

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EXACT MINIMIZATION OF BINARY DECISION

DIAGRAMS USING IMPLICIT TECHNIQUES

by

Arlindo L. Oliveira, Luca Carloni, Tiziano Villa,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/16

17 April 1996

EXACT MINIMIZATION OF BINARY DECISION

DIAGRAMS USING IMPUCIT TECHNIQUES

by

Arlindo L. Oliveira, Luca Carloni,Tiziano Villa,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/16

17 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Exact Minimization of Binary Decision Diagrams Using Implicit
Techniques

Arlindo L. Oliveira' Luca Carloni Tiziano Villa

Alberto L. Sangiovanni-Vincentelli

Department of EECS
University of California at Berkeley

Cory Hall, Berkeley, CA 94720
{lcarloni, villa,alberto}@ic. eecs. berkeley. edu

t Dept. of EEC
IST/INESC

R. Alves Redol 9, 1000 Lisboa, Portugal
amlOinesc.pt

April 17, 1996

Abstract

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence
of don't care sets. Specifically, given an incompletely specified function g and a fixed ordering of the
variables, we propose an exact algorithm for selecting / such that / is a cover for g and the binary
decision diagram for / is of minimum size. The approach described is the only known exact algorithm
for this problem not based on the enumeration of the assignments to the points in the don't care set. We
show also that our problem is NP-complete, settling an open question.

We show that the BDD minimization problem can be formulated as a binate covering problem and
solved using implicit enumeration techniques. In particular, we show that the minimum-sized binary
decision diagram compatible with the specification can be found by solving a problem that is very
similar to the problem of reducing incompletely specified finite state machines. We report experiments
of an implicit implementation of our algorithm, by means of which a class of interesting examples was
solved exactly. We compare it with existing heuristic algorithms, to measure the quality of the latter.

1 Introduction

A completely specified Boolean function / is a cover for an incompletely specified function g if the value of
/ agrees with the value of g for all the points in the input space where g is specified. This paper describes
an exact algorithm for selecting / such that / is a cover for g and the binary decision diagram (BDD) for /
has a minimum number of nodes (complemented edges arc not considered here). For a given ordering of the
variables, the BDD for / is unique [4] and the problem has a welldefined solution.

We show that this minimization problem can be solved by selecting a minimum sized cover for a graph
that satisfies some additional closure conditions. In particular, we show that the minimum sized binary
decision diagram compatible with the specification can be found by solving a covering problem that is very
similar to the covering problem obtained using exact algorithms for the reduction of incompletely specified
finite state machines (ISFSM) [8]. This similarity makes it possible to use implicit enumeration techniques
developed for the purpose of ISFSM reduction [9] to solve efficiently the BDD minimization problem. The

manipulationof the characteristic functions of the sets of compatibles and prime compatibles, represented
with ROBDDs [2], allows the generation of very large sets that cannot be enumerated explicitly, as it is
demonstrated in the experiments.

The transformation presented in this paper and the algorithms developed for the solution are important
for practical and theoretical reasons.

From a practical pointofview, there are applications in learning and logic synthesis where an high-quality
solution is of paramount importance. This requires an exact algorithm to find those solutionsor at least to
validate the quality of heuristic algorithms.

For instance, in inductive learning applications, the accuracy ofthe inferred hypotheses isstrongly depen
dent on the complexity of the result [1]. One possible and very effective representation scheme for inferred
hypotheses are BDDs. However, it was observed [12] that when BDDs are used as the representation scheme,
existing heuristic algorithms for BDD minimization find solutions that are so far from the minimum that
makes them of little value for this particular application.

The selection of the minimum BDD consistent with an incompletely specified function is important also
in logic synthesis applications that use BDDs not only as a tool for representing discrete functions but also
to derive implementations that minimize some cost function. For instance, timed Shannon circuits [10] use
the structure of the BDD to derive low power implementations and stand to gain from algorithms for the
reduction of BDDs. The same holds for DCVS trees and multiplexer-based FPGAs.

An exact algorithm, even though unable to solve large instances, helps to measure the quality of heuristic
algorithms by gauging them on instances where an exact solution can be found.

Froma theoretical point of view, the transformation presented in this work is an elegant characterization
ofthe problem and also may help in strengthening results in the field ofBDDs and branching programs [11]
complexity theory. We show in Section 3 that our problem is NP-complete, settling a question that was
left open in previous work in the area [16]. Reduction of incompletely specified FSMs is NP-complete [14]
too. Moreover, a stronger result is that the smallest DFA consistent with a set of accepted and rejected
strings cannot be approximated within any polynomial factor of the minimum solution [15]. Given that
the smallest consistent DFA problem can be trivially transformed into the ISFSM reduction [13] problem,
efficient approximation algorithms for ISFSM reduction will not exist unless P=NP. This result cannot be
used directly to classify the complexity of approximation algorithms for the BDD minimization problem.
However, the similarities with ISFSM reduction raise the possibility that a similar result may hold in this
case too.

Several heuristic algorithms for the problem addressed here have been proposed. These algorithms are
important in applications where the available degrees of freedom in the functions represented can be used
to reduce the memory requirements of BDD based algorithms. The restrict operator [7] and the constrain
operator [6] (also known as generalized cofactor [19]) are two heuristics used to assign the don't cares ofa
BDD. A comprehensive study of heuristic BDD minimization has been presented in [16]. Another heuristic
algorithm has been reported in [5].

We are aware also of work for an exact algorithm [17] based on the enumeration of the different covers
that can be obtained by all possible assignments of the don't care points. A pruning technique reduces the
enumeration process thanks to a result by Shiple that changing the value of a function / of n variables on
a minterm (actually on a cube) m cannot change the size of the BDD for / by more than n nodes. The
pruning is performed implicitly.

The remainder is organized as follows. Section 2 introduces basic definitions on BDDs and Section 3 has
a proof that BDD minimization is NP-complete. Sections 4, 5 and 6 describe respectively the compatibility
graph, closed clique covers and the generation of a minimum BDD. Minimization of BDDs is formulated as
a variant of FSM minimization in Section 7, while an implicit algorithm to compute a minimum closed cover
is presented in Section 8. Results and conclusions are offered respectively in Sections 9 and 10.

2 Preliminaries

A BDD is a rooted, directed, acyclic graph where each node is labeled with the name of one variable, and
every non-terminal node n,- has one else and one then edge that point to the children nodes, nflse and njhen,

respectively. The terminal nodes are nz and n0. Byconvention we will draw the else (zero) edge as the edge
pointing to left (west), and the then (one) edge as the edge pointing to right (east).

