Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DEFINING SOLUTION SET QUALITY

by

Henrik Esbensen

Memorandum No. UCB/ERL M96/1

17 January 1996

DEFINING SOLUTION SET QUALITY

by

Henrik Esbensen

Memorandum No. UCB/ERL M96/1

17 January 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Traditional algorithms for multi-objective optimization outputs a single solution rep-
resenting a specific tradeoff of the cost dimensions considered. In contrast, some recent
algorithms explores the design space and outputs a set of alternative solutions. Such ap-
proaches have a number of advantages over traditional methods. However, a fundamental
and still unsolved problem in this context is that of evaluating the relative performance of
set-generating algorithms, which requires a method of comparing sets of solutions. In this
report a generally applicable solution set quality measure is proposed. Properties of the
measure are proven and examined empirically.

1 Introduction

The traditional formulation of multi-objective optimization problems arising in VLSI layout
generation (and many other combinatorial problems as well) is that of minimizing a single-
valued cost function aggregating some cost criteria subject to bounds on other criteria. The cost
function is typically a weighted sum. While convenient from an algorithmic point of view, such
formulations may be very difficult to apply in practice since it may be hard or even impossible
to define suitable weights and bounds (3, 5, 7).

Some recent approaches for various VLSI layout problems address this problem [1, 3, 4, 5, 11).
They explicitly explore the design space and generate a set of alternative solutions representing
distinct, good tradeoffs, from which the user can then make a final choice. However, a funda-
mental but still unsolved problem is how to properly compare the performance of design space
exploration approaches [8]. Such comparisons requires a method for comparing sets of solutions,
all of which represent “good” tradeoffs of the cost dimensions.

In this report a solution set quality measure is proposed which allow set-generating algorithms
to be evaluated. The measure is independent of the search algorithm used and therefore applies
to the evaluation of any set-generating approach, e.g., a random walk, an exhaustive search, or
approaches based on branch-and-bound, simulated annealing or the genetic algorithm (GA). The
measure can also be used to measure the progress of algorithms based on iterative improvement
of (one or more) solutions, such as e.g. the GA. It is consistent with the preference relations
used in [4, 5] to drive a GA-based algorithm for building-block placement. In particular, the
users specifications of ideal and infeasible solutions are appropriately incorporated, as will be
discussed in the following.

The remaining of this report is organized as follows: Section 2 presents a relation on the cost
space allowing individual solutions to be compared. The solution set quality measure is intro-
duced in Section 3 and some properties of the measure are proven. Section 4 discuss the practical
application of the measure and an empirical validation using constructed sets is presented in Sec-
tion 5. Finally, conclusions and directions for future work are given in Section 6.

2 Comparing Single Solutions

Let II be the finite search space considered and let n be the number of distinct optimization crite-
ria considered. Assume without loss of generality that all criteria are to be minimized. The cost
measure is the vector-valued function ¢ : Il — R, ¢(z) = (¢(z)1,...,¢(z)n), where R, = [0, 00][.

As mentioned in Section 1, the traditional way of combining the ¢(z); values into a single-
valued cost measure using weights and/or bounds causes some practical problems to be avoided.
Therefore, a different approach is taken. An ordering < on II is introduced, which allow in-
dividual solutions to be compared without aggregating the cost values. Let R, = [0,00] and
G={(g9,f) e R}, xR} |Vi:gi < fi}. Instead of weights and bounds, the user specifies pref-
erences by defining a goal and feasibility vector pair (g, f) € G. For the i’th criterion, g; is the
maximum value wanted, if obtainable, while f; specifies a limit beyond which solutions are of
no interest. For example, if the 7’th criterion minimized by an IC placement algorithm is layout
area, g; = 20 and f; = 100 states that an area of 20 or less is wanted, if it can be obtained, while

an area larger than 100 is unacceptable. Areas between 20 and 100 are acceptable, although not

as good as hoped for. Since the values of (g, f) need not be obtainable, in contrast to traditional
bounds, they are significantly easier to specify.

