does suggest a way



to make less tedious the processes of acquiring object models and developing
class-based grouping strategies.

4. Classifying objects based on primitive descriptions and relation-

ships between primitives:Once regions have been described as primitives,
the relationships between primitives become important. For example, �nding
people or animals in images is essentially a process of �nding regions cor-
responding to segments and then assembling those segments into limbs and
girdles. This process involves exploring incidence relationships, and is con-
strained by the kinematics of humans and animals. We have demonstrated
the power of this constraint-based representation by building a system that
can tell quite reliably whether an image contains naked people or not, which
is briey described in Sec. 6.

3 Case Study 1: Color and Texture Properties of Regions

Color and texture are two important low-level features in the initial represen-
tation of the input image; as such they form the initial phase of the grouping
framework. Texture is a well-researched property of image regions, and many
texture descriptors have been proposed, including multi-orientation �lter banks
(e.g. Malik and Perona, 1990; Greenspan et al.,1994), the second-moment ma-
trix (F�orstner, 1993; G�arding and Lindeberg, 1995), and orientation histograms
(Freeman and Roth, 1995). We will not elaborate here on some of the more clas-
sical approaches to texture segmentation and classi�cation- both of which are
challenging and well-studied tasks. Rather, we want to introduce several new
perspectives related to texture descriptors and texture grouping which were mo-
tivated from the content-based retrieval task; and which we believe present new
problems in the �eld.

The �rst task that we present is that of identifying regions of uniform in-
tensity vs. regions that are textured. This categorization enables the extraction
of foreground vs. background regions in the image, guiding the search for ob-
jects in the scene. In addition, distinguishing among texture patterns which are
singly-oriented, multiply-oriented, or which are stochastic in nature, can allow
for further categorization of the scene and for the extraction of higher-level
features to aid the recognition process (e.g. single-oriented ow is a strong char-
acteristic of water waves, grass is stochastic etc). Finally, boundaries between a
textured region and the background, or between di�ering texture segments, are
an additional important feature which can facilitate the extraction of contour
descriptors.

A view unifying region �nding with contour extraction can be facilitated by
extracting informative features from the orientation histogram of the gradient
image. One such feature is a 180� normalized cross-correlation measure of the
orientation histogram. An edge, which separates two uniform-intensity regions,
is characterized by a single dominant orientation in the gradient image. Its cross-
correlation �gure will correspondingly be close to zero. A bar, on the other hand,
can be thought of as the basic texture unit, and is characterized by its gradient



            

Fig. 1. An example of non-textured vs. textured region categorization. The catego-

rization is based on orientation histogram analysis of overlapping local windows. A
non-textured window is characterized by a low DC component of the histogram. A win-

dow is labeled as textured based on a strong response to a 180�-shift cross-correlation

of the orientation histogram. The distinction into the two categories in this case allows
for an important subdivision of the input image into the non-textured sky region and

the textured city.

map having two dominant orientations which are 180� phase shift apart. The
normalized correlation �gure is correspondingly close to one. Fitting the cyclic
orientation histograms enables the extraction of additional informative features,
such as relative peak energy as well as the corresponding peak angular local-
ization. Finally, a frequency-domain analysis of the histogram harmonics can
provide further region characterization.

In the following, features are extracted, characterizing the orientation his-
tograms of two image resolutions (8 � 8 and 4 � 4 overlapping windows). The
combination of these features provide us with feature-vectors from which the
desired categorization is enabled. Figs. 1 and 2 display preliminary results of the
textured-region analysis.

A second problem of interest is the detection of periodic repetition of a ba-
sic tile, as a means for region grouping (Leung and Malik, 1996). Such regions
can be described by a representation which characterizes the individual basic
element, and then represents the spatial relationships between these elements.
Spatial relationships are represented by a graph where nodes correspond to indi-
vidual elements and arcs join spatially neighboring elements. With each arc rij
is associated an a�ne map Aij that best transforms the image patch I(xi) to
I(xj). This a�ne transform implicitly de�nes a correspondence between points
on the image patches at xi and xj .
Regions of periodic texture can be detected and described by:

{ detecting \interesting" elements in the image;
{ matching elements with their neighbors and estimating the a�ne transform



between them;
{ growing the element to form a more distinctive unit;
{ and grouping the elements.