Any minterm m in the input space induces a unique path in a BDD defined in the following way: start
at the root and take, at each node, the elseor the then edge according to the value assigned by minterm m
to the variable that is the label of the current node until a terminal node is reached. A BDD corresponds
to the completely specified Boolean function / that has all the minterms in fon (and only these) inducing
paths in the BDD that terminate in n0. A BDD is called reduced if no two nodes exist that branch exactly
in the same way, and it is never the case that all outgoing edges of a given node terminate in the same node.
For a fixed ordering of the variables, the reduced ordered BDD for a given Boolean function is unique. This
implies that reduced ordered BDDs are canonical representations of Boolean functions and we will therefore
use the notation n$- to denote both the node in the BDD and the Boolean function to which it corresponds.
Unless stated otherwise, we will use simply the term BDD when we refer to a reduced ordered BDD.

The level of a node n,-, jC(n,) is the index of the variable tested at that node under the specific ordering
used. The level of the terminal nodes is defined as N + 1, where N is the number of input variables. The
maximum level of a set s of nodes, £max(s)i is the maximum level of all the nodes in s. A BDD is called
complete if all edges starting at level i terminate in a node at level i+ l.1 The level of a function h, C(h), is
defined as the level of a BDD node that implements h. If n,- is a node in the BDD and m a minterm, rij(m)
will be used to denote both the value of function n,- for minterm m and the terminal node that m reaches
when starting at n,-. This notation is consistent because the two terminal nodes stand for the constant
functions 0 and 1. The index 0 will be reserved for the root of the BDD. Therefore, if m is a minterm and
F is the BDD for /, no(m) represents the value of / for minterm m.

A 3 Terminal BDD (3TBDD) is defined in the same way as a BDD in all respects except that it has three
terminal nodes : nZ) n0 and nx. A 3TBDD F corresponds to the incompletely specified function / that has
all minterms in /0ff,/dc and /on terminate in n2, nx and n0l respectively.

3 Complexity of the Problem

Consider the problem of minimum BDD identification.

Problem: MINIMUM BDD IDENTIFICATION (MBl)

Instance: A set of minterms, labeled either positive or negative and an integer K.

Question: For a given fixed ordering, is there a BDD with less than K nodes that satisfies all the examples,
i.e., a BDD for a function whose on set covers the positive examples and whose off-set covers the
negative ones ?

Takenaga [18] proved that this problem is NP-complete, by reduction from graph K-colorability. The
problem we address in this paper is the following:

Problem: EXACT BDD MINIMIZATION (EBM)

Instance: BDDs for functions /on and /dc and an integer K.

Question: Is there a BDD with less than K nodes that implements a function that is a cover for / ?

Proof that it is in NP (due to Shiple [16]):
Guess a BDD with fewer than K nodes. Check whether the guessed BDD implements a function that

is cover of /. This check can be done in time and space a function that is a cover of /. This check can be
done in time and space upper bounded by the product of the sizes of the BDDs for /on and /dC and of the
guessed BDD. This product is polynomial in the input size.

Proof that it is NP-hard:

1A complete BDD will not, in general, be reduced.

Suppose we could solve this problem in polynomial time with a deterministic algorithm. Then we can
also solve the MBI problem. To prove the result we need to prove two facts.

Fact 1. The BDD for a given function / of v variablescannot have more than nxv internal nodes, where
n is the number of minterms in / [17].

Proof of fact 1: To verify this, consider all the paths through the BDD defined by all the minterms in
/. This set of paths has to go through each internal node in the BDD for / at least once. Otherwise, there
are nodes other than the constant node 0 in the BDD that are only reached by minterms in the offset of /,
thereby implying that the BDD is not reduced. Because a minterm can only traverse v internal nodes, we
obtain immediately the above result.

Fact 2. A BDD of a function f : Bv -+ B represented by n minterms can be constructed in 0(n2v2 log n)
operations.

Proof of fact 2: Build the BDD of / from the minterms by doing the following: first OR together
each pair of minterms. Then OR the results together, and keep doing this until the final result is com
puted. The number of such iterations k is logarithmic in n. At iteration a, one needs to perform no more
than n/(2*) operations on BDDs no larger than v x 2,'~1 (the latter size is explained by fact 1 that the
BDD for / cannot have more than nxv internal nodes). Therefore, per iteration one needs no more than
n/(2,)u2,~1v2,_1 = nu22'"2 elementary operations, that is upper bounded by n2v2, because i < logn. Since
there are only logn iterations, the result can be built in time and space n2v2 logn.

It follows by fact 2 that the BDDs for /on and /0ff can be constructed in time polynomial in the size of
the input instance of the MBI problem we want to solve. This implies that the BDD for /dC can also be
constructed in polynomial time in the size of the input of the MBI problem because it can be obtained by
polynomial time bounded BDD operations. To solve an MBI problem, simply transform it into an EBM
problem and solve it. The resulting solution will represent directly the answer to the original problem. D

4 The Compatibility Graph

Previous algorithms [17] for this problem used directly the BDD representation of/on and /off. The exact
approach described in this paper uses the 3TBDD F that corresponds to the incompletely specified function
/. F is assumed to be complete. If necessary, F is made complete by adding extra nodes that have the then
and elseedges pointing to the same node. In general, the resulting 3TBDD is no longer reduced. Moreover,
we suppose that 3TBDD does not use complemented edges.

Definition 4.1 Two nodes n,- and nj in F are compatible fn,- ~ nj) iff no minterm m exists that satisfies
n,(m) —• nz Anj(m) = n0 or n,(m) —n0 A iij(m) = n2.

This definition implies that n0 and n, are not compatible between them and that nx is compatible with
any node in a 3TBDD.

Definition 4.2 Two nodes n,- and nj in F are common support compatible (n{ « nj) iff there exists a
completely specified function h such that h~ni and h~ nj and C{h) > max(£(n,),£(nj)).

The definition implies that nz tjtt n0 and nx w n,-, for any node n,-.
It is important, at this point, to understand the relationship between these twoconcepts. First, note that

the completely specified function h referred in definition 4.2 does not necessarily correspond to any node
in F. In fact, in most cases, h will not correspond to any node in F, since most nodes in F correspond to
incompletely specified functions.

The relationship between compatibility andcommon support compatibility (CSC) is given by the follow
ing lemma:

Lemma 4.1 //n,- « nj then n,- ~ nj.

l0 "nl

Figure 1: Nodes n,- and nj are compatible but not common support compatible.

Proof : If nj / nj, then there is a minterm m such that ni(m) </• nj(m). Any completely specified function
h will assign a unique value to m, and therefore cannot be compatible with both n,- and nj. D

The reverse implication of lemma 4.1 is not true, in general. Figure 1 illustrates a situation where two
nodes are compatible but are not CSC. Nodes n, and iij are compatible because no minterm leads to n0 for
one of this nodes and to n2 to the other. However, n,- and nj are not common support compatible because
no completely specified function h that only depends on the second variable is compatible with both of them.

However, when two nodes belong to the same level, common support compatibility and compatibility are
equivalent:

Lemma 4.2 //£(n,) = C(nj) then n,- ~ nj =• n,- ss nj.