A
infeasible solutions

f2

Ay : acceptable solutions

[1)-]
®

°=' Sg : satisfactory

2 solutions

2

g=

(3]

(0,0) criterion1 &, f,

Figure 1: The sets of satisfactory and acceptable solutions, illustrated in two dimensions.

For(g,f) € G,let Sy = {z € 1 |Vi: c(z); < ¢;} and Ay = {z € 1 | Vi : c(z); < fi} be the set
of satisfactory and acceptable solutions, respectively, as illustrated in Fig. 1. Clearly S, C Ay CII
for all (g,f) € G. Finally, the notion of dominance is needed. Let z,y € II. The relation
z dominates y, written z <4 y, is defined by

r<gy & (Vi:e(@)i<ec(y))A@Bi:c(z)i <ely)) (1)
An ordering on II can now be defined:

Definition 1 (Preference Relation) Let z,y € II. The relation z is preferable to y with

respect to (g, f) € G, written T <(g,5) ¥, 15 defined as follows: If z satisfy all goals, i.e., xz € S,
then

T<gny € (x<ay)V(y&S,) (2)

If z satisfies none of the goals, i.e., Vi: c(x); > gi then

T <eny & (@<ay)V[z€A)A(y ¢ Ag) (3)

Finally, may satisfy some but not all goals.
Assume! that (Vi< k:c(z)i < g)AN(Vi2k:c(z)i> gi). Then

z<eny @ [(Vizkica)i<c@))A@i2k:cz)<c(y))] (4)
Ex € A A(y € A7) (5)

Ew > k:efa)i = (y)i) A (6)

(Vi< k:ca) < e@)) A @i <k:e(z)i < c(y)i) (7)

(Vaz' < k:efy)i > gi))] ®)

Notice that in (4) only cost values of non-satisfactory dimensions are considered. ILe., when
two solutions satisfy the same subset of goals, they are considered equal wrt. the satisfactory
dimensions, regardless of their specific cost values in these dimensions. However, in the special
case where two solutions are equal wrt. all non-satisfactory dimensions, cf. (6), their cost values
in satisfactory dimensions determines their ordering, cf. (7) and (8).

The relation introduced in Definition 1 is an extension of the relation introduced in [9]?, adding
the feasibility vector f and the notion of acceptable solutions, As. In [4] the relation is applied
to control the search of a GA-based algorithm for building-block placement, and the extension
of the relation is observed to be of significant practical value. f restricts the GA-based search to
the region of practical interest, i.e., prevents the algorithm from wasting time exploring solutions
which are non-dominated but in practice infeasible.

When it is clear which goal and feasibility vectors (g, f) are used, <(g) is written <. Fur-
thermore, =(z < y) is written = £ y. The extended definition of < is transitive, as is intuitively
needed:

Property 1 (Transitivity)
V(g,f)eG, Vr,y,z€lliz<yAy<z=>z<z2 (9)

Proof : As mentioned above, < is a modification of the relation introduced in [9}, denoted here
by <p. Specifically, comparing to [9] it can be seen that by construction

Vz,yell:z <y & (z<,y)V(z€AsAy ¢ Ay) (10)
Given (g, f) € G, z,y,z € I, and assume z <y Ay < 2. Then
[(z=py)V(z €A Ny EAf)] A [(y=p2)V(yE ANz €& Ay)] (11)

For (11) to be true, truth values can be assigned to the clauses of the expression in a total of nine
distinct ways. Four of these implies y ¢ Ay Ay € Ay and hence are impossible. Three others

1Since this can always be obtained by ordering the optimization criteria, full generality is preserved.
2A concept of priorities is also introduced in [9). The relation presented here is an extension of the relation
in [9] when all dimensions are given the same priority.