The approach is analogous to tracking in video sequences; an element is \tracked"
to spatially neighboring locations in one image, rather than from frame to frame.
Interesting elements are detected by breaking an image into overlapping windows
and computing the second moment matrix (as in F�orstner, 1993; G�arding and
Lindeberg, 1995), which indicates whether there is much spatial variation in a
window, and whether that variation is intrinsically one- or two-dimensional. By
summing along the dominant direction, \ow" regions, such as vertical stripes
along a shirt, can be distinguished from edges. Once regions have been classi�ed,
they can be matched to regions of the same type.

An a�ne transform is estimated to bring potential matches into registration,
and the matches are scored by an estimate of the relative di�erence in intensity
of the registered patches. The output of this procedure is a list of elements which
form units for repeating structures in the image. Associated with each element
is the neighboring patches which match well with the element, together with the
a�ne transform relating them. These a�ne transforms contain shape cues, as
well as grouping cues (Malik and Rosenholtz, 1994).

The �nal step is to group the elements together by a region growing technique.
For each of the 8 windows neighboring an element, the patch which matches
the element best, and the a�ne transform between them is computed. Two
patches are grouped together by comparing the error between an element and
its neighboring patch with the variation in the element. Of course, as the growth
procedure propagates outward, the size and shape of the basic element in the
image will change because of the slanting of the surface. An example of repetitive
tile grouping is presented in Fig. 3. A more elaborate description of this work
can be found in (Leung and Malik, 1996).

Of-course, texture need not be studied purely as a gray-scale phenomenon.
Many interesting textures, such as �elds of owers, consist of a representative
spatial distribution of colored elements. Color is yet another important cue in
extracting information from images. Color histograms have proven a useful stu�
query, but are poor at, for example, distinguishing between �elds of owers
and a single large ower, because they lack information as to how the color is
distributed spatially. This example indicates the importance of fusing color with
textural properties. The size and spatial distribution of blobs of color is a natural
�rst step in such a fusion. It is also a natural stu� description - and hence, query
- which is particularly useful for outdoor scenes in the case of hues ranging from
red to yellow. We achieve this query by the following method:

{ forming hue, saturation, and value (HSV) channels;
{ coarsely requantizing these channels for various colors to form color maps,
where an orange color map would reect those pixels which fall within a
certain range around orange in HSV space;

{ forming a Gaussian pyramid (after Burt & Adelson, 1983) for each color
map;



{ �ltering each level of the pyramid with a center-surround "dot" �lter and
several oriented "line" �lters (all zero-mean);

{ thresholding the �lter outputs and counting the number of distinct responses
to a particular �lter.

Responses at a coarse scale indicate large blobs of the appropriate color;
responses at �ner scales indicate smaller blobs. The number of blobs at each
scale and orientation for each color is returned. As Figs. 4 and 5 show, queries
composed of a combination of this information with textual cues, or with an
estimate of a horizon, correlate extremely strongly with content in the present
Cypress database. This query engine is available on the World Wide Web, at
http://elib.cs.berkeley.edu/cypress.



            

Fig. 2. Detection of non-textured regions, textured regions and boundary elements on

a Cheeta image. Local windows, of size 4 � 4 are categorized into the 3 classes. Bound-
ary elements correspond to both intensity-edges as well as textured-edges. Windows are

labeled as boundary if they have a low histogram cross-correlation �gure in both resolu-

tions of analysis. We note the importance of detecting the no-texture region as a step
which enables to focus further attention to the more-interesting, textured regions of the

image - in this example, focusing the attention on the animal �gure. The textured region

extracts the entire cheeta, as well as the grass. Further, more detailed investigation on
the extracted textured regions (using blob-�nding or repetitive-pattern region-growing,

for example, both schemes which will be described below), will enable a re�ned distinc-

tion between the cheeta and its surrounding. We note that the extraction of boundary
information uni�ed with textured-region information, helps eliminate the confusion be-

tween the true animal boundary and the many edges which exist within the cheeta's

textured body (classic edge-�nding schemes will detect all the circular edges as well).



Fig. 3. A textile image. The original image is shown on the left, and the center image
shows the initial patches found. The crosses are the locations of units grouped together.

The image on the right shows the segmented region is displayed.Notice that the rectangle

includes two units in the actual pattern. This is due to the inherent ambiguity in de�ning

a repeating unit - 2 tiles together still repeat to form a pattern.



Fig. 4. Querying the Cypress database for images that contain a large proportion of

yellow pixels produces a collection of responses that is eclectic in content; there is little

connection between the response to this query and particular objects. While these queries

can be useful, particularly when combined with text information, they are not really

concept or \thing" queries.



