Reducing Processor Power Consumption by I mproving Processor
Time Management in a Single-User Operating System

Jacob R. Lorch and Alan Jay Smith

Report No. UCB/CSD-96-914

/l September 1996

[

\
\

| | Computer Science Division (EECS)
\ University of California

\ Berkeley, California 94720

\

\

[




Reducing Processor Power Consumption by Improving Processor Time
Management in a Single-User Operating System

Jacob R. Lorch and Alan Jay Smith*
Computer Science Division, EECS Department, UC Berkeley
Berkeley, CA 94720-1776

Abstract

The CPU is one of the mgor power consumers in a
portable computer, and considerable power can be saved by
turning off the CPU when it is not doing useful work. In Ap-
ple's MacOS, however, idle timeis often converted to busy
waiting, and generaly it is very hard to tell when no use-
ful computation is occurring. In this paper, we suggest sev-
era heuristic techniques for identifying this condition, and
for temporarily putting the CPU in alow-power state. These
techniques include turning off the processor when all pro-
cesses are blocked, turning off the processor when processes
appear to be busy waiting, and extending real time process
sleep periods. We use trace-driven simulation, using proces-
sor run interval traces, to evaluate the potential energy sav-
ings and performance impact. We find that these techniques
save considerable amounts of processor energy (as much as
66%), while having very little performanceimpact (lessthan
2% increase in run time). Implementing the proposed strate-
gies should increase battery lifetime by approximately 20%
relativeto Apple'scurrent CPU power management strategy,
since the CPU and associated logic are responsiblefor about
32% of power use; similar techniques should be applicable
to operating systems with similar behavior.

1 Introduction

Power consumption is becoming an increasingly impor-
tant feature of personal computers. High power consumption
in desktop computersis undesirable as it leads to fan noise,
heat, and expense. High power consumption in portable
computers is even more undesirable as users of such ma
chines want them to last aslong as possible on a single bat-
tery charge. For these reasons, much work has been donein
reducing the power consumption of computers.

*This material is based upon work supported by a National Science
Foundation Graduate Research Fellowship, by Apple Computer, and also
in part by the National Science Foundation under grants M1P-9116578 and
CCR-9117028, by the State of California under the MICRO program, and
by Intel Corporation and Sun Microsystems. Although the work presented
here has benefited from support from and cooperation by Apple, the rela-
tionship between this work and Apple’s product development plans has yet
to be determined.

In[7] and [8], we analyzed the power consumption of var-
ious Macintosh PowerBook computers, in typica use by a
number of engineering users. We found that, depending on
the machine and user, up to 18-34% of total power was at-
tributableto componentswhose power consumptioncould be
reduced by power management of the processor, i.e. the CPU
and logicthat could beturned off whenthe CPU wasinactive.
This high percentage, combined with our intuition that soft-
ware power management could be significantly improved for
the processor, led us to conclude that the most important tar-
get for further research in software power management was
the processor.

Many modern microprocessors have low-power states, in
which they consumellittle or no power. To take advantage of
such low-power states, the operating system needs to direct
the processor to turn off (or down) when it is predicted that
the consegquent savings in power will be worth the time and
energy overhead of turning off and restarting. In this way,
the goal of processor power management strategiesis simi-
lar to that of hard disks [3, 5]. Some strategies for making
these predictions are described by Srivastava et a. [13] Un-
like disks, however, the delay and energy cost for amodern
microprocessor to enter and return from a low-power mode
aretypicaly low. For instance, the AT& T Hobbit and certain
versions of the MC68030 and MC68040 use static logic so
that most of their state can be retained when the clock is shut
down [13]. Also, the PowerPC 603 can exit the low-power
Doze mode in about ten system clocks [4].

Because of the short delay and low energy cost for enter-
ing and leaving a low-power state, the optimal CPU power
management strategy istrivia: turn off the CPU whenever
thereisno useful work to do. An opportunity for such astrat-
egy isdescribed by Srivastava et d. [13], who point out that
the process scheduling of modern window-based operating
systems is event-driven, i.e. that the responsibility of pro-
cesses in such systems is to process events such as mouse
clicks when they occur and then to block until another such
event isready. In thistype of environment, the most appro-
priate strategy isto shut off the processor when all processes
are blocked, and to turn the processor back on when an ex-
ternal event occurs. An essentially equivalent version of this
strategy, namely to establish avirtual lowest-priority process
whosejob isto turn off the processor when it runs, isrecom-



mended by Suessmith and Paap [14] for the PowerPC 603,
and by Suzuki and Uno [15] in a1993 patent. Such avirtual
lowest-priority process has in the past been called the “idle
loop,” and in mainframes typically lighted abulb on the con-
sole.

1.1 Whyitisn'ttrivial

We refer to the strategy of turning off the processor when
no process is available to run the basic strategy. Unfortu-
nately, in Apple' sMacOS, processes can run or be schedul ed
to run even when they have no useful work to do. Thisfea
tureispartially by design, sincein asingle-user system there
isless need for the operating system to act asan arbiter of re-
source use [10]. Partidly, it is because the OS was not writ-
ten with power management in mind. Partialy, it is because
the MacOS, like other personal computer operating systems
(e.g. those from Microsoft), is based on code originally de-
veloped for 8- and 16-bit non-portable machines, for which
development time and code compactness were far more im-
portant goals than clean design or faithfulnessto OS design
principlesas described in textbooks.