implies z <, y A y <, z. Since <, is shown in [9] to be transitive, z < z then follows from (10).
Two cases remain :

Casea) T €EAfAYy g As Ny <p2:

y € Ay = y € Sy. If y satisfies no goals, it follows from the definition of y <, z that y <4 2
and hence that z ¢ Ay, which implies z < z due to (10). If y satisfies some but not all goals,
Jk:(Vi<k:c(y)i<g)AN(Vi>k:c(y)i> gi). Theny & Ay = 3j > k: ¢(y); > f;. Either (4)
or (6) in the definition of y <, z is true. In either case, c(y); < ¢(z); = ¢(2); > f; => 2 € A =
T <z

Caseb) s <, yAy€E As Az Ay :

Substituting = for y and y for z, it was shown in case a) that € Ay Az <,y =y &€ A;. By
negation, y € Ay => x € Ay Vz 4, y. Sincey € Ay Az <, y we then have z € Ay, from which
z < z follows due to (10).

O

Using <, a given set of solutions can now be ranked: Define the mapping r : II x 2™ — N by
VyeI,L, VX CII: r(y,X) = |{z € X|z < y}|- r(y,X) is the rank of y with respect to X.
Furthermore, let Xp = {z € X|r(z,X) = 0} C X. Le., Xy is the subset of best solutions in X
with respect to <.

The relation < have the following additional properties:
1. VzeIl:z £z, ie., < is not reflexive. This follows from (2) through (8).

2. From transitivitv : Vz,y € Il : 2 < yAy <z = z < z. But since < is not reflexive,
Vz,y € II:~(z < y Ay < z). Consequently, < is antisymmetric (since the assumption of
antisymmetry is always false), but since < is not reflexive, it is not a partial order [2].

3. Vz,yell:z <yAz ¢ S, => y & S,. This follows from (2) : y € Sy = y < z, contradicting
=(z <y Ay <) above.

4. Vz,yelN:z <yAz ¢ Ay = y & Ay. This follows similarly from (2), (3) and (5) :
y € Aj = y < z, contradicting ~(z < y A y < z) above.

5 VXell:XNS, #0 =X, CS,. This follows from (2) : y€ Sy = Ve € X NS, :x <y
= r(y,X)>0=y ¢ Xo.

6.VX ell: XNA; #0 = Xo C A;. This follows similarly from (2), (3) and (5) :
y€A;=>VzeXNAs:z<y=>1r(y,X)> 0=y ¢ Xo.

7. In the special case of g = (0,...,0) and f = (00,...,00) it can be seen from (2) through (8)
that z < y is equivalent to = <q y.

8. In the special case of n = 1, i.e., one-dimensional optimization, it can be seen from (2)
and (3) that z < y is equivalent to z < y, regardless of (g, f) € G.

3 Comparing Sets of Solutions

From one or more given sets of solutions the user will, sooner or later, select a single specific
solution as the “best”. For example, in the case of circuit design, a single layout will ultimately
be selected for production. However, it is not known how the user makes the final choice; it
depends on preferences which may never be explicitly expressed. But independently of the final
selection method, if the “best” solution belongs to set X rather than set Y, then set X was more
valuable to the user than Y and hence should intuitively be better than Y.

The basic idea of the proposed solution set quality measure is to model the final selection
performed by the user by an explicit selection function which is parameterized to account for a
wide range of possible preferences wrt. the relative importance of the optimization criteria con-
sidered. By systematically varying the parameters of the selection function, a class of functions
corresponding to a wide range of possible user-preferences is obtained, and the quality of solution
set X is then defined as the expected value of the selection function when selecting from X while
traversing the class of selection functions.

Assume that the user who ultimately selects a single solution also defines (g, f) used by some
algorithm to generate the set(s) from which the final selection is made. The model of the selection
process should then be consistent with the preference relation <(g), assuming that the users
actions are consistent. Obtaining this consistency will guide the construction of the set quality
measure.

