
Optimal Representations of Polymorphic Types with

Subtyping

Alexander Aiken Edward L. Wimmers Jens Palsberg

Report No. UCB/CSD-96-909

July 1996

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Optimal Representations of Polymorphic Types with Subtyping

Alexander Aiken� Edward L. Wimmersy Jens Palsbergz

Abstract

Many type inference and program analysis systems include notions of subtyping and parametric

polymorphism. When used together, these two features induce equivalences that allow types to be

simpli�ed by eliminating quanti�ed variables. Eliminating variables both improves the readability of

types and the performance of algorithms whose complexity depends on the number of type variables.

We present an algorithm for simplifying quanti�ed types in the presence of subtyping and prove it

is sound and complete for non-recursive and recursive types. We also show that an extension of the

algorithm is sound but not complete for a type language with intersection and union types, as well as

for a language of constrained types.

1 Introduction

Contemporary type systems include a wide array of features, of which two of the most important are sub-

typing and parametric polymorphism. These two features are independently useful. Subtyping expresses

relationships between types of the form \type �1 is less than type �2". Such relationships are useful,

for example, in object-oriented type systems and in program analysis algorithms where a greatest (or

least) element is required. Parametric polymorphism allows a parameterized type inferred for a program

fragment to take on a di�erent instance in every context where it is used. This feature has the advantage

that the same program can be used at many di�erent types.

A number of type systems have been proposed that combine subtyping and polymorphism, among

other features. The intended purposes of these systems varies. A few examples are: studies of type systems

themselves [CW85, Cur90, AW93], proposals for type systems for object-oriented languages [EST95], and

program analysis systems used in program optimization [AWL94, HM94]. In short, the combination of

subtyping and polymorphism is useful, with a wide range of applications.

When taken together, subtyping and polymorphism induce equivalences on types that can be exploited

to simplify the representation of types. Our main technical result is that, in a simple type language with

a least type ? and greatest type >, for any type � there is another type �0 that is equivalent to � and

�0 has the minimum number of quanti�ed type variables. Thus, type simpli�cation eliminates quanti�ed

variables wherever possible. Eliminating variables is desirable for three reasons. First, many type infer-

ence algorithms have computational complexity that is sensitive (both theoretically and practically) to

the number of type variables. Second, eliminating variables makes types more readable. Third, simpli�-

cation makes properties of types manifest that are otherwise implicit; in at least one case that we know

�Author's address: EECS Department, University of California at Berkeley, Berkeley, CA 94720-1776. Email:

aiken@cs.berkeley.edu. This work was supported by an NSF NYI award, CCR-9457812
yAuthor's address: IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120-6099. Email:

wimmers@almaden.ibm.com
zAuthor's address: Laboratory for Computer Science, MIT, NE43-340 545 Technology Square, Cambridge MA, 02139.

Email: palsberg@theory.lcs.mit.edu

1

of, these \hidden" properties are exactly the information needed to justify compiler optimizations based

on type information [AWL94].

The basic idea behind variable elimination is best illustrated with an example. A few de�nitions are

needed �rst. Consider a simple type language de�ned by the following grammar:

� ::= � j > j ? j �1! �2

In this grammar, � is a type variable. Following standard practice, we use �; �; : : : for type variables and

�; � 0; �1; �2; : : : for types. The subtyping relation is a partial order � on types, which is the least relation

satisfying

� � �

? � �

� � >

�1 � � 01 ^ �2 � � 02 , � 01 ! �2 � �1 ! � 02

Quanti�ed types are given by the following grammar:

� ::= � j 8�:�

For the moment, we rely on the reader's intuition about the meaning of quanti�ed types. A formal

semantics of quanti�ed types is presented in Section 2.

Consider the type 8�:8�:� ! �. Any function with this type takes an input of an arbitrary type �

and produces an output of any (possibly distinct) arbitrary type �. What functions have this type? The

output � must be included in all possible types; there is only one such type ?. The input �, however,

must include all possible types; there is only one such type >. Thus, one might suspect that this type is

equivalent to > !?. The only function with this type is the one that diverges for all possible inputs.

It turns out that, in fact, 8�:8�:� ! � � > ! ? in the standard ideal model of types [MPS84]. As

argued above, the type with fewer variables is better for human readability, the speed of type inference,

and for the automatic exploitation of type information by a compiler. We brie
y illustrate these three

claims.

The reasoning required to discover that 8�:8�:� ! � represents an everywhere-divergent function

is non-trivial. There is a published account illustrating how types inferred from ML programs (which

have polymorphism but no subtyping) can be used to detect non-terminating functions exactly as above

[Koe94]. The previous example is the simplest one possible; the problem of understanding types only

increases with the size of the type and expressiveness of the type language. The following example is

taken from the system of [AW93], a subtype inference system with polymorphism. In typing a term, the

inference algorithm in this system generates a system of subtyping constraints that must be satis�ed.

The solution of the constraints gives the desired type. Constraints are generated as follows: If f has type

� ! � and x has type
, then for an application f x to be well-typed it must be the case that
 � �.

Figure 1 shows the type generated for the divergent lambda term (�x:x x)(�x:x x). The type has the

form

8�1; : : : ; �8:(�6=S)

Informally, the meaning of this type is �6 for any assignment to the variables �1; : : : ; �8 that simultane-

ously satis�es all the constraints in S.

This type is equal to ?, a fact proven by our algorithm extended to handle constraints. The type

? is sound, since the term is divergent. This example illustrates both improved readability and the

2

8�1: : : :8�8: �6 =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�4 ! �6 � �1 � �5 ! �6
�1 � �2 ! �3

�1 � �2 � �5 ! �6
? � �3 � >

�2 � �4 � �5 ! �6
�4 � �5 � �4
? � �6 � �3

�4 ! �6 � �7 � �1
�3 � �8 � >

Figure 1: A quanti�ed type of eight variables quali�ed by constraints.

possibility of more e�cient inference. To use the polymorphic type 8�1; : : : ; �n:(�=S) in di�erent contexts,

the variables must be instantiated and the constraints duplicated for each usage context. Eliminating

variables simpli�es the representation, making this very expensive aspect of type inference less costly.

Finally, simplifying types can improve not only the speed but the quality of program analyses. For

example, the soft typing system of [AWL94] reduces the problem of identifying where runtime type checks

are not required in a program to testing whether certain type variables can be replaced by? in a quanti�ed

type. This is exactly the task performed by elimination of variables in quanti�ed types.

Our main contribution is a variable elimination algorithm that is sound and complete (i.e., eliminates

as many variables as possible) for the simple type language de�ned above, as well as for a type language

with recursive types. We extend the algorithm to type languages with intersection and union types and

to type languages with subsidiary constraints. For these latter two cases, the techniques we present are

sound but not complete. Combining the completeness results for the simpler languages with examples

illustrating the incompleteness of the algorithm in the more expressive settings, we shed some light on

the sources of incompleteness.

The various algorithms are practical and e�cient, running in linear or quadratic time in the size of

the type. The algorithm for simplifying quanti�ed types with subsidiary constraints has been in use for

several years, but with the exception of code documentation little has been written previously on the

subject. The algorithm has been implemented and used in Illyria1 , the systems reported in [AW93], and

a large scale program analysis system for the functional language FL [AWL94]. This last application was

by far the largest and best engineered. The quality of this system depended critically on eliminating

variables wherever possible.

Other recent systems based on constrained types have also pointed out the importance of variable

elimination. In [EST95], Eifrig, Smith, and Trifonov describe a variable elimination method similar, but

not identical too, the one in Section 7. Pottier gives a method that can eliminate redundant variables

from constraint sets [Pot96]. Both of these methods are heuristic; i.e., they are sound but not complete.

Our focus in this paper is quite di�erent. The problem of eliminating variables from polymorphic types

appears quite di�cult in the more expressive type languages (consider the incomplete algorithms just

discussed). Our purpose is to explore the structure of the problem in restricted cases, and to understand

what makes the problem harder in the case of constrained types. To the best of our knowledge, we present

the �rst sound and complete algorithms for variable elimination in any type system.

1The source code for the Illyria system and an interactive demo are available at URL

http://www.cs.berkeley.edu/ aiken/Illyria-demo.html.

3

Rather than work in a speci�c semantic domain, we state axioms that a semantic domain must satisfy

for our techniques to apply (Section 2). Section 3 gives the syntax for type expressions as well as their

interpretation in the semantic domain.

Section 4 proves the results for the case of simple type expressions, which are non-recursive types. For

quanti�ed simple types, variable elimination produces an equivalent type with the minimum number of

quanti�ed variables. Furthermore, all equivalent types with the minimum number of quanti�ed variables

are �-equivalent|they are identical up to the names and order of quanti�ed variables.

The intuition behind the variable elimination procedure is easy to convey. Type variables may be

classed as monotonic (positive) or anti-monotonic (negative) based on their syntactic position in a type.

Intuitively, the main lemma shows that quanti�ed variables that are solely monotonic can be eliminated in

favor of ?; quanti�ed variables that are solely anti-monotonic can be eliminated in favor of >. Section 4.2

proves that the strategy of eliminating either monotonic or anti-monotonic variables is complete for the

simple type language. Variables that are both monotonic and anti-monotonic cannot be eliminated.

Section 5 extends the basic variable elimination algorithm to a type language with recursive types.

The extended algorithm is again both sound and complete, but it is no longer the case that all equivalent

types with the minimum number of quanti�ed variables are �-equivalent.

Section 6 extends the algorithm to intersection and union types. This language is the �rst extension for

which the techniques are sound but not complete. Examples are given showing sources of incompleteness.

Finally, Section 7 extends the algorithm to a type language with subsidiary constraints, as in Figure 1.

This is the most general type language we consider. Section 8 concludes with a few remarks on related

work.

2 Semantic Domains

Rather than work with a particular semantic domain, we axiomatize the properties needed to prove the

corresponding theorems about eliminating quanti�ed variables.

De�nition 2.1 A semantic domain D = (D0;D1;�;u) satis�es the following properties:

1. D0 � D1

2. a partial order on D1 denoted by �.

3. a minimal element ? 2 D0 such that ? � x for all x 2 D1.

4. a maximal element > 2 D0 such that x � > for all x 2 D1.

5. a binary operation ! on D0 such that if y1 � x1 and x2 � y2, then x1 ! x2 � y1 ! y2.