Proof : The completely specified function h required to satisfy definition 4.2 can be obtained by setting
hon = njon Un,-on and /i0ff = hon. Since h depends only on the variables common to the supports of n, and
nj, it can be used in definition 4.2 to show that n,- « nj. Q

The motivation for the definition of common support compatibility can now be made clear. Assume that
two nodes belong to different levels and are compatible. In principle, they could be replaced by a new node
that implements a function compatible with the functions of each node. In general, this function may depend
on variables that are not on the support of the node at the higher level. Assume this node is nj. Later,
when we try to build the reduced BDD, edges that are incident into nj will need to go upwards, against the
variable ordering of the BDD. On the other hand, if both nodes are common support compatible, then they
can be replaced by a node that implements the completely specified function h referred to in definition 4.2.
Because this function only depends on the variables common to the supports of both nodes, this problem
will not arise.

The concept of common-support compatibility can be extended to sets of nodes in the natural way:

Definition 4.3 The nodes in the set S{ = {n\, H2, •••, na} are common support compatible iff there exists
a completely specified function h such that (h ~ nj)j-i,...,» and C(h) > Cmax[si).

Definition 4.4 A set of nodes that are common support compatible is called a compatible set or, simply,
a compatible.

The definition of a compatible implies that any two nodes that belong to a compatible are pairwise common
support compatible. The reverse implication is not true, but the next lemma holds.

Lemma 4.3 Let st- be a set of nodes belonging to the same level. Then, «,- is a compatible iff all nodes in
S{ are pairwise common support compatible.

Proof: To prove the if direction, note that, by the hypothesis, it can never happen that given a minterm
m there are two nodes nj and n* in s,- that are CSC and satisfy nj(m) = nz and nk{m) = n0. This would
violate lemma 4.1. The function h that is needed to prove that s,- is a compatible set is the function h that
has the value 0 for m if some nj exists that satisfies nj(m) = nz and has the value 1 for m if some n*
exists that satisfies njfe(rn) = n0 (the value for minterms not defined in this way can be chosen arbitrarily).

Moreover C(h) = Cmax(si), since all nodes of s,- are at the same level as h. If one does not assume that all
nodes of s,- belong to the same level, it is not guaranteed that h satisfies C(h) > Cmax(si), and onecan build
counterexamples to the lemma.

To prove the only if direction, note that if s,- is a compatible, then the function h referred to in definition
4.3 is compatible with any pair of nodes in s,-, thereby showing that they are pairwise CSC. •

Definition 4.5 The compatibility graph, G = {V,E), is an undirected graph that contains the informa
tion about which nodes in F can be merged. Except for the terminal node nx, each node in F will correspond
to one node in V with the same index. The level of a node in G is the same as the level of the corresponding
node in F. Similarly, gfae and g\hen are the nodes that correspond to nfse and n$hen.

Graph G is built in such a way that if nodes n,- andnj arecommon support compatible then there exists
an edge between gt and gj. An edge may have labels. A label is a set of nodes that expresses the following
requirement: if nodes # and gj are to be merged, then the nodes in the labelalso need to be merged. There
are three types of labels: e, t and / labels. The following two lemmas justify the algorithm by which graph
G is built:

Lemma 4.4 If£{n{) = C(nj) then n, « nj =» (nfae « nf'e AnJAen « nfen).

Proof : By contradiction. Since F is complete, the successors are at the same level. Therefore, by lemma
4.2, nfae 96 nfse =• nfae j> nfae and a minterm mcan be selected in such a way that nfae{m) </> nfae{m)
and mC(ni) = 0. The existence of this minterm shows that n,- ^ nj and therefore that n< 96 nj. Asimilar
argument is true for the then branch. Therefore, nfae 96 nfae Vn\htn 96 nfen => n< 96 nj. D

Lemma 4.5 7/£(nt) < C{nj) then n,- « nj =» (nfae « nj Anjhen « nj Anfae » n|Aen).

Proof: By contradiction. Ifnfae 96 nj then, for any completely specified functions hat level £(nj) or higher
a minterm mcan be selected insuch a way that nf'"(m) ^ h(m) and mc(n,) = 0. This minterm shows that
n,- y- n, thereby showing that n,- 96 nj. Identically for the then branch. If nfae 96 n{Aen then by lemma 4.2
there are minterms wand msuch that nf9t{w) 76 ntihen{w)AwC(ni) = 0and nfae(m) + n\hen{m) AmC(n,) =
1. These minterms can be chosen to differ only in the value ofthe variable X£(n.) and lead to incompatible
terminal nodes. Therefore, n,- cannot be compatible with any function h such that C(h) >= £(nj), thereby
showing that n; 96 nj. •

The previous two lemmas justify the following algorithm to build the compatibility graph.

Algorithm 4.1

1. Initialize G with a complete graph except for edge (gz,g0) that is removed.

2- U£{9i) = £(9j) then the edge between </,• and gj has two labels: an e label with {gfse', gfae) and a t
label with {rffcen,flffen}. (By lemma H)

3. lfC{gi) < C{gj) edge (9i,gj) has an I label with {g?",g\hen,gj}. (By lemma 4.5.)

4. For all pairs ofnodes (gi,gj) check if the edge between nodes gi and gj has a label that contains {gaigb}
and there is no edge between ga and gb- Ifso, remove the edge between gi and gj. Repeat this step until
no more changes take place.

Figure 2 shows an example of the 3TBDD F obtained from / defined by the following sets: /on =
{Oil,111}, /off = {010,110,101} and the corresponding compatibility graph.

The existence of an edge in the incompatibility graph is related with common support compatibility and
with compatibilitybetween pairs of nodes in the following way:

Lemma 4.6 n, %n, =$• 3e Gi?s.t.e = {gt,gj) => nt~nj.

X3

l:{g pg ^ / \ l:{g j.g }

Figure 2: The 3TBDD F and the compatibility graph G. Nodes55 and 5* are not shown on the compatibility
graph, since they are common support compatible with every node in the graph.

Proof : The first implication follows from lemmas 4.4 and 4.5 and the algorithm definition. Given this
lemmas, the algorithm only removes edges that are between nodes that are not CSC. Let us prove the
second implication by contradiction. Now, let / = £(n,) and J = C(nj) and assume that m •/- nj and that
I < J. Then, there exists a minterm m such that ni(m) </> nj(m). Let na,}nai+1...naN+1 be the sequence of
nodes defined by minterm m in the BDD between the level / and JV + 1, starting at n,-. Let nbJ1nbJ+l...nbs+1
be the sequence of nodes defined by minterm m between level J and N+l starting at node nj. Then, because
n0N+1 and nt,N+l are the terminal nodes and there is no edge between them, after k steps, the edge between
node gaN+1_k and node 56w+1_* will havebeen removed because of condition 2. This will happen for k such
that N + 1 —k >= J. For k such that N + 1 —k < J, the edge between gaN+i-k and gbj will have been
removed because of condition 3. •

It is important to note that the reverse implications are not true. In particular, the existence of an edge
between two nodes in G does not imply that they are common support compatible. Consider the 3TBDD
shown in figure 3.