Before proceeding with a model of the selection process, a normalization procedure is needed.
Different optimization criteria will have distinct units, e.g., mm?2, ns, % and §, and will have
absolute values in very different ranges. A normalization is therefore performed initially in order
to make comparisons in the multi-dimensional cost space without a priori introducing any bias
towards a specific dimension.

Definition 2 (Normalization) Given X C II and (g9,f) € G. Let ¢; mar = maxzex{c(z)i},
Cimin = Mingex{c(z)i} ¢ = 1,...,n, and assume® that Vi : Cimaz > Cimin. Furthermore, let
UX)={z € O|Vi: cimin < c(2)i < Cimazr} CII and let € > 0 be a small, arbitrary constant.
Then n : R — [0;1]" is defined by

0 zf ti < Cimin
Vi=1l,...,n : g(t)i= (1- 26):;,:::‘-::::.&» + € if Cimin < ti < Ciymaz
1 th; > Ci,maz

The normalized cost € : UX) — [e,1 — €] with respect to (X)) is defined as &(z) = n(c(z)).
Similarly, the normalized goal vector § of g with respect to QU(X) is defined as § = n(g).

By using ¢ and the corresponding normalized goal and feasibility vectors § and f = 75(f),
the effects of different scalings of the cost dimensions are eliminated, allowing cost values to be
compared while preserving the relative ordering defined by <.

31f ¢i,maz = Ci,min for some i, all solutions in X are equal wrt. the i’th dimension, which can then be eliminated
from the comparison. l.e., full generality is preserved.

The final selection performed by the user is modeled by the selection function s, defined in
Definition 3 below. The idea is that s,, should be as simple as possible, while still being consistent
with < in the sense stated in Property 2. s, is essentially a weighted sum of all optimization
criteria, which is probably the simplest, meaningful selection function. The scaling terms w - §
and Y%, w; as well as the max-terms are minimal alterations of a weighted sum required to
obtain the consistency with <. As mentioned earlier, since the user defines both (g, f) € G and
hence <(y,7), it seems intuitively reasonable that the final selection performed using s, should
satisfy Property 2.

Definition 3 (Selection Function) Given X C II, (g, f) € G, and a weight vector w € R7%.
The selection function s, : UX) — Ry is defined by

Ty wi(z)i ifz €S,
sw(z) = { w- g+ Y, w; max(&(z)i, gi) ifz € As\ S,
w- g+ Y, wi + T, wimax(8(z)i, §:) if ¢ € Ay

where & and § are normalized with respect to Q(X) according to Definition 2.

Property 2 (Selection Function Consistency) Given s, : Q(X) — Ry according to Defi-
nition 8.
Vz,y € UX), VweE R} : 2 <y = su(T) < 5u(y)

Proof : First observe from Definition 2 that each coordinate function of 7 is nondecreasing, i.e.,

Vi=1l,...,n, Vu,v € R, :u; <vi = n(u)i < n(v)i (12)

Consequently, Vz € S, N QX), Vw € R? : c(z); < gi = &(z)i £ §i = T, wie(z)i S w- 3.
Since all terms in the definition of s, are positive,

Vze S,NUX),Vy € S,NUX), Vw € R} : 5u(z) < su(y) (13)

Similarly, Vz € Q(X) : max(&(z)i,§i) < 1 = T, wimax(&(z), i) < X7, wi, and therefore,
from the definition of sy,

Ve A;NQUX),Vy g Ay nQUX), Vw € RY : su(z) < suly) (14)

Given fixed z,y € Q(X), w € R? and assume z <y. First consider the case z € S,. If
y € S,, then s,(z) < su(y) follows from (13). If y € S;, then from (2) and (12), z <a y =
Vi:e(z)i < e(y)i = sw(z) = T, wie(z)i < T, w;&(y)i = Sw(y). Then consider the case
t ¢S, Hze As\ S, then y € S, according to property no. 3 on p. 5. On the other hand,
if y ¢ Ay the result follows from (14). Similarly, if z ¢ Ay, then y & Ay according to property
no. 4 on p. 5. Hence, only two possibilities remain:

