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Abstract

THEORY AND IMPLEMENTATION OF NUMERICAL METHODS BASED

ON RUNGE-KUTTA INTEGRATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

by

Adam Lowell Schwartz

Doctor of Philosophy in Electrical Engineering

University of California at Berkeley

Professor Elijah Polak, Chair

This dissertation presents theory and implementations of numerical methods for accurately

and efficiently solving optimal control problems. The methods we consider are based on solving

a sequence of discrete-time optimal control problems obtained using explicit, fixed step-size

Runge-Kutta integration and finite-dimensional B-spline control parameterizations to discretize

the optimal control problem under consideration. Other discretization methods such as Euler's

method, collocation techniques, or numerical implementations, using variable step-size numerical

integration, of specialized optimal control algorithms are less accurate and efficient than dis

cretization by explicit, fixed step-size Runge-Kutta for many problems. This work presents the

first theoretical foundation for Runge-Kutta discretization. The theory provides conditions on the

Runge-Kuttaparameters that ensure that the discrete-time optimal control problems are consistent

approximations to the original problem.

Additionally, we derive a number of results which help in the efficient numerical implemen

tation of this theory. These include methods for refining the discretization mesh, formulas for

computing estimates of integration errors and errors of numerical solutions obtained for optimal

control problems, and a method for dealing with oscillations that arise in the numerical solution

of singular optimal control problems. These results are of great practical importance in solving

optimal control problems.

Wealso present, and prove convergence results for, a family of numerical optimization algo

rithms for solving a class of optimization problems that arise from the discretization of optimal

control problems with control bounds. This family of algorithms is based upon a projection oper

ator and a decomposition of search directions into two parts: one part for the unconstrained sub-

space and another for the constrained subspace. This decomposition allows the correct active



constraint set to be rapidly identified and the rate of convergence properties associated with an

appropriate unconstrained search direction, such as those produced by a limited memory quasi-

Newton or conjugate-gradient method, to be realized for the constrained problem. The algorithm

is extremely efficient and can readily solve problems involving thousands of decision variables.

The theory we have developed provides the foundation for our software package RIOTS.

This is a group of programs and utilities, written mostly in C and designed as a toolbox for Mat-

lab, that provides an interactive environment for solving a very broad class of optimal control

problems. A manual describing the use and operation of RIOTS is included in this dissertation.

We believe RIOTS to be one of the most accurate and efficient programs currently available for

solving optimal control problems.

ProfessMflilijah Polak

Dissertation Committee Chair
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Chapter 1

INTRODUCTION

1.1 NUMERICAL METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS

Numerical methods for solving optimal control problems have evolved significantly overthe

past thirty-four years since Pontryagin and his students presented their celebrated maximum

principle [1]. Most early methods were based on finding a solution that satisfied the maximum

principle, or related necessary conditions, rather than attempting a direct minimization of the

objective function (subject to constraints) of the optimal control problem. Explanations of this

approach can be found in [2-6]. For this reason, methods using this approach are called indirect

methods.

The main drawback to indirect methods is their extreme lack of robustness: the iterations of

an indirect method must start close, sometimes very close, to a local solution in order to solve the

two-point boundary value subproblems. Additionally, since first order optimality conditions are

satisfied by maximizers and saddle points as well as minimizers, there is no reason, in general, to

expect solutions obtained by indirect methods to be minimizers. approximations to the original

problem.

Both of these drawbacks of indirect methods are overcome by so-called direct methods.

Direct methods obtain solutions through the direct minimization of the objective function (subject

to constraints) of the optimal control problem. In this way, the optimal control problem is treated

as an infinite dimensional mathematical programming problem. There are two distinct

approaches for dealing with the infinite dimensional aspect of these problems. The first approach

develops specialized conceptual algorithms, and numerical implementations of these algorithms,

for solving the mathematical programs. A conceptual algorithm is either a function space analog

of a finite dimensional optimization algorithm or a finite dimensional algorithm (obtained by

restricting the controls to a finite dimensional subspace of the control space) that requires infinite

dimensional operations such as the solution of differential equations and integrals. An implemen

tation of a conceptual algorithm accounts for errors that result when representing elements of an

Sec. 1.1 Solving Optimal Control Problems 1



infinite dimensional functions space with finite dimensional approximations and the errors pro

duced by the numerical operations used to perform infinite dimensional operations. There are

many examples of conceptual algorithm for solving optimal control problem, some with and

some without implementations [7-31].

The conceptual algorithm approach for solving optimal control problems has serious draw

backs. First, customized software for controlling the errors produced in the numerical approxi

mations of infinite dimensional functions and operations must be incorporated into the implemen

tation of a conceptual algorithm. More seriously, because function evaluations are performed

only approximately, the function gradients used by mathematical programming software will not

be coordinated with those same functions. That is, the gradients will only be approximations to

the derivatives of the functions. This mean, for example, that it is possible that the negative of a

function gradient may not be a direction of descent for the approximation of that function. This

possibility becomes increasingly likely as a stationary point is approached. A related problem is

that a certain amount of precision in the function evaluations is required to ensure successful line

searches. These facts mean that, in practice, high precision in numerical operations such as inte

gration is required even in early iterations of the optimization procedure. Since high precision in

early iterations does not contribute to the accuracy of the final solution, this requirement makes

the implementation of conceptual algorithm inefficient for most problems.

An alternate direct method approach is one which we term consistent approximations. In

the approach of consistent approximations, the optimal control is obtained by solving a sequence

of finite dimensional, discrete-time optimal control problems that are increasingly accurate repre

sentations of the original, continuous-time problem. The solutions of the approximating, discrete-

time optimal control problems can be obtained using standard mathematical programming tech

niques, without infinite dimensional operations, since they are finite dimensional problems.

Under suitable conditions, solutions of the approximating problems converge to a solution of the

original problem. In this sense, such discrete-time optimal control problems are called consistent

approximations to the original problem.

The first rigorous developments of algorithms based on solving finite dimensional approxi

mating problems used Euler's method and piecewise constant control representations (which

results in a finite dimensional control parameterization) to discretize the original problem (see the

introduction to Chapter 2 for references). From a numerical analyst's point of view, the choice of

Euler's method may seem strange since Euler's method is an extremely inefficient method for

solving differential equations. But there are reasons for choosing Euler's method as a discretiza

tion procedure for optimal control problems. First, up until this work, there has been no theory

supporting the use of iterative higher-order integration methods in the construction of consistent
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approximations. Second, only recently has it been demonstrated that there can be an advantage to

using higher-order discretization methods for solving optimal control problems. The use of

higher-order discretization methods for solving optimal control problems remains an active area

of research. It is difficult to demonstrate a theoretical advantage to using higher order methods

rather than Euler's methods when solving general, constrained optimal control problems. How

ever, many optimal control problems that arise in practice are, in fact, solved much more effi

ciently with higher-order methods.

Within the category of direct methods based on the idea of consistent approximations, there

is a further sub-classification that helps to establish where our work stands in relation to other

methods. This sub-classification specifies how the discretization of an optimal control problem

into a finite dimensional approximating problem is accomplished: via collocation (or more gener

ally, a Galerkin approximation) or via iterative integration. Currently, the most popular dis

cretization scheme is based on collocation and methods similar in spirit to

collocation [16-18,32-41]. In collocation methods, the system of differential equations describing

the dynamic system is replaced by a system of equations that represent collocation conditions to

be satisfied at a finite number of time points. The resulting mathematical program involves not

only the control parameters as decision variables but also a large number of additional variables

that represents the value of state variables at the collocation points. Collocation schemes offer

several advantages over iterative integration schemes:

1. It is easierto proveconvergence and order of convergence results.

2. Some results for the order of error, as a function of the discretization level, between solu

tions of the approximating problems and solutions of the original problem (namely, for

unconstrained optimal control problems) aresuperiorto other schemes [36].

3. Certain difficulties inherent to some optimal control problems, such as stiff differential equa

tions and highly unstable dynamics, aregreatly mitigated in collocation schemes.

4. Simple bounds and the state variables translate into simple bounds on the decision variables

of the mathematical program.

5. Function gradients are easierto compute since they do not require the derivative of the state

with respect to the controls.

However, collocation schemes have serious drawbacks as well:

1. The approximating problems are significantly larger at a given discretization level due to the

inclusion of state variablesas decision parameters.

2. The approximating problems are significantly harder to solve because of the addition of a

large number of (nonlinear) equality constraints that represent the collocation conditions.

Sec. 1.1 Solving Optimal Control Problems 3



3. The accuracy of solutions obtained by solving the approximating problems can be somewhat

inaccurate due to the presence of the collocation constraints.

4. If the numerical algorithm for solving the approximating problems is terminated prematurely

the solution may not be useful since the collocation conditions will not be satisfied.

Because of these disadvantages, solutions obtained using a collocation scheme often have to be

subsequently refined using an indirect solution method [4].

The work in this thesis is based on discretizing optimal control problems using explicit,

fixed step-size Runge-Kutta integration techniques. The advantage of this scheme overcolloca

tion schemes is that the approximating problems that result can be solved very efficiently and

accurately. On the other hand, some of the features listed above as advantages associated with

collocation are sacrificed. Specifically, convergence results are more difficult to prove for the

Runge-Kutta method and, in the caseof unconstrained problems, the order of error for solution of

the approximating problems is lower (see [42] and Proposition 4.6.2). Also, it is quite convenient

from a programming point of view that state variable bounds become bounds on the decision vari

ables of the mathematical program (advantage 4). However, this advantage is more than offset by

the addition of the system of equality constraints representing the collocation conditions. Finally,

the difficulties of solving problems with highly unstable dynamics can also be handled when

using explicit Runge-Kutta integration. A method for doing sois discussed in theChapter 6.

As far as we know, the work reported in this thesis represents the only work on consistent

approximation schemes using Runge-Kutta integration. Thus, atthevery least, our work comple

ments the work of other authors that deal with collocation schemes. But further, we believe that

our approach has significant theoretical and practical advantages that will make it, with sufficient

development, a leading approach to solving optimal control problems.
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1.2 CONTRIBUTIONS TO THE STATE-OF-THE-ART

The original goal of this research was simply to develop a fast and accurate software pack
age for solving optimal control problems using explicit Runge-Kutta integration. In the process
of writing this software we have, by necessity, developed a strong theoretical foundation for our

discretization approach as well constructing several new algorithms for various types of computa
tion. The following is aconcise summary of the contributions provided by this work to the state-

of-the-art in numerical methods for solving optimal control problems:

• Provides the first convergence analysis and implementation theory for discretization methods

based on Runge-Kutta integration. Specifically, conditions on the parameters of the Runge-

Kutta method are presented that ensure, for instance, that stationary points of the discretized

problems can only converge to stationary points of the original problem.

• Derives the appropriate non-Euclidean metric needed for the finite-dimensional optimization

of the approximating problems and presents a coordinate transformation which allows a

Euclidean metric to be used.

• Improves upon the previously known bound for the error in the solution of the approximating

problems as a function of the discretization level for RK4 (the most common fourth-order

Runge-Kutta integration method) when solving unconstrained optimal control problems. This

result, along with the already known bounds for a first, second and third order Runge-Kutta

method are extended to the case where the finite dimensional controls are represented by

splines.

• Presents a new, very efficient and robust numerical algorithm, based on the projected Newton

method of Bertsekas, for solving a class of mathematical programming problems with simple

bounds on the decision variables.

• Develops a new method for computing accurate estimates of the error between the solutions

computed for the approximating problems and solutions of the original problem. This esti

mate does not require a priori knowledge of error bounds and works for problems with state

and control constraints.

• Develops a completely new method for numerically solving singular optimal control prob

lems. This method is designed to eliminate undesirable oscillations that occur in numerical

solutions of singular control problems.

• Presents our software package called RIOTS, based on the theory in contained in this thesis,

for solving optimal control problems. Although there are many improvements that can be

made to RIOTS, it is already one of the fastest, most accurate and easiest to use programs

available for solving optimal control problems.

Sec. 1.2 Contributions to the State-of-the-Art



1.3 DISSERTATION OUTLINE

The organization of this dissertation follows a progression leading from basic theoretical

foundations of discretizing optimal control problems to the implementation of a software package

for solving a large class of optimal control problems. The theoretical foundation is presented in

Chapter 2. Chapter 2 begins with a discussion of the concept of consistent approximations as

defined by Polak [43]. Polak's definition of consistent approximations extends earlierdefinitions,

namely that of Daniels [44], that were concerned only with convergence of global solutions of the

approximating problems to global solutions of the original problem. The earlier definitions were

therefore of limited use since optimization algorithms compute stationary points, not global solu

tions. Polak's definition of consistency deals with stationary points and local minima as well as

global solutions. The theory of consistent approximations is used to develop a framework for dis

cretizing optimal control problems with Runge-Kutta integration. The main results in Chapter 2

show that the approximating problems are consistent approximations to the original optimal con

trol problem if the Runge-Kutta method satisfies certain conditions in addition to the standard

conditions needed for consistent integration of differential equations. Once the consistency result

is established, the convergence results provided by the theory of consistentapproximations can be

invoked. In the process of constructing consistent approximations based on Runge-Kutta dis

cretization, we show that a non-Euclidean inner-product and norm, depending on the basis used

for the finite dimensional control subspaces, must be used for the space of control coefficients

upon which the finite dimensional mathematical programs that results from the discretization are

defined. Without this non-Euclidean metric, serious ill-conditioning can result. We also show

how a coordinate transformation can be used to eliminate the need for the non-Euclidean inner-

product and norm. The results are then extended to control representations based on splines.

In Chapter 3, we present a very efficientand robust optimization algorithm for solving finite

dimensional mathematical programming problems that include simple bounds on the decision

variables. Such problems arise from the discretization of optimal control problems with control

bounds. In Chapter 4, other important numerical issues are addressed. These issues include

(i) obtaining bounds on the error of solutions to the approximating problems based on spline con

trols, (ii) developing heuristics for selecting the integration order and control representation

order, (Hi) providing methods for refining the discretization mesh, (iv) providing a computable

error estimate for solutions of the approximating problems and (v) dealing with the numerical

difficulties that arise when solving singularoptimal control problems. We also present numerical

data to support our claim that implementations of conceptual algorithms are inefficient compared

to the consistent approximations approach to solving optimal control problems.
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The next chapter, Chapter 5, contains the user's manual for RIOTS. RIOTS is our software

package, developed as a toolbox for Matlab', for solving a very broad class of optimal control

problems. This class includes problems with multiple objective functions, fixed or free final time

problems, problems with variable initial conditions and problems with control bounds, endpoint

equality and inequality constraints, and trajectory constraints. The user's manual includes a

mathematical description of the class of problems that can behandled, a series of sample sessions

with RIOTS, a complete reference guide for the programs in RIOTS, explanations of important
implementation details, and instructions for installing RIOTS. Chapter 6, presents our conclu

sions and ideas for future research. Finally, there are two appendices. The first contains the

proofs of some of theresults in Chapter 2 and the second describes some example optimal control

problems that we use, primarily in Chapter 4, for numerical experiments.

Matlab is a scientific compulationand visualization program designed by The MathWorks, Inc.

Sec. 1.3 Dissertation Outline



Chapter 2

CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL

PROBLEMS BASED ON RUNGE-KUTTA INTEGRATION

2.1 INTRODUCTION

In this Chapter, weestablish the theoretical foundation of our method for numerically solv

ing optimal control problems. Specifically, we consider approximations to constrained optimal

control problems that result from numerical solving the differential equations describing the sys

tem dynamics using Runge-Kutta integration. We show that there is a class of higher order,

explicit Runge-Kutta (RK) methods that provide consistent approximations to the original prob

lem, with consistency defined according to[43]. Consequently, we are assured that stationary

points of the approximating problems converge to stationary points of the original problem, and

that global solutions (or strict local solutions with a non-vanishing radius of attraction) of the

approximating problems converge to global (or local) solutions of the original problem, as the

step-size of the RK method is decreased.

The theory of consistent approximations introduced in [43] requires that theapproximating

problems be defined on finite dimensional subspaces of the control space to which RK methods

can be extended. The selection of the control subspaces affects both the accuracy of numerical

integration and the accuracy with which solutions of the original problem are approximated.

Once the approximating problems are defined, their numerical solution is carried out by means of

standard mathematical programming algorithms in the space of coefficients associated with the

bases defining the control subspaces. Weconstruct two such families of control subspaces. The

"natural" basis functions for one family are piecewise polynomial functions, and for the other,

piecewise constant functions. Also, B-splines provide a basis fora subspace of piecewise polyno

mial functions. None of these sets of basis functions is orthonormal. Hence, to preserve the L2

inner product and norm used in the control subspace, a non-Euclidean inner product and norm

must be used in the associated space of coefficients. Failing to do so introduces a "changed
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metric" effect that can adversely affect the performance of algorithms. The possible severity of

this phenomenon is demonstrated by our computational results in Section 6. To remove the need

to modify nonlinear programming software written for problems defined on a Euclidean space,

we introduce coordinate transformations that change our original bases in the control space to an

orthonormal set and change the associated coefficient space to a Euclidean space.

Daniel [44] presents one of the first attempts to characterize, in a general framework, con

sistency of approximations to an optimization problem as well as an application of this frame

work to approximations of optimalcontrol problems obtained using the Euler integration formula.

It can be shown that Daniel's conditions for consistency imply epiconvergence[45,46], /.&, the

convergence, in the Kuratowski sense [47], of the constrained epigraphs of the approximating

problems to the constrained epigraph of the original problem. Epiconvergence ensures conver

gence of the global minimizers (or strict local minimizers with a non-vanishing radius of attrac

tion) of the approximating problems to global (or local minimizers) of the original problem.

Polak, in [43], characterizes first order optimality conditions in terms of zeros of optimality

functions. To define consistency of approximations, he augments the requirement of epiconver

gence of the approximating problems with a related requirement for their optimality functions.

As a result, consistency, in the Polak sense, ensures convergence of global (local) solutions, and

stationary points, of the approximating problems to global (local) solutions, and stationary points,

of the original problem. Furthermore, the Polak definition of consistency indirectly imposes the

requirement that the mathematical characterization of the constraints of the approximating prob

lems satisfy certain congruence conditions, and that derivatives of the approximating problem

functions converge to those of the original problem. In addition to a definition of consistency, we

find in [43] diagonalization strategies, in the form of master algorithms, that call nonlinear pro

gramming algorithms as subroutines. These algorithms enable one to efficiently obtain an

approximate, numerical "solution" to an original infinite dimensional problem.

With the exception of [44] and [43], the analysis of the approximating properties of numeri

cal integration techniques (see, e.g., [43,48-56] ) in optimal control is not carried in the frame-
+

work of a general theory . Convergence of global solutions, or in some cases, of stationary

points, of approximating problems obtained using Euler integration to those of the original prob

lem was established in [43,44,48-50,53-55]. Of these, perhaps the most extensive treatment can

be found in [54]. The rate of convergence of stationary points of approximating problems,

obtained from discretization of unconstrained optimal control problems using a class of RK meth

ods, to those of the original problem was explored in [42].

This is also true for collocation techniques (see. e.g., [4,18,33,35,36]).
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Organization. This chapter is organized as follows. Section 2 summarizes the theory of con

sistent approximations. Section 3 defines the optimal control problemand develops an optimality

function for it. In section 4 the approximating problems are constructed and epiconvergence of

the approximating problems is proved. In section 5, optimality functions for the approximating

problems are derived and are shown to hypoconverge to the optimality function for the original

problem. This completes the proof that the approximating problems are consistent approxima

tions to the original problem. Section 6 introduces a transformation which defines orthonormal

bases for the control subspaces and presents a rate of convergence result for the most commonly

used RK method, RK4. Some numerical results are also included. Finally, in Section 7 the

results areextended to control subspaces basedon splines.

2.2 THEORY OF CONSISTENT APPROXIMATIONS

Let#be anormed linear space and B c #a convex setand consider the problem

P Jft^ (2.1a)

where y/: B -> R is (at least) lower semi-continuous, and F c B is the feasible set. Next, let

N = { 1,2,3, •••}, let N be an infinite subset of N, and let { MN }Ne N be a family of finite

dimensional subspaces of #such that !tfNl c tfN2% for all NUN2 e N such that N, <N2. Now
consider a family of approximating problems

P;v min yfN{ff), N e N , (2\b)

where y/N : tHN -* R is (at least) lower semi-continuous, and FN c 9{N n B.

In [43] we find a characterization of the consistency of the approximating problems PN, in

terms of two concepts. The first is epiconvergence of the P^ to P [45] which can be shown to be

equivalent to Kuratowski convergence [47] of the restricted epigraphs of the cost functions of the

approximating problems to the restricted epigraph of the original problem. Epiconvergence does

not involve derivatives of the cost function nor the specific description of the constraint sets,

hence it is a kind of "zero-order" property. The second concept consists of the characterization

of stationary points as zeros of an "optimality function" and a kind of upper semi-continuity

property of the optimality functions of the approximating problems. Optimality functions do

depend on derivatives and the specific description of the constraint set, hence they add important

first-order and structural information.
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Definition 2.1. We will say that the problems in the family {PN } Ne Nconverge epigraphi-

cally (or epiconverge) to P (PN —> P) if

(a) for every n e F, there exists a sequence {nN }N€ N, with 77^ e F^, such that nN -* 77 and

Urn ^(77^) < ^(77);

(fcj for every infinite sequence {77^ }Ne ^, K c N, satisfying 77^ e FN for all N € K and

77w-*K V, we have that 77 e F and lim^ GKyN(nN) > y/(n). D

There are two subsets involved in ourformulation of this definition. The subset N is used to pro

vide nesting of the finite dimensional subspaces HN. The subset K c N is required so that Defi

nition 2.1 is equivalent to Kuratowski convergence. This is because, not only is the sequence

{ nN } parameterized by N, but so are the problems in the sequence {PN }.

