Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THEORY AND IMPLEMENTATION OF NUMERICAL
METHODS BASED ON RUNGE-KUTTA INTEGRATION
FOR SOLVING OPTIMAL CONTROL PROBLEMS

by

Adam Lowell Schwartz

Memorandum No. UCB/ERL M96/18

12 April 1996

THEORY AND IMPLEMENTATION OF NUMERICAL
METHODS BASED ON RUNGE-KUTTA INTEGRATION
FOR SOLVING OPTIMAL CONTROL PROBLEMS

by

Adam Lowell Schwartz

Memorandum No. UCB/ERL M96/18

12 April 1996

THEORY AND IMPLEMENTATION OF NUMERICAL
METHODS BASED ON RUNGE-KUTTA INTEGRATION
FOR SOLVING OPTIMAL CONTROL PROBLEMS

Copyright © 1996
by

Adam Lowell Schwartz

Memorandum No. UCB/ERL M96/18

12 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

THEORY AND IMPLEMENTATION OF NUMERICAL
METHODS BASED ON RUNGE-KUTTA INTEGRATION
FOR SOLVING OPTIMAL CONTROL PROBLEMS

Copyright © 1996
by

Adam Lowell Schwartz

Memorandum No. UCB/ERL M96/18

12 April 1996

ELECTRONICS RESEARCH LABORATORY

| College of Engineering
University of California, Berkeley
94720

Abstract

THEORY AND IMPLEMENTATION OF NUMERICAL METHODS BASED
ON RUNGE-KUTTA INTEGRATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

by
Adam Lowell Schwartz

Doctor of Philosophy in Electrical Engineering
University of California at Berkeley
Professor Elijah Polak, Chair

This dissertation presents theory and implementations of numerical methods for accurately
and efficiently solving optimal control problems. The methods we consider are based on solving
a sequence of discrete-time optimal control problems obtained using explicit, fixed step-size
Runge-Kutta integration and finite-dimensional B-spline control parameterizations to discretize
the optimal control problem under consideration. Other discretization methods such as Euler’s
method, collocation techniques, or numerical implementations, usinglvariable step-size numerical
integration, of specialized optimal control algorithms are less accurate and efficient than dis-
cretization by explicit, fixed step-size Runge-Kutta for many problems. This work presents the
first theoretical foundation for Runge-Kutta discretization. The theory provides conditions on the
Runge-Kutta parameters that ensure that the discrete-time optimal control problems are consistent

approximations to the original problem.

Additionally, we derive a number of results which help in the efficient numerical implemen-
tation of this theory. These include methods for refining the discretization mesh, formulas for
computing estimates of integration errors and errors of numerical solutions obtained for optimal
control problems, and a method for dealing with oscillations that arise in the numerical solution
of singular optimal control problems. These results are of great practical importance in solving

optimal control problems.

We also present, and prove convergence results for, a family of numerical optimization algo-
rithms for solving a class of optimization problems that arise from the discretization of optimal
control problems with control bounds. This family of algorithms is based upon a projection oper-
ator and a decomposition of search directions into two parts: one part for the unconstrained sub-

space and another for the constrained subspace. This decomposition allows the correct active

constraint set to be rapidly identified and the rate of convergence properties associated with an
appropriate unconstrained search direction, such as those produced by a limited memory quasi-
Newton or conjugate-gradient method, to be realized for the constrained problem. The algorithm

.is extremely efficient and can readily solve problems involving thousands of decision variables.

The theory we have developed provides the foundation for our software package RIOTS.
This is a group of programs and utilities, written mostly in C and designed as a toolbox for Mat-
lab, that provides an interactive environment for solving a very'broad class of optimal control
problems. A manual describing the use and operation of RIOTS is included in this dissertation.
We believe RIOTS to be one of the most accurate and efficient programs currently available for
solving optimal control problems.

Profes??{ijah Polak
Dissertation Committee Chair

For Mom and Dad

We are generally the better persuaded by the reasons we dis-
cover ourselves than by those given to us by others.
— Marcel Proust

You never work so hard as when you’re not being paid for it.
— George Bumns

There are three types of people in this world: ,
Those that are good at math—and those that aren’t.

Acknowledgments

The work in this thesis would not have been possible without the invaluable discussions I
have had with several individuals. These individuals, all of whom were very generous with their
time, include Prof. Dimitri Bertsekas, Dr. John Betts, Prof. Larry Biegler, Prof. Carl de Boor,
Prof. Asen Dontchev, Prof. Joseph Dunn, Prof. Roger Fletcher, Prof. William Hager, Dr. Craig
Lawrence, Prof. Roger Sargent, Prof. Michael Saunders, Dr. Oskar Von Stryk, Prof. André Tits,
Dr. Stephen Wright and the helpful engineers at the Mathworks. Also, for sharing with me their
programming expertise, I wish to thank my fellow graduate students Steve Burgett and Raja
Kadiyala. Two other fellow graduate students, Neil Getz and Shahram Shahruz, deserve mention
for the enjoyable time I spent with them discussing and formulating ideas. Thanks also go to
Prof. Ron Fearing for keeping me employed as an instructor for Signals and Systems.

For the gritty details of administration, the Cory Hall staff, particularly Dianna Bolt, Mary
Bymes, Chris Colbert, Tito Gatchalian, Heather Levien, Flora Oviedo, and Mary Stewart enor-
mously simplified my life at Berkeley. There is no overstating the importance of their help.

I would like to reserve special acknowledgment for: Carlos Kirjner (my officemate with
whom I spent most of my hours) for answering questions on topics ranging from functional anal-
ysis to topology to optimization; Prof. Shankar Sastry who provided access to the computer
equipment I used for developing my software as well as encouragement and a willingness to
become involved in a subject that is removed from his usual area of interest; Prof. James Demmel
who sparked my interest in numerical integration and is responsible for my understanding of
numerical integration methods; Prof. Andrew Packard, a colleague whose approach to academia
is refreshing and stimulating—I have thouroughly enjoyed knowing and working with Andy; and
most importantly, my advisor and mentor, Prof. Polak. The work described in this thesis is the
result of my collaboration with Prof. Polak and any signs of excellence that may be contained
herein are due to the high level of quality that he demanded of me. His insistence on perfection
was relentless and often painful. But his commitment to quality will serve as a guide for the rest
of my life. 1am grateful for his deep involvement in my work.

Finally, I am glad to mention the people in my personal life that made the endless hours of
work on this dissertation tolerable. These are my parents Stan and Helene, my brother John and
his wife Carrie (and their brand-new daughter Rebecca), my sister Melissa, my grandparents Ben-
jamin, Francis, Nathan, Pauline and Lillian, my pseudo-aunt Joann Lombardo, my various house-
mates over the years Mitch Berkson, Michael Cohn, John and Tomoko Ferguson, Scott Shenk,
Dan Vassilovski, Colin Weeks, and my good friends Lawrence Candell, John Georges, Gary and
Laura Grunbaum, Ealon Joelson, Alan Sbarra, and Jeff Steinhauer. I make special mention of my
beautiful girlfriend Jessica Daniels who has been very patient, encouraging and loving. The sup-
port, in every form, provided to me by these people was indispensable.

b :l
T oz

RI I =
Z

<'a'>}{
Uy

Van
Wan

SN.p

Tk.i

ulzy,l
Dy(n; h)
dz f(n)

dg f(u)

F(x , w)

vi

Notation

Spaces and Elements

Euclidean n-space
Cartesian product of r copies of R"”

(Leol0, 13,5 degproy - epo)
finite dimensional subspace of

L% ,[0,1},i=1,2

time samples of elements in LYy,
i=1,2

LY < L}, p-th order spline sub-
space

spline coefficients of elements in

R" x L3'[0,1]

R" x L7 ,[0,1] € H,
R" x LY or R” x L%,
Hy € H,,»

R"x Ly or R"x L3
(L_lk'l,...,ﬁk,,-) e R"x-.-xR"
(L_lo,...,ﬁN_l) € EN
n=(¢,u)e H,,

nv =, uy) € Hy
=) eHly
(a,,...,aN.,.p_l) € [4(,5,)

Functions

inner product in Hilbert space #
norm in Hilbert space #
Van:Ly > Ly, i=1,2

WA.N N HN g]'-]N,

WA n((&,w) = (£, Van)

SN.p N LS\‘,’) - I:(,f)

t, +ciA

value of control sample at 7 ;
directional derivative

derivative of f(7) with respect to
the components of it = V ,(u)
derivative of f(u) with respect to the
components of & = Sy ,(u)

Right hand side of difference equa-
tion produced by RK discretization

Sets

B c L7 ,[0,1] is the set on which
all differential operators are defined.
{0,1,2,...}
(d")32,
{0,1,2,...,N-1}
column vector of ones.
{(veR"IW-v,<6}
{1,....,q9)
ty= {1} ’1‘v=-01 is the discretization
mesh, or ...
ty = {14 },I:':_’::, is a spline knot
sequence
Runge-Kutta parameters
A =[c ADb]
I'={i,iy...,i,}

= {ile¢Ci,j<i}
Ij= {ilC,'=C,').,l.j € l}

Constraint Sets

pointwise control constraint set

set of feasible controls
iely =i, el
Uy =Valv@y) © L2
R"xU c Hoo.z

R" x ﬁN cC HN

R" x Vv (On)

UW={uelflaeU)

Differential and Difference Equations

x7(t)

=i
Xk

=NN

solution at time ¢ of differential
equation given 77 = (&, u): initial
condition £ and control input u
solution at time step & of
difference equation, resulting from
RK discretization, for 7 = (£, &):
initial condition £ and control
samples i

XM = x] with 71 = Wy y(ny)

Table of Contents

ACKNOWLEDGEMENTS
NOTATION

CHAPTER 1: Introduction
1.1 Numerical Methods for Solving Optimal Control Problemsc..ceecuerene.e
1.2 Contributions to the State-of-the-Artc.cccccevrenrnrinvenenennrererereerereeerenns
1.3 Dissertation QUthNeccoocevrirrniicnenceicrininesesessessestesesessessseeerssssessensens

CHAPTER 2: Consistent Approximations Based on Runge-Kutta Integration

2.1 INPOQUCTION ..ottt ettt se s et e ebes
2.2 Theory of Consistent APPrOXiMAatioNScceerrveeerreresrenmreeseseeseressesesessssennses
2.2.1 Overview of construction of consistent approximationsceceeue..
2.3 Definition of Optimal Control Problemccccccevvireniinnneennsniennnrreieereenens
2.4 Approximating Problemscccoceevieenienninininienininienienensentriesieseesssssessssessens
2.4.1 Finite Dimensional Initial-State-Control Subspacesc.ccccecvvveeereernnns
2.42 Definition of Approximating Problemsccceecerierererrenrerenrersnerernenss
2.4.3 EPICONVEIZENCEocueenirieiereececrcresrereeseeneeseesesessesessesssssassessssesessensane
2.4.4 Factors in Selecting the Control Representationccccvvveenvvicerenenn.
2.5 Optimality Functions for the Approximating Problemsccccceveeveverrirvcnennens
2.5.1 Computing Gradientsccceeeevreninieiiiniinenniineencereessssesesessesssessenseens
2.5.2 Consistency of APPrOXimationscccceceeeeeererseesresesseeseessessenseens .
2.6 Coordinate Transformations and Numerical Resultscccocceveenveeinveniernens
2.7 Approximating Problems Based on Splinescooceveervcnieenccnseennenencnenenns
2.7.1 Implementation of Spline Coordinate Transformationccocccveueenn.
2.8 Concluding Remarksccoccrivininieniniccniiniiieiinnicsonesiosnnssesseessesasssessenseenne

CHAPTER 3: Projected Descent Method for Problems with Simple Bounds
3.1 INFOAUCHION oottt r et s sr e s et estaeassnresnassaesrsassarennnssns
3.2 Algorithm Model for Minimization Subject to Simple Boundscccueueuen.
3.3 Computational ResSuUltScccccoivvievieviniinnenienieinenieesrenieseseeseesseesssssenssessseesssesses

34 Concluding Remarkscccocoviirvirvnveineniiniennienreeniesseesesssessuessssessessasssassssanssesses

10
13
16
20
20
29
33
36

38
41
48
53
67
70

71
74
90
94

vii

CHAPTER 4: Numerical Issues

4.1 INIrOQUCHION ..coueiiiiiireeieeteee et e et csaeer s et se e r e ssesaesbe e s assbaessae st esasenn 96
4.2 Integration Order and Spline Order Selectioncccoveiviniiniinicinecnecnen. 98
4.2.1 Solution error for unconstrained problemc..cccervinncniniinnnncnn, 99
422 Constrained Problemsccccvvrviinniinininieccnieccsneeennrsaeeseesnesseseesaees 103
4.3 Integration Error and Mesh Redistributionc.cccovnncnnnincniencnenneenennnenes 109
4.3.1 Computing the local integration €ITOrccceveereerccmrenenresericeesennene 110
4.3.2 Strategies for mesh refin€mentcoocecvveeicircneienericrnneneneseeiessensenens 112
4.4 Estimation of SOIution EITOTcccciiiiinniinnincnnccincctnrresneescseeeseeseensessseses 120
4.5 Singular Control Problems (Piecewise Derivative Variation of the Control) 129
4.6 Other ISSUEScooiveuiiieiiireeeercecerieree et sese et ereseseseesstessstssesassssesnssasssassaneas 142
4.6.1 Fixed.versus Variable Step-Sizecccooeeeiivrncvevnnnenenriennieirennenes 142
4.6.2 Equality CONSITAINEScceceveerivevirrererensereniererenierenesnrsessessssesesersessesessens 146

CHAPTER 5: RIOTS User’s Manual

5.1 INPOUCHION uvivinieiiiiirieriercrecert ettt sess et st st eressereesesbessassesaasaesannns eeeeneeenens 147

5.2 Problem DESCHPONcccevereruerireieseeressesessesesesssessesesessessssesesensssssessssssssssnesens 150
Transcription for Free Final Time Problemscccocccevvnnvenecvrnrercreevneenenns 151

Trajectory CONSIIAINLScccecereeurererererentnererieresessereeseseseeessessssssasssssessessssenes 152
Continuum Objective FUNCHONScccovieueriiircrerereeceseneeriereeraee et eens 153

5.3 Using RIOTS ..ottt nssssas st se e se e sns 154

5.4 User Supplied SUbroutinescocoerirceemnricinnccncen e eneeesiesesessnsseesses 167

5.5 Simulation ROULNESc.coovverreiemirenririneiereniecstrenisseiee st ceseeseessssesessesessssesens 184
Implementation of the Integration ROUtiNEScccoeevrcenrennninenienenivennennns 193

5.6 Optimization PrOZramsccoceveveverireneeinereescnesnsseesssssesesesessesessesesesessnses 206
Coordinate Transformationccccoceeeieerevenneneserienseresessesssesesessesessesesennns 211
Description of the Optimization Programscoceevveevenrerermnreseecereeseseenens 213

5.7 Utility ROULINESceoviviiiiiinriinirieieieeiceieeesteeesesenetessevesee e ssenssasssessesssssssesesses 232

5.8 Installing, Compiling and Linking RIOTSc.cccccoimninnienecnieneereeeeereesennes 242
CHAPTER 6: Conclusions and Directions for Future Research 249
APPENDIX A: Proof of Some Results in Chapter 2 257
APPENDIX B: Example Optimal Control Problems 262
REFERENCES 266

viii

Chapter 1

INTRODUCTION

1.1 NUMERICAL METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS

Numerical methods for solving optimal control problems have evolved significantly over the
past thirty-four years since Pontryagin and his students presented their celebrated maximum
principle [1]. Most early methods were based on finding a solution that satisfied the maximum
principle, or related necessary conditions, rather than attempting a direct minimization of the
objective function (subject to constraints) of the optimal control problem. Explanations of this
approach can be found in [2-6]. For this reason, methods using this approach are called indirect
methods.

The main drawback to indirect methods is their extreme lack of robustness: the iterations of
an indirect method must start close, sometimes very close, to a local solution in order to solve the
two-point boundary value subproblems. Additionally, since first order optimality conditions are
satisfied by maximizers and saddle points as well as minimizers, there is no reason, in general, to
expect solutions obtained by indirect methods to be minimizers. approximations to the original

problem.

Both of these drawbacks of indirect methods are overcome by so-called direct methods.
Direct methods obtain solutions through the direct minimization of the objective function (subject
to constraints) of the optimal control problem. In this way, the optimal control problem is treated
as an infinite dimensional mathematical programming problem. There are two distinct
approaches for dealing with the infinite dimensional aspect of these problems. The first approach
develops specialized conceptual algorithms, and numerical implementations of these algorithms,
for solving the mathematical programs. A conceptual algorithm is either a function space analog
of a finite dimensional optimization algorithm or a finite dimensional algorithm (obtained by
restricting the controls to a finite dimensional subspace of the control space) that requires infinite
dimensional operations such as the solution of differential equations and integrals. An implemen-

tation of a conceptual algorithm accounts for errors that result when representing elements of an

Sec. 1.1 Solving Optimal Control Problems 1

infinite dimensional functions space with finite dimensional approximations and the errors pro-
duced by the numerical operations used to perform infinite dimensional operations. There are
many examples of conceptual algorithm for solving optimal control problem, some with and

some without implementations [7-31].

The conceptual algorithm approach for solving optimal control problems has serious draw-
backs. First, customized software for controlling the errors produced in the numerical approxi-
mations of infinite dimensional functions and operations must be incorporated into the implemen-
tation of a conceptual algorithm. More seriously, because function evaluations are performed
only approximately, the function gradients used by mathematical programming software will not
be coordinated with those same functions. That is, the gradients will only be approximations to
the derivatives of the functions. This mean, for example, that it is possible that the negative of a
function gradient may not be a direction of descent for the approximation of that function. This
possibility becomes increasingly likely as a stationary point is approached. A related problem is
that a certain amount of precision in the function evaluations is required to ensure successful line
searches. These facts mean that, in practice, high precision in numerical operations such as inte-
gration is required even in early iterations of the optimization procedure. Since high precision in
early iterations does not contribute to the accuracy of the final solution, this requirement makes

the implementation of conceptual algorithm inefficient for most problems.

An alternate direct method approach is one which we term consistent approximations. In
the approach of consistent approximations, the optimal control is obtained by solving a sequence
of finite dimensional, discrete-time optimal control problems that are increasingly accurate repre-
sentations of the original, continuous-time problem. The solutions of the approximating, discrete-
time optimal control problems can be obtained using standard mathematical programming tech-
niques, without infinite dimensional operations, since they are finite dimensional problems.
Under suitable conditions, solutions of the approximating problems converge to a solution of the
original problem. In this sense, such discrete-time optimal control problems are called consistent

approximations to the original problem.

The first rigorous developments of algorithms based on solving finite dimensional approxi-
mating problems used Euler’s method and pieceWise constant control representations (which
results in a finite dimensional control parameterization) to discretize the original problem (see the
introduction to Chapter 2 for references). From a numerical analyst’s point of view, the choice of
Euler’s method may seem strange since Euler’s method is an extremely inefficient method for
solving differential equations. But there are reasons for choosing Euler’s method as a discretiza-
tion procedure for optimal control problems. First, up until this work, there has been no theory

supporting the use of iterative higher-order integration methods in the construction of consistent

2 Introduction Chap. 1

approximations. Second, only recently has it been demonstrated that there can be an advantage to
using higher-order discretization methods for solving optimal control problems. The use of
higher-order discretization methods for solving optimal control problems remains an active area
of research. It is difficult to demonstrate a theoretical advantage to using higher order methods
rather than Euler’s methods when solving general, constrained optimal control problems. How-
ever, many optimal control problems that arise in practice are, in fact, solved much more effi-

ciently with higher-order methods.

Within the category of direct methods based on the idea of consistent approximations, there
is a further sub-classification that helps to establish where our work stands in relation to other
methods. This sub-classification specifies how the discretization of an optimal control problem
into a finite dimensional approximating problem is accomplished: via collocation (or more gener-
ally, a Galerkin approximation) or via iterative integration. Currently, the most popular dis-
cretization scheme is based on collocation and methods similar in spirit to
collocation [16-18,32-41]. In collocation methods, the syétem of differential equations describing
the dynamic system is replaced by a system of equations that represent collocation conditions to
be satisfied at a finite number of time points. The resulting mathematical program involves not
only the control parameters as decision variables but also a large number of additional variables
that represents the value of state variables at the collocation points. Collocation schemes offer

several advantages over iterative integration schemes:
1. Itis easier to prove convergence and order of convergence results.

2. Some results for the order of error, as a function of the discretization level, between solu-
tions of the approximating problems and solutions of the original problem (namely, for

unconstrained optimal control problems) are superior to other schemes [36).

3. Certain difficulties inherent to some optimal control problems, such as stiff differential equa-

tions and highly unstable dynamics, are greatly mitigated in collocation schemes.

4. Simple bounds and the state variables translate into simple bounds on the decision variables

of the mathematical program.

5. Function gradients are easier to compute since they do not require the derivative of the state

with respect to the controls.
However, collocation schemes have serious drawbacks as well:

1. The approximating problems are significantly larger at a given discretization level due to the

inclusion of state variables as decision parameters.

2. The approximating problems are significantly harder to solve because of the addition of a

large number of (nonlinear) equality constraints that represent the collocation conditions.

Sec. 1.1 Solving Optimal Control Problems 3

3. The accuracy of solutions obtained by solving the approximating problems can be somewhat

inaccurate due to the presence of the collocation constraints.

4. If the numerical algorithm for solving the approximating problems is terminated prematurely

the solution may not be useful since the collocation conditions will not be satisfied.

Because of these disadvantages, solutions obtained using a collocation scheme often have to be

subsequently refined using an indirect solution method [4].

The work in this thesis is based on discretizing optimal control problems using explicit,
fixed step-size Runge-Kutta integration techniques. The ad\"antage of this scheme over colloca-
tion schemes is that the approximating problems that result can be solved very efficiently and
accurately. On the other hand, some of the features listed above as advantages associated with
collocation are sacrificed. Specifically, convergence results are more difficult to prove for the
Runge-Kutta method and, in the case of unconstrained problems, the order of error for solution of
the approximating problems is lower (see [42] and Proposition 4.6.2). Also, it is quite convenient
from a programming point of view that state variable bounds become bounds on the decision vari-
ables of the mathematical program (advantage 4). However, this advantage is more than offset by
the addition of the system of equality constraints representing the collocation conditions. Finally,
the difficulties of solving problems with highly unstable dynamics can also be handled when

using explicit Runge-Kutta integration. A method for doing so is discussed in the Chapter 6.

As far as we know, the work reported in this thesis represents the only work on consistent
approximation schemes using Runge-Kutta integration. Thus, at the very least, our work comple-
ments the work of other authors that deal with collocation schemes. But further, we believe that
our approach has significant theoretical and practical advantages that will make it, with sufficient

development, a leading approach to solving optimal control problems.

4 v Introduction Chap. 1

1.2 CONTRIBUTIONS TO THE STATE-OF-THE-ART

The original goal of this research was simply to develop a fast and accurate software pack-
age for solving optimal control problems using explicit Runge-Kutta integration. In the process
of writing this software we have, by necessity, developed a strong theoretical foundation for our
discretization approach as well constructing several new algorithms for various types of computa-
tion. The following is a concise summary of the contributions provided by this work to the state-
of-the-art in numerical methods for solving optimal control problems:

* Provides the first convergence analysis and implementation theory for discretization methods
based on Runge-Kutta integration. Specifically, conditions on the parameters of the Runge-
Kutta method are presented that ensure, for instance, that stationary points of the discretized
problems can only converge to stationary points of the original problem.

* Derives the appropriate non-Euclidean metric needed for the finite-dimensional optimization
of the approximating problems and presents a coordinate transformation which allows a
Euclidean metric to be used.

* Improves upon the previously known bound for the error in the solution of the approximating
problems as a function of the discretization level for RK4 (the most common fourth-order
Runge-Kutta integration method) when solving unconstrained optimal control problems. This
result, along with the already known bounds for a first, second and third order Runge-Kutta
method are extended to the case where the finite dimensional controls are represented by
splines.

* Presents a new, very efficient and robust numerical algorithm, based on the projected Newton
method of Bertsekas, for solving a class of mathematical programming problems with simple
bounds on the decision variables.

* Develops a new method for computing accurate estimates of the error between the solutions
computed for the approximating problems and solutions of the original problem. This esti-
mate does not require a priori knowledge of error bounds and works for problems with state
and control constraints.

* Develops a completely new method for numerically solving singular optimal control prob-
lems. This method is designed to eliminate undesirable oscillations that occur in numerical
solutions of singular control problems. *

* Presents our software package called RIOTS, based on the theory in contained in this thesis,
for solving 6ptima] control problems. Although there are many impfovements that can be
made to RIOTS, it is already one of the fastest, most accurate and easiest to use programs

available for solving optimal control problems.

Sec. 1.2 Contributions to the State-of-the-Art 5

1.3 DISSERTATION OUTLINE

The organization of this dissertation follows a progression leading from basic theoretical
foundations of discretizing optimal control problems to the implementation of a software package
for solving a large class of optimal control problems. The theoretical foundation is presented in
Chapter 2. Chapter 2 begins with a discussion of the concept of consistent approximations as
defined by Polak [43]. Polak’s definition of consistent approximations extends earlier definitions,
namely that of Daniels [44], that were concerned only with convergence of global solutions of the
approximating problems to global solutions of the original problem. The earlier definitions were
therefore of limited use since optimization algorithms compute stationary points, not global solu-

-tions. Polak’s definition of consistency deals with stationary points and local minima as well as
global solutions. The theory of consistent approximations is used to develop a framework for dis-
cretizing optimal control problems with Runge-Kutta integration. The main results in Chapter 2
show that the approximating problems are consistent approximations to the original optimal con-
trol problem if the Runge-Kutta method satisfies certain conditions in addition to the standard
conditions needed for consistent integration of differential equations. Once the consistency result
is established, the convergence results provided by the theory of consistent approximations can be
invoked. In the process of constructing consistent approximations based on Runge-Kutta dis-
cretization, we show that a non-Euclidean inner-product and norm, depending on the basis used
for the finite dimensional control subspaces, must be used for the space of control coefficients
upon which the finite dimensional mathematical programs that results from the discretization are
defined. Without this non-Euclidean metric, serious ill-conditioning can result. We also show
how a coordinate transformation can be used to eliminate the need for the non-Euclidean inner-

product and norm. The results are then extended to control representations based on splines.

In Chapter 3, we present a very efficient and robust optimization algorithm for solving finite
dimensional mathematical programming problems that include simple bounds on the decision
variables. Such problems arise from the discretization of optimal control problems with control
bounds. In Chapter 4, other important numerical issues are addressed. These issues include
(i) obtaining bounds on the error of solutions to the approximating problems based on spline con-
trols, (ii) developing heuristics for selecting the integration order and control representation
order, (iii) providing methods for refining the discretization mesh, (iv) providing a computable
error estimate for solutions of the approximating problems and (v) dealing with the numerical
difficulties that arise when solving singular optimal control problems. We also present numerical
data to support our claim that implementations of conceptual algorithms are inefficient compared

to the consistent approximations approach to solving optimal control problems.

6 Introduction Chap. 1

The next chapter, Chapter 5, contains the user’s manual for RIOTS. RIOTS is our software
package, developed as a toolbox for MatlabT, for solving a very broad class of optimal control
problems. This class includes problems with multiple objective functions, fixed or free final time
problems, problems with variable initial conditions and problems with control bounds, endpoint
equality and inequality constraints, and trajectory constraints. The user’s manual includes a
mathematical description of the class of problems that can be handled, a series of sample sessions
with RIOTS, a complete reference guide for the programs in RIOTS, explanations of important
implementation details, and instructions for installing RIOTS. Chapter 6, presents our conclu-
sions and ideas for future research. Finally, there are two appendices. The first contains the
proofs of some of the results in Chapter 2 and the second describes some example optimal control

problems that we use, primarily in Chapter 4, for numerical experiments.

¥ Matlab is a scientific computation and visualization program designed by The MathWorks, Inc.

Sec. 1.3 Dissertatiqn Outline 7

Chapter 2

CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL
PROBLEMS BASED ON RUNGE-KUTTA INTEGRATION

2.1 INTRODUCTION

In this Chapter, we establish the theoretical foundation of our method for numerically solv-
ing optimal control problems. Specifically, we consider approximations to constrained optimal
control problems that result from numerical solving the differential equations describing the sys-
tem dynamics using Runge-Kutta integration. We show that there is a class of higher order,
explicit Runge-Kutta (RK) methods that provide consistent approximations to the original prob-
lem, with consistency defined according to[43]. Consequently, we are assured that stationary
points of the approximating problems converge to stationary points of the original problem, and
that global solutions (or strict local solutions with a non-vanishing radius of attraction) of the
approximating problems converge to global (or local) solutions of the original problem, as the
step-size of the RK method is decreased. 7

The theory of consistent approximations introduced in [43] requires that the approximating
problems be defined on finite dimensional subspaces of the control space to which RK methods
can be extended. The selection of the control subspaces affects both the accuracy of numerical
integration and the accuracy with which solutions of the original problem are approximated.
Once the approximating problems are defined, their numerical solution is carried out by means of
standard mathematical programming algorithms in the space of coefficients associated with the
bases defining the control subspaces. We construct two such families of control subspaces. The
“natural” basis functions for one family are piecewise polynomial functions, and for the other,
piecewise constant functions. Also, B-splines provide a basis for a subspace of piecewise polyno-
mial functions. None of these sets of basis functions is orthonormal. Hence, to preserve the L,
inner product and norm used in the control subspace, a non-Euclidean inner product and norm

must be used in the associated space of coefficients. Failing to do so introduces a *‘changed

8 Consistent Approximations Chap. 2

metric” effect that can adversely affect the performance of algorithms. The possible severity of
this phenomenon is demonstrated by our computational results in Section 6. To remove the need
to modify nonlinear programming software written for problems defined on a Euclidean space,
we introduce coordinate transformations that change our original bases in the control space to an

orthonormal set and change the associated coefficient space to a Euclidean space.

Daniel [44] presents one of the first attempts to characterize, in a general framework, con-
sistency of approximations to an optimization problem as well as an application of this frame-
work to approximations of optimal control problems obtained using the Euler integration formula.
It can be shown that Daniel’s conditions for consistency imply epiconvergence [45,46}, i.e., the
convergence, in the Kuratowski sense [47], of the constrained epigraphs of the approximating
problems to the constrained epigraph of the original problem. Epiconvergence ensures conver-
gence of the global minimizers (or strict local minimizers with a non-vanishing radius of attrac-

tion) of the approximating problems to global (or local minimizers) of the original problem.

Polak, in [43], characterizes first order optimality conditions in terms of zeros of optimality
Sfunctions. To define consistency of approximations, he augments the requirement of epiconver-
gence of the approximating problems with a related requirement for their optimality functions.
As a result, consistency, in the Polak sense, ensures convergence of global (local) solutions, and
stationary points, of the approximating problems to global (local) solutions, and stationary points,
of the original problem. Furthermore, the Polak definition of consistency indirectly imposes the
requirement that the mathematical characterization of the constraints of the approximating prob-
lems satisfy certain congruence conditions, and that derivatives of the approximating problem
functions converge to those of the original problem. In addition to a definition of consistency, we
find in [43] diagonalization strategies; in the form of master algorithms,'that call nonlinear pro-
gramming algorithms as subroutines. These algorithms enable one to efficiently obtain an

approximate, numerical *‘solution” to an original infinite dimensional problem.

With the exception of [44] and [43], the analysis of the approximating properties of numeri-
cal integration techniques (see, e.g.,[43,48-56]) in optimal control is not carried in the frame-

T

work of a general theory'. Convergence of global solutions, or in some cases, of stationary
points, of approximating problems obtained using Euler integration to those of the original prob-
lem was established in [43,44,48-50,53-55]. Of these, perhaps the most extensive treatment can
be found in[54]. The rate of convergence of stationary points of approximating problems,
obtained from discretization of unconstrained optimal control problems using a class of RK meth-

ods, to those of the original problem was explored in [42].

¥ This is also true for collocation techniques (see, e.g., {4.18.33,35,36]).

Sec. 2.1 Introduction 9

Organization. This chapter is organized as follows. Section 2 summarizes the theory of con-
sistent approximations. Section 3 defines the optimal control problem and develops an optimality
function for it. In section 4 the approximating problems are constructed and epiconvergence of
the approximating problems is proved. In section 5, optimality functions for the approximating
problems are derived and are shown to hypoconverge to the optimality function for the original
problem. This completes the proof that the approximating problems are consistent approxima-
tions to the original problem. Section 6 introduces a transformation which defines orthonormal
bases for the control subspaces and presents a rate of convergence result for the most commonly
used RK method, RK4. Some numerical results are also included. Finally, in Section 7 the

results are extended to control subspaces based on splines.

2.2 THEORY OF CONSISTENT APPROXIMATIONS

Let #{be a normed linear space and B C # a convex set and consider the problem
P Toin y(7) (2.1a)

where : B — R is (at least) lower semi-continuous, and F B is the feasible set. Next, let
N={1,2,3,---}, let N be an infinite subset of N, and let { Hy } y « n be a family of finite
dimensional subspaces of #{such that #Hy, < Hy,, for all Ny, N, € N such that N, < N,. Now

consider a family of approximating problems
Py nnexipu wn(m), NeN, (2.1b)

where wy : Hy — R is (at least) lower semi-continuous, and Fy < # N B.

In[43] we find a characterization of the consistency of the approximating problems Py, in
terms of two concepts. The first is epiconvergence of the Py to P [45] which can be shown to be
equivalent to Kuratowski convergence [47] of the restricted epigraphs of the cost functions of the
approximating problems to the restricted epigraph of the original problem. Epiconvergence does
not involve derivatives of the cost function nor the specific deécn’ption of the constraint sets,
hence it is a kind of “‘zero-order” property. The second concept consists of the characterization
of stationary points as zeros of an “‘optimality function™ and a kind of upper semi-continuity
property of the optimality functions of the approximating problems. Optimality functions do
depend on derivatives and the specific description of the constraint set, hence they add important

first-order and structural information.

10 Consistent Approximations Chap. 2

Definition 2.1. We will say that the problems in the family { Py } y « N converge epigraphi-

cally (or epiconverge) to P (Py i P) if

(a) forevery n € F, there exists a sequence {7y } v ¢ N, With 7y € Fy, such that 7y — 7 and
Timyn(ny) S ()

(b) for every infinite sequence {ny}y ek, K © N, satisfying 7y € Fy for all N € K and
N —K n, we have that n € F and limy . x wn(7n) 2 w(0). D

There are two subsets involved in our formulation of this definition. The subset N is used to pro-
vide nesting of the finite dimensional subspaces Hy. The subset K < N is required so that Defi-
nition 2.1 is equivalent to Kuratowski convergence. This is because, not only is the sequence

{ nv } parameterized by N, but so are the problems in the sequence { Py } .

In [43,45,46] we find the following result:

Theorem 2.2. Suppose that Py 3p. (a) If, for N € N, %5 is a global minimizer of Py,
and % is any accumulation point of the sequence { % } v e N» then 7 is a global minimizer of P;
(b) if, for N € N, % is a strict local minimizer of PNk whose radius of attraction is bounded

away from zero, and 7 is any accumulation point of the sequence {7y } v e N, then 7 is a local

minimizer of P. 0

Epigraphical convergence does not eliminate the possibility of stationary points of Py con-
verging to a non-stationary point of P: a most inconvenient outcome from a numerical optimiza-
tion point of view. For example, let # = IR? with n=(x,y), and let f(n) = fy(n) =(x- 2)%,
N € IN. Choose

F={(x,yeRIx’+y*-2<0}, (2.2a)
Fy={(x,») e R I (x—y?(x*+y*-2)<0, x?+y2<2+1/N}, NeN. (2.2b)

Then we see that Py 35 P. Nevertheless, the point (1, 1) is feasible and satisfies the F. John opti-
mality condition for all Py, but it is not a stationary point for the problem P (see Figure 2.1). The
reason for this is an incompatibility of the constraint sets Fy with the constraint set F, which
shows up only at the level of optimality conditions. Hypotheses precluding this pathology, at
least for first order non-stationary points, were introduced in [43] using optimality functions as a
tool for ensuring a kind of *“first order” approximation result that implicitly enforces convergence

of derivatives and restricts the forms chosen for the description of the sets F and F .

Sec. 2.2 ' Theory of Consistent Approximations 11

stationary point
y for approximating
problem

optimal point for
original problem

Fig. 2.1: Graph of the feasible regions for the approximating problems showing that the station-
ary points for the approximating problems converge to the point (1,1) which is a non-stationary
point for the original problem. The arrows around (1,1) indicate the gradients (translated from
the origin) for the two constraint functions and the objective function.

Definition 2.3. We will say that a function 6 : B — R is an optimality function for P if (i) 6(-)
is (at least) upper semi-continuous, (ii) 8(n) <0 for all 7 € B, and (iii) for7) € F, 6(5) = 0if i
is a local minimizer for P. Similarly, we will say that a function 8y : Hy — R is an optimality
function for Py if (i) @y(-) is (at least) upper semi-continuous, (ii) @y(ny) <0forallny € Hy,

and (iii) if j y € Fy is a local minimizer for Py then 6y(fy) = 0 m]

Definition 2.4. Consider the problems P, Py, defined in (2.1a,b). Let 6(-), 85(-), N € N, be

optimality functions for P, Py, respectively. We will say that the pairs (Py, 8y), in the sequence

{(Pn,6Nn) } N e N are consistent approximations to the pair (P, 9), if (i) Py 3 P, and (ii) for
any sequence {7y} n ek, K © N, with 7y € Fy forall N € K, such that ny —¥ 7, the opti-

mality functions of the approximating problems satisfy the condition

Tim6x(ny) < 6(7) - (23)

(]

Note that part (ii) of Definition 2.4 rules out the possibility of stationary points (points such

that 85(ny) = 0) for the approximating problems converging to non-stationary points of the orig-
inal problem. In the sequel, we will prove a stronger condition than is required by Definition 2.4,

namely, Kuratowski convergence of the hypographs of 6y(:) to the hypograph of 6(-) (that is,

12 Consistent Approximations Chap. 2

-y 5 -0).

In addition to the characterization of consistency, the theory of consistent approximations

~in [1] includes various master algorithm models for efficiently solving problems such as P. Given
a level of discretization defined by N, the master algorithms construct an approximating problem
Py, execute a nonlinear programming or discrete-time optimal control algorithm as a subroutine
for a certain number of iterations on Py, and then increase N. Then the process is repeated. For

specific examples, see [13,21].
2.2.1. Overview of the construction of consistent approximations for optimal
control problems.

In the remaining sections of this chapter we proceed to construct approximating problems, based
on Runge-Kutta integration, to a general class of optimal control problems and show that they are
consistent approximations. To guide the reader, we provide here an outline of the development, in
a slightly re-arranged order, for a simple class of unconstrained optimal control problems with a

smooth objective function.

We start by defining the optimal control problem. In this overview we will just consider

unconstrained problems with fixed initial conditions of the form
P umei% fu)
where f(u) € R is the objective function defined by
NOEI{EH) (2.5a)
and x“(r) € IR" is the solution of the system of differential equation
Xx=hxu), 1e€[0,1]; x(0)=¢. (2.5b)

Hence, the objective is a function of the final state x“(1) which depends on the control u € U,
u(t) € R™. Note that other forms of optimal control problems such as the Bolza and Lagrange

forms can be converted into this form.

Problem P is defined over the feasible set U of controls. In the sequel, we will allow U to
include control constraints but here we will assume that it does not. The choice of U is compli-
cated by the fact that while standard optimality conditions for P are expressed in the L,-norm,
Sf() is differentiable in L, [0, 1] but not in L,[0,1]. To overcome this difficulty, we define the
pre-Hilbert space

Lg;,?.[ov]] i(LZL[Ov]] ’ (3')2 » 1. l?_) (26)

which consists of elements of L2.[0, 1] but is endowed with the L, inner-product and norm. Then

Sec. 2.2 Theory of Consistent Approximations 13

we allow U < L7 ,[0,1]. Since P is an unconstrained problem, we can choose for its optimality

function
8(u) = — IV f(u)l? .7

because — IV f(u)I* is continuous, negative valued and zero at % if % is a local minimizer of P
since a first order necessary condition for optimality of % is V f (&) = 0 (that is, V f(%)(¢) = O for

t € [0,1] a.e.). The gradient V f(u) can be computed according to standard formulas which are

presented in Section 3.

The next step is to construct the approximating problems through some discretization proce-
dure. Our method involves (i) integrating the differential equation numerical using Runge-Kutta
(RK) integration and (ii) replacing the infinite dimensional control set U with a finite dimen-
sional approximating set Uy. A RK integration method is specified by a set of parameters collec-
tively called the Butcher array. The Butcher array, A = [c, A, b7}, consists of three sets of param-
eters. The ¢ parameters relate to sampling instances where the RK integration evaluates the right-
hand side of (2.5b) and the b parameters are relative weights assigned to each of these evalua-
tions. The A parameters affect the order of convergence of the RK method but do not play a role
in the first-order convergence analysis. The integration proceeds to compute approximations of

the state X, = x"(z;) at the discrete time points {7, } 2’:0 according to

Brot = F(RB) S5+ AN biK; ; xp=¢ (2.8a)
i=]
with
i-1
K,‘ = h(f, +A z a'JKJ’ l_lk_i) (2.8b)
j=
ﬁk.i =u(ty, + C,'A) (280)

where s is the number of stages in the RK method, A = t;,, =1, = 1/ N (we assume a uniform
mesh in this Chapter for simplicity) and ¢ = (¢y,...,c;) and b = (b,, ..., b,) are parameters from
the Butcher array. Equation (2.8¢) is a simplification of how we later define i, ; to take care of
the possibility that u(-) is discontinuous at 7; + c;A. The quantities i, ; € R™ are called control
samples and relate to functions ¥ € Uy through a map V, y which depends on the Butcher array
A and the discretization level N. This map defines how the RK method integrates over controls

in UN‘

From (2.8b), we see that the RK integration depends on the control samples i, ; for
k=0,....,N-1,i=1,...,5s. We must take some care if control samples occur at identical sam-

pling times, but we will ignore this possibility for now. The control samples are organized as

14 Consistent Approximations Chap. 2

follows:

ﬁk = (ﬁk.|9 .. .,ak"\.) € >§ R"” (2.93)

i =(ao,...,aN_.)e3v<}§Rm. (2.9b)

In other words, the collection of control samples used by the RK method is denoted by & which
has N components, i1, each of which contains the control samples used by the RK method over

one step. When we use 7 in algebraic expressions, we will be treating it as the m x Ns matrix

EN]

=gy --ios +++ Uy_yy- - lN-ys]. (2.9¢)

If m =1 then # is just a row vector (not a column vector). The space of control samples is
LN=(>,§>S<1R"' O B T B (2.9¢)

We will specify inner-product and norm on Ly in a moment. To indicate its dependence on u, we

will write the solution to (2.8a) as .

The next step is to choose finite dimensional subspaces Ly < LJ.,[0,1]. These subspaces
can be defined in many ways. In Section 4 we define two representations for Ly, one based on
piecewise polynomials and the other based on piecewise constants. We define a third representa-
tion based on splines in Section 7. Given a definition for Ly, we relate functions u € Ly to their

control samples i € Ly via the bijective map
VA.N N LN - ['N, (2.9d)

Essenﬁally, this map is defined in the following way: for each u € Ly, i1 = V, y(u) is given by
i = u(ty +c;). This is somewhat different when dealing with splines. However, in the sequel
we will account for the possibilities mentioned above that (i) u(-) is discontinuous and (ii) some

of the control sample occur at the same sampling times.

Now we can define the approximating problems:

Py L SIn(uw)

Fu) =Lz (2.10)

where Uy © Ly M U. The reason we do not write Uy = Ly N U is because we might have to
add additional constraint on Uy, depending on how L is defined, in order to prove consistency.
In order to compute solutions of Py using a computer we will actually solve a mathematical pro-
gram involving the control samples & € Ly. In order for an optimization program working in the

space Ly to be equivalent to an optimization program working in the function space Ly, we need

Sec. 2.2 Theory of Consistent Approximations 15

to define the inner-product and norm on Ly so that, with @,7 € Ly and u = V3'y(@),

v= Vi),
(@,9)r, = (u,v); and lalg, = lub, . Q.11

Equation (2.11) is enough to define (-,-);, and I - I, ; we give specific formulas in Section 4 and
Section 7. With the metric defined in this way, V y becomes an isometric isomorphism between
Ly and Ly. Hence, operations in one of the space are equivalent to the same operations in the
other. Besides establishing this correspondence of operations, the definition of the metric on Ly
is important from a purely computational point of view because it can prevent ill-conditioning in
the mathematical program used to solve Py. It is important to note that the metric on Ly

depends only on the basis for Ly, not on the optimal control problem to be solved.

The final step in the construction of the approximating problems is to define their optimality
functions. Following the form of the optimality function 6(-) for P we choose

On(u) = =V fy@u)l3 . (2.12a)

The computation of V fy(u) is non-standard because the gradient is defined relative to the space
Ly which we define. We will show that, foru € Ly,

d -
Vinu) = ["E fN(VA,N(u))} My (2.12b)

where d f (i) / dii is the standard discrete-time derivative of f (i), which can be computed using
formulas similar to those for Euler’s method, and My, is a positive-definite matrix that depends

only on the definition of Ly. This formula is slightly different for splines.

2.3 DEFINITION OF OPTIMAL CONTROL PROBLEM

We will consider optimal control problems with dynamics described by ordinary differential

equations of the form:

x(t) = h(x(t),u(r)), ae.for t € [0,1], x(0)=¢&, 3.1)
where x(1) € R", u(r) € R", and hence 4 : R" x R™ — R". Non-autonomous dynamics can be
handled by defining time as an extra state variable with / = 1, #(0) = 0.

To establish continuity and differentiability of solutions of (3.1) with respect to controls,
one must assume that the controls are bounded in L7.[0,1]. However, the finite dimensional
approximating control subspaces that we will introduce must be treated as Hilbert spaces. This

can cause complications in establishing the required approximation properties of the optimality

16 Consistent Approximations Chap. 2

functions for the approximating problems that we will construct. To circumvent this difficulty, we

will, as in [43] assume that the controls are elements of the pre-Hilbert space
00 2[0 11 = (L0 1], (0)y , 1-hy), (3.2a)

which consists of the elements of L[0, 1], but is endowed with the L'[0, 1] inner product and
norm. Note that L[,[0, 1] is dense in L5'[0, 1].

We will define our optimal control problems on the pre-Hilbert space
Hez =R X LZ5[0,11=(R" X L [0,1] , (-)y, 1-1y), (3.2b)

whose elements 7 consist of pairs of initial states and controls, i.e., 7 = (£,u). Note that H, , is
a dense subspace of the Hilbert space

H, =R"x L"[0,1]. (3.2¢)

The inner product (-, -}y and norm I - 1, on H,, and hence also on H,, ,, are defined as follows.
Forany n = (¢{,u) € Hyand ' = (¢',u’) € H,,

(')y =(EE)+ (uu’),, (3.2d)
where (£, £’) denotes the Euclidean inner product, and the L, inner product (u, u’), is defined by

|
(u,u’), ‘=j (u(t),u’(t)) dr. Consequently, for any 7 = (¢,u) € H,,
0
Ity = (n)y = 1P + Wl . (3.2¢)

Next, we introduce a compact, convex control constraint set
UcB@O, pmax) = {1 € R" 1 Wl < ppp }, where ppa, is assumed to be sufficiently large to
ensure that all the controls u(-) which we expect to deal with take values in the interior of

B(0, pmax). We then define the set of admissible controls by
U= {uell,[0,1]1ur)eU, ae.for t€[0,1]) (3.3a)
and the set of admissible initial state-control pairs by
H=R"xUcH,, . (3.3b)
The set H is contained in the larger set
B=IR"Xx {u e L2,[0,1]1u(t) € B, pyax), ae.on [0,1]1} € H,, > (3.3¢)

inside which all of our results concerning differential equations are valid. Finally, solutions of

(3.1) corresponding to a particular 7 € B will be denoted by x"(-).

We will consider the following canonical constrained minimax optimal control problem:

Sec. 2.3 Definition of Optimal Control Problem 17

CP ,,mé'r'i {voM y () <0}, (3.4a)

where the objective function, y, : B — IR, and the state endpoint constraint function, y, : B = R

are defined by

Volm) = max f'(), we()= max f'(n), (3.4b)

c" Yo

where the v-th function f": H — R is defined by

ffm=¢Y(&,x"Q)), (3.4c)

with {":R" xR" - R,and q,= {1,2,...,49,},q.= {1,2,...,4.) (with g, and g, positive
integers). The set q.+q,={1+4q,....q.+q,}. In what follows, we will let
q=1{1,2,...,q9} with g = g,+q,. By defining the feasible set F= {n € H| v.(m <0}, we
can write CP in the equivalent form of problem P in (2.1a).

Various optimal control problems, such as non-autonomous, integral cost, and free-time
problems, can be transcribed into this canonical form. Also, the endpoint constraint in (3.4a) can
be discarded by setting y.(17) = —oo, and control unconstrained problems can be included by

choosing p.x and U sufficiently large to ensure that the solutions 4*(-) of CP take values in the
interior of U.

Properties of the Defining Functions. We will require the following assumptions:
Assumption 3.1.

(a) The function A(:,-) in (3.1) is continuously differentiable, and there exists a Lipschitz con-
stant x < oo such that for all x’, x” € IR", and v/,v” € B(0, py,y), the following relations
hold:

Wh(x’, vy = h(x" v N k[Ix" = x"F+ B =v"1], (3.5a)
Wh(x/,v) = h (X", VNS klx" = x"1+ 1V =v"1], (3.5b)
1h,(x',v") = h,(x”", VN < k[Ix" = x"1+ IV =], (3.5¢)

(b) The functions ¢V(,-), ¢ g(‘, -) and {;(-,-), with v € q, are Lipschitz continuous on bounded

‘sets. . O

18 Consistent Approximations Chap. 2

The following results can be found in [58]
Theorem 3.2. If Assumption 3.1 is satisfied then

(i) there exists an ¥ < oo such that for all n°, 7" € B and forall r € [0, 1]
Ix7 (1) = x7 () € xly’ — 0"y ;
(ii) there exists a L < oo such that forall7 € Band all ¢ € [0, 1]
Ix"()E < L(1 + BED);

(iii) the functions i, :B — IR and v, : B — R are Lipschitz continuous on bounded sets;

(iv) the functions f"(), v € g, have continuous Géteaux differentials Df¥ : B x H,,, — R that
have the form Df¥(n; 6n) = (V.f'(n),6n) y;

(v) the gradients V" :B — H,,,, Vf"(n) = (Vs f*(m),V,f*(m), v € q, are given by

Vef'(m) = Ve £8(E x"(1) + p™7(0), (3.6a)

Vi () = hy(x@),u@) p*1) , Vi e(0,1), (3.6b)
where p"7(r) € R" is the solution to the adjoint equation
P =—h (") pY, pY() =V LX), 1 e[0,1], (3.6c)
and are Lipschitz continuous on bounded sets in B. (]
An Optimality Function. Referring to [59] the following result holds because of Theorem 3.2:
Theorem 3.3 Forany 5 € B, let
we(ms =max {0, y.(m} , (3.7a)
and forany n,7” € Band o > 0, let
Y, 1) =max { y,(n) = vo(@) = owe(m)s s we(m) — we()s } . (3.7b)
If Assumption 3.1 is satisfied and 7 € H is a local minimizer of the problem CP, then
DY (n,n:n-1)20, VneH, (3.8)
where D,V indicates the directional derivative of W(:, -) with respect to its second argument. D

Next we define an optimality function 6 : B — R for CP. Forany 77,7 € Band v € q, we

define a first-order quadratic approximation to f*(-) at n by

Framy= £+ (V= ny + iy -l (3.92)

We define the optimality function, with the same fixed o > 0 used in (3.7b), by

Sec. 2.3 Definition of Optimal Control Problem 19

6(n) = min maX{ max f"(n,7) = yo(m) ~ ow.(n), max F'(p7)- %(nh} . (3.9b)
n”eH vegq, v € q.+q4,

The existence of the minimum in (3.9b) follows from the convexity of the constraint set H and of
the max functions in (3.9b) with respect to ’, and the fact that f"(n, n") = oo as In’l = oo [60,
Corollary I11.20 (p. 46)]. Note that if f¥(n)=-oo forall v € q, + g, so that y.(7) = — oo, then
(3.9b) reduces to

6(7) = min max f,(n)+ (V" n’ = my + $ 40’ = niy = yo(m) (3.9¢)

Referring once again to [58] we find the following result:

Theorem 3.5. Let 6:B — R be defined by (3.9b). If Assumption 3.1 holds then, (i) 8(-) is

negative valued and continuous; (ii) the relation (3.8) holds if and only if 0(';1) =0. D

2.4 APPROXIMATING PROBLEMS

The construction of a family of approximating problems for our problem CP, in (3.4a), sat-
isfying the axioms of the theory of consistent approximation requires the construction of nested
families of finite-dimensional subspaces of the initial state-control space H.,,, approximating
cost functions, and approximating constraint sets. Our selection of these approximations is
largely determined by our intention to use explicit, fixed step-size Runge-Kutta (RK)
methods [61,62] for integrating the dynamic equations (3.1). Throughout this chapter, we
assume, without loss of generality, that the integration proceeds with a uniform step-size. We will

relax this assumption in Chapter 4.

2.4.1 Finite Dimensional Initial-State-Control Subspaces

We begin by defining families of finite dimensional subspaces Hy, with
Hy =R"x Ly © H,,, where the Ly are finite-dimensional subspaces of L ,[0, 1], spanned
by piecewise-continuous functions to which RK methods can be extended. Hence, given an
explicit, fixed step-size RK integration method, using step-size A = 1/N, we impose the following

conditions on the subspaces L y:

(i) For any bounded subset S of B, there exists a ¥ < oo such that for any 7 € S N Hy, the
RK method results in an integration error no greater than x /N in solving the differential equation
(3.1).

(ii) The data used by the RK integration method is an initial state and a set of control

20 Consistent Approximations Chap. 2

1..

samples’. We will require that each set of control samples corresponds to a unique element

MGLN.

Condition (i) will be needed to prove that our approximating problems epiconverge to the
original problem. For the subspaces Ly that we will present, we will actually be able to prove
more than first order accuracy. Condition (ii) facilitates the definition of the approximating prob-
lems and makes it possible to define gradients for-the approximating cost and constraint func-
tions.

We will now show how the choice of an RK integration method affects the selection of the
subspaces Ly. The generic, explicit fixed step-size, s-stage RK method computes an approxi-

mate solution to a differential equation of the form
0 =hx(), x0)=¢, 1€[0,1], (4.12)

where & : R x R” — IR” is continuous in ¢ and Li schitz continuous in x. It does so by solvin
P Yy g

the difference equation
Xps) = X, +Ai;,b,~Kk‘,~ , Xo=x(0)=¢, ke N={0,1,...,N-1}, (4.1b)
i=
with A = 1/N, t;, = kA, and K|, ; defined by the recursion
Ky = h(ren B Kii = h(nes, % +A§| a; jKij), i=2,...,s, “4.1¢0)

where, for convenience, we have defined
Thi=ti+ciA, A=1/N. (4.1d)

The variable X, is the computed estimate of x(t;). The time points {1, } kN=0 define the integra-
tion mesh, also referred to as the discretization mesh. These time points will also be referred to as

breakpoints in the context of piecewise control representations.

The parameters a; j, c; and b;, in (4.1b) and (4.1c) determine the RK method. These param-
eters are collected in the Butcher array A = [c, A,b”]. The Butcher array is often displayed in

the form:

+ . .
The term control samples will be clarified shortly.

Sec.24 Approximating Problems 21

Cy 0

2 |ay O
A = : .
Cs. | as,1 A -1 0
| by - by b

The following assumption on the b parameters will hold throughout this chapter (conditions on
the ¢ parameters will be added later):

Assumptiond.1. Foralli €s,b;>0and ¥, b; = 1. =]

Remark 4.2. The condition 3.\, b; = 1 is satisfied by all convergent RK methods. Other con-
ditions must be satisfied to achieve higher order convergence for multi-stage RK methods. (]

Now, in our case, Z(t,x) = h(x,u(t)) and the elements u(r) of the subspaces Ly will be
allowed to be discontinuous from the left at certain pre-specified points. Hence, h (-, x) is discon-
tinuous and special care must be taken to ensure accurate integration. For this purpose, the values
u(ry ;) must sometimes be replaced by left limits as appropriate for the particular choice of the
subspace L. We will refer to these values as control samples and denote them by u[7y ;] where,
if necessary, u[7; ;] = lim,p, u(r). The speéiﬁc definition of u[r, ;] depends on the definition of
Ly, but clearly if u(-) is continuous at 7, ; then u[7; ;] = u(zy ;).

The recursion (4.1c) evaluates Z(-, *) s times for each time-step k € A If we collect the

corresponding s control samples into a matrix w; = (u[7;]- - u[; ,]), we can replace equations
(4.1b) and (4.1¢) with

Foo1 = B +AYbK, Fo=x(0)=£, ke A, (4.3a)

i=1
where K} ; = K;(X), w;) which is defined by the recursion
Kiy(x,w) = h(x,w)) , Ki(x,w)= h(x +A2ai_jKj(x, w),w;), i=2,....,5, (4.3b)
j=
where w; is the i-th column of @. Equations (4.3a,b) can be written equivalently as
B = B+ AT bihTh0). To= 50 =5, ke, (4.30)
where, for each %,
i~

Vii=%, V=% +AY a;jh(Y j,0)). (4.3d)
j=1 .

The quantities ¥, ; are intermediate estimates of x(7gi).

22 Consistent Approximations Chap. 2

We will define the control subspace Ly, in such a way that there is a one-to-one correspon-
dence between elements u € Ly and the samples of u[t; + ¢;A] used by the RK method with
step-size A = 1/N. The definition of Ly is somewhat complicated by the fact that some of the c;
elements of the Butcher array may have the same value. This causes the RK method to use sam-
ples at times #; + c¢; A more than once and hence leads to a reduction of the dimension in the asso-
ciated subspace Ly. To keep track of the distinct values of the c; elements of the Butcher array,
we define the ordered set of indices

I'={i,i... ., y={ieslcj#zc,Vjes, j<i}, (4.4a)
and let

Iji{ieslc;=c,~j,ijel}, jer. (4.4b)

Thus, the total number of distinct values taken by the elements ¢; in the Butcher array is r. For
example, if ¢ = {0,1/2,1/2,1} (as in the most commonly used fourth order RK method), then
r=3,I={ij=1i,=2,i3=4},I,=(1},I,={2,3),and I = {4). If each ¢; is dis-
tinct, then r = 5, i; = j, and /| is the singleton { j }. Otherwise, r < s and ij2jforeach j er.

By construction of the set /, the r distinct sampling times in the interval [z, 3,11, k € N
are given by Thij» j €r,ijel. Corresponding to each sampling time there is a control sample

ulzy;;] € R™. The collection of these control samples can be viewed as a vector i € %(X R",
r
where the symbol >A§ indicates the Cartesian product of N spaces. We will partition vectors

ie >I§ >r(IR™ into N blocks, as follows:

l-l=(ﬁo,l-l],...,ﬁ}v_]), (4.53)

where each block i, € >r< R", k € A, is of the form

L?k = (ﬁk,li . .,l-l'k',.)) (45b)

with & ; € R", j € r, corresponding to the samples ulty;], i; € I, used by the RK integration
during the k-th time interval. Our algebraic expressions are simplified if we treat i as the m X Nr

matrix [fo,y -« flo, *++ UN-1.1 **+AN-1,), L., we will identify XX IR™ with the space R™*M of
r

mX Nr matrices. Similarly, in algebraic expressions, will treat i, as the mXr matrix

{itx) - - iy). The standard inner product on)}5 X R" is the /, Euclidean inner product given by
r

N-1 r
(’7, \-’)12 = z Z(ﬁk.j’ vk.j) . (45C)
N=0 j=1

Let G be the r X s matrix defined by

Sec. 24 . Approximating Problems 23

G=| N (4.5d)
17
where, for each j €r, IJT =(1,1,...,1) is a row vector of dimension |/ jl (1l is the number of

elements in /;). Then we can associate the components &Iy, k € A, of a vector i € >'§X R"™,
r
with the matrices w; used by the RK method (4.3a,b) by setting @; = i#;,G = [-+ - i, 1G.

We now present two control representations that define subspaces L) < L ,[0,1],
i=1,2, N € N, of dimension Nrm, such that U}_, L\ and U%., L% are dense in L™ ,[0, 1].
Both representations reduce to simple square pulses for Euler’s method (r = 1). The basis func-
tions { @), ;) \oliey joys i = 1,2, with e/ the I-th unit vector in R and @y, : [0,1] = R™,
that we use to construct the spaces Ly are not orthonormal. Hence, for numerical calculations,

we associate with these spaces Nrni-dimensional spaces of real coefficients of the form
Ly =(XXR", (,)p b1), i=1,2, NeN, (4.5¢)

where the inner products and norms are chosen so that for any u,v e L), with

u(t) = Zﬁi,‘.:, ity,; Dy, j1(t) and (1) = 2,“.’,_:{#, P Py a0, 1 € [0,1),
(u,v), = (@ P)p , luly = bl , (4.5)

where i € %(X R"” is defined in (4.5b,c). The spaces Ly will be needed to define gradients for
p

the cost and constraint functions of the approximating problems as well as in setting up numerical
implementations of optimal control algorithms. Figure 4.1, which follows the definitions of L}

below, illustrates the relationship between the various control spaces.

The reason that we choose an L, norm preserving, nonstandard inner product on L} is that

if we use the standard /, inner product and norm on Z'}V (as is commonly done), we might, unwit-
tingly, cause serious deterioration in the performance of numerical algorithms which solve the
approximating problems in the coefficient spaces I:Sv. The extent of this ill-conditioning effect is
illustrated in Section 6. Of course, if our basis for Ly had been orthonormal, then standard /,
inner product would be the appropriate choice. The purpose of defining different control repre-
sentations is first, that the solutions of the approximating problems. have different properties for
the different representations (this is discussed at the end of this section) and, second, some results
for the second representation are used to provide results for the first representation (Conjecture
5.11 and formula (7.19b)).

24 Consistent Approximations Chap. 2

Representation_ R1

(Piecewise r-th order polynomials)

Assumption4.3. Foralli €s,c; € [0,1]. a]

For each k € #(define the sub-intervals T} = [t,, 7,,,) and define pulse functions

1 ifteT|
) () = ¢ 4.6
Na(1) { 0 elsewhere . (4.6a)
Then, define the finite dimensional control subspace L}, as follows:
| N-l r
Ly={uely0.10u@t)=Y ¥ i Py, (), drj € R, Vie[0,1]}, (4.6b)
k=0 j=1
where
Dy 1 (1) = o Ty i) o & € A, (4.6c)
with @y 4 j(t) the j-th Lagrange polynomial for the points { Thi;) j=1»ij € I, defined by
oy = T)
=] ———, ke, jer,
I}

with the property that ¢ j(7;;,) = 1if | = jand ¢y 4 j(7;,;,) = 0if [# j. By construction of the
set /, i},i; € I implies that Tyi; # Ty, if [# j. Hence, the functions ¢y ;. j() are well-defined,
and the functions @}, , j() are linearly independent. The function ¢y 4 ;(r) is thus the unique r-th
order polynomial that interpolates { (71, ik j) } j=) on the interval [#;,7,,,]. The control sam-

ples for L}, are given by

. ” ifr,; €T}
ulty ;] ={ (ki) ki € 0 ykeN,iel. (4.6¢)

|im,T,“ u(r) if Tri = Tret

Proposition 4.4. Let L), be defined as in (4.6b) and define the map
| I | m
VA,N A LN - >1§>r< R
ub {ulrg)V i Vi 5 i €1, (4.6f)
with u[-] given by (4.6e). Suppose Assumption 4.3 holds. Then V)\' ~ is invertible.

Proof. Let u(t) = 3.} Yoy @ j®ly 4 (1) be an arbitrary element of L),. Assumption 4.3
implies that 7 ; € T}. Next, it follows from (4.6e), that ulty;] = Z;-=, U jONKj(Thi)) = g j,

because of the interpolation property of Lagrange polynomials. Hence V,,'L n is invertible. (m]

Sec. 24 Approximating Problems 25

The polynomial pulse functions { <I>}M_ i} f:o';;' are linearly independent, but they are

neither orthogonal nor normal with respect to the L, inner product and norm. To complete the
definition of the spaces I:,'v in (4.5¢), we will now define the required inner product, which, in
turn, defines the norm. First, let u € L} and note that we can write each r-th order polynomial
piece Z§-=. iy j®Nx j(1) in (4.6b) as a power series a; P(1 — 1), where a; is an m X r matrix of

coefficients and the function P : IR — IR" is defined by
P(y=[1 t/A--- (/A1 . 4.7
If o= VA‘N(u), then from Proposition 4.4, i ;= oy P(ciiA), jer, ijel. Hence,
iy =g, ,]= o, T~ where
1 o1
- i[P(Ci.A) P(Ci:A)"'P("i,A)] = c:i' P ’ . (4.8)

r-1 r=1

1
Ci] .Ciz

r—
Clr rxr

The matrix 7~ is a Vandermonde matrix and the r values ¢;., i; € I, are distinct. Therefore, T}
ijplj

is non-singular and @, = i, T. Hence, foreach k € A u(t) = i, TP(t — ;) for t € [ti, trs)).