(z€ Af\SgAy € As\Sp) V (e € ArAy & Af) (15)

In either case of (15), the same sub-expression of s, is used when computing s,,(z) and su(y).
Hence, it follows from Definition 3 that it is sufficient to show that

2": w; max(&(z)i, 3i) < Zn:wa' max(&(y)i, Ji) (16)

=1 1=1

for all z and y satisfying (15). Assuming (15), consider the case when z does not satisfy any
goal. Then from (3), z <qy = Vi : &=)i < &y)i, from which (16) follows. Finally, assume
that z satisfies some but not all goals. As in Definition 1, assume without loss of generality that
(Vi<k:c(z)i <g)A (Vi k:c(z) > g;) for some k, 2 < k < n. Since either (4) or (6) holds,
we have

n k-1 n
Z: w; max(&(z)i, §i) = Z: w; max(&(z);, gi) + E_% w; max(&(z);, i)
k-1 n
; w;igi + ; w; max(&(z)i, i)
k-1 n
> w;max(e(y)i, 3:) + > w; max(e(y)i, Ji)

i=1 i=k

= En:w; max(&(y)i, §i)

i=1

IA

IA

0

Using s,, a solution quality measure ¢(Y') of a set Y can now be defined. The idea is to
vary the weight vector w used in s,, over a user-defined space W, and then define ¢(Y') as the
expected value of s,, over W when selecting solutions from Y. In other words, the quality of a
set is the expected selection function value when varying the weights of the selection function
corresponding to a wide range of possible preferences of the user. Notice that a smaller value of
the quality measure ¢ means a higher set quality.

Definition 4 (Set Quality Measure) Given s, : Q(X) — R; according to Definition 8 and
a weight space W C R . The set quality measure g : 2%*) — R is defined by

VY CUX) : oY) = E(min{su(y)})
where the ezpected value E is computed over allw € W.

As an immediate consequence of Property 2, ¢(Y') = ¢(Yb), i.e., only solutions in Y, contributes
to g(Y), which is intuitively reasonable. Furthermore, the definition of ¢ is independent of the
weight space W. Hence, W can be discrete or continuous, and the weights can be independent
or dependent. For example, W can be defined by assuming that w; is normally distributed
N(ui,0:), or uniform on [0,m;]. Any available knowledge of the preferences used when making
the final choice of a solution can thus be utilized when defining W. Due to the normalization
performed according to Definition 2, a reasonable weight space can be defined without having

8

any knowledge of the absolute cost values of each dimension. For example, allowing each w; to
take on any value in [0,1] is sufficient to capture all relative priorities of the criteria.

Properties 3 and 4 below states two properties of the solution set quality measure, which are
intuitively required. Property 3 states that by adding a solution to a set, the quality will be
unchanged or improve. Property 4 states that when set Y is preferable to set Z in the obvious
sense that the best solutions of Y U Z all belongs to Y, then Y is at least as good as Z.

Property 3 Given q: 2%X) s R, according to Definition 4.
VY CX), Vy € AX): q(Y U{y}) < oY)

Proof : Let ¢ : 29X s R, Y C Q(X) and y € Q(X) be given. Since the minimum value of
any set is non-increasing as the set is expanded,

Vwe R, :zer‘r}br{xy}{sw(x)} < I:lél}{su-(.’l?)} (17)

g(Y U {y}) < ¢(Y) then follows from the properties of the expected value E, independently of
the weight space W.

