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Abstract

We present statistical techniques for predicting the queue times expe-

rienced by jobs submitted to a space-sharing parallel machine with �rst-
come-�rst-served (FCFS) scheduling. We apply these techniques to trace

data from the Intel Paragon at the San Diego Supercomputer Center and

the IBM SP2 at the Cornell Theory Center. We show that it is possible to
predict queue times with accuracy that is acceptable for several intended

applications. The coe�cient of correlation between our predicted queue
times and the actual values from the simulated schedules is between 0:65

and 0:7.

1 Introduction

On space-sharing parallel machines, it is useful to be able to predict how long a

submitted job will be queued before processors are allocated to it. Some of the

applications of these predictions are:

Load metrics: They provide a measure of load that is more concrete than

abstractions such as load average, allowing users to make decisions about

what jobs to run, where to run them and what size problems they can

solve in an allotted time.

Internal resource selection: They allow malleable parallel jobs (jobs that

are not limited to a speci�c cluster size, but can run on any number of

processors) to choose a cluster size that will minimize their turnaround

time (the sum of queue time and run time).

External resource selection: They allow distributed jobs to choose among

various computing resources on a network, based on the quality of service

they expect to receive at each host.

�EECS | Computer Science Division, University of California, Berkeley, CA 94720. Sup-

ported by NSF grant ASC-89-02825. email: downey@cs.berkeley.edu
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This paper presents a model of the workload on a parallel machine and shows

how to use this model to predict queue times. We present observations of the

workload on the Intel Paragon at the San Diego Supercomputer Center (SDSC)

and the IBM SP2 at the Cornell Theory Center (CTC), and show that they �t

the proposed model well. We use these workloads and a trace-driven simulator

to evaluate the proposed techniques for predicting queue times. We conclude

that our techniques can predict queue times on real machines with accuracy

su�cient for the proposed application.

1.1 Motivating problem

Of the three applications listed above, the focus of this paper is internal resource

selection | choosing a cluster size on a space-sharing parallel computer. We

assume that users have parallel programs that can run on a variety of cluster

sizes, and that they know the run time of these programs as a function of the

cluster size (at least approximately). We would like to choose a cluster size that

will minimize the expected turnaround time for the job; in other words, choose

a cluster size n that minimizes E[Q(n)] + R(n), where R(n) is the run time of

the job on n processors and Q(n) is a random variable representing the queue

time the job will have to wait until n processors are available.

Consider, for example, a small parallel computer with only two nodes. The

user might have an application that takes 1 hour to run on one node or 35

minutes to run on two nodes. If the user arrives at the system and discovers

that one of the nodes is busy, he might choose to run the job immediately on

the free node or wait for the other job to complete and then run on both nodes.

If the expected time until the �rst job completes is less than 25 minutes, the

user might choose to wait.

A crucial piece of information for making that estimation is the age of the

running job. According to the past repeats heuristic, the expected remaining

lifetime of a job is equal to it's current age. Thus, in this example, the user

might choose to wait if the age of the running job is less than 25 minutes.

But the past repeats heuristic is based on a particular distribution of pro-

cess lifetimes (see Section 2:Related Work, below) that may not describe the

workload of the system in question. For example, if all jobs in the system have

the same duration, then the expected remaining lifetime of a job decreases as

the job ages and the user in this example would make the wrong decision.

Thus the goal of this paper is to show how to use observations of the distri-

bution of lifetimes to calculate predictions of queue times.

1.2 Internal resource selection

It is not clear exactly when a malleable job should choose a cluster size. There

is a tradeo� between the interests of the user, who would like to make a decision

as late as possible in order optimize the expected performance of a job, and the
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system, which would like to encourage jobs to allocate fewer processors when

the system load is high.

For example, if jobs are forced to choose a cluster size when they enter the

queue, they might not be able to predict the future state of the system with

enough accuracy to guarantee good performance. On the other hand, if jobs are

allowed to choose their cluster sizes after the jobs in the system have terminated,

they are likely to allocate more processors (often all of them) than would be

appropriate for the current load.

We feel that an appropriate compromise is to allow the user to postpone his

decision until the job reaches the head of the queue. It is our goal in future

work to validate this decision by evaluating the performance of the system as a

whole when users do this sort of local optimization.

In the meantime, we will focus on the problem of making predictions based

on the state of jobs running in the system, ignoring jobs waiting in queue. We

will discuss an extension to these techniques that deals with queued jobs in

Section 8.1: Future Work.