We now define the inner product between two vectors i, v € I:;\,, with u = (V,{'N)"(ﬁ) and
v=(Van) (9, by

N-1 LA
=(U,v)y = 3, j (u(ty +1),v(t, + 1)) dr
k=0 Y0

N-1 A
= 2 | (@ TP, TPt))dt
k=0 70

N-1 1 rA
=AY trace(ii, T — j Pa)P(t) dt TT%]) ,
k=0 Ay

N-1
=AY trace(ii, M, o1), (4.9a)
k=0

where T was defined by (4.8), P(-) was defined in (4.7), and

(4.9b)

-

M, = T[l j 0 P(:)de} 77T = THilb() 77
AJgy

is an r X r symmetric, positive definite matrix with

26 Consistent Approximations Chap. 2

1 172 1/3 1/r

12 U3 14 - Ur+])
Hilb()=| 1/3 14 1/ (4.9c)
Ur Ur+1) U@2r-1)J,,,

the Hilbert matrix whose i, j-th entry is 1/(i+ j—1). Note that both Hilb(r) and T are ill-
conditioned matrices. However, the product in (4.9b) is well-conditioned (the product corre-
sponds to switching from the power-series polynomial representation back to the Lagrange expan-

sion). The matrix M, is positive definite because Hilb(r) is positive definite and T is non-
singular. Given &t € E}V, its norm is Iﬁﬂ%b = (i, i) L, Finally, if we define the N-block diago-
nal matrix

MNidiag[A()MhAlMl,...,AN_|M]], (49d)
with Ay =144 = £, = 1/ N (in this chapter), then we can express the inner product given by (4.9a)
more succinctly as

(#,9)p1 = (@My,), = trace(@My ") (4.9¢)

We have introduced the notation of A; here in anticipation of using non-uniform meshes in later
chapters.

Remark 4.5. A special class of functions within representation R1 is the subspace of r-th
order, m dimensional splines [63]. The dimension of the spline subspace is only a fraction of the
dimension of L),. Our results for R1 can be extended to splines; this extension is presented Sec-

tion 7. o

Representation R2

(Piecewise constant functions)

Forjer,/ j defined in (4.4b), let

b;= Y b,
j iezl,-' (4.10a)

b;, dy=0. (4.10b)

M-

dj=a%

-
1

If all the c¢; elements of the Butcher array have distinct values then d;; = AZ{:, b;. At this point,

we can replace Assumption 4.1 with the following weaker assumption:

Assumption 4.1’ Forall j € r, Bj >0andd, = A. o

Sec. 2.4 Approximating Problems 27

Note that Assumption 4.1’ implies that for all j e r, dj>d;_;, and that 1, + dj € [ty, tx41],

ke N

Next, we introduce one additional assumption which is stronger than Assumption 4.3 used
for representation R1.

Assumption4.6. Forjerandi;el, d; < ciAsdj sothatry; € [t +djy, 4 +dj]. O

Now, for each k € A and j € r, define the sub-intervals T,f, j =l +djy, 1, +d;) and let the
basis functions (D%,’k’ j - IR = R be defined by

1 ifreT?,;
@, () = k.j)
W (0) { 0 elsewhere . (4.112)

Then, define the finite dimensional control subspace L3 as follows:

N-1
Ly={uely0,1]lu) =Y ¥ &, @,), i ; € R", Vie[0,11} . (4.11b)
k=0 j=1

=

The control samples for L3 are given by

, ifr,; €Tz,
ulri ;) ={ u(tii;) MiTOkD o kedijel,jer. (4llc)

]imlTr‘.'i’ M(f) if Tk.fj = 'k + dj

Proposition 4.7. Let L% be defined as in (4.11b) and define the map
Viy:Li - XXR"
u ({ulrg 1) i Vi » iy €1, (4.11d)
with u[-]given by (4.11c). Suppose Assumptions 4.1’ and 4.6 hold. Then VA'N is invertible.

Proof. Assumption 4.1’ ensures that the support for each dﬁ,_k_ () is of nonzero length. This
ensures a one-to-one correspondence between the elements of L3 and the vector coefficients Ug, j»

in (4.11b). Next, Assumption 4.6 together with definition (4.11c) of u[-] implies that for any
u e Ly, with u(t) = Togy Xy iy ; Py j1), ulryj] = iy j for all k € Aland j € r. Hence,

Vi is invertible. m

To complete the definition, in (4.5¢e), of the spaces l-,%, we will now define the required inner

product and norm. We define the inner product between two vectors i,V € I:?,;,, with
u=(Viy) @) andv = (V) (¥), by

(u, \7) = (U, v) = Z ZI (u(t‘ +1),v(1, +1))dt

k=0 j=I1

28 Consistent Approximations Chap. 2

r

N-1 -
=A Z ija?k,j’ﬁk,j) dt
k=0

N-1
=AY, trace(it, M,y vy) (4.12a)
k=0 .
where,
b, 0
M, = . , (4.12b)
0 b,

Since all b j >0, M, is diagonal, positive definite. Given ii € Z%,, its norm is h‘cla = (ﬁ,ﬁ)[lzv .
Finally, if we define the N-block diagonal matrix
My =diag[AgM;, A\ M-, ...,Ay 1M,], (4.12¢)

with Ay =t —t; = 1/ N (in this chapter), then we can express the inner product given by
(4.12a) more succinctly as

(@,7)z = (iMy, 7);, = trace(@My ") . (4.12d)

Remark 4.8. In place of (4.10b), we could have used the alternate definition d j ﬁAZ-j__,l b;
and set ity ; = u[r; ;] forall j € s, k € A In this way, samples corresponding to repeated values
of ¢; in the Butcher array would be treated as independent values and the space Ly would have to
be correspondingly enlarged. However, Proposition 6.2 in Section 6 indicates that (4.10b) is the
preferable definition. (m]

The relationship between the spaces L. 5[0,1], Ly and Ly and the relationship between a func-

tion u € L}, and its control samples & = Va n(u) are illustrated in Figure 4.1.
2.4.2 Definition of Approximating Problems
For N € NN, let
Hy=R"x Ly, (4.13a)

where Ly = L}, for representation R1 or Ly = L% for representation R2. Since H NCH,,, it
inherits the inner product from H,, ; which, for 7', n” € Hy, with 7’ = (&', u’) and 5 = (&”, u”),
is given by

(' =(EE" Y+ (1w, . (4.13b)

Also, for any n € Hy, Inl, = (1,7 Ju. Similarly, for N € IN, we define the coefficient spaces

Sec. 24 Approximating Problems 29

! i
-t —— ueLA%

|

|

i]
) ; TL.a T2 T3
lg -1 Iy Th 41

Fig. 4.1: The diagrams above depict the relationship between the various control spaces. On top, the map
Va.n- which is a bijection, identifies control functions in the finite dimensional spaces Ly with their control
samples in the coefficient spaces Ly. The spaces Ly are subsets of the infinite dimensional spaces
L2[0,1). The two bottom plots show a portion of a single control, u € Ly for an RK method with
c = (0, % , %) and b = (% . % , %). Since r = 3 there are three control samples per interval. The middle plot
shows u € L); u is composed of third order polynomial pieces. The bottom plot shows u € L%; u is
piecewise constant. For the k-th interval the samples are taken at times 7, j=t+cjd, j=1,2,3, where
A = 1/N is the step-size. Notice that the samples at 7;, and 7, 3 occur at points of discontinuities in u(-).
The definition of the control samples, & ; = u[7, ;], ensures that the samples on the k-th interval are taken
from the k-th polynomial piece for u € Ly, and for u € L%, the k, j-th sample is taken from the k, j-th
piece. Note that this picture would look exactly the same for a four stage RK methods with ¢ = (0, % , % 1)

and b = (% . -l-) % , %) since, in this case, there is a repeated sampling time (c» = ¢4 and 1;2 = %).

30 . Consistent Approximations Chap. 2

Ay by
Hy=R"x Ly, (4.142)
where Ly = l_,;v orLy = L—,",!,,. The inner product on H y is defined by
7" g, =(&E")+ (', d"), (4.14b)

and the norm correspondingly. Let Wp y : Hy — Hy be defined by WA,IQ(n) = (¢, VA' ~ () for repre-
sentation R1 and Wy (1) = (¢, Vi‘N(u)) for representation R2, where 77 = (£, u). Then we see that
W, n is a nonsingular map and, with our definition of the norms on H y, provides an isometric isomor-

phism between Hy and Hy. Thus, we can use the spaces H and H y interchangeably.

Next, we define control constraint sets for the approximating problems, as follows. Let U

be the convex, compact set used to define U in (3.3a). Then, with xy < oo, we define

Uv=(aelyla,eU jer, lill,< Xusj=2,...,r Vke N} (4.152)

4
(G=Dr=1

Ov={aelylig,eU Vjerke), (4.15b)

where T is the j-th column of the matrix T, defined by its inverse in (4.8), and A = 1/N, as

before. Finally, we define the constraint sets for the approximating problems by
Hy =R"x V3 (Oy) € Hy, (4.15¢)
and their reflections in coefficient space:
Hy=R"xUy cHy, (4.15d)

with Uy = Oy and V, y = V for representation R1 and Uy = 0% and Van = V3 y for repre-

sentation R2. We assume that py,,, was chosen large enough in (3.3c) to ensure that Hy B.

Remark 4.9. The constraints on i, T 1., appearing in the definition of U), were introduced to
ensure that each polynomial piece, Z;-=, ity jtb}‘,’,‘.. i), of u = V;"N(ﬁ) is Lipschitz continuous on
(24, 1x+1] with Lipschitz constant xy, independent of N. That is, luy (1)) — un(t2)1 < xy for all
71,72 € 1y, t341), k € N, This piecewise Lipschitz constant is needed to establish that the accu-
racy of the RK integration increases at least linearly with decreasing step-size (Lemma A.1 and
Lemma 4.10(i), but see Remark A.2). The need for this piecewise Lipschitz continuity is demon-
strated in Remark 4.13. In the next section we will show that the control samples of solutions to
the approximating problems we define do not depend on the control representation (Proposition
5.5). Because of this, we will conjecture (Conjecture 5.11) that the piecewise Lipschitz continu-
ity constraints in the definition of I_J;v can be dispensed with if the assumptions required for the

approximating problems defined with control representation R2 (which are strong assumptions

Sec. 2.4 Approximating Problems 31

than those required for representation R1) are met. 0O

Next, with n =(§,u) € Hy and ij = (£,i) = Wan(m), we will denote the solutions of
(4.3a,b), with w; = &G, k € A[by { &7 } &, or, equivalently, { %7 } &y. The variable] is thus
the computed estimate of x"¥(r;). Finally, for v € q, let f%:Hy = R and fv:Hy >R be
defined by

=GR = IWim="E.x), vea, (4.16)
where {"(-,-) was used to define f(-) in (3.4c). We can now state the approximating problems
as:

i <
CPN JQ'};N { V/U.N(n) I V’c,N(n) <0 }) (4.17a)

where y, y(7) = 'péa;(frn(m and y n(n) = . én(fniq SfN(m), or equivalently, in the form in which

they must be solved numerically:

CPy

in {@, y@ P NS0},
”EI}I;N {@o N PN <0} (4.17b)

where W,,‘N(ﬁ)i‘yréaé fn@ and WC-N(ﬁ)ivén.?’iq fn@). By defining the feasible set

Fy={neHyly.ym) <0}, we can write CPy in the equivalent form of problem Py in
(2.1b).

Note that for any u € UN LY, i = 1,2, where U was defined in (3.3a), i = V,"_N(u) satis-
fies ity j € U, for k € A, j € r, because u(r) € U for all + € [0,1]. Hence, for representation
R2, (4.15b,c) imply that HN Hy < Hy. Conversely, @ € Uy <=>(V2 y)" (@) € U, and there-
fore Hy cHM Hy. Consequently, for representation R2, Hy = HN Hy. Unfortunately, for
representation R1 Hy # HM Hy. First, HN Hy ¢Hy because elements u € UN L}v do not
necessarily satisfy the Lipschitz continuity constraint imposed by (4.15a). Second, if r =2
(except for the case r = 2 and the Butcher array elements ¢ = (0,1)), Hy €¢H N Hy because,
given i € I:}V, generally IV,',_N(H)II,, > lial,,[63, p. 24]. Hence, if {ny = (Enun)Inens
N < NN, is a sequence of approximate solutions to the problems CPy using representation R1, it
is possible for the uy to violate the control constraints in CP. However, as we will see, the limit
points of such a sequence do satisfy the control constraints in CP. This problem of constraint
violations for representation R1 could have been avoided by choosing Hy =H M H), (as in[43])
and letting Hy = W, y(Hy), but the set Hy would then be difficult to characterize and we would
have to impose a Lipschitz continuity constraint directly on the set H, which would be unaccept-
able.

32 Consistent Approximations Chap. 2

Nesting. The theory of consistent approximations is stated in terms of nested subspaces Hy.
This allows the approximate solution of an approximating problem CPy, to be used as a "warm-
start” for an algorithm solving an approximating problem CP, with a higher discretization level
(N2> N)) (see [55,57]). '

For representation R1, for any N € N, N 21, L) c L}y, and therefore doubling the dis-
cretization level nests the subspaces. If u € L), then v = V)\.ZN(u) can be determined from
ii = V) y(u) using (4.7) and (4.8), as follows. For k € A(and j € r, ¥}, = & T P(c;/2N) and
a1 = @ T P((c; + 1)/ 2N). For representation R2, L} < Ly where d is the smallest common
denominator of the parameters b, j € s, in the Butcher array, which is finite assuming, as is typi-
cally the case, that the b; are rational. Thus, the discretization level must be increased by factors
of d to achieve nesting. If v € L3 and i = Vﬁ_N(u), then v = Vi‘dN(u) is given, for k € A{
i,jer,andl =1,...,d,by ¥y, = iy ;fordj | <1/d < dj, where d; is defined in (4.10b).

2.4.3 Epiconvergence

We are now ready to establish epiconvergence of the approximating problems. First we present
convergence properties for the solutions computed by Runge-Kutta integration on Hy. The proof
of the following lemma, given in the Appendix A, differs from standard Runge-Kutta results

because of the presence of (possibly discontinuous) controls in the differential equations.

Lemma 4.10. For representation R1, suppose that Assumptions 3.1(a), 4.1° and 4.3 hold. For
representation R2, suppose that Assumptions 3.1(a), 4.1°, and 4.6 hold.

(i) Convergence. For any bounded subset S CB, there exist ¥ < oo and N * < oo, such that
foranyne SNHyand N 2 N *,
K

Ix(t,) - ¥ <
X)) — X, N

, ke {0,1,...,N}. (4.18a)

(ii) Order of Convergence. Additionally, suppose the Runge-Kutta method is order p,
(see [61,62]) and A(-,-) is p—1 times Lipschitz continuously differentiable. Let
(p) -~ d*!

HN ={n=(ue HN I ﬂw(l«l(h)—u(tz))n <k’ Vit € [tk’tk-l-l) , k€ N} (4.18b)
where x” < oo is independent of N. Then for representation R1, there exist ¥ < oo and N* < oo
such that, ifeiither‘n esSnN H(,ﬁ), orifn € SNHy and h(x, u) = Z(x) + Bu, where Bis an nxm
constant matrix, then for any N > N*,

Ix"(tk)-iZ[IS% , ke {0,1,....N}. (4.18¢)

Bound (4.18c) also holds for representation R2 forany 7 € S O Hy if h(x,u) = h(x) + Bu. O

Sec. 24 Approximating Problems ' 33

In proving consistency, we will need to add a version of Slater’s constraint qualification on the
problem CP.

Assumption 4.11. For every 7 € H such that y(57) < 0, there exists a sequence {7; } 2, such
that7; € H, y.(7;) <0,and ; - nasi — oo. a

Theorem 4.12 (Epiconvergence). For representation R1, suppose that Assumptions 3.1, 4.1°,
4.3 and 4.11 hold and let d = 2. For representation R2, suppose that Assumptions 3.1, 4.1°, 4.6
and 4.11 hold and let d be the least common denominator for the elements b j» J €, of the
Butcher array. Let N = { d' } 1=1- Then, the problems { CPy } y < N cOnverge epigraphically to
the problem CPas N — oo.

Proof. Let SCB be bounded. Then, by Assumption 3.1(b) and Lemma 4.10(i), there exist
x’, k < oo such that for any v € q and forany ny € S NV Hy,

K

) = SRl =187 G x™ D) = £ Gy EPN S o ™ (1) - FYI S . (4.19)
Now, let v’ € q, be such that y,(7y) = f"(7y) . Then,
Vo) = Von(n) = £ (1) = Vo T) € 7) - Fi) < % . (4.19b)
By reversing the roles of y,(ny) and v, y(775) we can conclude that
Wo(n) = Won(y)l < % : (4.20a)
Similarly,
e (mn) = wen(mull < % . (4.20b)

Now, given 7 € H such that y.(7) <0, there exists, by Assumption 4.11, a sequence
S={ni}ien with n; € H, such that 7; > n as i = oo (hence S is a bounded set), and
wc(n;) <0 for all i. Now, clearly for each i, there exists N; € N and 7'y, € Hy, such that (a)
x/N; <=12y.(n;), (b) Iny, — n;l < 1/ N;, since, for both control representations, the union of
the subspaces Hy is dense in H, which contains H., and HN HycCHy, (c)
vc(nn,") £ 12p.(n;) due to Theorem 3.2(iii), and (d) N; < Niy,. It follows from (4.20b) that
VeN (N Swe(an) +xIN; <12y (n;) + x/N; <0 for any i,k € N. Now consider the
sequence S” = {7y" } y e n defined as follows: if M = N; for some i € N, then " = n," for
M=N;,N;+d,N;+2d,...,Ny,,—d. Then we see that y,y(ny”)<0 for all M €N,
nu” > 1n as M — oo (hence S” .is bounded), and by (4.20a) and Theorem 3.2(iii) that
limM e NVom(Mu”) = w,(n). Thus, part (a) of Definition 2.1 is satisfied.

34 Consistent Approximations Chap. 2

Now let S= {ny}nek, KN, be a sequence with 7y = (En,uny) € Hy and
¥en(mn) <0 for all N € K, and suppose that ny -k n = (£, u). First, we want to show that
n € H. For any v € R”, let d(v,U) =min, ¢ y v - v'I. Since & = Vi y(uy) € U, i = 1,2,
for each N, @& ;eU for all keA jer. For representation Rl,
Tim, . (0.11.¥ e k dup(),U) = O since elements, uy € U} are piecewise Lipschitz continuous
polynomials, with Lipschitz constant independent of N, defined over progressively smaller

T

intervals'. For representation R2, d(uy(7),U) = Oforall N € Nand € [0, 1] since uy € U%, is
piecewise constant. This implies that 4 € U; hence 7 € H. Furthermore, v.(n) <0 by (4.20b)
and the continuity of y.(-). Finally, by (4.20a) and Theorem 3.2(iii), limy ¢ g YoN(TIN) = Wo().

Thus, part (b) of Definition 2.1 holds. m]

Remark 4.13. In[42), Hager empirically observes that RK methods with b j = 0 for some j,
such as the modified Euler method, cannot be used to discretize optimal control problems. This
requirement, formalized in Assumption 4.1, is used in our proof of epiconvergence. However, for
Representation R1, epiconvergence of Py to P can be established even if, for some j, b jSO0.

This is because of the Lipschitz continuity constraint imposed on the set U}\, in (4.15a).

Nonetheless, our experimental evidence suggests that using an RK method with b j<0is

unwise. For example, the three stage, third order RK method with Butcher array

0
1
3
1

| Sl—

N—[nl~3
wlosfnlis

| - 3

18
was used to discretize the problem described in Section 6 at discretization level N = 10. The
solutions 1" for different values of Lipschitz constant x, are plotted in Figure 4.2a. For com-
parison, the solutions of the approximating problems produced with the third order RK method

with Butcher array

| 1=

—N—- O
—

Wi N

| % s

are presented in Figure 4.2b. For both, with xy small, the quadratic polynomial pieces in each

time interval are forced to be fairly flat. But, as xy is increased, the solutions for the ‘“bad”

¥ It can also be shown by contradiction that d(uy(-), U) — 0 a.c. on {0, 1] without requiring, in (4.15a). elements of U;, to have
a uniform piecewise Lipschitz constant.

Sec. 24 ' Approximating Problems 35

method become increasingly worse and the control solutions remain pushed against the Lipschitz
continuity constraints. On the other hand, the solutions for the “good’” method become better as
xy in increased. In fact, when xy is bigger than the Lipschitz constant of the true solution u*, the
Lipschitz continuity constraints are inactive for the “‘good” method (see Remark 4.9). This is
seen in Figure 4.2b since the solutions for x;; = 1 and xy = 10 are identical. As xy, is increased
from 0.1 to 10, the error max; ; IuN*[rk‘ il- u*(rk‘ j)I goes from 0.0332 to 7.9992e-4 for the
**good”” method and goes from 0.0332 to 1.9119 for the “bad” method.

The conditions imposed by Assumptions 4.3 and 4.6 on the ¢ parameters of the Butcher

array are needed because of the discontinuities in the controls u € L}, i = 1,2. m]

2.4.4 Factors in Selecting the Control Representation

The choice of selecting Ly = L) versus Ly = L% depends on the relative importance of approx-
imation error versus constraint satisfaction. It follows from the proof of epiconvergence, that irre-
spective of which representation is used, if {7y } 5 ¢ N is a sequence such that ny € Hy, and
ny — 71, then 7 € H. Thus 7 satisfies the control constraints. However, as mentioned earlier, if
representation R1 is used, then 7y may not satisfy the control constraints for any finite N (except
for the case r = 2 and ¢ = (0, 1)). Since a numerical solution must be obtained after a finite num-
ber of iterations, representation R2 should be used if absolute satisfaction of control constraints is
required.

If some violation of control constraints is permissible, then representation R1 may be
preferable to representation R2 (although, see comment about transformation of simple control
bounds in Section 6) because a tighter bound for the error of the approximate solution can be
established for R1 than for R2. To see this, let 5" = (;* mun), N € N, be a local minimizer of
the finite-dimensional problem CPy. This solution is computed By setting 75" = W;"N(ﬁN*),
where 77 N* is the result of a numerical algorithm implemented on a computer using the formulae
to be presented in the following sections. The error, " — u N, of the approximate control solu-
tions uy" can be determined as follows. Assume that uyt = " as N > oo and that i* is a local
minimizer of CP (if the uy* solutions are uniformly strict minimizers then ¥* must be a local

minimizer by Theorem 2.2). Let i* €))§>< R" be such that i, i= u*(rk_ hforkeN jer
r
(assuming u*(rk' ;j) exists). Then, with iy = Van(u N*),
W — uy'ly S W = VIO, + W) — uy™y = W = VR @ + 18 - ay*Iz, (421)

By Proposition 5.5 in the next section, the quantity 1" — & N*I,:N is not affected by the choice of
control representations. For smooth, unconstrained problems discretized by symmetric RK meth-

ods, a bound for I — ﬁN*I“, can be found in[57, Thm. 3.1] (see Proposition 6.2 in for an

36 Consistent Approximations Chap. 2

0.2 T T T T T T T

ok "—'KU=O.1 i
- = xy=1
- K,=10
-o0.2} v]

Control Solution of Discretized Problem

-1 .4 I A 1 1] 1 I3 'l 1
(o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

Fig. 4.2a: Effect of the Lipschitz constant xy on the solution of problem (6.3) discretized with an
RK method that satisfies the Assumptions of Theorem 4.12 but has b, <0. The solution gets
worse as xyy is increased.

m
5 & 6
0 H (]

1
o
)

1
o
N

i
o
©

-1

Control Solution of Discretized Proble
1)
@

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-1.3 I Il Il)
o}

Fig. 4.2b: Effect of the Lipschitz constant xy on the solution of problem (6.3) discretized with an
RK method that has all b; > 0. The solution gets better as x, is increased until the point where
the Lipschitz continuity constraints on uN* become inactive, as is the case for xy = 1 and
Ky = 10.

Sec. 2.4 Approximating Problems

improved bound for RK4). The quantity lu* — V3!y (i@, is the error between #* and the element
of L) or L:,',, that interpolates Wiate = 7.j» k € Nand j € r. The piecewise polynomials of
representation R1 are generally better interpolators for i*(-), except near non-smooth points, than
the functions of R2. For (") sufficiently smooth, I - V;'IN(I-l*)., is of order r for representa-

tion R1 (see [63]), but only first order for representation R2.

25 OPTIMALITY FUNCTIONS FOR THE APPROXIMATING PROBLEMS

In order to develop optimality functions for our approximating problems, we must deter-
mine the gradients of the cost and constraint functions for the approximating problems.
2.5.1 Computing Gradients

At each time step, the RK integration formula is a function of the current state estimate %, and the
r control samples ity = (@@), ..., ;). So,let F:R" x (X R") - R”" be defined by
S

F(x,w) = x+Aib,-K,-(x,wG), (5.1
i=1

where w = (w,...,w,) € X R" is being treated as the m X r matrix [w) ---w,], G was defined
r

in (4.5d), and K;(x,w) was defined in (4.3b) (with @ = wG € R™*®). Then, referring to
(4.3a,b), we see that for any 77 = (&, 1) € Hy, with Hy defined in (4.14a),

X = FEnim), fo=¢, ke N (5.2)
The derivative of F(:,-) with respect to the j-th component of w is, with / j defined in (4.4b),

3
F“.l_ (x,w)=A W :=Z| biK;(x,wG)

Ay 2

k)
1€, 00 5

biK(x,)

s i-1
=AY, [b,hu(Y,(x,), w;)+ A3 bih(Yi(x,0), @) Y —a— K,(x, a)):| , (5.3a)
1€l i=1 p=1900

where w = wG and Y;(x,w) = x + Azi;', a; ;jK j(x, w).

The next theorem provides an expression for the gradients of the functions f¥(-), v € q,

given by (4.16). For 1 = (£, u) € H, we will use the notation d fy(17) = 3"3 fnv(m) and

38 Consistent Approximations Chap. 2

-) d - d - d - d -
dﬁfN(ﬂ)=(mfN(ﬁ)'“ Sn@@ - ' Sy - == fN(ﬁ)J, (5.3b)

dity, dn-1,) diay_,,

to indicate the derivative with respect to £ and the discrete-time derivative with respect to the con-

trol samples i = V4 y(u), of fy(Wa n(17)). Note that d; fy(17) € R™*M is a “short-fat” matrix.

Theorem 5.1 (Gradients of Approximating Functions). Let Ne N, ne Hy and
71 = Wa n(n). Also, let My € R¥ >N be the N-block diagonal matrix defined by

My =diag[AgM , A M ..., Ay M, (5.4)

where M = M, for representation R1 and M = M, for representation R2, and again, we intro-
duce the notation Ay =1, —1, in anticipation of using non-uniform meshes in later chapters.

Then, for each v € q, the gradient of fx(-), Vfy : Hy = Hy, is given by

Vi = (Ve s, Vi) = (de fvam) Vi (da FrmMy)) (5.52)

where Vjy =VAiy for representation R1, V,u =VV§‘N for representation R2 and
dfrx(m) = (dg fy(m), da fu(m) € Ay is defined by

de fu(m) = Vel (&, 20 + 5o (5.5b)

di fy(ej = Fy, (fz,ﬁk)TﬁZf, ., ke, jer, (5.5¢c)

with ﬁZ'ﬁ determined by the adjoint equation
B = FuxLa) pla; Bl =CUE T, ke, (5.5d)
and v.Jhere F.(,-)and F W (*,-) denote the partial derivatives of F(x,w) with respect to x and the

Jj-th component of w.

Proof First, we note that VA' w is invertible by Proposition 4.4 and Vﬁ' w is invertible by Propo-
sition 4.7. Next, referring to[2, p. 68), we see that d; f (i) is the gradient of fy(17) with respect
to &. Similarly, d; fy(n) is the gradient of fy(77) with respect to i € %(>r< IR™ using the standard

[(Euclidean) inner product. Hence, the Gateaux differential of f, is given by

Dfy(n; 6n) = Dfy(i: 87) = (de fn(n), 6E) + (da fu (), Sy,

= (defan), 6) + (da Fn(M MY, 8i1)

Sec. 2.5 Optimality Functions for the Approximating Problems 39

= (de fu(m), 88) + (Viln(da fu(mMy), 8u),, (5.6)
where 67 = (6¢,0u) € Hy and 877 = (64, 6i) = W, y(6n). Since by definition of Vf¥(),
Dfn(n; 6m) = (V f(n),6n)y for all 67 € Hy, the desired result follows from (5.6). 0

Note that for 7 € Hy, i1 = Wa (1), dz fy(m) € X R™ and
r

v] T TV —
(Vufﬁ(ﬂ)[fk.i.] Vo frmlng 1) = A (dafn(mr o dg ey) M 5.7
wherei; € I, jerandV, fﬁ(n)[rk'ij] is computed according according to (4.6e) or (4.11c).

Remark 5.2. At this point, we can draw one very important conclusion. For every v € q, the
steepest descent direction, in Hy, for the function fy(-), at #, is given by
—(d; fn(m), dz fy(n) M), and not by — (dg fx (1), dz F(m)) which is the steepest descent direc-
tion that one would obtain using the standard /, inner product on %Or(IR™. The naive approach

of solving the discrete-time optimal control problem CPy using the latter steepest descent direc-
tions amounts to a change of metric that can result in severe ill-conditioning, as we illustrate in

Section 6. (]

We can now define optimality functions for the approximating problems, using the form of
the optimality function presented in (3.9b), for the original problem. For CPy, we define
6y : Hy — R, with ¢ > 0 and the set Hy defined in (4.15¢), by

Ox(n) = min maX{max FRmm) =, n () = oven(m,, max fhn)- '/’c.N(’])-t-} (5.8a)
ne HN v e qn Ve ql‘+ql’

where y, (7). =max { 0,y n(7) },and for v € q,

)= fam + (Vi - n) g + 1 -ty . (5.8b)
If needed for a particular numerical algorithm (e.g. [64]), 65 (77) = 8n(77), Where 77 = Wan(m
and
On(D = min 317 -qlh +ONF,7), (5.9a)
7eHy"
with

O, 7) = max { max FY() + ((dg Fun), dafNMN)77 =) 5y, = Do (@) = 0T e w (s

, max () + ((dg Fy(m), du Iy (MR, 7 =) gy = Ben(@e} s (5.9b)

ql’+q(l
and the set Hy is defined in (4.15d).
It should be obvious that these optimality functions are well defined because of the form of

the quadratic term and the fact that the minimum is taken over a set of finite dimension. The

40 Consistent Approximations Chap. 2

following theorem confirms that (5.8a) satisfies the definition for an optimality function. The
proof is essentially the same as the proof in [58, Thms. 3.6,3.7].
Theorem 5.3. (i) 6y() is continuous; (ii) for every n € Hy, On(m) <0; (iii) if) e Hy is a

local minimizer for CPy then 8y(%) = 0. (]

Remark 5.4. It can also be shown that e,,,(?;)=0 for ’r) € Hy if and only if
dy ¥y (.7 :1-7)20forall n € Hy where

¥y (n,7") =max { y, n(1) = W N(T') = oW N)i s Wen(D) = wen(@)e) . (5.9¢)
(m]

Proposition 5.5. The stationary points for problem CPy, that is, the points 7 € Hy such that
8x(7) = 0, do not depend on the control representation.

Proof First, ij € Hy is such that 8y (77) = 0 if and only if Oy (#, 7) = O for all 7’ € Hy. The
“if” direction is obvious. For the “only if” direction,
On (@) = ming, g {1207 - i, +©n(7)) = 0. This implies that O (7, 7) = 0 because
On(7,7) is linear in 7’ whereas 1217 - ﬁl%-,N is quadratic in #’. Second, let

o7 = (6¢,6i) = i’ = 77. Then, foreach v € q,
((dg Fu(m). dafnMMR), 7 =10) g, = (de fu(m), 88 +(dafy(m). 83),,, (5:9d)
since My is non-siﬁgular. Hence, O (7, i) does not depend on the control representation. Thus,

the points 77 such that 8y (77) = 0 do not depend on the control representation. =]

This proposition says that the numerical solution of the discretized problem is the same for either
control representation. The search directions and the control functions (V,{'N)"(u*) and

(V3 v @) will, of course, be different.

2.5.2 Consistency of the Approximations

To complete our demonstration of consistency of approximations we will show that the optimality
functions of the approximating problems satisfy condition (2.3). In fact, we will show that the

optimality of the approximating problems hypoconverge to the optimality function of the original

problem (i.e., -0y -). First we will present a simple algebraic condition which implies con-

vergence of the gradients. We will use the column vector beR given by

b=(b, b)) (5.10a)

with components b j defined in (4.10a), and also the values d j defined in (4.10D).

Sec. 2.5 Optimality Functions for the Approximating Problems 41

Theorem 5.6. For representation R1, suppose that Assumptions 3.1, 4.1’ and 4.3 hold. For
representation R2, suppose that Assumptions 3.1, 4.1°, and 4.6 hold. For N € N, let Hy be
defined as in (4.13a), with Ly = L}, or Ly = L%, and let % : Hy = R, v € q, be defined by
(4.16). Let M = M, if Ly = L), andlet M = M, if Ly = L%. Let S be a bounded subset of B.
If

M'p =1, (5.10b)
where 1 is a column vector of r ones, then there exists a x < oo and an N* < oo such that for all

n=(&u) e SOHy and N 2 N,

V£ () =V 5y < % : (5.10¢)

Proof. To simplify notation, we replace ff by X, and i)’Z"-’ by p;. Let S c B be bounded and
letn=(5,u) € S N Hy. Letii = Vy y(u) and 7j = (£, 1) where Vp y = V,'\'N for representation
Rland Vuy = Vi'N for representation R2. Foreach j erand k € A[F w; (Xk, @) is given by

(3.3a). So, with Y, ; =X, + AZ;;', a; jK j(%y, w;) and oy = i, G, there exists x| < oo such that

IF\ (X, itp) - Ab jhy(Fr g I

SIFy, G, i) = A 3 bihy(Yeg, g N+1A Y blhu(yk.laak.j)—Azjhu(xk»ﬁk,j)l

lel; lel;

s o
< A2| 2 bihx(yk.i’ Cl)k',') Zl m K,, (fk, wk)l + A Z b(ﬂh“(yk'l, L-lk'j) - hu(ik' l?k"])l
p=

IE'J

<K A%, (5.11a)

where we have used the Lipschitz continuity of /,(-, -) and the fact that § bounded implies that X,
and‘z?k'j are bounded, which implies that for all j er, Vh (X, i 0 and Vhy (X, i ;) are
bounded. Therefore, it follows from (5.5¢) that

dz Iy = [Fur (o @) By -+ For Gro)T]

= A[b 1] (R 5, B - b o H Gk i) By] + O(A2) (5-11b)

where lim, _, ¢IO(A)/Al < co. From equation (5.5a), Vo n(V, f5(m) = dz fn(m)M3/. There-
fore, from (5.11b) we obtain, foreach k € X[

Ay~ - g o 0%
Van(Vu i = = (b 18y i1 1) By -+ b phy i iy)T Bl)M~ + —=—2 . (5.11¢)
A A

2 : Consistent Approximations Chap. 2

At this point we must deal with our two control representations separately. For representa-
tion R1, u(-) € U}, is a Lipschitz continuous polynomial on each interval [#;, #;4,), with Lipschitz

constant xy, given in (4.15a). Thus, for any i;,i; € I, with j,/ € r and / defined in (4.4a),
g j —up gl = Iu[rk‘,-j] —ulr 0 < xUIA(cij i< xyd, (5.12)
where Assumption 4.3 was used to justify the last inequality. Now, let
D = [b k(R 1) Bras -+ b by (i B)P IM™ (5.13a)
and let D j» J € r,denote the j-th column of D, so that, from (5.11c),
Vufi(lrri) = Van(Vu fumij = Dj + 0(4) . (5.13b)

It follows from Assumptions 3.1 fI(a) and 4.1, equation (5.12) and the fact that j5},, is bounded
for any n € S, that there exists x,, k3 < oo, such that for any j € r and ij € I, and with M,'Jl

denoting the i, j-th entry of M~',

ro. ro_ '
IDj - hu(fks ’f-‘k.j)TpZ-H Zl b,M,-]'l <1 Zlb‘[hu(xka ﬁk.i) - hu(xk"’-‘k,j)]TpZHMi-,jl’l
j= i=

,
<):l xoliiy i — g Nl M1 S 134 (5.13c)
=

Also, if M™'b = 1 then X", M7 b; = 1 since M is symmetric. Hence for any j er,
1D — hy(xpup) Pl S K34 (5.13d)
Therefore, from (5.13b),
VNl] = by iy)T By + O(A) . (5.13¢)

For representation R2, it(-) is not Lipschitz continuous on (7, tk41), SO (5.12) does not hold.
However, since M = M is diagonal, equation (5.13e) is seen to be true directly from equation
(S.110)if M~'b = 1.

Next, since S is bounded, (i) by Lemmas 4.10(i) and A.4 there exists K4 < oo such that
Ix; — x"(1)1 < x4A and 4 5, — p™ (1440} < K44 and (ii) P}, and hu(f",u[z'k,,cj]) are bounded.
Thus, making use of Theorem 3.2(v) and equation (5.13e), the fact that both x"(-) and p""(-) are

Lipschitz continuous, and ulzy;,) = @ j, we conclude that there exists x5 < oo such that

lvufv(n)[fk,ij] - Vufls‘;(n)[rk.ij]

= Uy ("o)l DT p""(51) = hu(Fio ule)7 By I+ O(A) S K5 . (5.14)

Next,for j er,ij € I,k € A, and 1 € [0, 1] we have that

Sec. 2.5 Optimality Functions for the Approximating Problems 43

V" @) = Vi SR DOV S IV £)0 = Vo f s, W4V, Y ()] - Vo NIzl

+IV, fyMlrr i) = Va fu el . (5.15a)

The second term in (5.15a) is order O(A) by (5.14). We will show that the first and third terms in
(5.15a) are also order O(A). First consider representation R1. It follows by inspection of (3.6b)
in Theorem 3.2(v) that V, f"(5)(:) is Lipschitz continuous on t € (4 trs1), k € A, because
u € L} is Lipschitz continuous on these intervals. Since V. fy(m() € Ly, it is also Lipschitz
continuous on these intervals. Finally, by Assumption 4.3 Thi; € [thstys] for all k € N, Thus,
the first and third terms are of order O(A) for all r € [0,1]. For representation R2,
Vufn(m)(-) € Hy is constanton t € [t +d_y, 1, +d;), jerand k € A, Since u € L is con-
stant on these intervals, it again follows by inspection of (3.6b) in Theorem 3.2(v) that V,, f*(n)(-)
is Lipschitz continuous on these intervals. Finally, by Assumption 4.6, Thi;, € (e +djo1, 1 +dj],
forall k € Aland j € r. Since dy = 0 and d, = A, the first and third terms are of order O(A) for

all + € [0, 1]. We conclude that there exist xg < oo such that
IV Y (m)#) = Vi fumN £ kA, 1 € [0,1] (5.15b)
which implies that

Vo f'm) - Vufu(mh S kA . (5.15¢)

Next we consider the gradient with respect to initial conditions . From Theorem 3.2(v) and
(5.5b), IV £ () = dg fu(mI S IV LV (€, x(1)) = V£ ¥ (€, Iy + 1p"(0) — pgll. Thus, since S is
bounded, it follows from Assumption 3.1(b) and Lemmas 4.10 and A.4 that there exists x7 < oo
such that

IV £ () = dg iyt < k5(1x"(1) = Ey0+1p770) = fgl) < w74 (5.16)
Combining (5.15¢) and (5.16), we see that there exists ¥ < co such that forany ny € S M Hy,
K

WV an) = Vin@any £ N 5.17
O

The following proposition states conditions for (5.10b) to hold.

44 Consistent Approximations Chap. 2

Proposition 5.7.

(a) Suppose M = M,. Then (5.10b) holds if and only if the coefficients of the
Butcher array satisfy

s 1
leb,-c’j'=7, I=1,...,r. (5.18)

(b) Suppose M = M,. Then (5.10b) holds if and only if for all j € r, I;j > 0.
Proof. (a) For M = M, it follows from (4.9b) that M~'b = 1 if and only if

TTHilb(s)'T'b = 1, (5.19a)
Now, it is easy to see that

2= b S b; 1

g | Ziabiey || Ziabie; |_|12

, (5.19b)
: . :

E;=| b]c'rl_l z;=l bj C; llr
where the last equality holds if and only if (5.18) holds. Note that T'b is then the first column
of Hilb(r). Consequently,

1 1

Hilb(r)™' 7' = Hilb(r)™! 1:/2 = ? : (5.19d)
1/r O
which leads us to conclude that
1 1 oc, - o™\ 1
rerar e L LS A L (5.19)
6 | - cf:' 0 1

(b) For M = M,, given by (4.12b), M~ is non-singular if and only if b j#0. Also, (5.10b)
holds if and only if M1 = b. Clearly then, if b j# 0, (5.10b) holds because

b, 1
M1 = [3}:5 X (5.20)

b, Ju

Sec. 2.5 Optimality Functions for the Approximating Problems 45

Remark 5.8. The conditions (5.18) on the coefficients of the Butcher array for representation
R1 are necessary conditions for the RK methods to be r-th order accurate [61,62]. The condition

with / = 1 in (5.18) is the same as the second part of Assumption 4.1°. (m]

Theorem 5.9. For representation R1, suppose that Assumptions 3.1, 4.1’ and 4.3 and equation
(5.18) hold and let 4 = 2. For representation R2, suppose that Assumptions 3.1, 4.1°, and 4.6
hold and let d be the least common denominator for the elements b j» J € s, of the Butcher array.
Let N= {d' } j=; and suppose that {7y} y e x» K € N,’is such that 7y € Hy forall N € K
and ny — nas N — oo. Then 8y(17y) —K 8(n)as N = oo.

Proof. Let'¥ :H xH — R be defined by

¥ (7, ') = max { max £ 1) = von) - owe(n), », max fronn - wc(rm} , (5.21a)
and ¥ y : Hy x Hy — R be defined by
¥ v (7,7') = max { max T3 1) = Wan(1) - oWen(n)s), max, e n) - wc,;v(n)} , (5.21b)

so that, 6(7) = miny ¢y ‘}7(77, n’), and On(n) = min,y ¢ g, 7 ~(1,71°). Now, suppose that
{7~ } & e k is a sequence such that, for all N, 7y € Hy and ny =¥ 5. From the proof of The-

orem4.12, n € H. Let?] € H be such that () = ‘17(77,?7), and let { 7’y } ¥ e x be any sequence

such that, forall N, 'y € Hy and ')y =¥ ?7 Then,

on(nn) ¥ N(nn, 7'n) ¥ (1, n'n)+

maX{ max { TR = £ O 'n) Y = Won(In) = Waln)) = [0Wen(In)s — 0we(in)s 1+

max { f %G 'n) = ane'n)) - [wen(nn) - wc(mv)]} (5.22)

v e ql’+ql’

It follows from Theorem 4.12, Theorem 5.6, Proposition 5.7 and the fact that {7y } y c ¢ is @

bounded set, that each part of the max term on the right hand side of (5.22) converges to zero as

N — oo. The quantity ‘f’(nN,n'N) converges to 6(77) since 7y —% 7, 'y oK ?7 and ‘?(-.) is
continuous. Thus, taking limits of both sides of equation (5.22), we obtain that
lim 6y (ny) < 6(7n) (this proves that (2.3) holds for the optimality functions of the approximating
problems). Now, for all N € K, let ?7,,, € Hy be such that 8y(n7y) = ‘FN(UNv?lN)- Then,
B(ny) < ‘P~(n N,'f] ~) and proceeding in a similar fashion as (5.22) and taking limits, we see that

6(n) £lim@y(ny). Hence, together with the previous result, we can conclude that

46 Consistent Approximations Chap. 2

6n(nn) =5 6(n)as N — oo. 0

Since the union of the spaces Hy is dense in H,,,, and Theorem 5.9 holds, it follows that

the hypographs of the optimality functions 8,(-) converge to the hypograph of the optimality

function 6(-), in the Kuratowski sense, i.e., — 8y (-) 3 -0().

The following corollary is a direct result of Theorem 4.12 (epiconvergence) and Theorem
59:

Corollary 5.10. (Consistency) For representation R1, suppose that Assumptions 3.1, 4.1°, 4.3
and 4.11 and equation (5.18) hold. For representation R2, suppose that Assumptions 3.1, 4.1°,
4.6and 4.11 hold. LetN = {d') 1o1 Where d = 2 for representation R1 and d is the least com-
mon denominator of the b j» J €s, for representation R2. Then the approximating pairs
(CPy,8y), N € N, are consistent approximations to the pair (CP, 9) . m]

We conclude this section with a conjecture concerning the constraints on 14, T ;1. used to
define l_J}V in (4.15a). Recall from Remark 4.9 that these constraints impose a Lipschitz continu-
ity constraint on the individual polynomial pieces of u € U} = V;"N(I_J;v) that is needed to
ensure accurate RK integration for controls defined by representation R1. Clearly, the addition of
these constraints, which do not appear in the original problem CP, is a nuisance. Conjecture 5.11
proposes conditions under which these constraints are not needed to define consistent approximat-
ing problems (CPy, 8y) using control representation R1. Assumption 4.6 (needed for control

representation R2) is required in place of Assumption 4.3.

Conjecture 5.11. Suppose that the approximating problems CP are defined according (4.17a)

with Hy =R x V3'y(0)) where
(-J:Vi{ﬁei}vlﬁieU Vierke). (5.23)

Furthermore, assume that Assumption 3.1, 4.1°, 4.6 and 4.11 and (5.18) hold. Let N = { 2!) e

Then the approximating pairs (CPy,6y), N € N, are consistent approximations to the pair
(CP,0). , O

The basis for this conjecture is the fact that, according to Proposition 5.5, the control samples of
the approximating problem solutions do not depend on the control representation. Since we have
shown that the approximating problems, along with their optimality functions, (CPy, 8y), defined
with control representation R2 are consistent approximations to (CPy,8y), we know that the
convergence results of Theorem 2.2 hold. In particular, we know that strict local minimizers of
CPy converge to strict local minimizers of CP. But this must also be true under representation

R1 with CPy defined according to Conjecture 5.11 since the control samples for the sequence of

Sec. 2.5 Optimality Functions for the Approximating Problems 47

solutions generated by solving these approximating problems is the same as for the approximat-
ing problems defined using representation R2. Thus, if a sequence {iiy"} of control samples
corresponding to the solutions for the problems { CPy } is such that (Vi.N)"(xiN) =% i, then
it is also true that (V4 y)~'(@x") = 4. For each N, let uy* = (V4 y)™'(@n"). Then, because
{un*Yrekisa convergent sequence, there exists xy < oo such that luy (7)) — uy (7)1 < xy for
all 7,7, € [t;,141], kK € AL Hence, Lemma 4.10(i) holds which implies that Theorem 4.12 and
Corollary 5.10 hold. Note that, even if this conjecture is not true, the main convergence results

provided by the theory of consistent approximations do hold for the reason just presented.

2.6 COORDINATE TRANSFORMATIONS AND NUMERICAL RESULTS
The problems CPy can be solved using existing optimization methods (e.g., [64,65]).
These methods, however, are defined on Euclidean space and existing code would have to be

modified for use on the coefficient spaces l_,'},,, i =1,2. To avoid this difficulty, we will now
define a change of coordinates in coefficient space that implicitly defines an orthonormal basis for

the subspace Ly, and hence turns the coefficient space into a Euclidean space.

Let Ly = L), or L% and, correspondingly, Van = VA’N or Vﬁ_N. Recall from (5.5a) that,
for n=({,u) e Hy and v € q, YV, fx(n) = Va'y(da fn(mMY), where 7 = (&,) = Wa n()
and d; fy(n), defined in (5.5¢), is the gradient of fy(-) with respect to the standard /, inner prod-
uct on %()f IR™. The gradient of fy(-) with respect to the inner product on Ly is given by

V(@ = Van(Vu X)) = dz Fy(n) My, and satisfies
(VufN), 8un) s = (V, fy(@), 87) [, = (dzfn(m), 8@),, , 6.1)
for any du € Hy and &it = V y(6u). Introduce a new coefficient space, ZN = >}§X R"™,
r

endowed with the standard [, inner product and norm, and a transformation Q: Ly — ZN
defined by

i = Q) =aMy, (6.2a)

where My is defined in (5.4). Let 7 = (£,4) and for each v € q, let f"N :R" x ZN — R be
defined by ‘

v = (& aMy?) |. (6.2b)

Finally, let 77 = (&, Q"(ﬁ)). Then, by the chain rule,

48 Consistent Approximations Chap. 2

Vaf) = 07 (Vafn@®) = d, Frm) M2 |. (6.2¢)

Thus, (V; f 3(7), 8 Y1, = (VafnGi), 8a) p, = (V, f(n), 8u) ,, where 8ii = Q(6a).

Remark 6.1. Implicitly, the transformation Q creates an orthonormal basis for Ly because
under this transformation the inner-product and norm on Ly are equal to the /, inner-product and
norm on the coefficient space. With this transformation, the approximating problems CP can be
solved using standard nonlinear programming methods without introducing ill-conditioning. It is
important to note, however, that control constraints are also transformed. Thus, the constraint
ii € Uy becomes i My € Uy. For representation R1, since M;/2 is not diagonal (except if
r = 1), this means that the transformed control constraints will, for each k € 4{ involve linear

combinations of the control samples it ;, j € r.

We will now present a numerical example that shows, in particular, that this transformation

can make a substantial difference in the performance of an algorithm.

Example. Consider the following linear-quadratic problem taken from [42]:
1 - U
min f@, fw)=x3(1), (6.3a)

where x(r) = (x;(1), x,(r))" and

0.5xy +u 1
v = . 0 —4 N , . . b
* I:O. 625x3 +0.5xu + O.SuZ] x(0) |:0:| 1 e€0,1] (6.3b)

The solution to this problem is given by
u*(t) = — (tanh(1 = 1) + 0. 5) cosh(1 — 1) /cosh(1), ¢ € [0,1], (6.4)

with optimal cost f(u*) = ¢ sinh(2)/(1 + ¢%)® = 0. 380797.

The approximating cost functions are fy(«) = (0 1) ¥% where { X% } ¥ is the RK solution
for a given control u € Ly. We discretized the dynamics using the following common RK meth-

ods of order 3 and 4 respectively:

Sec. 2.6 Coordinate Transformations and Numerical Results 49

0 0
1 1 | 1
Ay = 3|3 7|z
1|-1 2 Ay = 3|0 1}
12 1 10 o0 1
3 6
1111
6 3 3 6

The matrices My used to define the transformation Q in (6.2a) are given by (4.9d) and (4.12c)
with

[e 2 - 1 oo
Mi=—|2 16 2], My==|0 4 0 (6.5)
S A %0 0 1

The matrices M, and M, for method A; are the same as for method A, since ¢; = ¢3 = 1/2

implies r = 3and b, = 2/3.

We solved the approximating problems using steepest descent with the step-size determined
by an Armijo rule augmented with a quadratic fit based on the value of fx(-) at the last two evalu-
ations in the line search. The stopping criterion was Id; fyl, < (3.1e—4)/N f and the initial
guess was u(t) =0, r € [0,1]. Table 6.1 shows the number of iterations required to solve the
approximating problems for different discretization levels N with and without the transformation
(6.2a,b). We see that solving the discretized problems without the transformation requires about
five times the number of iterations required for solving the problem with the transformation. The
situation can be even worse for other RK methods. The choice of representation R1 versus repre-

sentation R2 and the RK method had no effect on the number of iterations required.

Nurmber of Iterations
N M=M,,i=1.2 M=%l
10 4 19
20 4 19
40 5 23
80 5 24

Table 6.1: Conditioning Effect of the Transformation on Approximating Problems (RK3).

We will now show why it is advantageous to treat the repeated control samples for method

A, as a single sample (¢f. Remark 4.9). Let {uy®) N en» N € N, be solutions of CPy and

" Higher precision was difficult to achieve when the Q transformation was not used.

50 Consistent Approximations Chap. 2

suppose uy* — u* where u* is a solution of CP. In [57, Thm. 3.1], Hager establishes, for sym-
metric RK methods [66,67], a tight upper bound on the error E}, = IVA'N(u*) - VA,N(E:N*)I,“, of
second order in A = 1/N for smooth, unconstrained problems. Note that VA_N(u*)k‘ i= u*(rk_ i
k € A and j € r because u*(~) is continuous (in fact, smooth) for smooth problems [28,36).
Hager used the problem given in (6.3) to demonstrate the tightness of this bound. For the particu-
lar RK method given by the Butcher array A,, we can state the following improved result (which,

according to Proposition 5.5, does not depend on the control representation):

Proposition 6.2. Let CP =min, ¢ y f(x“(1)), u unconstrained. Suppose the approximating
problems CPy are produced by discretizing CP with the fourth order RK method with Butcher

array A4. Further, suppose that | x“*(l)— NN = O(A%), that is, at the RK integration is fourth
order accurate at u". Let {un®) ~¥ eN» N © NN, be solutions of CPy and suppose uy® - u*

where «* is a solution of CP. Then N= IVA‘N(u*) - VA,,s,(uN"‘),‘,° = 0(A%).

Sketch of Proof. In[42], it is shown, using a reasonable non-singularity assumption on the Hes-
sians of fy(-), that the accuracy of the solutions of the approximating problems is determined by
N times the size of the discrete-time derivative (using the standard [/, inner-product) of the
approximating problem at ii* = VA‘N(u*), that is, Ex~N lld,;fN(u*)l. This, in turn, is a function of
the accuracy of the state and adjoint approximations. For the RK method under consideration,
Hager shows that, for k € A} the variables i Kl = u*(tk) and i k3 = u*(tk + A) are third order
approximations to u*(t;) and (1, + A), respectively. Thus, we need only show that

i k2 = u*(tx + A/2) is a third order approximation to u* (1, + A/2).

Let Yio =X + % h(xy, i) and Yy 3 = X + %h(Yk_z, ity ») represent intermediate values
used by the RK method at the k-th time-step. In Hager’s notation, Y;, = y(1,k) and
Y; 3 = ¥(2, k). Hager introduces a clever transformation, specific to symmetric RK methods, for
the adjoint variables so that they can be viewed as being calculated with the same RK method
used to compute the state variables, but run backwards in time. The intermediate adjoint vari-
ables of interest here are denoted by g(2, k) and (1, k). With this transformation, the discrete-
time derivative for the approximating problems have the same form as the continuous-time gradi-
ent - for the original problem. Since ca=c3=1/2,
dafn ez = 2AIL B (Yo, @) g1, k) + L B (Vs @) g(2, KL, Further, since
28 h, (7 (1 +), (1 + D) ¥ (1 + 2) = 0, 1d; Fy(6F); o1 is bounded by 2 A times the maxi-

mum of l(Y; 5 + Y 3)/2 - x4 (1 + £ and Kg(2, k) + g(1,k))/2 - P + 2. Let

Y, Y A A
M = X + Z [h(:\"k,l-l*k_l) + h(fk + '5 h(fk,l}*k‘]), l-l*k.z)]

w(k) = 5

Sec. 2.6 Coordinate Transformations and Numerical Results 51

’

= % + % [A(Eg, 81 1) + H(F + D R(Ry, i), 8 5 2] (6.6)

where A" = A/2. Thus, w(k) is produced by the improved Euler rule applied to %;. Since the

local truncation error for the improved Euler rule is order O(A%) and %, is order O(A%),

lw(k)—x“*(tk-!-%l is order O(A%). In the same way, it can be shown that

192, k) + q(1,k))/2 = p¥ (1) + $)is O(A%). Thus, we can conclude that Id; fy ("), 21 = O(A%)
for all k € Al This implies that the solutions of the approximating problems satisfy
Wiy i — (451 = O(A%) forall k € Nand j €. o

Table 6.2 summarizes our numerical results using the RK method with Butcher array A,.
The first column gives the discretization level. Columns 2 and 3 show that doubling the dis-
cretization results in an eight-fold reduction in the control error. Thus, as predicted by Proposi-
tion 6.2, E% is O(A*). The next two columns, agreeing with Hager’s observations that the opti-
mal trajectories of the approximating problem converge to those of the original problem with the
same order as the order of the symmetric RK method, show that E,f,, =If (u*) - fN(ﬁN*)l is order
O(A*). The numbers in columns 2 and 4 were obtained by solving the discretized problems to
full precision. Finally, we include in the last two columns the number of iterations required to
solve the approximate problem with and without the transformation Q. The stopping criterion
was the same as used for Table 6.1. As with the previous method, the effect of the Q transforma-
tion is quite significant. The solution of the untransformed problem requires about five times the

number of iterations required to solve the transformed problem.

Accuracy of Solutions Number of Iterations
N EY “I ESy Ef EJEL, | M=M;, i=1,2 M:—IIGI
10 1.48e-4 7.91 . 2.86e-7 16.22 4 21
20 1.87e-5 7.99 1.76e-8 16.13 5 21
40 2.34e-6 7.62 1.09e-9 16.07 5 23
80 3.07e-7 6.80e-11 5 23

Table 6.2: Order of Convergence; Conditioning Effect of the Transformation Q (RK4).

The last table shows the accuracy of the gradients for the approximating problems produced
with the second RK method (Butcher array A,) evaluated at the control u(t) = — 1 + 2¢. The first
column shows the discretization level N. The second and third columns confirm that the gradi-
ents, V fy(it) = d; fy(u)M3, for the approximating problems converge to the gradients of the
original problem. Note that, based on the proof of Theorem 5.6, it is enough to show that the

52 Consistent Approximations Chap. 2

gradients converge at the points ki k € AN jer,andi j € 1. The fourth column of Table 6.3

shows that the gradients that result if one uses the standard /, inner product on)}5)(R™ do not
r

converge.
1
M=M, M= M, =1
N Wan(VF) = Viy@h, | Wan(Vw)=Viy@l, | Wan(Vf@w)- Nd; f
10 1.67¢-3 6.46e-4 148
20 3.77e-4 8.31e-5 1.48
40 9.94¢-5 1.05¢-5 148 '
80 2555 1.33e-6 148

Table 6.3: Convergence of Gradients.

2.7 APPROXIMATING PROBLEMS BASED ON SPLINES

In this section, we use splines as the finite dimensional basis elements in the construction of
approximating problems for optimal control problems with endpoint inequality constraints and
box-type control constraints. One of the early references that used splines for the solution opti-
mal control problems is [35]. We show that the resulting approximating problems, along with
their optimality functions, are consistent approximations to the original problem with its optimal-
ity function assuming that Conjecture 5.11 is true. In the process, we will develop some results
for splines that are interesting for their own sake. For clarity, the results below are stated only in
terms of control variables u rather than the initial state/control pair 7 = (£, u). The treatment of

variable initial conditions is unaffected by the use of splines.

We will construct our finite dimensional control spaces using spline basis functions (B-

splines). Thus, forr € IN, r 2 1, let

N+r-1
LY ={uel,0,1] | ut)= 3 ap(t), 1€[0,11},

(7.1a)

where o, € R", ¢, : [0, 1] — R are the basis function with ¢,(r) = By 4, (1), defined below, and
r is the order (one more than the degree) of the polynomials that make up the spline pieces. For
an excellent presentation of spline theory, we refer the interested reader to [63]. The subscript ty
in By, , (1) is the knot sequence upon which the B-splines are defined. We will not consider knot

sequences with repeated interior knots although many of our results hold in that case also.

Sec. 2.7 Approximating Problems Based on Splines 53

Rather, we will consider two knot sequences which are constructed by adding endpoint knots to
the set of breakpoints { f; } ,C"=0 (note that, unlike in [63], our breakpoint sequence begins with the

index k = O rather than & = 1.). The two knot sequences are

Uniform knot sequence. The knot sequence is
tv={k/INJNEL, (7.1b)
General knlot sequence. The knot sequence is
tv= {0)R (7.1¢) .
where {7, } is a sequence of not necessari!y uniformly spaced breakpoints which satisfy
Ly = =<t < <ty <Iy=- =N - (7.1d)

The uniform knot sequence can only be used for uniformly spaced breakpoints. The purpose of
its introduction is solely to make some results cleaner and easier to see. The spacing of the break-
points, {7, } 2'20, for the general knot sequence may or may not be uniform. In our notation, the
knot sequences begin with index k = — r + 1 (rather than k = 1 as in[63]).

With these knot sequences, the B-splines constitute a basis for the N + r — 1 dimensional
space of r—2 times continuously differentiable splines of order r with breakpoints at times
{1, } N, Since splines are just piecewise polynomials between breakpoints with continuity and
smoothness constraints at the breakpoints, Lx) c L) where L), is defined in Section 4 for repre-
sentation R1 with r-th order polynomial pieces. The control samples, ultgjl, k=0,....,N-1,
J € r, used by the RK integration method given in (4.3a,b) are related to the spline coefficients by
ulti ;1 = oo™ argi(i).

We will use B-splines normalized so that ZN:,' -l By 4, (1) =1 for all t € [0,1]. For a

given knot sequence, these B-splines can be written (see [63]) in terms of the following recursion

on the spline order r:

t = lhere t—1
Byraigy(t) = — T By () + ——— By (), r21, (7.22)
Tk—) = gep-) Ig = gy
1, h 1 St<t;
By 14,(D) = 7.2b) .
k(D) {0, otherwise (1.2b)

If ty is the uniform knot sequence, the domain of the B-splines extends outside of the range
t € [0,1]. This is for the purpose of construction only; the functions u(t), given by (7.1a), are
defined only on ¢ € [0,1]. An important feature of B-splines is that the support of each basis

function, ¢,(t), is limited to [#,_,,1,]. This is important for efficient computation of u(r) from its

54 Consistent Approximations Chap. 2

spline coefficients and of gradients for the cost and constraint functions.

As an example of B-splines defined on a uniform knot sequence, we express the basis func-

tions for cubic splines (r = 4) explicitly (compare with [35] where the B-spline normalization is
different):

((t - tha)®, ha SISl
1| A 43820 -1,) +3A0 = 1,302 = 3(t - 1,.4)°, 1, <1<ty
Bragy(t) = —s 1 (3 k-3) + 3A(T 3)” = 3(Tk 3) k-3 k2 990
6A’ 4A° — 6A(r — L) +3(- 1), Iha SES 1
A =30% -)+ 300 - P -t -)? . e Sty

where A =1/N. As another example, we plot the B-spline functions for a quadratic spline
defined on the general knot sequence { 0,0,0,0.1,0.25,0.3,0.4,0.4,0.4 } in Figure 7.1.

We now formulate the approximating problems using splines. The control constraint sets
for the approximating problems are defined as,

U= (uelPlayelU,k=1,....N+r—-1)} 73

where, for this section, we assume that U, used to define U in (3.3a), is of the form

Parabolic spline basis functions with non—uniform breakpoint sequence.
1 T T T

o 0.1 0.25 0.3 0.4
Time

Fig. 7.1: A plot of the six B-spline functions used to construct
quadratic splines defined on this general knot sequence.

Sec. 2.7 _ Approximating Problems Based on Splines 55

U= {v=D'\ ... v € R"l-c0<d SV Sbi<oo, i=1,....m}. (1.3b)
Thus, the spline coefficients for each component of the control have constant bounds.

The approximating problems are thus:

CPN minm [V’(),N(u) | V’L‘.N(u) <0 } ’ (7.3¢c)

ueUy

with y, y (1) and v, y(u) as defined in (4.17). We will keep the definition of the optimality func-
tions the same as given in Section 5. Note that the decision parameters for these problems tran-
scribed inio coefficient space are the coefficients a;, k = 1,..., N +r — 1, rather than the Nr con-
trol samples u[z; ;], k =0,...,N-1, j=1,...,r for the approximating problems defined in
Section 4. Thus, the number of decision parameters needed for splines is substantially less than
the number needed for the same order general piecewise polynomials. This is the motivation for

using splines.

The next three results state properties of the spline subspaces that are needed to prove epi-
convergence of the approximating problems to the original problem. Proposition 7.1 and Corol-
lary 7.2 apply only to uniform knot sequences. Corollary 7.2 is a non-recursive version of the
subdivision result given in [68, Thm 3.1]; the method of proof is completely different. A similar

result for general knots sequences, expressed in terms of a recursion formula, can be found
in [69,70].