For this 3TBDD the algorithm described above does not remove the edge between nodes go and 55
because there are long range dependencies that can not by found by the simple minded algorithm used to
prune away edges. The edge between go and 55 has the following / label: {55,51,52}-

Figure 3: Nodes no and n$ are not common support compatible but the compatibility graph does have an
edge between the corresponding nodes.

The edge between gi and 55 has the / label {55,54} and the edge between 52 and 55 has the / label
{55.53}- Because n& is compatible with both nz and n^, the edge between 51 and 55 and the edge between
52 and 55 are never removed. Moreover n\ and n2 are compatible. Therefore the edge between 50 and 55 is
never removed. However, no function depending only on the last variable can be compatible with no, and
therefore no and n$ are not common support compatible.

5 Closed Clique Covers

A clique of graph G is a completely connected subgraph of G. To any set s of nodes that is a clique of
G there arc associated class sets. If the nodes in s are to be merged into one, the nodes in its class sets
are also required to be in the same set. Let s,- = {5t,,5i3...5i„} be a set of nodes that form a clique in G.
The following are the definitions of the e, t and / classes of s,\ Notice that for concision we may blur the
distinction between the nodes 5's of G and the corresponding nodes n's of F. Strictly speaking, cliques are
defined on sets of 5's and compatibles on sets of n's.

Definition 5.1 The e class o/s,-, Ce{si) is the set of nodes that are in some e label of an edge between a
node gj and gk in st- with C(nk) = C(nj) = £max(s,).

Definition 5.2 The t class of s,-, Ct(si) is the set of nodes that are in some t label of an edge between a
node gj and gk in Si with C(nk) = C(nj) = Cmax{si).

Definition 5.3 The I class of s,-, C/(s,) is the set of nodes that are in some I label of an edge between a
node gj andgk in s, with C{gj) # C(gk)

Lemma 5.1 If a set s$- of nodes are a clique of G and Ci(si) C s,-, then s,- is a compatible set.

Proof : Let k be the maximum level of any node in s,-. The definition ofG/(s,) implies that Ci{si) includes
all the nodes of s, at level k that are descendents of some node in s,-. Call these nodes the foundation of s,.
Because these nodes are a clique of G (or else they wouldn't be in s,), they are all pairwise compatible, by
lemma 4.6. Because they are at the same level, lemma 4.2 implies that they are pairwise CSC. Therefore,
by the result of lemma 4.3 these nodes are a compatible set. This implies that there exists a completely
specified function h at the level Cmax(si) that is compatible with every node in the foundation of s,-. To
finish the proof, we need to show that this function must be also compatible with every other node in «,.
Toshow this, assume that h is not compatible with some node nj in a,-. Then, there must exist a minterm
m such that nj(m) ^ h(m). This minterm defines a path in the BDD that goes through a node nk in the
foundation of s,-. Since nk(m) </- /t(m), nk and h are not compatible, which violates the assumption that h
is compatible with every node in the foundation of «,-. Therefore h must be compatible with every node in
Si, thereby satisfying definition 4.3. n

Note that a clique ofG that does notsatisfy thecondition inlemma 5.1 isnot necessarily a compatible set.
For instance, in the example in figure 3 the nodes {50,51,52,55} are a clique ofG but are not a compatible
set, because 53 GC/({50,51,52,55}) but 53 g {50,51,52,55}.

The algorithm that selects the minimum BDD compatible with the original function works by selecting
nodes ofG that can be merged into one node in the final BDD. If a set s ofnodes in G is to be merged into
one. the set s has to be a compatible set. Therefore, it has to be a clique of Gsatisfying definition 5.3. The
objective is to find a set of cliques such that every node in G is covered by at least one clique. However, to
obtain a valid solution, some extra conditions need to be imposed.

Definition 5.4 A set S = {si,s2...sn} of sets of nodes in G is called a closed clique cover for G if the
following conditions are satisfied:

1. S covers G : V# GG3sj GS : 5,- € s,

2. All sk are cliques of G : Vgi,gj € sk : (51,5i) € edges(G)

3. S is closed with respect to the e and t labels :
Vs.- € S3sj GS : Ge(st) C Sj A Vs.- GS3Sj GS : C,(st) C Sj

4. Allsets in S are closed with respect to the I labels : Vs,- GS : G/(s,) C «,-

6 Generation of a Minimum BDD

Froma closed clique cover for G, a reduced BDD R is obtained by the following algorithm:

Algorithm 6.1

1. For each s,- »'n S, create a BDD node in R, r<, at level Cmax(si).

2. Let the nodes in R that correspond to sets s,- containing nodes that correspond to terminal nodes in F
be the new corresponding terminal nodes of R.

3. Let the else edge of the node rt- go to the node rj that corresponds to a set Sj such that Ge(s<) C Sj.

4- Let. the then edge of the node r,- go to the node rj that corresponds to a set 8j such that Ct{si) C 8j.

Lemma 6.1 R is an Ordered BDD compatible with F.

Proof : Since the cover is closed, steps 3 and 4 four are always feasible. Any path in F that leads to a 1 or
a 0 will lead to the corresponding terminal node in R. Finally, there will never be edges going upward in R
because the node that results from a set s,- is at the lowest level of all the nodes in £,-. •

Now, the main result follows. Let B be the set of all BDDs that represent functions compatible with the
incompletely specified function /. Then, the following result holds:

Theorem 6.1 The BDD induced by a minimum closed cover for G is the BDD in B with minimum number
of nodes.

Proof : Given the result in lemma 6.1 it is sufficient to prove that there exists at least one closed cover of
cardinality equal to the size of the minimum BDD in B.

Let U be a BDD in B with minimum number of nodes k. For each node in U, «,-, create a set «,- such
that gj is in s,- iff nj ~ «,• and C(nj) < £(«,). Let S = {si,S2...8k}. We will show that S satisfies all the
conditions in definition 5.4:

1. (5 covers G) We show that the assumption that some 5,- at level / is not in some set of S leads to a
contradiction: let m be a minterm that defines a path in F that starts at the root and goes through
»,. Let M be the set of all minterms that have the same values as m for x\...x\-\. Each one of these
minterms will define a path in U that goes through some node Uj in U at a level equal or higher than
/. Since n,- -/• Uj (by the hypothesis) there exists a minterm in' G /W such that Uj(m') •/> ni(m'). For
this minterm m', no(m') <f> uo(in'), thereby contradicting the assumption that U is compatible with
F.