There are two main problems with the current manage-
ment of processor time, one having to do with the system
and one having to do with applications. Thefirst problemis
that the operating system will sometimes schedule a process
even though it has no work to do. We were first made aware
of this phenomenon when we studied traces of MacOS pro-
cess scheduling calls, and found that often a process would
be scheduled to run before the conditions the process had
established as necessary for it to be ready were fulfilled. It
seems that often, when there are no ready processes, the OS
picks oneto run anyway, usually the process associated with
the activewindow. The second problemisthat programmers
writing applications generally assume that when their appli-
cation isrunning in theforeground, itisjustified in taking as
much processing time asit wants. First, a process will often
request processor time even when it has nothing to do. We
discovered this problem in MacOS when we discovered pe-
riods of as long as ten minutes during which a process never
did anything, yet never blocked; we describe later what we
mean by “never did anything.” Second, when a process de-
cides to block, it often requests a shorter sleep period than
necessary. Solutionsto both these problems seem to be nec-
essary to obtain the most savings from the basic strategy.

For thisreason, we have devel oped additional techniques
for process management. Our techniquefor dealing with the
first problem is to simply make the operating system never
schedule a process when it has requested to be blocked; we
cal thisthe simple scheduling technique. Dealing with the
second problem is more difficult, since the determination of
when aprocessisactually doing something useful isdifficult.
Onetechniquewe suggest isto use a heuristicto decide when
aprocess is making unnecessary requests for processor time
and to forcibly block any such process. Another technique

we suggest isthat al sleep times requested by processes be
multiplied by a constant factor, chosen by the user or operat-
ing system, to ensure that areasonabl e trade-off between en-
ergy savings and performance is obtained. We call these |at-
ter two techniques the greediness technique and sleep exten-
sion technique, respectively. We will show how using these
techniques can improve the effectiveness of the basic strat-
egy, allowingit to far surpass the effectiveness of the current
MacOS inactivity-timer based strategy. Each of theseis de-
scribed in more detail below.

In this paper, we evaluate these different strategies, over
avariety of parameter values, using trace-driven simulation.
These simulations enabl e us to compare these agorithms to
the current MacOS strategy, and to optimize their parame-
ters. A comparison between two strategies is based on two
consequences of each strategy: how much processor power
it saves and how much it decreases observed performance.

The paper is structured as follows. In Section 2, we de-
scribeindetail the strategieswewill becomparing, including
the current strategy used by MacOS, the basic strategy, and
our suggested process management techniquesfor improving
thebasic strategy. 1n Section 3, we describe the methodol ogy
we used to evauate these strategies: the evaluation criteria,
thetoolswe used for the trace-driven simulation, and the na-
ture of the traces we collected. In Section 4, we present the
resultsof our simulations. In Section 5, we discuss the mean-
ing and consequences of these results, and point the way to
future work.

2 Strategies
2.1 Current strategy

Thecurrently used processor power management strategy
in MacOS isbased on an inactivity timer. The operating sys-
tem will initiate processor power reduction whenever no ac-
tivity has occurred in thelast two seconds and no /O activity
has occurredinthelast 15 seconds. Power reductionishalted
whenever activity is once again detected. Activity is defined
here and in later contexts as any user input, any 1/O device
read or write, any change in the appearance of the cursor, or
any time spent with the cursor asawatch. The reason for the
classification of theselatter two asactivity isthat MacOS hu-
man interface guidelinesspecify that aprocessthat isactively
computing must indicatethisto the user by having the cursor
appear as awatch or by frequently changing the appearance
of the cursor, e.g. by making a“color wheel” spin.

2.2 Thebasc strategy

Thebasic strategy istoturn off the processor whenever al
processes are blocked. Unfortunately, under MacOS, thisis
not often the case, since MacOS frequently schedules some
process whether or not the event for which the process was
waiting has actually occurred.



One might wonder why MacOS uses thisinactivity timer
based strategy instead of thebasic strategy. Onereasonisthat
all but the most recent Macintosh computers have high over-
head associated with turning off and on the processor [6],
making the basic strategy less applicable. In older proces-
sors, for example, the contents of on-chip caches were lost
when the processor was powered down. Another reason is
that, as we have described before and will seelater, theeffec-
tiveness of the basic strategy isnot very different from that of
the inactivity timer based strategy, given the current MacOS
method of process time management.

2.3 Thesmple scheduling technique

The simple scheduling techniqueisto not schedule apro-
cess until the condition under which it has indicated it will
be ready to run has been met. In MacOS, this condition is
always explicitly indicated by the process, and is aways of
the form, “any of the event typeses, e», . . . has occurred, or
a period of time ¢ has passed since the process last yielded
control of the processor.” The period of time for which the
processiswilling to wait in the absence of events before be-
ing scheduled isreferred to as the sleep period.

Notethat, in some other operating systems, such asUNIX
or Microsoft Windows, the simple scheduling technique is
not needed, since it is the default behavior of the operating
system.

24 Thedeep extension technique

Using only the simple scheduling technique described
above means that a process is given control of the proces-
sor whenever it wantsit (unlessthe CPU is otherwise busy).
For example, if it asks to be unblocked every 1 second, it is
unblocked every 1 second, even if dl it wantsto dois blink
the cursor, acommon occurrence. Since MacOSisnot ared
time system, area time sleep period does not actually have
to behonored. Infact, in the current MacOS power manage-
ment strategy, with power management enabled, the cursor
may blink much more slowly than it would without power
management. If thiskind of behavior isacceptable, itispos-
sible to increase the effectiveness of the simple scheduling
technique by using what we call the sleep extension tech-
nigue. This technique specifies a dleep multiplier, a number
greater than one by which al sleep periods are multiplied,
thus eliminating some fraction of the process run intervals.
We envision that the sleep multiplier can be set, either by
the user or by the operating system, so as to maximize en-
ergy savings, given a certain level of performance desired.
We note that sleep extension may negatively impact perfor-
mance, or even functionality, since not all delays will be as
inconsequential as a cursor which blinksless frequently.