Furthermore, ? ! > 6= > and > ! ? 6= ?.

6. a greatest lower bound operation u on D1 such that if D � D1, then uD is the greatest lower bound

(or glb) of D.

In addition, the semantic domain D may satisfy some (or all) of the following properties:

standard function types

If x1 ! x2 � y1 ! y2, then y1 � x1 and x2 � y2.

standard glb types

If S0 � D0 and x1 2 D0, then uS0 � x1 i� 9x0 2 S0 s.t. x0 � x1.

4

An unusual aspect of De�nition 2.1 is that a domain is built from two sets D0 and D1. This structure

parallels the two distinct operations provided in the type language: function space t1 ! t2 and universal

quanti�cation 8 : : : (see Section 3). These operations impose di�erent requirements on the semantic

domain, so allowing D0 and D1 to be di�erent provides more generality than requiring that they be the

same. In particular, since the 8 quanti�er introduces a glb operation (and hence produces a value in D1)

and the! operation can be performed only on elements of D0, the 8 quanti�er cannot appear inside of a

! operation. If the semantic domain has the property that D0 = D1, then it supports 8 quanti�ers inside

of the! operation. It is worth noting that separating D0 and D1 not only generalizes but simpli�es some

of our results.

The following two examples illustrate the most important features of semantic domains and are used

throughout the paper.

Example 2.2 (Minimal Semantic Model) Let D0 = D1 be the three element set f?;> ! >;>g

where ? � >! > � >. In this domain, all function types are the same and this type domain does little

more than detect that something is a function. For all x; y 2 D, x! y = > ! >. It is easy to check that

D satis�es all properties required of a semantic domain as well as standard glb types. The only property

missing is standard function types (e.g., because ? ! ? � > ! >, but > 6� ?).

Example 2.3 (Standard Model) Let D0 be the set consisting of ? and > and closed under the pairing

operation (denoted using the ! symbol). An obvious partial order is induced on D0. Let D1 consist of

all the non-empty, upward-closed subsets of D0. Intuitively, each element of D1 represents the glb of its

members. De�ne d0 � d1 i� d0 � d1. Note that there is an obvious inclusion mapping from D0 to D1 by

mapping each element of D0 to the upward-closure of the singleton set consisting of that element. It is

easy to see that D1 has standard glb types.

The construction of D1 from D0 used in Example 2.3 is a general procedure for building a D1. Given

a domain D0, the domain D1 can be de�ned to be the non-empty, upward-closed subsets of D0. Each

element of D1 represents the glb of its members.

3 Syntax

The �rst type language we consider has only type variables and function types. In this language, as in

all extensions we consider, quanti�cation is shallow (occurs only at the outermost level).

De�nition 3.1 Unquanti�ed simple type expressions are generated by the grammar:

� ::= � j > j? j �1! �2

where � is a family of type variables.

A quanti�ed simple type expression has the form

8�1 : : :8�n:�

where �i is a type variable for i = 1; : : : ; n and � is an unquanti�ed simple type expression. The type �

is called the body of the type.

5

Since n = 0 is a possibility in De�nition 3.1, every unquanti�ed simple type expression is also a

quanti�ed simple type expression. In the sequel, we use � for a quanti�ed type expression (perhaps with

no quanti�ers), and � for a type expression without quanti�ers.

A type variable is free in a quanti�ed type expression if it appears in the body but not in the list

of quanti�ed variables. To give meaning to a quanti�ed type, it is necessary to specify the meaning of

its free variables. An assignment � : Vars ! D0 is a map from variables to the semantic domain. The

assignment �[� �] is the assignment � modi�ed at point � to return � .

An assignment is extended from variables to (quanti�ed) simple type expressions as follows:

De�nition 3.2

1. �(>) = >

2. �(?) = ?

3. �(�1 ! �2) = �(�1)! �(�2)

4. �(8�:�) = uf�[� x](�)jx 2 D0g

Note that unquanti�ed simple type expressions are assigned meanings in D0 whereas quanti�ed simple

type expressions typically have meanings in D1 but not in D0.

Proposition 3.3 �(8�1 : : :8�n:�) = uf�[�1 x1 : : :�n xn](�) j x1; : : : ; xn 2 D0g

Proof: Follows immediately from De�nition 3.2. 2

Our results for eliminating variables in quanti�ed types hinge on knowledge about when two type

expressions have the same meaning in the semantic domain. However, because type expressions may

have free variables, the notion of equality must also take into account possible assignments to those free

variables. We say that two quanti�ed type expressions �1 and �2 are equivalent, written �1 � �2, if for

all assignments �, we have �(�1) = �(�2).

4 Simple Type Expressions

This section presents an algorithm for eliminating quanti�ed type variables in simple type expressions

and proves that the algorithm is sound. The following de�nition formalizes what it means to correctly

eliminate as many variables from a type as possible:

De�nition 4.1 A type expression � is irredundant if for all �0 such that �0 � �, it is the case that � has

no more quanti�ed variables than �0.

In general, irredundant types are not unique. It is easy to show that renaming quanti�ed variables

does not change the meaning of a type, provided we observe the usual rules of capture. Thus, 8�:� �

8�:�[� �] provided that � is not free in �. It is also true that types distinguished only by the order of

quanti�ed variables are equivalent. That is, 8�:8�:� � 8�:8�:�. Our main result is that for every type

there is a unique (up to renaming and reordering of bound variables) irredundant type that is equivalent.

Since equivalence (�) is a semantic notion, irredundancy is also semantic in nature and cannot be

determined by a trivial examination of syntax. The key question is: Under what circumstances can a

6

type 8�:� be replaced by some type � [� � 0] (for some type expression � 0 not containing �)? From

De�nition 3.2, it follows that

8�:� � � [� � 0]

if and only if for all assignments �

8d 2 D0: �(� [� � 0]) � �[� d](�)

In other words, a type � = 8�:� is equivalent to � [� � 0] whenever for all assignments �, we have

�(� [� � 0]) is the minimal element of of the set f�[� x](�)jx 2 D0g to which the glb operation is

applied in computing �'s meaning under �.

The di�culty in computing irredundant types is that the function-space constructor ! is anti-

monotonic in its �rst position. That is, �1 � �2 implies that �1 ! � � �2 ! � . Thus, determining

the minimal element of a greatest lower bound computation may require maximizing or minimizing a

variable, depending on whether the type is monotonic or anti-monotonic in that variable. Intuitively, to

eliminate as many variables as possible, variables in anti-monotonic positions should be set to >, while

others in monotonic positions should be set to ?. We de�ne functions Pos and Neg that compute a type's

set of monotonic and anti-monotonic variables, respectively.

De�nition 4.2 Pos and Neg are de�ned as follows:

Pos(�) = f�g

Pos(�1 ! �2) = Neg(�1) [Pos(�2)

Pos(>) = ;

Pos(?) = ;

Neg(�) = ;

Neg(�1 ! �2) = Pos(�1) [Neg(�2)

Neg(>) = ;

Neg(?) = ;

As an example, for the type �! � we have

Pos(�! �) = f�g

Neg(�! �) = f�g

The following lemma shows that Pos and Neg correctly characterize variables in monotonic and anti-

monotonic positions respectively.

Lemma 4.3 Let d0; d 2 D0 where d
0 � d. Let � be any assignment.

1. If � 62 Pos(�), then �[� d](�) � �[� d0](�).

2. If � 62 Neg(�), then �[� d0](�) � �[� d](�).

Proof: This proof is an easy induction on the structure of � .

� If � =? or � = >, then �[� d0](�) = �(�) = �[� d](�), so both (1) and (2) hold.

7

� If � = �, then � 2 Pos(�), so (1) holds vacuously. For (2), we have

�[� d0](�) = d0 � d = �[� d](�)

� Let � = �1 ! �2. We prove only (1), as the proof for (2) is symmetric. So assume that � 62 Pos(�).

By the de�nition of Pos, we know

� 62 Neg(�1)[Pos(�2)

Applying the lemma inductively to �1 and �2, we have

�[� d0](�1) � �[� d](�1)

�[� d](�2) � �[� d0](�2)

Combining these two lines using axiom 5 of a semantic domain (De�nition 2.1) it follows that

�[� d](�1! �2) � �[� d0](�1! �2)

which proves the result.

2

Corollary 4.4

1. If � 62 Pos(�), then �(� [� >]) � �(�) � �(� [� ?]) holds for all assignments �.

2. If � 62 Neg(�), then �(� [� ?]) � �(�) � �(� [� >]) holds for all assignments �.

4.1 Variable Elimination

Our algorithm for eliminating variables from quanti�ed types is based on the computation of Pos and

Neg. Before presenting the variable elimination procedure, we extend Pos and Neg to quanti�ed types:

Pos(8�:�) = Pos(�)� f�g

Neg(8�:�) = Neg(�)� f�g

The following lemma gives su�cient conditions for a variable to be eliminated.

Lemma 4.5 If � is a quanti�ed simple type expression, then

� 62 Neg(�)) 8�:� � �[� ?]

� 62 Pos(�)) 8�:� � �[� >]

Proof: Assume �rst that 8�:� = 8�:� where � is an unquanti�ed simple type expression and that

� 62 Neg(�). Note that

�(8�:�)

= uf�[� x](�)jx 2 D0g

� �[� ?](�) since ? is a possible choice for x

= �(� [� ?])

= uf�[� x](� [� ?])jx 2 D0g since � does not occur in � [� ?]

� uf�[� x](�)jx 2 D0g by part 2 of Corollary 4.4

= �(8�:�)

8

Therefore, �(8�:�) = �(� [� ?]) for all assignments �. For the general (quanti�ed) case 8�1; : : : ; �n:� ,

observe that any variable �i for 1 � i � n can be moved to the innermost position of the type by a

sequence of bound variable interchanges and renamings, at which point the reasoning for the base case

above can be applied. The proof for the second statement (� 62 Pos(�)) is symmetric. 2

We are interested in quanti�ed types for which as many variables have been eliminated using the

conditions of Lemma 4.5 as possible. Returning to our canonical example,

8�:8�:�! �

� 8�:> ! � since � 62 Pos(8�:�! �)

� > ! ? since � 62 Neg(> ! �)

De�nition 4.6 A quanti�ed simple type expression � is reduced if

� � is unquanti�ed; or

� � = 8�:�0 and furthermore � 2 Pos(�0) ^ � 2 Neg(�0) and �0 is reduced.