2. (All Si G S are cliques of G) Since each node in s,- is compatible with a completely specified function
(ttj) ihey satisfy definition 4.3 and therefore, by lemma 4.1, they are a clique of G.

3. (5 is closed with respect to the e and t labels) Let tit- be a node in U, ua = ufae and Ub = u\hen. Let
6, = {gj GSi : C(gj) = £max(si)}- For each node gj G6,-, nj ~ u; implies ua ~ nfae and Ub ~ njfcen.
Therefore, Ge(s,) C s„ and Ct[si) C Sb.

4. (S is closed with respect to the / labels) Suppose Gj(s,-) £ st'. Then, there must be a node nw such
that gw Gs,- at level / < £{ui) and g$ae &«i or g^671 £ s,-. Assume the first is true and let n^ae = na;
na is not compatible with «,• (or else it would be in s,) and depends only on the variables {x/+i...xn}.
Therefore, there exists a minterm m such that Ui(m) *f> na(m) and m/ = 0. This minterm shows that
nw rf> Ui which contradicts the hypothesis that gw is in s,-.

Therefore, 5 is a closed clique cover for G and it has cardinality k. •
As an example, S = {{50,51,52}, {54}, {53,55,52}, {50}} is a closed cover for the example depicted in

figure 2 and induces the BDD R shown on the right side of figure 4.

x2

x3

Figure 4: The 3TBDD F, the compatibility graph G and a solution R. Node 55 was arbitrarily included in
compatible {53,52,55}.

7 Formulation of BDD Minimization as FSM Reduction

The definition of a closed cover is very similar to the standard definition of a closed cover used in the
minimization offinite state machines (FSMs). If the graphofa 3TBDD is viewed as the state transitiongraph
of an FSM, the algorithms developed for the minimization of FSMs can be used with some modifications.
The two important differences to consider are:

1. The definitionof the e and t classes and the closurerequirement in point 3 of definition 5.4 are different
from the definitions used in standard FSM minimization. In BDD minimization, only nodes at the
highest level in some compatible define the e and t classes, while in standard FSM minimization all
nodes in a compatible set are involved in the definition of these classes.

2. The requirement in point 4 of definition 5.4 means that some sets of nodes that satisfy the definition
of a compatible set in the FSM case do not satisfy the conditions for BDD minimization.

These two changes can be incorporated intoexisting algorithms forFSM minimization. In particular, the
closure conditions with respect to the e and t labels aresimilar to the closure conditions imposed in standard
FSM minimization. The restriction imposed by condition 4 in definition 5.4 simply eliminates some cliques
of the compatibility graph from consideration and can be implemented by a filtering step.

Let F be the 3TBDD that should be minimized, and consider the FSM with a state transition graph
(STG) obtained from F in the following way:

• Initialize the STG with a graph isomorphic to the 3TBDD, with nodes So, S'i,..., S0, S<, Sr each one
corresponding to one node in F.

• Add a new node, Sj.

• Add transitions from Sz, S0 and Sx to S/, labeled -/0, -/l and -/-, respectively.

• Add a transition from S/ to Sj labeled —/—.

As an example, consider the FSM obtained from the 3TBDD in figure 2, shown in figure 5.
This transformation leads to our final important result. Let M be the incompletely specified FSM with

the state transition graph obtained from F by the procedure outlined above and let G' be the compatibility
graph for this finite state machine built in the following way:

• There is an edge between nodes g\ and g'j in G' ifstates n< and n'j are compatible, in the FSM reduction
sense.

• Edges of G' are labeled in accordance with algorithm 4.1

10

Figure 5: The STG that corresponds to the 3TBDD F defined in figure 2.

Note that the structure of graph G' reflects the compatibility between states of M defined as for FSM
reduction. Therefore, G' can be computed using the standard procedures for FSM minimization. However,
this means that G' is not isomorphic to G, defined by algorithm 4.1. In particular, any two nodes that are
at different levels in G' are compatible for FSM reduction, and so G' always has an edge between g\ and g'j
if C(g[) -I1 £{9j)> and therefore the second implication in lemma 4.6 is not true, in general.

The following lemma establishes that the cliques of G and the cliques of G' that arc closed with respect
to the / class are exactly the same.

Lemma 7.1 A set. .<;(• = {g'ax ...g'ak] is a clique ofG' satisfying C/(*J) C .<?{• iff .s,- = {gai .. .gak) is a clique
ofG satisfying Ci(si) C s,-.

Proof : Since the edges of G' are a superset of the edges of G and the labels are the same, is is clear that
to any clique ofG containing Ci(si) there corresponds a clique of G' satisfying that condition. To prove the
other direction, note that for any two nodes in G' at the same level, the presence of an edge in G' implies
that they are compatible, both in the sense of FSM reduction and according to definition 4.1. Therefore, the
rightmost implication of lemma 4.6 is valid for nodes that are at the same level. The proof of lemma 5.1 only
uses this implication for nodes at the same level, namely the nodes in the foundation of s,- defined in that
lemma. Therefore, lemma 5.1 is still true if G is replaced by G' implying that any set sj in G' that satisfies
G/(sj) C s'i corresponds to a compatible of G', according to definition 4.3. Therefore, the corresponding set
8{ in G is a clique. Because the labels are the same for any edges common to both G and G', Ci{si) C s,-.

Corollary 7.1 A minimum closed cover for M satisfying definition 5.4 when G is replaced by G' induces a
minimum BDD compatible with F, in accordance with theorem 6.1.

Proof: Since the compatibles that can be part of the cover are the same in both G' and G, this result follows
directly from theorem 6.1.

11

8 Implicit Computation of a Minimum Closed Cover

We will use the unified implicit framework proposed in [9] 2. Implicit techniques are basedon the idea ofop
erating on discrete sets by their characteristic functions represented by binary decision diagrams (BDDs) [4].

To perform state minimization, one needs to represent and manipulate efficiently sets of sets of states.
With n states, each subset of states is represented in positional-set form, usinga set of n Boolean variables,
x —x\Xi.. .xn. The presence of a state sk in the set is denoted by the fact that variable xk takes the value
1 in the positional-set, whereas xk takes the value 0 if state sk is not a member of the set. For example, if
n = 6, the set with a single state S4 is represented by 000100 while the set of states 82S3S5 is represented by
011010.

A set of sets of states S is represented in positional notation by a characteristic function xs '• Bn -*• B
as: xs{x) = 1 if and only if the set of states represented by the positional-set z is in the set S. A BDD
representing xs{x) will contain minterms, each corresponding to a stateset in S. As an example, Tuplen,k(x)
denotes all positional-sets x with exactly k states in them (i.e. |x| = k). For instance, the set of singleton
states is Tuple„ti{x), the set ofstate pairs isTuplen>2{x), theset offull states isTtipfen>n(z), and theset of
empty states is Tuplenio{x). An alternative notation for TupleUik(x) is Tuplek(x).