Proposition 7.1. (Nesting of Basis Functions) Given an integer p=21, let

tv = (k/N 2 and by = (k72N) 2V Then,

1 el »
Bk.p.tN(t) = F E ap.iBZk—p+i—l.p.tN'(’) ,k=1,..., N+ p— 1, (7.4)

i=1
where o, is the i-th coefficient of the polynomial (¢ + 1)*.
Proof. We prove (7.4) by induction on p. It is clear from (7.2b) that (7.4) holds for p=1
Now we will show that if (7.4) holds for p = r, then it holds for p =r+1. From (7.2a),

I = Trr I —1
——B,;_ 1)+
rA k |,r,‘~() rA

Substituting (7.4) into this expression while letting A’ = A/2 and 1, = 1’5, gives us

B rarg, (1) = Brey(D) . (7.5a)

1=y 1 7 'y —t 1 7
Birs14y(1) = A E.;, Ori Bagk-ty-rei-1 ray (1) + BT ET OriBak—rsi-1.r (1)

56 Consistent Approximations Chap.2

1 t = t'3k=r-1y 1~ t'23k=r-1)
T L By v Botketyriray (1) + 012 A Bopotor gy (®)

N i - t = '24=r-1) N Py =1t o
4 ————2 4+ 0, i) ——— By
: rj+l A r.j-1 A 2k=1)-r+j.r.ty’

' —t Vo
+ Oy =5 Batktray () + Oy —— % szn,,, (1)
! = Vather-n) T e () 1= 2ty
=57 0 T 0y —————— Byi_ry + (0, + G, 7) ——2k11
or r.l A 2(k=1)-r r.l A 2k-r-1 r,l r2 A

r

U 2k=t)=rsj = ! =1y (kmr1)tj
j 2k-r=1y+j
+2 ((Ur.j—l +0,) ————— + (0, + 0r js1) — 5 Bak)-r+j

=2 rd’ rd’
121 1=t 2kr o =1
F Oy +Oppy)) 2By by o el p P
ror + Orral) N 2~1 F Op r41 A 21+ Orrel =5
where we have abbreviated By, ,/(f) with B, and we have used the following facts:
(i) since ro, | — 0,3 =0,
07 2(t = 'apr-1y) = (6,1 = 0, 2)A + 0, 5(1 = 1'3cryy)
= 0 1 (2hmymt =1+ 1 =5 p)) + Oy 2(1 = 1y eyyy = A)
= 0,1 (U 2por) = 1) +(0r) + 0 2)(T = o4y (7.5b)
(if) since g, , = ro, ;41 =0,
o'r.r(t’?.k -n= o'r.r(t,Zk -1)- (Ur,r - ro'r,l'+l)A'
=0 (o =1 = A) 4+ Op i) (g ~ 1+ 1 = U yy)
= (O'r.r + ar,r+l)("2k—l -+ o-r,r+l(t - I,Zk-r-l) ’ (7.5¢)

(iii) and since a,_j_,(r +2-j)-ro,j+jo, =0, j=2,...,r, we see that

=1 t - t"’(k-r—l)
Oy j) — +0, ., ——
j% r.j rA' r.j+l rA

r to —1 =1t 1
2k 2(k=r-1) . .
= O, i) —— + 0O, ; _._—__(O- ._(r+2_)_ro' C+ o .1)
= J§2 r.j-1 A o+l A - \Or.j 1 J rj T JOr j+

Sec. 2.7 Approximating Problems Based on Splines 57

r t's =t
2k
= Z Gl',j—l ’

L=ty TH2- J
j=2 rA

O T T On 5 T On# 3

Uaktyerej = U+ = Voot

+ar,j A
=Yoo, P =t 2= DA Cakenyre
=) r.j-1 rA’ r.j-1 rA r.Jj rA
P e o T S k(S0 S /-4
r.j rA r,j+l I'A' r,j+l A’

“Wk=t)-rj —

- ! ! 1= ogkmr—tyj
= X(0,j-1 + 0,) +(0,j + 0, jy) ——F—

> ; 7.5d

j= rA rd’ (7.5d)
. . -1 4 -])y = §

which all derive from the fact that o, =1 and o,; = %{,-:T(('j%ll))!- |, o= dls '&_(',)! *3

J =2,...,r+1. Now, rearranging terms slightly, we get

1 1=t (r-1) 'oker) — 1
By rr14y(1) = > {O'r,l A Bag-1yr + 01 A Boker-i

4 1= 1 kmr-lpt Uokrajot =1
+) (o,;+0,; —_———— By i+ ——————PB,, ..
&on r.1+l)(A k=1)=r+j A —rj-]
1= 2k-r- o —t
+ 0, —_— B, +0 2B, . (7'5e)
ror+l A 2k-1 r.or+l A 2k

Referring to (7.2a) and noting that o, =0, =1, Orpsl = Ory 2 =1, and

Orj+ Orjrl = Orgpjulr J = 1,...,r+ 1, we see that
1 r+2
B a1y (1) = > Z% Ort1iBakorsiarer gy (1) (7.5f)
=

which verifies that (7.4) holds for p = r + 1. (|

Corollary 7.2. Let r 21 and o, ; be the i-th coefficient of the polynomial (¢ + 1)". Then, for
splines defined on uniform knot sequences, given u e L%) with coefficients a;,

k=1,...,N+r—1uis alsoamemberofL(zr,z, with coefficients f;, k = 1,...,2N +r—1 given,
for r odd, by

58 Consistent Approximations Chap. 2

r+l
2
2 @an-i+l Or2iel + k odd
1 i=1
Bi = Rl , (7.6a)

-
2 Hsrsiy2-i Or2i » keven

i=]

and, for r even, by

[rll
2
, ZI Qi+r)2-i+) Or2i-1 » keven
I=
Be= 2y 12 . (7.6b)

Y @ar-1y2-i+1 0r2i » kodd

1=

where [p-| is the smallest integer n such that n 2 p and l_pJ is the largest integer n such that
n<p.

Proof. In the following, set By ra (= Oif k<1ork>2N+r-1. From equation (7.1a) and

Proposition 7.1,

N+r-1 N+r=-1] r+l
u(t)y= Y B, N= ¥ @k 5777 X OriBrkeraiotray (1)
k=1 k=1 270 =
AUN+r=1] r+l
= 3 QT X 0 Brphigg, (1)
; RS, T]
k=1 3 i=|
k' odd
r+l r+l
2AN+r=11-]] =1 L=-J
D YT pr=l 2 Or2jmiBirjoirae D+ X 0,2jBrriajra)
k=1 3 J=1 ‘ j=1
k’ odd
r+l
I'—Z—'I
2 @ Orajoi Biounji g () K odd
AN+r-1)] =l 5
= rearih BEAL
o= 2-1 L-Z—J
Y ay 0By piajoy (1) k" even
=

Sec. 2.7 Approximating Problems Based on Splines 59

[

2 2N+r=3+2j

™

Aptr y 0r2j-1Br (1) k +reven

1 =V k=2 3tl-
= < rl . (7.7a)
21 L5 d aneroaanj
QA kar+] U,'ZjBk'_,-'(N'(I) k +r odd
j=| k=2j—r 2 =J

\

Thus. if r is odd, we can write, abbreviating By , ,(t) with By,

i IN+r=l| Qg4r Op) 2N+r+l| Qrer Or3 AN+r-D| ak+1 O,
un = 55 7 i+t X 7 et X T B
k=2-r [Qk4r-1 Op2 k=d-r | Q fer-] | Ord k=1 Ak Op r4]
2 2 2

where the top row is for & odd and the bottom row is for k even. If r is even, we can write

AIN+r=1| Qp4r O, AN+r+l| Qpey O3 2AN+r)=1 (A k O rs)
un=omy Xl T i+ 2| 5 phot 2 k>
< k=2=r | O k4r-y Op2 k=d=r | O k4r-1 : Ora k=1 0
o] 2

where, the top row is for k even and the bottom row is for k odd. Now, by collecting the terms for

ke {1....,2N +r-1} and forming the expression
2N4r=-]
u(t) = z ﬂ/\'Bk.r'.l,\~'(’) . (77b)
k=1

we see that the coefficients S, are as given by (7.6a.b). m]

Lemma 7.3. Let N= (2")7. Then. Ly cLy) for any N\.N; € N such that N; < Na.

n=1

Furthermore.

(a) Given u e U and N =2" < oo, there exists j, € N, j, <oco and u; € U‘j’") such that
lu—u; l<1/N.

(b) Suppose there is a sequence {uy } 5 ¢ N Such thatuy € UV and uy — u. Thenu € U.

Proof The nesting of subspaces defined on uniform knot sequences follows directly from
Corollary 7.2. Nesting for subspaces defined on general knot sequences follows from the knot
subdivision results in 70 . and [69]

(a) This result is obvious for the case r = 1 (since uy € L(,,}) is piecewise constant). So assume
that r2>2. Since u e L7,[0,1] € L3[0,1] we have, for any &>0, that there exists
u', € C™[0.1] (space of continuous functions. u(-). with u(r) € R™, r € [0,1]) such that
lu — 1’ by < £.[71, Theorem 3.14 (p. 69)). Choose € = 2/(5+m)N. We will construct from u’,

60 Consistent Approximations Chap. 2

another function. u, such that lu—u,lo<¢ and a+e<u(r)<b-¢ for all + € [0,1]. This
allows us to approximate u, with an r-th order spline in such away that by allowing enough knots
for this spline (and using the fact that the spline subspaces nest) its coefficients a; satisfy
a,eU.

With () denoting the i-th row of a vector, define the continuous function u, : [0,1] = R"

as follows:

b - iful(n>b-¢,
ul(=14 u r(r) ifa' +esuwi()sb -¢, iem, tel01], (7.8a)
a+e fu(n<a+e, '

Note that. for all 7 € [0,1]. @' <u'(1)< b’ since u(r) € U. Thus, if u”. < a; + ¢, then either

(i) a' <u'(1)< a' + e = ul(r). in which case, 0 € 1/'.(1) — u' (1) £ u'(1) — @' = £, and therefore
() — ') = 2 St —u' () + €, (7.8b)
or, (ii) u'(1)> a' + &, in which case 0 < u'(1) = u'(1) < u'(1) = u"i(1), and therefore
(. = u' () < (W) = u' (1)) < (W) - u'(1)) + €2 (7.8¢c)
A similar argument holds for the case wu.>b,—&. For the case b'<u’ <d',
(ui(t) -u'@) = ((ll'r)i(l) - ' (n))?. Thus, in all cases, (1'(1) - uﬂ(r))2 < W' - u'i_(;))2 + &2,
Therefore. we have

I m m X - " " ”
W —u b3 = J' Z(u (1) = uh(n)*dr < j Z((u () =’ () +e*)dt =l —ull3 + me” . (7.8d)

0 i=l 0 =1

Thus, lu = uls < (1+m)e. Since u(-) is a continuous function, for each i € m, the modulus of
continuity for u', @@, o)=max { (1)) —ul(t2)l | I, ~11l< o}, goes to zero as o — 0.
Thus, by [63, Theorem XII.1 (p. 170)). there exists an integer N = 2"' <oco and a spline
uy, € Ly such that

T L P <§ (7.8¢)

Let D, ., be as given on page 155 of [63] (forall r 22,1 £ D, ., < o0). Since uy, is a spline with
bounded coefficients, it is Lipschitz continuous. Hence, there exists n; € N, n| < n3 < oo, such
that. with N, = 2™,

luy, (1) = un, (1N < V1,12 € [0.1]suchthatlty — 1< (r = 1)/ Na. (7.8)

£
Dr.oo -1 '

Now. fork =1,.... N- +r. define the intervals T = [1;.,.1;], with 1, = k/ N, and define the

quantities M} =max, ¢ 7, 4y (1), and m; =min, ¢ 7, uy (1). Since for 1,12 € Ty.

Sec. 2.7 Approximating Problems Based on Splines 61

Ity — 151 < (r—1)/ N>, we see that

. . o . £
M, -mi = max Wy () —-uy (NS ———, for 1;,1,€T;, i€m.
k (=, max N, (1) N, (12) D, < 11 €Ty, (7.8g)

Thus,
£

r.oo Mi _’n’k

+1, Viem. (7.8h)

Next, since Ly, < Ly, by Corollary 7.2, uy, € Ly,. Hence, there exists { a; },'fjf’ c R"

such that uy (1) = Zﬁf’ a;¢:(1). Thus, by [63, Corollary X1.2 (p. 156)],

i i i
p, Mi=m), Mi-mi (7.8i)

. M+ mi
- k¢ —k &
2 2 2

laj,

Nf—

where we used (7.8h) for the second inequality. Therefore, -4 £ + m} < a} <1 e+ M. But,
from (7.8¢). we see that M} =max, ¢, uy () Smax, e tp()+3e=b"~1¢ and
mj =min, ¢ 7, Wy, (1) 2 min, ¢ 7, 4,(1) - + £ = a' + J£. Thus, @' < e} < b’ which implies that

a; € U. Finally, by (7.8d) and (7.8e),

, £ .
le—up b Sh—u' s+ W' —uds+ i, —uylo < e+ (1 +me+ 3= (7.8))

ﬁ ’
since £ = 2/(5+ m)N. Thus, the proposition holds With jn=2"andu; € U(J?.
(b) Referring to [63, Corollary X1.] (p. 155)] and using the fact that the coefficients for each com-

ponent. i = 1..... m. of the control satisfies @' < a} < b' foreach k = 1,...,N +r -1, we see

that Uy’ < U. The result follows immediately since U is closed. m]

Remark 7.4. From the proof of Proposition 7.3(b), we see that U‘,G’ < U. Thus, from the defi-
nition of Uy in Section 4 for representation R1, we have that
Uy c UN LY « UN Ly © Uy. Hence. while control constraint violations are possible for

u € Uy, they are not possible for v € U(,:l’. m]

Theorem 7.5. (Epiconvergence) Suppose that Assumptions 3.1(a), 4.1 and 4.9 hold and that

Conjecture 5.11 is true. Let N= {2") 7 . Then, the problems { CPy } y ¢ N cOnverge epi-
graphically to the problem CP as N — co.

Proof. Given u € U, there exists. by Assumption 4.9, a sequence { uy } ¥, such thatuy € U,
uy - u and y.(uy)<0. By Lemma 7.3(a). for each N =2", there exists j, € N and:
u;'e U‘j'") such that luy — u; ‘1< 1/N. It now follows from the proof in Theorem 4.10 that part

(a) of Definition 2.1 is satisfied. That part (b) of Definition 2.1 is satisfied follows from Lemma
7.3(b) and the proof in Theorem 4.10. m]

62 Consistent Approximations Chap. 2

To show consistency of approximations, what remains is to compute the gradients of the
cost and constraint functions with respect to elements of L(,",) and show that the optimality func-

tions for the approximating problems satisfy condition (2.3). To compute the gradients V, fy(u),
we first define the spline coefficient space

F(r) -
IP=(,X R, (o) o 1) (7.92)

and the map

Snr: LY = LY. (7.9b)

which takes elements u = Y07~ a;0,(r) and maps them to @ = { a; } Iy~', with a; € R™.

When the quantity & € Z‘,;’ appears in a linear algebra statement, it is to be considered a “short-

fat” matrix
a=[a; - Angyoy) € RVNL (7.9¢)

It is clear that Sy, is a linear bijection. Proceeding as in Section 4, we define the inner product
on LY in the following way. Given a, 8 € LY, let u = Sy () and v = S}/,(8). The inner

product must satisfy

l
(. By = (uv)y, = [(CEI aonn I Biorn))
0

N+r=1 Nar-l 1
T3 (@) [aendi = (@M. py, . (1100
= = 0

Thus, M, is the (N +r—1) X (N +r— 1) matrix whose k. /-th entry is given by

1
M1 = [g dr (7.10b)
0

An alternate means of determining M,, is to make use of the fact that L'}’ < L) where L),
was defined in (4.6) as the subspace of piecewise polynomial controls. This will allow us to
derive a more useful formula for M, and enable us to use the results for L} in Section 5 to show

consistency. Let My be as defined in (4.9b) with M = M\, the quadrature matrix for representa-
tion R1. Recall from Section 4 that, given u € L}\,. ia=Vynu) e L.,;,, are its control samples.

Thus, from (7.1a), the composite map V4 yoS¥,. Which computes the control samples of

ue L(N') from its spline coefficients @ = Sy ,(u), satisfies
i=VinoSya)=adl ., : (7.11a)

where @4 y is an Nr x(N +r-1) matrix whose (Ir + j, k)-thentry,/ =0,....N-1,j=1....,r.

Sec. 2.7 Approximating Problems Based on Splines 63

and k =1,...,N+r—11is ¢,(7,;) with i; € I. The index set / is defined in (2.4.4). In other
words, the elements of the k-th column of @, y are the control samples of the k-th B-spline func-
tion ¢;(-). Thus,

(), = (SN Mg, Sy (V) = (Van) My, VAN,
= (VanoSH, o Sn,)My, Vano Sy, oSy, (M),

= (S ()DL N My, Sn, (VDL Y, - (7.11b)

Therefore,

M, = & \MyD,n | (7.11c)

It is not obvious that (7.11c) is equivalent to (7.10b) and hence independent of the Butcher array

A. To see that this is so, note that the &, j-th element of M,,. as given in (7.11c), is

o1(70.,)
[Ma]k.l = [¢k(70.i,)"'¢k(70.i,)"'¢k(TN-|,,,)'"¢k(TN-|‘,',)]MN . (7.11d)
P1(Tn-1,)

This is just the inner-product of V4 y(#,(7)) and V4 n(g(1)) in L'.,'V. Hence, because of the way

M, was defined in Section 4, [M]is = (#x(1), 9;(1)),.

We are now in a position to compute the gradients of the cost and constraint functions with

respect to elements of the finite-dimensional Hilbert space LY. For u € L}, we will use the

shorthand notation

- . d - -
dafN(u) =(da fN(SN.r(“)) e fN(SN.r(u))) (7]23)
]

d ON+p-
to denote the derivative of fy(a), @ = Sy (u), with respect to the spline coefficients a. This
quantity is the gradient with respect to the Euclidean norm but not the norm that we have defined
on LY. Note that d,, fy(u) € R™***#-1 i a “shon-fat” matrix; if m = 1 (single input system),
then d,, fy(u) is a row vector. Let fy : Lf\',) — IR. Then, the differential of fj is a bounded linear
operator on L‘,",) which, by the Riesz representation theorem, can be represented as (V f(u), du)
where V fy(u) € L(,[,’. Therefore, using (7.10a) and the definition of directional derivatives, we

have. for u € LY, and 6u € LY,

(V@) 8u) = (S (V [N Mg), = (d, fyu),8a), . (7.12b)

where §a = Sy (6u), a = Sy (1) and, by using the chain rule along with (7.11a),

64 Consistent Approximations Chap. 2

do f(u) = dg fy) Dap |, (7.12¢)
with dj f (1) defined by (5.5¢). Thus, foru € L%,
V. fnu) = D‘.r(dﬁfN(u)d’A,N M;l) - (7.12d)

It is important to note that the expression in (7.12d) for the gradient on L%) is not the same
as the gradient V fy(u) = V3'y(dz fy(u)MR) in L) restricted to Lﬁ(,) c L), because the defini-
tion of the gradient depends on the space of perturbations upon which the differential of fy(:) is
allowed to act. However, from (7.12d) and (7.11a), we can relate the samples of V f(u) on LY,’
to the discrete-time derivative of fy () as follows,

Van(Vin()) = Vo no SHAda Iy @A vM;)) = di f)DA y MG DL . (7.13)

We note that ®, yM;' @7 \ = M7/,

The expression in (7.13) can be used in the proof of Theorem 5.6 to show that there exists
x < oo such that IV, fx(u) =V, f(u)l < x/N for all u € L cHy. The derivation of (5.13d)
starting from (5.11d) must be modified by taking into account the fact that entries of
<I>A,NM;'<DX'N go to zero away from the diagonal and (bA_NM;'@;'Nl — 1 as N — oo, where 1
is a compatible column vector of ones. Therefore, the optimality functions hypoconverge by the
result of Theorem 5.9 and thus satisfy condition (2.3). This, along with Theorem 7.5, shows that
the approximating problems CPy. with feasible sets HY,' and optimality functions 8y given by
(5.8a) using (7.12d) as the expression for the gradients, are consistent approximations to (CP,).

We state this result as a theorem:

Theorem 7.6. Suppose that Assumptions 3.1, 4.1 and 4.9 and equation (5.18) hold and that
Conjecture 5.11 is true. Let N= {2"}72,. Then, with CPy as defined in (7.3c) and 8y as
defined in (5.8a), the family of approximating pairs (CPy,8y), N € N, constitute consistent

approximations for the pair (CP, 8) . m]

Example (Linear Splines --- uniform knot sequence)

In this case, r = 2 and the basis functions are given by

- o)A Y
¢k(')={ (1 =1;3) ifr e [IA 2,1 |] ' (1.14)

(e =0)A ifr €[5y, 1]
Let u,v € LS\'_.) and a = Sy (). and B = Sy ,(v). Since these hat functions have a support of

only two time intervals (2A), M,,. given by equation (7.10b). is

Sec. 2.7 Approximating Problems Based on Splines 65

M, Q2r-1n!

(7.15)

Example (Cubic Splines --- uniform knot sequence)
In this case, r=4 and the basis functions are given by (7.2c). Assuming k </,
1 b :
.[o or(Ne()dt = j ¢, (t)¢,(1)dr where a =max {0,#;4} and b = min {1,,1} since each B-
a

spline has support of width 4A. In particular, [M,];; = 0if lk =11 > 3. Thus,

(20 129 60 1
129 1208 1062 120 1
A 60 1062 239 1191 120]
= ——— 7.1
M, r=-Dt 1 120 1191 2416 1191 120 1 (7.16)
1 120 1191 2416 1191 120 1

Remark 7.7.

using either a numerical integration routine or by evaluating the integrals (whose integrands are

Formula (7.10b) for determining M, can be applied in a straightforward manner

piecewise polynomials) analytically. Some care must be taken when applying formula (7.11c).
Specifically. it must be remembered that the order r of the splines in L% will be smaller than the
number of stages s in the RK method if some of the ¢, values in the Butcher array are repeated.
For example, the fourth-order method RK4 used in Section 6 with ¢ = (0,1/2,1/2,1), has r = 3.
In this case. formula (7.11c) applies to quadratic splines. not cubic splines. Recall, though, that
(7.11c) is actually independent of the RK parameters. So, for a p-th order spline, it is easiest to -
just choose ¢ = (cy....,c,) where ¢, = 1/j. j = l...., p, and not consider which RK method is

going to be used.

Both formulas also work when the knot sequence contains repeated interior knots. In this
case, care must be taken at any point where the spline is discontinuous to ensure that the values of

¢i(1);) are evaluated at the correct side of the discontinuity. D

Remark 7.8.
nant. Hence, for u € LY, we can find d(u) = Sn (V, fn(u)) = d, fy ()M efficiently by solv-
ing

For r 2 2, M7 is a dense matrix. However, M, is banded and diagonally domi-

du)M, = d, fylu), (7.17)
where a = Sy (u), using Gaussian elimination without pivoting [72. page 119]. D

66 Consistent Approximations Chap. 2

2.7.1 Implementation of Spline Coordinate Transformation.

The idea of coordinate transformations introduced in Section 6 can also be used with spline repre-
sentations for the finite dimensional control subspaces. In this case we use the transform matrix

M,, to set up the coordinate transformation:

a@ = aM!? (7.18a)

T @)= Fy@Mz™) |. (7.18b)

Correspondingly, with u = Sy, (@ M;'"%), the gradient is given by the expression

Vi fn() = dg fy(@ MzVHMG2 | (7.18¢)

Because MY and its inverse are dense matrices, a factorization approach is needed in the imple-
mentation of this transformation. Since, M, is symmetric it has a Schur decomposition
M, = UDU” with U a unitary matrix and D a diagonal matrix, see[72, page 410). Thus,
because UT = U™!, M} = UD"UT and M7'? = UD™M2UT (see [72, page 540]). Note that the
factorization need be performed only once.

Besides the computational burden of computing M2, the fact that MY is not a diagonal

matrix causes another problem: simple bound constraints on & are transformed into general linear
constraints on a (cf Remark 6.1). Both of these problems can be alleviated for second order
splines using the following considerations. First, we recall from (7.11c) that

M, = <I>£.NM ~NPa n. In this expression. My is the block diagonal matrix
MN i(ii:?ig[A()A4],A11W| AN-lMl] (7.19a)

where M, is the quadrature matrix defined for control representation R1 in (4.9b). Next. note

from (7.11a) that given a vector & € L}, a®] v = Vano S;,'.,(a‘) e L). Thus, M, is just My

transformed from the basis for L), to the basis for L‘,;). Now, according to Proposition 5.5, the

control samples of solutions to the discretized problem (P, 6y), and hence, the spline that inter-
polates those samples, do not depend on which control representation, R1 or R2, is being used.
Hence, we can construct M, from the quadrature matrix M, instead of M, without affecting the

solutions of (Py, 8y). For r = 2, we have

o]

- O
-

(=Rl

Thus, letting

Sec. 2.7 Approximating Problems Based on Splines 67

MN idlag[A()Mz , A|M2 PN AN_.|M2], (7.19b)
we get the transformation matrix
[20
Ao+ 4
2 Al +A2 ’
M, = 2) (7.19¢)
" Anaa+An
2

Ay |

which is diagonal. Note that this idea will not produce a diagonal M, for higher order splines.
However, in the next chapter, we argue against using higher order splines for problems with con-

trol constraints anyway.

In the folloWing table, we list the number of iterations required to solve a few optimal con-
trol problems with and without using the coordinate transformation. For each problem, we used a
uniformly spaced integration mesh with a discretization level of N = 50. The convergence toler-
ance was set at £ = 107 when using the coordinate transformation and & = 10°5/VN when not
using the coordinate transformation (to make the convergence criterion equivalent). This is
equivalent to setting M, = -,'7 I where] is the identity matrix. For problems with endpoint and/or

trajectory constraints, we set the constraint violation tolerance at 10~.

For the two unconstrained problems, we used both the projected descent algorithm (P-
Descent) in conjunction with the L-BFGS (limited memory quasi-Newton method) and an SQP
method (NPSOL). We solved the problems using both a second order (RK2) and a fourth order
(RK4) integration methods. The order of the spline representation is indicated by r. For second
order splines. r = 2, we used M, as given by (7.11c) and by (7.19¢c). The number of iterations
required when using expression (7.19c¢) is the first number in the » = 2 column and the number of

iterations required when using (7.11¢) is the second number.

The optimal control problems listed in table 7.1 are described in Appendix B. The last three
rows of this table pertain to problems with control bounds. We did not, therefore, solve these

problems with third order splines.

68 Consistent Approximations Chap. 2

RK2 RK4
With Without With Without

=Problem 1 Method r=2 | r=2 r=2 r=3 r=2 r=
LQR P-Descent | 5.5 | 12! 10,5 5 19! 26!
LQR SQP 5,15 15 || 10,5 5 26 39
Rayleigh P-Descent || 13,15 14 16,14 | 14 19 28!
Rayleigh SQP 18,23 40 18,18 | 20 56 78
Constr. Rayleigh | SQP 24,35 20 2,2 | 24 26 34
Switch SQP 1,18 8 12,1 6 18 25
Bang SQP 12 9 12 9
Goddard SQP 26 372 30 382
Goddard” SQP 2% 382 2 292

Table 7.1: Number of iterations required to solve various optimal control problems with and
without the use of the spline coordinate transformation (7.18). The order of the spline representa-
tion is indicated by . Columns with two numbers show the number of iterations required when
M,, is determined with formula (7.19¢) or (7.11c¢) respectively. Constr. Rayleigh is the Rayleigh
problem with the endpoint constraint x,(2.5) = 0.

In this table a superscript] indicates that the projected descent method terminated without
achieving the requested tolerance because the step-size became too small. A superscript 2 indi-
cates that the SQP reached the requested tolerance but that iterates, { a' }, failed to converge in
the sense that la™*' — &l was not small enough. The last two rows are results for the Goddard
maximum ascent rocket problem. This is a singular optimal control problem and was solved with
a 10~ penalty on the variation of the control derivative (see Chapter 4.5). The last row.
Goddard3, includes a trajectory constraint on the dynamic pressure. We can make the following

observation from the data in this table.

* With the exception of of constrained Rayleigh using RK2 and Bang, the number of iterations
when using the coordinate transformation is less than without the transformation; sometimes
substantially less. '

* In several cases, the optimization procedure was not able to terminate successfully when the
coordinate transformation was not used.

* In comparing the results of the first row of this table to Table 6.1, we see that the effect of the
coordinate transformation on the number of iterations is less pronounced for splines than it is

for controls in L) or L%. This is due to the spline smoothness.

Sec. 2.7 Approximating Problems Based on Splines 69

* For problems without control constraints, formula (7.11c) for M,, when using second order
splines, gives better results for RK4 than formula (7.19¢) gives. The reverse is true with RK2.
We have no explanation for this behavior. This suggests the following rule for which formula
for M,, to use: if the problem has control bounds or if using RK2, use formula (7.19b), other-

wise use (7.11c¢).

2.8 CONCLUDING REMARKS

We have shown that a large class of Runge-Kutta integration methods can be used to con-
struct consistent approximations to continuous time optimal control problems. The construction
is not unique: it is determined by the selection of families of finite dimensional subspaces of the
control space. Because the elements of these subspaces are discontinuous functions, appropriate
extensions of Runge-Kutta methods must be used. Not all convergent Runge-Kutta methods,
however, produce consistent approximations. This was observed both numerically and by failure

to prove consistency of approximation with these methods. We have considered two selections of
 control subspaces, one defined by piecewise polynomial functions and one by piecewise constant
functions. Splines can also be used and are treated in Section 7. Each selection has some advan-
tages and some disadvantages. A final selection has to be made on the basis of secondary consid-
erations such as the importance of approximate solutions satisfying the original control con-
straints, the form that the control constraints take in the discrete-time optimal control problems, or

the accuracy with which the differential equation is integrated.

As in our construction, the basis functions that are used implicitly to define the finite dimen-
sional control subspaces may turn out to be non-orthonormal. In this case a non-Euclidean inner
product and corresponding norm should be used in solving the resulting approximating discrete-
time optimal control problems. Neglecting to do so amounts to a change of coordinates that can

lead to serious ill-conditioning. This ill-conditioning is demonstrated in Section 6 and Section 7.

Finally, the use of the framework of consistent approximations opens up the possibility of
developing optimal discretization strategies, such as those considered for semi-infinite program-
ming in [57]. Such a strategy provides rules for selecting the number of approximating problems
to be used as well as the discretization level, the order of the RK method, and the number of itera-
tions of a particular optimization algorithm to be applied for each such approximating problem,
5o as to minimize the computing time needed to reach a specified degree of accuracy in solving an

optimal control problem.

70 Consistent Approximations Chap. 2

Chapter 3

PROJECTED DESCENT METHOD FOR PROBLEMS
WITH SIMPLE BOUNDS

3.1 INTRODUCTION

In this chapter, we consider a class of finite dimensional optimization problems that arises
from the discretization of optimal control problems with simple control bounds. Because the dis-
cussion in this Chapter is within the realm mathematical programming, we will maintain the con-
vention of using the x, rather than the control variable u, to represent the decision variables of a

mathematical program.

Consider the problem

P min_ f(x) subjectto x'20.,i=1,...,n,
reR”

where f :IR" — R is continuously differentiable and x = (x', x,..., x").

Algorithms for solving problem P based on the projection of a descent direction were first
proposed by Goldstein [73] and Levitin and Polyak [74]. In[75], Bertsekas ﬁsed the projection
operator defined in[73.74] to construct a projected gradient descent algorithm with an Armijo
step-size rule for solving P. Whenever a sequence constructed by this algorithm enters a suffi-
ciently small neighborhood of a local minimizer X satisfying standard second order sufficiency
conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the
active constraint set at X is identified in a finite number of iterations. This fact was used in [76] to
construct a modified projected Newton method, again using the projection operator defined
in (73,74], with a modified Armijo step-size rule. The algorithm in [76] employs the Newton
search direction only in the estimated subspace of non-binding (inactive) variables, and uses the
gradient direction in the estimated subspace of binding (active) variables. Under reasonable
assumptions, Bertsekas showed that his projected modified Newton method for solving P is glob-

ally convergent with Q-quadratic rate. The algorithm in [76] is easily extended to problems with

Sec. 3.1 Introduction 71

simple bounds of the form b} < x' < b, i = 1,...,n where b} < b',. Bertsekas also provides an
extension for handling general linear constraints of the form b; < Ax < b,. The Bertsekas pro-
Jected Newton method was further extended to handle general convex constraints in [77). The
efficiency of this family of algorithms derives from the fact that (a) the search direction computa-
tion is simple, (b) any number of constraints can be added to or removed from the active con-
straint set at each iteration, and (c) under the standard second order sufficiency condition the
algorithms identify the correct active constraint set after a finite number of iterations. This last
fact implies that the rate of convergence depends only on the rate of convergence of the algorithm

in the subspace of decision variables that are unconstrained at the solution.

Another example of a projection based algorithm for solving optimization problems with
simple bounds can be found in [78] where Quintana and Davison present a conceprual algorithm
with exact line search based upon a modified version of the Fletcher-Reeves conjugate gradient
method in function space combined with a projection operator. This algorithm was intended for
the solution of optimal control problems with bounded controls. The soundness of the algorithm
in [78] is not clear because the proof of convergence assumes that there exists, at each iteration k,
a step-size a;, > 0 that causes a decrease in function value. However, the authors do not show that
such a positive step-size exists. Furthermore, Quintana and Davison require an a posteriori
assumption (their eqn. (26)) that is not directly related to the problem or the method under consid-

eration.

More recently, there have been some papers based on ideas related to Bertsekas’ projected
gradient scheme. A trust region algorithm for problems with simple bounds is analyzed in [79].
On each iteration of this algorithm. a projection operator is used to find the generalized Cauchy
point of a quadratic model to the objective function. Then the quadratic model is further mini-
mized on the intersection of the trust region with the feasible set while keeping the variables
bounded at the Cauchy point fixed. This algorithm is extended to problems with general con-
straints in [80] using an augmented Lagrangian approach. A scheme similar to that proposed
in [79] is given in [81]. However, in[81] the quadratic model is based on a positive definite, lim-
ited-memory BFGS estimate of the Hessian. Therefore, a trust region is not needed and the
approximate minimizer of the model is used to construct a search direction for a projected line
minimization of the objective function. The projected gradient idea is also used in [82] and [83]
to rapidly identify the active constraint set for bound constrained quadratic programming.
Finally, the authors of [84] have extended the projected Newton method of [76] to optimal control

problems with control bounds.

Our results extend those provided in [76] by showing that the concept of Bertsekas’ projec-

tion method can be used with any search direction and step-size rules that satisfy general

72 Projected Descent Method Chap. 3

conditions similar to those in[85]. For example, we show that our version of the projection
method can be used with search directions that are determined by a conjugate gradient in the sub-
space of unconstrained decision variables. The extension to conjugate-gradient methods is partic-
ularly valuable for solving lérge-scale optimization problems with simple bound constraints
because conjugate-gradient methods do not require much additional storage or computation
beyond that required by the steepest descent method but, in practice, perform considerably better
than steepest descent. We also use our results to construct an algorithm based on the limited-
memory quasi-Newton method, L-BFGS (described in [86]), for the search direction computa-
tions. Unlike the L-BFGS method used in [81], our update is only used to estimate the Hessian in
the unconstrained subspace and our search direction is obtain directly rather than as an approxi-

mate solution of a quadratic subproblem.

The remainder of this chapter consists of three sections. In Section 2, we define the projec-
tion operator and state an algorithm model that can use any search directions that satisfy certain
conditions. The algorithm uses a modified Armijo rule for the step-size selection. We prove con-
vergence of this algorithm model and the fact that it identifies the correct active constraint set in a
finite number of iterations under second order sufficiency conditions. We also show how to incor-
porate other step-size rules into our algorithm in a way that preserves the convergence properties.
Several of our proofs are similar to those in [76]. As an example of the construction of admissible
search directions for our algorithm, we use the Polak-Ribére conjugate gradient formula which
numerical experience has shown to be more effective than the Fletcher-Reeves formulation (an
explanation for this empirical result is given in[87]). We provide one example of the fact that
standard rate of convergence results for the conjugate gradient method still hold for its projected
version. To conclude Section 2. we describe an extension of the algorithm model that handles
simple bounds of the form b} < x' < b,, i =1,...,n. In Section 3, we present numerical results
obtained in solving two optimal control problems with simple control bounds. We use three
implementations of our algorithm based on steepest descent, conjugate gradient, and the limited-
memory quasi-Newton (L-BFGS) method for the search direction computations. These numeri-
cal results indicate that the projected conjugate gradient method and the projected L-BFGS
method perform significantly better than the projected steepest descent method. Finally, in Sec-

tion 4, we state our concluding remarks.

Sec. 3.1 Introduction 73

3.2 ALGORITHM MODEL FOR MINIMIZATION SUBJECT TO SIMPLE BOUNDS

The algorithm to be presented is described with the help of the following notation: for any

z € R”, the projection operator [-], is given by

max { 0,2z’ } :
[2), = : , (2.1a)
max { 0,2" }

and, for any search direction d € R", x € IR” and step-size 4 € R,
x(A,d)=[x+ Ad], . (2.1b)

For any index set / c {1,...,n} and x,y € R", we define (x,y),izie,xiyi, and

lef = (x,x);. Without subscripts. (-.-) and | - I denote the Euclidean inner product and norm,

respectively, on R". Let
B(x,p)={xeR'llx-%I<p} (2.1c)
denote the closed ball of radius p around %. Finally, let
F={xeR'Ix'20,i=1,..,n) (2.1d)
denote the feasible set for problem P.

Definition 2.1. A point X € ¥is said to be a stationary point for the problem P if directional

derivative of f(x) at & is non-decreasing in all feasible directions:

df(X :x-%)20, Vxe 7. (2.2a)
or equivalently, fori = 1,...,n,
U 0. aa HH _oiriso. (2.2b)
ox! ox!
O

Active and almost active bounds. The projected descent algorithm model (Algorithm Model
PD) which we will present requires, for each iterate x;, the definition of sets
I =1(xx) © {1,2,...,n} and A; = A(x;) € {1,2,...,n}. The set A; contains the indices
- of the **active’” or “‘almost active” bounds at iteration k and the set /; is the complement of A; in
{1....,n}. With g(x) = Vf(x). we deﬁnef

w(x)=Ix - [x — g(x)],}, (2.3a)

" More generally, w(x) can be defined as w(x) = v = {x = Decx)),1 where D is a positive definite diagonal matrix.

74 Projected Descent Method Chap. 3

and
e(x)=min{e,wx)} , (2.3b)

where £ >0 is a parameter in Algorithm Model PD. We can see that &(x) = 0 if and only if

x € Fis a stationary point because the requi'rement that x € Fand that (2.2b) hold is equivalent
to the requirement that

max {-g'(x),-x'} =0, i=1,...,n (2.3¢)

which, upon addition of x'.i=1,...,n, to both sides, yields [x = g(x)), = x, i.e. that w(x) = 0.

Next, for x € 7, we define
AX)={iel.....n|0<x <e(x), g'(x)>0} , (2.4a)
and
Iy={iel,...,n|lié¢ AW} ={iel,...n|x>ex)or g(x)<0}. (24b)

To understand the logic behind the definition of the active constraint index set A(x), first consider
the situation corresponding to £ = 0. In this case, if i € A(x), x' = 0 and g'(x)>0. Thus, x' is
at its bound and, moreover. any movement in ¥ away from that bound will cause an increase in
the objective function. Hence our algorithm will be constructed to leave such an x' unchanged.
When ¢ > 0, as in Algorithm Model PD below, the set A(x) also includes indices of variables that
are almost at their bounds and, because g'(x) > 0, are likely to hit their bounds during the line
search. Thus. given x € 7 the set A(x) tends to identify the active constraints at a “nearby”

point on the boundary of %

Note that in Algorithm Model PD. below, the search directions are specified only to the
extent that they satisfy three conditions (stated in (2.5a,b,c)). It is clear that the direction 'of steep-
est descent, and more generally, any direction of the form d; = — D, g; where D, is a symmetric,
positive definite matrix that is diagonal with respect to indices i € A; and has eigenvalues
bounded from above and away from zero. satisfies these conditions. In the sequel we will show

how d, satisfying these conditions can be constructed using standard algorithms.

The most important property of Algorithm Model PD is that it identifies the correct active
constraint set in a finite number of iterations. Once the correct active constraint set is identified,
the active variables x; remain at the value of zero while on the orthogonal, ‘‘unconstrained’ sub-
space Algorithm Model PD behaves as an unconstrained optimization algorithm. Because of this,
the rate of convergence of Algorithm Model PD is that associated with whatever method is used

to determine the components of the search direction d in the “unconstrained” subspace.

Sec. 3.2 Algorithm Model 75

Algorithm Model PD:
Data: a,B€(0.1),M € N,o; € (0,1),0, € (1,00), € € (0,00), xg € F.
Step 0: Setk =0.

Step]: Compute g, = Vf(x;)and set Ay = A(xp), Iy = 1(x;). If Igil;, = 0and xi = 0 for all
i € A, stop.

Step 2: Select scalars m’, i € A, and a search direction d, satisfying the following conditions:

diy=-migl , oy<smi <o, , VieA,, (2.5a)
(di, 8k)y, < -cnlgkli . (2.5b)
Idkll,‘ < Uglgkll‘ . (2.5¢)

Step 3: Compute the step-size 4; = B" where m is the smallest integer greater than — M such
that 4, satisfies the Armijo-like rule:

f(xk(lk. d‘)) - f(Xk) fa { ﬂk (gk'dk)]‘ - (gk.xk - xk(/lk,dk))m} . (263)
Set
Xpy] = xk(;‘k‘dk) = [.\'k + Akdk]-i- . (26b)
Step 4: Replace k by k + 1 and go to Step 1. : m]

Note that in (2.5a) one can choose m) = 1 for all i € A;. Then the search direction in the sub-
space of active constraints is the steepest descent direction. The criterion Ig;1;, = 0 is not a prac-
tical test; in a numerical implementation it would instead be required that lg,1; be smaller than a
given tolerance. The ¢ in the algorithm description is needed in (2.3b) to determine the active

constraint index set.

Remark 2.2. It is easy to see that the the right-hand side of (2.6a) is non-positive. The first
term of the bracketed expression is non-positive because (g, dy), < -0, Ig,:lih by (2.5b). The

second term is non-negative:
(gk,xk—xk(ﬂk.dk))Ak 20. ' (27)

because for all i € Ay, gi >0 and d}, = —mj g} <—0,g} <0 and hence x} — x}(4,d;) 20 for

all 120.
m]

76 Projected Descent Method Chap. 3

Remark 2.3. The requirements in (2.5a,b,c) are similar to those used in the Polak-Sargent-
Sebastian Theorem of convergence for abstract, iterative minimization processes [85]; they ensure
that Id;l is bounded below by o,1g| and bounded above by o,lg,l and that d; does not become
orthogonal to g;. To wit, let 6, be the angle between the vectors d; and —g,. From (2.5a,b) we
have that

(di. gy S -0 1gly, + (di.gi)y, S - aylgil?, (2.82)
and from (2.5a,c)
1d, P < o3lg b, +1d, 5, < o3lg . (2.8b)
Using these expression in (2.8a) we see that

ﬁf’g—nzﬂ>0. (2.8¢)

cosf; =
YT gl T oo

O

Remark 2.4. In[76], the search directions are given by d; = — D¥g, where the D* are sym-
metric, positive definite matrices with elements, D,‘] that are diagonal with respect to the indices

i€ Ay le,
D§,=ij=0.VieAk,j=1,2,...,n,j'¢i, (2.8d)
and are required to satisfy
pw(x)2 < 2T DR < paw(x)12, Vz e R", (2.8¢)

where y, and y; are positive scalars. g; and g, are non-negative integers and w(-) is defined in
(2.3a). It is easy to see that in the case g, =g, =0. with y, € (0,1) and » € (1.00).
d; = — D, g; will satisfy the conditions required by (2.5a.,b.c). If we replace the constants o, and
o> by oyw(x;)? and o,w(x;)%, respectively, in (2.5a,b,c), the search directions d; = -D*g,

satisfy these tests for all non-negative, integer ¢ and g-. (m]

Before proving convergence, we will show that the step-size rule is well defined and that the
stopping criterion in Step 1 of Algorithm Model PD is satisfied by a point x; if and only if x; is a

stationary point.

Sec. 3.2 Algorithm Model 77

Proposition 2.5. Let x;,d, be any iterate and corresponding search direction constructed by
Algorithm Model PD, i.e., d; satisfies the conditions in (2.5a,b.c). Then

(a) x; is a stationary point for problem P if and only if x;(4, d;) = x; forall 2 2 0;

(b) xy is a stationary point for problem P if and only if Ig,l;, = 0 and xt =0foralli € A;;

(c) if x, is not a stationary point for problem P then there exists 2 > 0 such that

f(Xk(/l, dk)) - f(xk) < a { '1<gk’dk>lk - (gkv Xp = Xk(l%, dk))A‘} ’ Vie [O) 'f) ' (2‘9)

i.e., the step-size rule (2.6a) is well defined at x; and will be satisfied with 2; = min { gM piy.

Proof.

(a) Suppose that x, is a stationary point. Then (2.2b) implies that g} = 0 for all i € I,. Hence,
di = 0 for all i € I, since 1d;1;, < oalgl;,. Hence xi(4.d;) = [x§ + Ad}], = x} forall 120,
i € I;. Now.if i € Ay, then g} > 0and, since x, is stationary, it follows from (2.2b) that x} = 0.
Hence for all i€ Ay, xi(A.dy)=[-Amigil,=0=x} for all 120. Thus,
xp(A.dy) = [x3)e = x; forall 4 2 0.

Next. suppose that x;(A.d;) = x; for all 120. Then di =0 if xi >0 and d} <0 if
xi. = 0. Let the index sets /;(x;). /(x;) be defined by

Lha={iel x>0} . hix)={iel|x, =0}, (2.10a)

so that I, = I,(x;)Ula(x;). It follows from the above that if i € /;(x;), then d} = 0, and if

i € I2(x;), then d} <0, and also g} < 0 (by definition of /; since x} = 0). Thus,

<gk'd‘)l‘ = <gk‘dk)l|(.\'(\ + (g“dk>l:(\‘) = <gl\‘d‘.>l:(\‘) 2 O . (2-10b)

But, from (2.5b). (gi.di);, < —0)lgil;;. Therefore, Ig,l;, = 0 and hence g = 0 for all i € I,.
Fori € A;.d} = -migi <0. Since x}(4,d;) = x}, for all 2 2 0. this implies that x}; = 0. Thus
we have that for all i € I, gt = 0 and for all i € A, g} >0 and x} = 0. Consequently, x; is a

stationary point.

(b) Suppose that x; is a stationary point. If i € A, then, because gi. > 0 for all i € Ay, it fol-
lows from (2.2b), that xi = 0. If i € I, then either (i) x} >0 in which case it follows directly
from (2.2b) that g} = 0, or (ii) x} = 0 in which case, by definition (2.4b) of I; =1(x,), gk < 0;
then, because gt 20 by (2.2b), we must have g = 0. To complete the proof, suppose that
Igil;, =0 and xt = 0 for all i € A;. Then, since xt 20 for all i € /; and, since gl > 0 for all
i € Ay;. it follows that (2.2b) holds for all i.

78 Projected Descent Method ‘ Chap. 3

(c) Suppose that x; is not a stationary point. Define the following index sets:

ILxp)={iel, | x;>0,0r (x; =0 and d} >0)) , (2.11a)
Iix)={iel|x,=0,d;<0}, (2.11b)
Ax) = lie Al x,>0), Ay(xi)={ie Ay lxp =0} . (2.11¢c)

First note that /3(x;) U A (x;) is not empty. To see this, suppose that i € I4(x;) U Ax(x;) for
alli=1,...,n. Then x} = 0 and d} <0 (since d} = —mj g} <0 for i € Ay(x;)) which implies
that xi(4,d,) = [x} + Ad}], = 0 = x} for all i. Consequently, by part (a) of this proposition, x;

must be a stationary point; this is a contradiction. Now, let

Ay=sup{A|xi+A4di 20, i€ lh(x)}, (2.12a)

Ar=sup{A|xi+4di20. i€ Aj(x0)) . (2.12b)

Clearly 1, > 0 (possibly infinite) and 4, > 0. If /3(x;) is empty let 2; = oo or, if Aj(x;) is
empty, let A, = oo. Now, if i € I4(x;). x4(4,d}) = [Ad}), = 0 = x§ for all 2 >0. Similarly, if
i€ Ay(xg), xi(A,d}) = [- Amkgi), = 0= x} forall 2 20. On the other hand, if i € /3(x;) and
A€[0,4)), then xi(A,dy)=xt+2Ad, and if ie Aj(x;) and A €[0,4,), then

xi.(),, d;) = xi. - Amigi.. Therefore, with

a. ={ ‘g' i;}';:w’i-‘sf")u“"(""') L i=1,....n, (2.13a)
it follows that
xp(Aody) =[x+ Ad), = x, + Ady . VAe[0Omin{d;,42]}). (2.13b)
Next, from (2.13a), we obtain
(dio 84) = (dis 8 D1yry) + (i 85D) - (2.14a)

Now, from (2.5b). (dy. gx)s, = (di. 81)1yxy + (di 84)14xy) S-oylglpz. But, for i € 1y(xy),
d; <0 and g} <0, 50 (di, 8k)1, 20. Thus, (dy, 84)1yx, < —oylgilz. This, together with
(2.5a) and (2.14a), implies that

(di.gx) S —oylgli, - ogil s,y - (2.14b)

Since x, is not a stationary point. there exists at least one i € I; U A;(x;) such that g} #0.
Hence (d;.g;) <O0. i.e. d, is a feasible descent direction. Next, it follows from (2.13b) that. for
all A € [0,min{ 4,, 42 }). the Armijo-like step-size rule in (2.6a) is equivalent to the following

requirement on A,

Sec. 3.2 Algorithm Model _ 9

f(xk + Aak) - f(-xk) -<- aﬂ(gk‘ ak)AkU’B(xk) + a;l(gk, dk>l4(X*) . (2.]4C)

But for all i € I4(x;), g <0 and dj < 0. Therefore the last term in the (2.14c) is non-negative.

Hence (2.14c) is satisfied if the following. harder, condition is satisfied,
fxp + Ady) - fi S ad(gp. dy) . (2.14d)

But this is the usual Armijo rule applied to an unconstrained problem which can always be satis-
fied with a positive step-size when (g;,d;) < 0. Hence, there exists 0 < A <min { 1;, 4, } such
that (2.9) holds. _ m]

We will now show that Algorithm Model PD produces a sequence of iterates whose accu-
mulation points are stationary points. The following assumption will be used:
Assumption 2.6. The gradient Vf(-) is Lipschitz continuous on bounded subsets of ¥; i.e.,

given any bounded set S C 7. there exists a scalar L < oo such that

IVAX) -V (NS Llx-yl, Vx.yeS§. (2.15)
(]

Lemma 2.7. Suppose that the sequences { x; } joo With x;, € %, { d; } oo With d; € R", and
{ A } 520 with 4; € IR bounded and non-negative. are such that (2.5a,b,c) and (2.6a) are satisfied
by the triplet { x;,d;,A; } for all k. Then. for any X € 7 that is not a stationary point, there
existsa 5 > 0 and a & > 0 (depending on ¥) such that

f(.\'k(ﬂk.dk))—f(.\'k)s—g (2.16)
for all k such that x; € B(X. p).

Proof. We will first show that there exists 4 > 0. depending on £, such that A, > 1 for all k
such that x, is sufficiently close to . We will then use this 1 to derive 5 > 0 and § > 0 such that
(2.16) holds. Let S c Fbe a bounded neighborhood of . For any x; € S, V f(x;) is bounded
because it is a continuous function. By (2.5a,c) d, is also bounded. This implies that x, (4, d;),
2, € [0, B~™M), is bounded. Thus, by Assumption 2.6 we have that there exists an L < oo such
that for s € [0, 1],

lgk - Vf(xk - s[xk - xk(ﬂ.dk)])lg < SLle - xk(/l. dk)l N ka €esS. (2]7)

Expanding the left-hand side of (2.6a) we have, for x;, € S and A € {0, ™M,

80 Projected Descent Method Chap. 3

Fxp(A,dy) = f(xi) = (8i xx (A, dy) = xi)
1
+ jo (Vf(xp = slxg = x, (A, di))) = 8 Xk (A, di) — x4) ds
1
< <8ko xi(4, d‘) - Xk) + lxk(,l,dk) - Xkl JO Slek(l, dk) - xkl ds

= (gkvxk('{vdk)-xk)"'%lxk(ﬂ,dk)—xklz . (2]8)

Now, for i € Ay, xi(A.d}y) = [x} — Amighl, 2 xi — Aml g} so that x} — x}(A,d;) < Amig!.
Thus,

A X miglxi - xi(Ad)) 2 xy - xi (A, I, (2.19)

i€ A

Now consider the sets /s, = {i € I}, Igi. >0} and Ig = {i € I | gz <0}. If i € Is; then
x};. > ¢, (for otherwise i € A;). Since X is not a stationary point, IX — [X — V£(X)],1 >0 (see
discussion of equation (2.3c)). Thus, since w(-) is continuous and &(x) = min { £, w(x) }, there
exists p; > 0 and £ > O such that (i) £(x;) 2 & for all x;, € B(X, p;) and (ii) B(x,p;) € S. Let
A < oo be such that Ig 1 < A/, for all x; € B(X, p}). Then, for all k such that x;, € B(x, p;),
we have from (2.5b) that Id{.l <A for all i e I,. Hence, for 1 € [0,£/A] and i € I5y,
xi(4,d;) = x| + Ad} and

Z g"[\" - xi.().,dk)] =-A{g.d; >lu , V2e€l0,£/A4). (2.20a)

ie I.(_‘
Next, forall 2 20, x|, — x}(4.d;) € - Ad,. and since gt < Ofori € I, we have that

Y gk - xi(Ad)) 2= A(gidy)y,, . V220, (2.20b)

i € l(.[
Combining these last two expressions gives us
(kv Xk = XA, di))) 2= gy di)iey, - YA €[0,E/4] (2.20¢)

for all & such that x; € B(X p;). Finally, from (2.5bc) we have that
~(di, 8)y, 2 oylgilj, 2 B 1dkj,, and since, for any ie {1,...,n} and all 120,

Ix} = xt(A) € Aldl, we have that

I'S‘l.)

2

Ly, — xp(A, dl, S 22Mdil, <= A% =2 (d}, g1y, - (2.21)

Q

Thus. from (2.20c), we see that, for all x; € B(x, p)),

Sec. 3.2 Algorithm Model 81

(8 Xi(A.di) = xi) = = (g xp = Xk di)) g, = (8o Xk = Xp(A,di))y,

S—(gk,xk —Xk().,dk))Ak +1<gkvdk>lk , (2.22a)
and, from (2.19) and (2.21),

L L L)
E ka(l, d,\) - Xkl = E lxk(}l, dA) - Xkli‘ + 5 ka().) - xklj‘

AosL 2]
< 22 (8ks Xk = xp(A,di)) g, - A2 —;20, (8k dr)y, » YA €[0,E/4]). (2.22b)
|

Substituting the expressions (2.22a.b) into (2.18), we obtain that for all A € [0,/ A] and
x; € B(x, p)),

o3l
20'1

Ao,L

fpAdi N = fx) < A1 = 4 2

)<3k*dk>l‘ +(

= 1) gk Xp = Xe(Adi)Yy, . (2:23)

Comparing this with (2.6a). and noting from (2.5b) and (2.7) that (g.d;); <0 and
(8k+ Xk — xr(4,d()) 4, 20, we see that the Armijo-like rule is satisfied for any 4 2 0 such that
A<EIA A-A’Lo3 /20y 2 ak and AosL/2-1<-a. Since B € (0,1) and the step-size rule
requires the smallest m such that A = 8" satisfies (2.6a), we see that for all x, € B(X%, p;),

Az izmind £ 20070 ml g (2.24)
A o5L

Now we will use (2.24) to show that (2.16) holds. Foranyi € /,.
(8r-di)y, S —olgil], S—0y(g}) . (2.25a)
Also. foralli € Ay, gk > 0and x| = xi(4;.di) 2 0. Thus, forany i € A;, x; € B(X. p)),
: (gk,xk _."k()sk.dk)>‘4‘ 2 g'k(llk —.\"k(/‘.k.dk))
> gh(xh — xi(4.dY))
2 (gi)ymin { x}, A/ migl) = min{ gixi, A/m }, (2.25b)
where 1 is given by (2.24). Let g =V f(%). Since % is not stationary, there must exist an

ig € {1,...,n} such that either (i) " <0 or (ii) ¥ >0 and g" # 0. By continuity of V f(-),
there exist p» € (0, p;] such that

g™ <1gll<21g" . Vx, € B(X. pa) . (2.25¢)

Thus. if ¥ =0, then g§" <0 and. for all x; € B(X. p)). g2‘<0. Hence, iy € I, and, by
(2.25a.c),

82 Projected Descent Method Chap. 3

(8k-di)y, <-o1(g"?14=-6, | (2.26a)

If X' > 0, then we must have g > 0. Thus, from (2.25¢), if x; € B(X, p,) then iy € A;. So, if

%' > 0, then for all k € K such that Ix; — x1 < min { p,, X¥'"/2 }, we have from (2.25b,c),

— (8o xp = Xi(Ag di))p, S —min { FOE /4, T ImY) =5, . (2.26b)
Now, from (2.6a) and (2.16), we have
S xgen) = f(xi) £ fQxp(Ag. di)) = f(x0) S @ { A (8o di)y, —(8ks Xk = Xi(A di)) g, } - (2.27)

Since it is always the case that (g;,d;);, < —a,lgklf‘_ <0 and — (g, xx — xx(Ax, di))s, <0, we
have from (2.26a,b) and (2.27), that

f) = fx)€-6<0, Vx, € B(%,p), ke K, (2.28)
where § = ad;and 5 = p» >0if ¥ =0oré = ad,and p = min{ p», 92} >0if ¥ >0. O
Theorem 2.8. Suppose that Assumption 2.6 holds. Let { x; } ;o With x;, € % { d;) 1o With

d;, € R",and { A4 } ;o With 4; € R bounded and non-negative, be sequences such that, for all
k, (2.5a,b,c) and (2.6a) are satisfied by the triplet { x;,d;.4; } and

fxp) € fx(Agdi)) (2:29)
Then any accumulation point, X, of { x; } 7, is a stationary point of problem P.

Proof. We will prove this result be contradiction. Suppose that X is an accumulation point of
{ x;) t=o- Then there exists an infinite set K < NN such that lim; ¢ x x; = X. By continuity of
fC¢). this implies that limg ¢ p f(x;) = f(X). Additionally, for each k€N,
(X)) € f(xp (A dy) S f(xy) since the right hand side of (2.6a) is non-positive (c¢f. Remark

2.2). Hence. f(x;) = f(X) and. therefore,
fx))= f(x4)) 20 ask D oo (2.30)
Now, to establish the contradiction, suppose that * is not a stationary point. Then, by (2.29) and

Lemma 2.7, there exists p > 0 and 3 > 0 such that F(x) = f(xpa1) 2 f(x) = f(xe(Ag, dy)) >3

forall x, € B(X, p). But this contradicts (2.30). Therefore X must be a stationary point. O

Corollary 2.9. Suppose that Assumption 2.6 holds. If { x; } 2;0 is a finite sequence generated
by Algorithm Model PD, then x; , is a stationary point of problem P. If { x; } {2, is an infinite

sequence generated by Algorithm Model PD, then every accumulation point of { x; } ;2 is a sta-

tionary point of problem P.

Proof. First suppose { x; }:;0 is a finite sequence. Then by Proposition 2.5(b), x;, is a

Sec. 3.2 Algorithm Model 83

stationary point. If { x; } 7, is an infinite sequence then, by Theorem 2.8 (we have, trivially,
f(xie1) = f(xi(Ag, dy)), every accumulation point is a stationary point. =]

Next, we proceed towards a proof that under suitable conditions, after a finite number of
iterations, Algorithm Model PD reverts to an unconstrained optimization algorithm on the sub-

space defined by the non-binding variables at a strict local minimizer limit point. Let B x) denote

the set of all binding constraints at x, i.e.
Bx)={ilx' =0) (2.31)

(this B(x) should not be confused with B(x, p), the closed ball of radius p around x). We will use
the following alternative statement of the standard second order sufficiency condition with strict
complementary slackness for a stationary point X to be a strict local minimizer for a problem P

with f(-) twice continuously differentiable+:

JIVf(R):>0, Ve {zeR"IZ =0, VieBR)), (2.32a)
and
agif)w. Vie B). (2.32b)

Theorem 2.10. Suppose f(-) is twice continuously differentiable. Consider a sequence
{ x1 } 5o Produced by Algorithm Model PD. If { x; } 52, has an accumulation point X such that

(2.32a.b) hold. then x;, — X and there exists an N < oo such that

Ay = Bxp)=BX), VEk2N+1. (2.33)

Proof. Since f(:) is twice continuously differentiable, Assumption 2.6 holds. Thus, by Corol-
lary 2.9. X is a stationary point. It therefore follows from (2.2b) and the definition of w(x) in
(2.3a) that w(X) =0. Hence. because w(:) is continuous, there exists a p; >0 such that
£(x) =min { £, w(x) } = w(x) for all x € B(X.p,). Now, since (i) x', i € BX), is arbitrarily
close to zero if x sufficiently close to %, and (ii) g(-) =V f(-) is continuous, and thus by (2.32b),
bounded away from zero for x sufficiently close to %, we have that for x sufficiently close to %,

g'(x) 2 x' foralli € B(%). Thus, there exists p» € (0, p;] such that for all x € B(X, p,)

[x' - g'(x), =0, Vie B®) (2.34a)

¥ See. for example. [88. pp. 316-317}: viz.. equation (2.2b) holds. the Hessian of the Lagrangian L(x}= f(x) - 47 x is positive

definite on the subspace { - € R" 1 = 0. i € RY)} and the multipliers 4' = 3/(¥)/3x' are positive for all i € A) and zero for
alls ¢ BX).

84 Projected Descent Method Chap. 3

gix)>0, VieB(%). (2.34b)
From (2.34a) it follows that for x € B(X, p»),
FW=w@m=lx-r-gnlP= T &P+ T -lx-glPz T *Yi235a)
i€ B%) i ¢ BX) i€ AX)
and hence,

x'<e(x), Vie BG)and x € B(R, p3) . (2.35b)

Also, since (%)’ >0 for all i € B(%) and &(}) = w(}) =0, there exist scalars £ >0 and

P € (0, p.] such that
x' 28 >e(x), Vié Br)and x € B(%, p3) . (2.35¢)
Thus, we see from (2.34b). (2.35b), (2.35¢) and the definition of A(x) given in (2.4a), that

A(x) = B(X), Vax e B(X, p3). (2.36)

To establish the next point, we need to assert that there exists 4 > 0 such that 4, > 1 for all
k such that x; € B(k, p3). We cannot directly use (2.24) in the proof of Lemma 2.7 because that
quantity was derived by assuming, in the derivation of equation (2.20a), that X was nor a station-
ary point. However, from (2.35¢) and (2.36), we know that if x; € B(%, p3) then x| > for
i € 1. We can therefore use £ for equation (2.20a) in lieu of the £. Thus, 4, = 4 for all k such
that x, € B(X, p3), where A is defined in (2.24) with Z replaced by £ . Now for any k, i such that
x; € B(X, p3) and i € A; we have d}, = —mig} < 0. x| < e(x;) and by (2.36), i € BX). Thus,
from (2.32b), the continuity of V £(-) and the fact that A > 1 for all k, there exists a p4 € (0, p3)
such that for any i € A; and x; € B(}, py), 0< xiy, = [xh = Aembgl)s < [xh — Imigl], = 0.

This implies that i € B(x;,;). Hence.
A, C ﬂ.\'k”) v Vx. € B(.’i,p‘;) . 2.37

On the other hand, for any k,i such that x, € B(X, p;) and i € A;, we have from (2.36) that
i € B%) and hence, by (2.35c), x} > #. Since % is a stationary point, we see from (2.2b) that
0f(%)/9x' =0 for all i ¢ BX). Also, A; is bounded, (-) is continuous, and by (2.5¢c).
ld;, < oalgily,. Therefore, since
Ixpe) = xd S Uxpyy — xplg, + By = xily, € e(xp) + 02lgily, is arbitrarily small for x; suffi-
ciently close to %, there exists ps € (0, p4] such that if x; € B(X, ps), then (i) x;,y € B(X. ps)
and (ii) xi.” > £(xp4y) for i & A, It follows from (i) and (2.36) that A, = A, = BX). From
(ii) it follows that i € A, implies that i € B(x;,,) and hence, B(x;,;) € A;. These facts
together with (2.37) allow us to conclude that

Sec. 3.2 Algorithm Model 85

Bxpey)) = A=A = B3), Vx, € B(R,p5) . (2.38)

Hence, the (k + 1)-th iteration is equivalent to an unconstrained minimization on the subspace
{xeR"Ix'=0fori € BX)}. Therefore, since (2.5¢) and (2.32a) hold and since % is a sta-
tionary point, we can invoke Proposition 1.12 in [89] which states that there exists an open set
N(%) containing % such that N(X) < B(X, ps) and with the property that for any k such that
X1 € N(3) and B(xyy1) = BR), x442 € N(X) and, by (2.38), Blx;,2) = BX). By continuing
in this manner, we can conclude that if there is an N such that xy,; € N(&) and Blxp,;) = &%),
then x; € N(%) and B x;) = BX) for all k 2 N +1. We show that such an N exists as follows.
Using the same arguments that led up to (2.38), there exists pg € (0, ps] such that if
x; € B(X. pg) then x;,, € N(3) c B(X, ps) and, by (2.38), Bx;4;) = BX). Since % is an
accumulation point, there exists N < oo such that xy € B(X, pg). Thus, xy,; € N(X) and
B(xx4)) = BX) and therefore x; € N(X) and B(x;) = BX) forall k 2 N + 1. This allows us to

conclude, also using Proposition 1.12 in [89], that x; — &. m]

It follows from Theorem 2.10 that, under the conditions stated, Algorithm Model PD will
identify the constrained components of the solution X after a finite number of iterations N.
Hence, for all k2 N+1, xi =0 if i € BX) and x| >0 if i ¢ BX). Consequently, for all
k 2 N +1, Algorithm Model PD reduces to an unconstrained optimization algorithm on the sub-
space {x € R"lx' =0,Vie ®%)} and its rate of convergence is governed entirely by the

rules used in the construction of the components d}, i € I, of the search direction.

The use of other step-size rules.

Typically, the unconstrained portion. di. i € I;. of the search direction required by Algorithm
Model PD is constructed from a standard method such as the conjugate gradient method or a vari-
able metric method (we demonstrate this construction in Section 3). Depending on the method
used to construct the unconstrained direction, it may be useful to require the step-size to satisfy a
stronger condition than the Armijo rule. For instance, the conjugacy of search directions pro-
duced by a conjugate gradient algorithm depends strongly on the accuracy of the line search and,
therefore, it is usually more efficient to use a step-size that provides a more accurate line mini-

mization than the Armijo step-size.

In order to incorporate a more accurate line search method into Algorithm Model PD, we

propose the following modification which preserves the results of Theorem 2.10.