25 Thegreedinesstechnique

The greediness techniqueis, in overview, to identify and
block processesthat are not doing useful work. First, wewill
describe the techniquein genera terms, and then we will in-
dicate the detail s of itsimplementation for the MacOS.

The techniqueis based on the following model of the ap-
propriateway aprocess should operateinan event-drivenen-
vironment. A process, upon receiving an event, should pro-
cess that event, blocking when and only when it has finished
that processing. Once blocked, it should be scheduled again
when and only when another event is ready to be processed,;
an exceptionisthat the process may want to be scheduled pe-
riodically to perform periodic tasks, such as blinking the cur-
sor or checking whether it istimeto do backups. We say that
aprocess is acting greedily when it failsto block even after
it has finished processing an event. This can occur when a
process busy waits in some manner, e.g. it loops on “check
for event.” When we determine a processis acting greedily,
we will forcibly block that process for aset period of time,

MacOS uses cooperative multitasking, meaning that once
aprocess gets control of the processor, it retains that control
until it chooses to yield control. For this reason, application
writers are strongly encouraged to have their processes yield
control periodically, even when they still have work to do.
Processes indicate that they still have work to do by specify-
ing a dleep period of zero, thereby failing to block. We call
the period of time between when a process gains control of
the processor and when it yields control a quantum.

Part of our technique is a heuristic to determine when a
process is acting greedily. We say that a process is acting
greedily when it specifies a dleep period of zero even though
it seems not to be actively computing. We consider a pro-
cess to start actively computing when it receives an event or
shows some signs of “activity,” as defined below. We esti-
mate that a process is no longer actively computing if it ex-
plicitly blocks, or if it yields control several timesin arow
without receiving an event or showing signs of activity. The
exact number of control-yieldtimes, whichwecall thegreed-
iness threshold, isa parameter of the technique; we expect it
to be set so as to maximize energy savings, given adesired
level of performance. We say that a process shows no sign of
activity if it performs no 1/0O device read or write, does not
have the sound chip on, does not change the appearance of
the cursor, and does not have the cursor appear as a watch.
The absence of activity as we have so defined it impliesthat
either the CPU isidle, the process runningisbusy waitingin
some manner, or the process running is violating the MacOS
human interface guiddinesthat we mentioned earlier.

The greedinesstechniqueworksasfollows. When the OS
determinesthat aprocessisacting greedily as defined above,
it blocksit for afixed period called the forced sleep period.
The forced sleep period is aparameter to be optimized, with
thefollowingtradeoff: ashort deep period savesinsufficient
power, while along sleep period may, in the case that our
heuristic fails, block a process that is actually doing some-



thing useful.

3 Methodology

3.1 Evaluation of strategies

Evaluation of a strategy requires measuring two conse-
guences of that strategy: processor energy savings and per-
formance impact. Processor energy savings is easy to de-
duce fromasimulation, sinceitis essentialy the percent de-
crease in the time the processor spends in the high-power
state. In contrast, performance impact, by which we mean
the percent increase in workload runtime as a result of using
a power-saving strategy, is difficult to measure. This perfor-
mance penaty stems from thefact that a power saving strat-
egy will sometimes cause the processor not to run when it
would otherwise be performing useful work. Such work will
wind up having to be scheduled later, making the workload
take longer to complete. Without detailed knowledge of the
purpose of instruction sequences, it isdifficult for atracer to
accurately determine what work isuseful and what isnot, so
our measure will necessarily be inexact.

We have decided to use the same heuristic used in the
greediness technique to determine when the processor is do-
ing useful work. In other words, we will call aquantum use-
ful if, during that quantum, there is any 1/O device read or
write, the sound chip ison, thereisany change to the cursor,
or the cursor appears as a watch. It might be objected that
using the same heuristic in the evaluation of a strategy asis
used by that strategy isinvalid. However, remember that a
strategy does not have prior knowledge of when a quantum
will be useful, whereas the eval uation system does. Thus, we
are evaluating the accuracy of our guessthat a quantum will
be useful or useless.

We must also account for the time not spent inside ap-
plication code in the original trace. We dividethistimeinto
time spent switching processesin and out, time spent context
switching, time the OS spent doing useful work, and OSidle
time. The OSis considered to be doing useful work when-
ever it shows signs of activity that would cause a process
guantum to be labeled useful. Such useful work isscheduled
inthesimulationsimmediately after the quantumthat it origi-
nally followed is schedul ed, on the assumption that most sig-
nificant OSwork isnecessitated by the actions of the process
that just ran. ldle timeis identified whenever no processis
running and the operating system is not doing useful work
for a continuous period over 16 ms. We chose this thresh-
oldfor two reasons. First, it isthesmallest time unit used for
process scheduling by MacOS, so we expect any decision to
idleto result in at least this much idleness. Second, 16 ms
is much greater than the modal (most common) value of in-
terprocess time, indicating that it is far longer than should
ever be needed to merely switch between processes. Finaly,
context switch time is assumed to occur any time a process
switches in that is different from the one that last switched

out; context switches are considered to take 0.681 ms, the
observed difference between the average interprocess time
when no context switch occurs and the average interprocess
time when a context switch occurs.