Fig. 5. Querying the Cypress database for images that contain a large number of small
yellow blobs and a horizon yields scenic views of �elds of owers. The horizon is ob-

tained by searching in from each boundary of the image for a blue region, extending to

the boundary, that does not curve very sharply. In this case, the combination of spatial
and color queries yields a query that encapsulates content surprisingly well. While the

correlation between object type and query is fortuitous, and relevant only in the context

of the particular database, it is clear that the combination of spatial and chromatic
information in the query yields a more powerful content query than color alone. In

particular, the language of blobs is a powerful and useful early cue to content. Note

that the ordering of the images in response to the query (as presented in this �gure) is
arbitrary. No relative ranking is performed.



4 Case Study 2: Fusing Texture and Geometry to

Represent Trees

Generic grouping as studied in the previous subsection can only go so far; ap-
proaches can be made more powerful by considering classes of objects. We study
trees as an interesting class. Recognizing individual trees makes no sense; instead
it is necessary to de�ne a representation with the following properties:

{ It should not change signi�cantly over the likely views of the tree.
{ It should make visual similarities and visual di�erences between trees ap-
parent. In particular, it should be possible to classify trees into intuitively
meaningful types using this representation.

{ It should be possible to determine that a tree is present in an image, segment
it, and recover the representation without knowing what tree is present.

Trees can then be classi�ed according to whether the representations are similar
or not.

Branch length and orientation appear to be signi�cant components of such
a representation. Since trees are typically viewed frontally, with their trunks
aligned with the image edges, and at a su�cient distance for a scaled a�ne
viewing model to be satisfactory, it is tempting to model a tree as a plane
texture. There are two reasons not to do so: considering a tree as a surface of
revolution provides grouping cues; and there is a reasonable chance of estimating
parameters of the distribution of branches in 3D. Instead, we model a tree as
a volume with a rotational symmetry with branches and leaves embedded in
it. Because of the viewing conditions, the image of a tree corresponding to this
model will have a bilateral symmetry about a vertical axis, a special case of the
planar harmonic homology of (Mukherjee et al., 1995). This axis provides part
of a coordinate system in which the representation can be computed. The other
is provided by the outline of the tree, which establishes scale and translation
along the axis and scale perpendicular to the axis. A representation computed
in this coordinate system will be viewpoint stable for the viewpoints described.

Assuming that the axis and outline have been marked, the orientation rep-
resentation is obtained by forming the response of �lters tuned to a range of
orientations. These response strengths are summed along the axis at each ori-
entation and for a range of steps in distance perpendicular to the axis, relative
to width. The representation resulting from this process (which is illustrated
in Fig. 6) consists of a map of summed strength of response relative to ori-
entation and distance from the axis. As the �gure shows, this representation
makes a range of important di�erences between trees explicit. Trees that have
a strongly preferred branch orientation (such as the pine trees) show a strong
narrow peak in the representation at the appropriate orientation; trees, such
as monkey puzzle trees, which have a relatively broad range of orientations of
branches show broader peaks in the representation. Furthermore, the representa-
tion distinguishes e�ectively between trees that are relatively translucent - such
as the monkey puzzle - and those that are relatively opaque.



An axis and an outline are important to forming the representation. Both
can be found by exploiting the viewing assumptions, known constraints on the
geometry of volumetric primitives, and the assumed textural coherence of the
branches. Figure 7 illustrates the axis �nding procedure, and �gure 8 shows how
the outline follows from the axis.

O
ri

en
ta

ti
on

Outline 
Curve

Relative 
Width=1/3

Relative 
Width=2/3

Distance Distance from Axis

O
rie

nt
at

io
n

1 2 3 4 5 6 7 8 9 10

90

75

60

45

30

15

0

−15

−30

−45

−60

−75

Fig. 6. The orientation representation is obtained by computing the strength of response

at various orientations with respect to the axis, at a range of perpendicular distances to
the axis. These distances are measured relative to the width of the outline at that point,

and so are viewpoint stable. Responses at a particular orientation and a particular

distance are summed along the height of the outline. The �gure on the left illustrates
the process; the representation has three clear peaks corresponding to the three branch

orientations taken by the (bizarre!) illustrative tree. The image on the extreme right

shows the representation extracted for the tree in the center image. In our display
of the orientation representation, brighter pixels correspond to stronger responses; the

horizontal direction is distance perpendicular to the tree axis relative to the width of the

tree at the relevant point, with points on the tree axis at the extreme left; the vertical
direction is orientation (which wraps around). In the given case, there is a sharp peak

in response close to the axis and oriented vertically, which indicates that the trunk of

the tree is largely visible. A second peak oriented at about 300 and some distance out
indicates a preferred direction for the tree branches.