Any relation R between pairs of sets Si and S2 can be represented by its characteristic function U :
Bn x Bm -» B where K(x,y) = 1 if and only if XsAx) = 1, Xs3(y) = 1 and the element of Si represented
by x is in relation R with the element of S2 represented by y. A similardefinition holdsfor relations defined
over more than two sets. For example, we represent the state transition graph (STG) of an FSM by the
characteristic functions of two relations:

1. the output relation A, where input i, present statep and output o are in A(t,p,o) if there is an edge
from p with input/output label i/o, and

2. the next state relation T, where where input i, present state pand next staten are in relation T(i,p, n)
if there is an edge from p to n with input label i.

Proposition 8.1 Set equality, containment and strict-containment between two positional-sets x and
yare expressed by: {x = y) =JlLiO** *> Uk); (* 2 v) =IEUfo => xk); and {x Dy) = (z Dy) -{x ±y).
Proposition8.2 Given two sets ofpositional-sets, complementation, union, intersection can be per
formed on them as logical operations (-1, +, •) on their characteristic functions.

Definition 8.1 The substitution in the function T ofvariable z,- with variable y,- is denoted by:

[xi --> yi\F = T{xx,..., z,-_ 1. y{, x,+i,..., xn)

and the substitution in the function T of a set of variables x = xxx2...xn with another set of variables
V= y\ 3/2 •• •2/n is obtained simply by:

[x -• y\T- [zi -• yi][x2 -+ y2] -.. [xn -• yn]?

Proposition8.3 The maximal ofaset x ofsubsets is the set containing subsets in x not strictly contained
by any other subset in x, and can be computed as:

Maximalx(x) = x{x)- £y [(y D x) •x(y)].

8.1 Implicit Generation of Compatibles

It has been shown inSection 7 thatgiven a BDD minimization problem it is possible togenerate a companion
FSM whose closed covers ofcompatibles correspond to closed clique covers of the BDD, if:

• FSM compatibles that do not satisfy the L-closure are discarded, and

23x(F) (Vx(^")) denotes the existential (universal) quantification offunction T over variables x; => denotes Boolean impli
cation; O denotes XNOR; -1 denotes NOT.

12

• FSM compatible closure is replaced by E-closure and T-closure.

Our starting point is the fully implicit algorithm for exact state minimization reported in [9], to which we
refer for a complete description of the implicit computations. In the sequel we discuss the modifications
needed to generate closed clique covers of the BDD.

8.2 Implicit Computation of L-closure

We compute as in [9] the set of compatibles C(c), where C(c) = 1 iff c is the positional set representing
a compatible of the companion FSM. When minimizing an FSM obtained from an instance of BDD mini
mization one must delete from C(c) the compatibles c that are not closed with respect to their /-class. The
/-class, Ci(c), ofa compatible c is the set ofnodes that are insome /-label ofanedge between nodes gj and
gk in c with £{gj) < C{gk). If£{gj) < £(gk) then edge (gjlgk) has the /-label {gf'e, g$hen, gk}.

£o(p) = r{p)
k = 0

do{
£k+\(p) = [n-»p]3p,« [£k{p)T(i,p, »)]
k = k + 1

} until £k+i{p)-= Ck{p)

Figure 6: Computation of array £.

It is shown next how to capture the information on the level of the nodes. By construction, an FSM
obtained by BDD minimization is represented by a direct acyclic STG rooted at the unique reset state r;
each node has two successors, except the terminal node that has a self-loop. Fig. 6 illustrates a procedure
to build an array £{p), that partitions the FSM states based on their distance from the root: Ck(p) is the
set of states associated to the nodes having a distance k from r. Starting from r and visiting in breadth-first
order the STG, one computes iterativeiy the array elements Ck(p), using the transition relation 7~(i, p, n).
In fact, state n is a successor of state p iff 3i T(i,p,n).

Using the informations stored in C(p), one defines the order relation Level(p,u), for each couple of states
{p,u) in the FSM. States p and u are in relation Level(p,u) iff the distance of p from r is less than the
distance of u from r, i.e. formally

Level(p, u) = 1 & 3t 3j {{i < j)\d(p) •Cj{u)}

Fig. 7 illustrates the procedure to compute the global relation Levcl(p, u).
A compatible c is pruned from the set of compatibles C(c) if:

1. c contains states p and u that arc in the order relation Level(p, u),

2. c does not contain all the successors of p.

Hence, the filtered set of compatibles is given by:

C{c) = C{c) - 3p {3« [TupleY{p) -Tuplex(u) •{cDp) • (cD u) - Level{p, u)]
3n[3iT(i,p,n).(c2n)]}

8.3 Implicit Computation of E-closure and T-closure

(1)

(2)

In standard FSM minimization one requires closure with respect to implied sets. Given a compatible c an
implied set under input i is the set of next states from the states in c under i. Instead in the case of BDD
minimization one must compute the implied sets only from the states in c of highest level. This requires a
change in the computation of the relation of the implied classes T{c,i,n), which is used by the following
procedures:

13

Level(p, u) = 0
for (t = 0;i<Ar;» + +) {

for each state Tuplei(p) £ A(p) {
for {j = i\j <k)j + +) {

for each state Tuple\(«) €
Leue/(p, u) = Level(p,

}
}

}
}

(W^p)£j(p)){
uJ + ^up/e^pJ-Tup/e^u))

Figure 7: Computation of the relation Level(p, u).

1. the computation of primes,

2. the set up of the binate clauses in the covering table,

3. the construction of a reduced FSM.

The new computation for T{c,i, n) is described by the following equation:

T{c,i,n) = 3p{3c'[C{c).Max-Level(c,c')(c'Dp)].T(i,p,n)} (3)

Subsets ofstates c and c' are in relation MaxJjevel{c,cf), iff c' is the subset of c that contains the states
of c of maximum level, i.e. the states having the largest distance from r in the STG of the FSM.

Max.Level (c, c') = 0
Cj(c) = C(c)
(or(j = k-l;j = 0,j--){

N N

M£j(c,c') = Cj(c) •3![£j(l) •£(/n -cn)) []K <* [c» •3/(/„ •Lj(l))]}
n-l n = l

Max.Level(c, c') = M«z .Level(c, c')+ A^£j(c, c')
Cj(c) = Ci(c)-3c'[^£J(c,c')]

Figure 8: Computation of the relation C(c).Maz_Leve/(c,c/).