86 Projected Descent Method Chap. 3

Modified Step-size Procedure: Let o3 € (0,1] and 04 € (0, 00) be given. At iteration k of
Algorithm Model PD, let 4; be the Armijo step-size satisfying (2.6a) and let A'; € [0, o4] be

another step-size. If A, 2 034;, then set X = x; (4%, d;). Otherwise, set

i | x@dn ifiel
' -{ xi'(o.32'k9dk) ifi € Ak) (2~39)
If f(X)< f(xi(Ag,d})) then set x;,; = X . Otherwise, set xpy; = X (Ag, di)- g

Proposition 2.11. Suppose f(-) is twice continuously differentiable. Consider a sequence
{ x } oo produced by Algorithm Model PD using the Modified Step-size Procedure. If
{ x; } 7o has an accumulation point X that satisfies the second order sufficiency conditions

(2.32a,b), then x; — X and there exists an N < oo such that
A = Bx)=BX). Vk2ZN+1. (2.40)

Proof. Let { x;)} be a sequence of iterates produced by Algorithm Model PD using the
Modified Step-size Procedure. First, by construction f(xy41) < f(xx(A4,dy)) for all k. There-
fore, by Theorem 2.8, any accumulation point, X, of { x; } ;o must be a stationary point of prob-
lem P. This being the case. Proposition 2.11 follows from the proof of Theorem 2.10 with the
following modification. In deriving (2.37). we used the fact that 4, = 2 > 0 for all k such that
x; € B(X, p3). However. the new step-size. 2°;, may not be bounded away from zero. Nonethe-
less, we can show that (2.37) still holds. First, if f(x)> f(xi(Ar,dy)) then xpy = xp (A4, dy).
Clearly then, (2.37) holds since x;, is determined from the unmodified step-size rule in Algo-
rithm Model PD as in Theorem 2.10. If. on the other hand, f(X) £ f(xx(4x,d})), then by con-
struction of ¥ we have, for all i € A;. that x},, = ¥' < [x} - 034,8})s < [x} — 034gL).. Now,
by (2.36), the continuity of Vf(:) and the fact that 3 f(X)/dx' > 0 for all i € B(%), there exists
ps € (0,p3] such that [x}-o034gi), =0 for all i e A, and x; € B(%,ps). Thus, if
x; € B(X,ps) and i € A, then x£+, = 0 and, hence, i € B(x;4;). So, again, (2.37) holds. The
rest of the proof of Theorem 2.10 holds without further modification. D

The important aspect of the Modified Step-size Procedure is that once the active constraint
set is identified and those variables in the active set are at their bounds,
xh(Ag.dy) = x4(A,d) = 0, for all i € A;. Therefore, ¥ = x(4;'.d;) and the algorithm
behaves as an .unconstrained algorithm using the step-size A’ (so long as
F(x (A4, dy) € f(x(Ag.d}))). This fact can used to obtain the properties associated with almost

any step-size procedure. For instance, consider the strong Wolfe criterion:

Sec. 3.2 Algorithm Model 87

flxp+ardy) = f(x) < @y A gs-di) (241a)

IV (xp + Adi), di)1 S =@z (i, dy) (2.41b)

withO<a;<aj; < —5— This step-size rule can be implemented in Algorithm Model PD using the

Modified Step-size Procedure by requiring A’; to satisfy

fA g di) - f(xp) < a { Ax{grdih, - (8k'xk-xk(l'k.dk)>,qk} . (2410)

and
IV f(xp (A4, di)), di)y | S —&;(gk.dk - (2.41d)

Then. by Proposition 2.11, Algorithm Model PD reverts to an unconstrained minimization over

the subspace {i|x; € BX)} in a finite number of iterations and. therefore, conditions (2.41c,d)

become equivalent to conditions (2.41a,b).

The usefulness of Proposition 2.11 is demonstrated in our next result which deals with the
rate of convergence of an implementation of Algorithm Model PD that uses the Polak-Ribiere
conjugate gradient rule to construct the components di i € I;, of the search direction d;. Corol-
lary 2.12 states that Algorithm Model PD with the Modified Step-size procedure using exact line
searches, with search directions d; given by (2.45a,b.c) and restarts imposed every m + | itera-
tions. has iterates that converge (/m + 1)-step linearly with a root rate constant that depends on
only the smallest n — r —m eigenvalues of the Hessian at the solution restricted to the uncon-
strained subspace. Here, r = IB(%)! is the number of constraints binding at the solution. Since it
follows from the interlacing eigenvalue property of symmetric matrices [72, Cor. 8.1.4] that the
condition of the restricted Hessian is no worse than that of the Hessian itself, the presence of
bounds on the decision variables can only serve to reduce the convergence rate constant. For
problems that include penalty functions, if m is taken to be the number of penalized constraints
then Corollary 2.12 shows that the (1 + 1)-step convergence root rate constant is independent of

the size of the penalty constant (see [90]).
Corollary 2.12. Suppose that

(a) in problem P, f(-) is three times continuously differentiable with positive definite Hessian
H(x) on ¥ and that X, the unique global minimizer of P, satisfies the sufficient conditions

(2.3Za,b)*. and that BX)= {n-r+1,.... n}, with 1 £r <n (achieved by renumbering the

" The convexity of the constraint set and the strict convexity of the objective function guarantees that P has a unique global
minimizer.

88 Projected Descent Method Chap. 3

variables, if necessary).

(b) { x;} is a sequence produced by Algorithm Model PD using the Modified Step-size Proce-

dure with search directions d, determined as follows (withd_; = 0 € R"):

R - (8k>8k — 8k-1)1,

di=-gi+mdiy, iely, where p=pff= T, (242a)
18,117,
di = di if (dp.gi), S-agilgll, and M1y, < orlgily, . Viel,.(242b)
-8k otherwise
di=-mgl ., oy<smi<o, . Vie A, (2.42c)
and with the step-size 2’; determined by an exact line search, and with restarts (d} = — g} for

i € I,) imposed every m + 1 < n—r iterations.

Let H, (%) denote the upper-left (n — r) X (n - r) diagonal block of H(X), and let a denote
its minimum eigenvalue and b its (m + 1)-th largest ((n — m — r)-th smallest) eigenvalue. If, in
Algorithm Model PD, o, 21 + b/a, then for any & > 0 there exists N < co such that for all
k2NIl(m+1),

b-a
A
I!x(k-m)(m«&l) -xls ck|:b

n
+6:| an=012,... (2.43)
+a

where ¢, is a bounded constant.

Proof. By Proposition 2.11. there exists N| < oo such that forall k 2 N +1, B(x;) = B?R). i.e..
for all k> N,+1, xi =0 for i € BX) and for all i & BX), d} is determined by equations
(2.42a,b). Furthermore. it can be shown (see [2]. equations 2.64, 2.65 and 2.66) that with the
choice for g, given in the Corollary statement the tests in (2.42b) will not fail for k 2 N, +1.
Thus. the search direction d ¢ = (d}---d}). k2 N, +1, is determined by the unconstrained, par-
tial conjugate gradient method, with restarts every m + 1 iterations, applied to the unconstrained
subspace { x € R" | x=0.ie B%)}. It follows from Corollary 5.1 in [90] that there exists a
finite N 2 N, + 1 such that (2.43) holds. ()

Remark 2.13. If exact line searches were not used in the implementation of the conjugate gra-
dient method given in Corollary 2.12, the tests in (2.42b) would provide an automatic restarting
mechanism. It is possible to avoid restarts altogether (after a finite number of iterations) even
without using exact line minimization if the search direction di., i € I, in (2.42a.b) are con-
: ; : = ,FR =1, 12 2
structed using the Fletcher-Reeves conjugate gradient method (u; = g™ =g 17, /g, 117,). or

using the Polak-Ribigre modified so that g = uf® if |uf¥1 < 1ufR1and py = wf® if 1ufR1 > 1ufRI,

Sec. 3.2 Algorithm Model 89

To achieve this the Modified Step-size Procedure must be used with A’; satisfying the strong
Wolfe conditions given by (2.41c.d). Proposition 2.11 shows that Algorithm Model PD using the
Modified Step-size Procedure reverts to an unconstrained minimization after a finite number of
iterations and, for the remaining iterations, x%,, = x} + 2’,d%, i € BX). For these iterations, the
results in [91] show that the tests in (2.5b,c) will always be satisfied if o} = 'I'Tza‘;l and o, = I-'_a;
Extension to upper and lower bounds. Algorithm Model PD can easily be extended to deal
with upper and lower bounds of the form b} < x' < b, i = 1,...,n. Merely replace the projec-

tion operator [-], with the projection operator [-],. defined for z € R"andi = 1,...,n, by

b, if Z<b),
(<) = " if b}< zf <b!,, (2.44)
b, ifzZ2b,,

define the feasible setas F= {x e R" 1 bj < x,<b), i=1,...,n) and set A; = A(x;) where,
forx € %,

A(xp) = {i| b < xi <bj+e(x)and gk >0, orb), — e(x;) < xi < b, and g <0} (2.45)

The set /; is defined, as before. as the complement of Ay in {1,2,...,n}.

3.3 COMPUTATIONAL RESULTS

One source of large-scale optimization problems is discretizations of optimal control prob-
lems. An optimal control problem can be discretized by replacing the differential equations
describing the system dynamics with a system of difference equations that describes some inte-
gration algorithm applied to the differential equations, and by replacing the infinite dimensional
function space of controls with a finite dimensional subspace of parameterized controls. The
result is a standard nonlinear programming problem whose decision variables are the control
parameters. The number of decision variables in the nonlinear program is equal to the dimension
of the approximating control subspace. For optimal control problems with control bounds, the

nonlinear program is in the form of problem P and is suitable for solution by Algorithm Model
PD. ‘

We used Algorithm Model PD to solve a discretization of the following optimal control

problem:

90 Projected Descent Method Chap. 3

inimize | Cx}(2.5 2'52)+ 2(r)dt]
oce itz | e+ [, Ao

subject to
X (1) =x(1) © x(0)=-35,

Xa(1) = = x, (1) + [1.4 = 0. 14x3(1)]x2(r) + 4u(r) ; x(0)=-5.

u(r)2-4lt-1.51, vre[0,2.5],
with C 2 0 a parameter.

The discretization was carried out using a second order Runge-Kutta method (the explicit
trapezoidal rule) with u(-) restricted to the subspace of continuous, piecewise linear functions.
Specifically, the decision variables for the discretized problem are u = @O ul,....u"" e R"
where u' = u(t;) are the values of u(-) at the breakpoints #; = i(2.5/1000), i = 0, ...,1000. Thus
n = 1001. The use of Runge-Kutta integration for discretization of optimal control problems is
described in detail in Chapter 2. We utilized the natural coordinate transformation, given by

(2.7.19c), associated with this discretization in order to prevent unnecessary ill-conditioning. For

|
this case, the transformation is given by i1 = M3 u where, due to continuity imposed at the break-

points 7;, My is an n X n diagonal matrix with diagonal(M) = [% 11---11 %]/Nf.

In addition to the coordinate transformation required by the theory of consistent approxima-

tions, we also pre-scale the problem by multiplying f(-) by the factor y, where y is defined as fol-

lows:
S = (1 +lugh,,)/(1008g,l..) (3.1a)
Su= [uo - Sg(,]# . (3”))
ou,d
y =1 (ou. Su, (3.Ic)

2| flug +6u)— fluo) - (g0, Su);, |’

with [-]4 as given by (2.44). This pre-scaling makes it likely that a step-size of one is accepted in
the first iteration of the algorithm (y is the distance along the projected steepest descent direction,
du, to the minimum of a quadratic fit to f(-)) and it acts as a normalization on the problem so that

the tests in (2.5a,b,c) and the numerical termination criterion are less scale sensitive.

* Other coordinate transformations are also sometimes useful. For example. a coordinate transformation for use with the conju-
gate gradient method applied to optimal control problems with a special structure is discussed, and shown to be extremely effective.
in[92]. Another possibility is to use the inverse of the diagonal of the Hessian. This matrix can be efficiently computed using a recur-
sive algorithm similar to the one described in [93]. However. our experience indicates that this is not effective for optimal control
problems discretized as described above.

Sec. 2.3 Computational Results 91

For purposes of comparison, we solved the discretized optimal control problem with a pro-
Jected steepest descent algorithm, a projected conjugate gradient method and a projected version
of the limited memory quasi-Newton algorithm (L-BFGS) presented in [86,94].

The projected steepest descent algorithm uses the search directions d;, = — g;.

For the projected conjugate gradient methbd we used the search directions given in equa-
tions (2.42a,b,c) with m}, = 1 forall i € A;, o, = 0.2 and o, = 10. After computing a step-size
Ay that satisfies the Armijo-like rule in (2.6a), we construct a quadratic approximation g(4) to
Sf(ui(4,dy;)) such that g(0) = f(uy), g°(0) = g, and g(A;) = f(up(Ax,d;)) and set A’y equal to
the minimizer of this quadratic. We used this 1’ in the Modified Step-size Procedure with
03 = 1 and 6, = B~ (the same upper bound as for 4;). This procedure requires one extra func-

tion evaluation per iteration.

The L-BFGS algorithm computes an approximation G, to the inverse of the Hessian based
on a limited number of applications of the BFGS quasi-Newton update formula. At each itera-
tion, the algorithm uses vectors s; =1y — u;_, and v, = g; — gx—) stored over a fixed number of
previous iterations. The procedure is as follows: Let 71 = min { k.m—1}.. Then, at iteration k,
G, is computed from /i +1 BFGS updates applied to a starting estimate G{ of the inverse Hes-

sian (which can be different at each iteration) according to

- T T 0
Gy =V - vk—:ﬁ)Gy (Vk-ﬁ} V)
T T T
+ pk-l;; (Vk Vk_';;+l) Sk_,ﬁ xk-lﬁ (Vk_’;\H_] V‘)
TovT T
+ pk—rﬁ+l(‘ k Vk—:?mz) sk—:ﬁ-&lsk_,ﬁ”(vk—fr}-rz Vi)

+ ppsisy . . (3.2)

where p; = V(¥Is;). Vi =1 - p;)'ks{.. Here we use / (without any subscript) to denote the
n x n identity matrix. As in[94), we let G) = [in the first iteration and during restarts, and on
other iterations we let 02 =y I where 7 = (¥, 8¢)y, /kali is a self-scaling term demonstrated
in [95] to markedly improve the performance of quasi-Newton algorithms. An efficient, recursive

procedure for computing d; = — G, g, without explicitly forming any matrices is given in [86].

The L-BFGS algorithm has proven to be quite effective [96]. We used this algorithm, with
m = 12, to compute the search directions d%, i € I, in the unconstrained subspace. This is
accomplished by saving the full vectors s, and y; but restricting the inner product calculations in
the recursive algorithm of [86] to the current estimate, /;, of the unconstrained subspace. In

(2.5a). we chose m), = y; foralli € A;. We also added the following tests:

92 Projected Descent Method Chap. 3

(i) I (vposi)y, < 0.00IngIi , set 7. =1 and do not use current information y; and s; for
Hessian updates.

(i) Restartif (dy,gx);, >—0.2y 1g; 15, ,
(ifi) Restartif Id,lj, > 100057 1g; 15, |

The first test ensures that the Hessian estimate is positive definite. With the tests (ii) and (iii), the
search direction d; satisfies the conditions in (2.5a.b,c) for some o, € (0,1) and 0, € (1,00) if

we restrict the magnitude of y; so that

0. 271(2 0) (3.3a)
and
V1000y, < 03 . (3.3b)

Therefore, with this restriction, algorithm PD with L-BFGS search directions is convergent. In

our implementation, we have ¢ = 0.2 x 10~ and &, = Y1000 x 10°.

The remaining data required by Algorithm Model PD were chosen as follows: @ = 1/2,
B=3/5 M=20, uy=0 for i=1....,n, and £ =0.2 except, for the projected L-BFGS
method, a = 1/3 was used to ensure that a step-size of 1 could be accepted close to a solution.
The termination test in Step | of Algorithm Model PD was considered satisfied when

2/3

(1) dgly 1 < emaen(] + 1 (u)l)

(i) fQug) = flupoy) < 10&macn(1 + Lf (),
(iii) g =gyl < s,',ﬁch(l + lud) .

(iv) xi, =0foralli e A,

where the machine precision is gaen = 2.2204e = 16. Note that this is a very demanding termi-
nation criterion.

With C = 0, there were 171 binding constraints at the solution and these were identified
after 7 iterations for the projected conjugate and projected L-BFGS methods and after 12 itera-
tions for the projected steepest descent method. With C = 100, there were 436 binding con-
straints at the solution and these were identified after 19, 28 and 153 iterations, respectively, for

the three methods.

The number of iterations, function evaluations, gradient evaluations and cpu timeT required

to reach termination for problem OCP with C = 0 are given in Table 3.1. The same information

* Expenments were run on a 60MHz Sun SparcStation 20 with 96MB internal memory and 1MB extemnal cache. The algo-
rithms were implemented in Matlab’s M-scnipt language with the exception of the L-BFGS search direction routine which was written
mC.

Sec. 2.3 Computational Results 93

is provided in Table 3.2 for problem OCP with C = 100. It is clear that the projected conjugate

gradient and the projected L-BFGS methods perform significantly better than the project steepest
descent method.

Method Function calls Gradient calls Iterations CPU Time
Conjugate Gradient 70 20 19 4.2 sec.
L-BFGS 43 14 13 2.7 sec.
Steepest Descent 97 29 28 5.3 sec.

Table 3.1: Work done to solve problem OCP with C = 0.

Method Function calls Gradient calls Iterations CPU Time
Conjugate Gradient 249 38 37 10.9 sec.
L-BFGS 163 38 37 8.3 sec.
Steepest Descent 1788 355 354 81.0 sec.

Table 3.2: Work done to solve problem OCP with C = 100.

The optimal solution, %, of the discretized problem with C = 100 is shown in Figure 3.1.

3.4 CONCLUDING REMARKS

We have presented an implementable projected descent algorithm model, Algorithm Model
PD. and proved its convergence for any search directions satisfying the conditions in equations
(2.5a,b,c). This algorithm model solves a common class of problems involving simple bounds on
the decision variables. It is particularly useful if the number of decision variable is large such as
can occur in the discretization of optimal control problems with control bounds. Furthermore,
many problems with simple bounds on the decision variables as well as some additional general
constraints can be converted into the form of problem P using quadratic penalty functions or aug-
mented Lagrangians. The Algorithm Model PD. when used in conjunction with a conjugate gra-
dient method or the limited-memory BFGS method for determining the unconstrained portion of
the search directions, has the advantage of requiring very little storage and work per iteration.
Yet, the rate of convergence behavior can be expected to be the same as that of the unconstrained

conjugate gradient or limited-memory BFGS methods after a finite number of iterations.

94 Projected Descent Method Chap. 3

Solution with C = 100.

T T L}

— optimal control
- — lower bound b

4 ! 1 1 N

1 1.5 2 2.
Time

Fig. 3.1: Plot showing the optimal control for problem OCP with C = 0 (n = 1000).

Sec. 34

Concluding Remarks

5

Chapter 4

NUMERICAL ISSUES

4.1 INTRODUCTION

In Chapter 2, we provided a framework for the construction of approximating problems
{(Py,6y)} that are consistent approximations to an original problem (P, 8). In Chapter 3, we
presented an algorithm for solving a particular class of problems P,.V. In this chapter, we focus
our attention on two practical issues that arise in the numerical implementation of an algorithm
for solving a sequence of problems { P, } whose solutions { 7, } converge to a solution 1 of
P. These issues are, roughly speaking, (i) given an approximate solution nN‘.* to problem Py, at
discretization level N; and a new discretization level N,,,, select a new integration mesh for prob-
lem Py _, such that Ip NM* i H. is as small as possible, and (ii) provide estimates of
Iy = 'y,

These issues are important for practical computation because they allow for the discretiza-
tion to be refined in a way that leads to more accurate solutions with less computation. Further-
more, because we cannot compute the entire sequence {7 N* }, it is desirable to know the error,
In N,* - 77*IH2, of the finite-dimensional solution at some final discretization level N,. A descrip-
tion of the optimal control problems used for the numerical examples in this chapter can be found

in Appendix B. Throughout this chapter we presume that Assumption 2.3.1 holds.

Notation. In this chapter, we will be comparing solutions of approximating problems that are
defined on different integration meshes. Thus we need to extend the notation of Chapter 2 to
explicitly indicate the discretization level of the mesh. We will do this by adding the subscript N

when necessary. We start by defining the discretization mesh for problem Py,
tv= {tvi) ieo s (1.1a)

where ;. is the k-th mesh point at discretization level N. Since we will allow ty to be a non-
uniform mesh, we will denote the finite dimensional control subspaces by L,, instead of just Ly.

Similar, the mapping from between controls u € L, and their samples # € l'.tN will be denoted

9 Numerical Issues Chap. 4

Vaty Ly, = [(N. Recall from (2.4.5a,b) that elements i € l'.,N are partitioned as follows:
L-l=(l70.l7|,....aN_]) N ﬁk=(ﬁk.l'--w‘7k.r)’ . (llb)

with &, j € R", j=1,...,r. Also recall that the subspaces Ly, are defined such that the dis-
cretization mesh coincides with the breakpoints of the finite dimensional controls. Thus, we will

also refer to ty as the control breakpoints.

For spline controls we use ty to refer either to the breakpoints or to the knot >sequence con-
structed from these breakpoints, depending on the context. Thus, for example, we will re-write
L%’) as L:,‘:) where, in this context, ty is the general knot sequence for the p-th order spline sub-
space with breakpoints {7y,)N, The map from splines to their coefficients is
Stv.p: L& = L. So, givenu e LY, a = Sy, ,(u) is the vector

a=(a;, ay ,..., Ansp1), (1.1¢)
with a; € R", of coefficients for the spline u defined on the knot sequence ty. When used in
linear algebra operations, elements of L, and l'.:f:) will be treated, respectively, as m x Nr and

m X (N + p —1) matrices in keeping with our previous convention.

Non-uniform meshes. The discussion of approximating problems in Chapter 2 was based on
a uniform discretization mesh {7y }; ¢ o' With 7y = k/N. In fact, the convergence results still
hold for any sequence of meshes with the property that max; ty 41 =yt — 0 as N = oo. In
practice, we also require min; 7y ;4 — x4 > O for all N. Both of these mesh characteristics are
ensured if the following property holds for each N:

Definition 1.1 (Quasi-uniformity). Letty = {7y, } {‘;0 be a mesh for problem P, and let
Ani STngel = IN - (1.2a)
Then ty, is said to be a quasi-uniform mesh if

max, Ay =
—kTNE < 5, (1.2b)
min; Ay 4

for some fixed constant & < co independent of N. We will refer to & as the quasi-uniformiry

ratio. ‘ O
This definition ensures that, for any sequence of quasi-uniform meshes,

Ay =max; Ayy =5 0as N 5 oo (1.20)

Sec. 4.1 Introduction 97

4.2 INTEGRATION ORDER AND SPLINE ORDER SELECTION

The results of Chapter 2 show that Runge-Kutta integration methods satisfying the assump-
tions for Corollary 2.5.10 produce consistent approximations. Additionally, Lemma 2.4.10 states
order of integration error results and Proposition 2.6.2 provides one result on the order of error of
approximating problem solutions for unconstrained problems. We will now discuss the relation-
ship of the integration and spline orders to the error, I7* — 751, of the solutions of the approxi-
mating problems. For the remainder of this discussion, we will refer to this quantity simply as the
solution error. A solution is said to have high accuracy if the solution error is small relative to the
discretization level. |

The desire to obtain high solution accuracy is, of course, the motivation for studying higher-
order Runge-Kutta methods in the construction of the approximating problems Py. Unfortu-
nately, very little is known, in general. about the relationship between integration error and the
error of the solutions of Py. The primary obstacle to such an understanding is the fact that little
is known about the smoothness of optimal controls (i.e., the regularity of solutions) for con-
strained optimal control problems. In this section, we will collect some positive and some neg-
ative results concerning the smoothness of optimal controls and the solution errors of approximat-
ing problems. These results provide a basis for selecting the order of the Runge-Kutta method

and the order of the control representation in the construction of Py.

In what follows. we will consider only the four. full-order RK methods whose Butcher
arrays are displayed below. We stop at fourth order simply because there is no fifth order RK
method with less than six stages.

0
Al = 0 Ay = 11
| ’r o
0
0 3|3
Ay = I3 Ay = 110 1}
1| -1 2 110 0 1
1 2 1 L A |
& 3 6 & 3 3 &6

The first of these RK methods, A, is obviously Euler’s method and the second, A, is an explicit
trapezoidal rule (also known as the Euler-Cauchy or improved Euler method). The third order
method, A;, is Kutta's formula and the fourth order method. A,. is the classical Runge-Kutta

method. These four methods are selected because. from what is known about RK discretization

98 Numerical Issues Chap. 4

of optimal control problems (both theoretically and experimentally), these provide the best results
for the given number of stages. Needless to say, all of these methods satisfy the Assumptions 4.1,
4.3 and 4.6 required for consistent approximations. These methods also have a symmetry
propertyT that is used in [42,Thm. 3.1] to derive some of the error bounds we will now discuss.
For methods A, A, and A3, there are no repeated values in the ¢ vector of the Butcher array.
Thus, for these methods, r = s where r is the number of control samples per integration interval
and s is the number of stages in the RK methods. For method A, however, c; = ¢3 = %, and

therefore r = 3 and s = 4.

4.2.1 Solution error for unconstrained problems

The best error results are known for unconstrained problems with fixed initial conditions of the

form

P min]{f(u)li'=h(x,u). re[0,1]},

u € Lg,s[0.1

where f(u) = f(x“(l)). We will assume that f(') and /i(-,-) are sufficiently smooth so that all
required derivatives exist. The approximate problems are defined, for a given discretization level
N, by replacing f(u) with fy(uy) = f (.\",‘\;‘_'N) where uy € Ly and x','f"N is the computed value of
x"¥(ty) obtained by Runge-Kutta integration on the mesh ty. The known error results depend on
the assumption that the differential equations can be integrated with full-order accuracy at a solu-

tion u*. That is,

I (1) = B 0 = O(AY) . Vke {0.....N}, 2.1

where s is the order of the RK method. Essentially. this is the same as a regularity condition on
", namely W ecC (3[0.1]. The following table, based on [42] and Proposition 2.6.2, provides the
order of max; ; Bﬁ,\y*,\.J - u*(rk_j)l, where iiy* = VA_tA_(u,f"). relative to Ay =max; Ay ;. The last

column is only experimentally supported conjecture.

¥ Each method is equivalent to the transpose of itself run backwards in time [67).

Sec. 4.2 Integration and Spline Order Selection 99

RK Method || max I N k= (1)) max 1, - el
. J
A o) o)
A, 0(A%) oA}
A, 0A%) . oY)
A, 0(A}) oY)

Table 1.1: Order of solution errors for the approximating problems.

Note that for method A3, the order of the control solution error, max; ; lu N*k. = u*(rk, b, is only
O(A%,) even though r = 3. Because of this, it makes sense when using method A; to depart from
our convention of using r-th order polynomials for methods that use r control sample per integra-
tion interval and instead use second order polynomials. Generally, it may be advantageous, espe-
cially for constrained problems, to use splines of order lower than r. Thus, we will henceforth
make it a convention that r.represents the number of distinct controls samples required by the RK
method during each integration time step while p < r represents the order of the control represen-
tation. General formulas for the gradient computations for controls v € L(,f,’) with p not necessar-

ily equal to r are given in the RIOTS user’s manual.

If representation R1 (piecewise polynomials of order p, where p is the exponent of Ay
given in the middle column of Table 1.1) is used for the controls iy, then luy* — u*I,_m = O(Af,)

since 1" is assumed to be smooth. We will show this for the harder case of spline approximations

below.

The bounds in Table 1.1 are derived assuming that their are no constraints between the con-
trol samples i ;. Such is not the case for splines because the continuity and smoothness condi-
tions on splines implicitly enforce constraints between the control samples. For example, if
uy € L‘Az,) (linear splines), then for each k € {0....N =2}, ity 2 = #tz41;. That is, continuity is
imposed across breakpoints. Proposition 2.2 below indicates that, nonetheless, the same error
results do hold for finite-dimensional controls represented by splines. Before stating this proposi-

tion, we note the following result for spline approximations.

Theorem 2.1[63,Thm. XIIL.1 (p. 170)]. Given a spline order p, there exists a constant

Cp<oo such that for all knot sequences ty with
Iy = =lg=a<ty <ty <b=ty=-=ty,, andforallu € C'?[a,b),
min fu—-vl < c, AR NP1,
ve Ll ” o - (2.2)
where Ay =max; Ay and u'?’ is the p-th derivative of u(r) with respect to 1. 0

100 Numerical Issues Chap. 4

We will now provided a bound for the solution error luy* — u’"l,_‘,° for approximating problems
defined with spline controls. For the statement and proof of Proposition 2.2, we will use the fol-
lowing notation for derivatives of the approximating functions with respect to spline coefficients
and with respect to control samples. First, let u € Lf,’:) be a p-th order spline with coefficients
a=S,,u). We define fy(a)=fy(S;) (a). Then, we use the notation

dafN :Rmx(N-kp—l) - Rmx(N+p-l) with

- o d -
dg fn(a) =(d_a| Iula) -+ fv(@)) (2.3a)

d N+P—

to denote the derivative of fN(a) with respect to the components of a. Since L(p) e L, (the
space of piecewise polynomials), we can also define fy(it) = fN(VA.tN(“)) where & = Vp ;. ().
Whether the argument of fy(-) is spline coefficients or control samples is always clear from con-

text. We will use the notation d; fy : R"*M — R™™ with

Imy -

Fntay -

- - d -
di Frti) é((if) Fn(@) (2.3b)

dig, dity_y diy_;,

to denote the derivative of fy (i) with respect to the control samples. As usual, r is the number of
control samples per interval. Note that (2.3a,b) define gradients with respect to the Euclidean

norm on the coefficient spaces: these derivatives are not the gradients with respect to the norms

we have defined on L;’' and L, .

Theorem 2.2 (Error of spline solutions). Let u* € C'*'[a, b) be a local solution of P where p
is the exponent of Ay =max; Ay, in Table 1.1 corresponding to the RK method under consider-
ation and assume that (2.1) holds. Suppose that { u N* } is a sequence such that uN* € Lﬁf,) with
spline coefficients ay* = S, ,(ux"), ux" is a local solution of Py and uy* — u*. Also, assume
that for each N, d> fy(-) exists and is continuous, d= fy(ay™) >0 and Axld2 fy(-)~'1 is uni-

formly bounded with respect to N. Then g uN - 0(AR).
Proof. For each N, let ty = arg min, _ L:y)lu* -ul,, and let @y = Sy, ,(y). We will first
N

obtain a bound for la* y — & y1 in terms of Id; f (V. tx (x)1 which we will then show is of order

O(A). Finally, we will use this bound to show that W —u N l is of order O(A).

Expanding the derivative of fy(-) to first order, we have

- . | - N
dafN(&N) = dafN(aN*) + J (&N— aN*)d;fN(aN* + S((Z N— GN*)) ds
0

Sec. 4.2 Integration and Spline Order Selection 101

1 -
= (& y-an’) j a2 Fy(an® + 5@y~ an*)ds . (2.42)
0

since d,, fy(an™) = 0. Next, uy* — u* and, from Theorem 2.1, fiy — u* as N — oo, we have

that iy — ¥y as N — co. Now, since if y =% y—u"y is itself a spline and iz y — 0, it follows
from Corollary XI.2 [63,p. 156] that

Gy—oay as N >oo. (2.4b)

2 2

Using the hypotheses that d2 fy(-) is continuous and d> fy(ay®) >0, we see from (2.4a) and
(2.4b) that there exists an N* < oo such that _

: -l
! 27 A T /A
&n-ayt =|:j d> fulan® + s(& y- aN*))ds:| dyfy(@N), VN2 N°. (2.5a)
0
Thus, since ANId;;’,fN(-)"I is uniformly bounded with respect to N and a y— a*, there exists a

constant K < oo such that

Anlay® = &yl S K1d, fy(@ p oy = KIdg fr(Va g, (B) @A g, loo

S KMz fy(Va gy Bl ®pg b, (2.5b)

where we have used (2.7.12c) for the equality. The Nrx(N + p— 1) matrix ®, ,, was defined by
(2.7.11a): the k-th column of ®,,, contains the value of the k-th B-spline evaluated at the Nr

control sample times. Now. there exists a x| < oo such that

ne 2
1z P (Vare G v Do S 1dg Frr(Van, () = di F(Va g 0 Do + 1 Fy (Vi 1, (D)
S K| ANV 4 (B y= 1N +1d fiy (Vg 6Dl
< ki ANT = g +1d Fy (Va0)he

< Ky AR+ 1y Fy(Va g, () . (2.6)

The second of these inequalities was obtained from the Lipschitz continuity of d; fy(-). The con-
stant ¢, in the fourth inequality comes from Theorem 2.1. The quantity ld,;j-',\,(VA‘,N(u"‘))l,,,° is
used in the proofs of Theorem 3.1 in [42] and Proposition 2.6.2 which provide the bounds in the

middle column of Table 1.1. These proofs show that
1d; Fy(Va g, (8Dl = k285" Q2.7)

for some constant x, < oo independent of N. Combining (2.5b), (2.6) and (2.7) with the fact that

102 Numerical Issues Chap. 4

I®4 4, 1. = 1 (due to the normalization of the B-splines), we see that
lay* - éanl. ~0AR) , (2.8a)

Noting that aN* ~ & y are the spline coefficients for u N* - 5, we can use Corollary X1.3 in [63,p.
156] to show that (2.8a) implies that

iy -Gyl - 0(A%) . (2.8b)
Finally, using (2.8b) and Theorem 2.1, we obtain the desired result:

W = uplo, < W =Byl + 10 y—up*l, ~ O(AR) . 2.9)
m]

Remark 2.3. The assumption in Theorem 2.2 that ANIdifN(a)'ll is uniformly bounded in Ay
and «a is essentially the same as the assumption used by Hager for Theorem 3.1 in [42]. In that

paper, Hager argues that the assumption is reasonable. D

There are optimal control problems whose approximating problems based on RK integra-
tion have solutions of higher accuracy than those listed in Table 1.1. However, this does not occur
generically even for linear/quadratic problems. Therefore. based on the result in Table 1.1, the
order p of the control represeﬁtation should be chosen equal to the order of error given in the sec-
ond column. Choosing p too small reduces the benefit of the higher-order integration accuracy (it
does not eliminate this benefit. see below). Choosing p too large results in extra computational
work and can actually reduce the accuracy of solutions due to an over-parameterization effect of
the controls. In particular, for problems without control bounds and/or trajectory constraints, a
piecewise linear control representation should be used with method A3 and either a piecewise lin-

ear or a piecewise quadratic representation should be used with method A,.

4.2.2 Constrained Problems

It is difficult to extend error results of the type given in Theorem 2.2 to constrained problems for
many reasons. To explore some of the issues involved, it is helpful to consider two separate
sources of error: the error due to numerical integration and the error due to the limited approxi-
mating capabilities of finite dimensional controls. For the sake of brevity we will only consider

spline controls and we will not deal with free initial conditions. Define

ut = argmin, cy{ fu)lueQ}, (2.10a)

uN* = arg min,, e U { fvuNlueQ}, (2.10b)

Sec. 4.2 Integration and Spline Order Selection 103

Uy = arg minueuw) (fwlueQ), (2.10c)

where the set Q © L7 ,[0, 1] represents state constraints. Any control constraints in the optimal
control problems are specified in the sets U and U;’,’). As usual, u* represents the solution of P
and un" represents the solution of Py. Additionally, we have defined & y* as the solution of P but

with the control space restricted to U(,G’). By the triangle inequality, the solution error for the

approximating problem Py satisfies

lllN* - u*I3 < IuN* —lelz + li}N- u*lz = Ein+ Emp , (2.11a)

where
Ep =lup =iy, (2.11b)
Erep =1 =il (2.11¢c)

are the errors due to, respectively. the numerical integration and the finite dimensional representa-
tion of controls for the approximating problems. Ideally, the integration order and the spline
order should be chosen to make Ej, and E, roughly equal. Otherwise some computational
effort is being wasted. Below. we will present some evidence that second order splines are the
best choice when using RK methods A, and A;. The choice of the appropriate spline order for
use with RK method A4 and the choice of which RK method to use is more involved and is also

discussed.

Considerations for spline order selection. Since the error bounds for constrained problems
are usually worse than the error bounds for unconstrained problem, one can conclude from the
results in Table 1.1 and Theorem 2.2 that. at most. only first or second order splines should be
used in conjunction with RK methods A, and A; (for Euler’s method the only choice is first order
splines), and that only first. second or third order splines should be used with RK method A,.
The selection of an appropriate order for the spline control subspace depends on how that order
affects the representation error E,,. The size of E, for a given mesh ty depends primarily on
the smoothness of the optimal control u*(-). For many constrained optimal control problems, the
optimal control u*(-) is not even continuous. The strongest regularity result available for con-
strained optimal control problems, [97], provides conditions for the optimal control of strictly

convex problems to be Lipschitz continuous. Thus, E,., may be only of order O(Ay).

For our method of discretization, there is clearly no reduction in the solution error to be

gained by using a higher order control representation when the optimal control is discontinuous .

104 Numerical Issues Chap. 4

On the other hand, even though it generally impossible (without knowing the location of disconti-
nuities in the optimal control) to improve upon E,,, ~ O(A), there is little to be lost by using sec-
ond order, instead of first order, splines in conjﬁnction with RK methods A,, A; and A4 because
there is very little extra work involved in computing a solution to Py. At the same time it seems
that, at *‘non-asymptotic” values of the discretization level N, second order splines produce
somewhat better results than piecewise constant controls even for problems with discontinuous
optimal controls. Moreover, for convex problems it has been shown in [28,31,98] that the Ritz-
Trefftz method gives an approximation error of order O(A?) assuming sufficient smoothness of
the problem data. This is due to the fact that % ut(1) € L,[0, 1]. Hence, in this case, there is a

clear benefit to using second order splines over piecewise constant controls.

Based on these considerations, the best choice for the control representation when using
method A,, A; or A, for problems whose solutions are likely to be non-smooth (such as problems
with control constraints) is second order splines. If there are no control constraints and there is
reason to believe that the optimal control is smooth then third order splines should be used with
RK method A, since third order convergence can be achieved. There is a caveat to this statement,
however. If the spline coordinate transformation given by (2.7.18) is to be used during the solu-
tion of Py and the work used by optimization algorithm that solves Py requires less than N?
operations (such as the projected descent method of Chapter 3 based on conjugate-gradient or the
limited-memory BFGS search directions). then at a some discretization level N, the work
required to compute and z;ppl)' the coordinate transformation will exceed the amount of work
required by the optimization algorithm. In this case. quadratic splines should not be used because
it will be less expensive to solve the problem at a higher discretization level using second order

splines.

Finally, it is very common for Ej, > E\e, at low to moderate discretization levels. If this is
the case, it makes sense to use method A; with linear splines because, as seen from (2.11a), the
reduction in Ep, afforded by the use of quadratic splines will be rendered meaningless by the size
of Eipy-

To demonstrate the effect of the spline order on E,,,, we have solved an unconstrained prob-
lem and a constrained. free final time problem using first, second, third and fourth order splines

on a uniform mesh with N = 20 intervals. The two problems are the unconstrained Rayleigh

problem and the Bang problem which are described in Appendix 2. The solution errors are given

¥ Although. as discussed in Chapter 6, it may be possible with a two-phase optimization approach to achieve better error re-
sults. During the second phase some grid points are aliowed to move towards discontinuities in u"(-). The efficacy of this approach re-
lies on the fact that, under suitable conditions. u*(1) is analytic on every interval in which the binding constraints do not-change.
see [28,31].

Sec. 4.2 Integration and Spline Order Selection 105

in Table 2.1 and the solutions are plotted in Figure 2.2a and Figure 2.2b. We computed the solu-

tion error as

112
T
uy® — '), = [J Uy - u*(t))zdt] , (2.12)
0

where T is the (optimal) final time. For problem Rayleigh, T = 2.5; for problem Bang, T = 30.
All of these solutions were computed using a variable step-size integration method so that the
integration error E;,, would be negligible compared to the error from the spline approximations.
The results show that, for the unconstrained problem, the error decreases substantially as the
spline order is increased. On the other hand, using higher-order splines for the constrained prob-
lem does not cause a significant reduction in the error. It should be noted, however, that the error

is slightly less for second order splines than for first order splines.

Spline order || lup® — i1, (Rayleigh. T = 2.5) | luy* -1, (Bang, T* = 30)
1 0.3119 1.7146
2 0.1071 1.2357
3 0.0166 1.4585
4 0.0092 1.4166

Table 2.1: Solution error for an unconstrained and a constrained problem as a function of spline
order.

These results suggests that, for problems with control constraints, either a first or a second order

control representation should be used.

Piecewise polynomial controls versus splines. Recall the L:f 'c L"N. That is, the spline con-
trol spaces are subspaces of the piecewise polynomial control subspaces. Because the controls in
L,lh. are allowed to be discontinuous at mesh points 4, it would seem beneficial to use L,, rather
than splines if we could place some of the mesh points at the locations of any discontinuities in
the optimal control. There are two reasons this does not help. First, we don’t not know the loca-
tions of such discontinuities a priori. Second, even if we were able to place the control break-
points at the locations of discontinuities in the optimal control it is important to realize that loca-
tions of discontinuities in the optimal control for p will not be the same as the location of discon-
tinuities for the solutions of Py because of the error E;,,, due to the fixed step-size integration (but
see previous footnote). It should also be noted that we could allow discontinuities in the splines

by defining the spline subspaces with repeated interior knots (see [63]).

106 Numerical Issues Chap. 4

Piecewise Constant

O =NWAMO

-1

o 0.5 1 1.5 2

Quadratic Spline

O=NWWHAO®

-1

o 0.5 1 1.5 2

Linear Spline

Cubic Spline

O+ NWaHAHO®

-1

(o)

0.5 1 1.5 2

Fig. 2.2a: Effect of spline order on the solution % 5 for the unconstrained problem Rayleigh.

The plots show % (1) versus 1.

Piecewise Constant

1
o]
-1
-2
(o} 10 20 30
Quadratic Spline
1
o
-1
-2
o 10 20 30

Linear Spline

-1

-2

10 20 30

Cubic Spline

-1

-2

o

10 20 30

Fig. 2.2b: Effect of spline order on the solution % y for the constrained problem Bang. The plots

show % (1) versus ¢.

Sec. 4.2 Integration and Spline Order Selection 107

Considerations for integration order selection. The Runge-Kutta order should, ideally, be
chosen to minimize the amount of work required to obtain a solution of specified accuracy. This
choice depends on a combination of factors: the integration error which depends on the nonlinear-
ity and stability of the differential equations x = h(x, u), the smoothness of solutions to the origi-
nal optimal control problem, and the amount of work used by the optimization algorithm used to
solve the approximating problems to perform each iteration. Generally speaking, however, none
of these quantities is known in advance. Thus, we can only offer guidelines for the RK order

selection. Further research is needed to provide a more systematic approach.

The amount of work, Wy, to solve a the discretized problem Py is roughly
Wy = tieeWin + Wop1) (2.13)

where ny,, is the number of iterations needed to achieve a certain optimality tolerance, Wiy, is the
work required to integrate the system dynamics for a given 7,5 and to compute the gradients for
each function, and Wy, is the amount of work (linear algebra) done by the optimization algorithm
during each iteration (primarily in computing the search direction). Typically, W, is linear in N
(unless there are trajectory constraints) and linear in the integration order. The relationship
between W, and N depends on the integration algorithm. Equation (2.13) is only approximate
because the system dynamics usually have to be integrated more than once during line searches.
But it does show that increasing the discretization level and/or the integration order (in order to
decrease E) will increase Wy. At the same time. equation (2.]1a) shows that just decreasing

Ejy does not necessarily imply that the overall solution error will decrease.

Without a more quantitative analysis, we consider RK method A4 to be the best choice,
except in the two situations described below, because at low or moderate discretization levels, it is
typically the case that E;p > E,. This is partly due to the fact that the errors in the control are,
to some extent, “integrated out™ by the system dynamics. Therefore, even if Erp ~ O(Ay), the
solution error will be smaller for low to moderate discretization levels if E;; is made smaller by
using a higher order RK method. Also, for many unstable nonlinear systems, a certain amount of
integration accuracy is required simply to be able to obtain a numerical solution to the differential
equations. In this situation, the minimum required discretization level may be quite large for a
low-order RK method. Thus, it is usually best to use method A,.

However, there are at least two situations in which it is may be better to use a lower order
RK method. The first case is problems with reasonably behaved linear dynamics and control
bounds. According to the preceding discussion. only first order second order splines should be
used. Thus, E, ~ O(A%) at best. On the other hand, because of the simple system dynamics,

Ein is likely to be much smaller than E,, if RK method A, is used. Thus. more work will be

108 Numerical Issues Chap. 4

done in the integrations while the overall error of the approximating solutions will be no greater
than those produced using method Az*.

The second case is problems that include trajectory constraints. When solving the dis-
cretized problems, the gradients for each point #; in the trajectory constraint must be computed.
Because trajectory constraints are evaluated at N + 1 such points, the amount of work to compute
these gradients is proportional to sN°> operationsi, where s is the number of stages in the RK
method. This can amount to a great deal of work, especially if the gradients are computed using
adjoint equations. The amount of work can, therefore, be substantially reduced by using a lower
order RK method.

When solving problems with control and/or trajectory constraints at high discretization lev-
els. it is probably disadvantageous to use anything but methods A, or A, since the overall solu-

tion error is. at best, O(A%).

4.3 INTEGRATION ERROR AND MESH REDISTRIBUTION

From (2.11a), we see that lu* — uN*Iz = Ejp + Eyep- It turns out that E;, and E; are, in
fact, closely related. To see this, let u: [0, 1] = R" be.continuous on each interval [1;,1,,,) and
let uy € L,'N be a piecewise polynomial function of order p=2. Then, by Jackson’s
Theorem [63. p. 33). there exists a constant K < oo such that. on each interval /; = [1;, ;41).

Ay i
p—1

Anx
oy ; —22), k=0,....N-1, (3.12)

i —unly o <K 2(p-1)

where lul; ., = max, ¢ 5, lu(t)l and w,(ny ; -) is the modulus of continuity of ux(r) on the inter-

val 1 € [1;, 1;4,] defined by
wp(u; 8)y=max { lu(t)) = u(t by, 1 € [1.004], =018) . (3.1b)

If u(r) is continuously differentiable on each interval (1, 44, then @, (u; 8) < lil;, 6. In partic-
ular, the approximation error lu —uyl; ., is largest on intervals where lil;, ., is largest. Jack-
son’s theorem also applies to approximation of smooth functions in which case it is the norm of

the higher derivatives of u that determine the approximation error.

t A secondary problem in this regard is that the integration accuracy of method A4 can make it difficult to refine the mesh based
on the procedures discussed in the next section.)

¥ In fact. the amount of work is proportional N(N + 1)/2 operations since the gradient of the trajectory constraint at time ¢, is
zero for ¢ > 1, Even if an £-active set method (such as in[99)) is used to bypass unneeded gradient computations. the work is still
proportional to N* operations.

Sec. 4.3 Integration Error and Mesh Redistribution 109

At the same time, we have that the local integration error produced by one step of an s-th
order RK method (see proof of Lemma 4.10 in Appendix A) is

S+2

In ket = Xnpltier) + eniAii + O(ARD) 3.2

where x ;(-) is the solution of x = h(x, 1) with x(;) = ¥y . The quantity eN'kA',‘v*'L is called the
principal local truncation error (PLTE) and Xy x4 — Xy i(tr41) is the local truncation error
(LTE). We will refer to ey ; as the coefficient of the PLTE. It is possible to produce an expres-
sion for ey; by comparing the Taylor expansion of Xy, with the Taylor expansion for
Xy x(Trk41), both around Xy ;. However, this expression, which depends on the RK method, is
quite complicated. As an example, ey ; for method A, applied to a scalar system with u differen-

tiable between mesh points is
] 1 7 . . .2 .] .
eny =53 (hy ™ + hyhi+ by hic+ hy a0 + hyii) - 3 (hyh+h,u)|. 3.3)

The important aspect of the local truncation error is that ey ; depends on time derivatives of u.
Therefore, regions where uy provides a poor approximation to u according to (3.1a) are likely to
coincide with regions where the LTE for the integration is largef. Thus, it is desirable to place
many mesh breakpoints in time intervals where there is a relatively high level of local integration
error. and fewer mesh points elsewhere. This leads to higher integration accuracy for a given dis-

cretization level and also a better sequence of breakpoints for the approximation of 4" by uy.

4.3.1 Computing the local integration error

For a given N, we can compute ep ;. k = 0,.... N -1 approximately by comparing X 1+ to the
value which would have been obtained by taking two RK half-steps from Xy ;. As in equation

(3.2). let xpn(1441) be the solution of x = hi(x.u) with x(1;) = ¥y, and define the following

quantities:
- An .
X Nk = % F(Xni Vi) (3.4a)
Ay _
X Nk2= % F(X ng1sV i) (3.4b)
where

¥ This heuristic can fail if the local integration errors are very small. This can happen. for instance, when integrating a linear
system with piecewise linear control using a fourth order integration method because the derivatives of the spline do not show up, or
are multiplied by very small quantities. in the Taylor expansion for the LTE.

110 Numerical Issues Chap. 4

Py = (ultn g+ oy 288] oty g+ 22)) (3.4c)

ﬁkz = (u[t,“. +(] +C|)%] u[fN‘k +(1 +CS)A%’£]) . (34d)

and F(x,v) is the composite function defined in (2.5.1) that implements one Runge-Kutta inte-
gration step for the given set of control samples v. The quantity x y 2 thus defined represents
the result of taking two RK half-steps from %y ;. These quantities are displayed in Figure 3.1.
By making the approximation that the coefficient of the PLTE of the first half-step is the same as
that for the second half-step (which is reasonablé since the control is smooth over the whole inter-
val), we obtain, by adding the PLTE for each half-step,

- A y s+1
F Nk2 = INa(nae) + 2e~.k(—'2’—") +0(A53) . (3.5)

Combining this expression with (3.2) and dropping the higher order terms, we obtain the follow-

ing estimate of the norm of the PLTE,

XA 241 — X Nkl
s+l _ XNkl Nk _
lenaldffl = =Tt k=0, N-1 . (3.62)

For systems of differential equations, e is a vector and |- | can be taken as any norm on RR".

Instead of the absolute size of the PLTE, the relative size of the PLTE can be estimated using

IXN 14 -X ""I/(]+|"—:Nk|)
ley (JAS) = —NAsT 7 - Ak 42 k=0,...,N-1]. 3.6b
en kAN i 0= 12 1 (3.6b)

Xy (Tcq)

2

N.k.2

b}

N.ke1

1) v 1
k a1

Fig. 3.1: The quantities is used in computing e ;.

Sec. 4.3 Integration Error and Mesh Redistribution 111

Remark 3.1. It is important to state that this type of computation would not normally be done
when solving differential equations because it involves essentially re-integrating the differential
equations on a doubled mesh (although it is possible to reduce the amount of work by re-using
quantities computed in the full-step length calculation for the half-step calculations). However,
this amount of work is small relative to the number of simulation required to solve Py,. More-
over, the work required to compute an integration mesh that achieves a certain accuracy with as
small of a discretization level as possible is greatly offset by the savings in solving Py, that

result from having fewer decision variables in the discretized problem.]

Remark 3.2. There are several other interesting methods for approximately computing the
local truncation errors for Runge-Kutta integration. The method in [100], presented for RK4, is
similar to ours except that it uses the doubled step computation for the integration result and use
the single step computation for the purpose of constructing an embedded third order RK method
to compute the error estimation. In this way, the error estimate is produced from a (3,4) pair with
local extrapolation and requires no additional function evaluations. Another very efficient
approach based on a similar idea is given in[101]. Also, it is possible to obtain error estimates by
constructing interpolating polynomials as is done with linear multi-step methods [102]). A com-

parison of the efficiency and accuracy of error estimation methods is given in [103]. (m]

Global Integration Error. It is sometimes useful to have an estimate for the total integration'

error. Based on the convergence proofs for RK integration. it follows that

N-]
IEyn = XIS Y lep AL + 0T = 0Ah), (3.6¢)
k=0

where Ay = max; Ay ;. Hence, the quantity

N-I
E = Y lenAY} (3.6d)
k=0

provides an estimate of the total integration error.

43.2 Strategies for mesh refinement

The preceding discussion suggests that it may be advantageous to consider non-uniform meshes
for the approximating problems. The non-uniform mesh would be chosen to distribute the esti-
mates of the local integration error in such away that max; ley (IAY }‘ is minimized. There are
two approaches for choosing an integration mesh. The first, static mesh refinement, uses the inte-
gration error evaluated at the solution. or approximate solution, 75, of Py to produce ty_ asa

refinement of ty . In the second approach, dvnamic mesh refinement. the approximating problem

112 Numerical Issues Chap. 4

Py is modified to include the breakpoints of the mesh t, as decision variables. In this way, the

optimization problem that solves Py also adjusts the integration mesh.

We choose the first approach because it easily fits into our theory of consistent approxima-
tions and we believe it to be the more efficient approach. Before discussing static refinement in
more detail, we will describe dynamic refinement and explain why we feel that it is a less efficient

approach for ultimately obtaining solutions to P.

One method for introducing mesh breakpoints as decision variables in solving optimal con-
trol problems was given in [104]. In that paper the mesh points were allowed to move in order to
help minimize the objective function in the optimization of Py. However, it was discovered that
this led to the placement of breakpoints in a manner that reduced the objective function by allow-
ing the violation of trajectory constraints to increase between mesh points. This problem was
alleviated by constructing approximating polynomials to the state trajectories and ensuring con-
straint satisfaction for the polynomial over its whole interval of definition. In[41], Stryk notes
that there are serious convergence and conditioning problems associated with this method. Other
strategies based on equidistribution of the discretization error which avoid this problem altogether
are developed in [34,41]. These methods lead to serious complication of the nonlinear program
which must be solved to obtain a solution to Py. Specifically, a large system of nonlinear con-
straints that approximately equidistributes the integration error is added to the original nonlinear

program. This results in a significant increase in the computation time.

The advantage of dynamic mesh refinement is that. for a given discretization level N, the
mesh points can be placed quite accurately with respect to minimizing the integration error for
that discretization level. However, this does not mean that the solution n) of Py is the best
approximate solution of P that can be obtained for a discretization level N. Furthermore, adding
so much extra computational burden in order to dynamically refine the mesh only makes sense if
only one approximating problem is to be solved. Since we plan to solve a sequence of approxi-
mating problems Py , we can obtain meshes ty, that are almost the same as a mesh produced by
dynamic refinement simply by refining the meshes between the solution of problems Py,. The
reason for this is that once 1w, is close to n*, the distribution of the local integration errors will
not change much. Thus, the relative sizes of 1y, 4. —tyx Will change very little once

I7n,,, = nn,1 becomes small.

It should be noted that neither dynamic mesh refinement nor static mesh refinement will be
able to locate discontinuities in the optimal control or exit and entry points for trajectory con-
straints exactly. Nor will they be able to ensure that control and trajectory constraints are satisfied
exactly for all 7 € [0.1]. A‘strategy for producing solutions of very high accuracy is discussed in
the chapter on future research.

Sec. 4.3 Integration Error and Mesh Redistribution 113

Static Mesh Refinement (Strategy 1, movable knots). We propose two strategies for static
mesh refinement. Both attempt to choose the mesh points in order to approximately equidis-
tribute the principal local truncation error ey ; A} k» k =0,..,N—=1. The first strategy is based
on the algorithm NEWKNT for the repositioning of spline knot locations [63, pp. 182-184]. Given

a mesh ty and a solution ny, to Py, defined on that mesh, we seek to choose a new mesh

tn,, = (N, k) ko Nt with the property that
len,,, AN &« = len,,,. kAN a1 Vhe {0 Niy=2}, (3.7a)
where Ay, =1n,, 441 — In,,, & Clearly, this is equivalent to choosing {ty,, x } such that
e il Ak = len, k™ AN, i (3.7b)

We proceed by defining the piecewise constant function E(z) which interpolates the values
(k0 len, AN). Thus, for 1 € [14.1341), E(t) = ley, 41A% Y. Then, satisfying (3.7b) is equiv-

alent to choosing { 7y, x } such that foreachk € {0,..., Ny -1},
IN,.yk+! Nl
EM"*dr = J' E'*dr = — 3 ley, 1Ay, . (3.7¢)
ok r+l i+] j=0

This problem is easily solved, once N, is specified, by constructing the continuous, monotone
increasing, piecewise linear function

Gir) = J’ TEWV e (3.8a)
0
and setting
af k
IN'.I.‘.=G N lG(l) N k=0.....N,+l. (3-8b)
i+

To choose N;.; we can use the following heuristic. Since the total integration error is approxi-

mately given by

K
Z IeN ‘IANk*"AT'. (39)

we could reduce by a factor of FAC the total integration error without redistributing by choosing
a discretization level

N’ =[N(FAC)¥* 1, (3.10a)

where [r 1is the smallest integer larger than r. Since this value of N’ does not taken into account

the benefit of redistributing the mesh. we instead use

114 Numerical Issues Chap. 4

N4 = max { N,..FN,-(maxk e 7]) 1y, (3.10b)

= _ 1 N-1
where & = 5~)0 len il

Finally, in order to ensure that the mesh refinement strategy will produce quasi-uniform
meshes, we set

enx = max { ley i, max; ley ;8 } , (3.11)

where & is the constant in Definition 2.1 of quasi-uniformity, before computing the new mesh.

Also, an estimate, 8,, of the effect of redistribution is computed as:

max; Iekll""'AN_k

= . 3.12
mink Iekl”-‘*'AN'k ()

The larger &, is, the larger the benefit received from redistribution will be.

Static Mesh Refinement (Strategy 2, fixed knots). Our second strategy is based on the °
heuristic in [105] which allows mesh points to be added or deleted, but not moved. Thus, if no
deletion occurs, the control subspaces nest, i.e. L'.v,.. c Ly, The estimates in (3.6a) or (3.6b)
for the local truncation error are used to divide each interval [t;, f;4;] into n, subintervals. The
only subtlety is that, whenever an interval is removed, the local truncation error associated with
that interval is added to the local truncation error of the previous interval. The refinement is per-

formed iteratively as follows:

Step 1: Compute the average local truncation error

] N,-1
e=— Y lex " ™Ay . (3.13a)
N; iz

and compute the relative local truncation errors,

L VsHIAL s
_len AN,.L(FAC) ‘ (3.13b)

e oy =
4 z max, { ley 4V/€)

where the second term, as in Strategy 1, equation (3.10b), specifies that the integration
error should decrease by a factor of FAC.

Step 2: Choose o € (0, %). Determine which mesh points, ¢,, are to be removed and add their
relative local truncation errors. &;, to the relative local truncation error, €,_;, of the pre-
vious interval. A mesh point is to be removed (in Step 4) if &, < . The following loop

implements this procedure:

Sec. 4.3 Integration Error and Mesh Redistribution 115

fork =N;-1by-1to2,
ife, <0.25
€y = ;| + &
'Ek =0
endif
if0.25<5, <1
ék =1
endif
endfor

Step 3: For each k =0,...,N -1, let n; = [é,], where [&,] is the integer nearest to é. If
ng = 0 set ng = 1 (so that the leftmost breakpoint will not be removed).

Step4: Letl = {kln, 21} and create the new mesh

iANi.k -
ty., = { (v + Vi Y ker (3.14)
(]
Before performing the redistribution, we set, as in Strategy 1,
en = max { ley), max; ley /5 } , (3.15)

where & is the constant in Definition 2.1 of quasi-uniformity, in order to ensure that the mesh
refinement strategies which use these local truncation errors will produce quasi-uniform meshes.

As in Strategy 1, an estimate, &,, of the effect of redistribution can be computed as:

max Iekll/ﬁlAN.k

= . 3.16
ming le 1S+ Ay (3.16)

In the program that implements this redistribution strategy (see distribute in Chapter 5.7), a
mechanism has been added before Step 2 that causes mesh points to be added at or near active
trajectory constraints. Specifically, for each k such that 7, ; is at or near an active trajectory con-

straint, €, is set to

& & +1 (3.17)

Redistribution examples. The following plots demonstrate the effect and usefulness of mesh
redistribution. We have set & = 50 for both redistribution strategies and have set o = 1/4 for
Strategy 2. The first three plots were based on integrating the differential equations for the
Rayleigh problem with the solution uy' € L(,s) of the approximating problem discretized using
RK method A, with N =50. The first figure, Figure 3.2a, shows the local truncation errors,
Inse1 — XNx(Tis) k =0,..., N =1, produced by RK method A, before and after mesh redistri-
bution. We are actually plotting the time function

116 Numerical Issues Chap. 4

(Enbat = Xna eI, k=0,...,N=-1, 1 €[0,2.5],

where

1 1€ [ttis)
0 , otherwise.

() ={

Notice that local truncation errors for the mesh produced by Strategy 1 are almost equidistributed.
Strategy 2 does not quite achieve equidistribution and the number of mesh intervals increased
from N = 50 to N = 64. Strategy 2 does, however, achieve nesting. Figure 3.2b is a close-up look
at these local truncation after mesh redistribution. Finally, Figure 3.2c show the effect on the

solution u N* before and after redistribution.

Change in local integration error following mesh redistribution

0.03 T T T T
]
—— Before Redistribution (N=50)
0.025 - .- Strategy 1 (N=50) 7
—— Strategy 2 (N=64)
0.02+ 4

0.015

0.01

0.005

e — - - P — e U
L e = ~ - ind

0 0.5 1 1.5 2 2.5

Fig. 3.2a: This plot shows the values of the local truncation versus time before and after mesh
redistribution.

o

Sec. 4.3] Integration Error and Mesh Redistribution 117

2.5

1.5

Optimal Contro!

118

-3

x 10 Comparison of local integration error after redistribution

- — Strategy 1 (N=50)
—— Strategy 2 (N=64)

e e == -

- - -

- - — — -

- -

0 0.5

2.5

Fig. 3.2b: Closeup up view of the local truncation errors following the mesh redistribution by

Strategies 1 and 2.

Effect of mesh redistribution

—— Solution before redistribution
- - Solution after redistribution

-1

I 2

-2
(o)

0.5

1 1.5

Time
Fig. 3.2c: This plot compares of solution of the Rayleigh problem before and after mesh redistri-
bution. Same number of points (N = 50) in both meshes.

Numerical Issues

2.5

Chap. 4

The next table provides some quantitative results on the effect of the mesh redistribution. The

error lu N* - u*l2 was calculated according to (2.12) with T = 2.5.

total integration error lu N* - u*lz
Before redistribution 0.1806 1.06e-1
After Strategy 1 0.0652 1.56e-2
After Strategy 2 0.0490 8.12e-3

Table 3.3: Integration error and solution error before and after mesh redistribution.

Note that the Strategy 1 results in almost a seven-fold decrease in the solution error without
increasing the size of the mesh. For Strategy 2, the error is reduced by a factor of 13 with only a
small increase in the number of mesh points.

)
t

As another example, we show the solution uN* € Ly,

of problem Bang before and after
mesh redistribution using Strategy 1. Again, we use RK method A,. In this case there are

N = 20 intervals. The circles in Figure 3.4 indicate where the mesh points occur.

Control soln. before redistribution Control soln. after redistribution
1.5 1.5 v
19 © 14 ©——ap B
0.5+ 0.5 b
of or b
-0.5r1 -0.5¢ 1
-3
-1} -1} L
-1.5 -1.5¢ b
-2F -2} L—e—o
—e. y -2. . .
2 50 10 20 30 5O 10 20 30
time time

Fig. 3.4: Comparison of solution for problem Bang before and after mesh redistribution. Same
number of points (N = 20) in both meshes. The optimal control is a bang-bang solution.

The next table provides quantitative results on the effect of redistribution. Again, luy* — ¥l is

computed according to (2.12), this time with T = T* = 30.

Sec. 4.3 Integration Error and Mesh Redistribution 119

total integration error | luy® —u*l,
Before redistribution 8.44e-1 1.251
After Strategy | 7.098e-3 0.465

Table 3.5: Integration error and solution error before and after mesh redistribution.

4.4 ESTIMATION OF SOLUTION ERROR

In this section we consider the sequence { 7y } of approximate solutions computed for the
approximating problems { Py }. For each N, we would like to be able to determine the solution

error Iny - r;*l,,z. We will provide a formula for estimating this error that is based on heuristics.

For simplicity we will consider problems of the form
P Jll_lr‘ri{f(rl) lg(m =0}, (4.1a)

where g : H —» RY with H=R" x U and U, the feasible control set, is given by

U={uell,[0,1]11u(r) e Uforr € [0,1] ae.) (4.1b)

o0,

U={veR"IWEppy) (4.1¢c)

with pna.x sufficiently large so that. for all iterates. u(r) is in the interior of U almost everywhere
in [0, 1]. Effectively then, there are no control constraints. The results are easily extended to
problems with inequality endpoint and trajectory constraints. The extension to problems with

control bounds is presented following the current discussion.

A useful quantity to consider for constrained problems is the augmented Lagrangian
. c
Le(n.4) = L(n. 2) + 5 g(n)" g(m) , (4.2a)
where

L(n, 2) = f(n)+ A7 g(n) (4.2b)
is the Lagrangian with A a vector of multipliers.

The error estimate we derive below depends on a positive-definiteness property of the Hes-
sian of the augmented Lagrangian. This property is associated with solution points that satisfy
second-order sufficiency conditions for local optimality. Second-order sufficiency conditions are
easily stated for finite dimensional optimization problems but are significantly more difficult to

derive for optimal control problems. For instance. the proofs for the sufficiency conditions given

120 Numerical Issues Chap. 4

in [3,106] are incorrect. In the statement of the following theorem, the required Fréchet differen-
tiability of f(-) and g(-) with respect to H is established in [58]. A proof of Theorem 4.1 can be
found in [107, Theorem 2 (p. 187)]. '

Theorem 4.1 (Second-Order Sufficiency). Suppose that f(-) and g(-) are twice continuously
Fréchet differentiable (so that L.(-, 1) is). Assume that at r)* € H,

g =0, (4.32)
and there exists a £* € IRY and a scalar o, > 0 such that

VL, &) =0, ' (4.3b)

(8n. V3, L7, A0y, 2 0yM801, (4.3¢)

for all 6n € H, such that g,,(r;*)an = 0. Then 7" is a local ininimizer for P, i.e., there exists a
o, > 0 and a corresponding 6~ > 0 such that

fm= a2 4 oaln - ', (4.3d)

for all € H such that In - n*l,.,: < 6. m]

The proof of the following Proposition concemning the Hessian of the augmented Lagrangian is

based on the finite-dimensional result given in [89, Lemma 1.25 (p. 68)].