In [43,45,46] we find the following result:

Theorem 2.2. Suppose that PN 5 P. (a) If, for N e N, 77 ^ is a global minimizer of PN,
and 77 is any accumulation point of the sequence {77 # }Ne N, then 7) is a global minimizer of P;

(b) if, for N e N, rjN is a strict local minimizer of PN whose radius of attraction is bounded

away from zero, and 77 is any accumulation point of the sequence {^}WeN, then 9} is a local

minimizer of P. D

Epigraphical convergencedoes not eliminate the possibility of stationary points of P# con

verging to a non-stationary point of P: a most inconvenient outcome from a numerical optimiza

tion point of view. For example, let 0{- IR2 with 77 = (a\v), and let 7(77) = 7^(77) = (x - 2)2,
N e IN. Choose

F = {(jc,.v) e IR2 Ix2 + v2 - 2 < 0 }, (2.2a)

F*= {U,v) e IR2 I(x - v)2(a-2 + y2 - 2) <0, x2 + y2 < 2+ 1IN }, N e N . (2.2b)

Epi

Then we see that P# -» P. Nevertheless, the point (1,1) is feasible and satisfies the F. John opti

mality condition for all VN, but it is not a stationary point for the problem P (see Figure 2.1). The

reason for this is an incompatibility of the constraint sets FN with the constraint set F, which

shows up only at the level of optimality conditions. Hypotheses precluding this pathology, at

least for first order non-stationary points, were introduced in [43] using optimality functions as a

tool for ensuring a kind of "first order" approximation result that implicitly enforces convergence

of derivatives and restricts the forms chosen for the description of the sets F and F#.
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stationary point
for approximating
problem

optimal point for
original problem

Fig. 2.1: Graph of the feasible regions for the approximating problems showing that the station
ary points for the approximating problems converge to the point (1,1) which is a non-stationary
point for the original problem. The arrows around (1,1) indicate the gradients (translated from
the origin) for the two constraint functions and the objective function.

Definition 2.3. We will say that a function 0: B -» R is an optimalityfunction for P if (i) 0()

is (at least) upper semi-continuous, (ii) 0(n) < 0 for all 77 e B, and (Hi) for 77 e F, 0(rj) = 0 if 77

is a local minimizer for P. Similarly, we will say that a function 0N : HN -» R is an optimality

function for FN if (i) 0N() is (at least) upper semi-continuous, (ii) 0^(nN) < 0 for all nN e HN,

and (Hi) if 77# e FN is a local minimizer for FN then 0^(rjN) = 0 D

Definition 2.4. Consider the problems P, PN, defined in (2.1a,b). Let 0(), 0N(-), N e N, be

optimality functions for P, P^, respectively. We will say that the pairs (PN, 0N), in the sequence

{(PN, 0N)} N e N are consistent approximations to the pair (P, 0), if (i) FN —> P, and (ii) for

any sequence {nN }N€ K, K c N, with 77^ e FN for all N e Ky such that 77^ -*K 77, the opti
mality functions of the approximating problems satisfy the condition

lim^(77^)<^(77) (2.3)

•

Note that part (ii) of Definition 2.4 rules out the possibility of stationary points (points such

that 0n(tjn) = 0) for the approximating problems converging to non-stationary points of the orig

inal problem. In the sequel, we will prove a stronger condition than is required by Definition 2.4,

namely, Kuratowski convergence of the hypographs of 0N(-) to the hypograph of 0() (that is,
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-0N->-0 ).

In addition to the characterization of consistency, the theory of consistent approximations

in [1] includes various master algorithm models for efficiently solving problems such as P. Given

a level of discretization defined by N, the master algorithms construct an approximating problem
Pyv, execute a nonlinear programming ordiscrete-time optimal control algorithm as a subroutine

for acertain number of iterations on P#, and then increase N. Then the process is repeated. For
specific examples, see [13,21 ].

2.2.1. Overview of the construction of consistent approximations for optimal
control problems.

In the remaining sections of this chapter we proceed to construct approximating problems, based

on Runge-Kutta integration, to a general class of optimal control problems and show that they are

consistent approximations. To guide the reader, we provide here an outline of thedevelopment, in

a slightly re-arranged order, for a simple class of unconstrained optimal control problems with a

smooth objective function.

We start by defining the optimal control problem. In this overview we will just consider

unconstrained problems with fixed initial conditions of the form

P min /(«)
uel)

where f(u) e R is the objective function defined by

/(w) = £(a-"(D) (2.5a)

and xu(t) e R" is the solution of the systemof differential equation

x = h(x, u), / e [0,1] ; .v(0) = £ . (2.5b)

Hence, the objective is a function of the final state xu(\) which depends on the control i/el),

«(/) e R'". Note that other forms of optimal control problems such as the Bolza and Lagrange

forms can be converted into this form.

Problem P is defined over the feasible set U of controls. In the sequel, we will allow U to

include control constraints but here we will assume that it does not. The choice of U is compli

cated by the fact that while standard optimality conditions for P are expressed in the Li-norm,

/(•) is differentiate in L^fO, 1] but not in L2[0,1]. To overcome this difficulty, we define the

pre-Hilbert space

Cj[0.1]=(Z£[0J] , <-,)2 , I l2) (2.6)

which consists of elements of L™ [0,1] but is endowed with the L2 inner-product and norm. Then
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we allow U c L™ 2[0, U- Since P is an unconstrained problem, we can choose for its optimality

function

0(M) = -IV/(M)l2 (2.7)

because - BV/(m)I2 is continuous, negative valued and zero at u if u is a local minimizer of P

since a first order necessary condition for optimality of u is V/(w) = 0 (that is, V/(m)(0 = 0 for

/ g [0,1] a. e.). The gradient V/(w) can be computed according to standard formulas which are

presented in Section 3.

The next step is to construct the approximating problems through some discretization proce

dure. Our method involves (i) integrating the differential equation numerical using Runge-Kutta

(RK) integration and (ii) replacing the infinite dimensional control set U with a finite dimen

sional approximating set \JN. A RK integration method is specified by a set of parameters collec

tively called the Butcher array. The Butcher array, A = [c, A, bT], consists ofthree sets ofparam
eters. The c parameters relate to sampling instanceswhere the RK integrationevaluates the right-

hand side of (2.5b) and the b parameters are relative weights assigned to each of these evalua

tions. The A parameters affect the order of convergence of the RK method but do not play a role

in the first-order convergence analysis. The integration proceeds to compute approximations of

the state xk ~ xu(tk) at the discrete time points {tk } k=0 according to

s

xk+l = F(xk, uk) = xk + AX biKi ; x0 = £ (2.8a)

with

/-i

Ki = h(Xi +A2 OijKj, uu) (2.8b)
7=1

"u = u(tk+CjA) (2.8c)

where s is the number of stages in the RK method, A = tk+\ -tk = 1/ N (we assume a uniform

mesh in this Chapter for simplicity)and c = (c\,..., cs) and b = (/>!,..., bs) are parameters from

the Butcher array. Equation (2.8c) is a simplification of how we later define uki to take care of

the possibility that w() is discontinuous at tk + c,A. The quantities uki e Rm are called control

samples and relate to functions u g Un through a map VAN which depends on the Butcher array

A and the discretization level N. This map defines how the RK method integrates over controls

in VN.

From (2.8b), we see that the RK integration depends on the control samples uki for

k = 0,..., TV - 1, /' = 1,..., s. We must take some care if control samples occur at identical sam

pling times, but we will ignore this possibility for now. The control samples are organized as
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follows:

uk =07*,,,..., uu) g X Rm (2.9a)

u =(m0, ...,uN_i) g X X Rm . (2.9b)

In other words, the collection of control samples used by the RK method is denoted by mwhich

has N components, uky each of which contains the control samples used by the RK method over

one step. When we use ii in algebraic expressions, we will be treating it as the mx Ns matrix

u = [ u0A •••m0..v ••• "A/-I.1 •••"n-\,s ] • (2.9c)

If m= 1then u is justa row vector (not acolumn vector). The space of control samples is

t» =(XXr,(v)£,,ll£J. (2.9c)

We will specify inner-product and norm on LN in a moment. To indicate its dependence on w, we

will write the solution to (2.8a) as xk.

The next step is to choose finite dimensional subspaces LN c L™>2[0,1]. These subspaces

can be defined in many ways. In Section 4 we define two representations for LN, one based on

piecewise polynomials and the other based on piecewise constants. We define a third representa

tion based on splines in Section 7. Given a definition for LN, we relate functions u g Ln to their

control samples u g £# viathebijective map

VAtN : LN -> L/v. (2.9d)

Essentially, this map is defined in the following way: for each u g Ln,u- VA>N(u) is given by

"kj = u(h + Ci). This is somewhat different when dealing with splines. However, in the sequel

we will account for the possibilities mentioned above that (i) w(-) is discontinuous and (ii) some

of the control sample occur at the same sampling times.

Now we can define the approximating problems:

PN min fN(u)
ueVN

/N(u)=a^AMu)) (2.io)

where UN c LN n U. The reason we do not write \]N - LN r» U is because we might have to

add additional constraint on l)N, depending on how LN is defined, in order to prove consistency.

In order to compute solutions of PN using a computer we will actually solve a mathematical pro

gram involving the control samples u e LN. In order for an optimization program working in the

space LN to be equivalent to an optimization program working in the function space LN, we need
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to define the inner-product and norm on LN so that, with w, v g Ln and u =VAlN(u),
v =VaV(v),

(u>v)Ln = (w,v)2 and \u\Ln =lul2 . (2.11)

Equation (2.11) is enough todefine (•, •)/;„ and I•0/;w; we give specific formulas in Section 4 and
Section 7. With the metric defined in this way, VA>N becomes an isometric isomorphism between

LN and LN. Hence, operations in one of the space are equivalent to the same operations in the
other. Besides establishing this correspondence of operations, the definition of the metric on LN

is important from a purely computational point of view because it can prevent ill-conditioning in

the mathematical program used to solve PN. It is important to note that the metric on LN

depends only on the basis for LN, not on the optimal control problem to be solved.

The final step in theconstruction of theapproximating problems is to define their optimality

functions. Following the form of the optimality function 0() for P we choose

**(«) =-IV/a,(«)I2. (2.12a)

The computation of V/^(w) is non-standard because the gradient is defined relative to the space
LN which we define. We will show that, for u g Ln,

V/w(m) = •j=MVa.nW) i-iMft (2.12b)

where dfN(u)/du is the standard discrete-time derivative of fN(u\ which can becomputed using

formulas similar to those for Euler's method, and MN is a positive-definite matrix that depends

only on the definition of LN. This formula is slightly different for splines.

2.3 DEFINITION OF OPTIMAL CONTROL PROBLEM

We will consider optimal control problems withdynamics described by ordinary differential

equations of the form:

x(t) = h(x(t),«(/)), a.e. for t e [0,1] , x(0) = £ , (3.1)

where x(t) g R", u(t) g R'\ and hence h: JR." x Rm ->R\ Non-autonomous dynamics can be

handled by defining time as an extra state variable with / = 1, /(0) = 0.

To establish continuity and differentiability of solutions of (3.1) with respect to controls,

one must assume that the controls are bounded in L™[0,1]. However, the finite dimensional

approximating control subspaces that we will introduce must be treated as Hilbert spaces. This

can cause complications in establishing the required approximation properties of the optimality
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functions for the approximating problems that we will construct. To circumventthis difficulty, we

will, as in [43] assume that the controls are elements of the pre-Hilbert space

C2[0» 1] ~ ( «LE0, !],<•, >2 . I •h ). (3.2a)

which consists of the elements of L™ [0,1], but is endowed with the L2[0,1] inner product and

norm. Note that L™%2[0,1] is dense in L2[0,1].

We will define our optimal control problems on the pre-Hilbert space

H^ = R" x L£2[0,1] = ( R" x Z£[0,1] , (•, )H , I • \H ), (3.2b)

whose elements n consist of pairs of initial states and controls, i.e., n = (£, u). Note that H^ 2 is

a dense subspace of the Hilbert space

//2=R"xL5'[0,l]. (3.2c)

The inner product <•,•>// and norm I•lw, on H2, and hence also on H^, are defined as follows.
For any n = (£, u) g H2 and n' - (£', u) g H2,

(V,Vf)H = (^n + (u,uf)2, (3.2d)

where (£, £') denotes the Euclidean inner product, and the L2 inner product (w, m')2 is defined by

<w, w'>2 - I ("(0, w'(O) d/. Consequently, for any ^ =(£, w) g tf2,
Jo

M« - <^>// = l£l2 +""Ii • (3-2e)

Next, we introduce a compact, convex control constraint set

UcB(0,pmax) = {u g R'" IM < pmax }, where pmax is assumed to be sufficiently large to

ensure that all the controls «(•) which we expect to deal with take values in the interior of

B(0, pmax). We then define the set of admissible controls by

U = {if g L£i2[0,1] Iu(t) g U, a.e. for t g [0,1]} (3.3a)

and the set of admissible initial state-control pairs by

H = R"xUc//M|2. (3.3b)

The set H is contained in the larger set

B = R" x {u g L™>2[0, 1] Iu(t) g B(0,pmax), a.e. on [0,1]} c H^ (3.3c)

inside which all of our results concerning differential equations are valid. Finally, solutions of

(3.1) corresponding to a particular n g B will be denoted by xn().

We will consider the following canonical constrained minimax optimal control problem:
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CP m_in {yM Iy/c(n) <0}, (3 4a)

where the objective function, y/a: B -> R, and the state endpoint constraint function, y/c: B -» R
are defined by

y/(){Tl) = max /'(t?) , y/c(n) = max .TO?) , (3 4b)

where the v-th function fv: H -» R is defined by

r(?) = r(^(l)), (3.4c)

with ^"'.R" x R" -* R, and q„ = {1,2,. ..,qt,}, qc = { l,2,...,9c } (with q„ and qc positive
integers). The set qc+ q(, = { 1+ q(n...,qc + q()}. In what follows, we will let

q = { 1,2,..., q } with q = q0 + qv. By defining the feasible set F = {n g H I ^(77) < 0 }, we

can write CP in the equivalent form of problem P in (2.1a).

Various optimal control problems, such as non-autonomous, integral cost, and free-time

problems, can be transcribed into this canonical form. Also, the endpoint constraint in (3.4a) can

be discarded by setting ^(77)^-00, and control unconstrained problems can be included by

choosing pmax and if sufficiently large to ensure that the solutions «*(•) of CP take values in the
interior of U.

Properties of the Defining Functions. We will require the following assumptions:

Assumption 3.1.

(a) The function /?(•,) in (3.1) is continuously differentiable, and there exists a Lipschitz con

stant k < 00 such that for all x',x" e R", and v',v" g fl(0,pmax) the following relations

hold:

\h(x\ v') - h(x'\ v")l < tc[lx' - x"\ + lv' - v"l] , (3.5a)

lhx(x', v') - hx(x",v")l < *-[!*' - x"\ + lv' - v'1], (3.5b)

lhu(x\ v') - hu(x", v")l < k[Ix* - x"l + lv7 - v"l] , (3.5c)

(b) The functions ^l/(-, •), Q(-, •) and ££(•, •), with v g q, are Lipschitz continuous on bounded
sets. •
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The following results can be found in [58]

Theorem 3.2. If Assumption 3.1 is satisfied then

(i) there exists an k < oo such that for all 77', 77" g B and for all / g [0,1]

Ixfy) - xn'\t)\ < K\n' - n'lH ;

(ii) there exists a L < oo such that for all n g B and all / g [0,1]

\x\t)\ <L(1+B£I) ;

(Hi) the functions y/a:B -> R and y/c:B -> R are Lipschitz continuous on bounded sets;

(iv) the functions /'(•), v g q, have continuous Gateaux differentials £>/" .Bx H^ -> R that
have the form Df\n; SV) = (Vf(n), Sn) H-

(v) the gradients V/1'; B -* fl^, V/'O/) = (Vffv(n), Vh/v(t7)), v g q, are given by

V{fv(*l) = V'tf.j'O)) + ^'"(0), (3.6a)

VM/V07)(0 = M*(0.m?pVJI{t) , W e [0,1], (3.6b)

where //'^(f) g R" is thesolution to theadjoint equation

pv = -hx(x\u)Tpv , pv{\) = Vxr«. Jf"(D) . ' e [0,1], (3.6c)

and are Lipschitz continuous on bounded sets in B. •

An Optimality Function. Referring to [59] the following result holds because of Theorem 3.2:

Theorem 3.3 For any n g B, let

^.(77)+= max {0,^.(77)} , (3.7a)

and for any 77, 77' g B and a > 0, let

¥(77,77') = max {\ff„(7j) - y/(l(n') - ay/v(n\ , y/c(rj) - y/c(n')+ }. (3.7b)

If Assumption 3.1 is satisfied and 77 g H is a local minimizerof the problem CP, then

D2v0i*r);ri-v)>0, V//eH, (3.8)

where D2^ indicates the directional derivative of ¥(•, •)with respect to its second argument. D

Next we define an optimality function 0: B -» R for CP. For any 77, n' e B and v g q, we

define a first-order quadratic approximation to /"(•) at 77 by

7 "(77,77') =fil) +<Vr(77), 77' - n)H +i I77' - n\2H . (3.9a)

We define the optimality function, with the same fixed a > 0 used in (3.7b), by
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0(77) = min max \ max / v(n, n') - y/(>(n) - a^.(j])+ , max / "(77,77') - ^(77)+ \ . (3.9b)
n €H [f^n ve q(.+</„ I

The existence of the minimum in (3.9b) follows from the convexity of the constraint set H and of

the max functions in (3.9b) with respect to 77', and the fact that / ^(77,77') -> 00 as l^'l -» 00[60,

Corollary 111.20 (p. 46)]. Note that if /v(77) = -00 for all v g qt. + q(), so that ^(77) = -00, then

(3.9b) reduces to

0(n) = min max fv(n) + (Vf(V), n' -n)H +\ It?' - r\\2H - ^(77). (3.9c)

Referring once again to [58] we find the following result:

Theorem 3.5. Let 0:B -> R be defined by (3.9b). If Assumption 3.1 holds then, (i) 0() is

negativevalued and continuous; (ii) the relation (3.8) holds if and only if 0(ji) = 0. •

2.4 APPROXIMATING PROBLEMS

The construction of a family of approximating problems for our problem CP, in (3.4a), sat

isfying the axioms of the theory of consistent approximation requires the construction of nested

families of finite-dimensional subspaces of the initial state-control space H^, approximating

cost functions, and approximating constraint sets. Our selection of these approximations is

largely determined by our intention to use explicit, fixed step-size Runge-Kutta (RK)

methods [61,62] for integrating the dynamic equations (3.1). Throughout this chapter, we

assume, without lossof generality, that the integration proceeds with a uniform step-size. We will

relax this assumption in Chapter 4.

2.4.1 Finite Dimensional Initial-State-Control Subspaces

We begin by defining families of finite dimensional subspaces HN, with

HN = R" x LN a H^i, where the LN are finite-dimensional subspaces of L^2[0,1], spanned

by piecewise-continuous functions to which RK methods can be extended. Hence, given an

explicit, fixed step-sizeRK integration method, using step-size A = 1/N, we impose the following

conditions on the subspaces LN:

(i) For any bounded subset S of B, there exists a k < 00 such that for any 77 g S n HN, the

RK method results in an integration error no greater than kIN in solving the differential equation

(3.1).

(ii) The data used by the RK integration method is an initial state and a set of control
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f
samples . We will require that each set of control samples corresponds to a unique element

Condition (i) will be needed to prove that our approximating problems epiconverge to the

original problem. For the subspaces LN that we will present, we will actually be able to prove

more than first order accuracy. Condition (ii) facilitates the definition of the approximating prob

lems and makes it possible to define gradients for the approximating cost and constraint func
tions.

We will now show how the choice of an RK integration method affects the selection of the

subspaces LN. The generic, explicit fixed step-size, j-stage RK method computes an approxi

mate solution to a differential equation of the form

*(/) =£(/,*(/)), jc(0) =£, /g[0,1], (4.1a)

where h :R x JR." -» R" is continuous in / and Lipschitz continuous in x. It does soby solving
the difference equation

xM=xk+At,biKkJt x0 =x(0) =4, kg9{= {0,\,...,N-\ }, (4.1b)

with A = \/N,tk = kA, and Kki defined by the recursion

1-1

Kk,\ = h(rkA,xk) , KkJ = h(TkJ, ** +A E aLjKkJ), i = 2,..., s , (4.1c)

where, for convenience, we have defined

TkJ=tk+CiA, A= UN . (4.1d)

The variable xk is the computed estimate of x(tk). The time points {tk } k=0 define the integra

tion mesh, also referred to as the discretization mesh. These time points will also be referred to as

breakpoints in the context of piecewise control representations.

The parameters a{J, c, and bh in (4.1b) and (4.1c) determine the RK method. These param

eters are collected in the Butcher array A = [c, A, bT]. The Butcher array is often displayed in
the form:

The term control samples will be clarified shortly.
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A =

c\ 0

C.2 a2\ 0

cs a.s,\ as,s-l 0

*i bx-\ bs

The following assumption on the b parameters will hold throughout this chapter (conditions on
the c parameters will be added later):

Assumption 4.1. For all i g s, b{ > 0 and EJ=i btf = 1. D

Remark 4.2. The condition E/=i bt = 1 is satisfied by all convergent RK methods. Other con

ditions must besatisfied toachieve higher order convergence for multi-stage RK methods. •

Now, in our case, h(t, x) = h(x,u(t)) and the elements u(t) of the subspaces LN will be

allowed to be discontinuous from the left at certain pre-specified points. Hence, h(•, x) is discon

tinuous and special care must betaken toensure accurate integration. For this purpose, the values

u(rkj) must sometimes be replaced by left limits as appropriate for the particular choice of the

subspace LN. We will refer to these values as control samples and denote them by u[rkj\ where,
if necessary, u[tu] = linyj^. u(t). The specific definition ofu[rkf\ depends on the definition of

LN, but clearly if w(-) is continuous at rkj then u[Tkti] = u(Tkti).

The recursion (4.1c) evaluates h(,) s times for each time-step k g 9£ If we collect the

corresponding s control samples into a matrix cok = (u[rktl] •••u[rk J), we can replace equations
(4.1b) and (4.1c) with

s

xM = xk + AE bjKu , x0 = *(0) = 4 , k g 9i, (4.3a)

where Kki = Kt{xk, cok) which is defined by the recursion

i-i

Kx(x, co) = h(x, cox) , Ki(x, (o) = h(x + AE aitjKj(xt co) ,07,), i = 2,..., s , (4.3b)
7=1

where co, is the /-th column of co. Equations (4.3a,b) can be written equivalently as

s _

*k+i = *k + AE bjh(Yu, coi), x0 = x(0) = ^ , /: e Oi, (4.3c)
i=l

where, for each /:,

i-\

?k,\ = Jf* . YkJ = ^. +AE ajjh(YkJ,cOj). (4.3d)
;=l

The quantities f)t%/ are intermediate estimates of jc(rjtt,-).
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We will define the control subspace L#, in such a way that there is a one-to-one correspon

dence between elements u g Ln and the samples of u[tk + c,A] used by the RK method with

step-size A = \/N. The definition of LN is somewhat complicated by the fact that some of the c/

elements of the Butcher array may have the same value. This causes the RK method to use sam

ples at times tk + c,A more than once and hence leads to a reduction of the dimension in the asso

ciated subspace LN. To keep track of the distinct values of the c, elements of the Butcher array,

we define the ordered set of indices

I— {'i» '2. •••. 'V } - {i e s Ic; * C/,V; gs,;</}, (4.4a)

and let

Ij= {i g s ICj = ctj, ij g / } , j g r . (4.4b)

Thus, the total number of distinct values taken by the elements c, in the Butcher array is r. For

example, if c = {0,1/2,1/2,1 } (as in the most commonly used fourth order RK method), then

r = 3, / = {i, = l,/2 = 2,/3 = 4 }, /, = { 1 }, I2 = {2,3 }, and /3 = {4 }. If each c, is dis

tinct, then r = s, ij = j, and Ij is the singleton {j }. Otherwise, r <s and ij > j for each j e r.

