Hidden Cliques as Cryptographic Keys

Ari Juels™ Marcus Peinado'

August 22, 1996

Abstract

We demonstrate in this paper a very simple method for “hiding” large cliques in
random graphs. While the largest clique in a random graph is very likely to be of
size about 2log, n, 1t is widely conjectured that no polynomial-time algorithm exists
which finds a clique of size (1 + €) log, n with significant probability for any constant
€ > 0. We show that if this conjecture is true, then when a clique of size at most
(2 — §) log, n for constant § > 0 is randomly inserted (“hidden”) in a random graph,
finding a clique of size (1 4 €) logy n remains hard. In particular, we show that if there
exists a polynomial-time algorithm which finds cliques of size (14+¢) log, n in such graphs
with probability @QHE“ then the same algorithm will find cliques in completely random
graphs with probability @QHE . Given the conjectured hardness of finding large cliques in
random graphs, we therefore show that hidden cliques may be used as cryptographic
keys.

*Department of Computer Science, University of California at Berkeley. Supported by a UC Regents
Fellowship and NSF Grant CCR-9505448. E-mail: juels@cs.berkeley.edu.

tGerman National Research Center for Information Technology (GMD). Supported in part by DFG
grant SFB 408. A portion of this this research was conducted by the author while visiting the International
Computer Science Institute, Berkeley, CA. E-mail: Marcus.Peinado@gmd.de.

UC Berkeley Technical Report CSD-96-!



1 Introduction

1.1 Background

A clique of size k in a graph G = (V, E) is a complete subgraph on k nodes, i.e., a set
of k nodes such that every pair is connected by an edge. The problem of finding a clique
of maximal size, or even near-maximal size, is believed to be hard for general graphs. Let
w(G) denote the maximum value of k such that ¢ contains a clique of size k and let n = |V/|.
Unless P = NP, it is known that for any § > 0, no polynomial-time algorithm can find a
clique whose size is within a factor of nz° of w(G) for general graphs [3].!

Finding “large” cliques in randomly-generated graphs also appears to be quite hard, and
has prompted a great deal of experimental and theoretical interest. Most of the research
in this vein focuses on the random graph model G, ;/5, i.e., the uniform distribution over
graph instances containing n nodes. A graph G may be drawn from this distribution by
inserting each of the @ possible edges into GG independently with probability 1/2. For the
overwhelming majority of such graphs, the largest clique is of size 2log, n — o(log log n) [2].
Smaller cliques exist in abundance: for k = clog, n, where ¢ € (0, 2), the expected number
of cliques of size k is Q(n!87).

It is widely conjectured that for any constant € > 0, there does not exist a polynomial-
time algorithm capable of finding cliques of size (14 ¢€)logy n with significant probability
in random graphs. Karp [5] first issued the challenge of finding such an algorithm twenty
years ago. Jerrum [4] considerably extended this challenge in calling for a randomized,
polynomial-time algorithm capable of finding a clique of size 1.01log, n with high prob-
ability over random graphs containing a clique of size n°°. In support of the difficulty
of finding such an algorithm, Jerrum demonstrates the existence of an initial state from
which the Metropolis algorithm, a fixed-temperature variant of simulated annealing, cannot
find a clique of size (1 + €) log, n for any constant € > 0 in expected polynomial time. He
shows, moreover, that this situation holds even when a clique of size as large as n/2=% for
constant § > 0 is randomly inserted (“hidden”) in randomly-generated graphs. A number
of experimental studies seem to confirm the hardness of the problem of finding large cliques
in random graphs. A brief survey of these may be found in [6].

1.2 This paper

Our aim in this paper is to show that it is possible to “hide” relatively large cliques in
random graphs in such a way that finding such a clique is as hard as finding a large clique
in an unaltered random graph. Let p denote the uniform distribution G, ;/, over graphs
with n nodes. Let pj. denote the distribution obtained as follows: select a graph G = (V, E)
from p, and then form a clique on k nodes selected uniformly at random from V. We
refer to a clique formed in this manner as a hidden clique. We shall show that when

'"Hastad shows in [3] that the result holds for a factor of nz = for any constant § > 0 under the assumption

that NP # coR. He has subsequently raised this factor to n'=?.