Proposition 4.2. Suppose that f(-) and g(-) are twice continuously Fréchet differentiable and
that ¥ e His a point satisfying the second-order sufficiency conditions for problem P (without
control constraints) in Theorem 4.1. Let &* € IRY be such that (4.3b) holds. Then there exists

scalars 0 > 0 and ¢ € (0, 00) such that forall ¢ 2 ¢
(60 Vo, L. 2)on), 2 01803y, , Vén e Hy . ~ (442)
Proof. LetH = Vf,,,L(n*, Zyand G = g,,(n*). Since g(n*) = 0, we have that for all 6n € H,,
(61, Vog Lol)80, = (81, HEN)y,+ AGEKY, . (4.4b)

Suppose that there is no ¢ such that (4.4a) holds. Then, for each k € N and any o > 0, there
exists 67, € H, such that16n,1y, = 1 and

(8nk, HEni Yy, + KIGE M I}, S 0 . (4.4¢)

Choose o = 0,/4 where o, is the positive scalar from Theorem 4.1. Taking the limit superior,
oy 2 o
im (Sn. Hom)+ kKIGSn, 13 < =L . (4.4d)
k— oo 4

Since 1Gén; 120, (4.4d) implies that 1IGén, ! = 0 as k — oo. Next, since Lr(-,A*) is twice

Sec. 44 Estimation of Solution Error 121

Fréchet differentiable, meLr(17*, A*) is a bounded bi-linear operator. Thus, it follows from (4.3c)
and the fact that 1GSn1 > 0 as k — oo that there exist a k such that, for all k >k,

(6n Hém)2 S 167,1% = 2. But this contradicts (4.4d). o

We now proceed with a heuristic derivation of an estimate for lny — ri"l;,,2 assuming there
are no control bounds. In what follows, all of the norms are H, norms. The following assump-

tion is needed for our derivation.
Assumption 4.3.
(a) L(-, A) is twice continuously differentiable.

(b) 1 € His alocal minimizer for P and there exists scalars ¢ > 0 and & > 0 such that

(8. Vi, L(f' Y80y, 2 olénlyy, . Véne Hy . (4.52)
(c) {nn) N=oisasequence such thatny € Hand ny — 17* as N — co. 0

Note that that this assumption does nor specify that g(ny) = 0; generally, g(ny) # 0 even if ny is

a solution of Py.

Now, let ny =ny -1 Expanding VoL (nn, A*) to first order around 7* and using the
fact that V,,L‘.(n*. X) = 0, we get

] l
V,L.(ny) = J' V2, L+ sény. ANony ds . (4.6)
0
For convenience, define
- (' o2 * *
H(.(dr/,\~)='|' V2, L7 + sény. 2)ds (4.7a)
0

so that (4.6) can be written
V,L.ny) = H.(8nn)ény - (4.7b)

From (4.7b), we have for any ény € H,,

. |
(Vqu(UN,f)~5UN> = (onn, H(6nn)ony) = K—|JUN|2 s (4.8a)
N

for some K. We will show that K is finite and bounded away from zero. From the continuity
of Vf,,,L((-,).*). the fact that Sny — 0 as N — oo, and Assumption 4.3(b), there exists an
N, < oo such that for N 2 N,

(8nn. H(8np)dny) 2 380y Vo, Lo(f ANsnp) 2 %larmlz : (4.8b)

Comparing (4.8a) and (4.8b), we see that Ky < % < oo (since ¢ > 0) for all N 2 N,. Also, since

122 Numerical Issues Chap. 4

me L‘.(n*. A*) is a bounded bi-linear operator, there exists an M < oo such that
(8n, V:,’,,,L,.(n*, /l*)517)2 < Mlé'r]le: , VéneH,. (4.8¢)
Hence, there exists an N, such that, forall N 2 N,, ,%N < 2M. Thus,

1 2 . =
mSKNS;,VNZmaX{Nl,Nz}, (4.8d)

and from (4.8a),
187w = Kn(VoLe(nw) 8nw) < KNIV, Lo(ny, ZMSTNL . (4.8¢)
This implies that, for N 2 max { N, N2 },
16nn0 < KNIV, Lo(n, AN . (4.9)

At this point, we could try to estimate M, use 1/2M in (4.8d) as a lower bound for Ky and use
(4.9) as our estimate. However, this would lead to a very conservative estimate. Instead, we will
attempt to estimate Ky directly using two solutions, 77y, and 7y, computed for N; # N;,;. We

have 6ny,., = 11y, = 7In, + 60y, and Sny, = Ny, — AN, + 67N, Hence

I6ny V-10ny1<Iny, —nnl (4.10a)
and
I6ny =160y, V<Iny -0l . (4.10b)
We conclude that
Wsnn, N-18nyll <lny, —nn). (4.10c)

- Proceeding heuristically, we are going to assume that for N sufficiently large there is a K < oo
such that we can replace (4.9) with

1nxl = KIV,L.(nn. XN . 4.11a)
Then, from (4.10c) and (4.11a), we have

KWV, L. (n,, W=V, Le(an, AN S Iny,, - 151, (4.11b)

1+1°

from which we estimate

l”Nm — nNil
AN=V,L(np, AN

K<
[V, Ly, @.12)

+1?

Substituting this bound back into (4.11a) we get

Sec. 4.4 Estimation of Solution Error 123

'”Nm - "NillvﬂLC(nNm' ;’*)l
NV, Lo(ny,, AN=1V, L (p,, A

I, —71< (4.13a)

In this result, neither the the Lagrange multipliers A* nor the minimum penalty parameter & are
known a priori. So, for the purpose of implementation, we use L.(ny, Ax) in place of L (ny, L)
where Ay is the vector of Lagrange multiplier estimates obtained from the solution of Py. Also,
instead of a single penalty parameter c, we use separate penalties for each constraint. For the i-th
constraint, we choose

ci= Al, i=1,....q. (4.13b)

These values for c; are used because, with this choice, the function f(#) + ¢lg;(n)! has an uncon-
strained minimum at 17* if €2 Y, c; with ¢; given in (4.13b), see. [89, Proposition 4.1] This, of
course, does not imply that with this choice for ¢; the augmented Lagrangian has an uncon-
strained minimum at 7. But (4.13b) seemed to work well in our limited experiments. A rigorous

choice for the ¢; is an open question at this point.

Extension to Problems with Control Bounds. In the presence of control bounds, expression
(4.13a) is not useful because (i) requiring Assumptioﬁ 4.3(b) to hold may be too much to ask and
(ii) the expansion in (4.6) is incorrect since V,,,,L(.(n*, X*) # 0. However, we can easily produce
a modification to handle control bounds. For simplicity of presentation, we will only deal with
single input systems and problems with fixed initial conditions. The extension to problems with

vector inputs and free initial conditions is straightforward.

Consider a problem of the form
P min { f(u)l g(u) =0} ,
uwel

where f:U > IR, g:U — R? are defined as

f)=4,(x4(1)), (4.14a)
W ELG), ve1,..q, (4.14b)

where x*(-) is the solution of
x=hx,u), x(0)=¢, 1 €[0,1], (4.14¢)

and the feasible control set is defined as
Uz (ue L0011 | b Su(t)<b,(1), Viel0,1]) (4.14d)

where b; : [0,1] > R and b, : [0,1] = IR are functions such that — oo < b;(1) < b,(1) < oo for

124 Numerical Issues Chap. 4

allt € [0, 1].

There are several versions of Kuhn-Tucker like sufficiency conditions for problems with
control bounds which can be found in [108-113]. The results provided in [109] are the most use-
ful for our purposes. The statement of the second-order sufficiency conditions requires the

Hamiltonian which, for problem P, is defined as
H(x, p,u)= pTh(x,u), (4.15a)

where, with u € U and A € IR? and the adjoint variable p""(t), t € [0, 1], is the solution of

d : ;

= p(t) = = H (x*(0), p() u)T ; p(1) = V&,(x*(1)) + ATVL(x*(1)). (4.15b)
With this definition, VML(L(, AXNt) = H, (x"(1), p""(t), u(1)), t € [0,1] (see[109, Note 4.1]). We
also need to define the quantity

HA,u;v,6)= (H (x(1), p(t),u(t)), v —u(t))

+ %(v = u(t), H,,(xu(r), p*(r), u(n)(v—u())) . (4.15¢)
Given a solution " of problem P, define the set
A= {1€[0,1] | () =b)1) or u*(1) =b,(1)} . (4.15d)
The following theorem is a special case of [109, Theorem 4.2].

Theorem 4.4 (Second-Order Sufficiency with Control Bounds). Suppose that f(:) and g(-)
are twice continuously Fréchet differentiable (so that L,.(-.) is). Assume that the following con-

ditions hold at &* € U:

gy =0, (4.16a)
there exists ¥ € IRY such that
VLW Fyy=0if t ¢ A, (4.16b)
VLW 21 > 0 if u*(1) = b(1), (4.16¢c)
VLG A1) <0 if i) = by(r), (4.16d)

holds for 1 € [0, 1] a.e., and there exists scalars o, > 0 and o, > 0, such that
(Su, V2L(*, 2*)6u)y 2 o\ 15ul (4.16¢)

for all for all du € L [0,1] such that du(r) =0 for + € A, and g,,(u*)é’u =0, and, with
HA®, i ; v) as defined in (4.15¢),

Sec. 4.4 Estimation of Solution Error 125

HA v, 2 aalv =B, V(1) < v < by(r) (4.16f)

holds for r € [0,1] a.e.. Then u* is a local minimizer for P, i.e., there exists a o3 > 0 and a corre-
sponding &3 > 0 such that

fa) = £ 2 L o3lu - ' (4.16g)
for all u € U such that g(u) = 0 and lu — u'l, < &3. 0

Remark 4.5 In[109], Dunn presents a set of conditions which ensure that f(-) and g(-) are

twice continuously Fréchet differentiable. One of those conditions,

lim IS(v)-Su)i,=0, (4.17a)

=uls—0

where S(u)(1) = H,,(x"(1), p“*(1). u(1)), can only hold if the Hamiltonian is u-quadratic (i.e., has
no terms higher than quadratic in «). However, Fréchet differentiability relative to the set U was
established in [58] without condition (4.3f). , m]

Remark 4.6. Condition (4.16f). which does not have a counterpart for finite-dimensional non-

linear programs is, locally, a strengthening of the Pontryagin Minimum principle,
HGE (@), p(n, () = min HOE@), pa)v) L Vielo.). (4.17b)
Also, condition (4.16f) can be replaced by the locally stronger Legendre-Clebsch condition
(v H (), A () 2 o3, VveR™, a.e.1 €[0,1]. (4.17¢)

]

Proposition 4.7. Suppose that f(-) and g(-) are twice continuously , that L.(-, 3) is twice con-
tinuously Fréchet differentiable and that «* € U is a point satisfying second-order sufficiency
conditions for problem P with control constraints b;(r) < u(r) < b,(r) for almost all ¢ € {0, 1].
Then there exists £* € RY such that equations (4.16b,c,d) hold and there exists scalars o > 0 and

¢ € (0,00) such that forallc 2 ¢

(6u, V2L (", A1), 2 al6ul} |, V6u € L,a[0. 1] with Su() =0 Vie A. (4.18)

(m}

We now assume that { uy } is a sequence in U such that uy — u* € U where " is a solu-

tion of P for which there exists a ¢ > 0 and ¢ < oo such that (4.18) holds for all ¢ 2 ¢. Condition
(4.18) allows us to make use of the first order expansion of VL (ux, A*) around &* with perturba-
tions du restricted such that Su(r) =0 forallr e A. Let /= {re€[0,1]I7€ A}. Forany N,

let uy € U be a solution (or approximate solution) to P and define

126 Numerical Issues Chap. 4

| un-d) ifrel
;) = . 4.19
oun { 0 ifreA @.192)
Then,
|
VL (& +8uy, &) = _[V2L (i + s6uy, A)ouy ds . (4.19b)
0
Now, using the same reasoning that led to equation (4.13), we have
lupy —un VL (upy AN
11y, | S —itlea UMDV LN Al (4.20)
! I IVL(.(uNM y ll*)ll ol lVL‘-(HN', f)l,l
where we have used the notation
Wi = | u(r)’dr .
J
Next, since /] U A = [0.1]. we have for any N
by - WP = - uNﬂ% + 0 - uNli . (4.21)

In expressions (4.20) and (4.21), the subset / and A are unknown. To proceed, we must compute

an approximation 'I\N to /. We can obtain this approximation using the index set
In={ke {O0..... N Y1 bt <uptty) < b,(1)} corresponding to the unconstrained portion of

the numerical solution u for the approximating problem Py. Let

A
I'n= U [tyi-1.tns41] s (4.22)
kely
A A . .
where we treat 1y) =ty g and ty 4 = Iy n. Then let Ay =[0,1] ~ 7 5. With this construc-
tion, we can assume that
luy - u*II:{ =0 (4.23a)
N

since, if N is large enough, the set A » = A, and hence, up(r) = u*(1) for t € A n- Thus, with
N = N;,1, (4.21) becomes

luy,, - WP =W - "N,..'} = |5“N;.1|2 . (4.23b)

where Su . is defined by (4.19a). Finally. since ?N is only an estimate of /, instead of using
(4.20), we estimate the total error with a more conservative estimate (and will replace u with

since this formula works in the more general case of H =R" x U) to get

Sec. 4.4 Estimation of Solution Error 127

|77N,*| - nN,‘“VL('(nNi”v A*)I;‘
e . (429

Wn,, —7 1=y, -1, <
' : ||VL(.(,;NM,,1*)n7~ —IVLc(nN,_,l*)I,ANI

3]

where Inl3 = 1£1° + b3, As in (4.13a), we use L.(ny, Ay) in place of L (ny, &%), where Ay is
the vector of Lagrange multipliers obtained from the solution of Py . Also, instead of a single
penalty parameter ¢, we use separate penalties for each constraint. For the i-th constraint, we

choose ¢; = I}yl as in (4.13b).

Numerical Examples. To demonstrate the usefulness of formula (4.22), we have computed
this error estimate for several optimal control problems using the numerical solutions from two
different meshes, ty, and ty,. To compute the required function space norms we used a variable

step-size integration algorithm with its local error tolerance set to
— i -12 —4
€local = Min { max { E{, /1000,107-},10™ } ,

where E;, is the global error estimate given by (3.6d) for the fixed integration routine that was

used to discretize the optimal control problem.

The following table compares the estimate of the error ln* -n N:*I with the actual error. The

norm used in these computations is defined for n = (¢, u) by
2 .) T)
Il = 1R + _[lu(n)Bdr . (4.25)
0

For each problem, we constructed the approximating problems using both (i) linear splines with
RK method A, and (ii) quadratic splines with RK method A,. For the first four problems, the
meshes were uniformly spaced. For the last problem ty, was uniformly spaced and ty, was deter-
mined by redistributing 75, with mesh redistribution Strategy 1. The problems used in this table
are described in Appendix B. The quantities in Table 4.1 marked with a ¥ were computed using
approximations of 7* obtained by solving the discretized problem with N = 1000. The last prob-
lem has control bounds so we did not solve it with quadratic splines (see discussion of spline

order selection for constrained problems). The results in Table 4.1 show that the estimates pro-

128 Numerical Issues Chap. 4

vided by (4.22) are remarkably good.

Ay. p=2 Ay, p=3
Problem N, N, Estimate Actual Estimate Actual
LQR(T = 1) 10 | 20 | 36677e-4 | 3.6008e4 | 1.5721e-6 | 1.5801e-6
Switch (T = 1) 40 | 80 | 00148 0.0322 001235 | 0.0229
Rayleigh(T =2.5) | 50 | 80 [0.0410 0.0335" 0.0021 0.0020"
Constr. Rayleigh 50 | 80 [0.0369 0.0355" 0.0023 0.0021"
Bang (T = 30) 20 | 20 | 04737 0.4653

Table 4.1: A comparison of the estimate for the error I7" — nN:‘l produced by formula (4.22)
and the actual error. N, and N, are the discretization levels of the two meshes for which solu-
tions were computed. The estimates and actual error are given for solutions produced using RK
method A, with linear splines and RK method A; with quadratic splines (except for Bang which
has control constraints). For the last problem, Bang. N| = N, but the mesh ty, is a uniform mesh
and ty. is a non-uniform redistribution of ty, .

4.5 SINGULAR CONTROL PROBLEMS AND THE PIECEWISE DERIVATIVE VARIA-
TION OF THE CONTROL

It is quite possible for an optimal control problem to not satisfy second order sufficiency
conditions as needed in Section 4. A common practical situation in which this occurs are prob-
lems called singular control problems. For the purpose of illustration, consider the optimal con-

trol problem

P min { fu)l gy =0} ,

where f(u) = £, (x"(1)) € R. g(u) = £ (x"(1)) € RY, x“(1), 1 € [0, 1], is the solution of
x=hxu) ; x(0)=¢£. (5.1a)

and U= {u el ,[0,1]1lu(r)e U, Vriel[0,1]1}. We assume that f(-), g(-) and h(-) are twice

continuously differentiable. For this problem, we define the Hamiltonian as
H(x.p,u)= p" h(x,u) . (5.1b)

For u € Uand A € RY, let the adjoint variable p“*(1), 1 € [0, 1], be the solution of
d
5 P =- Ho(x"0). p).u)’ ; p(1) = VE,(x* (1)) + ATV (x*(1)) . (5.1¢c)

If u* is a local solution of problem P. then the following condition (Pontryagin’s minimum

Sec. 4.5 Singular Control Problems 129

principle, see [1]) holds for some i* € RY:

u'(1) = arg min H&E @), pr,w, vielon), (5.1d)

where #* = x¥ and p= p“‘f . At this point, we assume that the set U does not include control
constraints, i.e., U = {v € R" | WI'S ppa } with ppa sufficiently large that the values of u(r)
always lie in the interior of U. Then, in addition to (5.1d), the Legendre-Clebsch condition must
hold at a solution:

H,(*@), pr),df 1) 20, 1 €[0,1]. (5.1¢)

Definition 5.1. An extremal arc, (x*, p*,u), is a triple that satisfies the necessary conditions
(5.1a,b,c,d,e) for optimality. An extremal arc for problem P without control constraints is said to
be singular if Hw(x*(t), p*(l), ut(1) is singular for any ¢t € [0,1]. Any interval of an extremal
arc on which Hu,,(x*(t), p*(t), uF() is singular is called a singular sub-arc. If (x*, p*, u*) is sin-
gular, then " is called a singular control. An optimal control problem that has singular extremal

arcs is called a singular optimal control problem. O

The contrapositive of the following proposition (which is proved in[111,Lemma 2] for a more
general setting that includes control constraints; also see Notes 4.1 and 4.2 in[109]) indicates

that for a singular control, the Hessian of the Lagrangian for probiem P is not strongly positive.

Proposition 5.2. Let L(u. 1) = f(u)+ /ITg(u) be the Lagrangian for problem P. Let W be a
stationary point for P and let 2 € RY be the Lagrange multipliers associated with the constraint

g(u") = 0. If there exists a ¢ > 0 such that
(61, VLG, BYVou)s 2 olsul (5.2a)
forall u € L 5[0, 1] such that i+ 6u € Uand g, (u*)éu = 0, then

Ho (0. pradfuy 2o, vielol). (5.2b)
O

Singular arcs occur most commonly when the Hamiltonian is linear in one or more of the
components of wu. Then u s always a singular control. Suppose that
H(x,p,u) = H 1(x, p)+ H »(x, p)u. In this case, when there are no control bounds (or in regions
where the control bounds are inactive), it follows from (5.1d) that a necessary condition for u* to

be extremal is
H (), (1) = Ha05),) =0, Vre[0.1]. (5.3)
It is clear that, in this case, not only is 1" a singular control, but Pontryagin’s minimum principle

130 Numerical Issues Chap. 4

(because of equation (5.3)) provides no information about the value of the optimal control. If u*
is to be obtained from the solution of the two-point boundary value problem defined by (5.1a),
(5.1¢) and (5.3), i.e. by the so-called indirect method [5.114,115], then additional conditions on
u* are needed. Such conditions are available as generalized necessary and sufficient conditions

(in particular, generalizations of (5.1d,e) involving time derivatives of H,), see. [3,116-118]

For problems that have control constraints, (5.1€) is not a necessary condition and therefore
Definition 5.1 is not useful. In the case that H(x, p,u) = H i(x, p)+ H 2(x, p)u, the problem is
singular if H 2(x(1), p(1)), the so-called switching function, is zero for any non-zero interval of
time. On such an interval, it is clear that the Pontryagin minimum principle, equation (5.1d),

gives no information about the optimal control since the Hamiltonian does not involve u.

If & is a singular control, we have from Proposition 5.2 that the Hessian of the Lagrangian
at " projected onto the subspace { 8u € L™ ,[0,1] | g,(u*)6u = 0} is singular. Thus, from the
Taylor expansion of the Lagrangian we see that, on singular arcs, small perturbations in the con-
trol have only founha". or higher, order (very small) effects on the projected Hessian of the
Lagrangian. Singularitybf problem P will manifest itself as singularity or near-singularity in the
approximating problems Py for N sufficiently large. From a computational point of view, singu-
larity of the Hessian can inhibit superlinear convergence of mathematical programming algo-

rithms that rely on second order information.

Our primary concern. however. is that we have observed, as have other authors (for
instance [119]), that the numerical solutions ux(:) of singular optimal control problems can
exhibit spurious oscillations along singular sub-arcs that are artifacts of the numerical method
rather than being an approximation to the solution of P. This seems to be especially true when
trajectory constraints are active on singular sub-arcs. When spurious oscillations occur in the
solutions u of the approximating problems, the sequence { uy } may not have any accumula-
tion points. In other words. if the oscillations persist as N — oo, the sequence of solutions will
not converge. Besides preventing convergence, these oscillations also prevent useful estimates of
Inn,, - n*l obtained from (4.13) or (4.22). This is because the oscillations on singular sub-arcs
are erratic and prevent the quantity luy, — uy, 1 from converging to zero. We believe that these
spurious oscillations appear due to the accumulation of numerical errors which, on the singular
sub-arcs, have very little effect on the Lagrangian because of the singularity of its Hessian. The
reason this problem appears when trajectory constraints are active may have to do with the fact

that the optimization algorithm chooses control iterates that cause the trajectory to follow the

S
' On an extremal arc. the third variation is necessarily zero with respect to any perturbation in the null-space of the Hessian.
Otherwise. u* would not be a lacal solution.

Sec. 4.5 Singular Control Problems 131

constraint over the active region. It may be “easier” to accomplish this using an oscillatory con-
trol.

‘Numerical Method for Solving Singular Control problems.

We propose here a modification to the approximating problems that reduces the numerical diffi-
culties associated with singular control problems. Our modification involves adding to the objec-
tive function a penalty on the variation of the control derivative. The only other method

(see[116,120]) that has been proposed for solving singular optimal control problems involves
]

adding the term elulzg =¢ I u(t)TQu(1) dr, where Q is positive definite and ¢ is a positive scalar,
0 .

to the cost function. With this additional term, the Hamiltonian becomes, with H being the

Hamiltonian of the unmodified problem,
H(x(0), p(1), u(1)) = H(x(1), p(t), u(t)) + eu(t)" Qu(r) , 1 € [0,1]. (5.4a)

Hence, assuming that the minimum eigenvalue of H,,(x(:), p(-).u(:)) is bounded below, there
exists an ¢ > 0 such that

H oy (x(1), p(1) u(1)) = H,,(x(1), p(t). u(1))+ €0 > 0. (5.4b)

This method has some numerical drawbacks as discussed in[121]. One difficulty is that adding
the term ellulé is a brute-force way to eliminate the singularity of H,,. In order to get a reason-
able solution with this approach, £ must be driven to zero. But this causes the problem to become
singular again.

The method we propose for handling singular optimal control problems is motivated as a
direct approach to preventing the erratic oscillations that can appear in numerical solutions. It has
the property that, as the discretization level N — oo, the solutions of the approximating problems
converge to solutions of the original problem. At the same time, our method does not cause the
approximating problems to become increasingly singular as N — oo. For simplicity of presenta-'
tion, we will only discuss single-input systems but the ideas are easily extended to multiple-input
systems. Also, the treatment is developed for second order splines (p = 2). The application of
these results to first order splines is taken by formally setting p = 1 in the given formulas. We do
not consider higher order splines because (a) we do not recommend using higher-order splines for
control and trajectory constrained problems in general, and (b) the smoothness of higher-order

splines tends to automatically prevent spurious oscillations in the numerical solution.

The total variation of a function « : [0, 1] = IR is defined as

132 Numerical Issues Chap. 4

N-1
Var(oj(u) =sup 3 lu(ti,y) — u(te)l, (5.5a)
N k=0

N
where, for each N, the supremum is taken over all sequence {1;)};= such that
O=19<ty <~ <ty <ty =1 If Varg(u) < oo, then u is said to be of bounded variation.

The space of all functions u of bounded variations is denoted by BV. Note that, if u € Lfi’, then

N
Vargy)(u) = k}:l lutyay) = uCtl (5.5b)

In order to prove epi-converge of the approximating problems, constructed below, to the original
problem, the space of controls will have to be restricted to those of bounded variation. Hence, we

define the original problem as
i <
P min {wa(m 1y (<0}, (5.6a)
where H=R" x U and
U={ueBVIiut)elU. Vie[0.1]) (5.6b)

with U < B(0, pmax) @ compact. convex set. We note that BV C:»LL,'Z[O, 1], so this new defini-

tion is a restriction on the set of controls that we had previously used.

If u is of bounded variation. then its derivative u(-) exists almost everywhere. Unfortu-

nately, the fact that the derivative does not exist at every point prevents us from being able to
compute the total variation of u for all # € BV. However, for u € L:f.) we can define the piece-

wise derivative variation of the control as

. N+p-3
Var,\,(u) = Z l3k+l - Skl . (578)
k=1

where

_ u(ty) — ulte_y)

sp = Lk=1,...N+p-2, (5.7b)
An i ‘

where Ay x =1ty.i+1 — v Note that for second order splines (p = 2), s, is the slope of u(f) on

N+) are the spline coefficients of u. So,

the interval 7 € [1;,1,4)] and u(t;) = a;,y, where { a; }
in what follows, we will use the notation i1, = a; = u(1;_;) fork = 1,..., N + 1. Note that this is

different than our notation in Chapter 2 where we had i; = (uy,,...,u4;,)fork =0,...,N-1.

To deal with the non-differentiability of Var.‘\.(-) we define the modified approximating

problems as

Sec. 4.5 Singular Control Problems 133

Py, ~omin {y, N +enVarpu | yen(m<0) (5.8a)

n=(wue H',;
where
. s 1 N+p-3
Varg, (u) = 3 Y Usge = 5il? (5.8b)
k=1
on = c
N_(N+p_3)N2 . (5.80)

In (5.8c), ¢ 2 0 is a small number supplied by the user, N + p — 3 is the number of terms in the
summation in (5.8b) and the N2 roughly cancels the Aﬁ,‘k terms in the definition of s2 (if the mesh
is uniform then A%,‘k = 1/N?). The parameter cy goes to zero as N = oo fast enough to ensure
that cy f’arf_\,(u) stays bounded as N — oo (as long as the meshes are quasi-uniform). To wit, we

have from (5.7b) and (5.8b) that for any u € U’ © L,

’ -3 - - - -
¢ & fraa = lywr By = i

2AN+p=-3)N2 & AN k) An i

CN \./arfN (u) =

c(EN)? N+p-3 L »
-m E’, |uk+2—uk+|| + ity — il

& Ntp=3
=3 -(N_ T 'p‘ '__3) k§l 8 Pimax
= “""‘gpmax)2 . (5.9)

where we have used the fact that (i) lifz,) — it < 2ppya, since, by definition of U, U(,S’ cU
where U is given by (5.6b). (ii) (a-— b) < 2(a* + b*) and (iii) the meshes are quasi-uniform
with quasi-uniformity ratio &, which by (1.2b), implies that 1/Ay; < 6N for all k. On the other
hand, the fact that the bound in (5.9) is independent of N (in particular, does not go to zero as
N — oo) indicates that cy stays large enough so that the penalty term will be effective in damp-
ing out unwanted control oscillations even as N — oo. Thus, cy is the correct order in 1/ N; any
smaller and the penalty term would not damp out unwanted oscillations and any larger and we
would not be able to prove epi-convergence as we do below. Typically, the fixed parameter ¢ will
be chosen very small so that the penalty term does not affect the solution away from singular arcs.
Even so, erratic control behavior on singular sub-arcs will be damped because even a small
penalty effects control perturbations on singular sub-arcs that would otherwise have very little

effect on the Lagrangian.

134 Numerical Issues Chap. 4

Our first task is to show that the modified problems Py . epi-converge to the original prob-
lem P. We emphasize that Theorem 5.3 relies on the fact that P is defined over the set of controls
with bounded variation.

Theorem 5.3 (Epi-convergence). Suppose { Py} is a sequence of approximating problems
defined on quasi-uniform meshes {ty } with quasi-uniformity ratio & using second order splines
(p = 2) and that { Py } epi-converges to problem P as N — oo. Also suppose that {Py .} isa
sequence of modified approximating problems formed by adding to the objective functions of Py

the term cN\:’arz(u). Then { Py .} epi-convergesto Pas N — co.

Proof. Since {Py} epi-converges to P we merely need to show that the extra term,
cN \'/ar.zh,(u). in Py . epi-converges to zero. Because cy Var*(uy) 20 forall uy € in), it is clear
that for any sequence {up} with uy € L:i’ such that uy = u € BV as N — oo,

l_ich\./arz(uN) 2 0. Thus, part (b) of Definition 2.2.1 is satisfied. We will now show that part

(a) of Definition 2.2.1 is also satisfied. Let u € BV. For each N, define the piecewise constant

function
AY
v(r) = X On Ty, 1 €[0,1], (5.10a)
k=1 .
where
]
Fax = J’ Cundr (5.10b)

1)

1 if 1> Tk
llE[IA|YA)k=

yooo N~ .10c
0 otherwise,] N-1 (5.10c)

My (1) ﬁ{

1 ifretn_y.1n]

.10
0 otherwise. (5.10d)

Ty N i{

2 - —
We then construct uy, € L:;,’ asuy = St‘\',(a,,,) where ay = vy fork =1,..., N. We see that
uy >u as N = oo (5.11a)

since the space of piecewise constant function is dense in L,[0, 1] 2 LL,z [0,1] © BV. Also, for
all N,

Varo))(uy) = Varjgy)(vy) < Varg(u) , (5.11b)

where the equality in (5.11b) follows immediately from the definition of Var(g)(-) and the
inequality follows from Lemma 3.2 in[122]. Next. with our notation iy = upy(#;.;) for
k=1,...,N+1, we have from (5.8b.c),

Sec. 4.5 Singular Control Problems 135

2
c N-1

UNje2 =N ks) BN ke = Nk
AN+ DNZ &

c Varz(uN) =
N Ay k41 Ay

)

-

2
c

p i 2"5 Uy k2 = AN 4
AN+DN* (3

AN k41

Ungey — N

+
Ay

where we have used the fact that (a - b)? < 2a* + b?)

2
2c

< 5 U ke —UNg
2N+ N2 “ &

ANl

2c

N
< —————(5N)? iy ke — B i
_(N+1)N2 ((SN) k§||NN‘+1 uN‘l ,

where we have used the quasi-uniformity condition Ay ; 2 1/6N,

~

=9
26 (N _ Y
N+l (‘z] 'uNk-o-l _“Nkl]

L)

-

2¢5°
% N+ 1 (Varw_”(u,\,-)) N (5]2)

since uy € Lﬁi_’. Therefore, from (5.11b) and (5.12),

-

(Varl(,_l](u)) —0asN 9 o0 (5-13)

. - 2
cyVar-(uy) < N(+]

since u € BV implies that Varjg (1) < oo. This shows that, Tim ¢ Var’(uy) < 0. Hence, Defini-
tion 2.2.1(a) holds. D

We can gain insight into how the penalty term ¢y \'/arf\,(u) damps out spurious control oscil-

lations by considering its Hessian. Givenu € L:i'. let a = Sy, 2(u). If we define the row vector

s(@)=[(s; = s0) (s2=51) -+ (Snap-2 = SN4p-3)], (5.14)

with s, as defined in (5.17b), then

\:/artzh,(u) = %s(a)s(a)r . (5.15)

Further, if we define

136 Numerical Issues Chap. 4

Dy = . , (5.16a)

=11 Jvxnel
Ano
A= .. , (5.16b)
AN .N-1
then we see that
“ds(a)] _ .
< =5a=Dn.1&"' Dy, (5.16¢)
and
s(a) = as’ . (5.16d)
Hence, \:’arf‘,(u) = % as,T,s(,aT and its second derivative is given by
d2\7ar2,(z4)
dal; = sta) (5.17)
d? ‘./arf\, (u)

Proposition 54. For v € L:i), the matrix is symmetric, positive semi-definite.

da?

d-Vary, o

The null-space of 7 — is the two-dimensional subspace
a-

{ue L lut)y=a+bt, a,beR} . (5.18a)

- o

ty Lo . 2
Proof. That P % is symmetric, positive semi-definite is obvious. Let u € L{ ~) have coeffi-

cients & = Sy, 2(«). Then. from (5.17) and (5.16d),

25 2
d-Varg,

da? ’

(a a)=(ash,asT) = (s(a), s(a)) . (5.18b)

The result now follows by noting from (5.7b) and (5.14) that s(a) = 0 if and only if u = a+ bt

for some a,b € R.]
d*Varl () . . .
Thus, ———— is positive-definite except on the subspace of controls that have constant slopes.

da?
To see how this affects the solutions of the approximating problem consider a singular control P

with approximating problems Py and modified approximating problems Py .. First, let { %y }

be a sequence of solutions to { Py } such that &, — «* where u* is a singular optimal control.

For each N, let '/‘IN be the Lagrange multipliers associated with the constraints for Py at the

Sec. 4.5 Singular Control Problems . 137

solution % . If N is large enough, the Hessian of the Lagrangian, V2, Ly (i N,?i ~), for Py is sin-
gular or near singular. Let Suy € L:i’ be a vector in the null-space of V2,Ly(%iy). Then,

expanding the Lagrangian around % y, we see that

L(ft n+ Supn, An) = LGy, A n) + O(15upl®) (5.19a)
since the first and third order variations with respect to duy are zero for a solution to Py. Thus,
small perturbations in the null-space of V:‘;LN(?: N,',\i ~) have very little affect on the Lagrangian
for Py. Next, consider the modified approximating problem Py .. Let { %y } be a sequence of
solutions to { Py} such that i y — u*. As before, let g n be the Lagrange multipliers and let

Suy be a vector in the null-space of V2L y(# N,':lN). Now when we expand the Lagrangian for

the modified approximating problem we find that

A A] d- Var2 ;
Lin+Sun,2n) = LBy, An) + 5 (Bup, —da—,‘“ Sup) +0(15uyl®) . (5.19b)
Thus, according to Proposition 5.4, any perturbation, Suy, that is not a straight line, i.e. contains
oscillations. will lead to a second-order increase in the value of the Lagrangian. It is this property
that tends to damp out control oscillations that may occur on singular arcs of the numerical solu-

tions.

Remark 5.5. Any control v € L{i’ can be written as u = u; + u> where u; = u(0) + u(1)r.
Proposition 5.4 shows that u, does not contribute to the penalty term in Py .. This is precisely
the behavior we want because any spurious oscillation in «# must be contained in «,. Had we cho-
sen to penalize the variation of the control, Varyq j)(u), rather than the piecewise derivative varia-
tion of the control. the null-space of the Hessian of the penalty term would consist of only con-

stant functions. Thus. even u; would contribute to the penalty term. That would be undesirable.0

Remark 5.6. Another possibility for solving singular optimal control is to use the proximal

point method. In this approach, the approximating problems are defined as

min {won(m)+ c,;,:lu—u,,,_f"l2 L wen(n)<0},
PN.('N n= (g'u) € H(’.:, o ¢ (5.20)

where u_.* is chosen by the user and « N-.* is the solution obtained for Py_; ., ,. Clearly, the
additional term luy_,* — ul® adds a positive definite matrix to the Hessian of the Lagrangian for
Py, This is similar to the idea of adding the term elulzg to the objective function. However,
luN_l* - uN*l — 0 automatically if u N u", even if cy = c is fixed. In this way, some of the
numerical difficulties associated with the former method may be overcome. Convergence results

for the proximal point method can be found in[123,124]. One advantage we see to our

138 Numerical Issues _ Chap. 4

modification over both of these methods is that it has a minimal impact on the solutions of the
approximating problems since the value of ¢ in the definition (5.8¢) of cy can be chosen to be
very small. Thus, a good numerical solution can be obtained even if only a single Py . is solved

using a moderate value of N. In the other methods, N must be allowed to grow large.]

Numerical Examples. Below we present the results of solving two trajectory constrained sin-
gular control problems with and without the addition of a penalty on the piecewise derivative vari-
ation of the control. We used second order splines and the fourth order RK method A, and solved
the discretized problems using NPSOL [125]. The first problem is the Obstacle problem and the
second problem is the Goddard Rocket maximum ascent problem with a trajectory constraint on

the dynamic air pressure (see Appendix B).

The first problem has two trajectory constraints, /,(z, x(t), u(t) < 0 and I5(z, x(t), u(1)) < 0.
Two versions of this problem were solved. One version includes these trajectory constraints
directly as part of the optimization problem. The second version of this problem has these trajec-

tory constraints replaced with the endpoint constraint
! 2 2
g(m= J max { (0, 7y (1, x(1), u(1))* } + max { (0, /s(z, x(¢), u(1))" } dr = 0 . (5.21)
0

Clearly, the trajectory constraint is satisfied if and only if g(n) = 0. However, this is not an equiv-
alent representation of the constraint because Vg(n) = 0 for any feasible n. Hence, g(n) does not
satisfy the usual constraint qualification. No penalty on the piecewise derivative variation of the
control was needed when using (5.21).

The solution of the first problem at discretization level N = 100 and a uniform mesh is
shown in the first three plots. The first plot shows the solution with and without a penalty of
¢ = 107 on the piecewise derivative variation of the control. The next plot shows the solution for
this problem with the trajectory constraints replaced by the endpoint constraint. We did not use a
penalty on the piecewise' derivative variation of the control to produce this solution which does
not exhibit control oscillation. The final plot shows a phase plot of the system trajectory and

shows how the trajectory constraints (depicted as dotted lines) are avoided.

The table below lists how many iterations and how much CPU time (in seconds on a Sun
SparcStation 20) were required to solve the two formulations of this problem. Also listed, is the
maximum constraint violation for the continuous-time systems (computed using a variable step-
size integration method with the tolerance set to 107'2). For each solution, the difference in the

computed objective functions was negligible.

Sec. 4.5 Singular Control Problems 139

Constraint Type Variation Penalty ¢ Iterations CPU time Constraint Violation
trajectory 0 37 294 2.62¢-8
trajectory le-3 16 14.8 247e-8
endpoint 0 154 7.2 3.00e-5

Table §.1: Work required to solve the Obstacle problem. The last row is for the problem refor-
mulated with an endpoint constraint.

The reason the solution for the first two versions take much longer than the problem with the tra-

jectory constraint converted to an endpoint constraint (even though the latter version requires

many more iterations to solve) is that, at each iteration, a gradient is computed at each point, 7,,

of the trajectory constraint. Currently. this is done with adjoint equations which is inefficient for

trajectory constraints. The optimization procedure was not able to converge (although the solu-

tion was reasonable) with the endpoint constraint formulation. This is because the endpoint con-

straint does not satisfy the standard constraint qualification.

Effect of Penalizing Variation of Control Derivative

1.5

0.5 H

Optimal Contro!
o)

T

-0.5F -
-1f .
—— With penalty
- Without penalty
_1 R 1 1] L A
50 0.5 1 1. 2 2.5 3
Time
Fig. 5.2a: Solution of trajectory constrained, singular optimal control problem Obstacle. The
oscillations are damped out by adding a small penalty on the piecewise derivative variation of the
control to the objective function.
140 Numerical Issues Chap. 4

Solution for problem ‘with trajectory constraints converted to endpoint constraint.
1 .5 L) L] L] L) 1

Optimal Control
o
o [
1 1

|
o
0

T

1

y -

=15 0.5 1 1.5 2 2.5 3

Time

Fig. 5.2b: Solution of the same problem with the trajectory constraints converted into an end-
point constraint. Here there is no unwanted oscillation in the solution.

Phase plot showing optimal trajectory and trajectory constraints
1 r T T T T =3
|

0.8

T
1

06
0.4t .

0.2+ .

x2
o
L

1

o

o
¥
L

-1 L I ' i 1

-0.5 0 0.5 1.5

-

x1

Fig. 5.2c: Phase plot of the optimal trajectory for problem Obstacle. The dotted lines represent
the two trajectory constraints.

Sec. 4.5 Singular Control Problems 141

The next two plots show the solution for the Goddard rocket problem with the trajectory
constraint max,; Aq(#;) < 10 where Aq(t) is the dynamic pressure given by

q(1) = § poe? V(1) (5.22)

with Apg = 12,400 and S = 500. We first solved this problem on a uniform grid with a dis-
cretization level of N = 40 using RK method A, with second order splines. The solution exhib-
ited oscillations. So, the mesh was redistributed using mesh redistribution Strategy 1 with
FAC = 50. This produced a non-uniform grid with N = 79. We then solved this problem with
and without a penalty on the piecewise derivative variation of control. This penalty was set at
¢ =107, A plot of the control solutions for both cases is presented in Figure 5.4a. The plot
includes marks on the time axis that show the locations of the mesh points. Figure 5.4b shows a
plot of the dynamic pressure clearly indicating that the dynamic pressure constraint is satisfied.
Table 5.3 shows how many iteration and how much CPU time (in seconds on a Sun SparcStation

20) was required to solve this problem with and without the penalty.

Variation Penalty Iterations CPU time
0 35 15.1
107 20 9.2

Table 5.3: Work required to solve the trajectory constrained Goddard problem with and without
a penalty on the piecewise derivative variation of the control. The difference in the objective val-
ues is negligible.

4.6 OTHER ISSUES

4.6.1 Fixed versus Variable step-size integration

The notion of using a fixed step-size integration routine to solve optimal control problems runs
counter to the standard understanding of how to efficiently integrate differential equations. One
could instead use variable step-size integration to approximately solve the differential equations
and integrals in the statement of the optimal control problem. For optimal control problems, how-
ever, the overall error in the numerical solutions is not determined only by integration accuracy.
Instead, as shown in equation (2.11a), the approximating capability of the finite-dimensional con-
trol representation also affects the solution error. Furthermore, many simulations will be required
to solve an optimal control problem. So, having high integration accuracy in the early iterations

will provide little, if any. benefit. The solution error can always be reduced in later iterations

142 Numerical Issues Chap. 4

Effect of Penalizing Variation of Control Derivative

4 T r r r
-—— With penalty .
- Without penalty
g
[=4 -
[~
o
=
E 4
8
1l i
0.5} L -
or -
=, St Aot it + et + + +—L1t
o} 0.05 0.1 0.15 0.2 0.25
Time
Fig. 5.4a: Solution of the trajectory constrained Goddard maximum ascent rocket problem
showing how a small penalty on the piecewise derivative variation of the control can damp out
spurious oscillations in the numerical solution. The tick marks indicate the locations of the mesh
points.
12 " " x T
10} .
8t .
o
=
2
4
(=
s Sr T
|5
s
&
ar <
2r -
o ' L)
o 0.05 0.1 0.15 0.2 0.25

Time

Fig. 5.4b: A plot of the dynamic pressure showing that the trajectory constraint Ag(r) < 10 is
satisfied.

Sec. 4.6 Other Issues 143

using the mesh refinement strategies discussed in Section 3.

On the other hand, the price of using a variable step-size algorithm is that they are much
slower than fixed step-size algorithms. There are two main factors that contribute to this ineffi-
ciency. One problems is that the gradients computed for the objective and constraint functions
cannot be computed exactly. Rather, they are computed as numerical approximations to the gra-
dients of the continuous-time systems. This reduces the desirability of the search directions that
depend on these gradients. Another problem occurs during line searches. Since the evaluation of
function values depends on the integration mesh, part of the change in function values obtained
from simulations with different step-lengths of the line search is due to the fact that the integra-
tion mesh changes from one simulation to the next when using a variable step-size method. This

can cause line searches to fail if the integration tolerances are not tight enough.

In the following table we provide some experimental results that show that solutions

1-

obtained using a variable step-size integration routine ' take much longer to compute and, yet, are
no more accurate than the solutions obtained using the fourth order, fixed step-size Runge-Kutta

integration method A4.

We used linear spline defined on a uniform mesh with N = 100 intervals for each of the
problems. The problems were solved using NPSOL [125] (a sequential quadratic programming
algorithrh). Problems Switch and Goddard2 were solved with penalties of 10~ and 107, respec-
tively, on the piecewise derivative variation of the control added to the objective function.
Rayleigh 1 is the unconstrained Rayleigh problem and Rayleigh 2 includes t.he endpoint con-
straint x;(2.5) = 0. Goddard | is the Goddard rocket maximum ascent problem, and Goddard 2
is the same problem with a trajectory constraint on the dynamic pressure, Ag(t) < 10, included.
These problems are described in Appendix B.

The results are shown in Table 6.1. The CPU time is given in seconds on a Sun SparcSta-
tion 20. For the problems which took only a few iterations to solve, a substantial amount of the
execution time was involved in computing the coordinate transformation. The optimization was

terminated when all of the following termination criteria were met: (i)

1Z7 Vg f (g, < 10781 +max { 1 +1£ L Ve f(MIg, 1) (6.1a)

where Vg f(7) is the gradient of the objective function with respect to free variables (variable not

at their bounds) and Z7 Vg f(7) is the projection of the free gradient into the feasible region, (ii)

¥ We used LSODA which is a very efficient linear. multi-step Adams-Moulton method with variable step-size and variable or-
der. The integration was reset at each mesh point hecause of discontinuities in #(7;). Further details of the implementation can be
found in the RIOTS user’s manual. '

14 Numerical Issues Chap. 4

max lres ;| < 107

where res ; is the violation of the j-th nonlinear constraint, and (iii)

11 = mily, S 107°(1 + Iy, .

(6.1b)

(6.1¢)

The relative and absolute integration tolerances for the variable step-size integration routine were

both set to 1078. At lower tolerance the line searches often failed.

RK method A4 “ Variable step-size integration

Problem Iterations CPU time ln* - r)* Nl " Iterations CPU time ln* - ”*AJ
LQR 5 10167 | 2.9087e-6 5 23500 | 3.0363e-6
Rayleigh 1 18 1300 | 000142 18 55333 | 0.01042
Rayleigh 2 22 19833 | 0.00152 22 104167 | 0.14022
Bang 12 3.500 | 0.5471 12 9.1167 | 0.5471
Switch 1 2500 | 0.0134 2 9.4833 | 00134
system 5 16 143000 | 0.0524 15 282.0833 | 0.05242
Goddard 1 103 42333 | 10062 48! 22.8833!
Goddard 2 27 244667 | 107892 7! 90.7333!

Table 6.1: Comparison of the amount of worked required to solve problems using fixed step-
size RK method A, and a variable step-size integration method.

The superscript

entry. The solutions returned in these two cases were unacceptably bad. The superscript 2

] indicates that the optimization algorithm failed to coﬁverge for the marked

cates that the quantity I7° — #* x1 was estimated using (4.20).

We make the following observations from the data in Table 6.1:

indi-

» The execution time for the variable step-size method was about two to twenty times greater

than the execution time for the fixed step-size RK method.

» The solution errors obtained with the variable step-size integration method was no better, and

in some cases was worse, than the solution errors obtained with the fixed step-size RK

method. The reason for this is that the gradients computed with the variable step-size routine

are computed as approximations to the continuous-time gradients for the original problem.

They are not exact gradients for the approximating problem. This prevents the optimization

algorithm from being able to obtain very accurate solutions to the approximating problems.

 The optimization algorithm failed o converge for the Goddard Rocket problems when using

the variable step-size integration routine.

Sec. 4.6

Other Issues

145

These observations strongly suggest that, without a specific reason to the contrary, it is bet-
ter to use a fixed step-size RK method than a variable step-size integration method. Cases where
this may not be true arise when the differential equations describing the system dynamics are stiff
or very difficult to numerically integrate.

4.6.2 Problems with equality constraints and constraints that do not satisfy the
Slater Condition.

Although we did not consider equality constraints in our convergence theory in Chapter 2, our
discretization scheme can still be formally applied to optimal control problems with state end-
point equality constraints. If any constraints, equality or inequality, in P do not satisfy the Slater
conditions, Assumption 2.4.11, then the approximating problems Py may have no solution even
though there is a solution to the original problem P (see [44,51,126])). However, from a practical
point of view, the outcome is that the algorithm which is used to solve Py will simply terminate
without being able to satisfy the constraints beyond a certain accuracy. . It is, therefore, a good
idea to use large constraint violation tolerances when the discretization level is low to avoid any
unnecessary iterations that occur trying to satisfy the constraints. The achievable accuracy will,
however, increase as the discretization level N increases.

146 Numerical Issues Chap. 4

Chapter 5

USER’S MANUAL FOR RIOTS

1. INTRODUCTION

This chapter describes the implementation of a Matlab® toolbox called RIOTS for solving
optimal control problems. The name RIOTS stands for “Recursivei Integration Optimal Trajec-
tory Solver.”” This name highlights the fact that the function values and gradients needed to find
the optimal solutions are computed by forward and backward integration of certain differential

equations.

RIOTS is a collection of programs that are callable from the mathematical simulation pro-
gram Matlab. Most of these programs are written in either C (and linked into Matlab using Mat-
lab’s MEX facility) or Matlab’s M-script language. All of Matlab’s functionality, including com-
mand line exeéution and data entry and data plotting. are available to the user. The following is a

list of some of the main features of RIOTS.

* Solves a very large class of finite-time optimal controls problems that includes: trajectory
and endpoint constraints, control bounds, variable initial conditions (free final time prob-

lems), and problems with integral and/or endpoint cost functions.
* System functions can be supplied by the user as either object code or M-files.

* System dynamics can be integrated with fixed step-size Runge-Kutta integration, a discrete-
time solver or a variable step-size method. The software automatically computes gradients
for all functions with respect to the controls and any free initial conditions. These gradients

are computed exactly for the fixed step-size routines.

* The controls are represented as splines. This allows for a high degree of function approxi-

mation accuracy without requiring a large number of control parameters.

T Matlab 1s a registered trademark of Mathworks. Inc. Matlab version 4.2¢ with the Spline toolbox is required.
* lterative is more accurate but would not lead 1o a nice acronym.

Sec. 5. Introduction 147

* The optimization routines use a coordinate transformation that creates an orthonormal basis
for the spline subspace of controls. The use of an orthogonal basis can results in a signifi-
cant reduction in the number of iterations required to solve a problem and an increase in the

solution accuracy. It also makes the termination tests independent of the discretization level.

» There are three main optimization routines, each suited for different levels of generality of
the optimal control problem. The most general is based on sequential quadratic program-
ming methods. The most restrictive, but most efficient for large discretization levels, is
based on the projected descent method. A third algorithm uses the projected descent method
in conjunction with an augmented Lagrangian formulation.

e There are programs that provide estimates of the integration error for the fixed step-size

Runge-Kutta methods and estimates of the error of the numerically obtained optimal control.

* The main optimization routine includes a special feature for dealing with singular optimal

control problems.
e The algorithms are all founded on rigorous convergence theory.

In addition to being able to accurately and efficiently solve a broad class of optimal control
problems, RIOTS is designed in a modular, toolbox fashion that allows the user to experiment
with the optimal control algorithms and construct new algorithms. The programs outer and

aug_lagrng, described later, are examples of this toolbox approach to constructing algorithms.

RIOTS is a collection of several different programs (including a program which is, itself,
called riots) that fall into roughly three categories: integration/simulation routines, optimization
routines, and utility programs. Of these programs, the ones available to the user are listed in the

following table,

Simulation Routines Optimization Routines Utility Programs
simulate riots control_error
check_deriv pdmin distribute
check_grad aug_lagrng est_error
eval_fnc outer make_spline

| transform

Several of the programs in RIOTS require functions that are available in the Matlab Spline tool-
box. In addition to these programs. the user must also supply a set of routines that describe the

optimal control problem which must be solved. Several example optimal control problems come

148 RIOTS Users’s Manual Chap. §

supplied with RIOTS. Finally, there is a Matlab script called RIOTS_demo which provides a
demonstration of some of the main features of RIOTS. To use the demonstration, perform the fol-

lowing steps:

Step 1: Follow the directions in §8 on compiling and linking RIOTS. Also, compile the sam-

ple systems rayleigh.c, bang.c and goddard.c that come supplied with RIOTS.

Step 2: Start Matlab from within the ‘RIOTS/systems’ directory.

Step 3: Add the RIOTS directory to Matlab’s path by typing at the Matlab prompt,

>> path(path, ' full_path_name_for_RIOTS’)
>> RIOTS_demo

Limitations. This is the first version of RIOTS. As it stands, there are a few significant limita-

tions on the type of problems which can be solved by RIOTS:

1.

Problems with inequality state constraints that require a very high level of discretization can-
not be solved by RIOTS. Also, the computation of gradients for trajectory constraints is not

handled as efficiently as it could be.

Problems that have highly unstable, nonlinear dynamics may require a very good initial

guess for the solution in order to be solved by RIOTS.

General constraints on the controls that do not involve state variables are not handled effi-

ciently: adjoints are computed but not used.

RIOTS does not allow delays in the systems dynamics (although Padé approximations can -
be used).

Numerical methods for solving optimal control problems have not reached the stage that,
say, methods for solving differential equations have reached. Solving an optimal control
problem can, depending on the difficulty of the problem, require significant user involvement
in the solution process. This sometimes requires the user to understand the theory of optimal

control, optimization and/or numerical approximation methods.

Conventions. This manual assumes familiarity with Matlab. The following conventions are

used throughout this manual.

Program names and computer commands are indicated in bold typeface.
User input is indicated in Courier typeface.

Optional program arguments are listed in brackets. The default value for any optional argu-

ment can be specified using [].

Optional program arguments at the end of an argument list can be omitted in which case

Sec. S. Introduction 149

these arguments take on their default values.

* Typing a function’s name without arguments shows the calling syntax for that function.
Help can be obtained for M-file programs by typing help followed by the function name at
Matlab’s prompt. Typing help RIOTS produces a list of the programs in RIOTS.

* The machine precision is denoted by £ach.

2. PROBLEM DESCRIPTION

RIOTS is designed to solve optimal control problems of the formT

g . 1 b g
oce s g (a2 i [s) |

subjectto: x = h(r.x.u). x(a)=¢ .1 € [a.b],
b () S W) Sthay(t), j=Veoooom, 1 € [a,b],

‘f}’;.ins'fjsirjmx\j=l n.
i, x(N.u(1))£0. v eq,,1 €ab],
gni(&, x(b)<0, vegq,.

8ee(£.x(0))=0. v €q,,,
where x(1) € R", u(1) e R™, g:R"xR" 5 R, /:RxR"xR"” 5 R, h: RxR"xR" - R"

and we have used the notation q = { 1,...,q }. Only with the optimization program riots linked
with CFSQP (see description of riots) can g, > 1. The functions in OCP can also depend upon

parameters which are passed from Matlab at execution time using get_flags (described in §4).

The subscripts o, 1i, ei, and ee on the functions g(-,-) and I(-,-,-) stand for, respectively,
“‘objective function”, “‘trajectory constraint’, “‘endpoint inequality constraint” and *‘endpoint
equality constraint”. The subscripts for g(:,-) and I(-,-,-) are omitted when all functions are
being considered without regard to the subscript. The functions in the description of problem

¥ Not all of the oplimization routines 1n RIOTS can handle the full generality of problem OCP.

150 RIOTS Users’s Manual Chap. 5

OCP, and the derivatives of theée functionsi, must be supplied by the user as either object code
or as M-files. The bounds on the components of ¢ and u are specified on the Matlab command
line.

The optimal control problem OCP allows optimization over both the control u and one or

more of the initial states £. To be concise, we will define the variable
n=(u¢é) e Hy=LL,la,b)xR".

Note that the order of u and ¢ is reversed of the order used in the rest of this thesis because of
programming considerations. With this notation, we can write, for example, f(7) instead of

f(&,u). The inner product on H3 is given by

(mam2dy, = (U u2),+ (&1, 62) .
The norm corresponding to this inner product is given by

Wl = (mm)j? .

Transcription for Free Final Time Problems.

Problem OCP is a fixed final time optimal control problem. However, free final time problems
are easily incorporated into the form of OCP by augmenting the system dynamics with two addi-
tional states (one additional state for autonomous problems). The idea is to specify a nominal
time interval, [a, b). for the problem and to use a scale factor, adjustable by the optimization pro-
cedure, to scale the system dynamics and hence, in effect, scale the duration of the time interval.
This scale factor, and the scaled time. are represented by the extra states. Then RIOTS can mini-
mize over the initial value of the extra states to adjust the scaling. For example, the free final time
optimal control problem
a+T

Tlrn g (T, w(T) + J?(t.y,u)d:

o

subjectto y = Z(I,y,u) .Wa)=¢.1€la.a+T},

n-

can, with an augmented state vector x = (v, x"~!, x"), be converted into the equivalent fixed final

time optimal control problem

Hif the user does not supply derivatives. the problem can still be solved using riots with finite-difference computation of the
gradients.

Sec. 5.2 Problem Description 151

b
mg,l g(&, x(b)) + j (1, x, u)dr

xnz ().’"_] , ¥,) I
subject to x = h(t, x,u) = x" ,x(@)=é=|a |, t €lab],
0 34

where y is the first n — 2 components of x, g(&, x(b)) = E (@a+TE&", y(b)), I(t, x,u) =7 "y, u)
and b = a+T. Endpoint and trajectory constraints can be handled in the same way. The quantity
T = b—a is the nominal duration of the trajectories. In this transcription, x™~! plays the role of
time and ¢" is the duration scale factor, so named because T¢" is the effective duration of the tra-
jectories for the scaled dynamics. Thus, for any 7 € [a, b), x"(r) = &", x"'(t) = a + (1 — a)&"
and the solution, 1, for the final time is 7, = x"1(b) = a+ (b~ a)&". Thus, the optimal duration
is T = ty—a=(b-a)"=TE" Ifa=0and b=1,thent, = T* = £". The main disadvan-
tage to this transcription is that it converts linear systems into nonlinear systems.

For autonomous systems, the extra variable x"!

is not needed. Note that, it is possible,
even for non-autonomous systems, to transcribe minimum time problems into the form of OCP
using only one extra state variable. However, this would require functions like
h(t, x,u) = h(ix", v,u). Since RIOTS does not expect the user to supply derivatives with respect
to the r argument it can not properly compute derivatives for such functions. Hence, in the cur-

rent implementation of RIOTS. the extra variable x"™ is needed when transcribing non-

autonomous, free final time problems.

Trajectory constraints.

The definition of problem OCP allows trajectory constraints of the form /,;(z, x, u) < 0 to be han-
dled directly. However, constraints of this form are quite burdensome computationally. This is
mainly due to the fact that a separate gradient calculation must be performed for each point at

which the trajectory constraint is evaluated.

At the expense of increased constraint violation, reduced solution accuracy and an increase
in the number of iterations required to obtain solutions, trajectory constraints can be converted
into endpoint constraints which are computationally much easier to handle. This is accomplished

as follows. The system is augmented with an extra state variable x"*!

with
#1) = pmax {0, 1,;(r, x(n),u(t)) } 2, x™*Na) =0,

where u > 0 is a positive scalar. The right-hand side is squared so that it is differentiable with

respect to x and u. Then it is clear that either of the endpoint constraints

152 RIOTS Users’s Manual Chap. 5§

geil&, x(b)) = x"(b) <0
or
eel&, x(b)) = x™(b) = 0

is satisfied if and only if the original trajectory constraint is satisfied. In practice, the accuracy to
which OCP can be solved with these endpoint constraints is quite limited because these endpoint
constraints do not satisfy the standard constraint qualification (described in the next section).
This difficulty can be circumvented by eliminating the constraints altogether and, instead, adding
to the objective function the penalty term g, (&, x(b)) = x™'(b) where now u serves as a penalty
parameter. However, in this approach, 4 must now be a large positive number and this will
adversely affect the conditioning of the problem. Each of these possibilities is implemented in
‘obstacle.c’ for problem Obstacle (see Appendix B).

Continuum Objective Functions.

Objective functions of the form

min max (1. x(1), u(r))
u 1€ |ab)]

can be converted into the form of problem OCP by augmenting the state vector with an additional

state, w, such that
Ww=0; w0) =g

and forming the equivalent. trajectory constrained problem

min §n+l
‘u‘gnol)

subject to
I x()ou()-Em1'<0, 1 €lab).

This transcription also works for standard min-max objective functions (which are only supported
for problem OCP when riots is linked with CFSQP) of the form_

b
min max g"(u.§)+I IY(e, x(1), u(t)dr .
u vegq, d

In this case, an equivalent endpoint constrained problem with a single objective function,

min §n+l
. u'gnol

subject to

Sec. 5.2 Problem Description 153

g . & -&m<0, veg,

is formed by using the augmented state vector (x, w, z) wtih

w=0, w)=¢m!

2 =10, x(1),u(?)), 2°(0)=0, vegq,,

and defining

g w8 =g"u.)+2"(b).

3. USING RIOTS

This section provides some examples of how to simulate systems and solve optimal control prob-
lems with the RIOTS toolbox. Detailed descriptions of all required user-functions, simulation
routines, optimization programs and utility programs are given in subsequent sections. These
programs are all callable from within Matlab once Matlab’s path is set to include the directory
containing RIOTS. The Matlab command

>> path(path, 'full_path_name_for_RIOTS')

>> RIOTS_demo

should be used for this purpose. Refer to the §8. *Compiling and Linking RIOTS”, for details on
how to install RIOTS.

RIOTS provides approximate solutions of continuous time optimal contro! problems by
solving discretized *‘approximating™ problems. These approximating problems are obtained by
(i) numerically integrating the continuous time system dynamics with one of four Runge-Kutta
integration methods% and (ii) restricting the space of allowable controls to finite-dimensional sub-
spaces of splines. In this way, the approximating problems can by solved using standard mathe-
matical programming techniques to optimize over the spline coefficients and any free initial con-
ditions. It is not important for the user of RIOTS to understand the discretization procedure or

splines.

The accuracy of the solutions obtained in this manner depends on several factors which

include:

-
*RIOTS also includes a discrete-time system solver and a variable step-size integration routine.

154 RIOTS Users’s Manual Chap. §

am The accuracy of the integration scheme (which depends on the order of the integration

scheme and the selection of the integration mesh).

(2) How well elements of the spline subspace can approximate solutions of the original, infi-
nite-dimensional broblem (this depends on the order and knot sequence of the splines and on the
smoothness of the optimal control).

3 How accurately the approximating problems are solved by the underlying mathematical
programming algorithm.

The allowable spline orders are related to the particular integration method used (see
description of simulate in §5). For problems that have smooth optimal controls, higher order
splines will provide solutions with higher accuracy. Smoothness is not, however, typical of opti-
mal controls for problems with control and/or trajectory constraints. In general, the spline knot

sequence is constructed from the integration mesh

ty = {’k}l{-\z".]l-

We start our indexing from k = | rather than k = 0, as we did in previous chapters, because Mat-
lab’s indexing begins with one. This integration mesh also represents the breakpoints for the con-
trol splines. The subscript N. referred to as the discretization level, indicates that there are N
integration steps and N + | spline breakpoints. Each spline is determined from the knot sequence
and its coefficients. For a spline of order p. each control input requires N + p — 1 coefficients and
these coefficients are stored as row vectors. Thus, a system with m inputs will be stored in a
**short-fat™ matrix with m rows and N + p - 1 columns. More details about splines are given in

the next section.

Typically, we use the Matlab variable u to store the spline coefficients. The system trajecto-
ries computed by integrating the system dynamics are stored in the variable x. Like u, x is a
**short-fat™ matrix with n rows and N + | columns. Thus, for example, x (: , k) is the computed
value of x(r;). Other quantities, such as gradients and adjoints, are also stored as “short-fat”
matrices.

The following sample sessions with RIOTS solve a few of the sample optimal control prob-
lems that are supplied with RIOTS as examples. Appendix B provides a description of these
problems and the C-code implementations are included in the ‘RIOTS/systems’ sub-directory.

Sec. 5.3 Using RIOTS 155

Session 1 (unconstrained problem). In this session we compute a solution to the uncon-
strained nonlinear Problem Rayleigh. This system has two states and one input. We start by
defining the initial conditions and a uniform integration mesh over the time interval [0, 2. 5] with

with a discretization level of N = 50 intervals.

We can take a look at the solution trajectories by simulating this system with some initial control.
We will specify an arbitrary piecewise linear (order p = 2) spline by using N+ p-1=N+1
coefficients and perform a simulation by calling simulate.

>> N=50;

>> x0=[-5;-5]; % Initial conditions

>> t=(0:2.5/50:2.5];) $ Uniform integration mesh

>> ul0=zeros(1l,N+1); % Spline with all coeff’'s zero.

>> [j,x)=simulate(l,x0,u0,t,4,2);
>> plot(t,x)

li.x)=simulate(1.x0.u0.1,4,.2);

-2

—-a

-6

) 0.5 1 15 2 2.5
Next, we find an approximate solution to the Problem Rayleigh, which will be the same type of

spline as u0, by using either riots or pdmin.