Note that the property of being reduced is distinct from the property of being irredundant. \Reduced"

is a syntactic notion and does not depend on the semantic domain. Irredundancy is a semantic notion,

because it involves testing the expression's meaning against the meaning of other type expressions.

Procedure 4.7 (Variable Elimination Procedure (VEP)) Given a quanti�ed type expression

8�1 : : :8�n:� , compute the sets Pos(�) and Neg(�). Let V EP (8�1 : : :8�n:�) be the type obtained by:

1. dropping any quanti�ed variable not used in � ,

2. setting any quanti�ed variable � where � 62 Pos(8�1 : : :8�n:�) to ?,

3. setting any quanti�ed variable � where � 62 Neg(8�1 : : :8�n:�) to >,

4. and retaining any other quanti�ed variable.

Theorem 4.8 Let � be any quanti�ed simple type expression. Then � � VEP (�) and VEP (�) is

reduced.

Proof: Equivalence follows easily from Lemma 4.5. To see that V EP (�) is reduced, observe that any

quanti�ed variable not satisfying conditions (1){(3) of the Variable Elimination Procedure must occur

both positively and negatively in the body of �. 2

A few remarks on the Variable Elimination Procedure are in order. The algorithm can be implemented

very e�ciently. Only two linear passes over the structure of the type are needed: one to compute the Pos

and Neg sets (which can be done using a using a hash-table or bit-vector implementation of sets) and

another to perform any substitutions. In addition, the algorithm is idempotent, so V EP (VEP (�)) =

V EP (�).

Theorem 4.9 Every irredundant simple type expression is reduced.

Proof: Let � be an irredundant simple type expression. Since � is irredundant, VEP (�) has at least

as many quanti�ed variables as �. Therefore V EP (�) = �; i.e., the Variable Elimination Procedure does

not remove any variables from �. Since V EP (�) is reduced, � is a reduced simple type expression. 2

9

4.2 Completeness

If � is a quanti�ed simple type expression, then V EP (�) is an equivalent reduced simple type expression,

possibly with fewer quanti�ed variables. In this section, we address whether additional quanti�ed variables

can be eliminated from a reduced type. In other words, is a reduced simple type expression irredundant?

We show that if the semantic domain D has standard function types (De�nition 2.1) then every reduced

simple type expression is irredundant (Theorem 4.20).

For semantic domains with standard function types, the Variable Elimination Procedure is complete

in the sense that no other algorithm can eliminate more quanti�ed variables and preserve equivalence.

The completeness proof shows that whenever two reduced types are equivalent, then they are syntactically

identical, up to renamings and reorderings of quanti�ed variables.

To simplify the presentation that follows, we introduce some new notation and terminology. By

analogy with the �-reduction of the lambda calculus, two quanti�ed simple type expressions are �-

equivalent i� either can be obtained from the other by a series of reorderings or capture-avoiding renamings

of quanti�ed variables. We sometimes use the notation 8f�1; : : : ; �ng:� to denote 8�1 : : :8�n:� . Using

a set instead of an ordered list involves no loss of generality since duplicates never occur in reduced

expressions and variable order can be permuted freely.

4.3 Constraint Systems

Proving completeness requires a detailed comparison of the syntactic structure of equivalent reduced

types. This comparison is more intricate than might be expected; in addition, in the sequel we perform a

similar analysis to prove that variable elimination is complete for recursive types. This section develops

the technical machinery at the heart of both completeness proofs.

De�nition 4.10 A system of constraints is a set of inclusion relations between unquanti�ed simple type

expressions f: : :s � t : : :g. A solution of the constraints is any assignment � such that �(s) � �(t) holds

for all constraints s � t in the set.

De�nition 4.11 gives an algorithm B that compares two unquanti�ed simple type expressions t1 and

t2. The comparison is expressed in terms of constraints; the function B transforms a constraint t1 � t2
into a system of constraints on the variables of t1 and t2. Intuitively, B(ft1 � t2g) summarizes what must

be true about the variables of the two types whenever the relationship t1 � t2 holds.

De�nition 4.11 Let S be a set of unquanti�ed constraints. B(S) is a set of constraints de�ned by

the following rules. These clauses are to be applied in order with the earliest one that applies taking

precedence.

1. B(;) = ;

2. B(ft � tg [S) = B(S).

3. B(fs1 ! s2 � t1 ! t2g [S) = B(ft1 � s1; s2 � t2g [S).

4. Otherwise, B(fs � tg [S) = fs � tg [B(S).

Lemma 4.12 Let S be a system of constraints. If D is a semantic domain with standard function types,

then every solution of S is a solution of B(S).

10

Proof: Let the complexity of S be the pair (number of ! symbols in S, number of constraints in S).

Complexity is ordered lexicographically, so (i; j) < (i0; j0) if i < i0 or i = i0 and j < j0. The result is

proven by induction on the complexity of S, with one case for each clause in the de�nition of B:

1. B(;) = ;. The result clearly holds.

2. Since any assignment is a solution of t � t, any solution � of ft � tg [S is also a solution of S. By

induction, � is a solution of B(S).

3. Let � be a solution of fs1 ! s2 � t1 ! t2g [S. Since the domain has standard function types,

it follows that � is also a solution of ft1 � s1; s2 � t2g [S. By induction, � is a solution of

B(ft1 � s1; s2 � t2g [S).

4. In the �nal case, by induction every solution of S is a solution of B(S). Therefore all solutions of

fs � tg [S are solutions of fs � tg [B(S).

2

The completeness proof uses an analysis of the constraints B(t1 � t2) where t1 and t2 are the bodies of

reduced equivalent types. Observe that if t1 and t2 di�er only in the names of variables, then B(t1 � t2)

is a system of constraints between variables. Furthermore, it turns out that if t1 and t2 are actually

renamings of each other, then the constraints B(t1 � t2) de�ne this renaming in both directions. Proving

this claim is a key step in the proof. This discussion motivates the following de�nition:

De�nition 4.13 A system S of constraints is (V1; V2)-convertible i� V1; V2 are disjoint sets and there is

a bijection f from V1 to V2 such that S = f� � f(�)j� 2 V1g [ff(�) � �j� 2 V1g

The idea behind De�nition 4.13 is that if two reduced types 8V1:�1 and 8V2:�2 are �-convertible, then

B(�1; �2) is a (V1; V2)-convertible system of constraints (provided V1 and V2 are disjoint). It is easiest

to prove this fact by �rst introducing an alternative characterization of convertible constraint systems,

which is given in the following technical de�nition and lemma.

De�nition 4.14 A system of constraints fs1 � t1; : : : ; sn � tng is (V1; V2)-miniscule i� the following all

hold:

1. V1 and V2 are disjoint sets of variables.

2. for all i � n, at most one of si and ti is a ! expression.

3. for all i � n, si and ti are di�erent expressions.

4. for each v 2 V1 [V2, there exists i � n such that v 2 Pos(si) [Neg(ti)

5. for each v 2 V1 [V2, there exists i � n such that v 2 Neg(si)[Pos(ti)

6. for every assignment � there is a assignment �0 such that �(v) = �0(v) for all v 62 V1 and

�0(si) � �0(ti) holds for all i � n.

7. for every assignment � there is a assignment �0 such that �(v) = �0(v) for all v 62 V2 and

�0(ti) � �0(si) holds for all i � n. (Note the reverse order of ti and si.)

Lemma 4.15 Any (V1; V2)-miniscule system of constraints is (V1; V2)-convertible.

11

Proof: Let �0 be the assignment that assigns ? to every variable, let �1 be the assignment that assigns

> to every variable, and let S be a (V1; V2)-miniscule system of constraints. The �rst step is to show that

no ! expressions can occur in S. It is easy to check that if we reverse all inequalities we get a (V2; V1)-

miniscule system of constraints. Thus, by symmetry, to show that ! cannot occur in S it su�ces to

show that ! cannot occur in any upper bound in S.

For the sake of obtaining a contradiction, assume that si � t0i ! t00i 2 B(�1 � �2). We show that each

of the four possible forms for si is impossible.

1. s0i ! s00i � t0i ! t00i is ruled out by Property 2 of De�nition 4.14.

2. ? � t0i ! t00i is ruled out by Property 7 of De�nition 4.14, since no assignment satis�es t0i ! t00i � ?.

3. > � t0i ! t00i is ruled out by Property 6 of De�nition 4.14, since no assignment satis�es > � t0i ! t00i .

4. If v is a variable not in V1, let � be the assignment mapping all variables to >. Then Property 6

of De�nition 4.14 is violated because for all �0 that agree with � o� of V1, we have �
0(v) = �(v) =

�1(v) = > 6� �0(t0i ! t00i).

If v 2 V1, let � be the assignment mapping all variables to ?. Note that v 62 V2 since V1 and V2 are

disjoint. Then Property 7 of De�nition 4.14 is violated because for all �0 that agree with � o� of

V2, we have �
0(t0i ! t00i) 6� ? = �0(v) = �(v) = �0(v).

This completes the proof that ! cannot occur in S.

The next step is to show that ? cannot occur in S. By symmetry it su�ces to show that ? cannot

occur as an upper bound in S. There are three cases to consider.

1. ? � ? is ruled out by Property 3 in De�nition 4.14.

2. > � ? is ruled out by Property 6 in De�nition 4.14 since no assignment satis�es > � ?.

3. If v is a variable not in V1, let � = �1. Then Property 6 in De�nition 4.14 is violated since for all

�0 that agree with � o� of V1, we have that �
0(v) = �(v) = �1(v) = > 6� ? = �0(?).

If v 2 V1, a complex case argument is needed because Property 6 is not directly violated. By

Properties 5 and 2 of De�nition 4.14, there is a constraint s0 � v in S. There are four possible cases

for s0:

(a) s0 = ?. In this case, ? � v � ? is in S and hence Property 7 is violated by taking � = �1.

(b) s0 = >. In this case, > � v � ? violates Property 6 since it is never satis�ed by any assignment.

(c) s0 = v0 2 V1. In this case, v0 = v is ruled out by Property 3. So we may assume that v0 and v

are di�erent variables. Property 7 is violated by taking � = �0[v >] since if �
0 agrees with

� o� of V2 the constraint v � v0 is violated since �0(v) = �(v) = > 6� ? = �(v0) = �0(v0).