5 Case Study 3: Learning Scenery Concepts Using

Grouped Features

The previous case study demonstrated the power of a hand-crafted grouping
strategy for an important class of objects{ trees. However a legitimate concern
might be that to generalize this approach would be quite cumbersome{ does one
hand-craft groupers for trees, buildings, roads, chairs? Our view is that given the



Fig. 7. The viewing assumptions mean that trees have vertical axes and a reectional

symmetry about the axis. This symmetry can be employed to determine the axis by vot-

ing on its horizontal translation using locally symmetric pairs of orientation responses
and a Hough transform. Left: The symmetry axis superimposed on a typical image,

showing also the regions that vote for the symmetry axis depicted. Right: In this image,

there are several false axes generated by symmetric arrangements of trees; these could
be pruned by noticing that the orientation response close to the axis is small.

appropriate set of visual primitives, a suite of grouping strategies and classi�ed
examples, it should be possible to use machine learning techniques to aid this
process.

As a demonstration of this idea, we have implemented a simple system for
automatic image annotation using images from the DWR image database. The
system is capable of detecting concepts such as sky, water and man-made struc-
ture in color images. Our approach begins with an early-visual processing step
to obtain color and texture information and then proceeds with a number of
parallel grouping strategies. The grouping strategies seek to combine the results
of the �rst processing step in a manner which lends itself to the task of classi�ca-
tion. For example, a region of an image which is (1) coherent with respect to its
light blue color and lack of texture, (2) is located in the upper half of the image
and (3) is elongated horizontally suggests the presence of sky. The classi�cation
of concepts based on grouped features is accomplished by means of a decision
tree, which was learned using C4.5 (Quinlan, 1993).

Figure 9 illustrates the �rst step of our approach, wherein the image is de-
composed into a number of binary color/texture `separations.' The separation
images are then fed to three parallel grouping strategies. Each grouping strategy
attempts to specify regions in a binary image which are coherent with respect to



Fig. 8. Once the axis is known, the outline can be constructed by taking a canonical

horizontal cross-section and scaling other cross-sections to �nd the width that yields a

cross-section that is most similar. Left: An outline and axis superimposed on a typical
image. Center: The cross-sections that make up the outline, superimposed on an image

of the tree. Right: The strategy fails for trees that are poorly represented by orientations

alone, as in this case, as the comparisons between horizontal slices are inaccurate.
Representing this tree accurately requires using �lters that respond to blobs as well;

such a representation would also generate an improved segmentation.

one of the following rules: (1) solid contiguity, (2) similarity in local orientation
and (3) similarity in di�useness. The results of the three grouping strategies ap-
plied to the yellow, green, light blue and 'rough' separation images are shown in
Figure 10.

Each blob is represented by a feature vector containing its area, coordinates
in the image, eccentricity, principle orientation, mean saturation and mean in-
tensity, as well as the color/texture separation and grouping strategy which gave
rise to it. These feature vectors are the input to a decision tree classi�er. The
decision tree attempts to assign a label to each blob according to these char-
acteristics. The class confusion matrix obtained in our experiments is shown
in Figure 12. The performance of the system as summarized in the confusion
matrix was obtained using 10-fold cross validation. For the most part, the con-
fusion matrix contains large diagonal entries, indicating a tendency to classify
concepts correctly. Notice that when errors do occur, the incorrectly chosen class
tends to share some salient characteristics with the correct class (e.g. tree and
vegetation).

While the current system's use of shape (i.e. area and principle axes) is
somewhat primitive, there is a natural way to proceed within the same general
framework. The additional use of symmetry features and repeating patterns, for
example, promises to extend the capabilities of the system beyond simple blob-



            

Fig. 9. Illustrating the color/texture separations for a test image. Separations 1-9 were

formed strictly by gating the hue; e.g., a hue in the interval [:07; :1) is labeled as `orange.'
Separations 10-12 each made use of saturation and/or intensity. Lastly, separation 13,

`rough,' made use of the eigenvalues of the windowed-image second moment matrix

computed for the intensity component of the original image.

like scenery concept detection. An interesting question to address is, given the
component features needed to detect a tree in an image, can the performance of
the hand-crafted tree recognizer of case study 2 be matched by a special instance
of a general grouping-based concept learner?