>> [ul,x1,fll=riots(x0,u0,t,(),[),(),100,4);
>> [ul,x1,fl}=pdmin(x0,u0,t,{).[],{).100,4);

The first three input arguments are the initial conditions, initial guess for the optimal control, and
the integration mesh. The next three inputs are empty brackets indicating default values.which, in
this case, specify that there are no control lower bounds, no control upper bounds, and no systems
parameters. The last two inputs specify that a maximum of 100 iterations are to be allowed and
that integration routine 4 (which is a fourth order Runge-Kutta method) should be used. The out-

puts are the control solution, the trajectory solution, and the value of the objective function.

156 RIOTS Users’s Manual Chap. §

The displayed output for pdmin is shown below. The displayed output for riets depends on

the mathematical programming algorithm with which it is linked (see description of riots in §6).

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,
1 objective function,
0 nonlinear and 0 linear trajectory constraints,
0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 0 linear endpoint equality constraints.

Initial Scale factor = 0.02937

Method = L-BFGS.

Quadratic fitting off.

Completed 1 pdmin iter ; step = +1.67e+00 (k= -1), ||free_grad|| 1.47e-01, FFF, cost = 34.40807327949193
Completed 2 pdmin iters; step +4.63e+00 (k= -3), ||free_grad|| 1.0le-01, FFF, cost 31.33402612711411
Completed 3 pdmin iters; step +2.78e+00 (k= -2), ||free_grad]| 5.26e-02, FFF, cost 29.78609937166251
Completed 4 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|] 2.25e-02, FFF, cost 29.30022802876513
Completed 5 pdmin iters: step +1.00e-C0 (k= «C), ||free_grad|| 9.03e-03, FFF, cost 29.22362561134763
Completed 6 pdmin iters; step = +1.67e+(C (k= -1), ||free_gradl| 2.61le-03, FFF, cost 29.20263210973429
Completed 7 pdmin iters; step = +1.00e+CC (k= +0), ||free_gradi| 5.06e-04, FFF, cost 29.20066785222028
Completed 8 pdmin iters: step +1.00e+00 (k= +0), ||free_grad}} 1.80e-04, FFF, cost 29.20060360626269
Completed 9 pdmin iters; step +1.00e-3C (k= +0), ||free_gradj} 1.86e-05, FFF, cost 29.20059986273411
Completed 10 pdmin iters; step = +1.00e-00 (k= +0), ||free_grad|] 5.94e-06, FFF, cost 29.20059981048738
Completed 11 pdmin iters; step = +1.€7e<(0 (k= -1), ||free_grad]| 2.07e-06, FFF, cost 29.20059980021174
Completed 12 pdmin iters: step +1.00e~-{ (k= +0), |{free_gradjl| 1.57e-07, FFF, cost 29.20059979946436
Completed 13 pdmin iters:; step +1.00e-00 (k= +0), ||free_gradj| 5.1Be-08, FFF, cost 29.20059979945842
Completed 14 pdmin iters; step = +1.00e-CC (k= +0), ||free_grad|| 1.16e-08, FFF, cost = 29.20059979945757
Completed 15 pdmin iters; step = +1.00e-0C (k= +0), ||free_grad|] 3.20e-10, TTF, cost 29.20059979945753
Completed 16 pdmin iters; step +6.00e-01 (k= +1), ||free_gradj]| 1.66e-10, TTT, 29.20059979945752

cost

Finished pdmin loop cn the 16-th iteraticn.

Normal termination test satisfied.

The column labeled | | free_grad| | gives the value of IV f()ly,. For problems with bounds
on the free initial conditions and/or controls. this norm is restricted to the subspace where the
bounds are not active. The column with three letters. each a T or F, indicates which of the three
normal termination criterion (see description of pdmin in §6) are satisfied. For problems with

control or initial condition bounds there are four termination criteria.

We can also solve this problem with quadratic splines (p = 3) by using N + p—1 = N + 2 spline

coefficients.

>> ul=zeros(1l,N+2);
>> fu2,x2,£f2}=pdmin(x0,u0,t, (], ()., [1,100,4});

We can view the control solutions using sp_plot which plots spline functions. The trajectory

solutions can be viewed using plot or sp_plot.

Sec. 5.3 Using RIOTS 157

>> sp_plot(t,ul) % Plot linear spline solution
>> sp_plot(t,u2) % Plot quadratic spline solution

sp_plot(t,ul)

sp_plot(t,u2)

L | I I

158 RIOTS Users’s Manual Chap. 5

Session 2 (problem with endpoint constraint). The user-defined functions for Problem
Rayleigh, solved in session 1, are written so that it will include the endpoint constraint
X1(2.5) = 0 if there is a global Matlab variable called FLAGS set to the value of 1 (see get_flags
in §4). To solve this problem with the endpoint constraint we can use either riots or aug_lagrng.

We must clear simulate before re-solving so that the variable FLAGS gets read.

>> global FLAGS
>> FLAGS = 1;

>> clear simulate % Reset simulate so the it will check for FLAGS
>> simulate(0,[)); $ Initialize

Loaded 1 flag.

Rayleigh

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,
1 objective function,
0 nonlinear and 0 linear trajectory constraints,
0 nonlinear and 0 linear endpoint inequality constraints,
0 nonlinear and 1 linear endpoint equality constraints.

The output displayed above shows that one flag has been read from the Matlab workspace. The
next two lines are messages produced by the user-supplied routines. The last set of data shows
the value of the system information (see discussion of neq[] in the description of init, §4, and
also simulate, §5). Since this problem has a state constraint, we can use either aug_lagrng or

riots to solve it.

>> x0=[-5;-5);

>> ul=zeros(1,51);

>> t=(0:2.5/50:2.5];

>> u=aug_lagrng(x0,u0,t,{),[),[).100,5,4);

Finished pdmin loop on the 2-nd iteration.
Step size too small.

Completed 1 Outer loop iterations.

Multipliers : -2.81973

Penalties : 10

Constraint Violations: 1.90255

Norm of unconstrained portion of Lagrangian gradient = 0.00646352
Rayleigh

Finished pdmin loop on the 15-th iteration.
Normal termination test satisfied.

Completed 2 Outer loop iterations.

Multipliers : -0.658243

Penalties : 10

Constraint Violations: 0.000483281

Norm of unconstrained portion of Lagrangian gradient = 0.000206008

Sec. 5.3 Using R1IOTS 159

Rayleigh

Finished pdmin loop on the 8-th iteration.
Normal termination test satisfied.

Completed 3 Outer loop iterations.

Multipliers : ~-0.653453

Penalties : 10

Constraint Violations: -7.91394e-06

Norm of unconstrained portion of Lagrangian gradient = 1.37231le-06
Rayleigh '

Finished pdmin loop on the 7-th iteration.
Normal termination test satisfied.

Completed 4 Outer loop iterations.

Multipliers : -0.653431

Penalties : 10

Constraint Violations: -8.6292e-07

Norm of unconstrained portion of Lagrangian gradient = 2.19012e-07
Objective Value : 29.8635

Normal termination of outer loop.

The displayed output reports that, at the current solution, the objective value is 29.8635 and the
endpoint constraint is being violated by —8. 63 x 1078, There is some error in these values due to
the integration error of the fixed step-size integration routines. We can get a more accurate mea-

sure by using the variable step-size integration routine to simulate the system with the control

solution u:
>> simulate(l,x0,u,t,5,0); % Simulate system using LSODA
>> simulate(2,1,1) % Evaluate the objective function
ans =

29.8648
>> simulate(2,2,1) $ Evaluate the endpoint constraint
ans =

5.3852e-06

So the reported values are fairly accurate.

160 RIOTS Users’s Manual Chap. §

Session 3 (Problem with control bounds and free final time). This session demonstrates the
transcription, explained in §2, of a free final time problem into a fixed final time problem. The
transcribed problem has bounds on the control and free initial states. Also, distribute (see §7) is
used to improve integration mesh after an initial solution is found. A more accurate solution will

then be computed by re-solving the problem on the new mesh.

The original problem, Problem Bang, is a minimum-time problem with three states and one
input. This problem is converted into a fixed final time problem using the transcription described
in §2. Only one extra state variable was needed since the problem has time-independent
(autonomous) dynamics. The augmented problem is implemented in the file ‘bang.c’. First we

will define the integration mesh and then the initial conditions.

>> N = 20; % Discretization level
>> T = 10; % Nominal final time
>> t=[0:T/N:T); % Nominal time interval for maneuver

The nominal time interval is of duration T. Next, we specify a value for £, the duration scale
factor, which is the initial condition for the augmented state. The quantity T&> represents our

guess for the optimal duration of the maneuver.

>> x0=[{0 0 1)°; % Initial conditions for augmented system
>> fixed=[1 1 0)'; & Which initial conditions are fixed

>> x0_lower={0 0 0.1]"; % Lower bound for free initial condition
>> x0_upper=(0 0 10]°'; % Upper bound for free initial condition

>> X0=[x0, fixed,x0_lower,x0_upper]

X0 =
0 1.0000 0 0
0 1.0000 0 0
1.0000 0 0.1000 10.0000

The first column of X0 is the initial conditions for the problem; there are three states including the
augmented state. The initial conditions for the original problem were x(0) = (0,0)”. The initial
condition for the augmented state is set to x0 (3) = & = 1 to indicate that our initial guess for
the optimal final time is one times the nominal final time of T = 10, i.e., £&T. The second col-
umn of X0 indicates which initial conditions are to be considered fixed and which are to be
treated as free variables for the optimization program to adjust. A one indicates fixed and a zero
indicates free. The third and fourth columns provide lower an upper bound for the free initial

conditions.

Sec. 5.3 Using RIOTS 161

>> ul=zeros(1l,N+1);

>> [u,x,f)l=riots(X0,u0,t,-2,1,[},100,2); % Solve problem; f=x(3,1)=x0(3)
>> f*7T % Show the final time.
ans =

29.9813

In this call to riots, we have also specified a lower bound of -2 and an upper bound of 1 for all of
the control spline coefficients. Since we are using second order splines, this is equivalent to spec-
ifying bounds on the value of the control at the spline breakpoints, i.e. bounds on u(r;). We also
specify that the second order Runge-Kutta integration routine should be used. The objective
value £ = &% is the duration scale factor. The final time is given by a+ (b - a)&3 = T& = 10£.
Here we see that the final time is 29.9813. A plot of the control solution indicates a fairly broad
transition region whereas we expect a bang-bang solution. We can try to improve the solution by
redistributing the integration mesh. We can then re-solve the problem using the new mesh and
starting from the previous solution interpolated onto the new mesh. This new mesh is stored in

new_t, and new_u contains the control solution interpolated onto this new mesh.

>> [new_t,new_u)=distribute(t,u,x,2,{],1,1); % Re-distribute mesh
redistribute_factor = 7.0711

Redistributing mesh.

>> X0¢(:,1) = x(:,1);

>> [u,x,fl=riots(X0,new_u.new_t,-2,1,[1,100,2);
>> £*10

ans =

30.0000

Notice that before calling riots the second time, we set the initial conditions (the first column of
X0)to x(:,1), the first column of the trajectory solution returned from the preceding call to
riots. Because &7 is a free variable in the optimization, x (3, 1) is different than what was ini-
tially specified for x0 (3). Since x (3, 1) is likely to be closer to the optimal value for 53 than

our original guess we set the current guess for X0(3,1) tox(3,1).

We can see the improvement in the control solution and the solution for the final time. The
reported final time solution is 30 and this happens to be the exact answer. The plot of the control
solution before and after the mesh redistribution is shown below. The circles indicate where the

mesh points are located. The improved solution does appear to be a bang-bang solution.

162 RIOTS Users’s Manual Chap. §

Control soln. before redistribution Control soin. after redistributioh
1.5 r — 1.5 T —

0.5 "

) 10 20 30 ~o 10 20 30
time time

Sec. 5.3 Using RIOTS . 163

Session 4 (Example using outer). This example demonstrates the experimental program outer
which repeatedly adjusts the integration mesh between calls to riots in order to achieve a desired
solution accuracy. We use outer to solve the Goddard rocket ascent problem implemented in the
file ‘goddard.c’. The Goddard rocket problem is a free-time problem whose objective is to maxi-
mize the rocket’s altitude subject to having a fixed amount of fuel. This problem is particularly
difficult because its solution contains a singular sub-arc. We use an initial guess of u(¢) = 1 for
all 7 so that the rocket starts out climbing and does not fall into the ground. We will use a second
order spline representation and start with a discretization level of N = 50. Also, since this is a
minimum-time problem, we augmented the system dynamics with a fourth state that represents
the duration scale factor. We start by guessing a duration scale factor of 0.1 by setting &% = 0. 1

and we specify [0, 1] for the nominal time interval. Thus the nominal final time is T¢* = 0. 1.

>> x0=[0 11 0.1)";
>> fixed=[1 11 0]°;
>> t={0:1/50:1};

>> ul=ones(1,51);

Now outer is called with lower and upper control bounds of 0 and 3.5, respectively; no systems
parameters; a maximum of 300 iterations for each inner loop; a maximum of 10 outer loop itera-
tion with a maximum discretization level of N = 500; default termination tolerances; integration

algorithm 4 (RK4): and mesh redistribution strategy 2.

>> [new_t,u,x}=outer(|x0,fixed, ,ul,t,0,3.5,[j,500,[10:;500},4,1}.2);
Goddard

Completed 70 riots iterations. Normal Termination.
Doubling mesh.
==s=====Completed 1 OUTER iterationsss=s=====
Norm of Lagrangian gradient = 3.428B8Ze-0%
4.3

Sum of constraint errors = 7119e-09
Objective function value = -1.021284
Integration error = 1.49993e-06
Goddard

Completed 114 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

zzzzz=zz=Completed 2 OUTER iterations=s=s=====
Norm of Lagrangian gradient = 4.6461Be-06

Sum of constraint errors = 4.41294e-10
Objective function value = -1.0128&4
Integration error = 2.C1838e-C7
Change in solutions = 0.128447
Control error estimate = 0.020065%

164 RIOTS Users’s Manual ‘ Chap. §

Redistribution factor = 2.07904

Redistributing mesh.

New mesh contains 146 intervals. 0l1d mesh contained 100 intervals.
Goddard

Completed 206 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

==z=z=====Completed 3 OUTER iterationss=====z==
Norm of Lagrangian gradient = 2.38445e-08

Sum of constraint errors = B8.49733e-11
Objective function value = -1.01284
Integration error = 4.67382e-09
Change in solutions = 0.0878133
Control error estimate = 0.000452989

Normal Termination.
CPU time = 26.9167 seconds.

The message stating that the Kuhn-Tucker conditions are satisfied but that the sequence did not
converge is a message from NPSOL which is the nonlinear programming algorithm linked with
riots in this example. This message indicates that, although first order optimality conditions for
optimality are satisfied (the norm of the gradient of the Lagrangian is sufficiently small), the con-
trol functions from one iteration of riots to the next have not stopped changing completely. The
sources of this problem are (i) the Goddard problem is a singular optimal control problem; this
means that small changes in the controls over some portions of the time interval have very little
effect on the objective function and (ii) outer calls riots with very tight convergence tolerances.
Because of this, the calls to riots probably performed many more iterations than were useful for
the level of accuracy achieved. Choosing better convergence tolerances is a subject for future

research.

The optimal control and optimal state trajectories are shown on the next page. Notice that
to plot the optimal control we multiply the time vector new_t by x(4,1) which contains the
duration scale factor. The optimal final time for this problem, since @a = 0 and b = 1, is just
x(4,1)=0.1989. Note that the final mass of the rocket is 0.6. This is the weight of the rocket
without any fuel. The maximum height is the negative of the objective function, h*(r) = 1.01284.

>> sp_plot(new_t*x(4,1),u)

>> plot(new_t*x(4,1),x(1,:))
>> plot(new_t*x(4,1),x(2,:))
>> plot(new_t*x(4,1),x(3,:))

Sec. 5.3 Using RIOTS 165

Optimal Control for the Goddard Rocket Problem

4 ¥ L] L) T L] T L v |
35 4
3F 4
25t 4
2r 4
1.5 -
ir 4
0.5+ -
0 -
_0'5 (]] I il 1 1 1 L L
0 002 004 006 0.08 0.1 012 014 0.16 0.18 0.2
Time
Velocity Altitude Fuel
0.14 T T 1 v
0.95} N
0.12 .
0.9 -
0.1 4 1.01
0.85} .
0.08 : o.8} -
0.06 - 0.78¢ I
1.005 o7t i
0.04 .
0.65 .
0.02 .
0.6
O0 0.1 0.2 ! 0.550 0.1 0.2
166

RIOTS Users’s Manual Chap. 5

4. USER SUPPLIED SYSTEM SUBROUTINES

All of the functions in the description of OCP in §2 are computed from the user functions h, 1 and
g; the derivatives of these functions are computed from the user functions Dh, D]l and Dg. Two
other user functions, activate and init, are required for the purpose of passing information to and
from RIOTS. '

Smoothness Requirements. The user-supplied functions must have a certain degree of
smoothness. The smoothness requirement comes about for three reasons. First, the theory of dif-
ferential equations requires, in general, that h(z, x, u) be piecewise continuous with respect to ¢,
Lipschitz continuous with respect to x and u and that u(-) be continuous, in order to ensure the
existence and uniqueness of a solution satisfying the system of differential equations. A finite
- number of discontinuities in A(-. x,) and u(-) are allowable. Second, the optimization routines
needs at least one continuous derivative of the objective and constraint functions g(-,-) and
I(1,-,-). Two continuous derivatives are needed in order for there to be a chance of superlinear
convergence. The third reason is that the accuracy of numerical integration of differential equa-
tions depends on the smoothness of A(-.-,-) and I(-,,-). For a fixed step-size methods with order
s, 0h(r, x, u)/dx* and 3'”h(t. x, u)/ou* should be continuous (or the (r — 1)-th partial should be
Lipschitz continuous). Furthermore, any discontinuities in A(-, x, u(-)) or its derivatives should
occur only at integration breakpoims+. Conversely. the user should place integration breakpoints
wherever such discontinuities occur. The same considerations also hold for the function I(z, x, u).
For variable step-size integration, h(r, x,) and /(r, x, u) should have at least continuous partial
derivatives of order one with respect to x and u. Again, any discontinuities in h(-, x,u(-)) and

(-, x, u(-)) or its derivatives should only occur at integration break points.

Constraint Qualifications. A common requirement of mathematical programming algorithms
is linear independence of the active constraints gradients at a solution. It is easy to mathemati-
cally specify a valid constraint in such a way that this condition is violated. For example, con-

sider a scalar constraint of the form g(u) = 0. This constraint can be specified as
g(u)2 =0.

However, -t;’—u(g(u)z) = 2g(u)‘—j§. Thus, if this constraint is active at the solution «, i.e.,
g(u) = 0, then the gradient of this constraint is zero. So this specification for the constraint vio-

lates the constraint qualification. However, if the constraint is specified simply as

Note that discontinuities in «(7) can only occur at the spline breakpoints. 1;.

Sec. 54 User Supplied Subroutines 167

gu)=0,
then the constraint qualification is not violated.

The user functions can be supplied as object code or as M-files. The C-syntax and M-file
syntax for these functions are given below. Because all arguments to the object code versions of
the functions are passed by reference, the object code format is compatible with Fortran. A tem-
plate for these functions can be found in the file systems/template.c. There are also sev-
eral example problems in the systems directory. In addition to the user-supplied routines, this
section also describes two other functions, get_flags and time_fnc, that are callable by user object

code.

There are three main differences between object code and M-file versions of the user functions:
* The programs in RIOTS execute much faster when object code is given.

* Object code versions of the user functions do not need to assign zero values to array compo-
nents which are always zero. M-file versions must set all array values (with the exception of

sys_init).

» There must be a separate M-file for each function with the same name as that function. The
names begin with sys_ followed by the name of the function. For example, sys_Dh.m is the
M-file for the user function sys_Dh. The directory in which these M-files are located must be
in Matlab’s search path.

* Important: Arrays in Matlab are indexed starting from 1 whereas in C arrays are indexed

starting from 0. For example, neq[4] in C code has an M-file equivalent of neq(5).

168 RIOTS Users’s Manual Chap. §

activate

activate, sys_activate

Purpose

This function is always called once before any of the other user-supplied functions. It allows the
user to perform any preliminary setup needed, for example, loading a data array from a file.

C Syntax

void activate(message)
char **message;

{

*message = "";

/* Any setup routines go here. */
}

M-file Syntax
function message = sys_activate

message = '’';

Description

If the message string is set, that string will be printed out whenever simulate (form 0) or an opti-
mization routine is called. It is useful to include the name of the optimal control problem as the

message.

See Also: get_flags.

Sec. 54 User Supplied Subroutines 169

init

init, sys_init

Purpose

This function serves two purposes. First, it provides information about the optimal control prob-
lem to RIOTS. Second, it allows system parameters to be passed from Matlab to the user-defined
functions at run-time. These system parameters can be used, for instance, to specify constraint

levels. Unlike activate, init may be called multiple times. The array neq(] is explained after
the syntax.

C Syntax

void init (neq,params)
int neql(];
double *params;

{
if (params == NULL) {
/* Set values in the neqg() array. */
}
else {
/* Read in runtime system parameters. */
}
}
M-file Syntax

function neq = sys_init (params)

% if params is NULL then setup neg. Otherwise read system
% parameters in params. In Matlab, arrays are indexed
% starting from 1, so neq(i) corresponds to the C statement
% neqgli-1].
if params == [],
% Each row of neqg consists of two columns. The value in
% the first column specifies which piece of system
% information to set. The value in the second column is
% the information. For example, to indicate that the
% system has 5 system parameters, one row in neqg should be
% (3 5] since neqg(3) stores the number of system
$ parameters.

% Here we set nstates = 2; ninputs = 1; 1 nonlinear
% endpoint constr..
neq = [12; 21; 121 };
else
% Read in systems parameters from params and store them in

170 RIOTS Users’s Manual Chap. §

init

% the global variable sys_params which will be accessible
% to other systems M-files.
global sys_params
sys_params = params;
end

Description

When this functions is called, the variable params will be set to 0 (NULL) if init () is
expected to return information about the optimal control problem via the neq[] array. Other-
wise, params is a vector of system parameters being passed from Matlab to the user’s program.

When params==0, the values in neq [} should be set to indicate the following:

neq(0] --- Number of state variables.

neq(1l] --- Number of inputs.

neg(2] --- Number of system parameters.

neqg(3] --- Not used on calls to init(). Contains time index.

neg(4] -- Not used on calls to init(). Used to indicate which function to evaluate.
neq(5] --- Number of objective functions.

neqg({6] --- Number of general nonlinear trajectory inequality constraints.
neqg(7]) --- Number of general linear trajectory inequality constraints.
neq[8] --- Number of general nonlinear endpoint inequality constraints.
neq[9] --- Number of general linear endpoint inequality constraints.
neq(10] --- Number of general nonlinear endpoint equality constraints.
neqg[11] --- Number of general nonlinear endpoint equality constraints.
neq[12] --- Indicates type of system dynamics and cost functions:

0 --> nonlinear system and cost,

1 --> linear system,

2 --> linear and time-invariant system,

3 --> linear system with quadratic cost,

4 --> linear and time-invariant with quadratic cost.
Remember that, for M-files. neq (1) is equivalent to the C-code statement neq[i-1]. The val-
ves of neqg|(] all default to zero except neg (5] which defaults to 1. The relationship between
the values in neq[) and the general problem description of OCP given in §2 is as follows:
n =neql[0], m=neqll], p=neql2]. g,=neql5), ¢, =neq(6)+neq([7],
9.i =neq[8)+neq(9) and q,, = neq[10])+neq{11]. The locations neq[3] and neq[4)]
are used in calls to the other user-defined functions.

If init sets neq[2]>0. then init will be called again with params pointing to an array of
system parameters which are provided by the user at run-time. These parameters can be stored in
global variables for use at other times by any of the other user-defined functions. Some examples
of useful system parameters include physical coefficients and penalty function parameters. These
parameters are fixed and will not be adjusted during optimization. Parameters that are to be used

as decision variables must be specified as initial conditions to augmented states 7 with 7 = 0.

Sec. 5.4 User Supplied Subroutines 171

init

Notes

1. Control bounds should be indicated separately when calling the optimization routines. Do
not include any simple bound constraints in the general constraints. Similarly, simple bounds on

free initial conditions should be specified on the command line.

2. For nonlinear systems, all constraints involving a state variable are nonlinear functions of the
control. Thus, the constraint g(&, x(b)) = x(b) = 0, while linear in its arguments, is nonlinear
with respect to u. The user does not need to account for this situation, however, and should indi-
cate that g is a linear constraint. RIOTS automatically treats all general constraints for nonlinear

systems as nonlinear.

172 RIOTS Users’s Manual Chap. §

h, sys_h

Purpose

This function serves only one purpose, to compute h(t, x, u), the right hand side of the differential
equations describing the system dynamics.
C Syntax
void h(neq, t,x,u,xdot)
int neql(];
double *t,x[NSTATES],u[NINPUTS], xdot [NSTATES];
{

/* Compute xdot(t) = h(t,x(t),u(t)). */
}

M-file Syntax

function xdot = sys_h(neq,t,x,u)
global sys_params

% xdot must be a column vector with n rows.

Description

On entrance, t is the current time. x is the current state vector and u is the current control vector.

Also, neq[3] is set to the current discrete-time index, k — 1. such that 7, 1 < t,m't.

On exit, the array xdot[] should contain the computed value of h(z, x,u). The values of
xdot [] default to zero for the object code version. Note that for free final time problems the
variable t should not be used because derivatives of the system functions with respect to t are
not computed. In the case of non-autonomous systems, the user should augment the state variable

with an extra state representing time (see transcription for free final time problems in §2).

See Also: time_fnc.

¥ The index is k - | since indexing for C code stans at zero. For M-files. neqt4) =

Sec. 54 User Supplied Subroutines 173

1, sys_1

Purpose

This function serves two purposes. It is used to compute values for the integrands of cost func-

tions, /,,(1, x, u), and the values of state trajectory constraints, /,;(t, x, u).

C Syntax

double 1l(neq,t,x,u)
int neqll;
double *t,x[NSTATES]),u[NINPUTS];

{
int F_num, constraint_num;
double z;
F_num = neqgl(4];
NFUNS = neq([5];

if (F_num <= NFUNS) {

/* Compute z = 1l(t,x(t),u(t) for the F_num integrand.

/* If this integrand is identically zero,

/* set z = 0 and neqg([3] = -1.
}
else {
constraint_num = F_num - NFUNS;
/* Compute z = 1l(t,x(t),u{t) for the */

/* constraint_num trajectory constraint. */
}

return z;

M-file Syntax

174

function z = sys_l(neq,t,x,u)
% z is a scalar.

global sys_params
F_NUM = neq(5);
NFUNS = neg(6);

if F_NUM <= NFUNS
% Compute z = 1l(t,x(t),u(t)) for the F_num integrand.
else
constraint_num = F_num - NFUNS;
% Compute z = 1l(t,x(t),ul{t)) for the constraint_num
% traj. constraint.
end

*/
*/
*/

RIOTS Users’s Manual Chap. §

Description

On entrance, t is the current time, x is the current state vector and u is the current control vector.
Also, neq[3] is set to the current discrete-time index k — 1 such that 7, <t < 1,,, (see footnote
for h) and neq[4] is used to indicate which integrand or trajectdry constraint is to be evaluated.
Note that, for free final time problems, the variable t should not be used because derivatives of
the system functions with respect to t are not computed. In this case, the user should augment
the state variable with an extra time state and an extra final-time state as described in §2.

If 1 < neq[4) < q,,, then z should be set to I"*¥(r, x,u). If 1"¢914)(.,.,.) = O then, besides
returning 0,] (in object code versions) can set neq[3) = — 1 to indicate that the function is identi-
cally zero. The latter increases efficiency because it tells RIOTS that there is no integral cost.
Only the function 1 is allowed to modify neg(3). Regardless of how neq[3] is set, | musr always
return a value even if the returned value is zero.

neq(4) -
]

If neq[4] > g,,. then = should be set to / 9e(1, x,u). If there are both linear and nonlin-
ear trajectory constraints, the nonlinear constraints must precede those that are linear. The order-

ing of the functions computed by | is summarized in the following table:

v function to compute

1< neqld4) < g, neq[4) It x,u)

I};(1. x, u), nonlinear
Il?(][4] >4, ""‘1[4] —4qu

l}i(1, x, u), linear

Sec. 54 User Supplied Subroutines 175

g, sys_g

Purpose

This function serves two purposes. It is used to compute the endpoint cost function g,(&, x(b))
and the endpoint inequality and equality constraints g,;(¢, x(b)) and g,.(£, x(b)). The syntax for
~ this function includes an input for the time variable 1 for consideration of future implementations
and should not be used. Problems involving a cost on the final time T should use the transcription

for free final time problems described in §2.
C Syntax

doublevg(neq,t,xo,xf)
int neqf];
double *t,x0[NSTATES],xf[NSTATES];

int F_num, constraint_num;
double value;

. = neql4];
NFUNS = neql[5]);

if (F_num <= NFUNS) ({

/* Compute value of g(t,x0,xf) for the */

/* F_num cost function. */
}
else {
constraint_num = F_num - NFUNS;
/* Compute value g(t,x0,xf) for the */
/* constraint_num endpoint constraint. */
}
return value;
}
M-file Syntax

function J = g(neq, t,x0,xf)
% J is a scalar.

global sys.params
F_NUM = neq(5);
if F_NUM <= sys_params(6)
% Compute g(t,x0,xf) for cost function.
elseif F_NUM ==
% Compute g(t,x0,xf) for endpoint constraints.
end

176 RIOTS Users’s Manual Chap. 5

Description

On entrance, x0 is the initial state vector and x£ is the final state vector. The value neq[4] is

used to indicate which cost function or endpoint constraint is to be evaluated. Nonlinear con-

straints must precede linear constraints. The order of functions to be computed is summarized in

the following table:

1% function to compute
1 < neql4) < q,, neq[4) go(&, x(b))
v .
Y (£, x(b)), nonlinear
qo < neqld] < g, + q.; neql4) - q,, il

gL(&, x(b)), linear

9o+ qei<neqld] < q,+q.+q. neqld4] - g, — qei

gv.(&, x(b)), nonlinear
g (&, x(b)), linear

See Also: time_fnc.

Sec. 5.4 User Supplied Subroutines

177

Dh, DI, Dg

Dh, sys_Dh
D1, sys_DI1
Dg, sys_Dg

Purpose

These functions provide the derivatives of the user-supplied function with respect to the argu-
ments x and u. The programs riots (see §6) can be used without providing these derivatives by
selecting the finite-difference option. In this case, dummy functions must be supplied for Dh, DI
and Dg.

C Syntax

void Dh(neq,t,x,u,A,B)

int neql];

double *t,x[NSTATES],u[NINPUTS];

double A[NSTATES] [NSTATES],B[NSTATES] [NINPUTS];
{ .
/* The A matrix should contain dh(t,x,u)/dx. */
/* The B matrix should contain dh(t,x,u)/du. */

}

double Dl (neq,t,x,u,l_x,1_u)
int neql];
double *t,x[NSTATES],u[NINPUTS],1l x[{NSTATES]),l_u[NINPUTS];

{
/* 1_x[] should contain dl(t,x,u)/dx *x/
/* 1_u[] should contain dl(t,x,u)/du */
/* according to the value of neqgl4). */
/* The return value is dl(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;

)

double Dg(neq,t,x0,xf,g_x0,g_xf)
int neql];
double *t,x0[NSTATES),xf[NSTATES],J_xf[NSTATES];

/* g_x0[)] should contain dg(t,x0,xf)/dx0. */
/* g_xf[] should contain dg(t,x0,xf)/dxf. *x/

/* according to the value of neq(4]. *x/
/* The return value is dg(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;

178 RIOTS Users’s Manual Chap. 5

M-file Syntax

function [(A,B] = sys_Dh(neq,t,x,u)

global sys_params
% A must be an n by n matrix.
$ B must be an n by m matrix.

function [1_x,1_u,1_t]

global sys_params
% 1_x should be a row vector of length n.
% 1_u should be a row vector of length m.
% 1_t is a scalar---not currently used.

function [g_x0,g_xf,g_t]

global sys_params
% g_x0 and g_xf are row vectors of length n.
% g_t is a scalar---not currently used.

Description

sys_Dl (neq, t,x,u)

= sys_cost(neq, t,x0,x£f)

Dh, DI, Dg

The input variables and the ordering of objectives and constraints are the same for these derivative

functions as they are for the corresponding functions h, 1, and g. The derivatives with respect to ¢

are not used in the current implementation of RIOTS and can be set to zero. The derivatives

should be stored in the arrays as follows:

Function First output index range Second output index range
. dh(1. x.u) i=0:n-1 . dh(1, x, u) i=0n-1
Dh Al —l: dx] Jj=0n-1 Blillj) -I: du]) j=0m-1
i+].p+1 i+], j+1
DI I_xiiy = | 021 i=0n=1 | Lufiy=| XM i=0m—1
dx du
1= 1+)
Dg g_x0[i] = Iig%—;—o;f)] } i=0n-1 g_xfli} = [-@%] y i=0m-1
L. dh(r.x. u) i=ln o dh(1, x, u) i=ln
sys_Dh Al)= [——;\—] j=1lin B(i, j) -[an] ' j=1
N L)
.| dlitxou) — . _ | dit, x,u) N
sys_DI I_x(i) = [T] i=ln _u(i) = [TJ i=lm
' !
. _ | d&1, x0, xf) N . _ | dg(t, x0, x) -
sys_Dg 2_x0(i) -[70]' i=1ln g _xf(i) -[& ,- i=lm

Note that, for sys_Dh. RIOTS automatically accounts for the fact that Matlab stores matrices

transposed relative to how they are stored in C.

Sec. 54

User Supplied Subroutines

179

get_flags

get_flags

Purpose

This function allows user-supplied object code to read a vector of integers from Matlab’s

workspace.

C Syntax

int get_flags(flags,n)
int flags{],*n;

Description

A call to get_flags causes £lags[] to be loaded with up to n integers from the array FLAGS if
FLAGS exists in Matlab’s workspace. It is the user’s responsibility to allocate enough memory in
flags[] to store n integers. The value returned by get_flags indicates the number of integers
read into flags|[].

The main purpose of get_flags is to allow a single system program to be able to represent
more than one problem configuration. The call to get_flags usually takes place within the user-
function activate. In the example below, get_flags is used to read in the number of constraints to

use for the optimal control problem.

Example

extern int get_flags():
static int Constraints;

void activate(message)
char **message;
{
int n,flags[1]);

*message = "Use FLAGS to specify number of constraints.";
n=1;
if (get_flags(flags,&n) > 0);
Constraints = flags[0);:
else
Constraints = 0;

180 RIOTS Users’s Manual Chap. §

get_flags

Notes

1. Itis best to define FLAGS as a global variable in case simulate gets called from within an M-
file. This is accomplished by typing

>> global FLAGS
At the Matlab prompt. To clear FLAGS use the Matlab command

>> clear global FLAGS

2. Since activate is called once only, you must clear simulate if you want to re-read the values

in FLAGS. To clear simulate, type
>> clear simulate

at the Matlab prompt.

3. For M-files, any global variable can be read directly from Matlab’s workspace so an M-file

version of get_flags is not needed.

Sec. 54 User Supplied Subroutines 181

time_fnc

time_fnc

Purpose

This function allows user-supplied object code to make calls back to a user-supplied Matlab m-
function called sys_time_fnc.m which can be used to compute a function of time. Call-backs to
Matlab are very slow. Since this function can be called thousand of times during the course of a
single system simulation it is best to provide the time function as part of the object code if possi-
ble.

C Syntax

void time_£fnc(t, index, flag, result)
int *index, *flag:;
double *t,result(];

Syntax of sys_time_fnc.m

function £ = sys_time_£fnc(tvec)

% tvec = [time;index;flag]
% Compute f(time,index, flag).

Description

If time_fnc is to called by one of the user-functions. then the user must supply an m-function
named sys_time_fnc. The inputs tvec (1) =time and tvec (2)=index to sys_time_fnc are
related by 7,4, < time < #;,4.,+;. The value of index passed to sys_time_fnc is one greater
than the value passed from time_fnc to compensate for the fact the Matlab indices start from 1
whereas C indices start from 0. The input £lag is an integer that can be used to select from

among different time functions. Even if £1ag is not used, it must be set to some integer value.

The values in the vector £ returned from sys_time_fnc are stored in result which must

have enough memory allocated for it to store these values.

182 RIOTS Users’s Manual Chap. §

time_fnc
Example

Suppose we want 1 to compute f(z)x'(r) where f(t) = sin(t) + y4(t) with y4(r) is some pre-
computed global variable in the Matlab workspace. Then we can use time_fnc to compute f(f)
and use this value to multiply x [0]:

extern void time_£fnc();

double 1l({neq,t,x.,u)

int negl(];
double *t,x[{NSTATES],u|[NINPUTS];

int i,zero;
double result;

i = neql3}); /* Discrete-time index. */

zero = 0;

time_fnc(t,&i,&zero, &result); /* Call time_£fnc with flag=0. */
return result*x|(0]; /* Return £(t)*x1(t). */

Here is the function that computes f(7). It computes different functions depending on the value

of £lag=t (3). In our example, it is only called with £1ag=0.

function £ = sys_time_£fnci(t)

global yd % Suppose yd is a pre-computed, global variable.
time = t(1l);
index = t(2);

flag = t(3);
if flag ==

f = yd(time) + sin(time);
else

f = another_fnc(time);
end

Sec. 54 User Supplied Subroutines 183

5. SIMULATION ROUTINES

This section describes the central program in RIOTS, simulate. All of the optimization programs
in RIOTS are built around simulate which is responsible for computing all function values and

gradients and serves as an interface between the user’s routines and Matlab.

The computation of function values and gradients is performed on the integration mesh
tv= (v LG

Note that the indexing starts from k = 1 (rather than k = O as in earlier chapters) to conform with

Matlab’s indexing convention. For any mesh ty we define

Ani =INks1 =Nk -

This mesh also specifies the breakpoints of the control splines. The values of the trajectories
computed by simulate are given at the times 7, and are denoted, xy 4, k=1,..., N + 1. Thus,
Xy ; represents the computed approximation to the solution x(7y ;) of the differential equation

X = h(t, x,u), x(a) = £. The subscript N is omitted when its its presence is clear from context.

Spline Representation of controls. The controls u are represented as splines given by

N+p-1

u(t) = ‘Z 1, p k(1)
k=]

where o, € R" and ¢y, ,(-) is the k-th B-spline basis element of order p, defined on the knot
sequence formed from ty by repeating its endpoints p times. Currently, RIOTS does not allow

repeated interior knots. We will denote the collection of spline coefficients by

-~ N+p-l
a= { a; }k=l .

For single input systems, a is a row vector. Those interested in more details about splines are
referred to the excellent reference [63]. The times 1, k = 1,..., N, define the spline breakpoints.
On each interval [1,, 7,4,], the spline coincides with an p-th order polynomial. Thus, fourth order
- splines are made up of piecewise cubic polynomials and are called cubic splines. Similarly, third
order splines are piecewise quadratic, second order splines are piecewise linear and first order
splines are piecewise constant. For first and second order splines, a; = u(t;). For higher-order
splines, the B-spline basis elements are evaluated using the recursion formula in (A2.2a).

The following pages describe simulate. First, the syntax and functionality of simulate is
presented. This is followed by a description of the methods used by simulate to compute func-
tion values and gradients. Finally. two functions, check_deriv and check_grad, for checking

user-supplied derivative information, and the function eval_fnc are described.

184 RIOTS Users’s Manual’ Chap. 5

simulate

simulate

Purpose

This is the central program in RIOTS. The primary purpose of simulate is to provide function
values and gradients of the objectives and constraints using one of six integration algorithms. The
optimization routines in RIOTS are built around simulate. This program also serves as a general

interface to the user-supplied functions and provides some statistical information.

There are currently seven different forms in which simulate can be called. Form 1 and form
2 (which is more conveniently accessed using eval_fnc) are the most useful for the user. The
other forms are used primarily by other programs in RIOTS. The form is indicated by the first

argument to simulate.

Form O

[info,simed] = simulate (0, {params})
Form 1

[f,%,du,dz,p] = simulate(l,x0,u,t,ialg,action)
Form 2

f=simulate (2, f_number, 1)
[du,dz,p] = simulate(2,f_number,action)

Form 3

[xdot,zdot] = simulate(3,x,u,t, {f_num, {k}})
[xdot, zdot,pdot] = simulate(3,x.,u.t,p, {k})

Form 4
[h_x,h_u,1l_x,1_u] = simulate(4,x,u,t, {f_num, {k}})

Form 5
[g,g_x0,g_xf] = simulate(5,x0,xf,tf, {f_num})

Form 6

stats = simulate(6)
Form 7

lte = simulate(7)

Sec. 5.5 Simulation Routines 185

simulate

Description of Inputs and Outputs

The following table describes the inputs that are required by the various forms of simulate.

Table S1
Input number of rows number of columns description
x0 n 1 initial state
xf n 1 final state
u m N+p-1 control vector
t 1 N+1 time vector
tf ltod 1 final time
ialg 1 1 integration algorithm
action 1 1 (see below)
f_num 1 1 (see below)
params (see below) (see below) system parameters

The following table describes the outputs that are returned by the various forms of simulate.

Table S2
Output number of rows number of columns description
£ 1 1 objective or constraint value
x n N+1 state trajectory
o) n N+1 adjoint trajectory
du m N+p-1 control gradient
axo n 1 gradient of initial conditions
lte n+1 N+1 local integration error
xdot n N +1 h(t, x,u)
zdot 1 N+1 K1, x,u)
h_x n n oh/odx
h_u n m oh/du
1_x 1 n ol /ox
1_u 1 m ol /du
g_x0 1 n dg/dxg
g_xf 1 n dg/dx;

If a division by zero occurs during a simulation, simulate returns the Matlab variable NaN, which

stands for “Not a Number™, in the first component of each output. This can be detected, if

desired, using the Matlab function isnan().

186

* %0 can be a matrix but only the first column is used.

RIOTS Users’s Manual

Chap. 5

stmulate

Note: The length of the control vector depends on the control representation. Currently, all of
the integration routines are setup to work with splines of order p defined on the knot sequence
constructed from ty. The current implementation of RIOTS does not allow repeated interior
knots. The length (number of columns) of u and du is equal to N+p-1 where
N=length(t)-1 is the number of intervals in the integration mesh. The allowable spline

orders depends on the integration algorithm, ialg, according to the following table:

Table S3

1ALG Order of spline representation
0 (discrete) discrete-time controls
1 (Euler) p=1
2 (RK2) p=2
3(RK3) p=2
4 (RK4) p=23.4 +
5 (LSODA) p=12 3'41
6 (LSODA w/0 Jacobians) p=1234

When more than one spline order is possible, the integration determines the order of the spline
representation by comparing the length of the control input u to the length of the time input t. If
LSODA is called with ialg=5, the user must supply % and % in the user-functions Dh and DI
If the user has not programmed these Jacobians, LSODA must be called with ialg=6 so that, if
needed, these Jacobians will be computed by finite-differences. The different integration methods
are discussed in detail following the description of the various forms in which simulate can be

called.
Bugs
1. There may be a problem with computation of gradients for the variable step-size integration
algorithm (ialg=5, 6) if the number of interior knots ny,qs is different than one (see description

of form 1 and gradient computations for LSODA below).

See Also: eval_fnc

* The maximum spline order allowed by simulate when using LSODA can be increased by changing the pre-compiler define
symbol MAX_ORDER in adams.c.

Sec. 5.5 Simulation Routines ' 187

simulate

Description of Different Forms

[info,simed] = simulate(0, {(paramsg)})

This form is used to load system parameters and to return system information. If params is sup-
plied, simulate will make a call to init so that the user’s code can read in these parameters. Nor-
mally params is a vector. It can be a matrix in which case the user should keep in mind that
Matlab stores matrices column-wise (Fortran style). If the system has no parameters then either
omit params or set params=[]. If no output variables are present in this call to simulate the
system message loaded on the call to activate and other information about the system will be dis-

played.

The following is a list of the different values in info returned by simulate:

info(1) number of states

info(2) number of inputs

info(3) number of system parameters

info(4) (reserved)

info(5) (reserved)

info(6) number of objective functions

info(7) number of nonlinear trajectory inequality constraints
info(8) number of linear trajectory inequality constraints
info(9) number of nonlinear endpoint inequality constraints
info(10) number of linear endpoint inequality constraints
info(11) number of nonlinear endpoint equality constraints
info(12) number of linear endpoint equality constraints

info(13) type of system (O through 4)
0: nonlinear dynamics and objective
1: linear dynamics; nonlinear objective
2: linear, time-invariant dynamics; nonlinear objective
3: linear dynamics: quadratic objective
4: linear, time-invariant dynamics; quadratic objective

info(14) number of mesh points used in the most recent simulation

The scalar output simed is used to indicate whether a call to simulate, form 1, has been made.

If simed=1 then a simulation of the system has occurred. Otherwise simed=0.

188 RIOTS Users’s Manual Chap. 5

simulate

[£,%x,du,dx0,p] = simulate(l,x0,u,t,ialg,action)

This form causes the system dynamics, % = h(z, u, x) with x(a) = x0, to be integrated using the
integration method specified by ialg (c¢f Table S3). Also, the value £ of the first objective func-
tion, and possibly its gradients, du and dx0 and the adjoint p, can be evaluated. Only the first
column of x0 is read. The strictly increasing time vector t of length N + 1 specifies the integra-
tion mesh on [a, b] with t(1) = a and t(N +1) = b. The control u is composed of m rows of
spline coefficients.

The calculations performed by simulate, form 2, depend on the value of action. These

actions are listed in the following table:

Table S4

Action Return Values

no return values

function value f

f and system trajectory x

f. x and control and initial condition gradients du and dz
[+ x, du, dz and the adjoint trajectory p.

H WO —O

When using the variable step-size method LSODA (ialg = 5, 6), the argument ialg

can include three additional pieces of data:

Setting Default Value
ialg(2) Number of internal knots used during gradient computation. 1
ialg(3) Relative integration tolerance. le-8
ialg(4) Absolute integration tolerance. : le-8

The meaning of “internal knots™ is discussed below in the description of gradient computation
with LSODA.

Example

The following commands, typed at the Matlab prompt, will simulate a three state system with two
inputs using integration algorithm RK4 and quadratic splines. The simulation time is from a = 0
until b = 2.5 and there are N = 100 intervals in the integration mesh.

>> N=100;

>> t = [0:2.5/N:2.5]);
>> x0 = [1:;0;3.5):

Sec. 5.5 Simulation Routines 189

simulate

>> u0 = ones(2,N+2); % wo(t)=[1;1]);
>> [j,x) = simulate(l,x0,u0,t,4,2);

j = simulate(2, £_number,1)
[du,dx0,p] = simulate(2,f_number,action)
This form allows function values and gradients to be computed without re-simulating the system.
A call to this form must be proceeded by a call to simulate. form 1. The results are computed
from the most recent inputs (x0,u, t,ialg) for the call to simulate, form 1. The following
table shows the relationship between the value of £_number, and the function value or gradient

which is computed.

Table S5
f_number range Function Function to be evaluated
b
] £ f_number < n, gn(&. .\'(!7))+J . x.wde v = f_number
v v=n%(N+1)+1,t =1, where
< . x(r),
n < f_number < n, L. x(1). u(r)) n = f_number — n; — 1 and
k = f_number - n; -v(N +1).
ny < £f_number < n, g x(b)) v = £_number - n,
n: < £_number < ny 8 (. x(b)) v = f_number - ny

where n| = g, is the number of objective functions. n» = n, + ¢,,(N + 1) with g,; the number of
trajectory constraints, n3 = na +q,; with g,; the number of endpoint inequality constraints, and
ng = n3y + q,, with g, the number of endpoint equality constraints. The notation n%m means the
remainder after division of n by m (1 modulo m). Thus, for trajectory constraints, the v-th con-

straint (with v = n%(N + 1) + 1) is evaluated at time #;.

If action=1, only du and dx0 are returned. If action=2, du, dx0 and p are returned.

The function, eval_fnc, provides a convenient interface to this form.

[xdot, zdot] = simulate(3,x,u,t, {(f_num, {(k}})
[xdot, zdot,pdot] = simulate(3,x,u,t,p,{k})

This form evaluates (as opposed to integrates) the following quantities: x = h(z, x, u),

. . r r . . .
=1Lt x,u),and p = - (a"('éi'“) p+ a’“gf;"’) at the times specified by t. These functions are

evaluated at the points in t. If £_num is specified, v = £_num. otherwise v = 1. The function
I"(-,-,-) is evaluated according to Table S5 above. The last input, k. can only be supplied if t is a

single time point. It is used to indicate the discrete-time interval containing t. That is, k is such

190 RIOTS Users’s Manual Chap. §

simulate

that 7, < t <144y. If kis given, 1 is called withneq[3] = k — 1. In this call, the values in u rep-
resent pointwise values of u(t), not its spline coefficients. The inputs x and u must have the same

number of columns as t.

[h_x,h_u,l_x,1_u] = simulate(4d,x,u,t, (£f_num, {(k}})

This form evaluates

. v v . . .
oh(r.x.u) Oh(t.xu) ol (l.x.u)’ and ol (at;x.u). In this call, t must be a smgle time

dx du * dx

point. If £_num is specified, v = £_num, otherwise v = 1. The function /"(-,-,-) is evaluated
according to Table S5 above. The last input, k, indicates the discrete-time interval containing t.
That is, k is such that 1, < t < 1;,;. If k is given, | is called with neq[3] = k —1. In this call,

the values in u represent pointwise values of u(t), not its spline coefficients.

[g,g_x0,g xf] = simulate(5,x0,x£,tf, (£_num)})

This form evaluates g"(x0,x£), 20xE) anq a“'"g;of"‘f’. If £_num is specified, v = f_num.

Otherwise v = 1. The input tf gets passed to the user functions g and Dg (see descriptions in
§2) for compatibility with future releases of RIOTS.

stats = simulate(6)

This form provides statistics on how many times the functions h and Dh have been evaluated,
how many times the system has been simulated to produce the trajectory x, and how many times
functions or the gradients of fV(-.+), g"(-.-) or I;;(-.-,-) have been computed. The following table

indicates what the components of stats represent:

Table S6
Component Meaning
stats (1) Number of calls to h.
stats(2) Number of calls to Dh.
stats(3) Number of simulations.
stats(4) Number of function evaluations.
stats(5) Number of gradient evaluations.

Sec. 5.5 Simulation Routines 191

simulate

lte = simulate(7)

This form, which must be preceded by a call to simulate, form 1 with ialg=1,2, 3, 4, returns
estimates of the local truncation error for the fixed step-size Runge-Kutta integration routines.
The local truncation error is given, fork = 1,..., N, by

I (X (Tha)) = XN ka1)
’ek = ’

Zk(Tea1) = ZN k41
where x;(7;4;) and z,(1;4)) are the solutions of -

x = h(x, u) x(1;) = XNk
(2)_ (1,’,(1,,\7,1:))') =0 t € [ti,teer] -

and xy 14 and Zy 4 are the quantities computed by one Runge-Kutta step from xp , and O,
respectively. These local truncations errors are estimated by taking double integration steps as
described in Section 4.3.1. The local truncation error estimates are used by distribute (see
description in §7) to redistribute the integration mesh points in order to increase integration accu-

racy.

192 RIOTS Users’s Manual Chap. §

simulate

IMPLEMENTATION OF THE INTEGRATION ROUTINES

Here we discuss some of the implementation details of the different integration routines built into
simulate.

System Simulation

System simulation is accomplished by forward integration of the differential equations used to
describe the system. There are four fixed step-size Runge-Kutta integrators, one variable step-
size integrator (LSODA), and one discrete-time solver. The RK integrators and LSODA produce

approximate solutions to the system of differential equation

X =ht,x,u), x(a)=¢

=1, x,u), 2(a) =0

on the interval t € [a, b]. The Runge-Kutta integrators, described by the Butcher arrays A|, A,,
A; and A, given in Chapter 4.2, are of order 1, 2, 3 and 4 respectively. The discrete-time integra-

tor solves

Xpe1 = o X ui), x0=4¢

Zpar = Mg xpouy), 20 = 0
fork=1,....,N.

The variable step-size integrator is a program called LSODA [127,128]. LSODA can solve
both stiff and non-stiff differential equations. In the non-stiff mode,.LSODA operates as an
Adams-Moulton linear. multi-step method. If LSODA detects stiffness, it switches to backwards
difference formulae. When operating in stiff mode, LSODA requires the system Jacobians

a"‘g;‘"’ and a"’a':"”. If the user has not supplied these functions, LSODA must be called using

ialg=6 so that these quantities will be computed using finite-difference approximations. Other-
wise, LSODA should be called using ialg=5 so that the analytic expressions for these quantities

will be used.

The integration precision of LSODA is controlled by a relative tolerance and an absolute
tolerance. These both default to 1e —8 but can be specified in ialg(3:4) respectively (see
description of simulate, form 1). The only non-standard aspect of the operation of LSODA by
simulate is that the integration is restarted at every mesh point ¢, due to discontinuities in the

control spline u(:), or its derivatives, at these points.

Sec. 5.5 Simulation Routines 193

simulate

Gradient Evaluation

In this section we discuss the computation of the gradients of the objective and constraint func-
tions of problem OCP with respect to the controls and free initial conditions. These gradients are

computed via backwards integration of the adjoint equations associated with each function.

Discrete-time Integrator. For the discrete-time integrator, the adjoint equations and gradients

are given by the following equations. For the objective functions,v € q,,k = N,...,1,

agv(g, XN)T
Pr = hy(tis Xio) proy + 150k, X u) ;. pa = ._3—-+_1_
XN+1

T

df¥ (&, u)

[. di] = hy(te xp) pran + Itg. xgou)
k

df'(¢.w) 08" (& xnn)
= + Po
dé o¢

For the endpoint constraints, v € q,; M q,,. k = N,..., 1.

agv(g. XN+])T

= T . -
Pr = hy(tp X k) pray o par = d
XN+

T

dg"(&. xn41) :

[_du—.".l = hll(,k' xk*“k)Tpk,”
k

dg"(¢. xne)” _ 08" (&, xna1)T .
dg - ag pl .

For the trajectory constraints, v € q,;, evaluated at the discrete-time index/ € {1,...,.N+1},

Pk = bl xup) prar s k=1=1,..,1 ¢ py =15t x,u)”

i = Botts xiu)” k=1

T o ui)T i =1,...,1-
[dlv(tk,Xk,uk)] hu(tk’xliul) Pk+1 k lv ’l 1
k 0 k=1I1+1,....N

dl"(t,,x,,u,)T _

dg

194 RIOTS Users’s Manual Chap. 5§

simulate

Runge-Kutta Integrators. For convenience, we introduce the notation
wj=u(r), k=1...,N, j=1..,r,
where
Ty j =t + A

and c¢; € [0, 1] are parameters of the Runge-Kutta integration method. For RK1, RK2 and RK3,
r = s where s is the number of stages and i; = j. However, because RK4 has a repeated control
sample (¢f Chap 2.4), wehave r = 3,i, = 1,i, =2and i; = 4.

The computation of the control gradients is a two-step process. First, the gradient of f(&, u)
with respect to the control samples u; j, k = 1,...,N, j = 1,...,r, where r is the number of con-
trol samples per integration interval, and with respect to ¢ is computed. Second, the gradient with

respect to the spline coefficients, ;. of u(r) is computed using the chain-rule as follows,

df (. u) _
dak - '

2’: df (&, u) &

1 =1 dll,-.l dak

M=

. k= l,-.-,N+p-] ’

where p is the order of the spline representation. Most of the terms in the outer summation are

zero because the spline basis elements have local support. The quantity

du;
== = O ri(Tij)

da;‘
is easily determined from the recurrence relation (2.7.2a) for the B-spline basis.

A general formula for df/du; ; is given in Theorem 2.5.1. However, due to the special struc-
ture of the specific RK methods used by simulate there is a much more efficient formula, discov-
ered by Hager [42]. We have extended Hager’s formula to deal with the various constraints and
the possibility of repeated control samples (see Chapter 2.4). To describe this formula, we use the

notationfork = 1,..., N-landj=1....,5,
A =1 oy NY
kg =T o v joulTi)
K T
By j = hy(th jo Y joulti j))
I} =t e ure)T
k. a\Ek jo Yk jo k.j ,
and
ly) = g oy o u(Ti)

where. with a; ; parameters of the Runge-Kutta method.

Sec. 5.5 Simulation Routines 195

simulate

. j=1
Vid S Xp o V=Xt Z' ajmh(Vim U(Tem)) » J = 2,000
m=

The quantities y; ; are estimates of x(r; ;), see equation (2.4.3d).

The gradients of the objective and constraint functions with respect to the controls u; ; and
the initial conditions & are given as follows. In what follows ag j =bj, ks = qi+1,0 and the

standard adjoint variables, p;, are given by p, = g, . For the objective functions, we have for
veq,k=N,...,1,

08" (&, xn41)

qN+|.0 = ax
N+1

’

RY
- v .
G = Qo+ X A jurcomat(ApmGem + X pay) s j=5-1,5-2,...,0
m=j+1

T
df"(¢,u) .
[___—du kj:bjAk(Bk,jqk,jHZ_j), j=1...,s,

"¢’ _ g an)T |
T = 3 +q9;.

For the endpoint constraints, we have forv € ¢, M q,,, k = N...., 1,

- agv(g’ XN+1)T

s
Gk = qe10+ D X Qe jutsemet AkmGim - J=5—1,5-2,....0 ; gns10= 3
XN+)

’
m=j+|

;
dg"(§. xn+1) .
I:_—Z:—_) =biABijqi, . j=1.....5
g

dg" (&, xna1)| _ 98" (£, xn41)T + a0
d§ = ag U

For the trajectory constraints, v € q,, evaluated at the the discrete-time index
le {1,....N+1}.

q? = l;(l,, Ay, ll(‘l'],s))T

s
9r.j = Gi+1.0 + Ay Z | a.\‘-—_[-l»l..t-m+|Ak.mqk.m ck=1-1....1. j=s-1s5s-2,...,0;
m=j+

196 RIOTS Users’s Manual Chap. §

simulate

. T bA/Brigr;, k=1,...,1-1, j=1,...,s
dl (1., x;., . . J J9k.j !
[(1 ;1\’: u(u))] ={ Dtexu(ry)) k=1; j=0if[SN,elsej=s
| s 0 otherwise

dr ., xp, u(n))’ _ 0
4z =4q) -

For method RK4, we have the special situation that 7;, = 7,3 for all k because
¢y = c3 = 1/2. Hence, there is a repeated control sample: u; , = u(r;2) = u(zy 3). Thus, for any

function f, the derivatives with respect to u; ;, u; » and u; 3 are given by the expressions,
a _|d a | df . df a |4
dugy |du], T odugs | du 2 L], " duyy | du ‘4 '

Variable Step-Size Integrator (LSODA). For the variable step-size integrator, LSODA, the

adjoint equations and gradients are given by the equations below which require knowledge of x(r)

for all 1 € [a,b]. As in[25], x(1) is stored at the internal knots {7 + 5—o7 Ay) pimt N Gur.

ing the forward system integration. By default, n,,,; = 1. but the user can specify ny,,, 2 1 by
setting 1alg (2) = nypq, (see description of simulate, form 1). Then, during the computation of

1.

the adjoints and gradients. x(r) is determined by evaluating the quintic' Hermite polynomial
" which interpolates (. x(1), x(r)) at the nearest three internal knots within the current time interval

[#is tie1]. Usually ny,q = 1 is quite sufficient.

We now give the formulae for the adjoints and the gradients. It is important to note that,
unlike the fixed step-size integrators, the gradients produced by LSODA are not exact. Rather,
they are numerical approximations to the continuous-time gradients for the original optimal con-
trol problem. The accuracy of the gradients is affected by the integration tolerance and the num-
ber of internal knots used to store values of x(¢). Under normal circumstances, the gradients will

be less accurate than the integration tolerance. For the objective functions, v € q,,,

g’ (&, x(b))"

p==-(ht,x,) p+15a. x.)7), 1 € a,b) ; pb)= 3 ih)

¥ The order of the Hermite polynom:al can be changed by setting the define’d symbol ORDER in the code adams.c. If the tra-
jectories are not at least five time differentiable between breakpoints. then it may be helpful to reduce the ORDER of the Hermite
polynomials and increase Mynos-

Sec. 5.5 ‘ Simulation Routines 197

simulate

r
dfv(ga u) b T v
[—707‘——] = L (h(t, x.0) p(y+1,(1, x, u)T)¢,~',,_k(r)dt ,k=1...,N+p-1

df*(&,u) _ 9g" (&, x(b))
¢~ O

+ p(a) .
For the endpoint constraints, v € q,; N q,,.

. ' ag"(é! ':(l))T
- - . I et————————
p=—h(t.x,u) p. relab] ; pb)= 9x(b)

dak

T
v b
I:dg (g.u):l - I hu('..\',u)TP(le.\-.p.k(’)d’ vhk=1... ,N+p-1

dg"(&,u)] _ 9g"(¢, x(b))”
¢~ %

For the trajectory constraints, v € q,;. evaluated attimer =1,/ € {1,....,.N+1},

+ pla) .

p==ht.xa) p. 1elan] ; pay) =15, x@),ut))’

T
dl* (), x;, u()) "
[T - L hy(t 30 pU) Gy put)dt . k=1 N +p=1
aray, xp ue)’ = p(a)
ag P

The numerical evaluation of the integrals in these expressions is organized in such a way that they
are computed during the backwards integration of p(). Also. the computation takes advantage of
the fact that the integrands are zero outside the local support of the spline basis elements
Prn.ok (1)

198 RIOTS Users’s Manual Chap. §

check_deriv

check_deriv

Purpose

This function provides a check for the accuracy of the user-supplied derivatives Dh, DI and Dg by
comparing these functions to derivative approximations obtained by applying forward or central

finite-differences to the corresponding user-supplied function h, 1 and g.

Calling Syntax

[errorA, errorB,max_error] = check_deriv(x,u, t, {params}, {index},
{central}, (DISP})

Description

The inputs x € R”, 1 € R™ and r € R give the nominal point about which to evaluate the
derivatives h (1, x, u), h,(1, x,u), [3(t, x,u), 1;(1, x, u), gx(r, x,u) and g;(t, x, u). If there are sys-
tem parameters (see description of init in §3), they must supplied by the input params. If speci-
fied, index indicates the discrete-time index for which t (index) < t £t (index+1). This
is only needed if one of the user-supplied system functions uses the discrete-time index passed in

neq(3}.

The error in each derivative is estimated as the difference between the user-supplied
derivative and its finite-difference approximation. For a generic function f(x), this error is com-
puted, with ¢, the i-th unit vector and §; a scalar, as

_ S - fx+8ie) df(x) .
4 5, d'\' 1

E

if forward differences are used, or

flx=éiei)— f(x+4iei) df (x) e

E= 26, d

if central differences are used. The perturbation size is J; = e,l,’ich max { 1,Ix;1} . Central differ-

ence approximations are selected by setting the optional argument central to a non-zero value.

Otherwise, forward difference approximations will be used.

The first term in the Taylor expansion of E with respect to &; is of order is 0(8?) for central
differences and O(8;) for forward differences. More details can be found in[129, Sec. 4.1.1].

Thus, it is sometimes useful to perform both forward and central difference approximations to

Sec. 5.5 Simulation Routines : 199

check_deriv

decide whether a large difference between the derivative and its finite-difference approximations
is due merely a result of scaling or if it is actually due to an error in the implementation of the
user-supplied derivative. If the derivative is is correct then E should decrease substantially when

central differences are used.
If DISP=0, only the maximum error is displayed.

The outputs errorA and errorB return the errors for h,(r, x,u) and h,(t, x, u) respec-

tively. The output max_error is the maximum error detected for all of the derivatives.
Example

The following example compares the output from check_deriv using forward and central finite-
differences. The derivatives appear to be correct since the errors are much smaller when central

differences are used. First forward differences are used, then central differences.

>> check_deriv([-5;-5],0,0);

SoCo oSz CESEES==SSSSSCSSSSSSSSSSSSSSSSSSSSSSSE SRS S SCSSE=S=SSSSSSSSSSSSSSSE

System matrices:
Error in h_x =
1.0e-04 *

0 -0.0000
-0.0000 -0.635¢8

Error in h_u =

1.0e-10 *
0
0.9421
For function 1:
Error in 1l_x = 1.0e-04 *
-0.3028 0
Error in 1_u = 6.0553e-06
For function 1:
Error in g_x0 = 0 0
Error in g_xf = _ 0 0

Maximum error reported is 6.35823e-05.

200 RIOTS Users’s Manual Chap. §

check_deriv

--:—-:-———————————-—=====—=================-===-——--:—:—-::::-:—:_—:————

System matrices:
Error in h_x =
1.0e-10 *

0 -0.0578
-0.2355 -0.3833

Error in h_u =

1.0e-10 *
0
0.9421
For function 1:
Error in 1_x = 1.0e-10 *
0.5782 0
Error in l_u = 0
For function 1:
Error in g_x0 = 0 0
Error in g_xf = 0 0

Maximum error reported is 9.42135e-11.

See Also: check_grad

Sec. 5.5 Simulation Routines 201

check_grad

check_grad

Purpose

This function checks the accuracy of gradients of the objective and constraint functions, with
respect to controls and initial conditions, as computed by simulate, forms 1 and 2. It also pro-

vides a means to indirectly check the validity of the user-supplied derivative Dh, DI and Dg.