(d) s0 = v0 62 V1. In this case, v0 � v � ? violates Property 6 by taking � = �1 since �(v
0) = >.

This proves that ? cannot occur as an upper bound in S. By symmetry, ? can not occur as a lower

bound in S, and hence ? cannot occur anywhere in S. An analogous argument shows that > can not

occur anywhere in S either.

Thus, every element of S is of the form v0 � v00 for variables v0; v00. We now show that v0; v00 2 V1[V2.

Suppose that v0 62 V1 [V2. If v
00 2 V1, then Property 7 is violated by taking � = �0[v

00 >] since for all

�0 that agree with � o� of V2, we have that �
0(v00) = �(v00) = > 6� ? = �(v0) = �0(v0). If v00 62 V1, then

12

Property 6 is violated by taking � = �0[v
0 >] since for all �0 that agree with � o� of V1, we have that

�0(v0) = �(v0) = > 6� ? = �(v00) = �0(v00). Therefore, the supposition that v0 62 V1 [V2 is false and it

follows that v0 2 V1 [V2. A similar argument shows that v00 2 V1 [V2.

If both v0 and v00 are in V1, then Property 7 is violated by taking � = �0[v
00 >] since for all �0 that

agree with � o� of V2, we have that �
0(v00) = �(v00) = > 6� ? = �(v0) = �0(v0). This shows that not both

v0 and v00 are in V1. A symmetric argument shows that not both v0 and v00 are in V2. Thus, it follows

that for every constraint si � ti in S, either si 2 V1 and ti 2 V2 or si 2 V2 and ti 2 V1.

Next we show that if v0 � v1 � v2, then v0 = v2. First assume that v1 2 V1. If v0 and v2 are di�erent

variables, then Property 6 is violated by taking � = �0[v0 >] since for all �
0 that agree with � o� of V1,

we have that �0(v0) = �(v0) = > 6� ? = �(v2) = �0(v2). Hence, in the case that v1 2 V1, it follows that

v0 = v2. A similar argument shows that if v1 2 V2, then v0 = v2.

The next goal is to show that for every v1 2 V1, there exists a unique v2 2 V2 such that v1 � v2 is

in S. By Property 4, there is at least one such v2. Let v
0

2 be any variable such that v1 � v02 is in S. By

Property 5, there is a v0 such that v0 � v1 is in S. It follows that v2 = v0 = v02 which proves that v2 is

unique.

De�ne a function f mapping V1 to V2 so that v1 � f(v1) is in S. By Property 5, for any v1 2 V1,

there is a v0 such that v0 � v1 is in S. It follows that v0 = f(v1). This proves that S � f� � f(�)j� 2

V1g [ff(�) � �j� 2 V1g. Since every constraint in S has the form v0 � v00 where either v0 or v00 is in

V1 and since the upper and lower bounds are unique (because v0 � v1 � v2 2 S implies that v0 = v2), it

follows that there are no extra elements of S. Therefore, S = f� � f(�)j� 2 V1g [ff(�) � �j� 2 V1g.

Thus S is (V1; V2)-convertible as desired. 2

4.4 From Constraints to Completeness

The de�nitions and lemmas of Section 4.3 are the building blocks of the completeness proof. Before

�nally presenting the proof, we need one last de�nition:

De�nition 4.16 Two simple type expressions 8V1:�1 and 8V2:�2 are compatible i� 8V1:�1 and 8V2:�2 are

equivalent reduced simple type expressions such that V1 and V2 are disjoint and no variable in V1 occurs

in �2 and no variable in V2 occurs in �1.

The important part of the de�nition of compatibility is that the type expressions are reduced and

equivalent. The conditions regarding quanti�ed variables are there merely to simplify proofs. There is

no loss of generality because �-conversion can be applied to convert any two equivalent reduced type

expressions into compatible expressions.

Lemma 4.17 Let 8V1:�1 and 8V2:�2 be compatible type expressions. If the semantic domain has standard

function types and standard glb types, then B(�1 � �2) is a (V1; V2)-miniscule system of constraints.

Proof: Let B(�1 � �2) = fs1 � t1; : : : ; sn � tng. We prove that the conditions in De�nition 4.14 all

hold:

1. By compatibility V1 and V2 are disjoint sets of variables.

2. By Part 2 of De�nition 4.11 at most one of si and ti is a ! expression.

3. For all i � n, si and ti are di�erent expressions by Part 3 of De�nition 4.11.

13

4. Let v 2 V1 [V2. We claim there is an i � n such that v 2 Pos(si)[Neg(ti). This fact is proven by

induction on the number of steps needed to compute B(f�1 � �2g) using the fact the expressions

are reduced and hence all variables in both V1 and V2 occur both positively and negatively.

5. Proof similar to the previous step.

6. Let � be any assignment. We must show that there is an assignment �0 such that �(v) = �0(v)

for all v 62 V1 and �0(si) � �0(ti) holds for all i � n. Since �(8V1:�1) � �(8V2:�2), it follows that

�(8V1:�1) � �(�2). Since the semantic domain has standard glb types, it follows that �0(�1) � �(�2)

holds for some �0 that agrees with � except possibly on V1. Since no variable in V1 occurs in �2, we

know �0(�1) � �0(�2). By Lemma 4.12, it follows that �0 is a solution to B(�1 � �2).

7. To show that for every assignment � there is an assignment �0 such that �(v) = �0(v) for all v 62 V2
and �0(ti) � �0(si) holds for all i � n, reverse the roles of �1 and �2. This argument relies on the

fact that B(�2 � �1) can be obtained from B(�1 � �2) by reversing the direction of the � symbol.

2

We are now ready to state and prove the �rst of the major theorems concerning completeness.

Theorem 4.18 If the semantic domain has standard function types and standard glb types, then any

two reduced simple type expressions are equivalent i� they are �-equivalent.

Proof: The if-direction is clear and does not even require that the semantic domain have standard

function types. To prove the only-if direction, let �0 and �00 be two reduced simple type expressions. If

necessary, �-convert �0 to �1 = 8V1:�1 and �-convert �00 to �2 = 8V2:�2 so that �1 and �2 are (V1; V2)

compatible. It su�ces to show that �1 and �2 are �-equivalent.

By Lemma 4.17, B(�1 � �2) is a (V1; V2)-miniscule system of constraints. By Lemma 4.15, B(�1 � �2)

is a (V1; V2)-convertible system of constraints; let F be the corresponding bijection mapping variables in

V2 to V1. A simple induction using the de�nition of B shows that

B(�1 � F (�2)) = ;

from which it follows (again using the de�nition of B) that �1 = F (�2). This shows that �1 and �2 are

�-equivalent as desired. 2

Corollary 4.19 If the semantic domain has standard function types, then no two di�erent unquanti�ed

simple type expressions are equivalent.

Proof: Given a semantic domain D construct another semantic domain D0 such that D0 = D00 and

D0 has standard glb types using the construction in Example 2.3. Using the semantic domain D0 su�ces

because the meaning of an unquanti�ed type expression is always an element of D0 and D
0

0 = D0. If � and

� 0 are equivalent, unquanti�ed simple type expressions, then they are reduced and hence �-equivalent by

Theorem 4.18. But since they have no quanti�ers, �-equivalence implies that � = � 0. 2

Finally, the following theorem states our main result.

Theorem 4.20 If the semantic domain has standard function types and standard glb types, then a

simple type expression is reduced i� it is irredundant.

14

Proof: The if direction follows from Theorem 4.9. To prove the only-if direction, let � be a reduced

simple type expression with the goal of proving that � is irredundant. Let �0 be an irredundant type

that is equivalent to �. (Such a �0 can always be found by picking it to be a type expression equivalent

to � with the smallest possible number of quanti�ed variables.) By Theorem 4.9, �0 is reduced. By

Theorem 4.18, � is �-equivalent to �0. Therefore, it follows that � and �0 have the same number of

quanti�ed variables. Hence, � is irredundant as desired. 2

Theorem 4.20 shows that a syntactic test (reduced) is equivalent to a semantic test (irredundant).

Theorem 4.20 requires that the semantic domain has standard function types. The following examples

show that this assumption is necessary.

Example 4.21 Consider the minimal semantic domain (Example 2.2). It is clear that 8�:(� ! �) �

(> ! >) in the minimal semantic domain. Therefore, 8�:(�! �) is reduced but not irredundant.

Example 4.22 In the semantic domain used in [AW93], x ! > = y ! > regardless of the values of x

and y, because if the answer can be anything (i.e., >), it does not matter what the domain is. In this

case, 8�:((� ! �) ! >) � > ! >. Thus, 8�:((� ! �) ! >) is not irredundant even though it is

reduced.

Theorem 4.23 shows that the Variable Elimination Procedure (Procedure 4.7) is complete provided

that the semantic domain has standard function types.

Theorem 4.23 Let � be a quanti�ed simple type expression. If the semantic domain has standard

function types and standard glb types, then V EP (�) is an irredundant simple type expression equivalent

to �.

Proof: Follows easily from Theorem 4.8 and Theorem 4.20. 2

To summarize, for simple type expressions the Variable Elimination Procedure that removes quanti�ed

variables occurring positively or negatively in a type produces an equivalent type with the minimum

number of quanti�ed variables. Furthermore, this type is unique up to the renaming and order of

quanti�ed variables.

A good feature of Theorem 4.23 is that the irredundant type expression produced by the Variable

Elimination Procedure has no more arrows than the original type expression. This need not be the case

if the semantic domain does not have standard function types.

Example 4.24 Let D0 = D1 = f?;> ! ?; x;? ! ?;> ! >;? ! >;>g where x is a function type,

> ! ? is less than x, and x is less than the other three function types. If either y0 or y1 is a function

type, then y0 ! y1 = x. Therefore, �(8�:(� ! �)) = x for all assignments � (since, for example,

(? ! ?) ! (? ! ?) = x). This implies that 8�:(� ! �) � (? ! ?) ! ?. Even though 8�:(� ! �)

has only one arrow, every irredundant type expression equivalent to 8�:(�! �) has at least two arrows.

5 Recursive Type Expressions

This section extends the basic variable elimination algorithm to a type language with recursive types.

The proofs of soundness and completeness parallel the structure of the corresponding proofs for the

non-recursive case.