O
Property 4 Given ¢ :2%X) = R, according to Definition 4.
VY,ZCQX):(YUZ)=Yo=q(Y)<q(2Z)

Proof : Let ¢ : 2%X) » R, and Y,Z C Q(X) be given and assume (Y U Z)o = Yo. Similar to
the proof of Property 3, it is sufficient to show that

Vwe R} :min{su(y)} < min{s.(2)} (18)

For a fixed w € W, let z’ € Z be an element minimizing s, i.€., Su(2’) < min.ez{sw(2)}.
Since no solution in Y N Z can cause a violation of (18), assume without loss of generality that
YNZ =0. Then (YUZ)o=Yo = Vz € Z, 3y € Yo: y < z, and consequently, 3y’ € Yo: y' < 2".
From Property 2 we have s, (y') < su(2') from which (18) follows since minyey {sw(¥)} < sw(¥’)-

0

Intuitively it seems desirable that adding a solution y to X should be guaranteed to improve
the set quality if r(y, X) = 0. Similarly, when set Y’ contains solutions dominating every solution
in set Z, set Y should be strictly better than Z. In other words, the inequalities in Properties 3
and 4 should ideally be strict, rather than allowing equality. This limitation is a consequence of
the general shortcoming of the proposed set quality measure that non-convex points of the cost
tradeoff surface are not credited. More specifically, given y and X such that r(y,X) =0, if ¢(y) is
non-convex relative to the cost of the solutions Xp, then ¢(X U {y}) = ¢(X). The reason is that
sw is essentially a weighted sum, and the minimum of a weighted sum can never correspond to

a non-convex point, regardless of the weights [7]. Therefore, y never minimizes s,,. The problem
of crediting non-convex points is further discussed in Sections 5 and 6.

This Section is concluded by a note on the relationship between the set quality measure
presented here and the measure introduced in previous work [10]. The basic idea of the set
quality measure in [10] is to combine four intuitively reasonable quality indicators. The four
indicators are a) the distance from the center of gravity of the set to the origin, b) the average
distance between points having zero rank (diversity), c) the number of solutions having zero
rank and d) the volume of a bounding box of the rank zero solutions. These four indicators were
combined into a single-valued measure in a simple fashion, using multiplication and division only.
However, while each of the indicators seem intuitively reasonable, the combined measure did not
properly reflect our subjective notion of solution set quality [10]. The main problem is to device
a proper combination of the indicators.

The measure proposed in this report differs fundamentally from the one in [10]. While the
latter explicitly states desirable properties of a set, the measure proposed here is implicit in
the sense that no explicit definitions of quality indicators are made. However, minimizing set
quality as defined in Definition 4 also promotes the optimization of the four individual indicators
introduced in [10], and in this sense the measures are consistent. Overall, the measure proposed
here is believed to be better than that of [10] since it closer reflects our intuitive notion of set
quality. Properties 3 and 4 are essential in this context.

10

4 Practical Issues of Set Comparison

Assume that two stochastic algorithms A and B have been executed m times each, gener-
ating solution sets A,,...,A, and B,,...,Bp, respectively. The practical computation of
q(A1),---,9(Am),q(B1),...,q(Bm) relative to a goal and feasibility vector pair (g,f) € G is
described in this Section. When all set quality values are known, questions such as “Is A better
than B 7” can be answered by applying statistics on the set quality values. A and B can be based
on any search strategy, and need not apply the same strategy. If the use of goal and feasibility
values are considered inappropriate for the comparison, g = (0,...,0) and f = (oo,...,00) can
be applied, which in effect eliminates the notions of goals and feasibility.
The solution quality values are determined by going through the following steps:

1. Normalize the cost dimensions according to Definition 2, using

X=0(A;UB.‘)

=1

and any small €, e.g. € = 10~%. Also normalize the goal vector. By construction, Q(X) is
now large enough for all remaining computations to be well-defined. The quality ¢(V) of a
new set V can be computed using the same normalization as long as V C Q(X). However,
if V € Q(X), it is necessary to re-normalize all sets considered.