3.2 Tools

There are three main tools we used to perform our sim-
ulations. The first tool, IdieTracer, collects traces of events
needed to simulate the different strategies, and is discussed
in more detail in [6]. Specifically, it records the time of oc-
currence and other details about the following events: trac-
ing beginsor ends, the machine goesto or wakes from sl eep,
a process begins or ends, the sound chip is turned on or off,
the cursor changes, the mouse starts or stops moving, an 1/0
device isread or written, a process obtains or yields control
of the processor, or an event is placed on the event queue.
IdieTracer only collects data while the machine it istracing
isrunning on battery power, since that iswhen processor en-
ergy savingsis most important, and we want our analysis to
reflect the appropriate workload. Also, IdleTracer shuts off
processor power management while it istracing, so that the
traces it uses are not confounded by the current strategy and
thus can be used to simulate any strategy. |dleTracer makes
use of the SETC [12] module, a set of routinesfor tracing and
counting system events.

The second tool, ItmSm, simulates power management
methods using the current MacOS inactivity-threshold strat-
egy, and provides a basis for comparison. In other words, it
simulates the strategy that turnsoff the processor when there
has been no activity (as defined earlier) in the last two sec-
onds and no /O activity in the last fifteen seconds. In ac-
tuality, during periods that the processor is supposed to be
off, MacOS will occasionally turn the processor on for long
enough to schedule a process quantum. Thisisdoneto give
processes a chance to demonstrate some activity and put an
end to processor power management, in case the processor
was shut off too soon. The details of how process quanta
are scheduled while the processor is supposed to be off is
proprietary and thusis not described here; however, ItmSm
does attempt to simulate this aspect of the strategy. To give
an ideaof the consequences of this proprietary modification,
our simulations showed that for the aggregate workload we
studied, it decreased the performance impact measure from
1.93% to 1.84%, at the expense of decreasing processor off
time from 29.77% to 28.79%. This particular proprietary
modification, therefore, hasonly atrivial effect on the power
savings.

When, in the simulation, the processor comes back on
due to some activity, any quanta in the origina trace that
preceded that activity but have not yet been scheduled are
divided into two categories, useful and non-useful. Useful
guanta are immediately scheduled, delaying the rest of the
trace execution and thus contributing to the performance im-
pact measure. Non-useful quanta are discarded and never



User number 1 2 3 4 5 6
Machine Duo 280c | Duo 230 | Duo 280c | Duo 280c | Duo 280c | Duo 280c
MacOS version 75 751 75 75 751 75
RAM size 12 MB 12MB 12 MB 12MB 12 MB 12 MB
Hard disk size 320MB | 160MB | 320MB 320MB 320 MB 240 MB
Trace length (hr:min:sec) | 2:48:34 | 3:01:21 9:09:00 5:26:41 4:52:55 4:14:52

Table 1: Information about the six users traced.

scheduled. Any useful OS time associated with these quanta
is dso immediately scheduled, contributing to the perfor-
mance impact measure.

The third tool, AsmSm, simulates the basic strategy with
the simple scheduling technique, along with zero or more
of our two other suggested techniques: sleep extension and
greediness. The parameters for these techniques may bevar-
ied at will in the simulations. When, in the simulation, an
event becomes ready for a process, all quanta of that pro-
cess preceding the receipt of the ready event that have not
yet been scheduled will be treated as described above, i.e. al
useful quantawill be run immediately (before the power-up
event), al useless quantawill be discarded, and any useful
OStimeassociated with such quantawill also berunimmedi-
ately. Even for periodic processes, we schedule quantain the
order in which they occurred. For example, if after its quan-
tum ¢ a process originally slept for 1 second but is actually
awoken after 4 seconds, then at that point we schedul e quan-
tum i + 1, not some later quantum. Note that this approach
may cause inaccuracies in the simulation, since the process
might in reality check how longit has been sinceit last went
todeep, and act differently seeing that 4 seconds have passed
than it did when only 1 second had passed. We expect and
hope that such dependence of process action ontimeisrare
enough that thisdoes not introduce significant errorsinto the
results of our simulations.

3.3 Traces

The traces were collected from six users, each an engi-
neer at Apple Computer, Inc. Table 1 indicatesdataabout the
traces obtained from each user and the machines on which
those traces were collected. Much more detailed discussion
of thetraces and their collection appearsin [6]. Most results
we present will concern the aggregate workload, i.e. thetrace
composed of the concatenation of all six of these traces.

4 Reaults

In thissection, we refer to the Current MacOS strategy as
strategy C and the Basic strategy as strategy B. We append
the letter | to indicate use of the simple schedul e technique,
append the letter G to indicate use of the Greediness tech-
nique, and append the letter S for the Seep extension tech-
nique. Note that we never simulate the greediness technique

or sleep extension technique without the simple scheduling
technique, sincethey are designed as supplementstothesim-
ple scheduling technique.

4.1 Per-strategy results

The first thing we shall do is determine the optimal en-
ergy savings attainable. An optimum strategy would sched-
ule only time that was spent doing useful work, and would
entirely omit non-useful time; its performance impact would
be zero, since it would have foreknowledge of when useful
work would occur and arrange to have the processor on when
it happens. Simulation indicates that such a strategy would
yield an energy savings of 82.33%; thus, thisis an absolute
ceiling on what can be obtained by any redizable strategy.
Thisisaremarkably high figure—what it saysisthat the pro-
cessor isdoing useful computationduringonly 17.67% of the
29.56 hours of thetrace; the rest of the time isbusy waiting
by a user process or idling.