By construction of the set /, the r distinct sampling times in the interval [tk,tk+\], k g %[

are given by TkJj, j g r, ij e I. Corresponding to each sampling time there is a control sample

u[rk,.] g Rm. The collection of these control samples can be viewed as a vector u e XX Rm,
'J N r

where the symbol X indicates the Cartesian product of N spaces. We will partition vectors

u g X X Rm into N blocks, as follows:
N r

it = 070,wi,...,«am) . (4.5a)

where each block uk g X R'", k g fA£ is of the form
/•

»k:=(«*.!» •••»l7*,r). (4.5b)

with ukj g R'", j g r, corresponding to the samples u[zki], ij g /, used by the RK integration

during the k-th time interval. Our algebraicexpressions are simplified if we treat mas the mx Nr

matrix [u0, • •u0r •••mn_, , •••uN_i r], i.e., we will identify XX Rm with the space ]RmxNr of
' N r

mx Nr matrices. Similarly, in algebraic expressions, will treat uk as the mxr matrix

[uk] •••ukr\. The standard innerproduct on X X R'" is the l2 Euclidean innerproductgiven by
N r

AM r

(m.v),, = E 2,(«k.pVk.j). (4.5c)

Let G be the rxs matrix defined by
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r1'
• \T

G= 2 . (4.5d)

where, for each 7 g r, 1J =(1,1,..., 1) is a row vector of dimension 17,1 (17,1 is the number of
elements in If). Then we can associate the components uk, k e fA£ of a vector mg XX Rm,

N r

with the matrices cok used by the RK method (4.3a,b) by setting cok = ukG = [uu •••Mjk,r]G.

We now present two control representations that define subspaces L'N c L™2[0, U,

i = 1,2, N g IN, of dimension M777, such that u~=1 L]N and u~=1 L^ are dense in L™ 2[0,1].
Both representations reduce to simple square pulses for Euler's method (r = 1). The basis func

tions {ei®'Nkj }££2L,</=1, 1= 1,2, with *?/ the /-th unit vector in R and &NJtk :[0,1] -» Rm,
that we use to construct the spaces L'N are not orthonormal. Hence, for numerical calculations,

we associate with these spaces Nrm-dimensional spaces of real coefficients of the form

4 =( XX R'" , (.,.)^ , 1•1^ ) , /=1,2 , NgIN , (4.5e)

where the inner products and norms are chosen so that for any u,v e L'N, with

"(0 =X?=u=i **j <.;.a(0 and v(r) =Ejiu=i ^ <,,,*('). r e [0,1],

(w,v)2 = (u,v)ri , luD2 = lulr', (4.5f)

where SeXX R'" is defined in (4.5b,c). The spaces L'N will be needed to define gradients for

the cost and constraint functions of the approximating problemsas well as in setting up numerical

implementations of optimal control algorithms. Figure 4.1, which follows the definitions of L'N

below, illustrates the relationship between the various control spaces.

The reason that wechoose an L2 norm preserving, nonstandard inner product on L'N is that

if weuse thestandard l2 inner product and norm on L'N (as is commonly done), we might, unwit

tingly, cause serious deterioration in the performance of numerical algorithms which solve the

approximating problems in thecoefficient spaces L'N. The extent of this ill-conditioning effect is

illustrated in Section 6. Of course, if our basis for L# had been orthonormal, then standard l2

inner product would be the appropriate choice. The purpose of defining different control repre

sentations is first, that the solutions of the approximating problems have different properties for

the different representations (this is discussed at the end of this section) and, second, some results

for the second representation are used to provide results for the first representation (Conjecture

5.11 and formula (7.19b)).
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Representation Rl

(Piecewise r-th order polynomials)

Assumption 4.3. For all / g s, c, g [0,1]. •

Foreach k g !A£ define thesub-intervals Tk = [tk, tk+l) and define pulse functions

n^*(0 ={0 e.sewhere . (46a)
Then, define the finite dimensional control subspace LlN as follows:

LJ, = {ug L?[0.1] I«(/) =IE ukJ &lNXj(t), ukJ g JRm, Vt e [0,1]}, (4.6b)
*=0 7=1

where

OJu,y(0 ~ 0AU,,nAuC), ke9i, (4.6c)

w»th (pNxj(0 the y-th Lagrange polynomial for the points {rUj }rj=], ij e /, defined by

/ = I (**,/, - **,/,) (4.6d)

with the property that <f>N,kJ(TkJl) = 1if/ = j and ^N,kJ(rUl) = 0 if / * y. By construction ofthe
set /, /,,/, e / implies that ru. * rUl if / * j. Hence, the functions <pNxjt) are well-defined,

and the functions OlN kj(-) are linearly independent. The function JNXjiO is thus the unique r-th
order polynomial that interpolates {(TkJ.tukJ)} rj=l on the interval [tk, tM]. The control sam

ples for L}n are given by

r -, • u(Tki) if r*.- g T\"{TkA=\ .. "' .. ' k ,ke0i,iel . (4.6e)[hm/trwM(/) if TkJ=tk+l

Proposition 4.4. Let LlN be defined as in (4.6b) and define the map

vJU--4->xxr»'
N r

«»-»{{ u[rkJj]} rj=l }S , ij e / , (4.60

with i*[-] given by (4.6e). Suppose Assumption 4.3 holds. Then VAN is invertible.

Proof Let u(t) =Ej=o EI=i ukJ0lNkj(t) be an arbitrary element of LlN. Assumption 4.3
implies that ru. g Tk. Next, it follows from (4.6e), that u[TkJj] = E>=i "k.jQN.k.Mu ) = uk.j>
because of the interpolation property of Lagrange polynomials. Hence VAN is invertible. D
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The polynomial pulse functions {OlNXj(t)} k=JjJ are linearly independent, but they are
neither orthogonal nor normal with respect to the L2 inner product and norm. To complete the

definition of the spaces LN in (4.5e), we will now define the required inner product, which, in

turn, defines the norm. First, let u g LlN and note that we can write each r-th order polynomial
piece Ey=i u'kj<pN,kj(t) m(4.6b) as a power series akP(t - tk), where ak is an mxr matrix of
coefficients and the function P: R —> Rr is defined by

P(0 = [1 t/A-(t/A)r-]]T. (4.7)

If ii = Va,n(u), then from Proposition 4.4, ukj = akP(c,.A), j g r, ij g /. Hence,

"* = [wjk.i ••"*,r ] = <*kT"x where

-[*'/, i,*>] =A) P(chA)-P(c (4.8)

uC'l -'2
,r-l

The matrix T ' is aVandermonde matrix and the r values c,., /, g /, are distinct. Therefore, T l
is non-singular and ak - ukT. Hence, for each k g 9£ u(t) - ukTP(t - tk) for t g [tk, tk+l).

r\We now define the inner product between two vectors u, v g Ln, with u = (V^w) (") and

v = (^)_,(v),by

(u,v)Li =(u,v)2= E f <w0*+'),*'(/*+ r))d/
A=0 J0

=E fA<w,rpo),vtTPO))^

N-\ 1 fA
= A E traceC^. T- P(t) P(t)Tdt TTv\)

AM

= A E trace(iik M, v[) ,
k=0

where T was defined by (4.8), P() was defined in (4.7), and

MX=T
1 rA T- P(t)P(t)Tdt
AJq

TT = TH\\b(r)TT

is anrxr symmetric, positive definite matrix with
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Hilb(r) =

- 1 1/2 1/3 1/r

1/2 1/3 1/4 •• • l/(r+l)

1/3 1/4 1/5

Ll/r l/(r+l) l/(2r-l)Jrxr

the Hilbert matrix whose 1,7-th entry is I/O + 7-I). Note that both Hilb(r) and T are ill-

conditioned matrices. However, the product in (4.9b) is well-conditioned (the product corre

sponds to switching from the power-series polynomial representation backto the Lagrange expan

sion). The matrix M\ is positive definite because Hilb(r) is positive definite and T is non-

singular. Given ug L]n, its norm is Iw0~, = (u,u)L\ . Finally, if we define the N-block diago
nal matrix

M/v=diag[A0/V/l,A,M1,...,AAMM, ] ,

(4.9c)

(4.9d)

with Ak —tk+\-tk = \IN (in this chapter), then we can express the inner product given by (4.9a)
more succinctly as

(»»v>^ = (mM^.v)^ = tvact(uMNvT) (4.9e)

We have introduced the notation of A^ here in anticipation of using non-uniform meshes in later
chapters.

Remark 4.5. A special class of functions within representation Rl is the subspace of r-th
order, 777 dimensional splines [63]. The dimension of the spline subspace is only a fraction of the

dimension of LXN. Our results for Rl can be extended to splines; this extension is presented Sec
tion 7. n

Representation R2

(Piecewise constant functions)

For7 g r, /; defined in (4.4b), let

bj= E bh
i e h

dj= A2>,, dQ = 0
1=1

(4.10a)

(4.10b)

If all the c, elements ofthe Butcher array have distinct values then dj = AE/=i bt. At this point,
we can replace Assumption 4.1 with the following weaker assumption:

Assumption 4.1' Forall 7 g r, b} > 0 and dr = A. D
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Note that Assumption 4.1' implies that for all j g r, d}>dj_x, and that tk +dj g [tk,tk+l],

Next, we introduce one additional assumption which is stronger than Assumption 4.3 used
for representation Rl.

Assumption 4.6. For 7 g r and ij g /, </,-_, <a A<dj, so that rkJ. g [tk +dj.], tk +dj]. n

Now, for each k g fA^and 7 g r, define the sub-intervals TkJ = [tk +dj_x,tk +dj) and let the
basis functions ®2N ktJ: R -»R be defined by

^2 , x . f 1 if' e 7\2;*W'>={0 elsewhere. <4-"«>
Then, define the finite dimensional control subspace L2N as follows:

AM r

L}v = {u G L2"[0,1] 111(f) = Z I, Sk.j <*n k,('). BkJ GRm, Vt € [0,1]} . (4.1 lb)
*=o y=i

The control samples for L2N are given by

, . "(**,-.) if r*... g Tl:u[rUj] = ,. **''' .f ^ /"/ . ,*g 9i, ij G/ ,7g r . (4.1 lc)

Proposition 4.7. Let L2N be defined as in (4.11 b) and define the map

N r

UH> {{ u[TkJj] }5=1 }fc1 , ij G/ , (4.1 Id)

with w[]given by (4.1 lc). Suppose Assumptions 4.1' and 4.6 hold. Then VAN is invertible.

Proof Assumption 4.1' ensures that the support for each <b2N kj() is of nonzero length. This
ensures aone-to-one correspondence between the elements of L2N and the vector coefficients ukj,
in (4.11b). Next, Assumption 4.6 together with definition (4.11c) of w[] implies that for any

ug L2N, with u(t) =Ej£o Ey=i w*.j!^v.*.;(0. u[rkJ] =ukJ for all kg !A£and 7g r. Hence,
V^.a/ *s invertible. D

_2

To complete the definition, in (4.5e), of the spaces LN we will now define the required inner

product and norm. We define the inner product between two vectors u,v g L~n, with

« =(VJUr'tf) and v =(V2ANr\v), by

N-\ r frfy
<W,V)£2 = (U,V>2 = E E f ' <"('* +0,vOa +t))dt

k=Q j=\ Jdi_f
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where,

N-\ r _

= A E Y.bj(uktJ
*=0 >=1

>V*,; )dt

A/-1

= A E trace(w* M
*=0

r2V,),

\il 0 "

M2 = .

0 br_

(4.12a)

(4.12b)

Since all bj>0, M2 is diagonal, positive definite. Given it g L2n, its norm is lul2r2 = (w,w)r2

Finally, if we define the N-block diagonal matrix

MN = diag[ A0M2,A,M2,..., A*,.,M2], (4.12c)

with AA. = tk+l - tk = 1/ N (in this chapter), then we can express the inner product given by
(4.12a) more succinctly as

(w.v)^ = (uMN,v)l2 =trace(i7MA/v7') (4.12d)

Remark 4.8. In place of (4.10b), we could have used the alternate definition dj -AE/=j bt
and set ukj = u[rkj] forall j g s, k e 9^ In this way, samples corresponding to repeated values

of Cj in the Butcher array would be treated as independent values and the space LN would have to

be correspondingly enlarged. However, Proposition 6.2 in Section 6 indicates that (4.10b) is the

preferable definition. •

The relationship between the spaces L^2[0,1], LN and LN and the relationship between a func

tion u e LlN and its control samples m= VA N(u) are illustrated in Figure 4.1.

2.4.2 Definition of Approximating Problems

For N g N, let

HN=]R.nxLN , (4.13a)

where LN = LXN for representation Rl or LN = L2N for representation R2. Since H^cH^, it
inherits the inner product from //„ 2which, for n', n" g Hn, with n' - (£', u') and n" = (£", u"),
is given by

<^'% = <f>r>+<^o2. (4.nb)

Also, for any ng Hn, M5, = (n,n)H. Similarly, for Ng IN, we define the coefficient spaces
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u J 1

k+l

ui\
uk,2

U G L 'N

%L ^ *
lk-l k+l

Fig. 4.1: The diagrams above depict the relationship between the various control spaces. On top, the map
VAi/v, which is a bijection, identifies control functions in the finite dimensional spaces LN with theircontrol
samples in the coefficient spaces LN. The spaces LN are subsets of the infinite dimensional spaces
^wl0' 1]. The two bottom plots show a portion of a single control, it e LN for an RK method with
c = (°> 2' 2) and b= (|, §, \). Since r = 3 there are three control samples per interval. The middle plot
shows ue L]N; u is composed of third order polynomial pieces. The bottom plot shows ue L2N\ u is
piecewise constant. For the *-th interval the samples are taken at times rkj = tk + CjA, j - 1,2,3, where
A = UN is the step-size. Notice that the samples at rk,, and ru occurat points of discontinuities in u().
The definition of thecontrol samples, ukj = u[rkj], ensures that the samples on the Jt-th interval are taken
from the k-th polynomial piece for u e Ljy, and for u e L2N, the kj-lh sample is taken from the *,7'-th
piece. Note that this picture would look exactly the same for a four stage RK methods with c = (0, \ , \ 1)

and b= (£ , \ ,^,£) since, in this case, there is arepeated sampling time (c2 = cy and b2=§).
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HNby

HN=lRn xLN , (4.14a)

where L# = LN or L/y = L#. The innerproducton H^ is definedby

<*r. *">*„ = <r. r>+<n\ u,fhN, (4.14b)

and the norm correspondingly. Let WAN : HN —> /?# be defined by ^#(77) = (£, VA ^(m)) f°rrepre-

sentation Rl and WAN(n) = (£, VAA/(«)) for representation R2, where 77 = (£, u). Then we see that

^A.N is a nonsingular map and, with our definition of the norms on H^, provides an isometric isomor

phism between //# and /?#. Thus, we can use the spaces H^ and //# interchangeably.

Next, we define control constraint sets for the approximating problems, as follows. Let U

be the convex,compact set used to defineU in (3.3a). Then, with kv < 00, we define

VlN= {i? g LlN\ukJ eU, j Gr, Ifi^D., < ._ _ kv, 7=2,..., r Vie!^} (4.15a)

C*i={Heril gA></ g t/ Vyer.ite^}, (4.15b)

where Tj is the 7-th column of the matrix T, defined by its inverse in (4.8), and A = UN, as

before. Finally, wedefine theconstraint sets fortheapproximating problems by

H* = R" x VA]N(VN) c HN , (4.15c)

and their reflections in coefficient space:

HAr±R"xOA, cHN , (4.15d)

with \JN = U^ and VAN = VAN for representation Rl and U^ =U^ and VAiV = V\N for repre
sentation R2. We assume that pmax was chosen large enough in (3.3c) to ensure that HN cB.

Remark 4.9. The constraints on Im^I^ appearing in the definition of UlN were introduced to

ensure that each polynomial piece, E;=i "kj^Nxji')* of u= ^aV") is Lipschitz continuous on
['*>'*+!] witn Lipschitz constant kv, independent of N. That is, \uN(xx) - uN{t2)\ < kv for all

*"!» *2 e [tk,tk+\], k g 9£ This piecewise Lipschitz constant is needed to establish that the accu

racy of the RK integration increases at least linearly with decreasing step-size (Lemma A.l and

Lemma 4.10(0, but seeRemark A.2). The need for this piecewise Lipschitz continuity is demon

strated in Remark 4.13. In the next section we will show that the control samples of solutions to

the approximating problems we define do not depend on the control representation (Proposition

5.5). Because of this, we will conjecture (Conjecture 5.11) that the piecewise Lipschitz continu

ity constraints in the definition of Cyy can be dispensed with if the assumptions required for the
approximating problems defined with control representation R2 (which are strong assumptions
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than those required for representation Rl) are met. •

Next, with 77 = (£,w) g Hn and ij =(£,«) =WAtN(rj\ we will denote the solutions of

(4.3a,b), with cok =ukG, ke Oi by {xnk)k=o or, equivalently, {xnk }£<>. The variable jtjf is thus
the computed estimate of *""(/*)• Finally, for v g q, let /^://„-» R and /JJ :HN->JR be
defined by

//fa)=r(#.4) = 7SJ(^)-n*.4). ^q, (4.i6)

where ^l'(-,) was used to define /"(•) in (3.4c). We can now state the approximating problems
as:

CP/v min { y/0tN(n) IYCtN{n) < 0}, (4 17a)

where y/(KN(n) = max /^(rz) and y/c N(rj) = max /w(t;), or equivalently, in the form in which
v 6 q„ ' ve q,.+</„

they must be solved numerically:

cpn _min {VoMn) 1WcAv) ^0} > (4.17b)

where 1/,, ^(77) = max /^(^) and y/cN(fj)= max /w(t7). By defining the feasible set
''H ' veqc+q0

FN = { tj g H# I y/c^{n) ^ 0}, we can write CPW in the equivalent form of problem PN in

(2.1b).

Note that for any « e U n L'N, i = 1,2, where U was defined in (3.3a), m= VA N(u) satis

fies ukj g (7, for k g !A£ 7* g r, because w(0 g £/ for all t g [0,1]. Hence, for representation

R2, (4.15b,c) imply that Hn HN c UN. Conversely, u g 0^<=>(VAA,rI(«) g U, and there
fore HN<zH<~^ HN. Consequently, for representation R2, Hjy=Hn HN. Unfortunately, for

representation Rl HN * H n HN. First, U^ HN<tUN because elements u g U <~> L]N do not

necessarily satisfy the Lipschitz continuity constraint imposed by (4.15a). Second, if r > 2

(except for the case r = 2 and the Butcher array elements c = (0,1)), HN <£H n //# because,

given h"g4 generally IV^^U >ImIco,[63, p. 24]. Hence, if {77^ =(£N,uN)} N€N,
N c N, is a sequence of approximate solutions to the problems CP# using representation Rl, it

is possible for the uN to violate the control constraints in CP. However, as we will see, the limit

points of such a sequence do satisfy the control constraints in CP. This problem of constraint

violations for representation Rl could have been avoided by choosing HN =H^ //# (as in [43])

and letting HN = WAN(HN), but the set HN would then be difficult to characterize and we would

have to impose a Lipschitz continuity constraint directly on the set H, which would be unaccept

able.
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Nesting. The theory of consistent approximations is stated in terms of nested subspaces HN.

This allows the approximate solution of an approximating problem CP/y, to be used as a "warm-

start" for an algorithm solving an approximating problem CP#2 with a higher discretization level

(#2>N|) (see [55,57]).

For representation Rl, for any N g N, N > 1, L]N<zL2N, and therefore doubling the dis

cretization level nests the subspaces. If u e LXN, then v = VA2N(u) can be determined from

" = vaMu) usinS (4-7> and (4-8), as follows. For k g fA£and j g r, v[k = ukTP(cj/2N) and
V2/.-+1 = "* TP((cj + 1)/2N). For representation R2, Ll/CzL2^ where d is the smallest common
denominator of the parameters bj, j g s, in theButcher array, which is finite assuming, as is typi

cally the case, that the bj are rational. Thus, the discretization level mustbe increased by factors

of d to achieve nesting. If u e L2N and u= VAN(u), then v = V\dN(u) is given, for k e 9i
/,7 g r, and / = 1 d,by v'dk+, = ukJ for dj_x <lld <d}, where dj isdefined in (4.10b).

2.4.3 Epiconvergence

We are now ready to establish epiconvergence of the approximating problems. First we present

convergence properties for the solutions computed by Runge-Kutta integration on HN. The proof

of the following lemma, given in the Appendix A, differs from standard Runge-Kutta results

because of the presence of (possibly discontinuous) controls in the differential equations.

Lemma 4.10. For representation Rl, suppose that Assumptions 3.\(a), 4.1' and 4.3 hold. For

representation R2, suppose that Assumptions 3.1(a), 4.1', and 4.6 hold.

(i) Convergence. For any bounded subset 5cB, there exist k < oo and N * < oo, such that

for any 77 g S n HN and N > N *,

lxHtk)-xll<^ , *e {0,\,...,N}. (4.18a)

(ii) Order of Convergence. Additionally, suppose the Runge-Kutta method is order p,
(see[61,62]) and /?(•, •) is p-1 times Lipschitz continuously differentiable. Let

J>0—1

H(^= {/7 =(^,w) eH^ 10 ^^zr ("('1) ~"('2))H ^«-' Vtl,t2e[tk,tk+l), ke9t) (4-18b>
where k' < 00 is independent of N. Then for representation Rl, there exist k < 00 and A/* <oo

i(p)such that, if either 77 g S r\ H£\ or if 77 g S n Hyy and h(x, u) = h(x) + Bu, where B is an nx

constant matrix, then forany N > A/*,
m

ixHtk)-x^<— , *g{0,1 N). (4.18c)

Bound (4.18c) also holds for representation R2forany 77 g S n H# if h(x,u) = h(x) + Bu. o
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In proving consistency, we will need to add a version of Slater's constraint qualification on the
problem CP.