1.3 Overview

Section 2 describes related work. Section 3 presents the workload and system

models we will be using. Section 4 presents our observations of the distribution

of lifetimes of jobs on the Intel Paragon at SDSC, and proposes a new model

that describes this workload.

In Section 5 we present new techniques for using the distribution of job

lifetimes to predict queue times for arriving jobs. Section 6 describes a trace-

driven simulator we used to evaluate these techniques and presents our results.

Section 7 evaluates the robustness of the proposed techniques in other en-

vironments (the IBM SP2 at the Cornell Theory Center). Finally, Section 8

summarizes our �ndings and suggests areas of related future work.

2 Related work

2.1 Distribution of lifetimes

Previous work [8] [4] has shown that sequential jobs on UNIX machines have a

distribution of process lifetimes with the following functional form:

cdfL(t) = PrfL < tg = 1�
�

t

tmin

�k
t > tmin (1)

where L is a random variable indicating the CPU lifetime of the process. The

constant k varies from workload to workload, but is generally near �1:0.
From this distribution we can calculate the distribution of lifetimes condi-

tioned on the current age of a job:
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cdfLja(t) = PrfL < tjL � ag = 1�
�
t

a

�k
t > tmin (2)

where a is the cpu age of the process. This distribution has the property that the

median remaining age of a process is equal to its current age. This is consistent

with the past repeats heuristic that is commonly hypothesized.

In [4], we develop a technique for using this distribution to predict the slow-

down experienced by sequential processes on a network of workstations. We used

these predictions to derive a policy for using preemptive migration (migration

of active processes) for load-balancing.

For parallel applications, several papers have reported process lifetime dis-

tributions from a variety of architectures:

Hotovy et al. [6] [7] report the workload characteristics of the IBM SP2

at the Cornell Theory Center. Steube and Moore [10] and Wan et al. [11]

describe the workload and scheduling policy on the Intel Paragon at the San

Diego Supercomputer Center; [10] shows that the distribution of lifetimes of

batch jobs �ts the uniform-log distribution model proposed here (for jobs less

than six hours in duration). Feitelson and Nitzberg [3] describe the workload

on the Intel iPSC/860 at NASA Ames. Finally, Windisch et al. [12] compare

the workloads from SDSC and NASA Ames. None of these papers discusses the

shape of the distribution of lifetimes or uses it to develop a workload model.

2.2 Predicting resource use

Devarakonda and Iyer [2] use information about past executions of a program to

predict the lifetime of processes, as well as their �le I/O and memory use. For

each past execution of a program, they plot a point in the 3-space (cpu lifetime,

�le I/O, memory use) and use k-cluster analysis to identify classes of programs

with similar resource usage. For a given program execution, then, they can

calculate the probability that the execution will fall into each cluster. Their

predictions are the weighted averages of the median values from each cluster,

with the weights given by the calculated probabilities.

This work di�ers from ours in that Devarakonda and Iyer predict the resource

requirements of a process before it begins execution. Thus, they use information

about previous executions rather than observations of the current behavior of a

process. Also, their predictions are speci�c values rather than distributions of

possible values.

2.3 Using predicted queue times for resource selection

Atallah et al. [1] propose the idea of choosing a cluster size that minimizes

the turnaround time (queue time plus run time) of the job, but they do not

address the question of how to predict queue time as a function of the number of
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processors requested. Like us, they raise the issue of how this local optimization

| minimizing the turnaround time of individual jobs | a�ects overall system

performance, but they do not answer it. Our future work will attempt to do so,

based on the mechanism presented here for predicting queue times.

3 Model of computation

We assume the following model of computation:

� Jobs are submitted to a space-sharing parallel computer and allocate some

number of processors (a cluster) before they begin execution. The size of

the cluster does not change during the execution of the program.

� A job may or may not wait in queue before processors are allocated to it.

Jobs are allocated to processors in a �rst-come-�rst-serve (FCFS) disci-

pline.

� Once a job is assigned to a cluster, it is not preempted until it completes.

� Once a job completes, the processors in its cluster are freed and may be

allocated to another job.

This model does not consider timesharing or interactions between jobs in

di�erent clusters, such as communication interference. Thus, the turnaround

time for a job is the time from submission to completion, which is the sum of

the run time and the time the job spends in queue.