The second simulation results concern strategy C. We
find from simulation that strategy C yields an energy sav-
ings of 28.79% a ong with a performance impact measure of
1.84%. In other words, it causes the processor to consume
only 71.21% of the energy it would without a power-saving
strategy, but increases overall workload completion time by
1.84%. The strategy increases processor energy consump-
tion by 303% compared with the optimal strategy, since it
only recovers 35% of thereal idletime. Note also that since
only 17.67% of the CPU timeis actualy useful, the perfor-
mance impact of 1.84% means that we have misclassified
10% of the useful CPU time, and have had to run that work
in a delayed manner. Thus, the actua real time delay per-
ceived by the user may not be 1.84%, but may be closer to
10%, since the user waits for areply only during periods of
real, useful, work.

The next simulation results concern strategy B, which
turns off the process when and only when there was idling
in the original trace. Strategy B has an energy savings of
31.98% and a performance impact of 0%. Thus, we see
that the basi ¢ strategy without any new process management
techniques saves dightly more energy than the current tech-
nique, and has noimpact on performance. However, it causes
the processor to consume 285% more energy than under the
optimal strategy, sinceit only recovers 39% of rea idletime.

The next simulation results concern strategy Bl. Strategy
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Figure 1: Performance impact measure versus processor energy savingsfor strategy BlISwith various sleep multipliers. Certain
points are label ed with the sleep multipliersto which they correspond.

Bl has an energy savings of 47.10% and a performance im-
pact of 1.08%. Thus, we see that strategy Bl decreases pro-
Cessor energy consumption by 26% and decreases workload
completion timeby 0.7% compared to strategy C. Compared
to the optimal strategy, it causes the processor to consume
199% more energy, since it only recovers 57% of red idle
time.

The next simulation results concern strategy BIS. Fig-
ure 1 showsthe performance versus energy savingsgraph for
variations of this strategy using sleep multipliers between 1
and 10. We see that the point a which this strategy has per-
formance impact of 1.84%, equal to that of strategy C, cor-
respondsto asleep multiplier of 2.25 and a processor energy
savings of 51.72%. Thus, we see that, comparing strategies
BIS and C on equa performance grounds, strategy BIS de-
Creases processor energy consumption by 32%. Increasing
the deep multiplier to 10 saves 55.93% of the CPU energy,
withaperformanceimpact of 2.84%. Note, however, that the
performance impact measure does not tell the whole story in
this case. Generally, areal time delay is used by some pro-
cess that wakes up, checks something, and if certain condi-
tions are met, does something. A very large rea time delay
in the wakeup period may mean that certain checks are not
made in atimely manner; we have ignored that issue here.
In practice, sleep extension factors over some level, perhaps
3to 5, may not be desirable.

The next simulation results concern strategy BIG. Fig-
ure 2 shows the performance versus energy savings graph
for variations of thisstrategy using greedinessthresholdsbe-
tween 20 and 80 and forced sl eep periods between 0.025 sec-
ondsand 10 seconds. We find, through extensive exploration
of the parameter space, that the parameter settingsgivingthe
best energy savings at the 1.84% performance impact level
are agreediness threshold of 61 and aforced sleep period of
0.52 seconds. These parameters yield an energy savings of
66.18%. Thus, we see that, comparing strategies BIG and C

on equal performance grounds, strategy BI G reduces proces-
sor energy consumption by 53%. Compared to the optimal
strategy, it increases processor energy consumption by 919%,
sinceit only saves 80% of real idletime.

The next results we present concern strategy BIGS. Fig-
ure 3 shows that, in the realm we are interested in, a perfor-
mance impact of 1.84%, increasing the sleep multiplier al-
ways produces worse results than changing the greediness
threshold and forced sleep period. Theenergy savingsattain-
able by increasing the sleep multiplier can be attained at a
lower performance cost by instead decreasing the greediness
threshold or by increasing the forced sleep period. Thus, the
best BIGS strategy isthe BIG strategy, which does not make
any use of the leep extension technique. The figure suggests
that if we could tolerate a greater performance impact, such
as 2.7%, this would no longer be the case, and the best en-
ergy savingsfor BIGSwould be attained at asleep multiplier
aboveone. We concludethat for some valuesof performance
impact, it is useful to combine the greediness technique and
deep extension technique, but for a performance impact of
1.84% it isuselessto use the deep extension techniqueif the
greediness techniqueisin use.

A summary of al the findings about the above strategies
can be seen in Table 2, as well as the columns of Figure 5
corresponding to users 1-6.

4.2 Sendgtivity to parameter values

An important issue is the extent to which the parameters
we chose are specific to the workload studied, and whether
they would be optimal or equally effective for some other
workload. Furthermore, it is unclear how effective the user
or operating system could be at dynamically tuning these pa-
rametersin thebest way to achieve optimal energy savingsat
agivenlevd of performance. Thus, itisimportant to observe
the sengitivity of the resultswe obtained to the particular val-
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Figure 3: Performanceimpact measure versus processor energy savingsfor strategy BIGSwith varioussleep multipliers, various
greediness thresholds, and aforced sleep period of 0.52 sec. The reader is cautioned that nonzero originsare used in thisfigure
to save space and yet have sufficient resolution to enable itskey features to be discerned.

Strategy | Processor power savings | Performance impact
Optima 82.33% 0.00%
C 28.79% 1.84%
B 31.89% 0.00%
2]] 47.10% 1.08%
BIS 51.72% 1.84%
BIG 66.18% 1.84%

Table 2: Simulation results for each strategy on the aggregate workload. Strategy BIS achieves the same performance impact
asstrategy C by using asleep multiplier of 2.25; strategy BI1G achieves this performance impact by using a greediness threshold
of 61 and aforced sleep period of 0.52 sec.



ues of the parameters we chose.