Assumption 4.11. For every 77 g Hsuch that ^.(77) ^ 0, there exists asequence {77, }J, such
that 77, g H, M77,) < 0, and 77, -> 77 as/ -> 00. D

Theorem 4.12 (Epiconvergence). For representation Rl, suppose that Assumptions 3.1, 4.1',
4.3 and 4.11 hold and let d = 2. For representation R2, suppose that Assumptions 3.1, 4.1', 4.6
and 4.11 hold and let d be the least common denominator for the elements bj, j e s, of the
Butcher array. Let N= {dl} ~,. Then, the problems {CPW }NeNconverge epigraphically to
the problem CP as N —> 00.

Proof Let ScB be bounded. Then, by Assumption 3.1 (b) and Lemma 4.1 Of/), there exist

k',k < 00such that for any v g q and for any nN g S n H#,

\fv(VN) ~fVN(rjN)\ =ir(^.^d)) "r(£tf,4")l **-'l**"(l) - xlNl <£ . (4.19a)
Now, let v' g q„ be such that y/(){nN) = fv'(nN). Then,

¥a(rjN) - VoMIn) =fv\vN) ~Vo,n(Vn) f̂v\vN) - In^n) ^jf • (4.19b)
By reversing the roles of \i/„(nN) and WoM^n) we can conclude that

¥o(Vn) ~VoMIn) ^Jj • (4.20a)

Similarly,

\Vc(1n) ~VcAi1n)\ ^jj • (4.20b)

Now, given 77 g H such that y/c(n) < 0, there exists, by Assumption 4.11, a sequence

S = {77/ } j e n> with 77, g H, such that 77/ -> 77 as / -»00 (hence S is a bounded set), and

iyc(7]j) < 0 for all i. Now, clearly for each /, there exists N{ g N and 77'̂ . g FLn. such that (a)

kIN{<- 1/2^(77,), (b) \rfN.' - 77,1 < 1/Nh since, for both control representations, the union of

the subspaces //# is dense in H2 which contains H^ and H^Z/^cH^, (c)

Vciiln?) ^ l/2^c(77,) due to Theorem 3.2(m), and (d) Nj < Ni+]. It follows from (4.20b) that

\]/c^M{nN')<\i/c{nN.,) + KlNi<\l2y/c(ni)-\-KlNi<0 for any /,k g N. Now consider the

sequence S" = {J/«" }me n defined as follows: if M = Nj for some / g N, then tjm" = nNj' for

M = NhNj + d,Nj + 2d,...,Ni+l -d. Then we see that \j/cM{nM")<0 for all M g N,

Vm"-*7! as M—>oo (hence 5" is bounded), and by (4.20a) and Theorem 3.2(iii) that

lim^ e n Wo,m(Vm") = JM7?)- Thus, part (a) of Definition 2.1 is satisfied.
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Now let S = {tjn} NgK, KczN, be a sequence with 77^ = (£N,uN) g Un and

VcMVn) ^ 0 for all N g K, and suppose that 77^ ->* 77 = (£,m). First, we want to show that

77 g H. For any v g R"\ let d(y, U) =min/ ev Iv - v'l. Since u= VAtN(uN) e V(N, i = 1,2,
for each N, ukJ e U for all k g 9£ 7 g r. For representation Rl,

nm/ €[O.n.N €kd{uN(t),U) = 0 since elements, uN g Ujy are piecewise Lipschitz continuous
polynomials, with Lipschitz constant independent of N, defined over progressively smaller

tintervals . For representation R2, d(uN(t), U) = 0 for all N g Nand t e [0,1] since uN g V% is
piecewise constant. This implies that u g U; hence 77 g H. Furthermore, ^(77) < 0 by (4.20b)

and the continuity of y/c(•). Finally, by (4.20a) and Theorem 3.2(7*7,), \\mN €Ky/0tN{nN) = ^(77).
Thus, part (b) of Definition 2.1 holds. •

Remark 4.13. In [42], Hager empirically observes that RK methods with bj = 0 for some 7,
such as the modified Euler method, cannot be used to discretize optimal control problems. This

requirement, formalized in Assumption 4.1, is used in our proof of epiconvergence. However, for

Representation Rl, epiconvergence of PN to P can be established even if, for some 7, bj < 0.

This is because of the Lipschitz continuity constraint imposed on the setU)y in (4.15a).

Nonetheless, our experimental evidence suggests that using an RK method with bj < 0 is

unwise. For example, the three stage, third order RK method with Butcher array

0
1

4

1

4

1
7 12

5 5
1 8 5
6 9 18

was used to discretize the problem described in Section 6 at discretization level N = 10. The

solutions uN for different values of Lipschitz constant icy are plotted in Figure 4.2a. For com

parison, the solutions of the approximating problems produced with the third order RK method

with Butcher array

0
1

2

1

2

1 -1 2

1 2 1

6 3 6

are presented in Figure 4.2b. For both, with kv small, the quadratic polynomial pieces in each

time interval are forced to be fairly flat. But, as kv is increased, the solutions for the "bad"

' It can also beshown bycontradiction that d(uN(), U)-* 0 a.e. on [0.1] without requiring, in(4.15a). elements of U^ tohave
a uniform piecewise Lipschitz constant.
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method become increasingly worse and the control solutions remain pushed against the Lipschitz

continuity constraints. On the other hand, the solutions for the "good" method become better as
sic

Ky in increased. In fact, when Ky is bigger than the Lipschitz constant of the true solution u , the

Lipschitz continuity constraints are inactive for the "good" method (see Remark 4.9). This is

seen in Figure 4.2b since the solutions for Ky = 1 and Ky = 10 are identical. As Ky is increased

from 0.1 to 10, the error ma\kJ\uN*[tkj]-u*(TkJ)\ goes from 0.0332 to 7.9992e-4 for the
"good" method and goes from 0.0332 to 1.9119 for the "bad" method.

The conditions imposed by Assumptions 4.3 and 4.6 on the c parameters of the Butcher

array are needed because of the discontinuities in the controls ueL'w,/ = l,2. D

2.4.4 Factors in Selecting the Control Representation

The choice ofselecting LN = LXN versus LN - L2N depends on the relative importance ofapprox
imation error versus constraint satisfaction. It follows from the proof of epiconvergence, that irre

spective of which representation is used, if {77^ }N6 N is a sequence such that 77^ g Hn, and

nN -* 77> then 77 g H. Thus 77 satisfies the control constraints. However, as mentioned earlier, if

representation Rl is used, then 77^ may not satisfy the control constraints for any finite N (except

for the case r = 2 and c = (0,1)). Since a numerical solution must be obtained after a finite num

ber of iterations, representation R2 should be used if absolute satisfaction of control constraints is

required.

If some violation of control constraints is permissible, then representation Rl may be

preferable to representation R2 (although, see comment about transformation of simple control

bounds in Section 6) because a tighter bound for the error of the approximate solution can be

established for Rl than for R2. To see this, let 77/ = (fN, uN*), N g N, be a local minimizer of

the finite-dimensional problem CP#. This solution is computed by setting nN* = WAN(fjN*),
where fjN is the result of a numerical algorithm implemented on a computer using the formulae

to be presented in the following sections. The error, \u - uN*%2, ofthe approximate control solu
tions uN can be determined as follows. Assume that uN* -» u as N -> 00 and that u is a local

minimizer of CP (if the uN solutions are uniformly strict minimizers then u must be a local

minimizer by Theorem 2.2). Let u g XXIR'" be such that uktj = u*(rkJ), for k g 9i j g r

(assuming u*(rkj) exists). Then, with uN* = VaMun*)>

lu* - uN% <lu* - Vl]N(if)i2 +lVA]N(u*) - uN% =|M* - Va!/v(^)I2 +Ii? - BN*hH (4-21)

By Proposition 5.5 in the next section, the quantity lu - u^\iN is not affected by the choice of
control representations. For smooth, unconstrained problemsdiscretized by symmetric RK meth-

ods, a bound for Iw - uN 1^ can be found in [57, Thm. 3.1] (see Proposition 6.2 in for an
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Fig. 4.2a: Effect of the Lipschitz constant kv on the solution of problem (6.3) discretized with an
RK method that satisfies the Assumptions of Theorem 4.12 but has bx < 0. The solution gets
worse as kv is increased.
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Fig. 4.2b: Effect of the Lipschitz constant kv on the solution of problem (6.3) discretized with an
RK method mat has all bj > 0. The solution gets betteras Ky is increased unul the point where
the Lipschitz continuity constraints on uN become inactive, as is the case for kv = l and
Ky = 10.
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improved bound for RK4). The quantity Om* - Va]n(u*)12 is the error between u* and the element
of LlN or L~N that interpolates u (t) at t = Tkj, k g !A£and j g r. The piecewise polynomials of
representation Rl are generally better interpolators for u*(-), except near non-smooth points, than

the functions ofR2. For u*() sufficiently smooth, lu* - V^iu*)^ is oforder r for representa
tion Rl (see [63]), but only first order for representation R2.

2.5 OPTIMALITY FUNCTIONS FOR THE APPROXIMATING PROBLEMS

In order to develop optimality functions for our approximating problems, we must deter

mine the gradientsof the cost and constraint functions for the approximating problems.

2.5.1 Computing Gradients

At each timestep, the RK integration formula is a function of thecurrent stateestimate xk and the

r control samples uk - (uu,..., ukr). So, let F: IR" x (X IR'") -> IR" be defined by
s

s

F(x, w) = x + A2 bjKj(x, wG), (5.1)

where w = (vv,,..., wr) e X IR"' is being treated as the mx r matrix [w, •••wr], G was defined

in (4.5d), and Kj(x,co) was defined in (4.3b) (with co = wG g JRmxs). Then, referring to

(4.3a,b), we see that for any fj = (£, u) g Hn, with HN defined in (4.14a),

4*i =F(xk,uk), x0 = Z, keli. (5.2)

The derivative ofF(-, •) with respect to the ;'-th component ofwis, with Ij defined in (4.4b),

Fx (x, w) = A3—j biKi(x, wG)
1 OWj i=]

= A X t— i,bjKj(x,a>)
l e Ij ocoi ,=1

lelj
blhu(Yi(x,co),Wj) + A'£bihx(Yi(x,co),coi) £ — Kp{x,co)

,=i p = i acoi
, (5.3a)

where co - wG and Yt{x, co)=x +A^J, aitjKj(x, co).

The next theorem provides an expression for the gradients of the functions /#(•), v g q,

given by (4.16). For n=(£, u) g H, we will use the notation d4fN(n) = ^ 7^(77) and
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dJnin) =(-£- fNW •••~^~ MQ ••' -J^— Jn&) •••-1^— M*) 1. (5.3b)
k ^"0.1 ««0,r ««AM.l rf«Af-|/ J

to indicate the derivative with respect to 4 andthe discrete-time derivative with respect to the con

trol samples u =yA,N{u), of M^aMv))- Note that dJN(n) e jRmxNr \s a "short-fat" matrix.

Theorem 5.1 (Gradients of Approximating Functions). Let N g N, 77 g Hn and

*7 = WAN(n). Also, let Mw g jt\NrxNr be the N-block diagonal matrix defined by

M^=diag[A0M,A1M,...,AA/_,M , (5.4)

where M = M\ for representation Rl and M = M2 for representation R2, and again, we intro

duce the notation Ak —tk+l - tk in anticipation of using non-uniform meshes in later chapters.

Then, for each v g q, the gradient of /#(•), V/Jy: HN -» HN, is given by

V/J507) = (V^/^(77),VM/^(r7)) = (^/;(/7) ,V^( ^-7^(77) M^1)) (5.5a)

where VAJV = VA,n for representation Rl, VAtN = VA>A, for representation R2 and

dfvN(ri) =(d4f^(n),dufvN(n)) e HN is defined by

^to) =V^4) +Po*. (5.5b)

dafifthj =>V, (xl"k)TPki\ . * e fA£, ; g r , (5.5c)

with p '̂77 determined by the adjoint equation

pj = F,(^", «,)7pi:+1; pvN = #(£, 4/ , k g #, (5.5d)

and where FA.(-, •) and Fw (•, •) denote the partial derivatives of F(x, w) with respect to x and the

7-th component of w.

Proof. First, we note that VAN is invertible by Proposition 4.4 and VAN is invertible by Propo

sition 4.7. Next, referring to [2, p. 68], we see that d^fvNiJ)) is the gradient ofMv) with respect
to £. Similarly, duf^iv) is the gradient of fvN{fj) with respect to u g XX IRm using the standard

N r

l2 (Euclidean) innerproduct. Hence, the Gateaux differential of /# is given by

DM"; Stj) =DfvN(ii; Sff) =(d4fvN(ri), 64)+( d5fvN(rj), Su)h

=(dsMv\S4)+<dsfvN{n)M-Nl,6u)LN
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=(d4fvN(Tj),84) + (Vl]N(dsrN(n)Mj),Su)2 , (5.6)

where 8n = (84,Su) g Hn and 8fj = (84,8u) = WAN(8n). Since by definition of V/jJfo),

DMv '> Stj) = (VMtj), 8tj)h for all 8n e HN, the desired result follows from (5.6). •

Note that for 77 g //„, 77 = WAM(r]), dj^n)k e X IRm and
r

(^uMrJ)[TUi]"-VuMr1)[TUr)) =̂ (d5fVN(r})u-'d5fvN(Tj)ktr)M-1 (5.7)
where ij g /, j g r and Vu/^(77)[rJtjy] is computed according according to (4.6e) or(4.1 lc).

Remark 5.2. At this point, we can draw one very important conclusion. Forevery v g q, the

steepest descent direction, in HN, for the function 7yv(*)» at ij, is given by

-(^/n^X^m/jvMMa/X and not by -{d4fvN(n),duMl)) which is the steepest descent direc
tion that one would obtain using the standard l2 inner product on XX IR"1. The naive approach

of solving the discrete-time optimal control problem CP# using the latter steepest descent direc

tions amounts to a change of metric that can result in severe ill-conditioning, as we illustrate in

Section 6. •

We can now define optimality functions for the approximating problems, using the form of

the optimality function presented in (3.9b), for the original problem. For CP#, we define

6N : HN -> IR, with a > 0 and the set HN defined in (4.15c), by

0N{n) = min max \ max / £(n, 77') - tyt),N(n) - aif/CiN(7])+, max / vN(n, 77') - yfc%N(n)+ \ (5.8a)
n e H,v h' eq0 re qr+q„

where yCtN(n)+ = max {0, yc<N(n)}, and for v g q,

7 UV, rj') =Mn)+ (V/^77), 77' - 77) H+I I77' - nil • (5-8b)

If needed for a particular numerical algorithm (e.g. [64] ), 6N(rj) = 0N(ij), where 77 = WA N(n)

and

1 IS' Zill
uN\'f) ~ 1IUI1

with

©aK*7. *f) =max { max 7^(77) +({d^M^dJ^U^),^-ij)Rn - y0tN{ij) - cry/M*)* »

max 7a/(^)+ ((d4fi(7j),dJ^(7j)M-N]),7jf-fj)R -pcN(fj)+} , (5.9b)

and the set HN is defined in (4.15d).

It should be obvious that these optimality functions are well defined because of the form of

the quadratic term and the fact that the minimum is taken over a set of finite dimension. The
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following theorem confirms that (5.8a) satisfies the definition for an optimality function. The
proof is essentially the same as the proof in [58,Thms. 3.6,3.7].

Theorem 5.3. (i) 0N() is continuous; (ii) for every 77 g Hn, 0N(n) <0; (Hi) if 77 g Un is a

local minimizer for CPyy then 0n(v) = 0. •

Remark 5.4. It can also be shown that 0N(rj) =0 for ^ g Un if and only if
di ^n (77,77; 77 - 77) > 0 for all 77 g Hn where

Vn ft. 77') = max {Wo.Nft) ~ Y<>,Nft') ~ <7Vc,Nft')+ •Wc,Nft) ~ VcNftX } • (5.9c)
D

Proposition 5.5. The stationary points for problem CP#, that is, the points fj e HN such that

&Nft) = 0» do not depend on the control representation.

Proof First, 77 g H^ is such that 0^(77) = 0 if and only if ©#(77, r}') = 0 for all f]' eHN. The

"if" direction is obvious. For the "only if" direction,

0N(ij) =min., efl {I/2I77' - t]12Rn +©Nft, 77')} =0. This implies that 0^(t7, 77') =0 because
©aKJ7> W) is linear in 77' whereas U2lrj' - fjl2RN is quadratic in 77'. Second, let
8fj = (84, Su) = 77' - 77. Then, for each v g q,

{(djNft),dJlft)M-Nx),rj'-T))RN =(dJli(T1),84) +(d-ufvN(T1),8u)h , (5.9d)

since M^ is non-singular. Hence, ©#(77, fj') does not depend on the control representation. Thus,

the points 77 such that 0^ft) = 0 do not depend on the control representation. D

This proposition says that the numerical solution of the discretized problem is the same for either

control representation. The search directions and the control functions (VAjy)_1(M*) and

(VA^)~\U ) will, ofcourse, be different.

2.5.2 Consistency of the Approximations

To complete our demonstration of consistency of approximations we will show that the optimality

functions of the approximating problems satisfy condition (2.3). In fact, we will show that the

optimality of the approximating problems hypoconverge to the optimality function of the original

Epi

problem (i.e., —0n—> —0)- First we will present a simple algebraic condition which implies con

vergence of the gradients. We will use the column vector b g IRr given by

b =(/5, ••br)T (5.10a)

with components bj defined in (4.10a), and also the values dj defined in (4.10b).
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Theorem 5.6. For representation Rl, suppose that Assumptions 3.1, 4.1' and 4.3 hold. For

representation R2, suppose that Assumptions 3.1, 4.1', and 4.6 hold. For JVelN, let H^ be

defined as in (4.13a), with LN = LlN or L# = L2N, and let /#: H^ -4 R, v e q, be defined by

(4.16). Let M = A/j if LN = 0N and let M= M2 if LN = L2N. Let S be a bounded subset ofB.
If

M~lb = 1 , (5.10b)

where 1 is a column vector of r ones, then there exists a tt < oo and an N* < oo such that for all

n = (4,u) g S n H,v and/V > A/*,

IVr(77)-V/^(77)Dw<^-. (5.10c)

Proof To simplify notation, we replace xnk by jcA, and pvk* by pvk. Let 5 c B bebounded and

let 77 = (4, u) g S n UN. Let m= VAtN(u) and 77 = (4,u) where VAA/ = VAN for representation

Rl and VAN = VAN for representation R2. For each ;' g r and k g !A£ Fw. (xk,uk) is given by

(5.3a). So, with y*, = xk + A^!~=l ajjKj(xk, cok) and #* = ukG, there exists /rj < oo such that

IFW. (xk, uk) - A/3 jhu(xk, ukJ)l

<IFW (xk,uk)-A X bihuiYkj,^)*+ IA X b,hu(Yu,ukj)-Abjhu(xk,ukj)l

<A2I X iM^j.^OlTl^^^l +AX MM^M-*«(**.«*.>)•

^tt,A2, (5.11a)

where we haveused the Lipschitz continuity of hu(-, •) and the fact that S bounded implies that xk

and ukj are bounded, which implies that for all ;' g r, lhu(xk,ukj)l and lhx(xk,ukj)$ are
bounded. Therefore, it follows from (5.5c) that

du?Nft)k = [Fw* (**> "kfpl+i •••Fwr (xk,uk)Tpvk+l]

=A[blhl(xk,uu)pvk+l --brhTu(xk,uk>r)pl+i\ + 0(A2), (5.11b)

where limA_>0IO(A)/AI < oo. From equation (5.5a), VAtN( VuMn)) = dBM7j)M.-Nl. There
fore, from (5.1 lb) we obtain, for each k g J\£

W^/Xto)* =̂ {b,htt{xk,uu)TpvM-"brhu(xk,uktr)Tpvk+l)M-1 +^^ . (5.11c)
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At this point we must deal with our two control representations separately. For representa

tion Rl, w() g Ujy isa Lipschitz continuous polynomial on each interval [tk, tk+\), with Lipschitz
constant Ky given in (4.15a). Thus, for any ij, // g /, with j,l e r and / defined in (4.4a),

l"*,y - "*,/• = Mtkjj] ~ Kfo.ii]1 - *ulA{Ci. - C,,)l < KyA , (5.12)

where Assumption 4.3 was used to justify the last inequality. Now, let

D = \bxhTu(xk,ukA)pvM •'•brhl(xk,uktr)pvk+l]M-] , (5.13a)

and let Dj, j g r, denote the j-th column of D, so that, from (5.1 lc),

V„/£(77)fo,,.] = VA<N(VuMrj))kJ = Dj + 0(A) . (5.13b)

It follows from Assumptions 3.1 fl(a) and 4.1', equation (5.12) and the fact that pk+l is bounded

for any n e S, that there exists k2, k$ <oo, such that for any j e r and ij g /, and with Mj\
denoting the i, y'-th entry of A/"1,

IDj - hu(xk,ukJ)TpvM tbjM-)! <libt[hu(xk,uu) - hu(xk,ukJ)]Tpvk+lM-)l
i=\ i=l

^ Z «"2l«*.i " akJl lpvk+iM,Jl <k3A . (5.13c)
/=i

Also, ifM~lb = 1then X/=i MTjbj = 1since Mis symmetric. Hence for any j g r,

IDj - hu(xk,ukJ)Tpvk+il < x-3A . (5.13d)

Therefore, from (5.13b),

Vw/jv(77)fo,/.] = hu(xk,ukJ)TpvM +0(A). (5.13e)

For representation R2, u() is not Lipschitz continuous on [/*,/*+,), so (5.12) does not hold.
However, since M= M2 is diagonal, equation (5.13e) is seen to be true directly from equation
(5.11c) if M~xb = 1.