The total number of processors is likely to be greater than the typical cluster

size, so most of the time several jobs will run simultaneously on disjoint clusters.

4 Lifetime distributions

During the calendar year 1995, 24946 jobs were submitted to the batch partition

of the 400-node Intel Paragon at SDSC. Figure 1 shows the distribution of

lifetimes for these jobs. Although there is a time limit on this machine of 12

hours, only 5% of the jobs ran to the limit (a few jobs ran longer by special

permission).

Except for the longest and shortest jobs, this distribution is nearly straight

(on a logarithmic x-axis); in other words, the logs of the lifetimes are distributed

uniformly. Although we do not know any theoretical reason why lifetimes should

have this uniform-log distribution, we will take advantage of this observation by

�tting a straight-line approximation to the observed distribution. Using this

approximation (instead of the observed values) simpli�es the calculation of the

conditional distribution of lifetimes (see Equation 4).
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Distribution of process lifetimes
(fraction of processes with duration < T)

Process lifetime

24906 batch jobs

0

0.2

0.4

0.6

0.8

1.0

1s 10s 100s 1hr 12hrs

Figure 1: The distribution of lifetimes for 24906 batch jobs submitted to the

Intel Paragon at SDSC.

We calculate a straight-line approximation by least-squares regression (omit-

ting the longest 10% and the shortest 10% of jobs). The gray line in Figure 1

shows the �tted line. The R2 value of this �t is over 0:99, indicating that the

linear approximation is very good.

Table 1
value t-ratio

intercept = �0 -.183 -430

slope = �1 .104 1700

Thus our model of the distribution of lifetimes is

cdfL = PrfL < tg = �0 + �1lnt tmin � t � tmax (3)

where L is a random variable representing the lifetime of a job, tmin = e��0=�1 =

5:8 seconds and tmax = e(1:0��0)=�1 = 24:2 hours.

For this model we can calculate the distribution of lifetimes conditioned on

the current age of a process:
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1� cdfLja = PrfL > tjL > ag

=
1� cdfL(t)

1� cdfL(a)

=
1� �0 � �1lnt

1� �0 � �1lna
tmin � t � tmax (4)

The median remaining lifetime of a job as a function of its current age is

median(Lja) =
p
tmax � a� a

This property is unusual, since it implies that the remaining lifetime of a job

does not increase monotonically with age. For values of a greater than 1

4
tmax,

the median remaining lifetime begins to decrease. This property is also true of

the average remaining lifetime, which is

E[Lja] = tmax � a

ln(tmax) � ln(a)

Figure 2 shows the median and average remaining lifetime as a function of

age. The proposed model �ts the observed data well for ages less than 6 { 12

hours. For longer lifetimes, the distribution of lifetimes diverges from the model.

The remaining lifetimes of old jobs do not decline, as predicted, but appear to

increase. It is di�cult to generalize this behavior, however, since there are few

jobs with lifetimes greater than 12 hours (less than 6%) and their distribution

is in
uenced by the machine's time limit.

In any case, since our model is not accurate for jobs with lifetimes greater

than 12 hours, and since the actual remaining lifetimes of these jobs are di�cult

to characterize, we will need to be careful to use our model only in the range

where it is accurate.

4.1 Using additional information about jobs

On the Intel Paragon at SDSC, jobs are submitted to the batch partition through

NQS, which requires the user to specify a queue according to the resources the

job requires. Most jobs are submitted to queues that specify the cluster size of

the job (rounded up to a power of two) and the length of time it will run (short,

medium, or long). We will take advantage of this information by modeling a

di�erent distribution of lifetimes for each class of jobs.

In this environment, we have de�ned job classes according to queue name,

but in another environment it might be useful to distinguish jobs by the name of

the executable or the user, by requested cluster size by other declared resource

requirements (e.g. memory size).