New issues arise in two areas. First, there is new syntax for recursive type equations, which requires

corresponding extensions to the syntax-based algorithms (Pos, Neg, and B). Second, two new conditions

15

on the semantic domain are needed. Roughly speaking, the two conditions are (a) that recursive equations

have solutions in the semantic domain (which is needed to give meaning to recursive type expressions)

and (b) that the ordering � satis�es a continuity property (which is required to guarantee correctness of

the Pos and Neg computations). It is surprising that condition (b) is needed not just for completeness,

but even for soundness. Fortunately, standard models of recursive types (including the ideal model and

regular trees) satisfy both conditions.

5.1 Preliminaries

We begin by de�ning a type language with recursive types. We �rst require the technical notion of a

contractive equation.

De�nition 5.1 Let �1; : : : ; �n be distinct type variables and let �1; : : : ; �n be unquanti�ed simple type

expressions. A variable � is contractive in an equation �1 = �1 if every occurrence of � in �1 is inside a

constructor (such as !). A system of equations

�1 = �1 ^ : : :^ �n = �n

is contractive i� each �i is contractive in every equation of the system.

Contractiveness is a standard technical condition in systems with recursive types [MPS84]. Contrac-

tiveness is necessary for equations to have unique solutions (e.g., an equation such as � = � may have

many solutions). The results of this section only apply to systems of contractive equations.

De�nition 5.2 An (unquanti�ed) recursive type expression is of the form: �=E where E is a set of

contractive equations and � is an unquanti�ed simple type expression.

Throughout this section, we use �; �1; �
0; : : : for the de�ned variables that are given de�nitions in the

set of equations E, and we use �; �0; �1; : : : to indicate the regular variables, i.e., those that are not given

de�nitions. To give meaning to recursive type expressions, the equations in a recursive type must have

solutions in the semantic domain. The following de�nition formalizes this requirement.

De�nition 5.3 A semantic domain has contractive solutions i� for every contractive system E of equa-

tions

�1 = �1 ^ : : :^ �n = �n

and for every assignment �, there exists a unique assignment �E such that the following hold:

1. �E(�) = �(�) for all � 62 f�1; : : : ; �ng

2. �E(�i) = �E(�i) for all i = 1; : : : ; n.

Furthermore, if �1(�) = �2(�) for every regular variable � of E, then �E1 (�) = �E2 (�) for every de�ned

variable � of E.

Note that De�nition 5.3 is well-formed because assignments are applied only to unquanti�ed simple type

expressions, an operation that already has meaning (see De�nition 3.2). An assignment is extended to

(quanti�ed) recursive type expressions as follows:

De�nition 5.4

16

1. �(�=E) = �E(�) for any unquanti�ed simple type expression � .

2. �(8�:�=E) = uf�[� x](�=E)jx 2 D0g

Just as for simple type expressions, every unquanti�ed simple type expression is assigned a meaning

in D0 whereas quanti�ed simple type expressions typically have meanings that are in D1 but not in D0.

Lemma 5.5 shows that if a domain has contractive solutions, then de�nitions of \unused" variables can

be dropped.

Lemma 5.5 Assume the domain has contractive solutions. Let E by a set of equations a let E0 � E.

Assume that whenever � is a de�ned variable of E and � occurs in �0=E
0, then � is a de�ned variable of

E 0. Then �0=E � �0=E
0.

Proof: Let � be any assignment. First note that �E(�i) = �E(�i) for each equation �i = �i in E0. By

uniqueness of (�E)E
0

, it follows that (�E)E
0

= �E . Since �E and � agree on the regular variables of E0, it

follows that (�E)E
0

and �E
0

agree on the de�ned variables of E0. If a variable � occurs in �0 and � is a

regular variable of E0, then � is also a regular variable of E and hence (�E)E
0

(�) = �E
0

(�). Hence (�E)E
0

and �E
0

agree on all the variables that occur in �0. Therefore, (�
E)E

0

(�0) = �E
0

(�0). Putting these facts

together gives us that �(�0=E) = �E(�0) = (�E)E
0

(�0) = �E
0

(�0) = �(�0=E
0). Therefore, �0=E � �0=E

0 as

desired. 2

Surprisingly, even though contractive solutions guarantee that equations have unique solutions, this is

not su�cient for soundness of the Variable Elimination Procedure. The crux of the problem is found in the

reasoning that justi�es using Pos and Neg as the basis for replacing variables by > or ? (Lemma 4.3). The

Pos and Neg algorithms traverse a type expression to compute the set of positive and negative variables

of the expression. In the case of recursive types, Pos and Neg can be regarded as using �nite unfoldings

of the recursive equations. We must ensure that these �nite approximations correctly characterize the

limit, which is the \in�nite" unfolding of the equations. Readers familiar with denotational semantics

will recognize this requirement as a kind of continuity property. De�nition 5.7 de�nes type continuity,

which formalizes the appropriate condition. Later in this section we give an example showing that type

continuity is in fact necessary.

De�nition 5.6 A de�nable operator is a function F : D0 ! D0 such that there is a recursive type

expression �0=
Vm
i=1 �i = �i, a substitution �, and a (regular) variable � such that � is contractive in all

equations and

F (d) = �[� d](�0=
m̂

i=1

�i = �i)

holds for all d 2 D0.

De�nition 5.7 A semantic domain D has type-continuity i� for every monotonic, de�nable operator F

and every d0; d00 2 D0,

(F (d00) = d00 ^ F (d0) � d0)) d00 � d0

The minimal semantic model (Example 2.2) has contractive solutions, type continuity, and standard

glb types, but it lacks standard function types. The standard semantic model (Example 2.3) has standard

glb types and standard function types but lacks contractive solutions (e.g., because the equation � = � ! �

has no solution). The standard model does have type continuity, but without contractive solutions type

continuity is not very interesting; for the standard model, the only monotonic de�nable operators with

a �xed point are constant functions. The standard semantic model can be extended to the usual regular

tree model to provide contractive solutions without sacri�cing the other properties.

17

Lemma 5.8 The usual semantic domain of regular trees has contractive solutions, standard glb types,

standard function types, and type continuity.

Proof: We brie
y sketch the usual semantic domain D0 of regular trees. This discussion is not intended

to give a detailed construction of the domain, but rather to highlight the important features. As usual,

D1 consists of the non-empty upward closed subsets of D0. Therefore, the semantic domain has standard

glb types.

A �nite or in�nite tree is regular if it has only a �nite number of subtrees. The set D0 consists of the

regular trees built from > and ? using the ! operator. Thus, > and ? are elements of D0 and every

other element x of D0 is equal to x
0 ! x00 for some x0; x00 2 D0. Furthermore, x

0 and x00 are unique. It is

well-known that such a domain has contractive solutions.

Let x �0 y hold for all x; y 2 D0. Let x �i+1 y hold i� x = ? or y = > or x = x0 ! x00 and

y = y0 ! y00 and x00 �i y
00 and y0 �i x

0. Notice that �i+1��i. Then x � y holds i� x �i y holds for all

i � 0.

First we check that � has standard function types.

x0 ! x00 � y0 ! y00

, 8i(x0 ! x00 �i+1 y
0 ! y00)

, 8i(x00 �i y
00 and y0 �i x

0)

, 8i(x00 �i y
00) and 8i(y0 �i x

0)

, x00 � y00 and y0 � x0

Thus � has standard function types.

Next we check that D0 has type continuity. Let x =i y stand for x �i y and y �i x. Let F be a

de�nable operator. For any x; y 2 D0,

F i(x) =i F
i(y)

This fact follows by induction on i, using the fact that F is contractive in its argument. Let d0 and d00

be elements of D0 such that F (d00) = d00 and F (d0) � d0. It is easy to see by induction that F i(d00) = d00

and, using monotonicity of F , that F i(d0) � d0. Therefore, we have

d00 = F i(d00) =i F
i(d0) � d0

for all i. Hence, d00 �i d
0 holds for all i. By de�nition of �, it follows that d00 � d0 and we conclude that

the domain has type continuity. 2

5.2 Soundness

In this section, we extend variable elimination to recursive types. The �rst step is to extend the notion

of Pos and Neg to include de�ned variables (recall that de�ned variables are denoted by �):

De�nition 5.9 Pos and Neg are sets of regular variables such that

1. If � is not de�ned in E, then Pos(�=E) = f�g and Neg(�=E) = ;.

2. If � = � is in E, then Pos(�=E) = Pos(�=E) and Neg(�=E) = Neg(�=E).

3. Pos(?=E) = Neg(?=E) = ;

4. Pos(>=E) = Neg(>=E) = ;

18

5. Pos(�1 ! �2=E) = Pos(�2=E)[Neg(�1=E)

and Neg(�1 ! �2=E) = Neg(�2=E)[Pos(�1=E)

Many functions Pos and Neg satisfy these equations. For example, choosing

Pos(�=� = � ! �) = Neg(�=� = � ! �) = f�4; �29g

satis�es the equations, but the least solution is

Pos(�=� = � ! �) = Neg(�=� = � ! �) = ;

Our results apply to any functions Pos and Neg satisfying De�nition 5.9, but an implementation should

compute the smallest possible sets of positive and negative variables. It is easy to construct the least sets

for Pos and Neg by adding variables only as necessary to satisfy the clauses of De�nition 5.9. Notice that

a de�ned variable never occurs in the answer set of either Pos or Neg.

Lemma 5.10 Let � be a recursive type expression. If the semantic domain has contractive solutions

and type continuity, then

1. if � 62 Pos(�) and d1 � d2, then �[� d2](�) � �[� d1](�) holds for all assignments �.

2. if � 62 Neg(�) and d1 � d2, then �[� d1](�) � �[� d2](�) holds for all assignments �.

Proof: Let � = �0=E. The result is proven by induction on the number of equations in E with a

sub-induction on the structure of �0. The sub-induction on �0's structure proceeds as in Lemma 4.3. The

interesting case is the new base case where �0 is a de�ned variable �1 with �1 = �1 in E.

Assume � = �1=E where �1 = �1 is an equation in E. If � 2 Pos(�1=E) and � 2 Neg(�1=E), then

the result is vacuously true. If � 62 Pos(�1=E) and � 62 Neg(�1=E), then let E0 be those equations in E

that do not contain � and do not (recursively) refer to a de�ned variable that contains � in its de�nition.