Next, since S is bounded, (i) by Lemmas 4.1 Of/; and A.4 there exists k4 <oo such that
•** ~xn(tk)l <k4A and Ipvk+] - p^\tM)l <k4A and (ii) pvk+] and hu(xk,u[TkJ.]) are bounded.
Thus, making use of Theorem 3.2(v) and equation (5.13e), the fact that both xn() and pKT}() are
Lipschitz continuous, and u[rkJj] = ukJ, we conclude that there exists k5<oo such that

Wuf\rj)[Tkj.]-VuMTj)[TU.)l

=^u(xHru.),u[TU.])Tp^(TkJ.) - hu(xk,u[TkJ.))Tpl+l)l +0(A) <k5A . (5.14)

Next, for j g r, ij g /, k e 9£ and / g [0,1] we have that
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Wufft)(t) - VufvNft)(t)l <lVuf(Tj)(t) - Vuf(rj)[TkJj]l +lVufft)[Tkiij] - VH/^(77)[rJU.]l

+ IVH/^(77)[rAi/.] - Vw/^(77)(/)l. (5.15a)

The second term in (5.15a) is order 0(A) by (5.14). We will show that thefirst and third terms in

(5.15a) are also order 0(A). First consider representation Rl. It follows by inspection of(3.6b)
in Theorem 3.2(vj that Vufvft)() is Lipschitz continuous on / g [tk,tk+l), k g 9i because
mg LlN is Lipschitz continuous on these intervals. Since VuMn)() g Ln, it is also Lipschitz
continuous on these intervals. Finally, by Assumption 4.3 rkJ. g [tk,tk+l] for all k g 9£ Thus,

the first and third terms are of order 0(A) for all / g [0,1]. For representation R2,

VH/^(77)() g HN is constant on / g [tk +dj_l,tk+dj), j g r and k g 9i Since u g L2N is con
stant on these intervals, it again follows by inspection of (3.6b) in Theorem 3.2(v) thatVufvft)()

is Lipschitz continuous on these intervals. Finally, by Assumption 4.6, rkj. g [tk +dj^,tk +dj],
for all k g !A£and ;' g r. Since d0 = 0 and dr = A, the first and third terms are of order0(A) for

all / g [0,1]. We conclude that there exist tc6 < oo such that

IV„r(77)(r) - VHt/X(77)(r)l < *-6A , te [0,1] (5.15b)

which implies that

•Vwr(77) - VM/^(77)I2 < k6A . (5.15c)

Next we consider the gradient with respect to initial conditions 4- From Theorem 3.2(v) and

(5.5b), W4fvft) - dsfvN(n)l <Ws4v(4, x«(D) - Vtf. xN)l +fl/Z^O) - pgl. Thus, since 5 is
bounded, it follows from Assumption 3.1(b) and Lemmas 4.10 and A.4 that there exists k-j < oo

such that

W4fft) - dJvN(n)l <*,{\x\\) - xNt + lpv>HO) ~ PoO * *?A . (5.16)

Combining (5.15c) and (5.16), we see that there exists k < oo such that for any nN e S ^ HN,

WfvftN)-VMnN)lH<^. (5.17)
D

The following proposition states conditions for (5.10b) to hold.
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Proposition 5.7.

(a) Suppose M - M\. Then (5.10b) holds if and only if the coefficients of the

Butcher array satisfy

1

XV)" =7. /=1 r.
j=i l

(b) Suppose M- M2. Then (5.1 Ob) holds ifand only iffor all j er,bj> 0.

Proof, (a) For M - Mx, it follows from (4.9b) that M~] b = 1 if and only if

T-TH\\b(s)-lT-]b = 1 .

Now, it is easy to see that

T~xb =

( liUh
Hj-ibjCij

?J-ibj4j\

I.U bjcj 1/2

xubjcr y\lTj

(5.18)

(5.19a)

(5.19b)

where the last equality holds if and only if (5.18) holds. Note that T *b is then the first column

of Hilb(r). Consequently,

H\\b(rTlTlb =Hilb(r)"1

which leads us to conclude that

0
M~xb =T~T

v°y

(\ c

1 Ct.

\ 1 cir

( \ \
Ml

K\hj

-r-1

<F>

'O

(5.19d)

v°y

fO /A

(5.19e)

v°j \}j

(b) For M= M2, given by (4.12b), M ' is non-singular if and only if fe^O. Also, (5.10b)
holds if and only if M1 = b. Clearly then, if bj± 0, (5.1 Ob) holds because

<h r\\

M\ = = b (5.20)

br \\J

D
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Remark 5.8. The conditions (5.18) on the coefficients of the Butcher array for representation

Rl are necessary conditions for the RK methods to be r-th order accurate [61,62]. The condition

with / = 1 in (5.18) is the same as the second part of Assumption 4.1'. D

Theorem 5.9. For representation Rl, suppose that Assumptions 3.1,4.1' and 4.3 and equation

(5.18) hold and let d = 2. For representation R2, suppose that Assumptions 3.1, 4.1', and 4.6

hold and let d be the least common denominator for the elements bj, j g s, of the Butcher array.

Let N= {dl }Jj and suppose that {nN }Ne K, K c N, is such that 77^ g Hn for all N g K
and 77/v -» 77 as N -» 00. Then 0NftN) ->K 0ft) as N -> 00.

Proof. Let ¥ ; H x H -> R be defined by

¥(77,77') =max j max / "(77,77') - ^,(77) - ay/c(rj)+ , max / "(77, 77') - ^(77)+ I, (5.21a)
[ ve <1« ve q,.+</„ I

and ¥ N: HN x HN -» IR be defined by

¥^77,77') =max] max 7^/7,770 - ^(77) - ^r.w(77)+, max ]vN(n,n') - ycN(n) I, (5.21b)

so that, 0(r]) =mhyeH4' (77,77'), and 0N(rj) =mhyeHA, $ Nft,n'). Now, suppose that
{In 1n €k isa sequence such that, for all N,nN eHw and nN -*K n. From the proof ofThe

orem 4.12,77 g H. Let^7 g Hbe such that 0(n) =Vft,^), and let {77V }NeKbe any sequence
such that, forall N, n'N g Hn and 77V -»* V- Then,

0N(nN) < VN(nN, rj'N) < ¥ (nN, n'N) +

maX j^/q* {̂ ^(7?Ar' 77'W) ""f V{TlN' n'N) }"^".NftN) ~V,,ftN)) ~[0-Vc.NftN)+ ~°VcftN)+ ].

„m«ax.„ {̂ "(;?"'^" ^"(^^)) ~IVcAIn) ~VcftN)]\ (5.22)

It follows from Theorem 4.12, Theorem 5.6, Proposition 5.7 and the fact that {77^ }N€Kis a

bounded set, that each part of the max term on the right hand side of (5.22) converges to zero as

N -> 00. The quantity ¥(77^,77'̂ ) converges to 0(rj) since 77^ -»* 77, 77V ->K Vand ¥(•, •) is

continuous. Thus, taking limits of both sides of equation (5.22), we obtain that

lim0,v(77,v) ^ 0ft) (this proves that (2.3) holds for the optimality functions of the approximating

problems). Now, for all N e K, let qN GHN be such that 0NftN) = ^NftN^N)- Then,

0ftN) < ¥(77^, 77^) and proceeding in a similar fashion as (5.22) and taking limits, we see that

0ft)^]im0N(TjN). Hence, together with the previous result, we can conclude that
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0Nftw) ->* 0ft) as N -» oo. D

Since the union of the spaces HN is dense in W^, and Theorem 5.9 holds, it follows that

the hypographs of the optimality functions 0N() converge to the hypograph of the optimality

function 0(), in the Kuratowski sense, i.e.,-0N(-) -5 -0().

The following corollary is a direct result of Theorem 4.12 (epiconvergence) and Theorem
5.9:

Corollary 5.10. (Consistency) For representation Rl, suppose that Assumptions 3.1, 4.1', 4.3

and 4.11 and equation (5.18) hold. For representation R2, suppose that Assumptions 3.1, 4.1',

4.6 and 4.11 hold. Let N = {d1 }~, where d = 2 for representation Rl and d is the least com

mon denominator of the bj, jes, for representation R2. Then the approximating pairs

(CP/v, 0N), N g N, are consistent approximations to the pair (CP, 0) . •

We conclude this section with a conjecture concerning the constraints on lu^ji^ used to

define U^ in (4.15a). Recall from Remark 4.9 that these constraints impose a Lipschitz continu

ity constraint on the individual polynomial pieces of ug VlN = VAjv(UJv) that is needed to
ensure accurate RK integration for controls defined by representation Rl. Clearly, the addition of

these constraints, which do not appear in the original problem CP, is a nuisance. Conjecture 5.11

proposes conditions underwhich theseconstraints are not needed to defineconsistentapproximat

ing problems (CP/v,0#) using control representation Rl. Assumption 4.6 (needed for control

representation R2) is required in place of Assumption 4.3.

Conjecture 5.11. Suppose that the approximating problems CP^ are defined according (4.17a)

with HN = IR x VajvCOJv) where

Ojv = {ug LXN Iu[ g U Vj gr,it e #} . (5.23)

Furthermore, assume that Assumption 3.1, 4.1', 4.6 and 4.11 and (5.18) hold. Let N= {2l} J!,.
Then the approximating pairs (CPN,0N), N e N, are consistent approximations to the pair

(CP,0). D

The basis for this conjecture is the fact that, according to Proposition 5.5, the control samples of

the approximating problem solutions do not depend on the control representation. Since we have

shown that the approximating problems, along with their optimality functions, (CP#, 0N), defined

with control representation R2 are consistent approximations to (CPN,0N), we know that the

convergence results of Theorem 2.2 hold. In particular, we know that strict local minimizers of

CPjv converge to strict local minimizers of CP. But this must also be true under representation

Rl with CP# defined according to Conjecture 5.11 since the control samples for the sequence of
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solutions generated by solving these approximating problems is the same as for the approximat

ing problems defined using representation R2. Thus, if a sequence {uN* } of control samples

corresponding to the solutions for the problems {CPW } is such that (VA n)_,(m^*) ->k u, then

it is also true that (VAtNT\uN*) ->* u*. For each N, let uN* =(VAtN)~l(uN*). Then, because
{ un ) k e k is a convergent sequence, there exists Ky < oo such that luN(t\) - uN(t2)l < Ky for

all T\,r2 g [tk,tk+i], k g JA£ Hence, Lemma4.1 Of/) holds which implies that Theorem 4.12 and

Corollary 5.10 hold. Note that, even if this conjecture is not true, the main convergence results

provided by the theory of consistent approximations do hold for the reason just presented.

2.6 COORDINATE TRANSFORMATIONS AND NUMERICAL RESULTS

The problems CP# can be solved using existing optimization methods (e.g., [64,65] ).

These methods, however, are defined on Euclidean space and existing code would have to be

modified for use on the coefficient spaces L!N, i = 1,2. To avoid this difficulty, we will now

define a change of coordinates in coefficient space that implicitly defines an orthonormal basis for

the subspace L'N, and hence turns the coefficient space intoa Euclidean space.

Let LN - LXN or L2N and, correspondingly, VAJV =VA,# or VAN. Recall from (5.5a) that,
for 77 =(4,u) g HN and v g q, VufvN(ri) =Vj*N(dufvN(n)M~Nl), where t7 =(4,u) =^(77)
and dBf^(n), defined in (5.5c), is the gradient of f^() with respect to the standard l2 inner prod
uct on XX IR'". The gradient of 7/v() with respect to the inner product on LN is given by

VufNft) = va,n(^uMv)) = daf^(n)M~N\ and satisfies

<VuM»),Su„)2 =(VjvNft),Su)LN =(d-uTN(n),8u)h , (6.1)

for any 8u g Hn and 8u = VA,N(8u). Introduce a new coefficient space, LN = XXlRm,
N r

endowed with the standard l2 inner product and norm, and a transformation Q: LN —> LN
defined by

u =(2(w) =mM#2, (6.2a)

where M^ is defined in (5.4). Let 77 =(4, it) and for each v g q, let / N: IR" x L N -» R be

defined by

fNft) = fNU^uM-Nm)) (6.2b)

>-l/.TFinally, let 77 = (4, Q l(u )). Then, by the chainrule,

48 ConsistentApproximations Chap. 2



vsfUv) = G_,( v57;(t7)) = durN(rj)M-Nu2 (6.2c)

Thus, (VsfNft),8u-)l2 = (VuMii),8u)LN =(VufvNft),8u)2, where <?m =<2(<Jh).

Remark 6.1. Implicitly, the transformation 0 creates an orthonormal basis for LN because

under this transformation the inner-product and norm on LN are equal to the l2 inner-product and

norm on the coefficient space. With this transformation, the approximating problems CP# can be

solved using standard nonlinear programming methods without introducing ill-conditioning. It is

important to note, however, that control constraints are also transformed. Thus, the constraint

u g tJN becomes «M]i1/2 g \}n. For representation Rl, since M#1/2 is not diagonal (except if
r = 1), this means that the transformed control constraints will, for each k g fA£ involve linear

combinations of thecontrol samples u kj, j g r.

We will now present a numerical example that shows, in particular, that this transformation

can make a substantial difference in the performance of an algorithm.

Example. Consider the following linear-quadratic problem taken from [42]:

min/(W), f(u) = xu2(\),
m e U

where x(t) = (X](t),x2(t))T and

x =

0. 5jcj + u

0.625jl-? + 0.5jc,m + 0.5w2
jc(0) = t G[0,1]

(6.3a)

(6.3b)

The solution to this problem is given by

M*(r) = -(tanh(l -/) + 0.5)cosh(l -/)/cosh(l), t g [0,1] , (6.4)

with optimal cost /(«*) = e2 sinh(2)/(l + e2)2 = 0.380797.

The approximating cost functions are fN(u) = (0 1) x"N where {xk) k=0 is the RK solution

for a given control u e LN. We discretized the dynamics using the following common RK meth

ods of order 3 and 4 respectively:
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A, =

0

1

2

1

2

1 -1 2

1 2 1

6 3 6

Aa =

0

1

2

1

2

1

2
0 1

2

1 0 0 1

1

6

1

3

1

3

1

6

The matrices MN used to define the transformation Q in (6.2a) are given by (4.9d) and (4.12c)

with

/W, =
_1_
30

4

2

-1

2

16

2

-1

2

4

M, =-!-
1 0 0

0 4 0

0 0 1

(6.5)

The matrices M\ and M2 for method A3 are the same as for method A4 since c2 = c3 = 1/2

implies r = 3 and b2 = 2/3.

We solved the approximating problems using steepest descent with the step-size determined

by an Armijo rule augmented with a quadratic fit based on the value of fN() at the last two evalu-

ations in the line search. The stopping criterion was ld5fNl2 <(3.\e-4)/N] and the initial

guess was u(t) = 0, t g [0,1]. Table 6.1 shows the number of iterations required to solve the

approximating problems for different discretization levels N with and without the transformation

(6.2a,b). We see that solving the discretized problems without the transformation requires about

five times the number of iterations required for solving the problem with the transformation. The

situation can be even worse for other RK methods. The choice of representation Rl versus repre

sentation R2 and the RK method had no effect on the numberof iterations required.

Number of Iterations

N M = Mt, /=1,2 M=7J'
10 4 19

20 4 19

40 5 23

80 5 24

Table 6.1: Conditioning Effect of the Transformation Q on Approximating Problems (RK3).

We will now show why it is advantageous to treat the repeated control samples for method

A4 as a single sample (cf Remark 4.9). Let {uN* }Ne N, N c N, be solutions of CP# and

Higher precision was difficult to achieve when the Q transformation was not used.
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suppose uN* -» u* where u* is asolution of CP. In [57, Thm. 3.1], Hager establishes, for sym
metric RK methods [66,67], atight upper bound on the error EUN = lVAtN(u) - VaMun*)*!^ of
second order in A=1IN for smooth, unconstrained problems. Note that VAtN(u*)kj =u*(rkJ),
k g ^and jer because u*() is continuous (in fact, smooth) for smooth problems[28,36].
Hager used the problem given in (6.3) todemonstrate the tightness of this bound. For the particu

lar RK method given by the Butcher array A2, we can state the following improved result (which,

according to Proposition 5.5, does not depend on the control representation):

Proposition 6.2. Let CP= min„ eU/(jcH(l)), u unconstrained. Suppose the approximating

problems CPW are produced by discretizing CP with the fourth order RK method with Butcher

array A4. Further, suppose that lxu (1) - xu N-Nl =0(A4), that is, at the RK integration is fourth

order accurate at u*. Let {uN* }NeN, N c N, be solutions of CP/y and suppose uN* -> u*
where u* is asolution ofCP. Then EN = IVAA,(w*) - Va,/V(m/)B/oo =0(A3).

Sketch ofProof. In [42], it is shown, using a reasonable non-singularity assumption on the Hes

sians of /#()> tnat the accuracy of the solutions of the approximating problems is determined by

N times the size of the discrete-time derivative (using the standard l2 inner-product) of the

approximating problem at if =VAJV(w*), that is, EuN~NldufN(u)l. This, in turn, isa function of
the accuracy of the state and adjoint approximations. For the RK method under consideration,

Hager shows that, for k g !A£ the variables u*kt\ =u*(tk) and u*k>3 =u*(tk + A) are third order
approximations to u*(tk) and i*(tk+A), respectively. Thus, we need only show that

u k2 = u (tK + A12) isathird order approximation to u*(tk +A/2).

Let Yk2 =J* +| h(xk,uk>\) and Yk$ =xk + * h(Yk~>,uk2) represent intermediate values
used by the RK method at the k-th time-step. In Hager's notation, Yk2 = y(\,k) and

yA>3 = v(2, k). Hager introduces a clever transformation, specific to symmetric RK methods, for

the adjoint variables so that they can be viewed as being calculated with the same RK method

used to compute the state variables, but run backwards in time. The intermediate adjoint vari

ables of interest here are denoted by q(2,k) and q(\,k). With this transformation, the discrete-

time derivative for the approximating problems have the same form as the continuous-time gradi

ent for the original problem. Since c2 = c3 = 1/2,

dnM")k2 =^A[\hu(Yk^u*ka)Tq(\,k) +\hu(Yu,u*k,)Tq(2,k)]. Further, since

2f hu(xu*(tk +f), u*(tk +%))Tpu\tk + f) =0, ld5Mu*)kpA « bounded by f Atimes the maxi
mum of 1(^,2 +>u)/2 " *"*('* +f)• and Kq(2,k) +q(\,k))l2- pu*(tk + f )l. Let

Mk) = = xk + -[h(xk,u u) + h(xk + -h(xk,u jt.i)," *.2)1
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A' ._ .* _ _*= xk + — [h(xk,u u) + h(xk + A'h(xk,u *,),u k2)] , (6.6)

where A' = A/2. Thus, w(k) is produced by the improved Euler rule applied to xk. Since the

local truncation error for the improved Euler rule is order 0(A3) and jc* is order 0(A4),

lw(k) - x (tk + ^ I is order 0(A). In the same way, it can be shown that

lq(2,k) +q(\,k))l2 - pu\tk +§)l is 0(A3). Thus, we can conclude that ldJN(u)k2\ =0(A4)
for all k g 1A£ This implies that the solutions of the approximating problems satisfy

I" Nkj ~ u (**,/.)l = 0(A3) for all k e fAfand j e r. a

Table 6.2 summarizes our numerical results using the RK method with Butcher array A4.

The first column gives the discretization level. Columns 2 and 3 show that doubling the dis

cretization results in an eight-fold reduction in the control error. Thus, as predicted by Proposi

tion 6.2, E"N is 0(A3). The next two columns, agreeing with Hager's observations that the opti
mal trajectories of the approximating problem converge to those of the original problem with the

same order as the order of the symmetric RK method, show that EfN == \f(u) - Mu^)\ is order
0(A4). The numbers in columns 2 and 4 were obtained by solving the discretized problems to
full precision. Finally, we include in the last two columns the number of iterations required to

solve the approximate problem with and without the transformation Q. The stopping criterion

was the same as used for Table 6.1. As with the previous method, the effect of the Q transforma

tion is quite significant. The solution of the untransformed problem requires about five times the

number of iterations required to solve the transformed problem.

Accuracy of Solutions Number of Iterations

N E"N EunI E'in Ef E'nI E'lN M = Mi, i = 1,2 M=7J'
10

20

40

80

1.48e-4

1.87e-5

2.34e-6

3.07e-7

7.91

7.99

7.62

2.86e-7

1.76e-8

1.09e-9

6.80e-ll

16.22

16.13

16.07

4

5

5

5

21

21

23

23

Table 6.2: Order of Convergence;ConditioningEffect of the TransformationQ (RK4).

The last table shows the accuracy of the gradients for the approximating problems produced

with the second RK method (Butcher array A4) evaluated at the control u(t) = - 1 + 2/. The first

column shows the discretization level N. The second and third columns confirm that the gradi

ents, V7w(«) = dufN(u)M]i}, for the approximating problems converge to the gradients of the
original problem. Note that, based on the proof of Theorem 5.6, it is enough to show that the
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gradients converge at the points TUj, k g 9i j g r, and ij g /. The fourth column ofTable 6.3
shows that the gradients that result if one uses the standard l2 inner product on X X JRm do not

N r

converge.

M = M, M = M2 M= TJI
N •VA,/v(V/(M)) - V7A/(S)l/oo WAMVfftV-VMVh.. WA,N(yfft))-NdjN(u)ila3
10 1.67e-3 6.46e-4 1.48

20 3.77e-4 8.31e-5 1.48

40 9.94e-5 1.05e-5 1.48

80 2.55e-5 1.33e-6 1.48

Table 6.3: Convergence of Gradients.

2.7 APPROXIMATING PROBLEMS BASED ON SPLINES

In this section, we use splines as the finite dimensional basis elements in the construction of

approximating problems for optimal control problems with endpoint inequality constraints and

box-type control constraints. One of the early references that used splines for the solution opti

mal control problems is [35]. We show that the resulting approximating problems, along with

their optimality functions, are consistent approximations to the original problem with its optimal

ity function assuming that Conjecture 5.11 is true. In the process, we will develop some results

for splines that are interesting for their own sake. For clarity, the results below are stated only in

terms of control variables u rather than the initial state/control pair n = (4, u). The treatment of

variable initial conditions is unaffected by the use of splines.

We will construct our finite dimensional control spaces using spline basis functions (B-

splines). Thus, for r g IN, r > 1, let

(r) j_
N+r-\

L% = {UG L™ 2[0, 1] I U(t) = £ akM0 , t G [0, 1] } , (7.1a)

where ak g IR™, <pk : [0,1] -> IR are the basis function with <j>k(t) = BkjiN(t), defined below, and

r is the order (one more than the degree) of the polynomials that make up the spline pieces. For

an excellent presentation of spline theory, we refer the interested reader to [63]. The subscript tN

in BkriN(t) is the knot sequence upon which the B-splines are defined. We will not considerknot

sequences with repeated interior knots although many of our results hold in that case also.
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Rather, we will consider two knot sequences which are constructed by adding endpoint knots to

the set of breakpoints {tk } k=0 (note that, unlike in [63], our breakpoint sequence begins with the

index k = 0 rather than k = 1.). The two knot sequences are

Uniform knot sequence. The knot sequence is

tN±{k/N)»tr:lr+l. (7.ib)

General knot sequence. The knot sequence is

tN=[tk)^JZ]r+l (7.1c)

where {tk } is a sequence of not necessarily uniformly spaced breakpoints which satisfy

/_r+I = • • • = /0 < /i < • • • < tN_{ < tN = •• • = tN+r_x . (7.1d)

The uniform knot sequence can only be used for uniformly spaced breakpoints. The purpose of

its introduction is solely to make some results cleaner and easier to see. Thespacing of thebreak

points, {tk }k=0, for the general knot sequence may or may not be uniform. In our notation, the

knot sequences begin with index k = - r + 1 (rather than k = 1as in [63]).