Figure 3 shows the distribution of lifetimes for parallel jobs submitted to the

short, medium, and long queues. The di�erences among these distributions in-

dicate that the queue name provides signi�cant information about the expected
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Median remaining lifetime vs. age
(actual values and model predictions)

Age

1s 10s 100s 10m 1hr 12hrs
1s

10s

100s

10m

1hr

12hrs

broken line = predicted

solid line = actual

Average remaining lifetime vs. age
(actual values and model predictions)

Age

1s 10s 100s 10m 1hr 12hrs
1s

10s

100s

10m

1hr

12hrs

broken line = predicted

solid line = actual

Figure 2: The median and average remaining lifetimes of a job, as a function of

its current age. The broken line shows the values predicted by our model, with

the estimated parameters from Table 1.
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Distribution of process lifetimes
(fraction of processes with duration < T)

Process lifetime

4535  short

2141  medium

5424  long
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Figure 3: The distribution of lifetimes for parallel batch jobs submitted to the

Intel Paragon at SDSC, broken down according to the queue to which they were

submitted. Choosing a queue is one way the user communicates the resource

requirements of the job to the system.
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run times of jobs. This is not surprising, since users usually know the run times

of their jobs, at least approximately. On the other hand, this information is

far from perfect. There is considerable overlap between the di�erent queues;

in fact, many jobs are submitted to what turns out to be the wrong queue.

For example, 30% of the jobs from the short queue run longer than the median

lifetime in the medium queue, and 17% of the jobs from the medium queue are

shorter than the median of the short queue.

Thus, it is not trivial to use queue names to predict run times. The tech-

nique we propose here, using a di�erent conditional lifetime distribution for

each queue, seems like an e�ective way to use information provided by the user

without su�ering greatly if that information turns out to be wrong.

Using the same technique as in the previous section (discarding the longest

and shortest 10% of each group), we �t a line to each lifetime distribution

curve. Table 2 shows the resulting coe�cients. We are treating sequential jobs

separately because their distribution of lifetimes is signi�cantly di�erent from

that of the parallel jobs.

Table 2
�0 �1 R2

sequential -.65 .21 .99

short -.30 .15 .97

medium -.50 .14 .99

long -.73 .13 .74

For all but the long queue, the goodness of �t metric is quite good; for

the long queue, it is only 0:74, which is not surprising, since the distribution

is obviously not a straight line. Lifetimes of jobs in the long queue are more

skewed than in other queues, suggesting that many users know the run times

of their jobs with some accuracy and only submit them to the long queue if

necessary. More than 60% of the jobs in the long queue exceed the time limit

for the medium queue and therefore were required to run in the long queue.

In Section 6.5 we will present a technique to address this poor �t, but in the

meantime we will ignore it and use the estimated parameters as is.

5 Calculating the distribution of queue times

Given the state of a system | the number of jobs currently running, their ages

and their cluster sizes | we can use the distribution of lifetimes to estimate the

queue time expected for a new arrival.

Suppose that the state of the machine at the time of an arrival is as follows:

there are p processes running, with ages ai and cluster sizes ni (in other words,

the ith process has been running on ni processors for ai seconds). We would

like to predict the median value of Q(n0), the time until n0 additional processors

become available (n0 = n� free processors).
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The distribution of Q(n0) can be calculated exactly by considering all pos-

sible outcomes (which processes complete and which are still running) at time

t. These outcomes are denoted by the bit vector b, where bi = 0 indicates that

the ith process is still running, and bi = 1 indicates that the ith process has

completed before time t.

Since we assume independence between jobs in the system, the probability of

a given outcome is the product of the probabilities of each event (the completion

or non-completion of a job), and the probability of these events is given by the

conditional cumulative distribution of lifetimes.

Prfbg =
Y

ijbi=0

cdfLjai(t) �
Y

ijbi=1

1:0� cdfLjai(t) (5)

For a given outcome, the number of free processors is the sum of the proces-

sors freed by each job that completes:

F (b) =
X
ijbi=1

ni (6)

Thus at time t, the probability that the number of free processors is equal

to the requested cluster size is the sum of the probabilities of all the outcomes

that satisfy the request:

PrfF � n0g =
X

bjF (b)�n0

Prfbg (7)

Finally, we �nd the median value of Q(n0) by setting PrfF > n0g = 0:5 and

solving for t. Of course, the number of possible outcomes (and thus the running

time to evaluate Q(n0)) increases exponentially with p. Thus it is not feasible

to calculate this value exactly in a real system.

There are, however, two approximations to this value that are fast to com-

pute and that turn out to be su�ciently accurate for our intended purposes.

The next two sections describe these approximations.

5.1 Predictor A

When the number of additional processors required (n0) is small, it is often the

case that there are several jobs running in the system that will single-handedly

satisfy the request when they complete. In this case, the probability that the

request will be satis�ed by time t is dominated by the probability that any one

of these benefactors will complete before time t.