In future work, we intend to answer this question by augmenting the toolbox
of early vision descriptors and by adding more grouping strategies. We also in-
tend to investigate additional learning strategies such as Bayes' nets and decision
graphs for improved handling of spatial relationships between simpler concepts.

6 Case Study 4: Fusing Color, Texture and Geometry to

Find People and Animals

A variety of systems have been developed speci�cally for recognizing people or
human faces. There are several domain speci�c constraints in recognizing humans
and animals: humans and (many!) animals are made out of parts whose shape is
relatively simple; there are few ways to assemble these parts; the kinematics of



            

Fig. 10. The results of the three grouping strategies for four of the color/texture bin

images from the preceding �gure. For example, the top row indicates that nearly all
of the pixels in the `yellow' separation were accounted for as a `di�use' region. Since

there was no strongly oriented structure in the original image underlying the `yellow'

separation, no pixels were labeled as `oriented.'

            

Fig. 11. The homogeneously oriented regions in the striped canopy in the image on the

left show up as distinct blobs in the result of the second grouping strategy, shown on

the right. (The color/texture separation was equal to one everywhere, thus de�ning the
entire image as a potential area of interest.)



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) <-classified as

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

5 1 2 (a) cloud

9 1 1 2 (b) dirt

12 1 (c) flower

8 (d) lawn

1 27 2 1 1 (e) manmade

1 28 1 1 (f) sky

6 1 1 (g) snow

13 (h) tan-ground

1 8 2 1 (i) tarmac

1 1 8 11 (j) tree

1 36 (k) vegetation

1 1 10 (l) water

Fig. 12. The class confusion matrix. O�-diagonal entries correspond to misclas-

si�cations. Notice that all 8 of the lawn examples were misclassi�ed as vegetation.

Similarly, 8 out of 21 trees were misclassi�ed as vegetation. This suggests that

our features were not rich enough to discriminate these two classes. Notice also

that 2 out of 8 cloud examples were misclassi�ed as sky, probably because of noise

in the training data.

the assembly ensures that many con�gurations of these parts are impossible; and,
when one can measure motion, the dynamics of these parts are limited, too. Most
previous work on �nding people emphasizes motion, but face �nding from static
images is an established problem. The main features on a human face appear
in much the same form in most images, enabling techniques based on principal
component analysis or neural networks proposed by, for example, Pentland et al.,
1994; Sung and Poggio, 1994; Rowley et al., 1996; Burel and Carel, 1994. Face
�nding based on a�ne covariant geometric constraints is presented by Leung et

al., 1995.
However, segmentation remains a problem; clothed people are hard to seg-

ment, because clothing is often marked with complex colored patterns, and most
animals are textured in a way that is intended to confound segmentation. At-
tempting to classify images based on whether they contain naked people or not
provides a useful special case that emphasizes the structural representation over
segmentation, because naked people display a very limited range of colors and
are untextured. Our system (Fleck et al., 1996) for telling whether an image
contains naked people:

{ �rst locates images containing large areas of skin-colored region;
{ then, within these areas, �nds elongated regions and groups them into pos-
sible human limbs and connected groups of limbs.

Images containing su�ciently large skin-colored groups of possible limbs are re-



ported as potentially containing naked people. No pose estimation, back-projection
or veri�cation is performed.

Face

Spine Limb-segment 

Limb-Limb
girdle

LimbSegment

Spine-limb
girdle

Girdle and
trunk

Paired 
girdles

girdle

Complete
figure

Head and
Shoulders

Fig. 13. The grouping rules (arrows) specify how to assemble simple groups (e.g. body
segments) into complex groups (e.g. limb-segment girdles). These rules incorporate con-

straints on the relative positions of 2D features, induced by geometric and kinematic

constraints on 3D body parts. Dashed lines indicate grouping rules that are not yet im-
plemented. Notice that this representation of human structure emphasizes grouping and

assembly, but can be comprehensive.

Marking skin involves stu� processing; skin regions lack texture, and have a
limited range of hues and saturations. To render processing invariant to changes
in overall light level, images are transformed into a log-opponent representa-
tion, and smoothed texture and color planes are extracted. To compute texture
amplitude, the intensity image is smoothed with a median �lter; the result is
subtracted from the original image, and the absolute values of these di�erences
are run through a second median �lter. The texture amplitude and the smoothed
R�G and B �Y values are used to mark as probably skin all pixels whose tex-
ture amplitude is no larger than a threshold, and whose hue and saturation lie
in a �xed region. The skin regions are cleaned up and enlarged slightly, to ac-
commodate possible desaturated regions adjacent to the marked regions. If the
marked regions cover at least 30% of the image area, the image will be referred
for geometric processing.