With these knot sequences, the B-splines constitute a basis for the N + r - 1 dimensional

space of r-2 times continuously differentiable splines of order r with breakpoints at times

{h ) jt=o- Since splines are justpiecewise polynomials between breakpoints with continuity and

smoothness constraints at the breakpoints, LjJ* c LlN where 0N is defined in Section 4 for repre
sentation Rl with r-th order polynomial pieces. The control samples, u[rkj], k = 0,..., N- 1,
j g r, used by theRK integration method given in (4.3a,b) are related to the spline coefficients by

»[Tkj] =SET1 «ktk(Tk.j)-

We will use B-splines normalized so that Zf=7~' Bkj.^(t) =1 for all / g [0,1]. For a
given knot sequence, these B-splines can be written (see [63]) in terms ofthe following recursion
on the spline order r:

Bk,r+uN(*) =,*"V"1 Bk-Ur.tN(t) +/* "* B*.r,,ff(/) , r>1, (7.2a)
h-\ ~ h-r-\ tk ~ h-r

If tN is the uniform knot sequence, the domain of the B-splines extends outside of the range

t g [0,1]. This is for the purpose of construction only; the functions u(t), given by (7.1a), are

defined only on t e [0,1]. An important feature of B-splines is that the support of each basis

function, <f>k(t), is limited to [tk_r, tk]. This is important for efficient computation of u(t) from its
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spline coefficients and of gradients for the cost and constraint functions.

As an example of B-splines defined on a uniform knot sequence, we express the basis func
tions for cubic splines (r = 4) explicitly (compare with [35] where the B-spline normalization is
different):

*W0 =6A^

(' " >Jt-4)3 , tk-A < t </ft_3
A3 +3A2(/ - tk_3) +3A(t - tk_3)2 - 3(/ - f*_3)3 , tk_3 <t<tk_2

4A*-6A(t-tk_2)2+3(t-tk_2)\ tk_2<t<tk_x '
A3 - 3A2(t - tk_i) +3A(t - tk.x )2-(t- tk-i )\ tk.x<t<tk

(7.2c)

where A= \lN. As another example, we plot the B-spline functions for a quadratic spline

defined on thegeneral knot sequence {0,0,0,0.1,0.25,0.3,0.4,0.4,0.4 } in Figure 7.1.

We now formulate the approximating problems using splines. The control constraint sets

for the approximating problems are defined as,

U(^= {ii e Lj? IflrA eU,k = \,...,N +r-\)

where, for this section, we assume that U, used to define U in (3.3a), is of the form

(7.3)

1

0.9

Parabolic spline basis functions with non--uniform breakpoint sequence.

/-

0.8 / -

0.7
\ ' N _ - .
\

0.6 " \ / \ j** "~\ i -

V0.5 - \ / V
1 \ / N \ / • / \

O.A / \ / \ \ / ' \ -

1 \ / >> \ / ' \
1 \ / N / ' \

0.3 - / \ / ^ x / ' \ -

/ \ N \ / /\ / N
0.2 \ ' \ / *: \ -

• V .-^ \ / '
/ '\ N • / '

0.1 i .---'V
\ / / \-

y s. •
o - • •"" ^*»^ • . ^y v. , ^

Sec. 2.7

0.1 0.25 0.3
Time

Fig. 7.1: A plot of the six B-spline functions used to construct
quadratic splines defined on this general knot sequence.
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U= {v = [v,,...,vOT]r GlRml-oo<a/<v'<^'<oo, /= l,...,m) . (7.3b)

Thus, the spline coefficients for each component of the control have constant bounds.

The approximating problems are thus:

CP^ min(r) (VoMu)' VcMu) ^° ) ♦ (7.3c)

with \ff(,,N(u) and Wc.Nft) as defined in (4.17). We will keep the definition of the optimality func

tions the same as given in Section 5. Note that the decision parameters for these problems tran

scribed into coefficient space are the coefficients ak, k = l,...,N + r-\, rather than the Nr con

trol samples u[rkj], k = 0,...,N- 1, j = 1,...,r for the approximating problems defined in

Section 4. Thus, the number of decision parameters needed for splines is substantially less than

the number needed for the same order general piecewise polynomials. This is the motivation for

using splines.

The next three results state properties of the spline subspaces that are needed to prove epi

convergence of the approximating problems to the original problem. Proposition 7.1 and Corol

lary 7.2 apply only to uniform knot sequences. Corollary 7.2 is a non-recursive version of the

subdivision result given in[68, Thm 3.1]; the method of proof is completely different. A similar

result for general knots sequences, expressed in terms of a recursion formula, can be found

in [69,70].

Proposition 7.1. (Nesting of Basis Functions) Given an integer p>\, let

t*= {k/N)™+£lmdtN'= {k/2N)i=2N_+£l. Then,
1 p+i

BktPttN(t) = —j- X ff/y-flw-p+i-i.p.tj/M . k = \,...,N +p-\ , (7.4)

where api is the /-th coefficient of the polynomial (t + \)p.

Proof We prove (7.4) by induction on p. It is clear from (7.2b) that (7.4) holds for p = 1.
Now we will show that if (7.4) holds for p = r, then it holds for p = r+ 1. From (7.2a),

Bk,r+i.tN(0 =t—^± Bk-\.r,xNit) +̂ BMn{i) . (7.5a)
Substituting (7.4) into this expression while letting A' = A/2 and tk = t'2k gives us

Bk,r+l,tN(0 = J^ 2^ ? <TrjB2{k-i)-r+i-\,r,tN<t) + 2rtf ^ ^ °r,iB2k-r+i-\,r.iN<t)
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''2* -' „ I'm -1 )

=Jr {*.."^ *2«-,>-r+*., %P^ B2t_r_, +«,,., +<r,,2) '-'W' B2i_r_,

+«r,, +»,,♦,)^^ /»«., +<x,,+1^pB2t_, +<r,r+, ^ BJ
where we have abbreviated BkriNit) with £* and we have used the following facts:

(i) since rar>\ - ar2 = 0,

OrA* - f'2(*-r-l)) = (^r.l " <rr2)A' + Gr>2(t ~ /'2(A-r-l))

= <7r.l(''2*-i-l " / + / " /'2(*-r)-l) + 0-r.2(' " ^2(*-r-l) ~ A')

= °r.\ ('Wr-I " 0 + (O-r.l + <7r.2)C ~ ^Wl >• (7'5b)

(ii) since oy>r - rarr+\ = 0,

<FrAt'2k - 0 = ^rAf,2k ~0~ (0>,r - rcrri,.+i)A'

= ^r,r(^2it - >" A') + <7r.r+l(f'2lt-l ~ ' + ' " f'2Jt_r-l)

= (^r,r + ffr.r+l)C'2*-l ~0 + ^r,r+,(/ - /'2*-r-l) . (7.5c)

(Hi) and since o-r;_, (r +2- 7) - r<rr j + jarj+\ =0, 7 =2,..., r, we see that

f 2k~ * L ' - ' 2<*-r-l)

y'=2E-^-,~rA^ +<T^+I rA7"

= 2, O-r.y-1 rA, +CT, J+l ^ " (<Tr,j-\ ft +2-j)- rarj + j(TrJ+l )
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- V « *'lk " t 4. n ' ~ ''lik-r-l) „ r+2-j j
" Pi J~l "rA7" °rJ+i ~r~A' ^ ~~r '̂+1 7

, ^ '̂ q-D-r+j ~ t + t- r'2(it-r-lH>
+<^ 7a>

- V ~ ''2* ~ * „ (r +2-7)A' Wr/
• £ ^ "m7" - ^ —7a7 ^ M^-

r - /^(t-r-i^y r - rV-r-u 7A'
+^ rA7 +"'•»» rA7 *r>J+l M7

~ ZA^rJ-l +0"rj) ^ +ftrj +(Tr,j+l) ^ L. (7.5d)

which all derive from the fact that arA =1 and arJ =j£r {jp$r \t=0 =r(r" l^\yi' +2),
7 = 2,..., r + 1. Now, rearranging terms slightly, we get

^.r+l.twU) " ^7 jCTr.l ^ *2<*-l)-r +^r.l J£, #2A-r-l

+ ZA°Vj +^r,/+l Jl J£, *2<Jt-l)-r+7 + ^ #2*-r+y-l J

j. ,t ' ~?/2<:-r-l c f/2* ~' D I ,- c ,
'''r+1 rA7 2A_1 '•r+I ~~rA7" 2* f ' ( *

Referring to (7.2a) and noting that arJ = oy+1J = 1, o-r,f+, = oy+u+2 = 1, and

ffr.7 + G"#\7+i = ^r+i.y+1» j = 1.•••»r + 1,we see that

J r+2

Bk,r+l,tNW = 9? 2 °"r+I.J52it-r+/-2.r+l,t/v'(0 . (7.5f)

which verifies that (7.4) holds for p = r + 1. •

Corollary 7.2. Let r > 1 and ari be the /-th coefficient of the polynomial (t + l)r. Then, for

splines defined on uniform knot sequences, given u g L{^ with coefficients ak,
k= ],...,N +r-\,u is also a member ofL^ with coefficients fik, k= l,...,2N +r-l given,
for r odd, by
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& = 2^T

r+\

2

Z a{k+r)/2-i+\ Or.2i-
/=l

111
2

Z a(k+r+\)f2-i °Y.2/

, A odd

(7.6a)

, k even

and, for r even, by

/** ~>r-\

£ ^(A+rj^-i+i 0V.2/-I > * even
J=l

Z a(Jt+r_i)/2_/+i a,.2, , Aodd
»=i

(7.6b)

where I" p1is the smallest integer n such that n> p and LpJ is the largest integer n such that
n < p.

Proof. In the following, set BktFAsAt) == 0 ifk < \ or k > 2N+ r - ]. From equation (7.1 a) and

Proposition 7.1,

I
A=l k=\ - ' i=l

Sec. 2.7

N+i-\ J r+1

"(0= Z flfft^ft.r.lv(0= I ^rrl^^-r^l.Mv^

2<A'+r-l) J /+]

= Z akj^_ -^~\ Z cr/-./^A'-;+/.r.t,v.(0
A'odd

'r^i2(A'+r-l»-l j

Z <*M =^f
L^ij

Z crr.2>-l^A'-r+:y-l./.lv.(0+ Z ^r.2;^*-r+27.r,tv'(0
;=i j=\** = I 2

*' odd

2(N+r-\) 1

y —

Z «i'+i 0r.2j-\Bk>_r+2j_lrXf,Xt) k' odd
y=l —

Z <**' °"r.2j5)t'-r+2y-l.r.lA'(0
y=l —

k' even
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1

F17

r—i1 2 2/V+r-3+2;
Z Z <*k+r , <rr.2j-iBk',r.tsM) k+ r even
>=l A=2;-r "Y+i-J

L 2 2N+r-3+27
Z Z «*+r+l 0r.2jBk'.r,tN<t) A+r odd
j=\ A=2,-r — J

(7.7a)

Thus, if r is odd, we can write, abbreviating Bkrt At) with £*,

w(0 = 2r-l

2/V+r-l

I
A=2-;

/ \

Bk+r 0>.l
2

gA+r-1 <*r.2

2A'+r+l

r**+ Z
A=4-r

Q'A+r , 0"r.3

gA+r-1 OV.4

2(A'+r-l)

—-. - Bk*-+ E
A=l

/ \

<X k+l Gr,r
— v

<*k <?r,r+l
V 2 V

where the top row is for A- odd and the bottom row is for k even. If r is even, we can write

u(t) =
?r-l

2A'+r-l

Z
A=2-r

2

ak+r-\ 0r.2

2N+r+l

|** + Z
A=4-r

\

<*A+r C/-.3
2

QfA+r-1 0"r.4

2(N+rr-\fCCk Cr<r+I

B* + -"+ Z I 2 PA-
A=l CO

where, the top row is for k even and the bottom row is for k odd. Now, by collecting the terms for

k g {1 2N + r - 1 } and forming the expression

2,V+r-l

"(0= Z 0kBk.rA,At). (7.7b)
A=l

we see that the coefficients 0k are as given by (7.6a.b). D

Lemma 7.3. Let N= {2" }~,. Then. Lus\ c L(rN\ for any N\. N2 g N such that AT, <N2.
Furthermore.

(aj Given // g U and N=2" <oo. there exists 7*,, g N, 7',, <00 and ujn g u£} such that
lu-u; l< 1//V.

Jn

(b) Suppose there is a sequence {uN )NeNsuch that uN g U^ and uN —» m. Then u g U.

Proo/ The nesting of subspaces defined on uniform knot sequences follows directly from

Corollary 7.2. Nesting for subspaces defined on general knot sequences follows from the knot

subdivision results in 70 . and [69]

(a) This result is obvious for the case r = 1(since uN g L^ is piecewise constant). So assume
that r>2. Since «eL™2[0,l] c L?'[0,1] we have, for any e > 0, that there exists

u'r e Cm[0.1] (space of continuous functions, w(), with u(t) g IR™, / g [0,1]) such that

lu - u'rl2 < £\ [71, Theorem 3.14 (p. 69)]. Choose e = 2/(5 + m)N. We will construct from uc
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another function. ue such that Iw - uel2 < e and a + e < ue(t) ^ b-e for all t g [0,1]. This

allows us to approximate ue with an r-th order spline in such away that by allowing enough knots

for this spline (and using the fact that the spline subspaces nest) its coefficients ak satisfy

ak e V.

With (•)' denoting the /-th row of a vector, define the continuous function ue: [0,1] -» IRm

as follows:

wi<f) = <
b1 -e if uie(t)>bi -e ,
u"c(t) if a1 + e < ufie(t) < b'' - £ , / Gm , / G [0,1] , (7.8a)
a' + £ if u''e(i)< a*+£ ,

Note that, for all / g [0,1], a' < u'(t) < b' since u(t) g V. Thus, if u"£ < a, + e, then either

(i) a' < u'{t) < a' + £ - u'e(t). in whichcase, 0 < u'e(t) - u'(t) < u'e(t) - a' = e, and therefore

(uUt) - u'(t))2 = £2 < u"e - u'(t))2 + £2 , (7.8b)

or, (ii) u'(t) > a' + £, in which case 0 < //'(/) - u'e(t) < u'(t) - une(t), and therefore

<i#i - u\t))2 < (u"cU) - w'(r))2 < (u"e(t) - w'(0)2 + e2 • (7.8c)

A similar argument holds for the case u"F > b, - £. For the case b'<u"e<a',

UirU) ~ w'('))2 = ((w'r)'"(') " "'"(z))2. Thus, in all cases, (//'(/) - u'e(t))2 < (w'(0 - w'i(0)2 + £2.
Therefore, we have

I// - z/f I? = 2>'(') - i^(/))-rf/ < Z((«'(') - w"f </))" + f2)dt = lu- M;i? + mr . (7.8d)

Thus, Iw - Mfl2 ^ (1 +/7i)f. Since w() is a continuous function, for each / g m, the modulus of

continuity for u'e, co(u'e,c) = max {\u\{i\) - ur(t2)\ \ \t) - t2\< a }, goes to zero as a —» 0.

Thus, by [63, Theorem XII.1 (p. 170)]. there exists an integer N\ =2"' < oo and a spline

uN] e L{x such that

£

lwf - wyv, l2 < lwf - uN] 1^ < - . (7.8e)

Let Dreo be as given on page 155 of [63] (forall r > 2, 1 < Droo < oo). Since uNl is a splinewith

bounded coefficients, it is Lipschitz continuous. Hence, there exists n2 g M, ti\ < n2 < oo, such

that, with N2 = 2"-\

luNi(t])-UNi(t2)*£ n ♦ Vr,,r2 g [0.1] such that If, - t2\ <(r - 1)/N2 . (7.8f)

Now. for A = 1 N2 + r. define the intervals 7"* —[/*_r. 'a-i L w'th tk. = A/ N2, and define the

quantities MJ = max, e 7-t u'Nl(t), and mi = min, e Ti u'Ni(t). Since for t\,t2 g 7^,
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I/! - /2I^ (r-\)/N2, we see that

Mk - m\ = max lu'N(tx) - 1^(^)1 < - , for tht2 g Tk , i cm. (7.gg)

Thus,

Droo < £ +1 , Vi €m. (7.8h)
MJ - mi

Next, since L^, c L#, by Corollary 7.2, uN] e L^2. Hence, there exists {ak }kl{r c Rm
such that uN](t) =2J^J"r ak<pk(t). Thus, by [63, Corollary XI.2 (p. 156)],

, . A/[. + mi ^ M[. - m'k , M'k - m'k in «•>>\a\- \ k\<Dr.oe k2 *< +£+ k2 k, (7.80

where we used (7.8h) for the second inequality. Therefore, -{f + mi < a'k < \ £+ M'k. But,

from (7.8e). we see that M'k = max, eTl u'N](t) <max, 6Tl u'e(t) + ^£ =b'-\£ and
m'A. = min, e Ti u'N (t) >min, €Tl u'r(t) - \ £ - a' + \ £. Thus, a' <a'k <b' which implies that
ak eil. Finally, by (7.8d) and (7.8e),

£ 1
Iw - uNll2 ^ lu - u'eh + hi'e - uel2 + lur - uNtl2 < £ + (1 + m)£ + - = — , (7.8j)

since £=2/(5 +m)N. Thus, the proposition holds with j„ =2": and ujn g U(}\

(b) Referring to [63, Corollary XI. 1 (p. 155)] and using the fact that the coefficients for each com

ponent. / = 1 m. of the control satisfies a' < a'k < b' for each A= 1 N + r - 1, we see

that Ujv' c U. The result follows immediately since Uis closed. D

Remark 7.4. From the proof ofProposition 1.3(b), we see that U^1 c U. Thus, from the defi
nition of U/v in Section 4 for representation Rl, we have that

U^.1 c Un LJJ1 c I) n LN c UiV. Hence, while control constraint violations are possible for

mg U,v, they are not possible for u e U^'. D

Theorem 7.5. (Epiconvergence) Suppose that Assumptions 3.1(a), 4.1 and 4.9 hold and that

Conjecture 5.11 is true. Let N = {2" }~,. Then, the problems {CPA- }n e n converge epi-

graphically to the problem CP as N -»oo.

Proof Given u g U, there exists, by Assumption 4.9, a sequence {uN }~=1 such that uN g U,

uy —> u and yt.(w/v)<0. By Lemma 7.3(a), for each N = 2", there exists jn g N and

uJn' g U(r) such that luN - Ujn'l < 11N'. It now follows from the proof in Theorem 4.10 that part
(a) of Definition 2.1 is satisfied. That part (b) of Definition 2.1 is satisfied follows from Lemma

7.3(b) and the proof in Theorem 4.10. •
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To show consistency of approximations, what remains is to compute the gradients of the

cost and constraint functions with respect to elements of L^ and show that the optimality func
tions for the approximating problems satisfy condition (2.3). To compute the gradients V„/Jv(w),

we first define the spline coefficient space

£# =( X Rm , <•,.),„, , |.|rtrt) (7.9a)

and the map

SHj: !# -» £!? . (7.%)

which takes elements u=Za=Y_I ak$k(J) and maPs tnem to a = {ak }k*[~\ with ak g IRm.

When the quantity a g L1/? appears in alinear algebra statement, it is to be considered a "short-

fat" matrix

ff = [«i ••• aN+r-\ ) 6 to»*N+"1 . (7.9c)

It is clear that S^,r is a linear bijection. Proceeding as in Section 4, we define the inner product

on IJJ* in the following way. Given a,0 e £jj\ let u=S~N[r(a) and v =Sj}AP)- The inner
product must satisfy

i

o

<a,/?>r> =(M,v)l, =\\ik:rl <****</) .set1 A*/e>><&

tf+r-l A'+r-l

= Z Z <"*.A> [ 0A(/WO^ =<aMa,^)/2. (7.10a)
A=l /=l Jo

Thus, Ma is the (N + r- 1) x {N + r- 1) matrix whose A./-th entry is given by

[MJU= f **(/)*,(/)<//. (7.10b)

An alternate means ofdetermining Ma is to make use of the fact that L(^ c L]s where L^
was defined in (4.6) as the subspace of piecewise polynomial controls. This will allow us to

derive a more useful formula for Ma and enable us touse the results for L*N in Section 5 to show

consistency. Let M^ be as defined in (4.9b) with M = M1? the quadrature matrix for representa

tion Rl. Recall from Section 4 that, given u g L]n, ii =VAN(u) g IJy are its control samples.
Thus, from (7.1a), the composite map VA,NoSj}r, which computes the control samples of

mg L{^ from its spline coefficients a =SN r(w), satisfies

w=VA.Ao5^r(cr) =orO^/v, (7.11a)

where Oa # is an Nrx(N +r- 1) matrix whose (Ir+ /, A)-th entry, / = 0 N- 1, j = 1,...,r.
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and A= 1 N +r-\ is <t>k(ru) with ij g /. The index set / is defined in (2.4.4). In other

words, the elements of the A-th column of Oa/v are the control samples of the A-th B-spline func

tion <f>k(). Thus,

("<V)L2 = (Vr(«)Mfl,Vr(v))/: = (VAM")MN,VA.N(V)),2

= (Va.N oS~N roSNAU) Myy, VAN oSjf rosNAv))i2

= {%(M)(D^MN,5w,r(v)(D!;iW)l2 (7.11b)

Therefore.

M„ = &TA.NMN<t>A.N (7.11c)

It is not obvious that (7.1 lc) is equivalent to (7.10b) and hence independent of the Butcher array

A. To see that this is so, note that the A, /-th element of Mff, as given in (7.1 lc), is

[Ma]k.l ~ 0ATO.iJ- ' *0*(*O.i, ) **' tk^N-l.,, )•'• fa(*N-u)]ma,
0/(*b.i,)

_0l(TN-\,ir) _

(7.1 Id)

rlThis is just the inner-product of VA.s(<pk(t)) and VA,#(0/(0) in Z.^. Hence, because of the way

M\ was defined in Section 4, [Mff]A / = (<f>kU),0i(t))L,.