In other words, the chance that the queue time for n0 processors will exceed

time t is approximately equal to the probability that none of the benefactors

will complete before t:
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PrfF < n0g �
Y

ijni�n0

1� cdfLjai(t) (8)

This calculation is only approximately correct, since it ignores the possibility

that several small jobs might complete and satisfy the request. Thus, we expect

this predictor to be inaccurate when there are many small jobs running in the

system, few of which can single-handedly handle the request. The next section

suggests an approximation that we expect to be more accurate in this case.

5.2 Predictor B

Before addressing the most general case, we will consider a simpli�ed model in

which each job is allocated a single processor, and at the time of an arrival all

running jobs have the same age. From the distribution of process lifetimes, we

can �nd p(t), the probability that a job of age a will complete before time t:

p(t) = cdfLja(t) (9)

Then the probability that n processors will be free by time t is given by the

binomial distribution:

probfQ(n) < tg =
NX
i=n

�
N

i

�
p(t)i(1� p(t))N�1 (10)

where N is the total number of processes in the system and n is the number

of processors requested. In other words, the probability that Q(n) will be less

than t is the sum of the probabilities that the number of free processors at time

t is greater than n. The median value of Q(n) can then be found by solving

PrfQ(n) < tg = 0:5 for t.

Numerically, this is best done by replacing the summation with the following

integral:

1� PrfQ(n) < tg =

(N � n+ 1)

�
N

n� 1

�Z 1�p(t)

0

tN�n(1� t)n�1dt (11)

Then the integral can be solved by simple quadrature (e.g. a trapezoid

method) and the root can be found quickly by Newton's method. Even so, this

approach is not a feasible addition to an online scheduling algorithm. Fortu-

nately, it can be approximated quickly by making the following observation:

as the number of processors becomes large, the number of processors that are

free at time t approaches N � cdfLja(t). This comes from the de�nition of the

cumulative distribution.
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Median queue time vs. cluster size
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Fraction of processors requested

Queue
time
(sec.)

limit
20 processors
10 processors
5 processors

Figure 4: The three bottom lines show the median value of Q(r) for n = 5; 10

and 20, calculated exactly using Equation 11. The top line is the approximation

from Equation 12.

We can approximate the median value of Q(n) by solving for t:

N � cdfT ja(t) = n (12)

Figure 4 shows that (1) as the number of processors increases, this approx-

imation becomes exact, and (2) even for small numbers of processors, the ap-

proximation is within a factor of 2 { 3.

So far we have been dealing with the simpli�ed case where all jobs are allo-

cated a single processor and all jobs have the same age. But the approximation

proposed above can be extended in a natural way to the more general case of

varied cluster sizes and ages.

Given the age of a process, the conditional cumulative distribution tells

us the probability that the job will complete before time t. By an abuse of

the notion of probability, we can imagine that this probability indicates what

fraction of a process' processors will be available at time t.

For example, a job that has been running on 10 processors for 6 minutes

might have a 30% chance of completing in the next 2 minutes, releasing all

ten of its processors. As a peculiar approximation of this behavior, though, we

might imagine instead that the process will release 30% of its processors some

time in the next two minutes.
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Median queue time vs. cluster size
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Figure 5: Given a randomly generated machine state, we calculated the exact

queue times (using the combinatorial algorithm) and an approximation based

on the distribution of process lifetimes.

This allows us to predict the number of free processors at time t:

F =
X
i

ni � cdfLjai(t) (13)

In order to evaluate the accuracy of this approximation, we simulated the

execution of a set of processes (with random cluster sizes and durations) on a

parallel computer with 64 processors. At the time of a new arrival to the sys-

tem, we examined the state of the processes already running and compared the

approximate median of Q(n) (Equation 13) with the exact median (Equation 7)

for a range of cluster sizes. Figure 5 shows a typical result; the approximation

is quite accurate over a wide range of values.

In the next section we will apply the same technique to a more realistic

workload, and show that the predictions based on the estimated Q(n) accurately

predict the behavior of the system.

6 Trace-driven simulator

We obtained traces of 24906 jobs submitted to the batch partition of the Intel

Paragon at SDSC between January 1, 1995 and December 31, 1995. Using the
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arrival times, cluster sizes and durations of these jobs, we simulated their execu-

tion on a parallel computer with 368 nodes (this is the size of the batch partition

at SDSC). This data and our simulator are available from http://whatever.