Calling Syntax

max_error = check_grad(i,j,k,x0,u,t,ialg, {params}, {central},
{DIsSP})

Description

The input x0. u, t and ialg specify the inputs to the nominal simulation simu-
late(1,x0,u,t,ialg,0) prior to the computation of the gradients. The gradients are tested at the dis-

crete-time indices as specified in the following table:

Index Purpose

i Spline coefficient control « that will be perturbed. If =0, the
gradients with respect to « will not be checked.

j Index of initial state vector, £, that will be perturbed. If =0, the
gradients with respect to the & will not be checked.

k For each trajectory constraints. k indicates the discrete-time in-
dex. starting with k=1, at which the trajectory constraints will be
evaluated. If k=0, the trajectory constraint gradients will not be
checked.

The finite-difference computations are the same as described for check_deriv.

If there are system parameters (see description of init, § 3), these must be given by the input
params. Central difference approximations will be used if a non-zero value for central is
specified; otherwise forward differences will be used. If DISP=0, only the maximum error is
displayed. This is particularly useful if check_deriv is used in a loop on any of the indices

i, j,k. The output max_error is the maximum error detected in the gradients.

202 RIOTS Users’s Manual Chap. 5

check_grad

Example

The following example checks the tenth component of the control gradient and the second com-
ponent of initial condition gradient as computed by RK2 using central differences. The integra-
tion is performed on the time interval ¢ € [0,2.5] with N =50 intervals. The gradients are evalu-
ated for the second order spline control u() = 1forallt e, ar =1, k=1,...,N+1).

= [0:2.5/50:2.5]);
= ones(1l,51});

>> x0 = [-5:;-5);

>> check_grad(10,2,0,x0.u,t,2,[],1):

======================::===================:==============:===:====:========

Evaluating function 1.
error_u 1.84329%e-09
error_x0 = -4.88427e-11
Relative error in control gradient = 2.52821le-07%
Gradient OK

Relative error in x0 gradient = 1.14842e-09%
Gradient OK

Evaluating endpoint constraint 1.
error_u -5.46737e-11
error_x0 = -5.98271e-12
Relative error in control gradient = 6.04337e-08%
Gradient OK

Relative error in x0 gradient = 1.87846e-09%
Gradient OK
Maximum error reported is 1.84329%e-09.

See Also: check_deriv

Sec. 5.5 Simulation Routines 203

eval_fnc

eval_fnc

Purpose

This function provides a convenient interface to simulate, form 2, for computing function and
gradient values. A system simulation must already have been performed for this function to

work.

Calling Syntax

[£,du,dx0,p] = eval_fnc(type,num,k)

Description of Inputs

type A string that specifies the type of function to be evaluated. The choices are
"obj’ Objective function
‘ei’ Endpoint inequality constraint
‘ee’ Endpoint equality constraint
‘traj’ Trajectory constraint
num Specifies v for the function of the type specified by type is to be evaluated.
k For trajectory constraints only. Specifies the index for the time, #;, in the current

integration mesh at which to evaluate the trajectory constraint. If k is a vector, the
trajectory constraint will be evaluated at the times specified by each mesh point index
in k.

Description of Outputs

f The function value.

du The gradient with repect to u. Not computed for trajectory constraints if index is a
vector.

axo The derivative of the function with respect to initial conditions, £. Not computed for

trajectory constraints if index is a vector.

P The adjoint trajectory. Not computed for trajectory constraints if index is a vector.

204 RIOTS Users’s Manual Chap. §

eval_fnc

Examples

The following examples assume that a simulation has already been performed on a system that
has at least two endpoint equality constraints and a trajectory constraint. The first call to eval_fnc

evaluates the second endpoint equality constraint.

>> f=eval_fnc(’'ee’,2)
f =

0.2424

Since equality constraints should evaluate to zero, this constraint is violated. This next call evalu-

ates the first trajectory constraint at the times 1, k = 5,..., 15, in the current integration mesh.

>>. eval_fnc(’'traj’,1,5:15)
ans =
Columns 1 through 7
-1.0182 -1.0222 -1.0258 -1.0288 -1.0311 -1.0327 -1.0338
Columns 8 through 11

-1.0335 -1.0318 -1.0295 -1.0265

Since inequality constraints are satisfied if less than or equal to zero, this trajectory constraint is

satisfied at these specified points.

Sec. 5.5 Simulation Routines 205

6. OPTIMIZATION PROGRAMS

This section describes the suite of optimization programs that can be used to solve various cases
of the optimal control problem OCP. These programs seek local minimizers to the discretized
problem. The most general program is riots which converts OCP into a mathematical program
which is solved using standard nonlinear programming techniques. Currently, riots can be linked
with one of two sequential quadratic programming (SQP) algorithm as described later. Besides
being able to solve the largest class of optimal control problems, riots is also the most robust
algorithm amongst the optimization programs available in RIOTS. However, it can only handle
medium size problems. The size of a problem, the number of decision variables, is primarily
determined by the number of control inputs and the discretization level. What is meant by
medium size problems is discussed in the description of riots.

The most restrictive program is pdmin which can solve optimal control problems with con-
straints consisting of only simple bounds on ¢ and «. State constraints are not allowed. The algo-
rithm used by pdmin is the projected descent method described in Chapter 3. Because of the effi-

ciency of the projected descent method, pdmin can solve large problems.

Problems that have, in addition to simple bounds on u and &, endpoint equality constraints
can be solved by aug_lagrng. The algorithm is a multiplier method which relies upon pdmin to
solve a sequence of problems with only simple bound constraints. This program provides a good
example of how the toolbox style of RIOTS can be used to create a complex algorithm from a
simpler one. Currently, the implementation of aug_lagrng is fairly naive and has a great deal of
room left for improvement. Also, it would be relatively straightforward to add an active set strat-

egy to aug_lagrng in order to allow it to handle inequality constraints.

Finally, the prdgram outer is an experimental outer loop which repeatedly calls riots to
solve a sequence of increasingly accurate discretizations (obtained by calls to distribute) of OCP

in order to efficiently compute the optimal control to a specified accuracy.

Choice of Integration and Spline Orders.

Each of these optimization programs requires the user to select an integration routine and the
order of the spline representation for the controls. There are several factors involved in these
selections. Some of these factors are discussed below and summarized in the Table O2 that fol-

lows. Consult Chapter 4.2 for a more in-depth discussion.

Fixed step-size integration. The first consideration is that, for each of the fixed step-size
Runge-Kutta methods, there is a limit to how much accuracy can be obtained in the control solu-

. * .
tions at certain discrete time points. The accuracy, lup* — u*1, of the control splines can not be

206 RIOTS Users’s Manual Chap. 5§

greater than the solutions at these time points. The order of the accuracy of spline solutions with
respect to the discretization level for unconstrained problems is given in the following table. The
quantity A used in this table is defined as A =max, ty 44; — fy. The third column is a reminder
of the spline orders that are allowed by simulate for each RK method.

Table O1
RK Method Order of Accuracy Allowable Spline Orders
1 o)]
2 0(A%) 2
3 0(A?) 2
4 0(4A%) 2,3,4

While it is possible with some optimal control problems to achieve higher order accuracies, this is
a non-generic situation. The order of spline representation should therefore not exceed the accu-
racies listed in the second column of this table. Thus, for RK4, even though cubic splines are

allowed there is usually no reason to use higher than quadratic splines (p = 3).

The orders listed in the above table are usually only achieved for unconstrained problems.
For problems with control constraints it is typically impossible to achieve better than first order
accuracy. This is even true if the discontinuities in the optimal control are known a priori since
the locations of these discontinuities will not coincide with the discontinuities of the discretized
problems. For problems with state constraints. the issue is more complicated. In general, we rec-
ommend using second order splines (except for Euler’s method) for problems with control and/or
trajectory constraints. Even if first order accuracy is all that can be achieved, there is almost no
extra work involved in using second order splines. Furthermore, second order splines will often
give somewhat better results than first order splines even if the accuracy is asymptotically limited

to first order.

A second consideration is that the overall solution error is due to both the integration error
and the error caused by approximating an infinite dimensional function, the optimal control, with
a finite dimensional spline. Because of the interaction of these two sources of error and the fact
that the accuracy of the spline representations is limited to the above table, improving the integra-
tion accuracy by using a higher order method does not necessarily imply that the accuracy of the
solution to the approximating problem will improve. However, even if the spline accuracy is lim-
ited to first order, it is often the case that the integration error, which is of order O(A*), where s is
the order of the RK method. still has a significantly greater effect on the overall error than the

spline error (especially at low discretization levels). This is partly due to the fact that errors in the

Sec. 5.7 Optimization Programs 207

control are integrated out by the system dynamics. Thus, it is often advantageous to use higher-
order integration methods even though the solution error is asymptotically limited to first order by

the spline approximation error.

The importance of the RK order, in terms of reducing the overall amount of computational
work required to achieve a certain accuracy, depends on the optimization program being used.
Each iterations of riots requires the solution of one or more dense quadratic program. The
dimension of these quadratic programs is equal to the number of decision parameters (which is
m(N + p - 1) plus the number of free initial conditions). Because the work required to solve a
dense quadratic program goes up at least cubically with the number of decision variables, at a cer-
tain discretization level most of the work at each iteration will be spent solving the quadratic pro-
gram. Thus, it is usually best to use the fourth order RK method to achieve as much accuracy as
possible for a given discretization level. An exception to this rule occurs when problem OCP
includes trajectory constraints. Because a separate gradient calculation is performed at each mesh
point for each trajectory constraint, the amount of work increases significantly as the integration
order is increased. Thus. it may be beneﬁcial to use a RK3 or even RK2 depending on the prob-

lem.

On the other hand, for the optimization programs pdmin and aug_lagrng (which is based
on pdmin) the amount of work required to solve the discretized problem is roughly linear in the
number of decision variables which is basically proportional to the discretization level N. The
amount of work required to integrate the differential equations is linearly proportional to Ns
where s the order of the Runge-Kutta method. Since the integration error is proportional to
1/ N¥, if not for the error for the spline approximation it would always be best to use RK4. How-
ever, because there is error from the finite dimensional spline‘represemation. it does not always
pay to use the highest order RK method. If, roughly speaking, the error from the control repre-
sentation contributes to the overall error in the numerical solution to larger extent than the integra-
tion error (note that the spline error and the integration error are in different units) then it is
wasteful to use a higher order RK method. This usually happens only at high discretization lev-
els.

The relative effect of the spline error versus the integration error depends on the nature of
the system dynamics and the smoothness of the optimal control. Unfortunately, this is hard to
predict in advance. But a sense of the balance of these errors can be obtained by solving, if possi-
ble, the problem at a low discretization level and viewing the solution using sp_plot and using
simulate (form 7) or est_errors to obtain an estimate of the integration error.

There is a third consideration for selecting the integration order. For some problems with

particularly nonlinear dynamics. in may not be possible integrate the differential equation if the

208 RIOTS Users’s Manual Chap. §

discretization level is too small. In these cases, the minimum discretization level needed to pro-
duce a solution is smallest when using RK4. For some problems, it may not be possible to
achieve an accurate solution of the differential equation at any reasonable discretization level. For

these problems, the variable step-size integration method; discussed next, will have to be used.

Regardless of the integration method used, higher order splines (p > 2) should not be used
unless the optimal control is sufficiently smooth. Of course, the optimal control is not known in
advanced. Generally, though, when solving control and/or trajectory constrained problems, sec-
ond order splines should be used (except with Euler’s method which can only use first order
splines) as per the discussion above. For other problems being integrated with RK4, it may be
advantageous to use quadratic splines.

The following table provides a set of basic guidelines for the selection of the integration
method and the spline order for solving different classes of problems. These choices may not be

ideal for any specific problem but they are generally acceptable for most problems.

Table 02
. RK order spline order
type of problem optimization program .
(ialg) (p)
|) dmin/ " 4 (N small) 3 (N small)
no control nor trajectory con- pdmin/aug_lagrng
straints jectony 2 (N large) 2 (N large)
riots 4 3
dminy : 4 (N small)
min/aug_lagrng
control constraints P 2 (N large) 2
riots 4
trajectory constraints riots 2T 2

Variable step-size integration. From the point of view of integrating differential equations, it
is much more efficient to use a variable step-size integration routine than a fixed step-size method.
However, this is usually not the case when solving optimal control problems. There are three
basic reasons for this. First, the overall solution accuracy cannot exceed the accuracy with which
splines can approximate the optimal control. Thus, it is quite conceivable that a great deal of
work will be spent to achieve a very accurate integration but this effort will be wasted on a rela-
tively inaccurate solution. Second. the solution of the discretized problem can easily involve -

¥ Sometimes a higher-order method must be used to provide a reasonable solution to the system differential equations.

Sec. 5.7 Optimization Programs 209

hundreds of simulations. The integration accuracy during most of the simulations will have very
little affect on the accuracy of the final solution. Therefore, it is usually much more efficient to
solve a sequence of discretized problems, each with a more accurate integration mesh, using a
fast, fixed step-size integration method. Third, the gradients produced for the variable step-size
method are approximations to the actual, continuous-time gradients for the original problem
OCP; they are not exact gradients for the discretized problems. Thus, the solution of the dis-
cretized problem will usually require more iterations and will be less accurate (relative to the
actual solution of the discretized problem) when using the variable step-size method than when

using one of the fixed step-size integration routines.

There are, however, situations in which it is best to use the variable step-size integration
method. The first situation is when the system dynamics are very difficult to integrate. In this
case, or any other case in which the the integration error greatly exceeds the spline approximation
error, it is more efficient to use the variable step-size method. In some cases, the integration has
to be performed using the variable step-size method. This can occur if the system is described by

stiff differential equations or if the system contains highly unstable dynamics.

Another situation in which it can be advantageous to use the variable step-size integration
method is if the location of discontinuities in the optimal control, or discontinuities in the
derivatives of the optimal control, are known a priori. In this case, it may be possible to increase
the solution accuracy by placing breakpoints in the discretization mesh where these discontinu-
ities occur and then using a spline of order one greater than the overall smoothness of the optimal
controlf. The location of the discontinuity for the discretized problem will be very close to the
discontinuity in the optimal control if the integration tolerance is small and the optimal control is
well-approximated by the spline away from the discontinuity. Hence, the overall accuracy will
not be limited by the discontinuity.

The variable step-size integration routine can use first. second, third, or fourth order splines.
For unconstrained problems. or problem with endpoint constraints, it is best to use fourth order
splines so that the spline approximation error is-as small as possible. For problems with control

and/or trajectory constraints, first or second order splines are recommended.

A spline of higher order would be too smooth since RIOTS currently does not allow splines with repeated interior knots.

210 RIOTS Users’s Manual Chap. §

Coordinate Transformation

All of the optimization programs in RIOTS solve finite-dimensional approximations to OCP
obtained by the discretization procedure described in the introduction of Section 5. Additionally,
a change of basis is performed for the spline control subspaces. The new basis is orthonormal.
This change of basis is accomplished by computing the matrix M, with the property that for any
two splines u(-) and v(-) with coefficients « and 8,

(u,v), = (aMg, B),

(recall that @ and § are row vectors. The splines coefficients in the transformed basis are given

by @ = aM!” and B = BM.” (see Section 6 and Remark A.2.8). In the new coordinates,

(uvy, =(@.B).

In words, the Ly-inner product of any two splines is equal to the Euclidean inner product of their
coefficients in the new basis. The matrix M, is referred to as the transform matrix and the

change of basis is referred to as the coordinate transformation.

By performing this transformation. the standard inner-product of decision variables (spline
coefficients) used by off-the-shelf programs that solve mathematical programs is equal to the
function space inner product of the corresponding splines. Also, because of the orthonormality of
the new basis, the conditioning of the discretized problems is no worse than the conditioning of
the original optimal control problem OCP. In practicé. this leads to solutions of the discretized
problems that are more accurate and that are obtained in fewer iterations than without the coordi-
nate transformation. Also. any termination criteria specified with an inner product become inde-

pendent of the discretization level in the new basis.

In effect, the coordinate transformation provides a natural column scaling for each row of
control coefficients. It is recommended that, if possible. the user attempt to specify units for the
control inputs so that the control solutions have magnitude of order one. Choosing the control

units in this way is, in effect, a row-wise scaling of the control inputs.

One drawback to this coordinate transformation is that for splines of order two and higher
the matrix M is dense. A diagonal matrix would be preferable for two reasons. First, comput-
ing M3 is computationally intensive for large N. Second, there would be much less work
involved in transforming between bases: each time a new iterate is produced by the mathematical
programming software, it has to be un-transformed to the original basis. Also, every gradient
computation involves an inverse transformation. Third. simple control bounds are converted into

general linear constraints by the coordinate transformation. This point is discussed next.

Sec. 5.7 Optimization Programs 211

Control bounds under the coordinate transformation. Simple bounds on the spline coeffi-
cients takes the forma; < a; < by, k=1,..,N+p-1. If a; and b, are in fact constants, a and
b, then for all 1, a < u(t) < b. Now, under the coordinate transformation, simple bounds of this

form become
(a, seres ANy po))S&M;IQS(I)I v""bN-l-p-l)

Thus, because of the coordinate transformation, the simple bounds are converted into general lin-
ear bounds. Since this is undesirable from an efficiency point of view, RIOTS instead replaces the
bounds with

12 = 12
(a,,...,aN+p_|)Ma fa S(bl,...,bN+p_|)h‘,z .

For first order splines, these bounds are equivalent to the actual bounds since M1? is diagonal.
For higher order splines, these bounds are not equivalent. They are, however, approximately cor-

rect since the entries of the matrix M, fall off rapidly to zero away from the diagonal.

It turns out that the problems enumerated above can be avoided when using second order
splines which are, in any case, the recommended splines for solving problems with control

bounds. Instead of using M,, in the coordinate transformation, the diagonal matrix

4
A+ A,
2 Ay +A;
M = 2 ’
An-y +Ax
2

Ay |

-

with Ay =1y 441 = Iy, is used. This transformation matrix is derived in (2.7.19¢) and retains the
important attributes of the transformation given by M,. In riots and pdmin, M is used for the
coordinate transformation, instead of M,, when second order splines are used if (i) problem

OCP has control bounds or if (ii) RK2 is being used as the integration method.

If higher than second order splines are to be used with control bounds and exact bound sat-
isfaction is required, then the transform mechanism should be disabled by setting TRANS-
FORM=0 in riots and/or pdmin+. Finally, when N is large, p 2 1 and RK3 or RK4 is being used,
the computation of the square-root of M, can take a very long time. In this case if the discretiza-
tion level N is greater than about 300, the transform mechanism should also be disabled.

¥ In pdmin, setting TRANSFCRM:O causes the transform mechanism to be disabled for splines of greater than two. For sec-
ond order splines. M is used regardless of the RK methed and for first order (piecewise constant) splines, the usual, diagonal, transfor-
mation is used

212 R1OTS Users’s Manual Chap. §

Description of the Optimization Programs

The first six inputs are the same for all of the optimization programs; they are listed in the follow-

ing table. Default values for vectors apply to each component of that vector. Specifying [] for

an input causes that input to be set to its default value. In the following, N is the discretization

level and p is the order of the control splines.

Table O3

Input L Rows

Columns

Description

x0

n

1,20r4

x0=[x0, {fixed, {x0Omin, x0Omax)}] where
x0 is the nominal value of the initial state £.

fixed Foreach i such that fixed (i) =0, the cor-
responding initial state value &' is treated as a

free decision variable. Default:]

x0min Specifies lower bound for each free initial

condition &'. Default: ~oo

x0max Specifies upper bound for each free initial

condition &'. Default: oo

ul

N+p-1

Initial guess for the spline coefficients of the control u.

N+1

The integration mesh points/spline breakpoints.

Umin

m

N+p-lorl

Lower bounds on the spline coefficients for 4. If Umin
is specified as a single column, its values will apply as a
lower bound on all of the spline coefficients. Default:

- o0

Umax

m

N+p-lorl

Upper bounds on the spline coefficients for u. If Umax
is specified as a single column, its values will apply as
an upper bound on all of the spline coefficients. Default:
(e =]

params

p

Provides the system parameters if required.

The first two outputs are the same for all of the optimization programs; they are listed in the fol-

lowing table:

Table O4
Output Rows Columns Description
u m N+p-1 The optimal control solution.
b n N+1 The optimal state trajectory solution.
Sec. 5.7

Optimization Programs 213

aug_lagrng

aug_lagrng

Purpose

This function uses pdmin as an inner loop for an augmented Lagrangian algorithm the solves
optimal control problem with, in addition to simple bounds on £ and u, endpoint equality con-
straints. Only one objective function is allowed.

Calling Syntax

[u,x,f,lambda,I_i] = aug_lagrng([x0, {fixed, {x0Omin, xOmax}}],u0, t,
Umin, Umax, params,N_inner,N_outer,
ialg, {method}, {[toll,to0l2]}, {Disp})

Description of the Inputs

The first six inputs are described in Table O3.

N_inner Maximum number of iterations for each inner loop call to pdmin.

N_outer Maximum number of outer iterations.

ialg Specifies the integration algorithm used by simulate.

method Specifies the method for computing descent directions in the unconstrained sub-

space. The choices are explained in the description of pdmin. Default: *vm’.

toll,tol2 Optimality tolerances. Default: [)2, , €2, 1. The outer loop terminates if

‘lll
IVim- Y A, Vgl.(nl £ toll(l+1f(n))
I

v=
and
max Ig,,(ml £ tol2.
v e q'l'

Disp Passed on to pdmin to control amount of displayed output. Default: 0.

Description of the Outputs
The first two outputs are described in Table O4.
£ The objective value at the obtained solution.

I_i Index set of elements of [u(:), £] that are not at their bounds.

214 RIOTS Users’s Manual Chap. 5

aug_lagrng
lambda Vector of Lagrange multipliers associated with the endpoint equality constraints.

Description of the Algorithm

This program calls pdmin to minimize a sequence of augmented Lagrangian functions of the

form
q'f v l ‘If' v 2
Lc.A(n) = f(m- Zl lvgee(”)*' 5 ZI Cv8ee()

subject to simple bounds on & and u. The value of the augmented Lagrangian and its gradient are

supplied to pdmin by a_lagrng_fnc via extension 1 (see description of pdmin).

The values of the Lagrange multiplier estimates A,, v = 1,..., q,,, are determined in one of
two ways depending on the setting of the internal variable METHOD in aug_lagmg.m. Initially
Ay=0,v=1,...,9..

Multiplier Update Method 1. This method adjusts the multipliers at the end of each iteration
of pdmin by solving the least-squares problem

qlt
A= min Vi)~ 3 2,V mii, .
A € Rin

vzl
where the norm is taken only on the uncstrained subspace of decision variables which is indicated
by the index set I_i. This update is performed by multiplier_update which is called by pdmin
via extension 2. If update method 1 is used. the tolerance requested for the inner loop is
decreased by a factor of ten on each outer iteration starting from 10™" {6N-cutex] (12 ynii) the

.
tolerance is &5

Multiplier Update Method 2. This method is the standard *‘method of multipliers” which

solves the inner loop completely and then uses the first order multiplier update
Ay A =c.80(n) . Vrvel,
where

L={vegq,llghmsl |8 ee(Mprevious) OF Ighe (M < tol2) .

12

If update method 2 is used. the tolerance requested for the inner loop is fixed at £,z ,,.

Sec. 5.7 Optimization Programs 218

aug_lagrng

Penalty Update. The initial values for the constraint violation penalties are ¢, = 1,
v=1,...,9. It may be helpful to use larger initial values for highly nonlinear problems. The
penalties are updated at the end of each outer iteration according to the rule

c, < 10c, ,Vvél,,
where], is as defined above.

Note that this algorithm is implemented mainly to demonstrate the extensible features of pdmin
and is missing features like, (i) constraint scaling, (ii) an active set method for handling inequality
endpoint constraints, (iii) a mechanism for decreasing constraint violation penalties when possi-
ble and, most importantly, (iv) an automatic mechanism for setting the termination tolerance for
each call to pdmin.

Notes

1. On return from a call to aug_lagrng, the variable opt_program will be defined in the Mat-
lab workspace. It will contain the string * aug_lagrng’.

See Also: pdmin, a_lagmg_fnc.m, multiplier_update.m.

216 RIOTS Users’s Manual Chap. §

outer

outer

Purpose

This program calls riots to solve problems defined on a sequence of different integration meshes,
each of which result in a more accurate approximation to OCP than the previous mesh. The solu-

tion obtained for one mesh is used as the starting guess for the next mesh.
Calling Syntax
[new_t,u,x,J,G,E] = outer([x0, {fixed, {x0Omin,x0max}}],u0,t,

Umin, Umax, params,N_inner, [N_outer, {max_N}])
ialg, {[toll,tol2,t0l3]}, {strategy}, {Disp})

Description of the Inputs

The first six inputs are described in Table O3.

N_inner Maximum number of iterations for each inner loop of riots.
N_outer Maximum number of outer iterations.
max_N The maximum discretization level; outer will terminate if the discretization level

exceeds max_N. Default: oo
ialg Specifies the integration algorithm used by simulate.

toll,tol2,tol3
Optimality tolerances. The outer loop terminates if

IVL(mI £ toll(1 +1f(m)),
where IVL(n)l, is the H,-norm of the free portion of VL(n),

v <
Vrga‘:r 18ee(m)] < tol2,

and
by — 1S tol3(1 +luyl)b ,

where b is the nominal final time. The default values for these tolerances factors
13 14 16
are [gmach' Emach smach]'
strategy Passed on to distribute to select the mesh redistribution strategy.

Default = 3.

Disp Passed on to riots to control amount of displayed output. Default =1,

Sec. 5.7 Optimization Programs 217

outer

Description of the Outputs
The first two outputs are described in Table O4.

new_t The final integration mesh obtained from the final mesh redistribution.

u The optimal control solution defined on the final mesh new_t.
x The optimal trajectory solution.
J A row vector whose i-th component is the value of the objective function, computed

using LSODA, after the i-th call to riots.

G A row vector whose i-th component is the sum of the constraint violations, computed
using LSODA. after the i-th call to riots.

E A row vector whose i-th component is an estimate of iny - n*le after the (i + 1)-th

iteration. With 7 = (u. &), inly, is defined by

172
b
Inlﬁzﬁ[lgﬂ3+ _[Iu(t)l%dt] .

Description of Algorithm

outer is an outer loop for riots. During each iteration, riots is called to solve the discretized
problem on the current mesh starting from the solution of the previous call to riots interpolated
onto the new mesh. After riots returns a solution, est_errors and control_error are called to
provide estimates of certain quantities that are used to determine whether outer should terminate
or if it should refine the mesh. If necessary. the mesh is refined by distribute, with FAC=10,
according to strategy except following the first iteration. After the first iteration, the mesh is
always doubled.

After each iteration, the following information is displayed: the H,-norm of the free portion
of the gradient of the Lagrangian, the sum of constraint errors, objective function value, and inte-
gration error of the integration algorithm ialg at the current solution. All of these quantities are
computed by est_errors. The first three values are estimates obtained using LSODA with a toler-
ance set to about one thousandth of the integration error estimate. The control solution is plotted

after each iteration (although the time axis is not scaled correctly for free final time problems).

Additionally, following all but the first iteration, the change in the control solution from the

. * * .
previous iteration and an estimate of the current solution error. Iny” — I1,. are display.

218 RIOTS Users’s Manual Chap. 5

outer

Notes

1. If solutions exhibit rapid oscillations it may be helpful to add a penalty on the piecewise

derivative variation of the control by setting the variable VAR in outer.m to a small positive value.

2. The factor by which distribute is requested to increase the integration accuracy after each
iteration can be changed by setting the variable FAC in outer.m.

3. Anexample using outer is given in Session 4 (§3).

See Also: riots, distribute, est_errors, control_error.

Sec. 5.7 Optimization Programs 219

pdmin

pdmin

Purpose

This is an optimization method based on the projected descent method. It is highly efficient but
does not solve problems with general constraints or more than one objective function.

The user is urged to check the validity of the user-supplied derivatives with the utility pro-

gram check_deriv before attempting to use pdmin.

Calling Syntax

[u,x,J,inform,I_a,I_i,M) = pdmin([x0, {fixed, {x0Omin,x0max}}],u0,t,
Umin, Umax, params, [miter, {tol}],
ialg, {method}, { [k; {scale}]}, {Disp})

Description of Inputs

The first six inputs are described in Table O3. The remainder are described here.
miter The maximum number of iterations allowed.

tol Specifies the tolerance for the following stopping criteria

Bgily, /11 < £ol™*(1 + If(m D)
Ju) = flugoy) < 100to0l(1 + If(uy)l) .
by =yl < £01V2(1 + lugly) .

x,=0 .Vie A,

where g, is the k-th component of the derivative of f(-) in transformed coordinates,

I, is set of inactive bound indices and A, is set of active bound indices. Default:
112

Emach-

ialg Specifies the integration algorithm used by simulate.

220 RIOTS Users's Manual Chap. §

pdmin

method A string that specifies the method for computing descent directions in the uncon-

scale

Disp

strained subspace. The choices are:

" limited memory quasi-Newton (L-BFGS)
'steepest’ steepest descent

‘conjgr’ Polak-Ribiére conjugate gradient method

‘ym'’ limited memory quasi-Newton (L-BFGS)

The default method is the L-BFGS method.

This value is used to determine a perturbation with which to compute an initial scal-
ing for the objective function. Typically, k is supplied from a previous call to pdmin
or not at all.

This value is used to determine a perturbation with which to compute an initial func-

tion scaling. Typically, scale is supplied from a previous call to pdmin or not at
all.

Disp = 0,1, 2 controls the amount of displayed output with 0 being minimal out-
put and 2 being full output. Default: 2.

Description of Outputs

The first two outputs are described in Table O4.

J

inform

Sec. 5.7

A row vector whose (i + 1)-th component is the value of the objective function at the
end of the i-th iteration. The last component of J is the value of the objective func-

tion at the obtained solution.
Index set of elements of [u(:),] that are actively constrained by bounds.
Index set of elements of [«u(:); £] that are not constrained by bounds.

This is a vector with four components:

inform(1) Reason for termination (see next table).

inform(2) Function space norm of the free portion of V f(7), n = (i, £).

inform(3) Final step-size k = log 4/log B where A is the Armijo step-
length and 8 = 3/5.

inform(4) The value of the objective function scaling.

Optimization Programs 221

pdmin

The possible termination reasons are:

inform(1) Cause of Termination.
-1 Simulation produced NaN or Inf.
0 Normal termination tests satisfied.
1 Completed maximum number of iterations.
2 Search direction vector too small.
3 All variables at their bounds and going to stay that way.
4 Gradient too small.
5 Step=size too small.
6 User test satisified (user test returned 2).

Description of Displayed Output

Depending on the setting of Disp, pdmin displays a certain amount of information at each itera-
tion. This information is displayed in columns. In the first column is the number of iterations
completed: next is the step-size, A = B*. with k shown in parenthesis; next is IV f(i)l;, which is
the norm of the gradient with respect to those decision variables that are not at their bounds; next
is a four (three if there are no upper or lower bounds) letter sequence of T’s and F’s where a T
indicates that the corresponding termination test. described above, is satisfied; next is the value of
the objective function: and in the last column, an asterix appears if the set of indices correspond-

ing to constrained variables changed from the previous iteration.

Extensible Features

Because pdmin is designed to be callable by other optimization programs, it includes three exten-
sions that allow the user to customize its behavior. These extensions are function calls that are
made to user supplied subroutines at certain points during each iteration. They allow the user to
(i) construct the objective function and its gradients, (ii) specify termination criteria and perform
computations at the end of each pdmin iteration, and (iii) add additional tests to the step-size
selection procedure. The use of the first two of these extensions is demonstrated in the program
aug_lagrng.

-Extension 1. If the global variable USER_FUNCTION_NAME is defined in Matlab’s workspace
and is a string containing the name of a valid m-file, pdmin will call that m-file, instead of simu-
late. to evaluate the system functions and gradients. This can be used to construct a composite

function from several different calls to simulate. For instance. a penalty function can be formed

222 RIOTS Users’s Manual Chap. 5

pdmin

to convert a constrained problem into an unconstrained problem. The syntax for the user function
is
(£0,x,grad_u,grad_x0) = USER_FUNCTION_NAME(x0,u,t, ialg,action)

where the input and output variables are the same as for calls to simulate. See a_lagrmg_fnc.m
for an example.

Extension 2. If the global variable USER_TEST_NAME is defined in Matlab’s workspace and
is a string containing the name of a valid m-file, pdmin will call that m-file at the end of each iter-

ation. The syntax for the user function is
user_terminate = USER_TEST_NAME(f0,x,u,grad_u,grad_x0,I_i, free_x0)

where I_i is a column vector indexing all elements of [1(:);] that are not actively constrained
by bounds and free_x0 is the index set of free initial conditions. If the user test returns
user_terminate=1 and the other termination conditions are satisfied, then pdmin will termi-
nate. If user_terminate=2, then pdmin will terminate without regard to the other termina-
tion tests. This function can be used solely for the purpose of performing some operations at the

end of each iteration by always retuning 1. See multiplier_update.m for an example.

Extension 3. If the global variable ARMIJO_USER_TEST is defined in Matlab’s workspace
and is a string containing the name of a valid m-file. the function armijo, which is called by
pdmin to compute the Armijo step-length. will call that m-file in order to guarantee that the step-
length satisfies

ARMIJO_USER_TEST(j,x,x0,u,t,ialg,I_i,free_x0) <= 0

where x and u are evaluated at the current trial step-length and I_i and free_x0 have the same
meaning as for Extension 2. This extension can be used. for instance, in a barrier function algo-

rithm to prevent trial step-lengths that are outside the region of definition of the barrier function.

Notes

The Armijo line search is discussed in Chapter 3. The following additional features are used in

the current implementation of pdmin.

1. A scaling for the objective function is computed using the objective scaling 2 described for
riots. The primary purpose of this scaling is to prevent an excessive number of function evalua-

tions during the first line search.

Sec. 5.7 Optimization Programs 223

pdmin

2. The step-length adjustment mechanism will stop increasing the step-length if k < 0 and and
the next increase in step-length results in an increase in the objective function.

3. If simulate returns NaN, the step-length will be decreased until simulate returns a valid
result.

4. Because of the coordinate transformation, the inner products in the termination tests are

inner-products in L;[a, b]. Thus the tests are independent of the discretization level.

Bugs

1. Control bounds can be violated if using splines of order p > 2 unless the coordinate transfor-
mation is disabled by setting the variable TRANSFORM to zero in the code.

224 RIOTS Users’s Manual Chap. §

riots

riots

Purpose

This is the main optimization program in RIOTS. It can only be used if the user has obtained one
of two nonlinear programming algorithms: CFSQP or NPSOLT. Both of these algorithms are
based on sequential quadratic programming (SQP) methods. CFSQP is a feasible point SQP
method and NPSOL is an active-set method based on an augmented Lagrangian merit function.
With CFSQP, riots can solve OCP in its most general version. With NPSOL, riots only allows a
single objective function. On the other hand, because NPSOL is a highly refined, commercial
package. it is much faster and more robust than CFSQP. Multiple objective functions can be han-

dled indirectly using the transcription describe in Section 2.3.

The user is urged to check the validity of the user-supplied derivatives with the utility pro-

gram check_deriv before attempting to use riots.

Calling Syntax

[u,x,f,g,lambda2] = riots([x0, {fixed, {x0min,x0max}}),u0l,t,Umin, Unax,
params, [miter, {var, {fd, {feasbl})}}], ialg,
{[eps,epsneq, objrep,bigbnd] }, {scaling},
disp, {lambdal});

Description of Inputs
The first six inputs are described in Table O3. The remainder are described here.
miter The maximum number of iterations allowed.

var Specifies a penalty on the piecewise derivative variationi of the control to be added
to the objective function. Can only be used with first and second order splihes.
Adding a penalty on the piecewise derivative variation of the control is useful if rapid
oscillations are observed in the numerical solution. This problem often occurs for

singular problems[3,116] in which trajectory constraints are active along singular

* CFSQP can be obtained for free by sending a request to Prof. André Tits (andre@eng.umd.edu). NPSOL can be purchased
from Stanford Business Software. Inc.. 2680 Bayshore Parkway, Suite 304, Mountain View. CA 94043, (415) 962-8719.

The piecewise derivative variauon is smoothed 1o make it differentiable by squaring the terms in the summation. The smooth-
ing can also be accomplished using an /, approximation by changing the define’d variable L1 in riots.c. However, the / | approxima-
tion 1s not twice continuously differentiable and this can inhibit superlinear convergence.

Sec. 5.7 Optimization Programs 225

riots

fa

feasbl

ialg

eps

epsneq

objrep

bigbnd

scaling
disp
lambdal

arcs. The penalty should be ten to ten thousand times smaller than the value of the
objective function at a solution. See Chapter 4.5 for a discussion of singular control

problems and the piecewise derivative variation of the control.

If a non-zero value is specified, the gradients for all functions will be computed by
finite-difference approximations. In this case Dh, Dg, and DI will not be called.
Default: 0.

(CFSQP only) If a non-zero value is specified, CFSQP will always check for con-
straint violations during its line searches before evaluating objective functions.
Default: 0.

Specifies the integration algorithm used by simulate.

Overall optimization tolerance. For NPSOL, eps is squared before calling NPSOL.

See the SQP user’s manual for more details. Default: 107,
Nonlinear constraint tolerance. Default: 107,

For CFSQP. for problems without equality constraints, optimization will terminate if
the relative change in objective function values is less than objrep. For NPSOL,
objrep indicates function precision. For both, a value of 0 causes this features to

be ignored. Default: 0.

A number large than the largest magnitude expected for the decision variables.
Default: 10°.

Allowable values are 00. 01,10, 11, 12, 21, 22. Default: 00. See description below.
Specify zero for minimal displayed output. Default: 1.

Only applies to NPSOL. Controls warm starts. Default: 0. See description below.

Description of Outputs |

The first two outputs are described in Table O4.

f

g

226

The objective value at the obtained solution.

Vector of constraint violations in the following order (N.B. linear constraints are

treated as nonlinear constraint for systems with nonlinear dynamics):

RIOTS Users’s Manual Chap. §

Table OS

riots

CFSQP

NPSOL

nonlinear endpoint inequality
nonlinear trajectory inequality
linear endpoint inequality
linear trajectory inequality
nonlinear endpoint equality
linear endpoint equality

linear endpoint inequality
linear trajectory inequality
linear endpoint equality
nonlinear endpoint inequality

nonlinear endpoint equality

nonlinear trajectory inequality

lambda2 Vector of Lagrange multipliers. This output has two columns if NPSOL is used. The

first column contains the Lagrange multipliers. The first m(N + p — 1) components

are the multipliers associated with the simple bounds on u. These are followed by

the multipliers associated with the bounds on any free initial conditions. Next are the

multipliers associated with the general constraint, given in the same order as the con-

straint violations in the output g. Last, for CFSQP, are the multipliers associated

with the objective functions. If NPSOL is being used, the second column of

lambda2 contains information about the constraints which is used by riots if a

warm start using lambdal is initiated (as described below).

Scaling

There are several heuristic scaling options available in riots for use with badly scaled problems.

There are two scaling methods for objective functions and two scaling methods for constraints.

These are selected by setting scaling to one of the two-digit number given in the following

table:
Table O6
scaling Objective Scaling Method Constraint Scaling Method

00 no scaling no scaling

01 no function scaling constraint scaling 1

10 function scaling 1 no constraint scaling

11 function scaling 1 constraint scaling 1

12 function scaling 1 constraint scaling 2

21 function scaling 2 constraint scaling 1

22 function scaling 2 constraint scaling 2

In the following. FACTOR = 10 if CFSQP is linked with riots and FACTOR = 20 if NPSOL is

linked with riots. Also. ny = (1. &).

Sec. 5.7

Optimization Programs

227

riots

Objective Scaling 1: For each v € q,,, the v-th objective function is scaled by

.]
Yo = ﬁ—lanO)l FACTOR .

Objective Scaling 2: Foreach v € q,,. let

S = (1+Inol,)/ (1000V f*(no)l..)

on = [no =SV nos .

y= 1 (6n,n)
2| fYno+8n0) = f¥(no) = (V¥ (o) émo); |

where [], is the projection operator that projects its argument into the region feasible with respect
to the simple bounds on u and £. and I is the set of indices of 7, corresponding to components
which are in the interior of this feasible region (y is the distance along the projected steepest
descent direction, &7. to the minimum of a quadratic fitto f(-)). If y 2 107, scale the v-th objec-
tive function by y, = FACTORy. Otherwise. compute y =IVf (o). If y 21073, set
Yo = FACTOR y. Otherwise, use function scaling 1.

Constraint Scaling 1: For each v € q,,. the endpoint inequality constraints are scaled by

]
v FACTOR .
Yo = ax { 1.1gq (o)l }

for each v € q,,. the endpoint equality constraints are scaled by

]
- FACTOR .
Tee = ax { 1.1g%. ro)l)

and, for each v € q,,. the trajectory inequality constraints are scaled by

P
v o FACTOR .
i max {1, max Wit xg, up)l)
ke (1..N+l)

Constraint Scaling 2: The trajectory constraint scalings are computed in the same way as for
constraint scaling method 1. For each v € q,;. the endpoint inequality constraints are scaled by
Yei; = v and, for each v € q,,. the endpoint equality constraints are scaled by 7, = y where y is

determined as follows. If Ig(ng)) 2 1073, let

FACTOR .

rE lg(ng)l

otherwise, if IVg(7)l 2 107%, let

228 RIOTS Users's Manual Chap. 5§

riots

FACTOR ,
IVg(no)l

otherwise do not scale.

Scaling will not always reduce the amount of work required to solve a specific problem. In
fact, it can be detrimental. In the following table, we show the number of iterations required to
solve some problems (described in Appendix B) with and without function scaling. All of these
problems were solved using second order splines on a uniform mesh with a discretization level of
N =50. For both NPSOL and CFSQP, the problems were solved using scaling set to 0, 10,
and 20. No numbers are given for CFSQP in the last two rows since it was not able to solve the
Goddard problem. It should be noted that none of these problems is seriously ill-conditioned.

Table O7
[o NPSOL ~ CFSQP_ ||
Problem ialg | 0 | 10|20 f o |10 [20
LQR 2 s |17 7] s [13
Rayleigh w/o endpoint constraint 2 18 17 14 25 24 19
Rayleigh with endpoint constraint 2 24 29 19 19 26 17
Goddard w/o trajectory constraint 4 69 29 45
Goddard with trajectory constraint 4 22 17 19

For the last row, riots was called with var = 10™. Constraint scaling did not have any affect on
the number of iterations for these problems. Discussion of scaling issues can be found
in [41,129,130].

Warm Starts

The input lambdal controls the warm-starting feature available with riots if it is linked with
NPSOL. There are two types of warm starts.

The first type of warm start is activated by setting lambdal=1. If this warm start is used,
the Lagrange multiplier estimates and Hessian estimate from the previous run will automatically
be used as the starting estimates for the current run. This is useful if riots terminates because the
maximum number of iterations has been reached and you wish to continue optimizing from where
riots left off. This type of warm start can only be used if the previous call to riots specified
lambdal=-1 or lambdal=1. Setting lambdal=-1 does not cause a warm-start, it just pre-

pares for a warm start by the next call to riots.

Sec. 5.7 Optimization Programs 229

riots

The second type of warm start allows warm starting from the previous solution from riots
but interpolated onto a new mesh and is only implemented for first and second order splines. It is
activated by providing estimates of the Lagrange multipliers in the first column of input
lambdal and the status of the constraints in the second column of lambdal. Typically,
lambdal is produced by the program distribute which appropriately interpolates the 1ambda2
output from the previous run of riots onto the new mesh. When lambdal is supplied in this
way, riots estimates H(7), the Hessian of the Lagrangian at the current solution point, by apply-
ing finite-differences to the gradients of all objective and constraint functions weighted by their

Lagrange multipliers (and scalings if a scaling option has been specified).

The estimate H(n) of the Hessian of the Lagrangian is computed by the program
comp_hess. This computation requires N + p + fiee xo SYstem simulations (Where R 5o is the
number of free initial conditions) and twice as many gradient computations as there are objective
functions and constraints with non-zero Lagrange multipliers. Also, if a non-zero value for var
is specified, the second derivative of the penalty term on the piecewise derivative variation of the
control is added to the Hessian estimate. When p < 2. the computation takes advantage of the
symmetry of the Hessian by stopping the simulations and gradient computations once the calcula-

tions start filling the Hessian above its diagonal. After H is computed, it is converted into trans-
formed coordinates using the formula H = (M,')" HM'?, unless the transformation mecha-
nism has been disabled. '

Because NPSOL expects the Cholesky factorization of a positive definite Hessian estimate,
the following additional steps are taken. First. a Cholesky factorization is attempted on H.If
this fails (because H is not positive definite) the computation continues with the following proce-
dure. A singular value decomposition is performed to obtain the factorization H = USV”, where
§ is the diagonal matrix of singular values of H . Next, each diagonal element, o;, of S is set to
o; =max {0, e, }. Then, we set H = USU”, which, because & = H 7, makes all negative
eigenvalues of H positive while preserving the eigenstructure of H. Finally, the Cholesky factor-

ization of H is computed.
Notes
1. Since NPSOL is not a feasible point algorithm, it is likely that intermediate iterates will vio-

late some nonlinear constraints. -If riots is linked with NPSOL and. during a linesearch, NPSOL

tries to evaluate a function which produces a floating point error. it will try backtracking to a

230 RIOTS Users’s Manual Chap. §

riots

smaller step-length+. Using this mechanism, it is possible to force NPSOL to keep iterates within
a prescribed region by forcing a division by zero¢ when iterates are outside that region. Typi-
cally, this should be done in conjunction with a constraint such that if the constraint violation is
too great, a division by zero will occur. In this way, it is possible to specify the allowable amount
of constraint violation. Some margin for constraint violations should be allowed so that superlin-

ear convergence is not inhibited.

If riots is linked with CFSQP. the iterates will always be feasible with respect to the con-

straints if feasbl is set to a non-zero value.

2. Because of the coordinate transformation, the inner products in the termination tests corre-

spond to inner-products in L.[a. b]. Thus the tests are independent of the discretization level.

3. When linked with NPSOL., riots will produce a file called npsol.opt in the current working
directory.

4. On return from a call to riots, the variable opt_program will be defined in the Matlab
workspace. It will contain the string *NPSOL’ or ' CFSQP’ according to which SQP method is
linked with riots.

Bugs

1. Control bounds can be violated if using splines of order p > 2 unless the coordinate transfor-
mation is disabled. This is done by defining the pre-compiler symbol TRANSFORM to zero in the

code.

2. riots uses the Matlab MEX function mexCallMATLAB to make calls to simulate. There is
a bug in this function that interferes with the operation of ctr1-C. This problem can be circum-

vented by compiling simulate directly into riots (see instructions on compiling riots).

3. The full warm-start feature. which requires the computation of the Hessian using finite-

differencing of the gradients. is not allowed if the input £d is set to a non-zero value.

The backiracking feature of NPSOL requires a patch for the linesearch subroutine in NPSOL (see instructions for compiling).

¥ Adding the statement 1.0, €. 0: 10 the user-supplied object code will not be allowed by most compilers and the statements
2ero0=0.0; 1.0:zero; will probably not cause a floating point error iIf compiler optimization is turned on (and it could result in a
bus error for the exception handling routine). Instead use zero=0C.0; zero = 1.0/zero:.

Sec. 5.7 Optimization Programs 231

7. UTILITY ROUTINES

There are several utility programs, some are used by the optimization programs and some are

callable by the user. Those utility programs of interest to the user are described in this section.

These are:

control_error

distribute

est_errors

sp_plot

transform

232

Computes an estimate of the norm of the error of the computed solution. If
nn is the computed solution and " is a local minimizer for problem OCP, the
solution error is InN* - n*IH:.

Redistributes the integration mesh according to one of several mesh refinement
strategies including one which simply doubles the mesh. The control spline
defined on the previous mesh will be interpolated onto the mesh. The order of

the spline is allowed to change.

Retumns an estimate of the global integration error for the fixed step-size
Runge-Kutta methods and uses the variable step-size integration algorithm to
obtain accurate measures of the objective functions, constraint violations and
trajectories. It also returns the function space norm the free portion of the gra-

dient of the augmented Lagrangian which is needed by control_error.
Plots spline functions.

Computes a matrix which allows the L, inner product of two splines to be

computed by taking the inner product of their coefficients.

RIOTS Users’s Manual Chap. 5

control_error

control_error

Purpose

This function uses values computed by est_errors for solutions of OCP on different integration

meshes to estimate Iny — 7'l H, for the current solution ny = (uy, £y) using results from Chapter

4.4,
Calling Syntax

[err'or .norm_zd]=control_error (x01,ul,tl, zel,x02,u2,t2,ze2, {Tf})

Description

This program compares the two solutions 7y, = (u1,x01) and nn, = (u2,x02), corresponding

to the mesh sequences t1 and t2 to produce an estimate of In, - rz*l,,z where 7i* = (", &) is a

solution for OCP. For free final time problems, T£ should be set to the duration scale factor (see

transcription for free final time problems in §2). Only the first columns of x01 and x02 are used.

The inputs zel and ze2 are the norms of the free gradients of the augmented Lagrangians evalu-

ated at 7y, and ny., respectively, which can be obtained from calls to est_errors.

The output exrorx is the estimate of Iy, — "1y, where

a+(b-a)T£
Inx. — 7', =1x02 - &8 + j bus(r) — ¥ (1) Bdr

«

with ua(-) the spline determined by the coefficients u2. The output norm_zd is lrm2 - r;MIH:

where

aHb-a)T£
N, — n, W, =1x02 - %011 + j lup(1) = uy (N

a

with u,(-) and u,(-) the splines determined by the coefficients ul and u2, respectively.

Sec. 5.8 Utility Routines

233

control_error

Example

Let u; be the coefficients of the spline solution for the mesh t1 and let uy be the coefficients of

the spline solution for the mesh t2. Let 4, and 2, be the Lagrange multipliers (if the problem

has state constraints) and let /, and /, be the index set of inactive control bounds returned by one

of the optimization programs (if the problem has control bounds). The Lagrange multipliers and

the inactive control bound index sets are also returned by the optimization routines. Then we can

compute the errors, ¢; = Iny, - 7l H,and ey = lny, - n*le as follows:

>> [int_errorl,norm_glLal)
>> [int_error2,norm_glLa2)

est_errors(x0O,ul,tl,1,ialgl, lambdal, I1);
est_errors(x0,u2,tl,1,ialg2, lambda2,I2);

>> errorl = control_error(x0,u2,t2,norm_gLa2,x0,ul,tl,norm_gLal,l);
>> error2 = control_error(x0,ul,tl,norm_glLal,x0,u2,t2,norm_gLa2,1);

See Also: est_errors.

RIOTS Users’s Manual

Chap. §

distribute

distribute

Purpose

This function executes various strategies for redistributing and refining the current integration

mesh. It also interpolates the current control and Lagrange multipliers corresponding to trajectory

constraints onto this new mesh.

Calling Syntax

[new_t,new_u,new_lambda, sum_lte)=distribute(t,u,x, ialg, lambda,

n_free_x0,strategy,
{FAC}, {new_K}, {norm})

Description of Inputs

t

u

X

ialg
lambda

n_free_x0

strategy

FAaC

Sec. 5.8

Row vector containing the sequence of breakpoints for the current mesh.
The coefficients of the spline defined on the current mesh.

Current state trajectory solution.

Integration algorithm to be used during next simulation or optimization.

Current Lagrange multiplier estimates from riots. Specify lambda=[] if you

do not need new multipliers for a warm start of riots.

Number of free initial conditions. This value only affects the extension of

Lagrange multipliers needed for a warm start of riots.

Selects the redistribution strategy according to the following table:

strategy Type of Redistribution
1 Movable knots. absolute local truncation error.

2 Fixed knots absolute local truncation error.

3 Double the mesh by halving each interval.

4 Just change spline order to new_K.

11 Movable knots, relative local truncation error.
12 Fixed knots, relative local truncation error.

For more information on these strategies, see Chapter 4.3.2. The quasi-
uniformity constant in equations (4.3.13) and (4.3.24) is set to & = 50. In Srep 2
of Strategy 2 ¢(and 12), o = 1/4.

For use with strategies 1.2.11 and 12. If specified, the number of intervals in the
new mesh is chosen to achieve an integration accuracy approximately equal to the

current integration accuracy divided by FAC. If FAC=[] or FAC=0, the number

Utility Routines 235

distribute

new_K

norm

of intervals in the new mesh will be the same as the previous mesh for strategies
1 and 11. For strategies 2 and 12, the relative errors &, will be used without
being pre-weighted by FAC.

Specifies the order of the output spline with coefficients new_u. By default,

new_K is the same as the order of the input spline with coefficients u.

Specifies the norm used to measure the integration error on each interval. If

norm=0, then

[
—
-
.

€ = I]lek|2 , k=
If norm=1, then
ey=llted, . k=1,...,N.

The quantity Ite, is an estimate of the local truncation error produced by the k-th

integration (see description of simulate, form 7). Default: 0.

Description of Outputs

new_t

new_u

new_lambda

sum_lte

Notes

Contains the sequence of breakpoints for the new mesh.

Contains the coefficients of the spline of order new_K (if specified) interpolated
from u onto the new mesh.

Two column matrix of Lagrange multiplier estimates and associate constraint sta-
tus indicators. Those multipliers (and indicators) corresponding to control
bounds and trajectory constraints are extended to the new mesh. This is for use

with the warm start facility of riots and only works with NPSOL-linked riots.

An (n + 1)-column vector of the accumulated local truncation errors produced by

the integration:

N

sum_lte(i)= Y el , i=1,..,n+1,
: 1

k=

where ¢} is as computed above. The (1 + 1)-th component represents the accu-

mulation of local truncation errors for the integrand of the first objective function.

1. The algorithm used in strategies 1 and 2 does not take into account the presence, if any, of

trajectory constraints. Strategies 2 and 12 include a mechanism that tends to add mesh points at

times, or near times, where trajectory constraints are active. The input Lambda must be supplied

for this mechanism to be used.

236

RIOTS Users’s Manual Chap. §

est_errors

est_errors

Purpose

This function performs a high accuracy integration with LSODA to produce estimates of various
quantities. One of these quantities is used by control_error to produce an estimate of
Iny =1 Vy,.

Calling Syntax

[int_error,norm_gla,J,G,x,Ii) = est_errors([x0, {fixed)],u,t,Tf,
ialg, lambda, {I_i})

Description of inputs

%0 Initial conditions of the current solution. When one or more initial conditions are
free variables, set x0=x(:, 1) where x is the trajectory solution returned by one

of the optimization programs.

fixed An n-vector that indicates which components of x0 are free variables. If

fixed (i)=0then x0 (i) is a free variable. Default: all ones.
u Current control solution.

t Sequence of breakpoints for the current integration mesh on the (nominal) time

interval [a, b].

Tf The duration scale factor. For fixed final time problems, set Tf=1.
ialg Integration algorithm used to produce the current solution.
lambda Vector of Lagrange multiplier estimates (one or two columns depending on which

optimization program produced 1ambda).

I i Index set of controls and free initial conditions that are not at their bounds

(returned by one of the optimization program).

Description of Outputs

int_error int_error(i).i=1l....,n+1, is an estimate of the global integration error.

Ixy v+t = x'(D)l. of the current solution computed by summing the local

Sec. 5.8 Utility Routines 237

est_errors

norm_gLa

truncation errors produced by the integration method specified by ialg. The
local truncation errors are obtained by a call to simulate (form 7). If the discrete
solver or the variable stepsize integration routine is being used, int_error is
set to a vectors of zeros. If this is the only output requested, the rest of the calcu-
lations are skipped.

This is an estimate of the H, norm of the free gradient of the augmented
Lagrangian L, ; evaluated at the current solution 7 = (u, £). The H, norm of the
free gradient of the augmented Lagrangian is the norm restricted to the subspace
of controls and initial conditions that are not constrained by their bounds. Let
grad_Lu be the gradient of the augmented Lagrangian with respect to controls,
grad_Lx0 be the gradient of the augmented Lagrangian with respect t6 initial
conditions and M,, be the spline transformation matrix computed by transform.
If Ii is the index set estimating the free portion of
n=[u(:);xi(free_x0)] (see below), then the free norm if computed as
follows:

lVfreeL(..;_(n)lH: =gLM(Ii)' '*gL(Ii),
where
gLM = [grad_Lu(:)M;l ;grad_Lx0 (free_x0)]
and
gL = [grad_Lu(:) ; grad_Lx0 (free_x0)].

In forming the augmented Lagrangian, A = lambda (:,1) and ¢; = I4;l. The
quantity Wee L. ;(mly, is used by control_error to estimate the error

Iy = 17 hy,.

J An estimate of the objective function at the current solution. This estimate is produced
using LSODA.

G Anestimate of the sum of constraint violations. This estimate is produced using LSODA.

x The solution trajectory as produced using LSODA.

Ii Set of indices that specify those time points in the mesh t that are contained in the estimate

I of subintervals in [a, b] on which the control solution is not constrained by a control

bound followed by the indices of any free initial conditions that are not constrained by a

bound. This index set is used by control_error. For the purpose of demonstration,

RIOTS Users’s Manual Chap. §

est_errors

consider a single input systems (m = 1) with no free initial conditions. Let

A
= v [tinl],
kezi[“ k+1]

. - " 3 3 3 3 .
where 1o =1 and 1y,2 =1ty,. -1 is an estimate of the time intervals on which the control

bounds are inactive. From 7 the index set 11 is set to
3 . ~
Ii={kl el}.

When there are multiple inputs, this procedure is repeated for each input. When there are
free initial conditions. the indices of the unconstrained components of x0 (free_x0) are
added to the end of I1i.

Notes

1. If the user does not supply the derivative functions Dh and DI then it will be necessary to
change the statement IALG=5 to IALG=6 in the file est_errors.m.

See Also: control_error.

Sec. 5.8 Utility Routines 239

sp_plot

sp_plot

Purpose
This program allows the user to easily plot controls which are represented as splines.
Calling Syntax
val = sp_plot(t,u, {tau})
Description

Produces a plot of the spline with coefficients u defined on the knot sequence constructed from
the integration mesh t. The order, p. of the spline is presumed equal to length(u) =N +1. If
tau is specified, u is not plotted, just evaluated at the times tau. Otherwise, u is plotted at 100
points with the same relative spacing as the breakpoints in t. Second order splines can also be
plotted using the Matlab command plot instead of sp_plot.

If the input tau is not given, then the output is val=[t;uval] where t are the data
points and uval are the data values; uval has the same number of rows as the input u. If the

input tau is given. then the output is just val=uval.

Example. This example plots a first, second and third order spline approximation to one
period of a sinusoid using ten data points. The splines are produced using the commands in the

Matlab Spline Toolbox.

>> t=[0:2*pi/10:2*pi);

>> spl = spapi{t,t(1:10),sin(t(1:10)));

>> [dummy,ul) = spbrki(spl);

>> knots2 = augknt(t,2); knots3 = augknt(t,3);
>> sp2 = spapi(knots2,t,sin(t));

>> [dummy,u2] = spbrk(sp2):

>> tau = aveknt (knots3,3);

>> sp3 = spapi (knots3, tau,sin(tau));

>> [dummy,u3) = spbrk(sp3);

>> sp_plot(t,ul); sp_plot{t,u2); sp_plot(t,ul);

- First order spline 1 Second order spline 1 Third order spline
o.8 o.8 o.8r -4
©.6 o.8 0.8 -1
o.q o.4 o.4qF -1
o.2 o.2 o.2 -

(=] (=4 (=3 4 9

—-0.2 —-o.2F —-0o.2F

—_—0.q —_0.q —0.4a | -

—-—0.6 -0.e —0.6} -

-0.8 —-—0O.8 —-0o.8 -
=1 - s = a)

240 RIOTS Users’s Manual Chap. 5

transform

transform

Purpose

This function produces the transformation matrix M,. It is called by riots and pdmin to generate
the spline coordinate transformation for the controls.

Calling Syntax

Malpha = transform(t, order)

Description

Given two splines u; and u; of order p = order with coefficient @, and a, defined on the knot

sequence with breakpoints given by t. (u),u2),, = trace(ayMza]). This function works with

non-uniform meshes and with repeated interior knot points.

The output, Malpha is given in sparse matrix format. The transform matrix for p = 1,2, 3,
or 4 has been pre-computed for uniformly spaced mesh points. Also, if the inputs to the preced-
ing call to transform. if there was a preceding call, were the same as the values of the current

inputs, then the previously computed transform matrix is returned.

Example

This example generates two second order splines and computes their L, inner-product by inte-

grating their product with the trapezoidal rule on a very fine mesh and by using M.

> t = [0:.1:1);

>> knots augknt(t,2);

>> coefl rand(1,11); coef2 = rand(l,11);
>> spl = spmak(knots,coefl);

>> sp2 = spmak(knots.coef2);

>> tau = [0:.0001:1];

>> ul = fnval(spl,tau);

>> u2 = fnvall(sp2,tau);

>> inner_prodl = trapz(tau,ul.*u2)

inner_prodl = 0.2800

>> Malpha = transform(t,2);
>> inner_prod2 = coefl*Malpha*coef2’

inner_prod2 = 0.2800
>> inner_prodl-inner_prod2

ans = 1.9307e-09

Sec. 5.8 Utility Routines 241

8. INSTALLING, COMPILING AND LINKING RIOTS

This section describes how the components of RIOTS are compiled and linked together. Some of
the specific details pertain to operation on a Sun SparcStation running SunOS 4.1 and may have
to be modified for other systems. Some of the compiling and linking procedures discussed below
use the shell script cmex that comes with Matlab. Please refer to the Matlab External Interface
Guide and ‘$MATLAB/bin/README.mex’ for details about cmex.

The following files are supplied with RIOTS:

Integration Routines MEX programs and utilities M-files
adams.c .mexrc.sh a_lagmg_fnc.m
discrete.c cmex.link armijo.m
euler.c exist_in_workspace.c aug_lagmg.m
Isoda_dummy.c LBFGS.c check_deriv.m
RK3.c m_sys_link.c check_grad.m
RK4.c NEW_linesearch.f comp_hess.m
trapezoid.c riots.c conj_grad.m
simulate.c control_error.m
system.h distribute.m
utility.c est_errors.m
utility.h eval_fnc.m -
extend.m

fill_indices.m
gestimate.m
multiplier_update.m
outer.m

pdmin.m

ppual.m

project.m
sort_lambda.m
sp_plot.m
transform.m

There are also a few other miscellaneous files: Contents.m, cmex.link, RIOTS.m,
RIOTS_demo.m, RIOTSdeml.m, RIOTSdem2.m, RIOTSdem3.m, RIOTSdem4.m, RIOTS-
demS5.m and RIOTSdem6.m. Additionally, there are examples of user code for several optimal
control problems and a C-code template file in the subdirectory ‘RIOTS/systems’. There is also
an executable shell script, ‘RIOTS/RIOTS_ install.SunOS4" that performs most of the steps
required to compile RIOTS. Read the comments at the top of that file for instructions. Also see
the file ‘RIOTS/README".

242 RIOTS Users’s Manual Chap. 5

SOME RULES FOR COMPILING.

There are several different programs that must be compiled before using RIOTS. Most of these
programs are written in C, but some are written in Fortran. There are a few points that must be

observed in order to ensure that all of the programs are compiled in a consistent manner.

* Use the compiler option ‘-cg87’ because, on Sun platforms, Matlab comes linked with the old-
style math library.

* Make sure that the alignment of double words is the same for all programs. That is, either all
programs should be compiled with double words aligned on 8 byte boundaries, or none
should. For the Sun supplied compilers, double alignment on 8 byte boundaries can be speci-
fied with the option ‘-dalign’. If the option ‘*-fast’ is specified, double alignment on 8 byte
boundaries is automatically turned on.

* Make sure when compiling any Fortran code that the meaning of the Fortran real corresponds
to the C double (8 bytes), and similarly for integers (4 bytes). This is the default behavior for
the Sun Fortran compiler.

* Some problems were noticed when riots.c was compiled with optimization level -O2 and riots
was used with the variable step-size integration algorithm. Optimization level -O3 did not

produce any problems.
UNPACKING RIOTS.

The RIOTS package is distributed in a compressed UNIX tar file called RIOTS.tar.gz. The fol-
lowing procedure uncompresses this file and extracts RIOTS.

Step 1. Create a directory for RIOTS called ‘RIOTS’ by typing the following command at
the UNIX prompt ‘%’,

% mkdir RIOTS

Step 2. Uncompress RIOTS. tar.gz using the freely available GNU program gunzipf.

% gunzip RIOTS.tar.gz

Step 3. Extract the RIOTS files.
% tar xvf RIOTS.tar

After RIOTS has been extracted, the main programs will be located in the directory ‘RIOTS' and
the integration routines will be in the subdirectory ‘RIOTS/drivers’. The user should also create a
subdirectory, such as ‘RIOTS/systems", for storing system functions and any system data saved
from Matlab. Matlab should be started from this systems directory. Access to the functions in

* You can obtain gunzip via anonymous fip to prep.ai.mit.edu. It is located in the file /pub/gnw/gzip-1.2.4.1ar.

Sec. 5.9 Installing, Compiling and Linking RIOTS 243

RIOTS can then be enabled by typing at the Matlab prompt
>> path(path,’'..’)

Note that it is not necessary for the ‘systems' directory to be a sub-directory of the ‘RIOTS’
directory. If it is not, the path command should specify the full pathname for the ‘RIOTS" direc-
tory.

Important: Included with RIOTS is a file called *.mexrc.sh’ which must exist in the directory
‘RIOTS’ in order for emex to work properly with the SunOS 4.1 operating system. This file
should also be copied into the user’s ‘systems’ or home directory. For other systems, ‘.mexrc.sh’
should either be deleted or modified according to the instructions in ‘SMAT-
LAB/bin/README.mex’. The shell variable ‘MATLAB’ should be set to the Matlab root direc-
tory. For example,

% setenv MATLAB /usr/local/matlab

If you are running a Bourne shell, you will need to use the export command in place of setenv.

Compiling simulate.