The input to the geometric grouping algorithm is a set of images, in which the
skin �lter has marked areas identi�ed as human skin. She�eld's implementation
of Canny's (1986) edge detector, with relatively high smoothing and contrast
thresholds, is applied to these skin areas to obtain a set of connected edge curves.
Pairs of edge points with a near-parallel local symmetry (as in Brady and Asada,
1984) and no other edges between them are found by a straightforward algorithm.
Sets of points forming regions with roughly straight axes (\ribbons"; Brooks,
1981) are found using a Hough transformation.



Grouping proceeds by �rst identifying potential segment outlines, where a
segment outline is a ribbon with a straight axis and relatively small variation
in average width. Pairs of ribbons whose ends lie close together, and whose
cross-sections are similar in length, are grouped together to make limbs. The
grouper then proceeds to assemble limbs and segments into putative girdles. It
has grouping procedures for two classes of girdle; one formed by two limbs, and
one formed by one limb, and a segment. The latter case is important when one
limb segment is hidden by occlusion or by cropping. The constraints associated
with these girdles use the same form of interval-based reasoning as used for
assembling limbs. Finally, the grouper can form spine-thigh groups from two
segments serving as upper thighs, and a third, which serves as a trunk.

In its primary con�guration, the system uses the presence of either form of
girdle group or of a spine-thigh group to assert that a naked human �gure is
present in the image. This yields a system that is surprisingly accurate for so
abstract a query; as �gure 14 shows, using di�erent groups as a diagnostic for the
presence of a person indicates a signi�cant trend. The selectivity of the system
increases, and the recall decreases, as the geometric complexity of the groups
required to identify a person increases, suggesting that our representation used
in the present implementation omits a number of important geometric structures
and that the presence of a su�ciently complex geometric group is an excellent
guide to the presence of an object.

7 Conclusion

Object models quite di�erent from those commonly used in computer vision
o�er the prospect of e�ective recognition systems that can work in quite general
environments. The primary focus is on classi�cation instead of identi�cation. The
central process is that of hierarchical grouping. Initially, the grouping is based
on quite local (short range in the image) measurements of color and texture
coherence; as it proceeds more global and more speci�c models, e.g. surfaces
of revolution, are invoked. In this approach, the object database is modeled
as a loosely coordinated collection of detection and grouping rules. An object
is recognized if a suitable group can be built. Grouping rules incorporate both
surface properties (color and texture) and shape information. This type of model
gracefully handles objects whose precise geometry is extremely variable, where
the identi�cation of the object depends heavily on non-geometrical cues (e.g.
color and texture) and on the interrelationships between parts. Learning can be
incorporated into the framework as a convenient way of associating object class
labels with color, texture and shape descriptors.

We demonstrated the paradigm with four case studies that are prototype
implementations of modules of such a grouping based recognition system.
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Fig. 14. The response ratio, (percent incoming test images marked/percent incoming
control images marked), plotted against the percentage of test images marked, for var-

ious con�gurations of the naked people �nder. Labels \A" through \H" indicate the

performance of the entire system of skin �lter and geometrical grouper together, where
\F" is the primary con�guration of the grouper. The label \skin" shows the performance

of the skin �lter alone. The labels \a" through \h" indicate the response ratio for the

corresponding con�gurations of the grouper, where \f" is again the primary con�gura-
tion of the grouper; because this number is always greater than one, the grouper always

increases the selectivity of the overall system. The cases di�er by the type of group

required to assert that a naked person is present. The horizontal line shows response
ratio one, which would be achieved by chance. While the grouper's selectivity is less

than that of the skin �lter, it improves the selectivity of the system considerably. There

is an important trend here; the response ratio increases, and the recall decreases, as the

geometric complexity of the groups required to identify a person increases. This suggests

(1) that the presence of a su�ciently complex geometric group is an excellent guided

to the presence of an object (2) that our representation used in the present implemen-

tation omits a number of important geometric structures. Key: A: limb-limb girdles;

B: limb-segment girdles; C: limb-limb girdles or limb-segment girdles; D: spines; E:

limb-limb girdles or spines; F: (two cases) limb-segment girdles or spines and limb-limb
girdles, limb-segment girdles or spines; G, H each represent four cases, where a human

is declared present if a limb group or some other group is found.
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