The graphs we showed that demonstrate the rel ationship
between performance, energy savings, and parameter values
also demonstratethe reasonably low sensitivity of theresults
to the parameter values. For instance, varying the forced
sleep period thresholdin Figure 2 across awiderange of val-
ues only causes the consequent energy savings to vary be-
tween 59-67%. Varying the greedinessthresholdin Figure4
across another wide range of values only causes the conse-
guent energy savingsto vary in the range 63-71%. Finaly,
varying the sleep multiplier across a wide range, asin Fig-
ure 1, only causes the consequent energy savingsto vary in
the range 47-56%.

Another way to gauge the sensitivity of the resultsto the
parameters isto eval uate the effectiveness of the techniques
on each of the six workloads corresponding to the users stud-
ied. Toshow theeffect of using parameterstuned toan aggre-
gate workload on individual users, Figure 5 shows the pro-
cessor energy savingsthat would have been attained by each
of the users given the strategies we have discussed. We see
from thisfigure that strategy BIG isaways superior to strat-
egy C, and that strategy BIS is superior to strategy C for al
users except user 2. And, even in this case, the fault seems
toliewiththebasic strategy and simple scheduling technique
rather than the sleep multiplier parameter, since user 2 isalso
the only user for which the savings from C are much greater
than those from strategies B and Bl. These figures suggest
that even parameters not tuned for a specific workload till
yield strategies that in general save more processor energy
than the current strategy. It is aso interesting to note that
thereisaclear ordering between strategies B, BIS, and BIG:
for each user, strategy BIG saved more energy than strategy
BIS, which saved more energy than strategy BI.

We were curious why strategy C is so much superior to
strategy B for user 2, so we inspected the simulation results
for that user carefully. We found that the reason strategy C
does so much better than strategy B isthat in that trace, the
application Finder (discussed further later) frequently yields
control requesting a sleep time of zero but then performs no
activity when it gets control again; indeed, there is a con-
tiguous section of the trace lasting over an hour (a third of
the trace) during which Finder has this behavior. When this
happens, the basic strategy, strictly obeying the request of
Finder to never block, never gets a chance to cycle the pro-
cessor, while on the other hand the current strategy notices
that no activity is occurring and turns off the processor any-
way. The sleep extension technique does not alleviate this
problem, since multiplying the sleep request of zero by any
factor still makesit zero. However, the greediness technique
is able to overcome this problem, since this is exactly the
problem for which it was designed. Consequently, strategy
BIG beatsstrategy Cfor user 2, even though strategies B, Bl,
and BIS do not.

Yet another way to seethat the basi c strategy withthenew
techniquesis effective even without tuning the parametersis

to pick somewhat arbitrary parameters and note that the en-
ergy savings are till superior to that of strategy C. For ex-
ample, the parameter settings we envisioned before running
any of thesesimulations, agreedinessthreshold of 5, aforced
deep period of 0.25 seconds, and a sleep multiplier of 1.5,
would yield a respectable energy savings of 71.70% and a
performance impact of 2.61%, which, compared to MacOS,
trades off a 60% decrease in processor energy consumption
for a 0.8% increase in workload completion time. Even a
conservative set of parameters, namely a greediness thresh-
old of 100, aforced deep period of 0.10 seconds, and asleep
multiplier of 1, yieldsa processor energy savings of 62.87%
with a performance impact of only 1.48%, decreasing pro-
Cessor energy consumption by 48% and reducing workload
completion time by 0.4% compared to strategy C.

4.3 Additional explanation of results

We have seen that the greediness technique by itself can
be quiteeffective even within abroad range of parameter val-
ues. This suggests that processes often act greedily. In fact,
using theideal parameters of strategy BIG, 49 of 63 applica
tionswere found to act greedily at some point. The percent
of an application’s quanta during which it was determined
to be acting greedily varied widely from one application to
another, from 0.0009% for Express Modem to 93.7% for
eWorld. It isespecialy amusing that Finder, the user desk-
top interface application written at Appleitself, seemstolie
routinely about its processing time needs, having been deter-
mined to be acting greedily for 64.7% of itsquanta. Thissup-
ports our suggestion that designers of operating systems and
applications for single-user systems are not generally con-
cerned with rigorous management of processor time.

To examine where the savings and performance impact of
astrategy are coming from, it is useful to observe what hap-
pensto different classes of timeintheorigina trace when that
strategy isused. Sometimein theoriginal traceisspent run-
ning processes, some is spent running the scheduler, and the
rest is spent running other OS code. Each of these classes
of time can be broken down into useful and nonuseful time.
Useful time will aways be scheduled in the simulation, but
some of it will be delayed if the technique simulated decides
tocycleinstead of runningit. Thisdelayed timeiswhat con-
tributesto performanceimpact. Some nonuseful timewill be
scheduled by the technique, whilethe rest gets skipped over
and contributes to cycling time. This skipped time is what
contributesto energy savings. Table 3 shows thisbreakdown
in time and number of quantafor each strategy.

First, et uscompare the sources of the energy savingsfor
each strategy; thisinvolveslooking at theitalicfiguresin Ta:
ble3. Strategy C spends 4.31 hourscycling instead of idling
in the OS, 1.95 hours cycling instead of performing nonuse-
ful process quanta, and 2.61 hours cycling instead of switch-
ing nonuseful process quantain and out. It isinteresting to
note that more time is saved from not having to switch pro-
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Figure5: Processor energy savingsfor each strategy and each user. Strategy BIS uses a sleep multiplier of 2.25, while strategy
BIG uses a greediness threshold of 61 and aforced sleep period of 0.52 seconds.