2. Define a weight space W. There are no restrictions on the definition of W, any available
knowledge of the selection process can be incorporated, cf. Section 3.

3. Depending on the choice of W, an expression for the exact value of ¢ may be obtainable
and can then be used to accurately calculate g for each solution set. However, a simpler
approach which applies to any definition of W is to compute an estimate § of ¢ by sampling
N points. Le., for each set Y, estimate ¢(Y) by

1 N
i(Y) = LZ=1 I;g;}{sw(k)(y)}

where each vector w(k) is generated independently according to the chosen definition of W.
Assuming a sufficiently large sample size N, this estimation method is statistically sound.
Furthermore, Properties 3 and 4 still holds when substituting ¢ by §, as a consequence
of (17) and (18), respectively. '

11

5 Experimental Results

In this Section the proposed quality measure is empirically validated using constructed sets. The
measure is used in [6] to compare the performance of a GA for building-block placement with a
random walk.

Assume first that n = 2, g = (0,0) and f = (00,00). Eight constructed sets s1 through s8 are
plotted in Fig. 2. The quality of each set is estimated as described in Section 4, using W =[0,1}?,
assuming that the weights are independent and uniform on [0,1]. A sample size of N = 10,000
is used when computing 4.

16 ¥ L] L]) T T
L
o
14} o -
..x‘\"\"\
12} s7 TBe 7
10} Y a8 -
\
P x \
S \,
2 s B, .
: e,
a8 u\ S o 'X,.ss
~ b
6 \ N]
\, ~
o] B “® s6
4t s4 . -
o.... X 8§83
2t x 1 "o 82 :
0 1 1 L 1 L 1
0 2 4 6 8 10 12
Dimension 1

Figure 2: Constructed sets sl through s8. Each set is indicated by either circles connected by a

dotted line or crosses connected by a dashed line. s4 is a subset of s3, s6 a subset of s5 and s8 a
subset of s7.

Set sl s2 s3 s4 s5 s6 s7 s8
Size 1 3 5 3 4 3 4 3
q 0.0001 | 0.0768 | 0.2143 | 0.2655 | 0.4149 | 0.4149 | 0.5270 | 0.5291

Table 1: Estimated solution set qualities corresponding to Fig. 2.

When computing § a solution may never be sampled, i.e. never minimize s,,. This will happen
if either 1) the solution is non-convex, cf. Section 3, or 2) the weight w needed for the solution
to minimize s,, was never generated during the computation of §. In the case of sets s1 through
s8, all non-sampled points are non-convex.

12

As can be seen from Table 1, except for sets s5 and s6, the set quality decreases strictly with
the set number, which seems intuitively reasonable. However, set s5 is not better than s6 because
the solution with cost (8,7) is non-convex relative to s5. Solutions (7,4) and (4,7) of set s3 and
(7,12) of s7 are similarly not sampled due to their non-convexity.

The effect of changing (g, f) to ¢ = (9,6) and f = (13,16) is illustrated in Fig. 3 and Table 2,
using four new constructed sets sl through s4. Using these values of (g, f) has the effect of
changing the relative quality of the sets from the order s2, sl, s4, s3 (decreasing quality) to the
order sl, s2, s3, s4, as is intuitively desirable.

20 L] ¥ T | | ¥ T 1)
18F <
Q\
16 . 4
Y
\\ x'
14} N -
\\ X.'sa
o 121 N -
5 N
210} M X -
N

.g Q .
a .

8t . N -

. |
6 \O~\ s4 J
X s1)
4} N
2r O s2 ’
.0
o 1 ' 1 1 1 L i
0 2 4 6 8 10 12 14 16
Dimension 1

Figure 3: Constructed sets s through sf. The bozes indicates S, and A; using g = (9,6) and
f = (13,16).