UC Berkeley Technical Report CSD-96-!



k < (2 —6)log, n for any constant § > 0, finding a large clique in pj, is as hard as finding
one in p. More precisely, we shall show that if there exists an algorithm A which finds a
clique of size (1 + ¢€)log, n in p) with probability §a for some polynomial ¢(n), then the

same algorithm can find a clique of size (1 + ¢€)logyn in p with probability Q\M:v for some

polynomial ¢'(n).

If the conjectured hardness of finding large cliques holds, the result in this paper will
imply that hidden cliques may be used as cryptographic keys. In the simplest scenario,
a user may generate a random graph G and then plant a clique K of size w_omw n in G,
yielding a graph G’. The hidden clique K may then serve as a password: by revealing K,
the user confirms that she was responsible for generating G’.

The remainder of this paper is organized into two sections. In section 2, we describe and
prove the main theorem of this paper, stating that large hidden cliques are as hard to find
as large cliques in (v, 1 /2. In section 3, we discuss some issues surrounding the application
of this result to the realm of cryptography.

2 Main theorem

2.1 Sketch of proof

Let E) denote the expected number of cliques of size k in a graph drawn from p. Let Ci(G)
denote the number of distinct (but possibly overlapping) cliques of size k in a specific graph
instance (G. Note that when considered appropriately over the distribution p, Ci(G) may
be regarded as a random variable with mean Fy. We shall denote this random variable by
Ch.

Our proof will begin by demonstrating that when C(G) is close to Ej, the probability
of graph G in the distribution pj will be close to that in p. In other words, when the number
of cliques in a graph G is close to the expected number Fy, the process of planting a clique
of size (2 — 9)log, n in a random graph will yield G with probability similar to that of the
process of simply generating a random graph. We shall then show that the variance of C},
is low. This will imply two things: first, that most graphs G are “good”, i.e., for most
graphs, p).(G)/p(G) is less than a relatively small polynomial; second, that “bad” graphs,
i.e., those for which p}(G)/p(G) is large, will occupy a small fraction A of pj. In fact, we
will be able to make this fraction A arbitrarily small. Therefore, an algorithm A which
successfully locates a large clique in a (=1-)-fraction of graphs in p). must be locating such

poly
cliques in a set M of good graphs such that pj (M) = @m:\ — A= @OH:\. Since graphs in M
are good, p (M) = @OH:\ will imply p(M) = @m:\. Thus, A will successfully locate a large

1
poly

clique in a (=)-fraction of graphs in p, the uniform distribution over graphs.

UC Berkeley Technical Report CSD-96-!



2.2 The proof

Lemma 1 p(G) = =5 V@AQV.

Proof. Selecting a graph from pj may be viewed as the process of selecting a graph G’
from p and then planting a clique on a set K of k nodes chosen uniformly at random. In
order for the resulting graph to be identical to G, it must be that the nodes K form a clique
in G. An appropriate set K will thus be chosen with probability C%(G)/(}). It must also
happen that the edges in G’ which lie outside of K correspond exactly to those in G. More
precisely, for all edges e not strictly contained in K, we require e € G' <= e € G. This

will occur with probability 9-()+(3). Thus,

PL(G) = A|w|@+@. (1)

The expected number of cliques in p is easily seen to be Amv\w@v The definition of p
implies that p(G) = 9=(%) for any graph instance G. Combining these two facts with eqn. 1
yields the lemma. O

Lemma 1 states that when the number of cliques in a graph instance G is close to its
expectation over p, then p)(G) = p(G). Our goal now is to show that for most graphs G,
P5.(G) is only a polynomial factor larger than p(G). For this we need to show that Cf is
concentrated somewhat tightly around its mean, Fj. We shall accomplish this by showing
that the variance of (' is small.

Lemma 2 Let k = (2 — ) log, n for some constant § > 0. Then Var[C}] = O(n*log n)EZ.

Proof. We employ the method in [2], Chapter XI, and consider pairs of cliques in G. This
gives us

%MTW () (1), @

and thus,

BICE] G\ (R (= kY
%@Wim \a @.\T@. 2. @

=0

Let us denote the i** term in the above sum by f;. Clearly fo < 1. By employing the
well-known bounds (}) < (42)% and (}) > (%)*, we obtain for i > 0 the inequality

4

UC Berkeley Technical Report CSD-96-!