Useful time (hours) Useful Nonuseful time (hours) Nonuseful
Strategy Process | Scheduler oS quanta Process Scheduler oS quanta
C 0.27;3.73 | 0.23;0.63 | 0.04;0.33 || 88,055;473,075 || 2.38;1.59 | 8.31;261 | 514;4.31 || 6,303,597; 1,682,648
B 0.00; 4.00 | 0.00; 0.86 | 0.00; 0.37 0; 561,130 || 3.96;0.00 | 10.92; 0.00 | 0.00;9.45 | 7,986,245;0
BI 0.20; 3.80 | 0.02;0.84 | 0.10;0.27 || 20,027;541,103 || 2.97;1.00 | 7.45;3.47 | 0.00;9.45 || 5,965,396; 2,020,849
BIS 0.37;3.63 | 0.04;0.82 | 0.12;0.25 || 29,132;531,998 || 2.81;1.15 | 6.23;4.69 | 0.00;9.45 || 5412,942; 2,573,303
BIG 0.33;3.67 | 0.04;0.82 | 0.18;0.19 || 32,130; 529,000 || 0.87;3.09 | 3.90; 7.02 | 0.00;9.45 || 2,420,825; 5,565,420

Table 3: A breakdown, for each strategy, of what happens to the time and quanta originally spent running processes, the sched-
uler, and the operating system. Time and quantathat are delayed and thus contributeto performance impact are shown inbold,
timeand quantathat are run on time are shown in the standard font, and time and quantathat are never run and thus are subsumed
by cycling are shownin italics.



cesses in and out than from actually not running them. This
is probably because the technique attemptsto cycle the pro-
cessor when processes are not doing anything, and when a
processisnot doing anything it should bedoing littlebesides
getting switched in and out. Strategy B never cyclesinstead
of running or scheduling process quanta, but it makes up
for this by always cycling when the OS would otherwise be
idle, 9.45 hours. Strategies Bl and BIS cycle even more be-
cause they can cycleinstead of running or scheduling process
guanta. Indeed, even if we did not consider idle time spent
cycling, strategies Bl and BIS till save more nonuseful pro-
cess and scheduler timethan strategy C. Interestingly, thein-
creased savingsstem from reducing the amount of time spent
scheduling nonuseful process quanta, not from reducing the
time spent running nonuseful process quanta. In fact, each
of strategies Bl and BIS spends longer running nonuseful
process quanta than strategy C. The reason these strategies
spend less time scheduling nonuseful process quantais that,
asshowninthetable, the strategi es schedul e fewer nonuseful
process quanta, and fewer quantato schedule meanslesstime
spent scheduling quanta. So we see that the savings from
strategies Bl and BIS stem not from giving processes less
time when they are not doing useful work, but from switch-
ing them in and out less often when they are not doing use-
ful work, thus saving time associated with process switching.
On the other hand, strategy BIG is superior to strategy C in
itsconversion of al types of nonuseful time. So, the savings
from strategy BI1G stems both from giving processes control
less often when they are not busy and from giving them less
timeto run useless tasks.

Table 3 dso allows us to compare the sources of the per-
formanceimpact in each strategy; thisinvolveslookingat the
bold numbers. We see that for strategy C, about half of the
performance impact is due to delaying the running of useful
process quanta and half is due to delaying the switching of
those quanta. On the other hand, strategy Bl delays about
the same amount of useful process runtime, but far lesstime
spent switching process quanta. Thisisexplained by thefact
that it delays a much lower absolute number of useful pro-
cess quanta. The low amount of delayed scheduler time in
strategy Bl extends to BIG and BIS, alowing them to have
a greater amount of delayed process quantum and OS time
whilestill maintaining the same performance impact as strat-
egy C. Our main observation, then, isthat strategiesBI, BIG,
and BIS delay far fewer useful quantathan strategy C even
though by design the | atter two delay the same amount of to-
tal useful time,

5 Discussion

In our simulations, we found the following. The basic
strategy by itself saves barely more energy than the current
MacOS strategy, although it does have less performance im-
pact. Adding the simple scheduling technique allowsthe ba-
sic strategy to reduce energy consumption by 26% and to
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reduce workload completion time by 0.7% compared to the
current MacOS strategy. Adding further techniquesfor man-
aging processor time allowsthe basic strategy to even further
surpass the current MacOS strategy in energy savingsfor the
same level of performance impact. Using the sleep exten-
sion technique alows 32% less processor energy consump-
tion, and using the greedinesstechniqueallows53% less pro-
cessor energy consumption. In all cases, the absolute level
of performance impact is very low. Note, however, that at
best we get about 66% absol ute energy savings, compared to
the approximately 82% that would be available with optimal
power reduction.

Our simulations suggest that athough both the greedi-
ness technique and the sleep extension technique are hel pful
in increasing the savings attainable from the basic strategy
with the simple scheduling technique, the greediness tech-
nigque does this job better than the simple scheduling tech-
nique. Furthermore, when attempting to achieve the same
performance impact the current MacOS provides, it is not
worthwhileto use the sleep extension techniqueif oneisa-
ready using the greediness technique. The reason for thisis
that the cost in performance impact of an increase in energy
savingsis grester for the sleep extension technique than for
the greediness technique. In other words, adjusting the pa-
rameters of any techniqueto improveits energy savingswill
necessarily causeit to cycle more often when the processor is
doing useful work and thus increase performance impact. It
happens that this effect is more pronounced for the sleep ex-
tension technique than for the greediness technique, at least
for the low performance impact regime in which we are in-
terested. Besidesthisdifference between thetwo techniques,
another reason to not use the sleep extension techniqueisthat
it is quite possible that extending real-time sleep times will
produce undesirabl e effects in terms of system performance
or functionality.