Table 3 shows the average and median lifetimes and cluster sizes for these

jobs (CV is the coe�cient of variation | the ratio of the standard deviation to

the mean). The total utilization of the system, averaged over the year, is 72%.

Table 3
average CV 25% below median 75% below

lifetime 9020 s. 1.74 77s 720s 14500s

cluster size 25 1.47 1 16 32

The jobs in these traces are not malleable (at least not from the system's

point of view). The user chooses a job's cluster size and the system cannot

allocate fewer than the requested number (and does not allocate more).

Although the arrival times of the jobs are taken from the traces, the schedule

used by the simulator di�ers from the actual schedule that was executed on the

Paragon:

� The simulator uses strict �rst-come-�rst-serve scheduling. In reality, the

Paragon at SDSC assigns di�erent priorities to di�erent queues.

� The Paragon allocates processors using a modi�ed 2-D buddy system

based on power-of-two partition sizes. In order to reduce fragmentation,

small jobs are sometimes allowed to run in the interstices. In the simula-

tor, we make no e�ort to allocate contiguous clusters.

� The Paragon at SDSC has some nodes with more memory than others,

and some jobs can only run on these \fat" nodes. The simulator ignores

this distinction.

� During the year, the size of the batch partition changed several times; in

the simulator we held the number of processors constant.

Thus, in evaluating our predictors, the \actual" queue times are the queue

times based on the schedule generated by the simulator, not the queue times

from the trace data.

6.1 Making predictions

The approximations we presented in Section 5 consider only the jobs that are

running in the system at the time of an arrival; they do not consider any jobs

that might be in queue. Thus, the queue time we are dealing with is the time

from when a job reaches the head of the queue until it begins execution.

In our simulations, most jobs spend no time at the head of the queue because

there are enough free processors for them to begin execution immediately. Thus,
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only 8545 (34%) of the simulated jobs received predicted queue times. In a

system with malleable jobs, though, all jobs will make predictions when they

reach the head of the queue, usually for a range cluster sizes.

6.2 Calculating Predictor A

When a job reaches the head of the queue and there are not enough free proces-

sors to satisfy its request, we calculate n0, the number of additional processors

required. We then consider the number of jobs in the system with cluster sizes

greater than n0; that is, the jobs that will single-handedly satisfy the request if

they complete.

In our simulations, the number of processors required tended to be small

(50% below 16), and thus the number of potential benefactors was often large

(75% of the time there are 3 or more). Table 4 shows the average and median

values of n0 and the number of benefactors. Under these circumstances, we

expect Predictor A to perform well.

Table 4
average 25% below median 75% below

n0 30.6 7 16 45

benefactors 8.1 3 6 11

Of the 8545 times that a job arrived at the head of the queue, 393 times it

found no processes running that could satisfy the request. Under these circum-

stances, Predictor A can not make a prediction.

The remaining 8152 predictions are shown in Figure 6, which is a scatter

plot of predicted values on the x-axis and actual queue times on the y-axis.

There is a clear correlation between the predicted and actual queue times; the

coe�cient of correlation between them is 0:62.

The solid line shows the median of the actual values for each column. For

predicted values between 5 seconds and 3000 seconds, the median value closely

follows the 45-degree line, indicating good agreement between the predicted and

actual values. For predicted values greater than 3000 seconds, the predicted

values tend to be higher than the actual values. This bias re
ects the inherent

conservative nature of the approximation: the predictor ignores the possibility

of multiple processes completing in order to ful�ll a request. When there are

few processes that can satisfy a request single-handedly, the predicted queue

times will tend to be too high.

6.3 Predictor B

When there are many small processes in the system we expect Predictor B to

provide more accurate approximations of queue times. Figure 7 shows a scatter

plot of these predictions versus the actual values.
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Actual vs. predicted queue times, Predictor A

Predicted time
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broken line = median
solid line = average
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Figure 6: Scatterplot of actual queue times versus prediction calculated by

Predictor A. The white line shows the identity function; i.e. a perfect predictor.

The solid line shows the average value of the predictions in each column. The

broken line shows the median value of the predictions in each column.
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Actual vs. predicted queue times, Predictor B
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Figure 7: Scatterplot of actual queue times versus prediction calculated by

Predictor B.
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Actual vs. predicted queue times, Combined Predictor
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Figure 8: Scatterplot of actual queue times versus prediction calculated by the

Combined Predictor.
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Coefficient of correlation vs. request size
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Figure 9: The accuracy of the two predictors (measured by the coe�cient of

correlation) varies with the size of the requested cluster. Predictor A does best

for small requests; Predictor B for large requests.