Using Lemma 5.5, it can be shown that �1=E
0 � �1=E, so it su�ces to prove the result for �1=E

0. Notice

that � does not occur in �1=E
0. It is easy to check that �[� d](�1=E

0) = �(�1=E
0) holds for all d 2 D0

and the result follows.

If � 62 Pos(�1=E) and � 2 Neg(�1=E), then let E0 be E with the equation �1 = �1 deleted. If

�1 were in Neg(�1=E
0), then the fact that � 2 Neg(�1=E) would force � to be in Pos(�1=E) as well,

which is contradiction. Hence, �1 62 Neg(�1=E
0). Fix an assignment �. For each d0 2 D0, de�ne

Fd0(d) = �[� d0][�1 d](�1=E
0). It is clear that Fd0 is a de�nable operator. By the induction

hypothesis, Fd0 is a monotonic operator. It is easy to see that � 62 Pos(�1=E
0), so it also follows from

the induction hypothesis that F is anti-monotonic in its subscript. More formally, if d1 � d2, then

Fd2(d) � Fd1(d) holds for every d 2 D0.

De�ne a function h on D0 by

h(d0) = �[� d0](�1=E)

Now we have
Fd0(h(d0))

= �[� d0][�1 h(d0)](�1=E
0)

= (�[� d0][�1 h(d0)])
E0

(�1)

= ((�[� d0]
E)E

0

(�1) by furthermore clause of De�nition 5.3

= (�[� d0])
E(�1) by uniqueness of (�E)E

0

relative to �E in De�nition 5.3

= (�[� d0])
E(�1)

= �[� d0](�1=E)

= h(d0)

Thus, Fd0(h(d0)) = h(d0) holds for every d0 2 D0. Let d1 � d2. Fd2(h(d2)) = h(d2). Fd2(h(d1)) �

19

Fd1(h(d1)) = h(d1). By type continuity, h(d2) � h(d1) which is the desired result.

If � 2 Pos(�1=E) and � 62 Neg(�1=E), then the proof is omitted since it is similar to the case where

� 62 Pos(�1=E) and � 2 Neg(�1=E). Like the previous case, F is monotonic in its argument; unlike the

previous case, F is monotonic in its subscript. 2

Corollary 5.11 Assume the semantic domain has type continuity and contractive solutions.

1. If � 62 Pos(�=E), then �((�=E)[� >]) � �(�=E) � �((�=E)[� ?]) holds for all assignments �.

2. If � 62 Neg(�=E), then �((�=E)[� ?]) � �(�=E) � �((�=E)[� >]) holds for all assignments �.

The rest of the soundness results proceed as before. In particular, the Variable Elimination Procedure

remains una�ected, except that it uses the new de�nitions of Pos and Neg. Just as in Section 4, we extend

Pos and Neg:

Pos(8�:�) = Pos(�)� f�g

Neg(8�:�) = Neg(�)� f�g

Lemma 5.12 If � is a quanti�ed recursive type expression and the semantic domain has type continuity

and contractive solutions, then

� 62 Neg(�)) 8�:� � �[� ?]

� 62 Pos(�)) 8�:� � �[� >]

Proof: Same as the proof for Lemma 4.5. 2

Example 5.13 Let � = (�3 ! �3)! (�2 ! �1)=�1 = �1 ! �1 ^ �2 = �2 ! �2 ^ �3 = �3 ! �3. Note that

Pos(�) = f�2; �3g and Neg(�) = f�1; �3g. Assuming that the semantic domain has contractive solutions

and type continuity, Lemma 5.12 allows us to conclude that

8�18�28�3:((�3 ! �3)! (�2 ! �1)= �1 = �1 ! �1 ^ �2 = �2 ! �2 ^ �3 = �3 ! �3)

� 8�3:((�3 ! �3)! (�2 ! �1)= �1 = > ! �1 ^ �2 = ? ! �2 ^ �3 = �3 ! �3)

The next example shows that the assumption of type continuity is needed in the proof of Lemma 5.12.

Example 5.14 Consider the type expression 8�:(�=� = �! �). If Lemma 5.12 holds, then we have

�=� = > ! �

� 8�:(�=� = �! �) by Lemma 5.12

� (�=� = ? ! �) since ? is an instance of �

Let �0 = > ! �0 and �1 = ? ! �1 be elements of the semantic domain. Any semantic domain in which

it is not the case that �0 � �1 serves as a counterexample to the conclusion of Lemma 5.12.

Take the semantic domain to be the set of regular trees and de�ne x �00 y to hold i� x = y. Let

x �0i+1 y hold i� x = ?, y = >, or 9x1; x2; y1; y2(x = x1 ! x2 ^ y = y1 ! y2 ^ y1 �
0

i x1 ^ x2 �
0

i y2). Let

x �0 y hold i� x �0i y for some i. Next, notice that �0 �
0

i+1 �1 i� > ! �0 �
0

i+1 ? ! �1 i� ? �
0

i >^�0 �
0

i �1.

It is easy to see by induction that �0 6�
0

i �1 is true for all i. Hence, �0 6�
0 �1. Thus, the conclusion of

Lemma 5.12 does not hold for this semantic domain.

20

This semantic domain has contractive solutions, standard function types, and standard glb types.

What it lacks is type continuity, and it is instructive to see why. Consider the two de�nable operators:

F?(d) = [� d](?! �)

F>(d) = [� d](>! �)

Let > ! > ! : : : be the in�nite regular tree where > appears in the domain of every \!". Observe that

F>(> ! > ! : : :) = > ! > ! : : :

Note that for all d we have F>(d) �
0 F?(d). In particular,

F>(? ! ? ! : : :) �0 F?(? ! ? ! : : :) = ? ! ? ! : : :

If the domain had type continuity, it would follow that

> ! > ! : : :�0 ? ! ? ! : : :

As shown above, this relation does not hold, so therefore the domain does not have type continuity.

As discussed at the beginning of this section, type continuity is needed to guarantee that the �nite

computation performed by Pos and Neg is consistent with the orderings on all �nite and in�nite trees.

Example 5.14 shows how the problem arises when x 6�0 y, but x �i y for all i (where �i is the relation

used in Lemma 5.8 to de�ne the usual ordering on regular trees). Thus, in contrast to the case of simple

expressions where no additional assumptions on the semantic domain are needed for soundness, type

continuity is needed to prove soundness for recursive type expressions.

Theorem 5.15 Let � be any quanti�ed recursive type expression. If the semantic domain has type con-

tinuity and contractive solutions, then � � VEP (�) and V EP (�) is a reduced recursive type expression.

Proof: Follows easily from Lemma 5.12. 2

Theorem 5.16 If the semantic domain has type continuity and contractive solutions, then every irre-

dundant recursive type expression is reduced.

Proof: Same as the proof of Theorem 4.9. 2

5.3 Completeness

In this section, we face concerns similar to those found in Section 4.2.

De�nition 5.17 Let S be a set of unquanti�ed constraints. De�ne B(S) to be the smallest set of

constraints such that the following all hold. These clauses are to be applied in order, with the earliest

one that applies taking precedence.

1. B(;) = ;

2. If t is >, ?, or a regular variable, then B(ft=E � t=E0g [S) = B(S).

3. B(fs1 ! s2=E � t1 ! t2=E
0g [S) = B(ft1=E

0 � s1=E; s2=E � t2=E
0g [S).

21

4. If � = � is in E, then B(f�=E � tg [S) = B(f�=E � tg [S).

5. If � = � is in E0, then B(fs � �=E0g [S) = B(fs � �=E0g [S).

6. Otherwise, B(fs=E � t=E0g [S) = fs � tg [B(S).

Lemma 5.18 Assume that D is a semantic domain with contractive solutions, standard function types,

and standard glb types. If � is a solution of ft1=E � t2=E
0g, then it is a solution of B(ft1=E � t2=E

0g).

Proof: The proof is very similar to the proof of Lemma 4.12 and so is omitted. The most important

new case is Part 6 of De�nition 5.17. In this clause, note that dropping the associated constraints may

increase the set of solutions, which is permitted by the statement of the lemma. 2

Lemma 5.19 Let 8V1:�1 and 8V2:�2 be compatible recursive type expressions. If the semantic domain

has contractive solutions, standard function types, and standard glb types, then B(f�1 � �2g) is a

(V1; V2)-miniscule system of constraints.

Proof: Let B(f�1 � �2g) = fs1 � t1; : : : ; sn � tng. We show that B(f�1 � �2g) satis�es the conditions

of De�nition 4.14.

1. By compatibility V1 and V2 are disjoint sets of variables.

2. By Part 3 of De�nition 5.17 at most one of si and ti is a ! expression.

3. Consider a constraint t � t. Constraints of the form ? � ?, > � >, and � � � are eliminated by

Part 2 of De�nition 5.17, constraints t! t0 � t! t0 are eliminate by Part 3, and constraints � � �

are eliminated by Parts 4 and 5. Therefore, for all t, we have t � t is not in B(f�1 � �2g).

4. Same as Part 4 of the proof of Lemma 4.17 (but using De�nition 5.17).

5. Proof similar to the previous step.

6. Let � be any assignment. We must show that there is an assignment �0 such that �(v) = �0(v) for

all v 62 V1 and �0(si) � �0(ti) holds for all i � n. Since

�(8V1:�1=E1) � �(8V2:�2=E2);

it follows that

�(8V1:�1=E1) � �(�2=E2):

Since the semantic domain has standard glb types, it follows that �0(�1=E1) � �(�2=E2) holds for

some �0 that agrees with � except possibly on V1. Since no variable in V1 occurs in �2=E2, we know

�0(�1=E1) � �0(�2=E2). By Lemma 5.18, it follows that �0 is a solution to B(�1=E1 � �2=E2).

7. Similar to the previous step with the roles of �1 and �2 reversed.

2

Theorem 5.20 If the semantic domain has contractive solutions, standard glb types, and standard

function types, then any two reduced recursive type expressions have the same number of quanti�ed

variables.

22

Proof: Let �0 and �00 be two reduced recursive type expressions. If necessary, �-convert �0 to �1 =

8V1:�1 and �-convert �00 to �2 = 8V2:�2 in such a way that �1 and �2 are (V1; V2) compatible. By

Lemma 5.19, B(�1=E � �2=E
0) is a (V1; V2)-miniscule system of constraints. By Lemma 4.15, B(�1=E �

�2=E
0) is a (V1; V2)-convertible system of constraints, which implies that jV1j = jV2j. 2

Unlike the case of simple expressions, two equivalent reduced types need not be �-equivalent. For

example, consider a semantic domain that has contractive solutions. Let �0 = �0 ! �0 and �1 = (�1 !