We are now in a position to compute the gradients of the cost and constraint functions with

respect to elements of the finite-dimensional Hilbert space L1^. For // g L{^\ we will use the
shorthand notation

daMu) =

64

( d

da\ In(snA»)) MSNA"))daN+p.]

to denote the derivative of Jh(cx), a = S#<r(«), with respect to the spline coefficients a. This

quantity is the gradient with respect to the Euclidean norm but not the norm that we have defined

on L^\ Note that dafN(u) g irw'x(A'+p-,> js a "short-fat" matrix; ifm= 1(single input system),

then dafN{u) is a row vector. Let /# : L\» -»IR. Then, the differential of /# is a bounded linear

operator on LJJ* which, by the Riesz representation theorem, can be represented as (V/#(m), 6u)
where V/#(w) g L{J\ Therefore, using (7.10a) and the definition ofdirectional derivatives, we

have, for u g LJJ\ and Su g L(a^,

(*uM»)*S») = <Vr(V(,/#(*0)Mo,<?<*>,, = {d„Mu)%Sa)h , (7.12b)

where J a = 5/v r(£:/), a - SkA1*) anQ,» by using the chain rule along with (7.1 la),

Consistent Approximations

(7.12a)

Chap. 2



daM") = dsfN(u)®AtN (7.12c)

with dJN(u) defined by (5.5c). Thus, for u g L{„\

VuMu) = SN]AdsM")<t>A.NMa)- (7.12d)

It is important to note that the expression in (7.12d) for the gradient on L^ is not the same

as the gradient V/#(w) = VA,A,(dfi/A,(w)M}v)in L}N restricted to L(^ c LlN because the defini
tion of the gradient depends on the space of perturbations upon which the differential of /#(•) is

allowed to act. However, from (7.12d) and (7.1 la), we can relate the samples ofV/A/(w) on LjJ*
to thediscrete-time derivative of /#(•) as follows,

Va.n(*Mu)) = VAmNOSi{r(dsMuYI>AmNM-al) = dJ(u)<t>A,NM-al<t>TAM . (7.13)

We note that <J>ANM;'d>A v * M~N].

The expression in (7.13) can be used in the proof of Theorem 5.6 to show that there exists

k< oo such that IVm/a-(m) - VM/(w)l < kIN for all u g L(^c:Hn. The derivation of (5.13d)
starting from (5.1 Id) must be modified by taking into account the fact that entries of

^a.a'M"1^ A. go to zero away from the diagonal and Oa^M^'oJ^I -» 1 as N -> oo, where 1
is a compatible column vector of ones. Therefore, the optimality functions hypoconverge by the

result of Theorem 5.9 and thus satisfy condition (2.3). This, along with Theorem 7.5, shows that

the approximating problems CPA>, with feasible sets HA? and optimality functions 6N given by
(5.8a) using (7.12d) as the expression for the gradients, are consistent approximations to (CP, 8).

We state this result as a theorem:

Theorem 7.6. Suppose that Assumptions 3.1, 4.1 and 4.9 and equation (5.18) hold and that

Conjecture 5.11 is true. Let N = {2" }~,. Then, with CPA as defined in (7.3c) and 6N as

defined in (5.8a), the family of approximating pairs (CPN,0N), N g N, constitute consistent

approximations for the pair (CP, 6). D

Example (Linear Splines — uniform knot sequence)

In this case, r = 2 and the basis functions are given by

Mt)m\ Uk-t)lA if, g[,*_„,*] • (7J4)
Let m, v e LN and a = 5A•,.(«). and /? = SN r(v). Since these hat functions have a support of

only two time intervals (2A), M„, given by equation (7.10b), is
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Ma = :
a (2r'-l)!

2 1

1 4 1

1 4

Example (Cubic Splines — uniform knot sequence)

1 4 1

1 2

(7.15)

In this case, r=4 and the basis functions are given by (7.2c). Assuming A < /,

0k(t)<pi(t)dt = f 4>k(t)<pi(t)dt where a - max {0,//_4 } and b= min {tk, 1} since each B-
JQ J a

spline has support of width 4A. In particular, [Ma]kj = 0 if IA - /I > 3. Thus,

Ma =a^iy.

20 129 60 1

129 1208 1062 120 1

60 1062 2396 1191 120 1

1 120 1191 2416 1191 120

1 120 1191 2416 1191

1

120 1

(7.16)

Remark 7.7. Formula (7.10b) for determining Ma can be applied in a straightforward manner

using either a numerical integration routine or by evaluating the integrals (whose integrands are

piecewise polynomials) analytically. Some care must be taken when applying formula (7.11c).

Specifically, it must be remembered that the order r of the splines in L{ff will be smaller than the
number of stages s in the RK method if some of the c, values in the Butcher array are repeated.

For example, the fourth-order method RK4 used in Section 6 with c = (0,1/2,1/2,1), has r = 3.

In this case, formula (7.1 lc) applies to quadratic splines, not cubic splines. Recall, though, that

(7.1 lc) is actually independent of the RK parameters. So, for a p-th order spline, it is easiest to

just choose c = (c\ ,cp) where c} = 1/7, 7 = 1 , p, and not consider which RK method is

going to be used.

Both formulas also work when the knot sequence contains repeated interior knots. In this

case, care must be taken at any point where the spline is discontinuous to ensure that the values of

4>k(Ti.i ) are evaluated at the correct side of the discontinuity. D

Remark 7.8. For r > 2, M"1 is a dense matrix. However, Ma is banded and diagonally domi

nant. Hence, for u g L^, we can find d(u) = SNA^uMu)) - dafN(u)M~£ efficiently by solv
ing

d(u)Ma = dafN(u), (7.17)

where a = SNAU)' using Gaussian elimination without pivoting [72. page 119]. D
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2.7.1 Implementation of Spline Coordinate Transformation.

The idea of coordinate transformations introduced in Section 6 can also be used with spline repre

sentations for the finite dimensional control subspaces. In this case we use the transform matrix

Ma to set up the coordinate transformation:

1/2
a = orM (7.18a)

CAM-II2>fN(a) = Mc7M-a,u) (7.18b)

—l /jz\a-\/2Correspondingly, with u = SN r(a M„ ), the gradient is given by the expression

v0-/^(//) =^7Ar(orM;,/2)M;,/2 (7.18c)

Because MlJ2 and its inverse are dense matrices, a factorization approach is needed in the imple

mentation of this transformation. Since, Mff is symmetric it has a Schur decomposition

Mff = UDUT with V a unitary matrix and D a diagonal matrix, see [72, page 410]. Thus,

because UT =V~\ MlJ2 =UDU2UT and M;l/2 =VD~mVT (see [72, page 540] ). Note that the
factorization need be performed only once.

Besides the computational burden of computing M^2, the fact that M„2 is not a diagonal
matrix causes another problem: simple bound constraints on a are transformed into general linear

constraints on a (cf Remark 6.1). Both of these problems can be alleviated for second order

splines using the following considerations. First, we recall from (7.11c) that

M„ = <I)A>MA;<1>A A-. In this expression. M/y is the block diagonal.matrix

MA. ±diag[AoM,,A,Af, A^M,] (7.19a)

where M\ is the quadrature matrix defined for control representation Rl in (4.9b). Next, note

from (7.1 la) that given a vector a g La-\ a<t>AN =VA ^o 5 '̂r(or) g Ln. Thus, M0 is just MA-

transformed from the basis for L]N to the basis for L^. Now, according to Proposition 5.5, the
control samples of solutions to the discretized problem (PN,6N), and hence, the spline that inter

polates those samples, do not depend on which control representation, Rl or R2, is being used.

Hence, we can construct MA> from the quadrature matrix M2 instead of M\ without affecting the

solutions of (PN,6N). For r = 2, we have

M-> =
o I

Thus, letting
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M^=diag[ AqM2 , A,M2 ,..., AN^M2 ],

we get the transformation matrix

Ao

Ma =

68

Aq+ A,

Aj +A2

Av_5 + Aw.N-\

AN-\

which is diagonal. Note that this idea will not produce a diagonal Ma for higher order splines.

However, in the next chapter, we argue against using higher order splines for problems with con

trol constraints anyway.

In the following table, we list the number of iterations required to solve a few optimal con

trol problems with and without using the coordinate transformation. For each problem, we used a

uniformly spaced integration mesh with a discretization level of N = 50. The convergence toler

ance was set at £ = 10"6 when using the coordinate transformation and £ = lO^/VN when not

using the coordinate transformation (to make the convergence criterion equivalent). This is

equivalent to setting Ma = ^ / where / is the identity matrix. For problems with endpoint and/or
trajectory constraints, we set the constraint violation tolerance at 10"4.

For the two unconstrained problems, we used both the projected descent algorithm (P-

Descent) in conjunction with the L-BFGS (limited memory quasi-Newton method) and an SQP

method (NPSOL). We solved the problems using both a second order (RK2) and a fourth order

(RK4) integration methods. The order of the spline representation is indicated by r. For second

order splines, r = 2, we used Ma as given by (7.1 lc) and by (7.19c). The number of iterations

required when using expression (7.19c) is the first number in the r = 2 column and the number of

iterations required when using (7.1 lc) is the second number.

The optimal control problems listed in table 7.1 are described in Appendix B. The last three

rows of this table pertain to problems with control bounds. We did not, therefore, solve these

problems with third order splines.
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RK2 RK4

With Without With Without

Problem Method r = 2 r = 2 r = 2 r = 3 r = 2 r = 3

LQR

LQR

Rayleigh

Rayleigh

Constr. Rayleigh

Switch

P-Descent

SQP

P-Descent

SQP

SQP

SQP

5,5

5,15

13,15

18,23

24,35

1 ,18

121
15

14

40

20

8

10,5

10,5

16,14

18,18

22,22

12,1

5

5

14

20

24

6

191
26

19

56

26

18

261
39

28]
78

34

25

Bang

Goddard

Goddard*

SQP

SQP

SQP

12

26

24

9

372
382

12

30

22

9

382
292

Table 7.1: Number of iierations required to solve various optimal control problems with and
without the use of the spline coordinate transformation (7.18). The order of the spline representa
tion is indicated by r. Columns with two numbers show the number of iterations required when
M0 is determined with formula (7.19c) or (7.1 lc) respectively. Constr. Rayleigh is the Rayleigh
problem with the endpoint constraint .v,(2.5) = 0.

In this table a superscript indicates that the projected descent method terminated without
2

achieving the requested tolerance because the step-size became too small. A superscript indi

cates that the SQP reached the requested tolerance but that iterates, { a' }, failed to converge in

the sense that lcr'+1 - cr'B was not small enough. The last two rows are results for the Goddard

maximum ascent rocket problem. This is a singular optimal control problem and was solved with

a 10-4 penalty on the variation of the control derivative (see Chapter 4.5). The last row,

Goddard*, includes a trajectory constraint on the dynamic pressure. We can make the following

observation from the data in this table.

• With the exception of of constrained Rayleigh using RK2 and Bang, the number of iterations

when using the coordinate transformation is less than without the transformation; sometimes

substantially less.

• In several cases, the optimization procedure was not able to terminate successfully when the

coordinate transformation was not used.

• In comparing the results of the first row of this table to Table 6.1, we see that the effect of the

coordinate transformation on the number of iterations is less pronounced for splines than it is

for controls in LA/ or LA>. This is due to the spline smoothness.
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• For problems without control constraints, formula (7.1 lc) for Ma, when using second order

splines, gives better results for RK4 than formula (7.19c) gives. The reverse is true with RK2.

We have no explanation for this behavior. This suggests the following rule for which formula

for Ma to use: if the problem has control bounds or if using RK2, use formula (7.19b), other

wise use (7.11c).

2.8 CONCLUDING REMARKS

We have shown that a large class of Runge-Kutta integration methods can be used to con

struct consistent approximations to continuous time optimal control problems. The construction

is not unique: it is determined by the selection of families of finite dimensional subspaces of the

control space. Because the elements of these subspaces are discontinuous functions, appropriate

extensions of Runge-Kutta methods must be used. Not all convergent Runge-Kutta methods,

however, produce consistent approximations. This was observed both numerically and by failure

to prove consistency of approximation with these methods. We have considered two selections of

control subspaces, one defined by piecewise polynomial functions and one by piecewise constant

functions. Splines can also be used and are treated in Section 7. Each selection has some advan

tages and some disadvantages. A final selection has to be made on the basis of secondary consid

erations such as the importance of approximate solutions satisfying the original control con

straints, the form that the control constraints take in the discrete-time optimal control problems, or

the accuracy with which the differential equation is integrated.

As in our construction, the basis functions that are used implicitly to define the finite dimen

sional control subspaces may turn out to be non-orthonormal. In this case a non-Euclidean inner

product and corresponding norm should be used in solving the resulting approximating discrete-

time optimal control problems. Neglecting to do so amounts to a change of coordinates that can

lead to serious ill-conditioning. This ill-conditioning is demonstrated in Section 6 and Section 7.

Finally, the use of the framework of consistent approximations opens up the possibility of

developing optimal discretization strategies, such as those considered for semi-infinite program

ming in [57]. Such a strategy provides rules for selecting the number of approximating problems

to be used as well as the discretization level, the order of the RK method, and the number of itera

tions of a particular optimization algorithm to be applied for each such approximating problem,

so as to minimize the computing time needed to reach a specified degree of accuracy in solving an

optimal control problem.
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Chapter 3

PROJECTED DESCENT METHOD FOR PROBLEMS

WITH SIMPLE BOUNDS

3.1 INTRODUCTION

In this chapter, we consider a class of finite dimensional optimization problems that arises

from the discretization of optimal control problems with simple control bounds. Because the dis

cussion in this Chapter is within the realm mathematical programming, we will maintain the con

vention of using the x, rather than the control variable u, to represent the decision variables of a

mathematical program.

Consider the problem

P min f(x) subject to x' > 0 . / = !,...,«,
x e IR"

where /: IR" —> IR iscontinuously differentiable and x = (x\x2 x").

Algorithms for solving problem P based on the projection of a descent direction were first

proposed by Goldstein [73] and Levitin and Polyak [74]. In [75], Bertsekas used the projection

operator defined in [73,74] to construct a projected gradient descent algorithm with an Armijo

step-size rule for solving P. Whenever a sequence constructed by this algorithm enters a suffi

ciently small neighborhood of a local minimizer jc satisfying standard second order sufficiency

conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the

active constraint set at x is identified in a finite number of iterations. This fact was used in [76] to

construct a modified projected Newton method, again using the projection operator defined

in [73,74], with a modified Armijo step-size rule. The algorithm in [76] employs the Newton

search direction only in the estimated subspace of non-binding (inactive) variables, and uses the

gradient direction in the estimated subspace of binding (active) variables. Under reasonable

assumptions, Bertsekas showed that his projected modified Newton method for solving P is glob

ally convergent with ^-quadratic rate. The algorithm in [76] is easily extended to problems with
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simple bounds of the form b\ < x' < b'u, i = 1,..., n where b\ < b'u. Bertsekas also provides an

extension for handling general linear constraints of the form b\ < Ax < bu. The Bertsekas pro

jected Newton method was further extended to handle general convex constraints in [77]. The

efficiency of this family of algorithms derives from the fact that (a) the search direction computa

tion is simple, (b) any number of constraints can be added to or removed from the active con

straint set at each iteration, and (c) under the standard second order sufficiency condition the

algorithms identify the correct active constraint set after a finite number of iterations. This last

fact implies that the rate of convergence depends only on the rate of convergence of the algorithm

in the subspace of decision variables that are unconstrained at the solution.

Another example of a projection based algorithm for solving optimization problems with

simple bounds can be found in [78] where Quintana and Davison present a conceptual algorithm

with exact line search based upon a modified version of the Fletcher-Reeves conjugate gradient

method in function space combined with a projection operator. This algorithm was intended for

the solution of optimal control problems with bounded controls. The soundness of the algorithm

in [78] is not clear because the proof of convergence assumes that there exists, at each iteration k,

a step-size ak > 0 that causes a decrease in function value. However, the authors do not show that

such a positive step-size exists. Furthermore, Quintana and Davison require an a posteriori

assumption (their eqn. (26)) that is not directly related to the problem or the method under consid

eration.

More recently, there have been some papers based on ideas related to Bertsekas' projected

gradient scheme. A trust region algorithm for problems with simple bounds is analyzed in [79].

On each iteration of this algorithm, a projection operator is used to find the generalized Cauchy

point of a quadratic model to the objective function. Then the quadratic model is further mini

mized on the intersection of the trust region with the feasible set while keeping the variables

bounded at the Cauchy point fixed. This algorithm is extended to problems with general con

straints in [80] using an augmented Lagrangian approach. A scheme similar to that proposed

in [79] is given in [81]. However, in [81] the quadratic model is based on a positive definite, lim

ited-memory BFGS estimate of the Hessian. Therefore, a trust region is not needed and the

approximate minimizer of the model is used to construct a search direction for a projected line

minimization of the objective function. The projected gradient idea is also used in [82] and [83]

to rapidly identify the active constraint set for bound constrained quadratic programming.

Finally, the authors of [84] have extended the projected Newton method of [76] to optimal control

problems with control bounds.

Our results extend those provided in [76] by showing that the concept of Bertsekas' projec

tion method can be used with any search direction and step-size rules that satisfy general
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conditions similar to those in [85]. For example, we show that our version of the projection

method can be used with search directions that are determined by a conjugate gradient in the sub-

space of unconstrained decision variables. The extension to conjugate-gradient methods is partic

ularly valuable for solving large-scale optimization problems with simple bound constraints

because conjugate-gradient methods do not require much additional storage or computation

beyond that required by the steepest descent method but, in practice, perform considerably better

than steepest descent. We also use our results to construct an algorithm based on the limited-

memory quasi-Newton method, L-BFGS (described in [86] ), for the search direction computa

tions. Unlike the L-BFGS method used in [81], our update is only used to estimate the Hessian in

the unconstrained subspace and our search direction is obtain directly rather than as an approxi

mate solution of a quadratic subproblem.

The remainder of this chapter consists of three sections. In Section 2, we define the projec

tion operator and state an algorithm model that can use any search directions that satisfy certain

conditions. The algorithm uses a modified Armijo rule for the step-size selection. We prove con

vergence of this algorithm model and the fact that it identifies the correct active constraint set in a

finite number of iterations under second order sufficiency conditions. We also show how to incor

porate other step-size rules into our algorithm in a way that preserves the convergence properties.

Several of our proofs are similar to those in [76]. As an example of the construction of admissible

search directions for our algorithm, we use the Polak-Ribere conjugate gradient formula which

numerical experience has shown to be more effective than the Fletcher-Reeves formulation (an

explanation for this empirical result is given in [87] ). We provide one example of the fact that

standard rate of convergence results for the conjugate gradient method still hold for its projected

version. To conclude Section 2, we describe an extension of the algorithm model that handles

simple bounds of the form b\ < x' < b'u, i = 1,..., n. In Section 3, we present numerical results

obtained in solving two optimal control problems with simple control bounds. We use three

implementations of our algorithm based on steepest descent, conjugate gradient, and the limited-

memory quasi-Newton (L-BFGS) method for the search direction computations. These numeri

cal results indicate that the projected conjugate gradient method and the projected L-BFGS

method perform significantly better than the projected steepest descent method. Finally, in Sec

tion 4, we state our concluding remarks.
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3.2 ALGORITHM MODEL FOR MINIMIZATION SUBJECT TO SIMPLE BOUNDS

The algorithm to be presented is described with the help of the following notation: for any

z e IR", the projection operator [•]+ is given by

[*]+ =

max { 0, z }

max {0, z" }

and, for any search direction d e IR", x e IR" and step-size X € 1R+,

x(A,d) = [x + Ad]+. (2.1b)

For any index set /c {1 n } and x, y e IR", we define (x,y)j = ^€ ; xlyl, and

l.vl/ = (a-, a),. Without subscripts, (•,•) and I •I denote the Euclidean inner product and norm,

respectively, on IR". Let

B(x, p) = { a- g IR" 11*- xl < p } (2.1c)

denote the closed ball of radius p around x. Finally, let

J= { x e IR" I a-'>0, i = 1 n) (2.1d)

denote the feasible set for problem P.

Definition 2.1. A point x e jTis said to be a stationarypoint for the problem P if directional

derivative of f(x) at x is non-decreasing in all feasible directions:

df(x : x - a) > 0 , Vx g J. (2.2a)

or equivalently, for / = 1,..., n,

. ^2>0, and ^=0ifA'>0. (2.2b)
9a' dx'

D

Active and almost active bounds. The projected descent algorithm model (Algorithm Model

PD) which we will present requires, for each iterate xk, the definition of sets

Ik = /(**) c { 1,2,..., n } and Ak = A(xk) c { 1,2,..., n }. The set Ak contains the indices

of the "active" or "almost active" bounds at iteration k and the set lk is the complement of Ak in

{1 n}. With g{x) =V/(a), we define1

w(x) = lx-[x-g(x)]+l, (2.3a)

TMore generally, wix) can bedenned as u-(.v) —l.v - 1a- - D#u)]+I where D isapositive definite diagonal matrix.

(2.1a)
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and

£(.v) = min { £, w(x)} , (2.3b)

where £ > 0 is a parameter in Algorithm Model PD. We can see that e(x) = 0 if and only if

x g jTis a stationary point because the requirement that x e Jand that (2.2b) hold is equivalent

to the requirement that

maxl-s'U),-*'} =0, / = 1,...,« (2.3c)

which, upon addition of x\ i = 1 n, to both sides, yields [x - g(x)]+ = x, i.e. that w(x) = 0.

Next, for x e £ we define

*(*)= {/ e 1 n\0<xi<£(x),gi(x)>0) , (2.4a)

and

/(a) = {/ e 1,..., n | / I A(x)} = {/el n\A> £(x) or g'(*) < 0 } . (2.4b)

To understand the logic behind the definition of the active constraint index set A(x), first consider

the situation corresponding to £ = 0. In this case, if / g A(x), jc' = 0 and g'(x) > 0. Thus, x' is

at its bound and, moreover, any movement in ^"away from that bound will cause an increase in

the objective function. Hence our algorithm will be constructed to leave such an x' unchanged.

When £ > 0, as in Algorithm Model PD below, the set A(x) also includes indices of variables that

are almost at their bounds and, because g'(x) > 0, are likely to hit their bounds during the line

search. Thus, given x e J. the set A(x) tends to identify the active constraints at a "nearby"

point on the boundary of J.

Note that in Algorithm Model PD, below, the search directions are specified only to the

extent that they satisfy three conditions (stated in (2.5a,b,c)). It is clear that the direction of steep

est descent, and more generally, any direction of the form dk - -Dkgk where Dk is a symmetric,

positive definite matrix that is diagonal with respect to indices is Ak and has eigenvalues

bounded from above and away from zero, satisfies these conditions. In the sequel we will show

how dk satisfying these conditions can be constructed using standard algorithms.