In general, the correlation here is about as good as in Figure 6; the coe�cient

of correlation is 0:61. For short queue times, though, the predicted values tend

to be too low. This re
ects the optimism of the approximation: instead of

having to wait for a process to complete and release all its processors, the

approximation is based on the assumption that jobs are constantly giving up

some of their processors. Thus, for small values of n0 this predictor tends to

guess too low.

6.4 Combining the predictors

Since the two predictors perform well under di�erent circumstances, it seems

natural to combine them by using each one when it is likely to be most accurate.

Figure 9 shows the coe�cient of correlation of each predictor for three ranges of

n0. As expected, Predictor A does best for small values of n0; Predictor B does

best for large values of n0.

Using Predictor A when n0 is less than 32 and Predictor B when n0 is greater

than 32, we get a combined predictor with a coe�cient of correlation of 0:65.

The scatterplot for the combined predictor is shown in Figure 8.

20



6.5 An improved model for long jobs

In Section 4.1 we observed that the uniform-log distribution model does not �t

the distribution of jobs from the long queue well. Using an alternative functional

form we were able to �t the observed data with an R2 value of 0:92 (compared

to 0:74 for the uniform-log model).

Using the parameters estimated by this model and the corresponding con-

ditional distribution of lifetimes, we found that the accuracy of the predictors

increased slightly, but the di�erence is not signi�cant. This result suggests that

the relatively poor �t of the uniform-log model for long jobs does not signi�-

cantly impair our predictors.

7 Another place, another time

Since there is no theoretical reason why the distribution of lifetimes should �t

the uniform-log model we propose, it is natural to ask whether the techniques

presented here are applicable to other environments.

To answer this question, we obtained data from the IBM SP2 at the Cornell

Theory Center [5], including the submission times, execution times and cluster

sizes for 50862 jobs submitted during the six-month interval from June 18 to

December 2, 1995.

We divided these jobs into three groups | short, medium and long | ac-

cording to the name of the queue to which they were submitted. Figure 11

shows the distribution of lifetimes for these groups. As with the jobs on the

Paragon at SDSC, the uniform-log model �ts well for the short and medium

groups, and not as well for the long group. Nevertheless, the R2 values for this

curve �ts are somewhat better across the board than with the Paragon data:

Table 5
�0 �1 R2

short -.6 .23 .999

medium -.58 .17 .995

long -.65 .13 .84

The relationships among the three curves are not the same as they were

among the jobs from the Paragon. On the Paragon the estimated lines were

nearly parallel; only the intercept varied from group to group. On the SP2, the

lines have nearly the same intercept; it is their slopes that vary. This observation

suggests that these distributions vary from environment to environment, but

that the proposed model is able to span this range of behavior.

Next, we submitted the trace data from the SP2 to the same simulator we

used for the Paragon data. The only change we made to the simulator was to

plug in the six estimated parameters from Table 5.
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Coefficient of correlation vs. request size
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Figure 10: Accuracy of the predictors for the data from the IBM SP2 at CTC.

The performance of the two predictors is somewhat better than on the Paragon.

The crossover pattern is similar.
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Distribution of process lifetimes from CTC’s SP2
(fraction of processes with duration < T)

Process lifetime

19073  short

12059  medium

19572  long
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Figure 11: The distribution of lifetimes for batch jobs submitted to the IBM

SP2 at CTC, broken down according to the queue to which they were submitted.

Of the 50862 jobs in the trace, 12967 received predictions from Predictor A

and 13414 received predictions from Predictor B. Figure 10 shows the perfor-

mance of the two predictors as a function of the number of processors requested.

As before, Predictor A does well for small values of n0 and Predictor B does

better for large values of n0. Thus, we combined the two predictors using the

same threshold as before. The resulting combined predictor had a coe�cient of

correlation of 0:7.

Figure 12 shows a scatterplot of the actual queue times versus the predicted

values. For most values between 3 seconds and 2 hours the average value in

each column lies near the predicted value; this indicates that the predictions

are unbiased. Also, the coincidence of the average and mean values in each col-

umn indicates that the actual outcomes were distributed symmetrically around

the predicted values. Compared with Figure 8 it is clear that the predictor is

somewhat more accurate for this data than it was for the Paragon data.