Analysis of the sensitivity of the techniques to changes
in parameter settings and workloads suggests that idea pa
rameter setting isnot necessary to the consistent functioning
of thetechniques. Thus, we expect the techniquesto be suc-
cessful with even naive parameter-setting by the operating
system or user. However, one anomal ous case, user 2, points
out the vulnerability of the basic strategy to poor application
behavior, suggesting that the greediness technique or some-
thing likeit should always accompany the basic strategy.

To illustrate how percent time in low-power mode would
trandate into overall power savings, let us consider an ex-
ample based on estimates of power consumption from pre-
viouswork [7, 8]. In this example, based on the Duo 280c,
turning off the processor saves 3.74 W, while the compo-
nents that remain on consume, on average, 5.65 W, given
current power management techniques. From these figures,
thecurrent strategy, with processor energy savingsof 28.79%
and performanceimpact of 1.84%, would make average total



power consumption

1—0.2879
140.0184

Note that we are assuming that during extratime spent with
the processor on, other components are, on average, a their
average power level sgiven current power management tech-
niques. The BIG strategy, with processor energy savings of
66.18% and the same performance impact, would make av-
erage total power consumption

1—-0.6618
140.0184

thus achieving a 16.7% savings in total power and yield-
ing a 20.0% increase in battery lifetime relative to strategy
C, assuming that battery lifetime is inversely proportional
to average power drain. The BIS strategy, with its proces-
sor energy savingsof 51.72% and same performance impact,
would make average total power consumption 7.42 W, yield-
ing apower savings of 10.3% and battery lifetimeincrease of
11.5% compared to strategy C. Notethat all these figuresare
only applicableto theworkload studied here, i.e. the 30 hours
of traces obtained from these six users. It is unclear how
much moreor less effective these methodswoul d befor some
other workload; for instance, a previous study with a differ-
ent workload [7, 8] found that 48.1% of processor power was
saved by the current MacOS strategy. Even withinthework-
load studied here, we have seen that the savings from each
strategy varies grestly from one user to another.

We believe that even though our simulations were per-
formed on MacOS traces, our techniques are generaly ap-
plicable to other single-user operating systems. For ex-
ample, Microsoft Windows essentialy uses the basic strat-
egy with the simple scheduling technique. However, it
makes no attempt to police processes that make unfair pro-
cessor time requests; in fact, one recognized problem with
its power management is that if a single process requests
events using PeekMessage rather than Get Message or
Wi t Message, then processor power management cannot
take place [2, 9]. This problem is exactly the sort that the
greediness technique was designed to aleviate, so we may
find that, as we demonstrated for the MacOS, the effective-
ness of the basic strategy is greatly improved by the use of
such atechnique.

We would like to see the work described here contin-
ued in several ways. First, we would like to actually imple-
ment our proposed strategies. This would have the advan-
tage of demonstrating their feasibility and utility in an eas-
ily measured way, since one would be able to measure the
power consumption and performance of systems with differ-
ent strategies running the same benchmark workloads. Sec-
ond, wewould liketo collect additional traces, so that the ef-
fectiveness of our techniques over a larger variety of users
and workloads can be established, so that we can better se-
lect parameter values, and so that we can determine if dy-
namic variation of parameter valuesisuseful. In particular,

5.65W—|—< )(3.74W) = 8.27TW.

5.65W—|—< )(3.74W) = 6.89 W.
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we want to obtain traces from different types of user envi-
ronments; our current set of tracesisrather limited inthisre-
spect. Third, we would liketo see if our power-saving tech-
niques are applicable in practice to other single-user oper-
ating systems (such as those from Microsoft). Finaly, we
do not believe that we have exhausted the possibilities for
software strategies to put the CPU into power saving modes;
our work to date has not, for example, considered systems
in which the clock rate and voltage can be varied simultane-
oudy and dynamically. We aso do not believe that we have
found or used all of theinformationuseful in predicting“ use-
less’ quanta. At best, we save around 66% of the CPU en-
ergy, compared to atheoretica optimum of 82%.

6 Conclusions

Reducing the power consumption of computer systemsis
becoming an important factor in their design, especialy in
the case of portable computers. Animportant component for
power management isthe processor, asit accountsfor alarge
percentage of total power. Obviously, the CPU can beturned
off when it isinactive; in some operating systems, however,
such as MacOS, the CPU is frequently running even when
there isn't any “useful” work to do. We have found sev-
era heuristic techniques to decrease power use, such as (a)
never running aprocess that isstill blocked and waiting on an
event, (b) delaying processes that execute without producing
output or otherwise signaling useful activity, and (c) delay-
ing the frequency of periodic processes, most of which seem
to wake up, look around, find nothing interesting to do, and
go back to sleep. To the extent that similar phenomena occur
in other operating systems, these techniques should apply to
them also.

We have used trace-driven simulation to evaluate these
techniques on the basis of processor energy saved and in-
crease in processing time. We found that our techniques save
47-66% of processor energy, thus decreasing processor en-
ergy consumption by 26-53% compared to the simple strat-
egy currently employed by MacOS. Taking into considera-
tion the fraction of system power used by the CPU, we esti-
mate that implementing the best subset of our techniqueswill
increase battery lifetime for Macintosh portables by around
20%. These savings do imply a small lossin effective sys-
tem performance (due to the fact that the CPU may be inac-
tive even though there is real work to do); in all cases, this
lossisless than 2%.

Work is continuing on thistopic. We hope to be able to
implement our proposed al gorithms, although thiswork may
or may not find itsway into Apple products. We will also be
collecting additional traces, for awider variety of workloads,
and will be further evaluating the techniques described here
and othersyet to be discovered.
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