Before compiling and linking the programs the constitute simulate, the user must construct the
library ‘drivers.a’ which contains the numerical integration routines. Most of the integration rou-
tines come supplied with RIOTS. The exceptions are the variable step-size integration routine
LSODA and the linear algebra package, LINPACK, to which LSODA makes calls. If LINPACK
t

is not already present on your machine ', instructions for obtaining it can be received by sending
email to ‘netlib@ornl.gov’ with no subject and the following message:

send index from linpack

You must compile LINPACK in double precision and convert it into a library called ‘liblin-
packd.a’ using the UNIX commands ‘ar’ and ‘ranlib’. You can also obtain LSODA by sending
email to ‘netlib@ornl.gov’ with the following message:

send lsoda.f from odepack

LSODA consists of fourteen files. Once the LSODA programs are received, they should be com-
piled and collected into a library called ‘Isoda.a’. This can be accomplished with the following
commands typed at the UNIX prompt:

% £77 -c -fast -03 -cg87 *.f

$ ar rcv lsoda.a *.o

% ranlib lsoda.a

¥ One place to look for LINPACK is in fusr/locallibAiblinpackd.a.

244 RIOTS Users’s Manual Chap. §

$ rm *.0

The resulting file ‘Isoda.a’ should be placed in the subdirectory ‘RIOTS/drivers’.

Alternatively, you can use the dummy program lsoda_dummy.c, supplied with RIOTS, to
avoid having to obtain and compile LSODA and LINPACK (see below). However, you will not
be able to use the variable step-size option of simulate. Also, est_errors, which requires
LSODA, cannot be used.

Compiling the integration routines. There are six integration programs included with RIOTS.
They are: discrete.c, euler.c, trapezoid.c, RK3.c, RK4.c and adams.c.

These programs must be compiled and collected into a library called drivers.a as follows:

Step 1: Compile each integration routine. For example, to compile euler.c, use the following
command at the UNIX prompt,
% cc -c -fast -03 -cg87 -I.. -ISMATLAB/extern/include euler.c
where SMATLAB is the root directory for Matlab.

Step 2: Create the drivers.a library with the following UNIX commands,
% ar rcv drivers.a *.o
% ranlib drivers.a
If you do not have' LSODA and LINPACK, you must also compile the program
Isoda_dummy.c, after creating drivers.a, in the same way the other integration pro-

grams were compiled in Step /. Then type
>> mv lsoda_dummy.o lsoda.a

The following command, typed at the UNIX prompt will compile program simulate.c in the
*RIOTS’ directory.

% cc -c -ISMATLAB/extern/include -DMATLAB_MEX_FILE -fast simulate.c
Additionally, the program utility.c must be compiled:

% cc -c -ISMATLAB/extern/include -fast -03 utility.c

Compiling the User-Supplied System Code

To link simulate, the user must supply object code that defines the optimal control problem. In
the example above that object code was called ‘my_system.o’. The following UNIX command
will create ‘my_system.o’ from a file called ‘my_system.c’.

% cc -c -fast -03 my_system.c

Sec. 5.9 Installing, Compiling and Linking RIOTS 245

It is a good idea to use a high level of optimization when compiling the user code since the user
functions will be called many times during the course of each simulation. If the user-supplied
system code will be supplied as M-files, you must compile the file ‘m_sys_link.c’ instead. This
will create the object code file ‘m_sys_link.o’ which should then be linked with simulate. This

object code makes the appropriate Matlab call-backs to the system m-files.

Linking in the User’'s Optimal Control Problem. The next step is to create the
executable MEX program simulate by linking in the user-supplied system code. This executable
should be created in the user’s ‘systems’ directory. This step must be repeated each time a new
optimal control problem is to be solved. In this example, the system code is called
‘my_system.o’. First define the environment variable RIOTS_DIR with the name of the
‘RIOTS’ directory and then link.

% setenv RIOTS_DIR full_path_name_of RIOTS

% cmex.link my_system.o

You needn’t set the RIOTS_DIR variable if you are going to perform the linking in the ‘RIOTS’
directory.

Compiling riots.

Before compiling riots, one of the Sequential Quadratic Programming (SQP) codes NPSOL (ver-
sion 4.0) or CFSQP (version 2.1) must be procured?. The efficacy of riots depends directly on
the underlying optimization program; riots is much more effective with NPSOL than with
CFSQP. Once obtained, the SQP program should be compiled according to the instructions
included with its user’s manuals. If CFSQP is being used, the result should be two object files,
‘cfsgp.o’ and ‘qld.0’. For NPSOL, the result will be a library called ‘optlib.a’. In keeping with
standard UNIX conventions, the name of this file should be changed to ‘libopt.a’ using the UNIX

command ‘mv’.

When using NPSOL, the following changes shoﬁ]d be made to the Fortran program ‘npsol-
subs.f* before compiling NPSOL.:

1. Change the line

if (ncdiff .eq. 0) then
to

if (ncdiff .1lt. 0) then

* CFSQP can be obtained for free by sending a request (o Prof. André Tits (andre@eng.umd.edu). NPSOL can be purchased
from Stanford Business Software, Inc., 2680 Bayshore Parkway. Suite 304, Mountain View, CA 94043, (415) 962-8719.

246 . RIOTS Users's Manual Chap. 5§

and change the line

if (nfdiff .1lt. 0) then
to

if (nfdiff .eqg. 0) then

2. Add the line
open(ioptns, file = ’‘npsol.opt’, status = ‘OLD’)
before the line ‘

call opfile(ioptns, nout, inform, npkey)

3. Replace the subroutine npsrch with the code in the file ‘NEW_linesearch.f.

Next, riots can be compiled and linked using one of the following commands.
For NPSOL, use:

% cmex -03 CASE=f -DNPSOL -L$NPSOL riots.c LIBS='-lopt S$LIBS’

where SNPSOL is the directory where ‘libopt.a’ is located.
For CFSQP. use:

% cmex -03 -IS$CFSQP riots.c LIBS='$CFSQP/cfsqgp.o SCFSQP/gld.o $LIBS'
where SCFSQP is the CFSQP directory.

Direct linking. ~ With riots compiled and linked with the proceeding commands, it will make
calls to simulate using the Matlab procedure mexCallMATLAB. There are two drawbacks to
this. First, calling simulate via this Matlab procedure is somewhat slow. Secondly, there is a bug
in mexCallMATLAB that prevents ctx1-C from causing an interrupt. To avoid these problems,
riots can be compiled with simulate linked in directly. The following steps are required for
direct linking:

Step 1. Make a direct version of ‘simulate.o’ using

% cc -c -ISMATLABextern/include -fast -DDIRECT \

-0 simulate_direct.o simulate.c

Step 2. Compile and link riots.
$ setenv RIOTS_DIR full_path_name_of RIOTS
For NPSOL use:
% cmex CASE=f -03 -DDIRECT -DNPSOL -DSTATIC SRIOTS_DIR/riots.c \
LIBS="my_system.o $RIOTS_DIR/simulate_direct.o $RIOTS_DIR/utility.o \
$RIOTS_DIR/drivers/drivers.a $RIOTS_DIR/drivers/lsoda.a \
/usr/tools/lib/liblinpackd.a $NPSOL/libopt.a"'S$LIBS’

Sec. 5.9 Installing, Compiling and Linking RIOTS 247

For CFSQP use: »

% cmex CASE=f -DDIRECT -03 -I$CFSQP $RIOTS_DIR/riots.c \
LIBS="$RIOTS_DIR/simulate_direct.o $ my_system.o CFSQP/cfsgp.o \
$CFSQP/gld.o $RIOTS_DIR/utility' .0 SRIOTS_DIR/Arivers/drivers.a \
drivers/lsoda.a /usr/tools/lib/libl inpéckd. a"'SLIBS’

Step 3. Remove the file ‘simulate_direct.o’.

% rm simulate_direct.o

The disadvantage to linking simulate directly into riots is that the size of the executable riots
will be much larger. Also, in order for calls to simulate that are made outside of riots to work
properly, simulate must still be compiled and linked with the user’s system code according to the
instruction above for compiling simulate. Even if simulate is not also called directly by the user,
there are many other programs in RIOTS that make calls to simulate. These programs will not

work if simulate is not compiled and linked separately from riots.

Compiling the Other MEX Programs.

There two other MEX programs which must be compiled by typing at the UNIX prompt:
% cmex -03 LBFGS.c

% cmex exist_in_workspace

248 RIOTS Users’s Manual Chap. §

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The work in this thesis presents a theoretical foundation for the solution of optimal control
problems using Runge-Kutta integration methods. This theoretical foundation underpins the
implementation of our software toolbox, RIOTS, which has been used to solve several challeng-
ing optimal control problems. However, the current version of RIOTS has shortcomings in some
important areas. What follows is a discussion of areas in which RIOTS could be improved and

suggestions for how to do so.

Automatic Differentiation of user-supplied functions. To solve an optimal control problems
using RIOTS, the user must supply code for each of the functions and their derivatives used to
that describe that problem. A common souirce of errors is the computation of function derivatives
which can be quite complicated for nonlinear systems. Currently, RIOTS has two programs to
check derivative calculations and to help locate any errors in these calculations. But. it would be
much more useful to have derivative functions provided automatically using automatic
differentiation [131,132]. Not only would this prevent errors in the derivative calculations, but it

would spare the user the job of programming the derivatives.

Extension to Large-Scale Problems. The size of the mathematical programming problem cre-
ated by discretizing an optimal control problem depends primarily on the discretization level N.
The conjugate gradient and L-BFGS implementations of the projected descent algorithm pre-
sented in Chapter 3 are well-suited for handling very high discretization levels. These methods
are used in the program pdmin. However, pdmin can only handle state constraints indirectly
through penalty terms. The main program in, riots, is based on sequential quadratic program-
ming and can handle state equality and inequality constraints. However, riots is not well-suited
for high discretization levels because at each iteration the SQP algorithm computes a Hessian

update using the BFGS formula and solves a dense quadratic program (QP) at each iteration to

Chap. 6 Directions for Future Research 249

obtain a search direction. We list here several possible ways to overcome this problem:

250

* Instead of computing the Hessian estimate using the BFGS method, a Hessian estimate
can be provided using the limited memory L-BFGS [86,94] method. Still, some means for
efficiently solving the QP based on this estimate would be needed.

* The QP can be solved efficiently by taking into account the structure of the problem
that gives rise to the QP. Specifically, the QP that is solved at each iteration is actually a lin-
ear/quadratic (LQ) optimal control problem. This structure can be used to develop solution
methods for the QP that are much more efficient than standard QP algorithms. One
approach is based on the method in [93] for recursively computing the Newton's direction
for unconstrained problems in order N time and the differential dynamic programming
method in [133-137]. The extension of this method to problems with control constraints is
presented in[138,139]. Finally, an algorithm for the recursive computation of Newton's
direction for problems with state constraints is developed in [140). The main drawback to
all of these methods is that they have only been developed for Euler’s method with piece-
wise constant controls. It is likely that these methods can be extended to any fixed step-size
Runge-Kutta method and to piecewise polynomial representation for the control. It is prob-
ably much more difficult to extend these methods to spline representations of the control
(except linear splines which can be treated as piecewise linear functions with linear equality
constraints at the breakpoints). But the main advantage of splines over piecewise polynomi-
als is the smaller number of parameters. This advantage is not so important if the work to
solve the QP is only order N.

Another approach is to consider the two point boundary value problem (BVP) that
arises necessary conditions for optimality of a solution to the LQ problem. This BVP is lin-
ear with constraints. Numerical methods based on multiple shooting for solving such
BVP's are quite advanced. The solution of this BVP is the required search direction.
Examples of this approach can be found in [5,6,24,114].

* Another major area of research involves discretizing the optimal control using colloca-
tion (fixed step-size, implicit Runge-Kutta) methods. In this procedure, finite-dimensional
approximations of both the controls and states are parameterized and their parameters are
used as the decision variables in the resulting mathematical programming problem. In this
method, the differential equations describing the system dynamics are accounted for by
requiring them to be satisfied at collocation points. There are two major disadvantages to
this approach: (i) the number of decision variables in the mathematical program is dramati-

cally increased and (ii) the collocation conditions introduce a huge system of nonlinear

Direction for Future Research Chap. 6

equality constraints into the problem.

There are, however, two major advantages that come with this approach. First,
because the decision variables include the system staies, simple bounds on the state trajecto-
ries or endpoints become simple bounds on the decision variables. These bounds can be
handled very efficiently without having to compute gradients and, furthermore, feasibility
with respect to these bounds can be easily maintained even with infeasible point optimiza-
tion methods. Second, the Hessian of the Lagrangian is block diagonal because the second
derivatives of the objective and constraint functions with respect to the control and state
parameters are all block diagonal. Additionally, the Jacobian of the constraints is a banded
matrix. Thus, the QP is sparse and can be solved using sparse linear algebra. A complete
software package for discretizing optimal control problems using collocation and solving
the discretized problems using a sparse SQP method is described in [38,105). One obstacle
with this approach that has not been fully resolved is how to obtain a sparse Hessian esti-
mate. The method in [38] obtains the Hessian using spakse finite-differences. This is rea-
sonably efficient. Alternatively, but less attractively, the user can be required to supply sec-
ond derivatives so that the Hessian can be computed exactly. But for both of these choices,
the fact that the Hessian is not, in general, positive definite causes serious difficulties in the
solution of the QP. A new SQP algorithm which used the true Hessian without requiring
any modification to the QP has been developed [141]. Another possibility is to use trust
region methods. One avenue that has not yet been explored is to use the LANCELOT
package [142] which is a trust region method for minimizing an augmented Lagrangian.
Finally, another approach which we began to work on with some-initial success is to attempt
to produce a block diagonal, positive definite estimate of the Hessian using a modified
BFGS update. Generally, the work on sparse Hessian updates has been disappointing. But
the block diagonal structure of the Hessian is a specific case whose updates can. we believe,
be obtain using the partitioned quasi-Newton update method [143,144] modified to handle
the possibility of non-positive-definite updates for individual blocks. This modification can
be either to skip such updates altogether or to use the Powell modification [145). If the Hes-
sian is positive definite, or even positive semi-definite, the QP can be solved by a sparse QP
algorithm such as BQPD which is based on the algorithm in [146] and is available from that
author. For surveys on the solution of large-scale optimization algorithms, the reader is
referred to the following articles [147-149]. Finally. to obtain sparse Hessian and Jacobian
matrices, the controls (and state trajectories) need to be represented as piecewise discontinu-
ous functions (e.g. piecewise polynomial) rather than splines. This has the side-benefit of

producing a transform matrix, M., that is block diagonal and trivial to compute.

Chap. 6 Directions for Future Research 251

Trajectory constraints. Our current method of computing functions gradients with respect to
the control is based on adjoint equations. There is one adjoint equation for each function. This is
quite inefficient when there are trajectory constraints because for each trajectory constraint there
is, in effect, one constraint function per mesh point. Thus, for an integration mesh with N + 1
breakpoints, roughly N adjoint equations have to be solved to compute the gradients at each point
of a trajectory constraint.

There are two approaches for greatly increasing the gradient computations for trajectory
constraints. These two approaches can be used in conjunction with each other. First, it is really
only necessary to compute gradients at points, #;, where the trajectory constraints are active or
near-active. The other mesh points should be ignored. Algorithms for selecting the active or
almost active constraint are present in [99,150] along with convergence proofs. The second
approach uses the state-transition (sensiiivity) matrix, rather than adjoint variables, to compute
gradients. The state-transition matrix is the solution of a matrix differential (or difference) equa-
tion. The solution of this equation requires the same amount of computation as solving n adjoint
equations, where n is the number of state variables. But this equation is solved only once for a
given control, u, regardless of how many gradients are required. Thus, if there are more than n
gradients that need to be computedf it is more efficient to use the state-transition matrix rather
than adjoint variables.

Stabilization of Iterates. One of the main limitations of the current implementation of RIOTS
is that it is not well-equipped to deal with problems whose dynamics are highly unstable. For
such problems, the iterates produced by the optimization routines in RIOTS can easily move into
regions where the system dynamics **blow-up™ if the initial control guess is not close to a solu-
tion. For instance, a very difficult optimal control problem is the Apollo re-entry problem [4].
This problem involves finding the optimum re-entry trajectory for the Apollo space capsule as it
enters the Earth’s atmosphere. Because of the physics of this problem, slight deviations of the
capsules trajectory can cause the capsule to skip off the Earth’s atmosphere or to burn up in the
atmosphere. Either way, once an iterate is a control that drives the system into such a region of
the state-space, there is no way for the optimization routine to recover. Moreover, in this situa-

tion, there is no way to avoid these regions of the state-space using control constraints.

This problem could be avoided using constraints on the system trajectories. However. this

is a very expensive approach for our method (not for collocation-based methods), especially at

* Here we are not taking into account the fact that the the adjoint equation for a trajectory constraint at time 1 only has 1o be
solved from time 1, (instead of 1) to time 1.

252 Direction for Future Research . Chap. 6

high discretization levels. Also, for optimization methods that are not feasible point algorithms,
this approach still might not work. An intermediate solution is possible because it is really only
necessary to check the trajectory constraints at a few points, called nodes, in the integration mesh.
This can be accomplished as follows. Let 1, be one such node. Then define the decision variable
X ko which will be taken as the initial condition for integrating the differential equations starting
at time ;. This x ; o is allowed to be different than the value X; of the state integrated up to time
1, However, to ensure that these values do, in fact, coincide at a solution, a constraint of the form
g:x() = X ; 0= X; = O must be added at each node. Note that, for nonlinear systems, g;(u) is a
nonlinear constraint. The addition of these node variables allows bounds on that states to be
applied at each node point. This procedure is closely related to the multiple shooting method for
solving boundary value problems and is an intermediate approach between using a pure control
variable parameterization and a control/state parameterization (as in collocation methods).

See [151] for a discussion of node placement for multiple shooting methods.

Diagonalization Strategies. In order to create a truly efficient algorithm for providing solu-
tions of a specified accuracy to optimal control problems, the discretization strategy, an *‘outer
loop™, must be developed for increasing the discretization level in a systematic way. Such a strat-
egy must be able to predict the integration and control solution errors, the amount of work
required per iteration of an optimization algorithm in solving the discretized problem and the
number of iterations required to obtain a solution of the discretized problem to a given accuracy.
Using this information, the outer loop must specify at each outer iteration the discretization level,
the order of the integration method, the order of the control representation, and the number of
inner iterations to perform so that the overall amount of work required to solve the optimal con-
trol problem is minimized. Such a diagonalization strategy was developed in[57)] for solving
semi-infinite optimization problems. There are three major obstacles obstructing the use of that
algorithm for optimal control problems. First, the diagonalization scheme proposed in[57] is
based on linearly convergent optimization algorithms. However, we would like to use super-
linearly convergent algorithms such as SQP methods for the inner loop. Second, the errors esti-
mates needed by the diagonalization strategy, such the control solution error, are much harder to
predict for optimal control problems. Currently, only first order bounds on the difference between
the solution of the discretized problems and the true solution are known for general optimal con-
trol problems. This may be too conservative, especially when mesh redistribution schemes are to
be used. Finally, an underlying assumption for the effective use of a diagonalization strategy is
that using the solution from one outer iteration as the starting point for the next outer iteration, so-
.called *“‘warm starts”, will result in a significant reduction in the number of inner iterations

needed. This may not always be true. For example, the program riots is based on an SQP

Chap. 6 Directions for Future Research 253

algorithm that generates Hessian information using a BFGS update. Super-linear convergence
can only begin once enough Hessian information is gathered so that the search directions are
close to Newton’s direction. Since restarting the SQP algorithm at a different discretization level
causes the Hessian information to be lost, many iterations will be used just to obtain the requisite
Hessian information, even when the starting point is close to the solution. Currently, our imple-
mentation of riots has the option of computing an initial Hessian approximation by finite-
differences before starting the inner iterations. However, since the Hessian is dense, this takes a

T

great deal of computational effort’. Another possibility is to somehow lift the Hessian informa-
tion obtained from the previous outer iteration into the new, higher-dimensional space. We have

tried several approaches for doing this and have not met with any success.

Mesh Refinement. The mesh refinement strategies presented in Chapter 4 are not suited for all
situations. In particular, they contain no mechanism for directly placing mesh points at or near
locations where control and/or trajectory constraints switch from active to inactive or vice versa.
But. these are the locations where the solutions are likely to be least accurate. One simple, static
adjustment strategy for placing mesh points near constraint switches is to simply place extra mesh
points wherever such constraint activity transitions occur. Extra mesh points can also be placed
throughout regions where the trajectory constraints are active. A version of this approach has
been added to Strategy 2 (and 12) of the utility program distribute in the RIOTS package. How-
ever. changing the mesh also causes the solution to change. Thus, placing a mesh point where a
constraint becomes active for one grid is probably not the correct point for a new grid. Also,
accurate placement of mesh points may not be sufficient if the control solution loses smoothness
at a constraint transition. For instance, if splines are used for the control representation, then it is
impossible to achieve better than first order accuracy in the overall solution unless repeated knots
are used at the point of discontinuity in the solution. A dynamic adjustment approach for locating
mesh points near discontinuities is through the use of super-nodes[34] in the discretization.
These super-nodes are, essentially, movable locations of extra spline knots that are positioned dur-

ing the optimization to allow discontinuities in the spline or its derivatives.

It must also be remembered that the location of control discontinuities depends not only on
the errors due to the control representation, but also the integration error. To circumvent this

complication, it might be beneficial to employ a the two-phase approach [4,24,41] in which a

*In the discussion of extensions to large-scale problems, we discussed to alternatives for solving the QP to obtain a search di-
rection. The first involves a recursive procedure for finding Newton's direction. The second involves using collocation as discretiza-
tion because it produces a sparse Hessian. In both cases. the required second derivative information comes in small block matrices.
Thus. for these approaches. finite-differencing. either on the first iteration or all iterations. is a feasible approach.

-

254 Direction for Future Research Chap. 6

rough solution is first obtained using a direct optimization method. In these references, the rough
solution provides structural information and a good initial guess for a more accurate solution
obtained by solving the two point boundary value problem arising from the necessary conditions
for optimality. Alternatively, super-nodes could be used in conjunction with a variable step-size
integration method to refine the solution in a second phase direct approach similar to the first
phase. The use of the variable step-size integration routine would remove the effect that moving
the super-nodes has on the integration accuracy. Thus, the location the optimization algorithm
chooses for the super-nodes in order to minimizes the objective function will coincide with the
discontinuities in the true solution. The number of super-nodes needed can be ascertained by
inspection of the rough solution obtained in the first phase.

Also. trajectory constraints are currently evaluated at discrete mesh points. In the phase 11
operation, trajectory constraint satisfaction can be more accurately guaranteed by constructing
interpolating Hermite polynomials for the state in question over each mesh interval and requiring

these polynomials to satisfy these constraints. Such a procedure is adopted in [104] and [24].

Other Issues and Extensions. Some other useful features for RIOTS would include:

* A graphical user interface. This would allow much easier access to the optimization pro-
grams and selection of options. Also, important information about the progress of the optimiza-
tion such as error messages and wamings, condition estimates, step-sizes, constraint violations

and optimality conditions could be displayed in a much more accessible manner.

* Dynamic linking. Currently, the user of RIOTS must re-link simulate for each new optimal
control problem. It would be very convenient to be able to dynamically link in the object code for
the optimal control problem directly from Matlab (without having to re-link simulate). There are

dynamic linkers available but they do not work with Matlab's MEX facility.

* For problems with dynamics that are difficult to integrate. the main source of error in the
solution to the approximating problems is due to the integration error. In this case, it would be
useful to use an integration mesh that is finer than the control mesh. Thus, several integration
steps would be taken between control breakpoints. By doing this, the error from the integration is
reduced without increasing the size (the number of decision variables) of the approximating prob-

lem.

* The variable transformation needed to allow the use of a standard inner product on the coef-
ficient space for the approximating problems adds extra computation to each function and gradi-
ent evaluation. Also, if the transformation is not diagonal. simple bound constraints on the con-
trols are converted into general linear constraints. Both of these deficits can be removed for opti-

mization methods that use Hessian information to obtain search directions. If the Hessian is

Chap. 6 Directions for Future Research 258

computed analytically, then the transformation is not needed at all. If the Hessian is estimated
using a quasi-Newton update, it may be sufficient to use the transformation matrix My or M, as
the initial Hessian estimate (rather than the identity matrix) and dispense with the variable trans-
formation. We have not performed this experiment; it may not work because the the updates will

be constructed from gradients computed in non-transformed coordinalesT.

* It may be useful to allow the user to specify bounds on the control derivatives. This would
be a simple matter for piecewise linear control representations. Also, currently the only way to
specify general constraints on the controls is using mixed state-control trajectory constraints.
This is quite inefficient since adjoint variables are computed but not needed for pure control con-

straints.

* Currently there is no mechanism in RIOTS for handling systems with time-delays or, more

generally. integro-differential equations [153]). This would be a non-trivial extension.
* Add support for other nonlinear programming routines in riots.

* There have been very few attempts to make quantitative comparisons between different
algorithms for solving optimal control problems. The few reports comparing
algorithms [154,155], involve a small number of example problems, are inconclusive and are out
of date. Therefore, it would be of great use to have an extensive comparison of some of the cur-

rent implementations of algorithms for solving optimal control problems.

¥ With appropriate choice of Hy. quasi-Newton methods are invariant with respect 1o objective function scalings[95.152). but
not coordinate transformations (which is vanable scaling).

256 Direction for Future Research Chap. 6

APPENDIX A

In this Appendix we collect a few results used in the analysis of Sections 4 and 5. We will

continue to use the notation of Section4: A = 1/N, 1, = kA, and 1 ; = t; +¢;A.

Lemma A.1. For representation R1, suppose that Assumptions 3.1(a), 4.1’ and 4.3 hold. For
representation R2, suppose that Assumptions 3.1(a), 4.1°, and 4.6 hold. For any bounded subset
S B, there exists a x < oo such that for any 7 = (£,u) € S VHy, 16,1 < xA? for all k € N

where
Jk = x'l(tk) - Xr'(fk.H) +A.Zb,'h(x”(fk). M[Tk.i]) , k€ N! (A.1)
.=l

with x7(-) the solution of the differential equation (2.3.1) and u[r; ;] defined by (2.4.6e) for repre-
sentation R1 or (2.4.11c¢) for representation R2.

Proof: Let E, and d, be as defined in (2.4.10) and, for j € r, let ij € I where I is given by

(2.4.4a). Then, writing x(-)=x"(), since the solution of (2.3.1) satisfies

i
X(Tp) = x(1:)+ J,‘ ' h(x(1). u(r)) di, we see that

6 = A 2 bih{x(ty). ulr ;) - J"M h(x(1r), u(t)) d
i=1

L

rooened r

f n+d,
h(x(rg),ulte, D dt = 3 j h(x(0),u)dr . (A.2a)

- J=1 l‘+d‘_‘ J=1 ’l+d;-l
because d; -d; | = AEJ. ulty;) =ulr,] for all i € l;, dy =0 and, by Assumption 4.1
d, =AY, I;j =AY b;=A. Sinced; -d,; >0by Assumption 4.1°, we have that

+d
15,1 < ZJ" ! Ih(.\'(lk),u[u.,/])-h(x(t).u(r))l dr

j=l ll+d'-|

r "+dl
<y J K [Lx(r) = x(Dl + Wlr;] - wldr, (A.2b)

j=| ll+d’_|

where x| < oo is as in Assumption 3.1(a). Now, for 1 € [1;.1,4,], there exists x» < oo such that

Appendix A 257

x(r) = s < [WG e < [*" mattxn+ 11 di (A3)
L

I

by Assumption 3.1(a) and the fact that S is bounded. Also because S is bounded, if follows from
Theorem 3.2(ii) that there exists L < oo such that Ix(1)! < x3[I€1+ 1] < L. Thus, for 1 € [1;, 4],

L'
bx(rp) — x(HI < j‘ I;\'2[L+l]dt = Axa(L+1). Next, for representation R1, for any k € X

I

Jjerandr € [1,+d;, 1, +d)), lu[r‘..,-l]—u(t)l < xyA, where xy is used in (2.4.15a), since, by
construction, i € U} is a Lipschitz continuous polynomial on [#;, 1;,1) with Lipschitz constant
xy independent of N, T4, € [1x,1x +A] by Assumption 4.3, and 0 < disAfor j=0,...,r by
Assumption 4.1" which implies that [1, +d;_},1, +d;) C [ty, 1, +A). The same holds for repre-
sentation R2 since 1 € LZN isconstantont € 1, +d;_;, 1, +d;) and Thi, € [tk +dj .1, +d;] by

Assumption 4.6. Therefore.

rooer+d, - rooentd, N
15,1< Y Ki(Kka(L+ 1)+ xp)Adr =xA Y, dr = kA~ , (A.4)
J=1 l‘+(l}_| Jj=1 'l'HIj-l
where x = x| (x2(L + 1) + xy:). This completes our proof. D

Remark A.2. The result in Lemma A.] can be shown to hold even if the constraints on lugT ;i
in the definition (2.4.15a) of I-J}v were removed if h(x,u) = I—l(.\') + Bu and the RK method is
order r. Starting from equation (A.2a), we have

roen+d, - r

) -~ Iis
& =Y j hx() = h(x@)Ndr+AY, b jBulz; ,] - J' ' Bu(r)dr . (A.52)
J=1 I

J=b TV d
The first term is O(A®) by the argument already presented. For the remaining part, we see that

roo. A
Bl AX bjulrej]l- [ue+nyd |=0, (A.5b)
=1 0

since a p-th order Runge-Kutta method. p 2 r, integrates the equation X = u(r + 1) exactly for

any r-th order polynomial u.
@]

The next lemma concems the functions K;; = K;(%;. ;) of the RK method defined by
(2.4.3a.b). The proof of this result is easily obtained from the proof for Lemma 222A in (8, p.
131).

Lemma A.3 Suppose Assumptions 3.1(a) holds. Let SCB be bounded. Then there exists
L<ooand N* <o such that forall N = N*, € SNHy, ke Nandi €s,

IKi i = h(xg u[n ;DES LA . (A.6)
O

258 Appendix A

Next, we present a proof of Lemma 4.10.
Proof of Lemma 2.4.10.

(i) Convergence. Let n=({,u)e SNHy and, for k € A{ let e, = %] -x"(1;). Then,
legl = 0 < xA and by adding and subtracting terms,

k)
€ray = X[+ Agbikk.a’ = x"(t41)
i=

=e; + (Xn(tk) - X”(ik.” Y+ A E b,'h(X”(?k), u[z‘k‘,']))+ A Z b,'(Kk_,* - h(x"(tk), u[r,“i])). (A7)
i=1 i=|

The norm of the second term in this expression is bounded by x;A% by Lemma A.l where
x| < oo. Using Lemma A.3, Assumption 3.1(a), and the fact that Ib;] < 1 by Assumption 4.1°, we

conclude for the third term that, there exists x> < oo such that

Al z b,(l(k_,- = h(x"(1;). u[rk.,-]')JI
=1

SAX K, = W] ulr D+ A S U(ED ulry,) = (1), ule
i=) i=l

<SALs+ Axasle . (A.8)
Thus, forall k € A
leia i S (14 kaAs)leid + a3 A° . (A.9)

where K3 ='x| + Ls. Solving (A.9), we see that for all ke A

le,1 < (1 + k5A5)Vlegl + k7’A < kA, This proves (2.4.18a).

(ii) Rate of Convergence. ~ We prove (2.4.18¢) in two steps. First suppose that
Hy=Hyk=R"x L) andletn, = (£.1,) € SN H), be given. The expansion based on higher-
order derivatives (see [8]) needed to prove (2.4.18¢) requires smoothness of h(x, u) between time
steps. The stated assumptions on the piecewise smoothness of u,(-) provide this smoothness.
Alternatively, the result can also be shown to hold without this assumption on «, if the differential
equétions describing the system dynamics are linear and time-invariant with respect to i since the
RK method provides exact quadrature integration for u € Ly in this case. In either case, using
the same type of reasoning as in the proof of Lemma A.1, we conclude that there exists x < oo.
independent of 7, such that (2.4.18c) holds for representation R1. Next, to prove (2.4.18¢) for
representation R2, let Hy = H3 = R" xL}. Let p, = (£.u2) € SN H3, be given and let
n = (& u) € Hy with uy = (V,{_N)_'(V,i_,\-(u:)) so that Vi x(u)) = Va x(u2). Then for any
r € [0.1],

Appendix A 259

Ix"() = x" () =1l j’ h(x™(8), uy(5)) = h(x™(s), us(s))dsl
()
<l j ' h(x™(s5)) = h(x"(5)) + B(u)(s5) = ua(s))dsl
0

! !
< Ky J Ix"1(s) = x™(s)lds + Ij B(u,(s) — ua(s))dst , (A.10a)
0 0
by Assumption 3.1(a). Using the Bellman-Gronwall lemma, we conclude that for anyr € [0, 1],
IxT (1) = X" < xye 181 j’(ul(s) = u»(s))dsl . (A.10b)

Now. let 2'(1) = uy(1). 1 € [0.1]. 2'(0) = £ and £3(r) Zuy(1), 1 € [0,1], 22(0) = £. Let z} and 22,
k € Abe the computed solution of z'(7) and z2(1), respectively, using the RK method under con-
sideration. We note that Z} = 33 for all k € A(since V,"_N(ul) = Vi'N(Mz). Then, since u, is an
r-th order polynomial, any p-th order RK method, p = r, integrates z'(r) exactly. Hence,
Zv= ') forall k € AL Also. from (2.4.3a.b).

1+d

T = 5 F 2 binalre] = 3 + }:l " wua(9)ds = Pta) (A.10c)
}:

i=l Ii+d-,

since 7, ; € [t +d_y, 1, +d)) (by Assumption 4.6) with u»(-) constant on these intervals, and

d, = Aby Assumption 4.1, Since Z} = =7, we must have
du -y =3-=0, Vieq. (A.10d)
Hence. we conclude that

! 9
| j i (5) = ua(s))dsh = 12' (1) = 22 =0 . (A.10e)
4}

Therefore,
Lx(0) = TPES D) = xM ()b + X7 (1) = TP 1+ 1] - FPISKIN?, Vhke N, (A.10)

where we have used (A.10b) and (A.10e) for the first term, the fact that 1x™ (s,) — .EZ'I < k2/NP
since (2.4.18¢) holds for p; € SN H), by the first part of this discussion for the second term, and
the fact that X' = ¥]* since u,[7;,] = ua[7; ;] for the third term. Thus (2.4.18c) holds for repre-
sentation R2 under the stated conditions. D

260 Appendix A

Lemma A4. Suppose that Assumptions 3.1, 4.1° and 4.3 hold for representation R1 and that
Assumptions 3.1, 4.1°, and 4.6 hold for representation R2. For any S € B bounded, there exists
x <oo and N* < oo such that foranyn € SN Hy and N 2 N,

K

N,’ke{O,....N},veq, (A.14)

1pi - p i <
where p"(-) is the solution to the adjoint differential equation (2.3.6¢) and { p} } N is the solu-
tion to the corresponding adjoint difference equation (2.5.5d).

Proof. Proceeding as in the proof of Lemma 4.10(i), if we define e;,) = py,; — P"(f4+1) We can
show that

led < Lileg)+ LA, k € A, (A.15)

where L. L, < oo, using (i) the fact that
s "
P = FuXZi i) Py = Pray + A X bih(Fp ulti 1) Bray + 047, (A.16)
i=]

(ii) Lemma A.]l with h(x(r;). u[r;;]) replaced by —h (x(1;), u[Tk.,-])Tp"(Ik.H) and (iii) the result
of Lemma 4.10(i) that kx(1;)— X1 < xA for all k € A, Now. by Assumption 3.1(b) and Lemma
4.10(i), there exists x) < oo such that

lexl = 15% = pPY NS I (& TA) = L& xUN IS K lEy = x(INE KA, (A1)
where x» = xx). Thus. solving (A.15) we conclude that for all k € A[
e < (L) led + LA | (A.18)

which, with (A.17), proves (A.14). O

Appendix A 261

APPENDIX B

This appendix describes several optimal control problem examples that are used in Chapter
3 and the RIOTS user’s manual.

Problem: LQR [42].

i
min J) = j 0.625x% +0. Sxu +0. 512 dr
u
0
subject to

x+u ;o x(0)=1.

19—

X =
This problem has an analytic solution given by
W*(1) = = (tanh(1 = 1)+ 0.5) cosh(l - r)/cosh(1). 1 € [0,1],

with optimal cost J* = ¢ sinh(2)/(1 + ¢)? = 0. 380797.

Problem: Rayleigh [26,156].

25 5,
min J(u)ij xi+udr
u
0

subject to
.i’](f)=X2(1) x|(0)=-5

Xa(t) = =x (1) +[1.4-0. 14x§(1)]x3(r) +4u(r) x2(0)=-5
A constrained version of this problem is formed by including the state constraint

x(2.5)=0.

262 Appendix B

Problem: Bang[3, p. 112].

,miTn Jw,TY=T

subject to
.i'|=X2 N Xl(0)=0 N Xl(T)=3OO

Xa=u ; x0)=0, x(T=0,
and
=25u()<1, Vrel0,T].

This problem has an analytic solution which is given by 75 = 30 and

0<1<20 20<7<30
(1) I -2
ot 12 —1* + 607 - 600 |
x5 () 1 60 -21

Problem: Obstacle [78].

min J(1) = 5x,(2.9)* + x2(2.9)°
1

subject to
X} = X, 0) =1

f2=u—-0.1(1+2xDx2 xa(0) = 1

=1su(n)gl, VielOl])

x2(1)-0.4

03)SO,VIE[O,I]

|—9(.\-,(1)—1)3—[

-0.8-x:(nN<0, Vre[0.1).

Appendix B

263

Problem: Goddard Rocket, Maximum Ascent[157].

subject to:

V= l (u=D(h,v)) - i
m

h=v

m=-—-—u

c

K

0<u(r)<3.5, viel0.T).

max J(u, T) = T)
uT

D(h,v) = % CDApovze"’“""

vi0)=0
h(0) =1
m0) =1

.
’

m(T)=0.6

where B =500, Cp =0.05 and Ap, = 12,400. The variables used above have the following

meanings:

v

h

m

[

O 9 v

vertical velocity

radial altitude above earth (h =] is earth’s surface)

mass of vehicle

thrust

specific impulse (impulse per unit mass of fuel burned. ¢ = 0. 5)

air density (p =

poeﬁ(l-h))

dynamic pressure (g = § pv?)

drag

The endpoint constraint m(T) = 0.6 means that there is no more fuel left in the rocket. Another

version of this problem includes the trajectory constraint

Ag(1})<10. Vrel0T).

This is a upper bound on the dynamic pressure experienced by the rocket during ascent.

264

Appendix B

Problem: Switch [3, pp. 120-123,37].

|
minJ(u) = j 1 dr
u 0 -
subject to

x=v ;. x(0)=0, x()=0
v=u ; viO)=1, v(l)=-1
x(1)-L <0, Vie[0.1].

with L = 1/9. This problem has an analytic solution. For any L such that0< L < 1/6,

the solution is J* = o with

0<tr<3L 3IL<r<1-3L 1-3L<t<1
(1) -5 (-4) 0 -&a-5y
(1) (1= 0 -7
Ao | La-a-4) L LA - -39

Appendix B

10.

11.

12.

266

REFERENCES

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathe-
matical Theory of Optimal Processes, John Wiley & Sons, New York (1962). (translated
from Russian by K.N. Trirogoff)

E. Polak, Computational Methods in Optimization, Academic Press, New York (1971).

A. E. Bryson and Y. Ho, Applied Optimal Control, Hemisphere Publishing Corp. (1975).
(revised printing)

O. Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimization,” Annals
of Operations Research 37 pp. 357-373 (1992).

H. J. Pesch, “Real-time computation of feedback controls for constrained optimal control
problems. Part I: Neighbouring extremals,” Optimal Control Applications and Methods
10 pp. 129-145 (1989).

D. J. Mook and J. Lew, “Multiple shooting algorithms for jump-discontinuous problems in
optimal control and estimation,” /EEE Trans. Autom. Ctnrl 36(8) pp. 979-983 (1991).

E. Polak, T. H. Yang. and D. Q. Mayne, “A method of centers based on barrier functions for
solving optimal control problems with continuum state and control constraints,” SIAM J.
Control and Oprim. 31(1) pp. 159-179 (1993).

O. Pironneau and E. Polak. “A dual method for optimal control problems with initial and
final boundary constraints.” SIAM J. Control 11(3) pp. 534-549 (1973).

D. Q. Mayne and E. Polak, “Feasible directions algorithms for optimization problems with
equality and inequality constraints.” Math. Prog. 11 pp. 67-80 (1976).

D. Q. Mayne and E. Polak, “A feasible directions algorithm for optimal control problems
with terminal inequality constraints,” IEEE Trans. Autom. Control 22(5) pp. 741-751.
(1977).

D. Q. Mayne and E. Polak, “An exact penalty function algorithm for control problems with
control and terminal equality constraints,” J. Optim. Theory and Appl. 32(2) pp. 211-246
(1980). Part 1

D. Q. Mayne and E. Polak, “An exact penalty function algorithm for control problems with
control and terminal equality constraints,” J. Optim. Theory and Appl. 32(3) PP. 345-364
(1980). Pant 2

References

14.

16.

17.

(854
~J

23.

24.

(Lo
wn

D. Q. Mayne and E. Polak, “An exact penalty function algorithm for control problems with
state and control constraints,” /EEE Trans. Autom. Cntrl 32(5) pp. 380-387 (1987).

K. Shimizu and S. Ito, “Constrained optimization in Hilbert space and a generalized dual
quasi-Newton algorithm for state-constrained optimal control problems,” IEEE Trans.
Autom. Cntrl. 39(5) pp. 982-986 (1994).

P. R. Tumer and E. Huntley, “Self-scaling variable metric methods in Hilbert space with
applications to control problems,” Optimal Control Applications and Methods 1 pp. 155-166
(1980).

H.R. Sirisena and K.S. Tan, “Computation of constrained optimal controls using parameteri-
zation techniques,” /EEE Trans. Autom. Cntrl. 19(4) pp. 431-433 (1974).

D. Shih and F. Kung, “Optimal control of deterministic systems via shifted Legendre poly-
nomials,” IEEE Trans. Autom. Cntrl 31(5) pp. 451-454 (1986).

J. Vlassenbroeck and R. V. Dooren, “A Chebyshev technique for solving nonlinear optimal
control problems.” IEEE Trans. Autom. Cntrl. 33(4) pp. 333-340 (1988).

E. R. Edge and W. F. Powers, “Function-space quasi-Newton algorithms for optimal control
problems with bounded controls and singular arcs,” J. Optim. Theory and Appl. 20(4) PP:
455-479 (1976).

D. Q. Mayne and E. Polak. “First order, strong variations algorithms for optimal control
problems with terminal inequality constriants." J. Optim. Theory and Appl. 16(3/4) PpP.
303-325 (1975).

C. T. Kelley and E. W. Sachs, “Quasi-Newton methods and unconstrained optimal control
problems,” SIAM J. Control and Optim. 25(6) pp. 1503-1516 (1987).

J. K. Willoughby and B. L. Pierson, “A constraint-space conjugate gradient method for
function minimization and optimal control problems,” Int. J. Control 14 pp. 1121-1135
(1971). '

A. Miele and T. Wang, “Primal-dual properties of sequential gradient-restoration algorithms
for optimal control problems 2: General problem,” J. Math. Anal. and Appl. 119 pp. 21-54
(1986).

K. C. P. Machielsen. “Numerical Solution of Optimal Control Problems with State Con-
straints by Sequential Quadratic Programming in Function Space,” in CWI-Tract, Centrum
voor Wiskunde en informatica, Amsterdam, the Netherlands (1988).

L. S. Jennings, M. E. Fisher, K. L. Teo, and C. J. Goh, “MISER3: Solving optimal control
problems---an update,” Advances in Engineering software 14(13) pp. 190-196 (1991).

References 267

26.

27.

29.

30.

31.

(9]
‘»

34

3s.

37.

38.

39.

40.

268

N. B. Nedeljkovi¢, “New Algorithms for Unconstrained Nonlinear Optimal Control Prob-
lems,” JEEE Trans. Autom. Cntrl. 26(4) pp. 868-884 (1981).

H. R. Sirisena and F. S. Chou, “Convergence of the control parmaeterization Ritz method
for nonlinear optimal control problems,” J. Optim. Theory and Appl. 29(3) pp. 369-382
(1979).

W. W. Hager, “The Ritz-Trefftz method for state and control constrained optimal control
problem,” SIAM J. Numer. Anal 12(6) pp. 854-867 (1975).

F.H. Mathis and G.W. Reddien, “Ritz-Trefftz approximations in optimal control,” SIAM J.
Control and Optim. 17(2) pp. 307-310 (1979).

F. H. Mathis, “An L, error estimate for the Ritz-Trefftz approximation in optimal control,”
Mathematics and Computers in Simulation XXIII pp. 188-190 (1981).

W. W. Hager, “Dual approximations in optimal control,” SIAM J. Control and Optim.
22(3) pp. 423-465 (1984).

J. G. Renfro, A. M. Morshedi. and O. A. Asbjornsen, “Simultaneous optimization and solu-
tion of systems described by differential equations,” Comput. chem. Engng. 11(5) pp.
503-517 (1987).

J. E. Cuthrell and L. T. Biegler, “On the optimization of differential-algebraic process sys-
tems,” AIChE Journal 3(1/2) pp. 1257-1270 (1987).

J. E. Cuthrell and L. T. Biegler. “Simultaneous optimization and solution methods for batch
reactor control profiles.” Computers Chem. Engng 13 pp. 49-62 (1989).

C. P. Neuman and A. Sen. “A suboptimal control algorithm for constrained problems using
cubic splines.” Auromatica 9 pp. 601-613 (1973).

G. W. Reddien. “Collocation at Gauss points as a discretization in optimal control.” SIAM J.
Control and Optim. 17(2) pp. 298-306 (1979).

O. Stryk, “Numerical solution of optimal control problems by direct collocation.” Interna-
tional Series of Numerical Methematics 111 pp. 129-143 (1993).

J. T. Betts and P. D. Frank, “A sparse nonlinear optimization algorithm,” J. Optim. Theory
and Appl. 82(3) pp. 519-541 (1994).

G. Pillo, L. Grippo, and F. Lampariello, “A class of structured quasi-Newton algorithms for
optimal control problems,” pp. 101-107 in Proc. IFAC Appl. of Nonlinear Prog. to Optim.
and Control, . Palo Alto (1983).

C. R. Hargraves and S. W. Paris. “Direct trajectory optimization using nonlinear

References

41.

42,

44,

45.
46.

47.
48.

49.

50.

51.

(v
(RS

54.

35.

56.

programming and collocation,” J. Guidance 10 pp- 338-342 (1987).

O. Stryk, “Numerische Losung optimaler Steuerungsprobleme: Diskretisierung, Parame-
teroptimierung und erechnung der adjungierten Variablen,” Diploma-Math., Munchen Uni-
versity of Technology, VDI Verlag, Germany (1995).

W.W. Hager, “Rates of convergence for discrete approximations to unconstrained control
problems,” SIAM J. Numer. Anal. 13(4) pp. 449-472 (1976).

E. Polak, “On the use of consistent approximations in the solution of semi-infinite optimiza-
tion and optimal control problems,” Math. Prog. 62 pp. 385-415 (1993).

J. W. Daniel, The Approximate Minimization of Functionals, Prentice-Hall, New Jersey
(1971).

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London (1984).

S. Doleck, G. Salinetti, and R. J.B. Wets, “Convergence of functions: equisemicontinuity,”
Transactions of the American Mathematical Socierv, (276) p. 429 (1983).

J. P. Aubin and H. Frankowska, Ser-Valued Analvsis, Birkhauser, Boston (1990).

B. M. Budak, E. M. Berkovich, and E. N. Solov'eva, “Difference approximations in optimal
control problems,” SIAM J. Control 7(1) pp. 18-31 (1969).

J. Cullum, “Discrete approximations to continuous optimal control problems,” SIAM J. Con-
trol 7(1) pp. 32-49 (1969).

J. Cullum, “An Explicit procedure for discretizing continuous, optimal control problems.”
Journal of Optim. Theorv and Appl. 8(1) pp. 15-35 (1971).

J. W. Daniel, “The Ritz-Galerkin method for abstract optimal control problems,” SIAM J.
Control 11(1) pp. 53-63 (1973).

W. E. Bosarge, O. G. Johnson, R. S. McKnight. and W. P. Timlake, “The Ritz-Galerkin pro-
cedure for nonlinear control problems,” SIAM J. Numer. Anal 10(1) pp. 94-111 (1973).

B. Sh. Mordukhovich, “On difference approximations of optimal control systems,” J. Appl.

- Math. Mech 42 pp. 452-461 (1978).

B. Sh. Mordukhovich, Methods of approximation in optimal control problems, (in Russian)
1988.

E. Polak and L. He, “Rate-preserving discretization strategies for semi-infinite program-
ming and optimal control,” SIAM J. Control and Optim. 30(3) pp. 548-572 (1992).

V. Veliov, “Second-order discrete approximations to linear differential inclusions.” SIAM J.
Numer. Anal. 29(2) pp. 439-451 (1992).

References 269

57.

58.

59.
60.
61.

62.

63.

65.

66.

67.

68.

69.
70.

71.
72.

73.

270

L. He and E. Polak, “An optimal diagonalization strategy for the solution of a class of opti-
mal design problems,” IEEE Trans. on Autom. Contr. 35 pp. 258-267 (1990).

T. E. Baker and E. Polak, “On the optimal control of systems described by evolution equa-
tions.” SIAM J. Control and Optim. 32 pp. 224-260 (1994).

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York (1983).
Haim Brezis, Analyse Fonctionnelle, Masson, Paris (1983). (in French)

J. C. Butcher, The Numerical Analsysi of Ordinary Differential Equations, John Wiley and
Sons, England (1987).

J. D. Lamben, Numerical Methods for Ordinary Differential Systems, John Wiley and Sons,
England (1991).

Carl de Boor. A Practical Guide to Splines, Springer-Verlag, New York (1978).

E. Polak and L. He, “Unified steerable phase I-phase II method of feasible directions for
semi-infinite optimization,” J. Optim. Theory and Appl. 69(1) pp. 83-107 (1991).

C. Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide for CFSQP version 2.1: A C Code
for solving (large scale) constrained nonlinear (minimax) optimization problems,”
TR-94-16rl, Institute for Systems Researce, Univ. of Maryland (1994).

U. Ascher and G. Bader, “Stability of collocation at Gaussian points,” SIAM J. Numer. Anal.
23(2) pp. 412-422 (1986). ‘

R. Schere and H Turke, “Reflected and transposed Runge-Kutta methods.” BIT 23 pp.
262-266 (1983).

J. M. Lane an R. F. Riesenfeld. “A theoretical development for the computer generation of
piecewise polynomial surfaces,” JEEE Trans. Patern Anal. and Machine Inteligence 2 pp.
35-46 (1980).

W. Boehm, “Inserting new knots into B-spline curves,” CAD 12 pp. 199-216 (1980).

R. Qu and J. A. Gregory, “A subdivision algorithm for non-uniform B-splines,” pp. 432-436
in Approximation Theory, Spline Functions and Applications, ed. S. P. Singh (ed.), Kluwer
Academic Publishers, Boston (1992).

W. Rudin, Real and Complex Analysis, McGraw-Hill, New York (1987).

G. H. Golub and C. F. Loan, Matrix Computations, Johns Hopkins University Press (1989).

(second edition)

A. A. Goldstein, “Convex programming in Hilbert space,” Bull. Amer. Math. Soc. 70 pp.
709-710 (1964).

References

74.

75.

76.

77.

78.

79.

80.

81.

84.

85.

86.

87.

88.

E. S. Levitin and B. T. Polyak, “Constrained minimization problems,” USSR Comput. Math.
Math. Phys. 6 pp. 1-50 (1966). (English transl. in Zh. Vychisl. Mat. i Mat. Fiz., vv. 6, ppP.
787-823, 1965)

D. P. Bertsekas, “On the Goldstein-Levitin-Poljak gradient projection method,” IEEE Trans.
Autom. Cntrl. 21(2) pp. 174-184 (1976).

D. P. Bertsekas, “Projected Newton methods for optimization problems with simple con-
straints,” SIAM J. Control and Optim. 20(2) pp. 221-246 (1982).

J. C. Dunn, “A projected Newton method for minimization problems with nonlinear
inequality constraints,” Numer. Marh. 53 pp. 377-409 (1988).

V. H. Quintana and E. J. Davison, “Clipping-off gradient algorithms to compute optimal
controls with constrained magnitude.” Inr. J. Control 20(2) pp. 243-255 (1974).

A.R. Conn, N. Gould, and P. L. Toint, “Global convergence of a class of trust region algo-
rithms for optimization with simple bounds,” SIAM J. Numer. Anal. 25 pp. 433-460 (1988).

A.R. Conn, N. Gould, and P. L. Toint, “A globally convergent augmented Lagrangian algo-
rithm for optimization with general constraints and simple bounds,” SIAM J. Numer. Anal.
28(2) pp. 545-572 (1991).

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound con-
strained optimization,” Technical Report NAM-08, EECS Dept., Northwestern Univ. (1994).

J. J. More and G. Toraldo. “Algorithms for bound constrained quadratic programming prob-
lems.” Numer. Marh. 55 pp. 377-400 (1989).

P. H. Calamai and J. J. More, “Projected gradient methods for linearly constrained prob-
lems,” Math. Prog. 39 pp. 93-116 (1987).

C. T. Kelley and E. W. Sachs, “Solution of optimal contro! problems by a pointwise pro-
Jected Newton method.” SIAM J. Conir. and Optim. 43 pp. 1731-1757 (1995).

E. Polak, R. W. Sargent, and D. J. Sebastian, “On the convergence of sequential minimiza-
tion algorithms,” J. Optim. Theory and Appl. 14 pp. 439-442 (1974).

J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Mathematics of Com-
putation 35(151) pp. 773-782 (1980).

M. J. D. Powell, “Restart procedures for the conjugate gradient method,” Math. Prog.
12 pp. 241-254 (1977).

D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley Pub. Co.. Reading.
Massachusetts (1984). (second edition)

References 271

89.

90.

o1.

92.

94,

9s.

96.

97.

98.

99.

100.

103.

272

D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic
Press. New York (1982).

D. G. Luenberger, “Convergence rate of a penalty-function scheme,” J. Optim. Theory and
Appl. 7(1) pp. 39-51 (1971).

J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods
for optimization,” SIAM J. Optimization 2(1) pp. 21-42 (1992).

D. P. Bertsekas, “Partial conjugate graident methods for a class of optimal control prob-
lems,” IEEE Trans. Autom. Cnrrl. 19(3) pp. 209-217 (1974).

J. C. Dunn and D. P. Bertsekas, “Efficient dynamic programming implementations of New-
ton’s method for unconstrained optimal control problems,” J. Optim. Theory and Appl.
63(1) pp. 23-38 (1989).

D. C. Liu-and J. Nocedal, “On the limited memory BFGS method for large scale optimiza-
tion,” Math. Prog. 45 pp. 503-528 (1989).
D. F. Shanno and K. H. Phua, “Matrix conditioning and nonlinear optimization,” Math.

Prog. 14 pp. 149-160 (1978).
X. Zou, 1. M. Navon, M. Berger, K. H. Phua, T. Schlick, and F. X. Dimet, “Numerical expe-

rience with limited-memory quasi-Newton and truncated newton methods,” SIAM J. Optim.
3(3) pp. 582-608 (1993).

W. W. Hager, “Lipschitz continuity for constrained processes,” SIAM J. Control and Optim.
17(3) pp. 321-338 (1979).

W. W. Hager and G. Strang. “Free boundaries and finite elements in one dimension.” Math.
Comp. 29(132) pp. 1020-1031 (1975).

J. E. Higgins and E. Polak, “An ¢-active barrier-function method for solving minimax prob-
lems.” Appl. Math. Optim. 23 pp. 275-297 (1991).

M. E. Hosea and L. F. Shampine, “Estimating the error of the classic Runge-Kutta formula,”
Applied Math. and Comp. 66 pp. 217-226 (1994).

- R. Eng, “Error estimates for Runge-Kutta type solutions to systems of ordinary differential

equations,” Computer Journal 12(2) pp. 166-170 (1969).

. F. Ceschnino and J. Kuntzmann, Numerical Solution of Initial Value Problems, Prentice-

Hall, Englewood Cliffs, NJ (1966). (English transl.)

L. F. Shampine and H. A. Watts, “Comparing error estimators for Runge-Kutta methods.”
Mathematics of Computation 25(115) pp. 445-455 (1971).

References

104.

105.

106.

107.

108.

109.

110.

111

113.

114,

116.

117.

C. Jansch and M. Paus, “Aircraft trajectory optimization with direct collocation using mov-
able gridpoints,” pp. 262-267 in Proc. American Control Conference, , San Diago (1990).

J. T. Betts and W. P. Huffman, “Path-constrained trajectory optimization using sparse
sequential quadratic programming.” J. Guidance, Control, and Dynamics 16(1) pp. 59-68
(1993).

F. B. Lee and L. Markus, Foundations of Optimal Control Theory, John Wiley, New York
(1967).

V. M. Alekseev, V. M. Tikhomirov, and V. M. Fomin, Optimal Control, Consultants Bureau.
New York (1987). (translated from Russian by V.M. Volosov)

J. C. Dunn, “Second-order optimality conditions in sets of L> functions with range in a
polyhedron..” SIAM J. Control and Optim. 33(5) pp- 1603-1635 (1995).

J. C. Dunn, “L? sufficient conditions for end-constrained optimal control problems with

inputs in a polyhedron.,” pre-print. (1996).

J. C. Dunn, “On L sufficient conditions and the gradient projection method for optimal
control problems.,” SIAM J. Control and Optim., (July, 1996).

J. C. Dunn and T. Tian, “Variants of the Kuhn-Tucker sufficient conditions in cones of non-
negative functions,” SIAM J. Control and Optim. 30(6) pp. 1361-1384 (1992).

. H. Maurer, “First and second order sufficient optimality conditions in mathematical pro-

gramming and optimal control,” pp. 163-177 in Mathematical Programming Study. North-
Holland Publishing Co. (1981).

A. L. Dontchev, W. W. Hager. A. B. Poore. and B. Yang. “Optimality, stability, and conver-
gence in nonlinear control.” Applied Math. and Optim. 31(3) pp. 297-326 (1995).

H. J. Pesch, “Real-time computation of feedback controls for constrained optimal control
problems. Part II: A Correction Method Based on Multiple Shooting,” Optimal Control
Applications and Methods 10 pp. 147-171 (1989).

. R. Bulirsch, E. Nerz, H. J. Pesch, and O. Stryk, “Combining direct and indirect methods in

optimal control: range maximization of a hang glider,” pp. 273-288 in International Serics
of Numerical Mathematics, (1993).

D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press. Lon-
don (1975).

J. P. McDanell and W. F. Powers. “Necessary conditions for joining optimal singular and
nonsingular subarcs.” SIAM J. Conirol 9 pp. 161-173 (1971).

References 273

118

121.

122.

123.

124.

126.

127.

128.

129.

274

B. Goh, “Compact forms of the generalized Legendre-Clebsch conditions and the computa-
tion of singular control trajectories,” pp. 3410-3413 in Proc. ACC, , Seattle, WA (June
1995).

- H. Seywald, “Trajectory optimization based on differential inclusion,” J. Guidance, Control

and Dynamics 17(3) pp. 480-487 (1994).

- Y. Chen and J. Huang, “A numerical algorithm for singular optimal control synthesis using

continuation methods,” Optimal Control Appl. and Methods 15 pp. 223-236 (1994).

S. A. Dadebo and K. B. McAuley, “On the computation of optimal singular controls,” PP.
150-155 in Proceedings of the 4th IEEE Conference of Control Applications, (Sept. 1995).

K. L. Teo and L. S. Jennings, “Optimal control with a cost on changing control,” J. Optim.
Theory and Appl. 68 pp. 335-357 (1991).

R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM J. Control
and Optim. 14(5) pp. 877-898 (1976).

R. T. Rockafellar, “Augmented Lagrangians and applications of the proximal point algo-
rithm in convex programming,” Mathematics of Operations Research 1(2) pp. 97-116
(1976). '

- P E. Gill, W. M. Murray, M. A. Saunders, and M. H. Wright, “User’s guide for NPSOL

(Version 4.0): A Fortran package for nonlinear programming.” technical report SOL 86-2,
Systems Opitimzation Laboratory, Stanford University (1986).

J. Cullum, “Finite-dimensional approximations of state-constrained continuous optimal con-
trol problems,” SIAM J. Control 10(4) pp. 649-670 (1972).

K. Radhakrishnan and A. C. Hindmarsh, “Description and use of LSODE, the Livermore
Solver for Ordinary Differential Equations,” NASA Reference Publ. 1327 (1993).

L. R. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of dif-
ferential equations,” SIAM J. Sci. Stat. Comput. 4 pp. 136-148 (1983).

P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London
(1981).

. L. T. Biegler and J. E. Cuthrell, “Improved infeasible path optimization for sequential mod-

ular simulators--II: the optimization algorithm,” Computers & Chemical Engineering
9(3) pp. 257-267 (1985).

- A. Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic differentiation

of algorithms written in C/C++, Argonne National Laboratory.
ftp://info.mcs.anl.gov/pub/ADOLC (December 1993).

References

2. A. Griewank, “On automatic differentiation,” Preprint MCS-P10-1088, Argonne National

Laboratory, ftp://info.mcs.anl.gov/pub/tech_reports/reports (October 1988).

. D. M. Murray and S. J. Yakowitz, “Differential dynamic programming and Newton’s

method for discrete optimal control problems,” Journal of Optim. Theory and Appl.
43(3) pp. 395-414 (1984).

. J. F. A. Pantoja, “Differential dynamic programming and Newton’s method,” Int. J. Control

47(5) pp. 1539-1553 (1988).

- S. K. Mitter, “Successive approximation methods for the solution of optimal control prob-

lems,” Automatica 3 pp. 135-149 (1966).

. D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming, American Elsevier

Pub. Co., New York (1970).

. A. Rakshit and S. Sen, “Sequential rank-one/rank-two updates for quasi-Newton differential

dynamic programing,” Optimal Control Appl. and Methods 11 pp. 95-101 (1990).

. J. F. A. Pantoja and D. Q. Mayne, “Sequential quadratic programming algorithm for discrete

optimal control problems with control inequality constraints,” Jnt. J. Control 53(4) pp.
823-836 (1991).

. T. F. Coleman and A. Liao, “An efficient trust region method for unconstrained discrete-

time optimal control problems,” Computational Optimization and Applications 4 pp. 47-66

(1995).

140.

141.

143.

144.

Henrik Jonson, “Newton Method for Solving Non-linear Optimal Control Problems with
Genereal constraints,” Ph.D. Dissertation, Linkoping Studies in Science and Technology
(1983).

R. W. H. Sargent, “A new SQP algorithm for large-scale nonlinear programming.” C95 36.
Centre for Process Systems Engineering, Imperial College, London (1995).

. A. R. Conn, N. Gould, and P. L. Toint, “LANCELOT: A Fortran Package for Large-Scale

Nonlinear Optimization,” in Springer Series in Computational Mathematics, Springer-
Verlag, Berlin (1992).

A. Griewank and P. L. Toint, “Local convergence analysis for partitioned quasi-Newton
updates,” Numer. Math. 39 pp. 429-448 (1982).

P. L. Toint, “Global convergence of the partitioned BFGS algorithm for convex partially
separable optimization,” Math. Prog. 36 pp. 290-306 (1986).

. M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations.”

pp. 144-157 in Lecture Notes in Mathematics 630, Numerical Analvsis, ed. G.A. Watson

References 275

146.

147.

148.

149.

151.

154.

157.

276

(ed.). Springer-Verlag (1978).
R. Fletcher, “Resolving degeneracy in quadratic programming,” Annals of Operations

Research 47 pp. 307-334 (1993).

W. Murray, “Algorithms for large nonlinear problems,” pp. 172-185 in Mathematical Pro-
gramming--State of the Art, (1994).

J. Nocedal, “Recent advances in large-scale nonlinear optimization,” pp. 208-219 in Mathe-
matical Programming--State of the Art, (1994).

A. R. Conn, N. Gould, and P. L. Toint, “Large-scale nonlinear constrained optimization: a
current survey,” pp. P 287-332 in Algorithms for Continuous Optimization, ed. E. Spedicator
(ed.), Kluwer Academic Publishers, Boston (1994).

. J. L. Zhou and A. L. Tits, “An SQP algorithm for finely discretized continuous minimax

problems and other minimax problems with many objective functions,” 1o appear in SIAM

J. Optimization, ().

U. Ascher, R. Mattheij, and R. Russell, Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, NJ (1988).

. S.'S. Oren, “Perspectives on self-scaling variable metric algorithms,” J. Optim. Theory and

Appl. 37(2) pp. 137-147 (1982).

. FH. Mathis and G.W. Reddien, “Difference approximations to control problems with func-

tional arguments,” SIAM J. Control and Optim. 16(3) pp. 436-449 (1978).

D. 1. Jones and J. W. Finch, “Comparison of optimization algortihms,” Int. J. Control 40 pp.
747-761 (1984).

. S. Strand and J. G. Balchen. “A Comparison of Constrained Optimal Control Algorithms,”

pp. 439-447 in IFAC 11th Triennial World Congress, , Estonia, USSR (1990).

. D. Talwar and R. Sivan, “An Efficient Numerical Algorithm for the Solution of a Class of

Optimal Control Probletﬁs," IEEE Trans. Autom. Cnrrl. 34(12).pp. 1308-1311 (1989).

H. Seywald ar;d E. M. Cliff, “Goddard Problem in Presence of a Dynamic Pressure Limit,”
J. Guidance, Control and Dvnamics 16(4) pp. 776-781 (1993).

References

	Copyright notice 1996
	ERL-96-18 (1)
	ERL-96-18 (2)