The computation of the relation C(c).Afaz_£eve/(c,c') is based on the availability of £(p) and is sum
marized in Fig. 8. For each level j starting from the maximum to the minimum, a relation Af£J(c,c/) is
determined performing N bitwise conjunctions, where N is the number of states. The n-th element of c' is
1 iff the n-th element of c is 1 and it has level j. M£j{c,cf) represents the pairs (c,c') such that c is a
compatible that contains at least one state at level,;' and nostate at level greater than j, and c' has exactly
the states ofc of level j. Before examining level j - 1, MaxJjevel{c,c') is updated adding the elements in
M£j(c,c'), and the sets c already in M£j{c,c') are removed from C{c). Notice that the time complexity of
the computation depends only linearly from the explicit parameters N, number ofstates, and Ar, number of
levels in the STG representation.

14

8.4 Example

Figure 5 illustrates the companion KSM obtained from the 3TBDD F shown in figure 2. The FSM has 2
pairs of incompatible states ({53,54}, {$\ ,S0}) while its set C{c) contains 575 compatibles. After filtering
away by means of equation 2 the compatibles c that arc not closed with respect to their /-class, 32 sets of
compatibles are left:

{MJs0},{So,Sd},{s*MSz,Sd},{£j^
{5s,Sx},{S$,SX}Sz},{55,Sx,SZiSd), {55,Sx,50}, {5s,Sx,Sd},{5s,Sx,S0,Sd},{S*}, {5*,5s},{53},
{53, SX,SZ}, {Sz,SXtSz,Sd), {Sz, 55}, {53, Ss,Sx,Sz}, {Sz, 5s,Sx,Sz,Sd}, {S2}, {Si}, {Si, S2},
{Si, 54,55}, {So}, {So,Si, S2}.

Using the computation of the implied classes T(c, i, n) of equation 3 the following 8 primes are identified
from the previous 32 compatibles:
{So}, {So, Si, S2},{Si}, {Si, S4, Ss}, {S2}, {Sz, S5, Sx, Sz,Sd}, {S4}, {5s, Sx, S0, Sd}.
Among the 8 primes, there are 2 essential primes:
{53, Ss,Sx,Sz, Sd}, {5g, SX,S0, Sd}
and 6 nonessential primes:
{So}, {So, Si, S2}, {Si}, {Si, S4,S5}, {S2}, {S4}.
After solving the binate covering problem, 2 nonessential primes are chosen:
{5o,5i, 52},{5i,54,55}.
Hence, the final reduced FSM has the following 4 states:

Ro «- {5o,5i,52}
Ri <— {51,54,5s}
Rz *- {Sz,Ss,Sx,Sz,Sd}
R0 <- {55, Sx, S0,Sd}

and is described by the following state transition table:

0 R0RZ -

1 RoR\ —

0 RXR, -

1 RqR0 —

- RzRz 0

— R0Ro 1

This state transition table induces the BDD R shown on the right side of figure 4. R is an exact solution of
the BDD minimization problem.

9 Results

Starting from the program ism for implicit state minimization [9] we developed imagbm, a new program
based on the theory described in this paper for exact BDD minimization. In particular, we transformed
the implicit algorithm for exact state minimization in a new algorithm for the implicit computation of a
minimum closed cover as described in Section 8.

To evaluate experimentally the algorithms presented in this paper, we assembled two sets of problems:
the first set derives directly from a machine learning application and the second set was obtained from a logic
synthesis benchmark. In all the problems, the original ordering specified for the variables was the ordering
used.

For the first set of problems, 12 completely specified Boolean functions /< were used as the starting point.
For each of these functions, a randomly selected set of minterms was designated as the care set, resulting
in a set of incompletely specified Boolean functions </,-. The original objective was to identify the set of

15

1MAGEM

example orig. compat. filtered prime red. heuristic CPU time

states compat. compat. states (sec)

dnfa 64 2.435821e+12 1332186 89 14 16 1388.9

dnfb 36 4.853883e+08 2987 94 6 12 28.98

dnfc 40 2.291224e+08 2613 102 10 15 33.43

dnfd 93 1.137739e+20 9.517899e+08 - - 23 timeout

dnfe 63 2.102303e+13 141179 509 6 12 559.88

dnff 62 2.184367e+ll 92027 357 15. 22 389.3

xor3 9 179 14 7 6 6 0.28

xor4 17 14975 118 13 6 6 1.18

xor5 24 608255 267 36 9 10 3.73

xor6 40 3.355914e+08 1329 170 13 20 34.89

xor7 57 2.791115e+ll 3076 640 15 31 208.38

xor8 94 1.539147e+17 164929 21830 17 45 25751.51

ex.paper 10 575 32 8 4 4 0.32

Table 1: Results on Machine Learning Problems.

problems for which it is possible to recover exactly the original functions /,- from the incompletely specified
functions gi, thereby characterizing the conditions under which it is possible to infer the original function
from a trainingset [12]. Forthe purposes of this work, the functions gi are used solely as a set of incompletely
specified functions. An advantage that exists for this set is that upper bounds on the size of the solution
are well defined, because the BDDsizes for the /< are known. Under certain conditions, these upper bounds
tend to become tight, with high probability, as the size of the problem increases, providing a welcome check
for the results obtained.

The second set of problems wasobtained by selecting a subset of the problems that are distributed with
Espresso [3], a well known two-level minimizer. More specifically, we included in this set of problems the
functions that are the first output from each of the PLAs that are included in the industry subset of the
Espresso benchmark suite. From this set, we eliminated all the functions thai have a null don't care set.
since, for these functions, the problem is trivial.

Table 1 summarizes the results obtained from running the set of machine learning problems and Table 2
the ones from the problems derived from the Espresso benchmark suite. The last entry in table 1 is denoted
ex.paper and simply refers to the case that has been presented in the paper to illustrate the theory.

For each example of a 3TBDD the number of states of the companion FSM is reported in the column
denoted "# orig. states". This number is always equal to the number of nodes of the 3TBDD plus one
because a new node is added to the STG as explained in Section 7. The following two columns report the
number of compatibles of the FSM (i.e. the cardinality of the set C{c)) and the number ofcompatibles after
filtering as per Section 8.2 (i.e. the ones which are closed with respect to their /-class). This step reduces
the number of compatibles of many orders of magnitude.

Then, after the numberof primes, in column "# red. states" we report the numberofstates of the reduced
FSM. This number coincides with the number of nodes of the final BDD and represents the exact solution
of the BDD minimization problem. Instead, the column denoted with the label "heuristic" presents the
solutions obtained using the restrict operator [7], a well-known heuristic algorithm for BDD minimization;
equal solutions are obtained using the constrain operator [6] (also known as generalized cofactor [19]) 3.
Therefore, imagem is the first exact algorithm that helps to evaluate the quality of the heuristics for BDD
minimization on an interesting set of examples.

Moreover, as we discussed in Section 1, there are specific applications, as for instance inductive learning,
where from oneside BDD's are used as very effective representation scheme, but on the other side heuristic

Notice that the sizesof the BDDobtained by the heuristicalgorithms havebeenmeasured withoutconsideringcomplemented
edges.