Set sl s2 s3 s4
Size 1 4 3 3
& 0.3347 | 0.8393 | 1.0328 | 1.9739
7 0.3347 | 0.1807 | 0.6249 | 0.4963

Table 2: Estimated solution set qualities corresponding to Fig. 8. & is the estimated qualities
using g = (9,6) and f = (13,16). & is computed using g = (0,0) and f = (00, 00).

13

6 Conclusions and Future Work

A solution set quality measure needed to evaluate the performance of set-generating algorithms
has been proposed. The measure is independent of the search method used and therefore generally
applicable. At the same time, the measure is consistent with a preference relation used to
guide GA-based searches, and appropriately incorporates the specification of goal and feasibility
vectors. The measure also overcomes some shortcomings of a previously proposed measure.
The practical use of the measure has been illustrated on constructed sets and to a large extent
the measure coincides with our intuitive notion of set quality. However, non-convex solutions
are not appropriately accounted for, which is an important topic of future work. Other issues
requiring further investigation includes sampling accuracy and the effect of increasing the number
of optimization dimensions.

Acknowledgments

The author would like to thank Dr. Michael A. Lee at the Computer Science Division, Jim Prieger
at Dept. of Economics and Imola K. Fodor at Dept. of Statistics, all at University of California,
Berkeley, for several useful discussions and suggestions concerning this work. The research was

supported by SRC grant no. 95-DC-324, NSF grant no. MIP 91-17328 and the Danish Technical
Research Council.

References

[1] J. Cong, Y. Ding, “On Area/Depth Trade-Off in LUT-Based FPGA Technology Mapping,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 2, No. 2, June
1994.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press, Cam-
bridge, Massachusetts, 1990.

[3] P. Dasgupta, P. Mitra, P. P. Chakrabarti, S. C. DeSarkar, “Multiobjective Search in VLSI
Design,” Proc. of The 7th International Conference on VLSI Design, pp. 395-400, 1994.

[4] H. Esbensen, E. S. Kuh, “Design Space Exploration for Building-Block Placements,” Mem-
orandum No. UCB/ERL M95/84, College of Engineering, University of California, Berkeley,
CA 94720, Oct. 1995.

[5] H. Esbensen, E. S. Kuh, “An MCM/IC Timing-Driven Placement Algorithm Featuring
Explicit Design Space Exploration,” Proc. of the IEEE Multi-Chip Module Conference, 1996
(to appear).

[6] H. Esbensen, E. S. Kuh, “Design Space Exploration Using the Genetic Algorithm,” Proc.
of the IEEE International Symposium on Circuits and Systems, 1996 (to appear).

14

[7] P. J. Fleming, A. P. Pashkevich, “Computer Aided Control System Design Using a Multi-
objective Optimization Approach,” Proc. of the IEE Control 85 Conference, pp. 174-179,
1985.

[8] C. M. Fonseca, P. J. Fleming, “An Overview of Evolutionary Algorithms in Multiobjective
Optimization,” Evolutionary Computation, Vol. 3, No. 1, pp. 1-16, 1995.

[9] C. M. Fonseca, P. J. Fleming, “Multiobjective Optimization and Multiple Constraint Han-
dling with Evolutionary Algorithms I : A Unified Formulation,” Research Report 564, Dept.
Automatic Control and Systems Eng., University of Sheffield, Sheflield S1 4DU, U.K., Jan.
1995.

[10] M. A. Lee, H. Esbensen, L. Lemaitre, “The Design of Hybrid Fuzzy/Evolutionary Multi-
objective Optimization Algorithms,” Proc. of the 1995 IEEE/Nagoya University WWW on
Fuzzy Logic and Neural Networks / Evolutionary Computation, pp. 118-125, 1995.

[11] J. Lillis, C.-K. Cheng, T.-T. Y. Lin, “Optimal Wire Sizing and Buffer Insertion for Low
Power and a Generalized Delay Model,” Proc. of the International Conference on Computer
Aided Design, pp. 138-143, 1995.

15

	Copyright notice 1996
	ERL-96-1