One reason for this improvement is that the SP2 is a bigger machine (430

nodes vs. 368 on the Paragon), and the average cluster size of jobs tended to

be smaller (9.2 vs. 25.2 on the Paragon). Thus, there tend to be more jobs in

the system at any given time. Since our predictions are based on the aggregate

behavior of many jobs, we expect them to improve as the number of jobs in the

system increases.
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Actual vs. predicted queue times, Combined Predictor

Predicted time

white line = perfect predictor
broken line = median
solid line = average
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Figure 12: Scatterplot of actual queue times versus prediction calculated by

the combined predictor for trace data from the IBM SP2 at the Cornell Theory

Center.
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7.1 Another time

In previous sections, we have cheated slightly by using the trace data to estimate

the distribution parameters, and then used the parameters in the trace-driven

simulation to calculate predictions. Of course, a real system would not have the

luxury of knowing ahead of time the exact distribution of lifetimes of the jobs

that would be submitted.

Assuming that the distributions do not change drastically over time, though,

it should be possible to make accurate predictions using parameters estimated

from recent accounting data. To test this hypothesis, we obtained a second trace

from the Paragon at SDSC from January 1, 1996 to May 15, 1996. Without

ever examining this data or calculating the distribution of lifetimes, we blindly

applied the same parameters derived from the previous year of data. The results

were:

Table 6
coe�cient of correlation

new data old data

Predictor A .56 .62

Predictor B .50 .61

Combined Predictor B .58 .65

It is clear from the drop in accuracy that the parameters of the distribution

of lifetimes does vary over time and that these variations a�ect the ability of

the system to predict queue times. One of the issues that must be addressed

in order to implement a queue-prediction tool in a real system is how often to

update the parameters.

Figure 13 shows the distribution of lifetimes for eight two-month intervals

including the original trace data and the new data presented in this section. It is

clear that this distribution is changing over time in a consistent trend (except for

the �rst two intervals) toward longer median lifetimes and a greater proportion

of long jobs. This trend may re
ect a more mature workload including more

production runs. Hotovy et al. [7] report a similar maturing process in the

workload at CTC.

8 Conclusions

� We have proposed a workload model for batch jobs on space-sharing par-

allel computers, based on a uniform-log distribution of lifetimes. The

proposed model captures the behavior of real workloads in two di�erent

environments. This model can be used to generate synthetic workloads

for simulating and evaluating scheduling policies for similar environments.

� We have used this workload model to develop statistical techniques for pre-

dicting queue times for incoming jobs. The proposed techniques worked
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Distributions of lifetimes for two−month intervals
(fraction of processes with duration < T)
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Figure 13: The distribution of lifetimes for eight two-month intervals. The �rst

two intervals are shown with broken lines because they do not follow the pattern

of the subsequent intervals.

26



well in simulations of both of the environments we tested. These tech-

niques should be useful for several applications, especially selection of

cluster sizes on space-sharing parallel computers.

� Many scheduling policies for supercomputing environments depend on in-

formation provided by users about the resource requirements of their jobs.

We observe that this information is often unreliable, but show that the

proposed techniques are able to distill this information in a useful way.

8.1 Future work

In this paper we have presented algorithms for predicting the queue time that

a job expects after it reaches the head of the line. We have not addressed the

question of how long it will wait between when it joins the queue and when it

gets to the front. This time is likely to be less predictable, since we have less

information about jobs while they are in queue than we do once they begin

execution.

Nevertheless, Predictor B can be extended in a natural way to predict the

behavior of jobs in queue, and thus to predict the entire queue time experienced

by a new arrival. We plan to implement this extension and explore its applica-

tion to external resource selection; that is, choosing among various computing

resources available over a network.

We have suggested that our predicted queue times could be used to select

a cluster size for a malleable job in order to minimize its expected turnaround

time. We would like to evaluate the e�ect of this sort of local optimization on the

performance of the system as a whole. Previous work ([9]) has shown that it is

necessary, for the e�ciency of space-sharing systems, for jobs to choose smaller

cluster sizes when the system load is high. Allowing jobs to choose cluster sizes

to minimize turnaround time will have this property, but it is not clear how

system utilization under this discipline will compare with that of strategies that

explicitly maximize utilization.
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