16

IMAGEM

example orig. compat. filtered prime red. heuristic CPU time

states • compat. compat. states (sec)
alul 95 1.025649e+21 841993 1204 6 6 20887.33

brl 74 2.99581e+18 799173 329 6 11 3759.63

br2 51 5.937363e+14 53687 78 3 8 38.72

clpl 50 1.467671e+13 7559 39 3 13 32.07
dc2 46 8.277148e+10 8831 98 8 12 149.43

exp 54 2.695432e+ll 10638 25 3 3 85.08
exps 71 1.8345e+10 3810 125 43 44 120.49
inO 151 2.622416e+25 1680740 1323 42 44 53036.33
in3 173 5.060229e+39 587880 12 9 14 4623.66
inc 35 1.119744e+07 364 26 12 13 9.88
intb 189 4.884137e+46 3.891123e+14 - - 69 spaceout

markl 71 7.487812e+18 8049 35 4 5 106.6
newapla 52 1.24299e+12 3252 33 10 11 107.1
newaplai 57 8.766887e+14 8733 63 6 6 360.27
newapla2 19 93311 137 6 5 5 1.29
newbytc 16 20735 127 9 5 5 1.05
newcond 165 3.825623e+31 7.484552e+12 - - 54 spaceout
newcpla2 39 3.396557e+08 477 68 10 21 14.57
newcwp 16 10367 106 10 6 11 1.01
newtpla 94 1.265561e+23 411525 148 7 23 731.99

newtplal 39 6.912e+09 1441 31 4 5 11.34
newtpla2 26 3149279 158 9 9 9 2.4

newxcplal 39 4.470682e+09 1473 35 5 10 13.1
p82 16 15551 102 10 7 7 1.01

proml 65 5.189184e+09 382 77 50 50 76.53
prom2 33 2.17728e+08 446 38 12 12 8.55

sex 28 1.679616e+07 419 16 5 5 4.13
spla 155 1.647427e+39 1.401835e+12 - _ 8 timeout
sqn 41 1.05336e+07 173 43 19 19 23.39
t4 68 5.108787e+14 31775 157 9 11 234.43

vg2 150 3.655064e+36 4.038678e+07 - _ 14 timeout
wim 14 4319 82 8 6 6 0.68

Table 2: Results on problems from Espresso benchmark suite

17

algorithms return unsatisfactory solutions. The results reported in table 1 show that imagem returns the
exact solution for a class of non trivial problems.

The last column contains the time spent by imagem to find the solution: all run times are reported in
CPU seconds on a DEC Alpha with 1Gb of memory. For all experiments, "timeout" has been set at 86400
seconds of CPU time and "spaceout" at 1Gbof memory.

10 Conclusions

This paper addresses the problem of binary decision diagram (BDD) minimization in the presence ofdon't
care sets. Specifically, given an incompletely specified function g and a fixed ordering of the variables, we
propose an exact algorithm for selecting / such that / is a cover for g and the binary decision diagram
for / is of minimum size. We show that the minimum-sized binary decision diagram compatible with the
specification can be found by solving a problem that is very similar to the problem of reducing an ISFSM.
The approach described is the only known exact algorithm for this problem not based on the enumeration
of the assignments to the points in the don't care set.

We show that this minimization problem can be formulated as a binate covering problem and solved
using implicit enumeration techniques. We have implemented this algorithm and performed experiments, by
means of which exact solutions for an interesting benchmark set were computed. In particular we could solve
exactly some non-trivial examples from the learning literature, where quality of the solution is of paramount
importance.

The current bottleneck of our implicit computation is the step from filtered compatibles to prime com
patibles. It would be interesting to study new techniques for the implicit computation of prime compatibles
or of a superset of them, in order to enlarge the set of examples that can be solved exactly.

11 Acknowledgments

The authors thank Timothy Kam for very interesting discussions on the reduction of BDD minimization to
FSM state minimization.

References

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's razor. Inform. Proc. Lett.,
24:377-380, April 1987.

[2] K. Brace, R. Rudcll, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings
of the Design Automation Conference, pages 40-45, June 1990.

[3] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[4] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE Transactions on
Computers, pages C-35(8):667-691,1986.

[5] S.-C. Chang, D.I. Cheng, and M. Marek-Sadowska. Minimizing ROBDD size of incompletely specified
multiple output functions. In The Proceedings of the European Design and Test Conference, pages
620-624, March 1994.

[6] O. Coudert, C. Berthet, and J. C. Madre. Verification ofsequential machines using functional Boolean
vectors. Proceedings of the IFIP International Workshop, Applied Formal Methods for Correct VLSI
Design, November 1989.

[7] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines based on
symbolic execution. Proceedings of the Workshop on Automatic Verification Methods for Finite State
Systems, vol. 407 of Lecture Notes in Computer Science, pages 365-373, June 1989.

18

[8] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely
specified sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June
1965.

[9] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit algorithm for exact state
minimization. In The Proceedings of the Design Automation Conference, pages 684-690, June 1994.

[10] L. Lavagno, P. McGeer, A. Saldanha, and A. L. Sangiovanni-Vincentelli. Timed Shannon Circuits:
A Power-Efficient Design Style and Synthesis Tool. In Proceedings of the Z2th Design Automation
Conference, pages 254-260, June 1995.

[11] Cristoph Meinel. Modified Branching Programs and Their Computational Power. Springer-Verlag, 1989.

[12] Arlindo L. Oliveira. Inductive Learning by Selection of Minimal ComplexityRepresentations. PhD thesis,
University of California, Berkeley, Electronics Research Laboratory, College of Engineering, University
of California, Berkeley, CA 94720, December 1994. Memorandum No. UCB/ERL M94/97.

[13] Arlindo L. Oliveira and Stephen A. Edwards. Inference of state machines from examples of behavior.
Technical report, UCB/ERL Technical Report M95/12, Berkeley, CA, 1995.

[14] C.P. Pfleeger. State reduction in incompletely specified finite state machines. IEEE Transactions on
Computers, pages 1099-1102, October 1973.

[15] L. Pitt and M. Warmuth. The minimum consistent DFA problem cannot be approximated within any
polynomial. J. ACM, 40(1):95-142,1993.

[16] T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. Brayton. Heuristic minimization of BDDs using
don't cares. In The Proceedings of the Design Automation Conference, pages 225-231, June 1994.

[17] R. Ranjan T. Shiple. R. Hojati. Exact minimization of BDDs using don't cares. EE2901s Project Report,
May 1993.

[18] Yasuhiko Takcnaga and Shuzo Yajima. NP-completeness of minimum binary decision diagram iden
tification. Technical Report COMP 92-99, Institute of Electronics, Information and Communication
Engineers (of Japan), March 1993.

[19] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using BDD's. The Proceedings of the International Conferena on Computer-
Aided Design, pages 130-133, November 1990.

19

	Copyright notice 1996
	ERL-96-16