�1) ! (�1 ! �1). These two types exist since the domain has contractive solutions. By substituting

(�0 ! �0) in for �0, we obtain �0 = (�0 ! �0) ! (�0 ! �0). Since the domain has contractive solutions,

it follows that �0 = �1. Clearly, the type expressions �0=�0 = �0 ! �0 and �1=�1 = (�1 ! �1)! (�1 ! �1)

are not �-equivalent.

Theorem 5.21 If the semantic domain has contractive solutions, type continuity, standard function

types, and standard glb types, then a recursive type expression is reduced i� it is irredundant.

Proof: The if-direction follows from Theorem 5.16. To prove the only-if direction, let � be a reduced

recursive type expression with the goal of proving that � is irredundant. Let �0 be an irredundant

recursive type expression that is equivalent to �. (Such a �0 can always be found by picking it to

be a type expression equivalent to � with the smallest possible number of quanti�ed variables.) By

Theorem 5.16, �0 is reduced. By Theorem 5.20, � and �0 have the same number of quanti�ed variables.

Hence, � is irredundant as desired. 2

Theorem 5.22 Let � be quanti�ed recursive type expression. If the semantic domain has contractive so-

lutions, type continuity, standard glb types, and standard function types, then V EP (�) is an irredundant

recursive type expression equivalent to �.

Proof: Follows easily from Theorem 5.15 and Theorem 5.21. 2

6 Intersection and Union Types

In this section we extend our results to type languages with union and intersection types. This is the �rst

point at which the technique of eliminating variables that appear solely in monotonic or anti-monotonic

positions is sound but not complete.

6.1 Preliminaries

As a �rst step union and intersection types are added to simple type expressions.

De�nition 6.1 Extended type expressions are generated by the grammar

� ::= � j > j? j �1+ �2 j �1 � �2 j �1! �2

Extended quanti�ed types are adapted in the obvious way to use extended type expressions instead of

simple type expressions. The operations + and � are interpreted as least-upper bound and greatest-lower

bound, respectively. To give meaning to extended type expressions an assumption is needed about the

upper and lower bounds that exist in the domain.

De�nition 6.2 A semantic domain D = (D0;D1;�;u) has standard upper and lower bounds if every

pair of elements �1; �2 2 D0 have a least upper bound �1 t �2 and a greatest lower bound �1 u �2 in D0.

23

Note that requiring �1 u �2 exist is di�erent from having standard glb types, as standard glb types are

glb's of (potentially) in�nite sets in D1. The following lemma shows that natural domains have standard

upper and lower bounds.

Lemma 6.3 Assume that for every x 2 D0 it is the case that x = >, x = ?, or x = x1 ! x2 for some

x1 and x2. If D0 has standard function types, then the domain has standard upper and lower bounds.

Proof: We must show that xt y and xu y exist for all x; y 2 D0. It is easy to check that the following

equations cover all possibilities:

> t x = > x t > = >

? t x = x x t ? = x

? u x = ? x u ? = ?

> u x = x x u > = x

x1 ! y1 t x2 ! y2 = x1 u x2 ! y1 t y2 x1 ! y1 u x2 ! y2 = x1 t x2 ! y1 u y2

The eight equations on the �rst four lines are easy to verify. To justify the equation x1 ! y1tx2 ! y2 =

x1 u x2 ! y1 t y2, note that

x1 u x2 � x1

x1 u x2 � x2

y1 � y1 t y2

y2 � y1 t y2

from which it follows that x1 u x2 ! y1 t y2 is an upper bound of both x1 ! y1 and x2 ! y2. Let a! b

be any other upper bound of x1 ! y1 and x2 ! y2. Since the domain has standard function types, we

have a � x1 and a � x2, so a � x1 u x2. Similarly y1 t y2 � b. Therefore, x1 u x2 ! y1 t y2 is the least

upper bound. The justi�cation of the last equation is symmetric. 2

It follows immediately from Lemma 6.3 that the Standard Model (Example 2.3) and Regular Tree

Model (Lemma 5.8) both have standard upper and lower bounds.

Given an assignment �, the meanings of the new type operations are:

�(�1 + �2) = �(�1)t �(�2)

�(�1 � �2) = �(�1)u �(�2)

6.2 Soundness for Non-Recursive Types

We �rst extend Pos and Neg to include the new operations.

Pos(�1 + �2) = Pos(�1) [Pos(�2)

Neg(�1 � �2) = Neg(�1)[Neg(�2)

We can now restate the basic lemma needed to prove soundness for the non-recursive case.

Lemma 6.4 Let � be any extended simple type expression. Let d; d0 2 D0 where d � d0. If the

domain has standard upper and lower bounds, then

1. If � 62 Pos(�), then �(� [� d0]) � �(� [� d]) holds for all assignments �.

24

2. If � 62 Neg(�), then �(� [� d]) � �(� [� d0]) holds for all assignments �.

Proof: This proof is by induction on the structure of � and is an easy extension of the proof of

Lemma 4.3. Let d0; d 2 D0 where d
0 � d, and let � be any assignment. There are two new cases:

� Let � = �1 + �2. Assume � 62 Pos(�). By the de�nition of Pos, we know

� 62 Pos(�1) [Pos(�2)

and therefore

�[� d0](�1) � �[� d](�1)

�[� d0](�2) � �[� d](�2)

follow by induction. The relationships still hold if the right-hand sides are made larger, so

�[� d0](�1) � �[� d](�1) t �[� d](�2)

�[� d0](�2) � �[� d](�1) t �[� d](�2)

Combining these two inequalities we get

�[� d0](�1) t �[� d0](�2) � �[� d](�1) t �[� d](�2)

The proof for the subcase � 62 Neg(�) is similar.

� Let � = �1 � �2. This case is very similar to the previous one, with u substituted for t.

2

An inspection of the results from Section 4.1 shows that the proofs of Lemma 4.5 and Theorem 4.8

depend only on Lemma 4.3 and not on a particular language of type expressions. Therefore, by Lemma 6.4,

it is immediate that Procedure 4.7 is a sound variable elimination procedure for extended simple types

in domains with standard upper and lower bounds.

While variable elimination is sound for extended simple type expressions, it is not complete.

Example 6.5 In either the Standard Model or Regular Tree Model we have

8�:(�! �) +> � >

Clearly, the �rst type is reduced and not irredundant.

Similarly, 8�:(�! �)� ?� ?. In general, the Pos and Neg computations overestimate the set of positive

and negative variables for expressions �1 + �2 where �(�1) � �(�2) for all � (and similarly for �).

A subtler source of incompleteness arises from interaction between universal quanti�cation and unions

and intersections.

Example 6.6

8�; �:� � � ! � � �

= uf�[� x1; � x2](� � � ! � � �)jx1; x2 2 D0g by Proposition 3.3

= ufx1 u x2 ! x1 u x2)jx1; x2 2 D0g

= ufx! xjx 2 D0g since fx1 u x2jx1; x2 2 D0g = D0
= 8�:�! �

Note that there is no explicit relationship between � and � in the type. The relationship follows from

the fact that the variables are always used together and the universal quanti�cation.

25

6.3 Improvements

We do not know a complete version of the Variable Elimination Procedure in the presence of union

and intersection types. In this section we brie
y illustrate some heuristic improvements that have been

useful in practice [AM91, FA96]. As illustrated in Section 6.2, redundant intersections and unions are a

signi�cant source of incompleteness. This suggests the following procedure:

Procedure 6.7 (Extended Variable Elimination Procedure (EVEP)) Let � be an extended quan-

ti�ed type.

1. Let �1 be the result of replacing any subexpression �1 + �2 in � by �2 if �(�1) � �(�2) for all

assignments �.

2. Let �2 be the result of replacing any subexpression �1 � �2 in �0 by �2 if �(�2) � �(�1) for all

assignments �.

3. Let �3 = V EP (�2).

4. Halt if no variables are eliminated in (3); the result is �3. Repeat (1)-(3) on �3 otherwise.

Note that deciding whether a type is equivalent to > or ? in all assignments is not necessarily easy,

depending on the expressiveness of the type language under consideration.

The interesting aspect of Procedure 6.7 is that iterating the elimination of intersections, unions, and

variables is necessary|the body of the Extended Variable Elimination Procedure is not idempotent. For

example:
8�; �:� ! (� � �)

� 8�:� ! (? ��) since � is not negative

� 8�:� !? since ? �� =?

� > !? since � is not positive

Since each iteration but the last of the Extended Variable Elimination Procedure eliminates at least

one variable, the complexity is at worst the product of the number of quanti�ed variables and the size of

the original type, which is at most quadratic in the size of the type.

6.4 Soundness and Incompleteness for Recursive Types

In this section we consider extended recursive types.

De�nition 6.8 An extended recursive type has the form

�=
^

1�i�n

�i = �i

where the equations are contractive and �; �1; : : : ; �n are extended type expressions.

It will come as no surprise that, in addition to standard upper and lower bounds, the domain must

have contractive solutions and type continuity for variable elimination to be sound for extended recursive

types. An inspection of the statement and proof of Lemma 5.10 shows that it does not depend on

a particular de�nition of type, but only on type continuity and soundness of the non-recursive case.

Thus, adding the hypothesis that the domain has standard upper and lower bounds to Lemma 5.10, and

substituting Lemma 6.4 for Lemma 4.3 in the proof of the lemma, gives a proof of soundness for variable

elimination on extended recursive types.

Because extended simple types are a subset of the extended recursive types and the VEP is incomplete

for simple types, it follows that variable elimination is incomplete for extended recursive types.

26

7 Constrained Type Expressions

This section presents results for types with polymorphism and subtyping constraints, which is also called

bounded polymorphism or constrained types. This language is the most general that we consider.

7.1 Preliminaries

We begin by de�ning a type language with subsidiary subtyping constraints.

De�nition 7.1 An (unquanti�ed) constrained type expression has the form �0=C where C is a set of

constraints of the form

�1 � � 01

: : : : : :

�n � � 0n

where �i and � 0i are unquanti�ed simple type expressions for all 1 � i � n.