0 (5 () (520

Algebraic manipulation shows that the above is equal to

B2\’

1

A §\a||m¥v T%Q@Lﬂw@ a

which is less than

kNPl w k2 ‘ m
|w|.
A\al@.v m 3 w

Let us first consider the quantity (££5)*¥~". This is equal to (14 )%= < €'. Since
i < k < (2 - 6)logy n for some constant § > 0, it follows that (£)*=% = O(n?). Similarly,
it is also the case that e* = O(n?).

Now let us consider the quantity § = A\M@N%w% Clearly, log, 3 = —ilogyn + 12/2 +
2ilog, k. Since k = O(logn), it follows that logy 5 < 0 if ¢ < 2logyn. Since ¢ < k <

(2 — 0) logy n for some constant & > 0, it follows that § < 1 for all values of ¢. Tying
together all of the above, we see that f; = O(n?) for all ¢, and therefore

k 2
Mbnﬁngiag 5)

The lemma follows. O

From the above lemma, it follows that “bad” graphs, i.e., those graphs G such that
Cr(G) > Ej, constitute a small fraction of p. As we see in the next lemma, when k =
(2 — &) log, n for some constant 6 > 0, such graphs also occupy a small fraction of pj.

Lemma 3 Define the set Z of bad graphs to include those graphs G such that Ci(G) >
n* " Ey for some constant h > 0. In other words, let 7 = [G | Cr(G) > n*"Ey]. Then
Pi(Z) = O~ O+ for any constant € > 0.

Proof. We shall determine the size of the set pj (Z) of bad graphs by considering a set of
intervals Z; whose union contains Z. By computing upper bounds individually on the sets
p1.(Z;), we shall obtain an upper bound on p} (7).

Let Z; = [G | w/"Ey < CR(G) < nUTDPEL] Clearly, Z C UjZ2 Z;. By Lemma 2,
Var[Cy] = O(n*logn)E?. Therefore, by Chebyshev’s inequality (as stated in, e.g, [1]), it
may be seen that p(Z;) < n~2m+(44¢) for any constant € > 0. By Lemma 1 then,

UC Berkeley Technical Report CSD-96-!



4 1
Ph(Z;) < nl Dt Aav : (6)

Since Z C ;2 Z;, it follows that

p(Z) < MUR;N
w._L
< MU n2ih— A._'mv

— MU §I%m+m+a+mv

J=2

= Q@Imn_vTT_vmv WOU n-

7=0
= p~ IO (1)
= O(n~ 0Ty,

which proves the lemma. O

By making the constant h large enough — in other words, by making the graphs in Z
sufficiently “bad” — we may make the set Z arbitrarily small. By making Z small, we
ensure that an algorithm A which m:nnmmw?:% finds cliques in p) does so principally on
good graphs. These graphs will constitute a (=1-)-fraction of graphs in p, implying that A

@o:\
successfully finds cliques in p with probability

@or\.

Theorem 4 Suppose that k < (2— ) logy n for some § > 0. Suppose then that there exists
a deterministic, @&@3@3&.& time algorithm A which finds a clique in graphs drawn from p),
with @33?:@ \3 some polynomial q(n). Then there exists a polynomial ¢'(n) such

that A finds a &S:@ in graphs drawn from p with probability Q\M:v.

Proof.

Suppose @ = Dglv for some constant j. Let Z be the set of graphs in p) such that
Cr(G) > (n¥ T Ey. By Lemma 3, p\(7) = O(n™/71). Let @ denote the set of graphs &
not in Z on which A finds a clique. Clearly, p,(Q) = Q(n™7)—p\(Z) = Qn~)-O(n=771) =
Q(n~7). Therefore, by Lemma 1, p(Q) = Q(n~7)(n~719) = Q(n=%719), This proves the
theorem. O

Observe that this theorem may be extended in a suitable fashion to randomized al-
gorithms A. In particular, if A is a randomized algorithm which finds cliques in p) with

UC Berkeley Technical Report CSD-96-!



1
poly
in expected polynomial time.