Unlike the case of recursive types, note that De�nition 7.1 makes no distinction between \regular" and

\de�ned" variables|all variables are regular.

De�nition 7.2 Let � be any assignment. Then

1. �(�=C) = �(�) provided that � is a solution of C.

2. �(8�1; : : : ; �n:�=C) =

uf�[�1 x1; : : : ; �n xn](�=C)jx1; : : : ; xn 2 D0 and �[�1 x1; : : : ; �n xn] is a solution of Cg

The meaning of an unquanti�ed constrained type �=C under assignment � is unde�ned unless � is

a solution of C. Furthermore, the u operation in the meaning of a quanti�ed constrained type under

assignment � is restricted to those modi�cations of � that satisfy the constraints. It is easy to see that

constrained types are a generalization of recursive types, because any recursive type

8�1; : : : ; �m:�= �1 = �1 ! � 01 ^ : : :^ �n = �n ! � 0n

can be written as a constrained type

8�1; : : : ; �m:�= �1 � �1 ! � 01 ^ �1 � �1 ! � 01 ^ : : :^ �n � �n ! � 01 ^ �n � �n ! � 01

It is also worth noting that it is well-de�ned for a quanti�ed constrained type to have an inconsistent

system of constraints. For example, if C = > � � � ?, then

�(8�:�=C)

= uf�[� x](�=C)jx 2 D0 and �[� x] is a solution of Cg

= ufg

= >

27

An important feature of constrained types is that the constraints may have multiple lower (or upper)

bounds for a single variable, such as

�1 ! �2 � � ^ �3 ! �4 � � ^ � �
 ^ � � �5 ! �6

In any solution of these constraints, � must be an upper bound of �1 ! �2 and �3 ! �4, and � must be

a lower bound of
 and �5 ! �6.

To give algorithms for eliminating quanti�ed variables from constrained types, it is necessary to

characterize the solutions of constraints. To minimize the number of new concepts needed to explain

the algorithms in the case of constrained types, we build on the results of Section 5 by characterizing

solutions of constraints in terms of equations.

De�nition 7.3 A system C of constraints is closed i�

�1 � � 2 C ^ � � �2 2 C) �1 � �2 2 C

�1 ! �2 � �3 ! �4 2 C) �3 � �1 2 C ^ �2 � �4 2 C

A closed system C is consistent i� > � ? 62 C.

De�nition 7.3 is taken from [EST95]. Intuitively, closing a system of constraints C is equivalent to

solving C, and if the closed system has no inconsistent constraints, then it has solutions. Instead of

asserting that closed consistent systems have solutions directly, we characterize those solutions in terms

of equations.

De�nition 7.4 Let C be a closed consistent system of constraints. Let the variables of C be �1; : : : ; �n.

For each variable �i appearing in C, de�ne

LC�i = ?+ �f� j� � �i 2 C and if � is a variable �j ; then j < ig

UC
�i

= > ��f� j� � �i 2 C and if � is a variable �j ; then j < ig

Let �1; : : : ; �n be fresh variables. De�ne a system of equations EC for C:
^

1�i�n

�i = LC�i + (�i � U
C
�i
)

The intuition behind De�nition 7.4 is that any solution for the equation for �i ranges between LC�i (when

�i = ?) and UC
�i
(when �i = >). For example, consider the system C of constraints

�1 � �2 ^ > ! ? � �1 ^ �1 � ?! >

Closing this system gives

�1 � �2 ^ > ! ? � �1 ^ �1 � ? ! > ^ > ! ? � �2 ^ ? � >

which is consistent. The equations EC are

�1 = (> ! ?) + (�1 � (?! >))

�2 = ((>! ?) + �1) + (�2 � >)

This example shows that the equations EC are not necessarily contractive, since �1 appears outside of a

constructor in the equation for �2. However, EC is always equivalent to a contractive system of equations.

28

Lemma 7.5 Let EC be a system of equations for a closed consistent system of constraints C. Then

there is a system of constraints E0

C that is contractive such that EC and E0

C have the same solutions.

Proof: Examination of L�i and U�i in De�nition 7.4 shows that if �j occurs outside of a ! expression

in the equation for �i, then j < i. We show by induction on i how to construct a contractive equation

for �i. The equation for �1 has no variable �k outside of a ! expression, so the equation for �1 is

already contractive. Assume that �1; : : : ; �i�1 have contractive equations. Any variable �j outside of a !

expression in the equation for �i can be eliminated by substituting the right-hand side of an equation for

�j . Because j < i, we can choose a contractive equation for �j , in which case the resulting equation for

�i is also contractive. 2

Applying Lemma 7.5 to the example system of equations above, the contractive system is

�1 = (> ! ?) + (�1 � (? ! >))

�2 = ((> ! ?) + (> ! ?) + (�1 � (? ! >))) + (�2 � >)

De�nition 7.6 A domain is adequate if

1. the domain has contractive solutions,

2. the domain has standard upper and lower bounds,

3. and for any consistent closed system C of constraints over �1; : : : ; �n,

� is a solution of C , 9�0: �0 is a solution of EC and 81 � i � n: �(�i) = �0(�i)

Lemma 7.7 In an adequate domain, closed consistent systems of constraints have solutions.

Proof: By Part 3 of De�nition 7.6, a closed consistent system C has solutions i� EC has solutions. By

Lemma 7.5, EC is equivalent to a contractive system of equations. By Part 1 of De�nition 7.6, contractive

equations always have solutions in an adequate domain. 2

A construction of an adequate domain is given in [AW93].

7.2 Soundness

The equivalence between constraints and equations in an adequate domain suggests that variable elimina-

tion can be performed by �rst translating from constraints to equations, applying the results of Section 6.4

to eliminate variables, and then translating back (if desired) to constraints. We can improve on this pro-

cedure with a modi�ed Extended Variable Elimination Procedure that takes advantage of the structure

of constraint systems.

Procedure 7.8 Let � = 8�1; : : : ; �n:�=C be a quanti�ed constrained type. Let

�0 = 8�1; : : : ; �n:�=EC

be the corresponding extended quanti�ed type. Perform the following steps on �0:

1. Let �1 be the result of replacing any subexpression �1 + �2 in �0 by �2 if �(�1) � �(�2) for all

assignments �. In particular, if any equation of EC has the form

�i = LC�i +> �U
C
�i

then replace the equation by

�i = UC
�i

since �(LC�i) � �(UC
�i
) for any solution � of the constraints.

29

2. Let �2 be the result of replacing any subexpression �1 � �2 in �0 by �2 if �(�2) � �(�1) for all

assignments �. In particular, if any equation of EC has the form

�i = LC�i +? �U
C
�i

then replace the equation by

�i = LC�i

3. Let �3 = V EP (�2).

4. Halt if no variables are eliminated in (3); the result is �3. Repeat (1)-(3) on �3 otherwise.

Example 7.9 Consider the type

8�1; �2: �1 ! �2= �1 � �2

The extended quanti�ed type is

8�1; �2:�1 ! �2= �1 = ?+ �1 � �2 ^ �2 = ?+ �2 � >

Now Pos(�1 ! �2) = f�2g and Neg(�1 ! �2) = f�1; �2g. Thus �1 can be set to >; performing this

substitution and simplifying gives:

8�2:�1 ! �2= �1 = �2 ^ �2 = �2

Substituting �2 for the other variables gives:

8�2:�2 ! �2

Soundness is easy to prove for the procedure given above.

Lemma 7.10 Let � = 8�1; : : : ; �n:�=C and assume that C is closed and consistent. If the domain is

adequate and has type continuity, then Procedure 7.8 is sound for �.

Proof: Follows from De�nition 7.6 and Lemma 5.10. 2

We note that it is easy to give an algorithm that implements the e�ect of Procedure 7.8 on the

constraints directly, without requiring translations to and from equations.

8 Conclusions

Polymorphic types with subtyping have rich structure. In this paper, we have shown that for simple

non-recursive types and recursive types, it is possible to compute an optimal representation of a poly-

morphic type in the sense that no other equivalent type has fewer quanti�ed variables. Thus, the optimal

representation can be interpreted as having the minimum polymorphism needed to express the type.

In more complex type languages, in particular in languages with union and intersection types, the

same methods are sound but incomplete. The completeness results for the simpler type languages show

that the source of incompleteness is in fact union and intersection types in these languages. The problem

of whether there is a sound and complete variable elimination procedure for languages with intersection

and union types remains open.

We have also given a sound variable elimination procedure for polymorphic constrained types. Variable

elimination is critically important in implementations of type systems using constrained types [FA96],

and in fact the desire to better understand variable elimination in this setting was the original motivation

for this work. However, the problem of whether there is a sound and complete procedure for eliminating

variables in polymorphic constrained types also remains open.

30

References

[AM91] A. Aiken and B. Murphy. Implementing regular tree expressions. In Proceedings of the 1991

Conference on Functional Programming Languages and Computer Architecture, pages 427{447,

August 1991.

[AW93] A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedings of

the 1993 Conference on Functional Programming Languages and Computer Architecture, pages

31{41, Copenhagen, Denmark, June 1993.

[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In Twenty-

First Annual ACM Symposium on Principles of Programming Languages, pages 163{173, Port-

land, Oregon, January 1994.

[Cur90] Pavel Curtis. Constrained quanti�cation in polymorphic type analysis. Technical Report CSL-

90-1, Xerox Parc, February 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.

Computing Surverys, 17(4):471{522, December 1985.

[EST95] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In OOPSLA

'96, 1995.

[FA96] M. F�ahndrich and A. Aiken. Making set-constraint program analyses scale. In CP96 Workshop

on Set Constraints, August 1996.

[HM94] Fritz Henglein and Christian Mossin. Polymorphic binding-time analysis. In Donald Sannella,

editor, Proceedings of European Symposium on Programming, volume 788 of Lecture Notes in

Computer Science, pages 287{301. Springer-Verlag, April 1994.

[Koe94] A. Koenig. An anecdote about ML type inference. In Proceedings of the USENIX 1994 Sym-

posium on Very High Level Languages, October 1994.

[MPS84] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymophic types. In

Eleventh Annual ACM Symposium on Principles of Programming Languages, pages 165{174,

January 1984.

[Pot96] F. Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM SIGPLAN

International Conference on Functional Programming, pages 122{133, May 1996.

31