Theorem 4 holds also for distributions p§, where a graph from p§ is generated by ran-
domly planting any constant number of cliques Ky, K5, ..., K. of size k in a random graph.
In other words, it is possible to hide at least a constant number of large cliques in a random

probability in expected polynomial time, then A also finds cliques in p with probability
1

poly

graph.

3 Application of the Result

As mentioned in the introduction to this paper, a graph G containing a hidden clique K
1

Oww:mmnwmsi%_gmwmgﬁm.m&g % _omw?mez_om:wmawww@%gomngnwm%.F@.ﬁ.in:_wﬁ
the graph G might be published as a public key, while the identity of K might constitute
a private key. Assuming the hardness of finding large cliques, deducing K from the public
key GG, or any other clique of the same size as K, would be infeasible.

In practice, the information required to specify the graph G, and hence the public key,
would be rather large with respect to the private key. In order to make it infeasible to find
cliques of size at least % logy n, for instance, the graph G would probably have to contain at
least 10,000 nodes. Hence GG would contain about 50,000, 000 edges, and specifying these
edges would require almost 6.25 Mbytes of data. The private key K, on the other hand,

would consist of only about 20 nodes, and hence might be specified by 280 bits, or about

35 bytes.
As mentioned above, however, our main theorem holds for any constant number of
cliques. In other words, it is possible to have a set of multiple private keys Ky, Ko, ..., K,

associated with a single public key G. If many (e.g., several hundred) cliques may be
securely hidden in practice, this would enable cliques to be used with relative efficiency as
cryptographic keys.

The possibility of having multiple private keys associated with a public key is interesting
in itself. Cryptographic keys based on hidden cliques have a number of other appealing
properties as well. One of these, for instance, is the ability to create private keys “hier-
archically”. Suppose that G is the random graph into which a clique K is hidden, and
G' = (V, E’) is the graph resulting from this implantation. A party with knowledge of G is
likely to be able to extract K. In particular, the set E' — I will contain half of the edges
of K on average; with this information, K can be easily determined with high probability.
Consider, therefore, the following protocol. Party P generates a random graph G and
randomly inserts into it a clique K, yielding graph ;. Party P, then passes G to Ps,
who randomly inserts a clique K3, yielding G5. This process is continued through user P,
who then publishes the key G.. Observe that in a suitably formulated system, with high
probability, P; can use its knowledge of (G; to extract the private keys of P, Ps,...P. (al-
though it should be observed that P cannot determine which key belongs to which party).
Parties P, Ps, ..., P., however, cannot extract the private key of P;. In general, party F;
can extract the private keys of all users P; for j > ¢, while the reverse would require the

UC Berkeley Technical Report CSD-96-!



ability to find a large clique, and is therefore likely to be infeasible.

The problem of finding large cliques is quite different from the traditional, numerical
problems on which cryptographic systems are generally based, like factoring and the com-
putation of discrete logs. Hence another interesting possibility arises: that hidden cliques
might prove resistant to techniques like quantum computing, which threaten someday to
render numerical systems insecure.

4 Acknowledgments

Thanks are due principally to Manuel Blum as the inspiration for this paper: the result
presented here addresses an open problem posed by him in his undergraduate course at
UC Berkeley on randomized algorithms. We wish also to thank Sanjoy Dasgupta, Alistair
Sinclair, and David Wagner for their comments on drafts of this paper, as well as Umesh
Vazirani, Mor Harchol-Balter, Michael Mitzenmacher, and Satish Rao for discussions of our
work.

References

[1] N. Alon, J.H. Spencer, and Paul Erdés. The Probabilistic Method. John Wiley & Sons,
1992.

[2] B. Bollobas. Random Graphs. Academic Press, 1985.

[3] J. Hastad. Testing of the long code and hardness for clique. In Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing, pages 11-19, 1996.

[4] M. Jerrum. Large cliques elude the Metropolis process. Random Structures and Algo-
rithms, 3(4):347-359, 1992.

[5] R.M. Karp. Probabilistic analysis of some combinatorial search problems. In J.F. Traub,
editor, Algorithms and Complezity: New Directions and Recent Results. Academic Press,
1976.

[6] M. Peinado. Approzimation Algorithms for Maxzclique and Maxcut and their Applica-
tions. PhD thesis, Boston University, 1995.

UC Berkeley Technical Report CSD-96-!