The most important property of Algorithm Model PD is that it identifies the correct active

constraint set in a finite number of iterations. Once the correct active constraint set is identified,

the active variables a, remain at the value of zero while on the orthogonal, "unconstrained" sub-

space Algorithm Model PD behaves as an unconstrained optimization algorithm. Because of this,

the rate of convergence of Algorithm Model PD is that associated with whatever method is used

to determine the components of the search direction dk in the "unconstrained" subspace.
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Algorithm Model PD:

Data: a,p g (0,1), M g IN, cr, g (0,1), a2 e (l,oo), f g (0,co), x0 g 5

Step 0: Set A = 0.

Step /: Compute gk = Vf(xk) and set 4* = A(a^), /* = I(xk). If l£*l/t = 0 and x'k = 0 for all
i g A^, stop.

Step2: Select scalars wi*, i g 4*, and a search direction dk satisfying the following conditions:

dk=-<gk . <Ti<mi<a2 , VieAk, (2.5a)

<^*.**>/ft 2S-o-,l**l?4 , (2.5b)

ldkh,<c72lgklik. (2.5c)

Ste/? 3: Compute the step-size Xk = /?'" where /« is the smallest integer greater than - M such

that Xk satisfies the Armijo-like rule:

f(xkUk.dk))-f(xk) <a\ Xk(gk.dk)h - (gk,xk-xkUk,dk))A . (2.6a)

Set

*m = XkWk-dk) = [xk + **«**]+ • (2.6b)

Step4: Replace k by k + 1 and go to Step 1. • D

Note that in (2.5a) one can choose m\ - 1 for all / g Ak. Then the search direction in the sub-

space of active constraints is the steepest descent direction. The criterion lgkl\k = 0 is not a prac

tical test; in a numerical implementation it would instead be required that lgkl\k be smaller than a

given tolerance. The £ in the algorithm description is needed in (2.3b) to determine the active

constraint index set.

Remark 2.2. It is easy to see that the the right-hand side of (2.6a) is non-positive. The first

term of the bracketed expression is non-positive because (gk,dk)l <-a\lgkl2 by (2.5b). The

second term is non-negative:

<gk.xk-xkUk.dk))Ak >0, (2.7)

because for all / g Ak, g'k > 0 and d'k = -m'kg'k < -ff\g'k < 0 and hence x'k - xk(X,dk) > 0 for

all X > 0.
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Remark 2.3. The requirements in (2.5a,b,c) are similar to those used in the Polak-Sargent-

Sebastian Theorem of convergence for abstract, iterative minimization processes [85]; they ensure

that ldkl is bounded below by a\lgkl and bounded above by c2\gkl and that dk does not become

orthogonal to gk. To wit, let 0k be the angle between the vectors dk and -gk. From (2.5a,b) we

have that

(dk,gk)<-a^ lgkl2Ak +(dk,gk)h<-Gjgkl2 , (2.8a)

and from (2.5a,c)

ldkl2 <a2lgklAl +ldkl\ <ollgkl2 . (2.8b)

Using these expression in (2.8a) we see that

cos., =̂ %^>^>0. (2.8c)
ldkllgkl a2

D

Remark 2.4. In [76], the search directions are given by dk = -Dkgk where the Dk are sym

metric, positive definite matrices with elements, Dj, that are diagonal with respect to the indices
/ g Ak, i.e.,

Dkj, =Dj =0 ,V/e^. ,; =1,2 n,j*i, (2.8d)

and are required to satisfy

y^ix^lzl2 < :TDkz < rMx^-lzl2 , Vz e IR" , (2.8e)

where y\ and y2 are positive scalars. q\ and q2 are non-negative integers and w() is defined in

(2.3a). It is easy to see that in the case q\ = q2 - 0, with y\ g (0,1) and y2 g (l.cxa).

dk = -Dkgk will satisfy the conditions required by (2.5a,b.c). If we replace the constants 0\ and

02 by <j]wixk)lil and cr^wix^2, respectively, in (2.5a,b,c), the search directions dk = -Dkgk
satisfy these tests for all non-negative, integer q\ and q2. D

Before proving convergence, we will show that the step-size rule is well defined and that the

stopping criterion in Step 1 of Algorithm Model PD is satisfied by a point x* if and only if xk is a

stationary point.
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Proposition 2.5. Let xk,dk be any iterate and corresponding search direction constructed by

Algorithm Model PD, i.e., dk satisfies the conditions in (2.5a,b,c). Then

(a) xk is a stationary point for problem P if and only if xk(X, dk) = xk for all X > 0;

(b) xk is a stationary point for problem P if and only if lgkljk = 0 and xk = 0 for all i'e Ak;

(c) if xk is not a stationary point for problem P then there exists X> 0 such that

f(xk(X,dk))-f(xk) <a\ X{gk,dk)h - (gk,xk-xk(X,dk))A, VA€[0,A), (2.9)

i.e., the step-size rule (2.6a) is well defined at xk and will be satisfied with Xk > min {f$~M, J3X }.

Proof.

(a) Suppose that xk is a stationary point. Then (2.2b) implies that g'k - 0 for all / g Ik. Hence,

d[ = 0 for all i g Ik, since ldklu < cr2lgklir Hence x'k(X,dk) = [xk + Xd[]+ = x\ for all X>0,
i g lk. Now, if / g Ak, then g'k > 0 and, since xk is stationary, it follows from (2.2b) that xlk = 0.

Hence for all ie^, xk(X,dk) = [-Xmkgk)+ = 0 = x'k for all X> 0. Thus,

jc*U,</4) = [**]+ = xkfor alU > 0.

Next, suppose that xk(X.dk) = a* for all X> 0. Then dj = 0 if x[ >0 and dj. < 0 if

x'k = 0. Let the index sets I\(xk), f2(xk) be defined by

/,(**) = {/ g /* | 4 > 0 } , l2(xk) = {i g /,: | xj = 0 } , (2.10a)

so that Ik = /|(A't)u/2(^). It follows from the above that if / g I\(xk), then dk = 0, and if

/ g I2(xk), then d'k < 0, and also g'k < 0 (by definition of lk since x'k = 0). Thus,

<8k-dkhk = (8k*dkhllXt> + («*^*>/2Ul, = (8k,dk)h{Xk) >0 . (2.10b)

But, from (2.5b), (gk.dk)lk <-a\lgkli:. Therefore, lgkhk = 0 and hence g'k = 0 for all / g Ik.

For i e Ak. d'k = - wJtgi < 0. Since x'k(X, dk) = x'k, for all A> 0. this implies that x'k = 0. Thus

we have that for all /' g Ik, g'k = 0 and for all i e Ak, g'k > 0 and x'k = 0. Consequently, xk is a

stationary point.

(b) Suppose that xk is a stationary point. If i g Ak then, because gj > 0 for all / g Ak, it fol

lows from (2.2b), that x'k = 0. If i e lk, then either (/) x'k > 0 in which case it follows directly

from (2.2b) that g'k - 0, or (ii) x\ - 0 in which case, by definition (2.4b) of Ik = I(xk), g'k < 0;

then, because g'k > 0 by (2.2b), we must have g'k = 0. To complete the proof, suppose that

hkhL = 0 and x'k - 0 for all i g Ak. Then, since x'k >0 for all / g lk and, since g'k > 0 for all
/ g Ak. it follows that (2.2b) holds for all /'.
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(c) Suppose that xk is not a stationary point. Define the following index sets:

Ii(xk) = {i g Ik | xk >0 , or (*j =0 and dj > 0)} , (2.1 la)

IAxk) = {i g lk | jci = 0 , dj <0 }, (2.11 b)

A,(a*)= [ieAk\xk>0) , A2(xk)= {/ g A* | 4 = 0} . (2.11c)

First note that IA*k) v A\(xk) \s not empty. To see this, suppose that i e U(*k) ^ ^M**) f°r

all / = 1,..., n. Then x'k = 0 and dj <0 (since dj = -m'kg'k < 0 for / g A2(xk)) which implies

that x'k(X,dk) = [jcjr. + Adj]+ = 0 = aj for all 1. Consequently, by part (a) of this proposition, xk

must be a stationary point; this is a contradiction. Now, let

Xx = sup { X I x'k + Xd'k > 0 , / g Iz(xk)} , (2.12a)

X2 = sup { XI jrj + Adj. >0 , / g A,(Ajt)) • (2.12b)

Clearly X\ >0 (possibly infinite) and A2 > 0. If l$(xk) is empty let X\ = 00 or, if A](a*) is

empty, let X2 = 00. Now, if / g 74(a*), A-jU.d*) = [Adj]+ = 0 = aj for all ^ > 0. Similarly, if

/ g A2(xk), aJ(A,dk) = [- Amjgj]+ = 0 = aj for all ,1 >0. On the otherhand, if i g I3(xk) and

Xe[0,X}), then x'k(X,dk) = aj + Xd'k and if / e A,(jca) and Xe[0,X2], then

aj U,dA) = x'k - Xm'kg'k. Therefore, with

rfi=M if'e/,U')U '̂Ut) • /-!.....». (2.13a)
I 0 otherwise

it follows that

xk(X.dk) = [aa + Xdk]+ = xk + Xdk , V/l e [0,min { X,, X2 }) . (2.13b)

Next, from (2.13a), we obtain

<2k*8k) =<<**.**>/,u4>+ <dk,gk)AliXk) • (2.14a)

Now, from (2.5b), (dk,gk)h = (dk,gk)hiXk) + (dk.gk)U(Xk) <-(7,1^1,2. But, for 1G /4U*),

dj <0 and gj <0, so (dk,gk),iiXk)>0. Thus, (dk,gk)hlXk) < -<r, 1**1,2. This, together with

(2.5a) and (2.14a), implies that

<^.**> ^-o-,l«*l5A - (2.14b)

Since a* is not a stationary point, there exists at least one / g Ik\jA\(xk) such that g'k *0.

Hence (dk, gk) < 0, i.e. dk is a feasible descent direction. Next, it follows from (2.13b) that, for

all X g [0,min {X\,X2}). the Armijo-like step-size rule in (2.6a) is equivalent to the following

requirement on X,
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f(xk + Xdk) - f(xk) < aX(gk,dk)AkKJhiXk) + aX(gk,dk)U(Xk) . (2.14c)

But for all / g I4(xk), g'k < 0 and dj < 0. Therefore the last term in the (2.14c) is non-negative.

Hence (2.14c) is satisfied if the following, harder, condition is satisfied,

f(xk + Xdk) - fk < cxX(gk,dk). (2.14d)

But this is the usual Armijo rule applied to an unconstrained problem which can always be satis

fied with a positive step-size when (gk,dk)< 0. Hence, there exists 0 < X< min { Aj, X2 } such

that (2.9) holds. D

We will now show that Algorithm Model PD produces a sequence of iterates whose accu

mulation points are stationary points. The following assumption will be used:

Assumption 2.6. The gradient V/() is Lipschitz continuous on bounded subsets of J\ i.e.,

given any bounded set S c %there exists a scalar L < oo such that

IV/(a) - V/(y)l < LIa - yl , Va.v e S . (2.15)
D

Lemma 2.7. Suppose that the sequences {xk }J1q with a* g J, {dk }JIq with dk g IR", and

( *k) So w'tn h G IR bounded and non-negative, are such that (2.5a,b,c) and (2.6a) are satisfied

by the triplet { xk,dk,Xk } for all k. Then, for any a g J that is not a stationary point, there

exists a p > 0 and a 6 > 0 (depending on x) such that

f(xk(Xk.dk))-f(xk)<-S (2.16)

for all k such that xk g 2?(a, p).

Proof We will first show that there exists X> 0. depending on a, such that Xk > X for all k

such that xk is sufficiently close to a. We will then use this X to derive p > 0 and S > 0 such that

(2.16) holds. Let S c Jbe a bounded neighborhood of a. For any a* g S, Vf(xk) is bounded

because it is a continuous function. By (2.5a,c) dk is also bounded. This implies that A^U^d*),

Xk g [0,/3~M], is bounded. Thus, by Assumption 2.6 we have that there exists an L < oo such

that for 5 g [0,1],

lgk -Vf(xk - s[xk - xk(X.dk)))l2< sLlxk - xk(X<dk)l, VxkeS. (2.17)

Expanding the left-hand side of(2.6a) we have, for xk g Sand Xe [0, /Tw],
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f(xk(X,dk)) - /(A,) = (gk,xk(X,dk) - xk)

+J0 Wf(Xk - s[Xk - xk(X,dk))) - gk,xk(X,dk) - xk)ds

^ (gk*xk(X,dk) - a*) +lxk(X,dk) - xkl f sLlxk(X,dk) - xkl ds
jo

=(gk,xk(X,dk)-xk) +jlxk(X,dk)-xkl2. (2.18)

Now, for i G Ak, x'k(X.dk) = [aj - Xm'kgk}+ > aj - Xm'kg'k so that aj - AJ^d*) < Xm'kgk.

Thus,

^ X mkgk[xk-xk(A,dk)]Z\xk-xkU,dk)l2Ak. (219)

Now consider the sets /s<t. = {i g Ik I#j > 0 } and Ibk = [ i g Ik I gj < 0 }. If i e /s,* then

aj > £k (for otherwise i g Ak). Since a is not a stationary point, Ia - [a - V/(a)]+I > 0 (see

discussion of equation (2.3c)). Thus, since w(-) is continuous and e(x) - min { £, w(x)}, there

exists p\ > 0 and f > 0 such that (/') f(.vA) > £ for all a* g B(x, px) and (/7) 5(a, px) c: S. Let

A < oo be such that Dg/-.l < A/cr| for all xk e B(x,p\). Then, for all k such that xk e B(x, px),

we have from (2.5b) that ldjl<A for all i g lk. Hence, for A g [0, £ I A] and i e I$k,

AJ(A,dJL) = aj + Adj and

I 8k[Xk-xkU.dk)) =-A(gk,dk)hl , VAe[0,f/A]. (2 20a)

Next, for all X> 0, aj - x'k(X. dk)<- Adj, and since g'k < 0 for / g /6*, we have that

I 8ik[xik-x'k(X,dk)]>-X(gk.dk)ltk,VX>0. (22Qh)

Combining these last two expressions gives us

(8k*xk-xk(X,dk)),k >-X(gk,dk)ielk , VAe [0,£ /A] (2.20c)

for all A- such that xk g 5(a,/?,). Finally, from (2.5b,c) we have that

-(dk,gk)ik ^o-jl^jtl^ >Qldkl2ik, and since, for any ie {1 n) and all A>0,

Iaj - aj(A)I < Aldjl, we havethat

2

Ia, - A,(A,d,)l7t <A2ld,l^ <-A2 ?i(dk,gk)lk . (2.21)
C7\ k

Thus, from (2.20c), we see that, for all xk g B(x, p\),
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(gk,xk(X,dk)-xk) =-(gk,xk-xk(X,dk))Ak-(gk,xk-xk(X,dk)),k

Z~(8k>xk -xk(X,dk))At + X(gk,dk),k , (2.22a)

and, from (2.19) and (2.21),

L L -, L i- lxk(X, dk) - a*I = - Iaa.(A, dk) - xklAk + - lxk(X) - xkVh

^~^-(8k,xk - xk(X,dk))Ak - A2 ^-<g„d,)/4 , VA e[0,£ /A] .(2.22b)
Substituting the expressions (2.22a,b) into (2.18), we obtain that for all A g [0,f/A] and

Xk G B(A,p|),

/(.v,(A,d,)) - /(a,) <A(l - Â ) <**,£/*>,, +(^ - 0 <gk.xk - xk(X,dk))Ak . (2.23)

Comparing this with (2.6a), and noting from (2.5b) and (2.7) that (8k*dk)Ik<0 and

(8k* xk - xk(X,dk))Ak > 0, we see that the Armijo-like rule is satisfied for any A> 0 such that

X<£/A, X-X2Lo2l2o\ >aX and Xa2LI2-\ <-a. Since /? g (0,1) and the step-size rule
requires the smallest m such that A = pm satisfies (2.6a), we see that for all xk g B(x, p\),

,t>X=mJi2-^fl.A>0. (2.24)
[ A g2L J

Now we will use (2.24) to show that (2.16) holds. For any / g Ik.

(8k^dk)h<-Gx\gS'h<-ax{g\? . (2.25a)

Also, for all i g Ak, g'k > 0 and x'k - x'k(Xk, dj) > 0. Thus, for any / g Ak, xk g 2?(a, p,),

{gk*xk-xk(Xk.dk))Ak > gk(xk-x'kUk,dk))

>£J(AJ-AJ(A,d*))

> (gj)min {x'k,X/mkg'k } = min {gkxt,X/mk ) , (2.25b)

where A is given by (2.24). Let g = V/(a). Since a is not stationary, there must exist an

i0 e (1 n } such that either (/') g'a < 0 or (ii) x'° > 0 and g'n * 0. By continuity of V/(),

there exist p2 g (0, p\] such that

i lj?'"l < lrf'1 < 2\$°\. Va* GB(x, p2). (2.25c)

Thus, if a'° = 0. then g'n <0 and. for all xk e B(x. p2), g[" <0. Hence, i0 g Ik and, by
(2.25a,c),
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(gk'dkh <-c71(|'")2/4 =-JI. (2.26a)

If a'° > 0, then we must have |'° > 0. Thus, from (2.25c), if xk g B(x, p2) then i0 g Ak. So, if

a'° > 0, then for all k g K such that Iaa. - aI < min { p2, x'"/2 }, we have from (2.25b,c),

~<8k,xk-xk(Xk,dk))Ak <-min{r,,jc'0/4,A/mj,} =-82 . (2.26b)

Now, from (2.6a) and (2.16), we have

f(xM)-f(xk)<f(xk(Xk,dk))-f(xk)<a{Xk(gk,dk)l^ . (2.27)

Since it is always the case that (gk,dk)u <-(Tjl^l2, <0 and -(gk,xk - xk(Xk,dk))Ak <0, we
have from (2.26a,b) and (2.27), that

f(xk+])-f(xk)<-S<0, Vxk GB(x,p), keK, (2.28)

where 8 = aS\ and p = p2 > 0 if a'" = 0 or 8 - aS2 and p = min { p2, a'"/2 } > 0 if a'" > 0. D

Theorem 2.8. Suppose that Assumption 2.6 holds. Let { xk} JIq with a* g % { dk ) J1q with

dk g IR", and { Xk }Jl0 with Xk g IR bounded and non-negative, be sequences such that, for all

k, (2.5a,b,c) and (2.6a) are satisfied by the triplet { xk,dk, Xk } and

/(AA.+1)</(A*(A*,dA)). (2.29)

Then any accumulation point, a, of { xk }J1q is a stationary point of problem P.

Proof. We will prove this result be contradiction. Suppose that a is an accumulation point of

{ xk }Jly. Then there exists an infinite set K c N such that lim* 6 k xk = x. By continuity of

/(•), this implies that lim* e K f(xk) = /(a). Additionally, for each ieN,

/(•*'*+!) ^ f(xk(Xk,dk) < f(xk) since the right hand side of (2.6a) is non-positive (cf Remark

2.2). Hence, f(xk) —» /(a) and. therefore,

f(xk) - f(xk+l) -> 0 as k -4 oo . (2.30)

Now, to establish the contradiction, suppose that a is not a stationary point. Then, by (2.29) and

Lemma 2.7, there exists p > 0 and 8 > 0 such that f(xk) - f(xk+i) > f(xk) - f(xk(Xk,dk)) > 8

for all a* g B(x, p). But this contradicts (2.30). Therefore a must be a stationary point. D

Corollary 2.9. Suppose that Assumption 2.6 holds. If { xk }^ is a finite sequence generated
by Algorithm Model PD, then xk is a stationary point of problem P. If { xk } JIq is an infinite

sequence generated by Algorithm Model PD, then every accumulation point of { a* }J1q is a sta

tionary point of problem P.

Proof First suppose { xk }^ is a finite sequence. Then by Proposition 2.5(&), xkf is a
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stationary point. If { xk }JIq is an infinite sequence then, by Theorem 2.8 (we have, trivially,

/Ua+i ) = f(xk(Xk, dk)), every accumulation point is a stationary point. D

Next, we proceed towards a proof that under suitable conditions, after a finite number of

iterations, Algorithm Model PD reverts to an unconstrained optimization algorithm on the sub-

space defined by the non-binding variables at a strict local minimizer limit point. Let 28(a) denote

the set of all binding constraints at a, i.e.

18(a) = {/Ia'=0} (2.31)

(this ®(a) should not be confused with B(x, p), the closed ball of radius p around a). We will use

the following alternative statement of the standard second order sufficiency condition with strict

complementary slackness for a stationary point a to be a strict local minimizer for a problem P
•j-

with /(•) twice continuously differentiable :

zTV2f(x)z >0 , V:e {c e IR" Iz' =0 , Vi e 3(a) } , (2.32a)

and

^>0, Vi€0tf). (2.32b)
dx1

Theorem 2.10. Suppose /(•) is twice continuously differentiable. Consider a sequence

{ xk }J1q produced by Algorithm Model PD. If { xk }Jl0 has an accumulation point a such that

(2.32a.b) hold, then xk —» x and there exists an N < oo such that

Ak = <%xk) = 2(a) , Vk > N + 1 . (2.33)

Proof Since /(•) is twice continuously differentiable, Assumption 2.6 holds. Thus, by Corol

lary 2.9. a is a stationary point. It therefore follows from (2.2b) and the definition of m(a) in

(2.3a) that u(a) = 0. Hence, because u() is continuous, there exists a p\ > 0 such that

£(x) =min { £, w(a) } = w(a) for all a g B{x.p\). Now, since (/') a', / g 0(a), is arbitrarily

close to zero if a sufficiently close to a, and (ii) g() = V/() is continuous, and thus by (2.32b),

bounded away from zero for x sufficiently close to a, we have that for a sufficiently close to a,

g'(x) > a' for all i g ®(a). Thus, there exists p2 e (0, p\\ such that for all a g B(a, p2)

[a' - g'(A)]+ = 0,VieB(i) (2.34a)

TSee. for example, [88. pp. 316-317J: viz.. equation (2.2b) holds, the Hessian ofthe Lagrangian Ux) = f(x)- pTx is positive
definite onthe subspace | : € R" I;' = 0 . i'eCv)) and the multipliers //' = d/U )/Bx' are positive for all i e Sx) and zero for
all i iftx)

84 Projected Descent Method Chap. 3



g'(A)>0, VieB(x). (2.34b)

From (2.34a) it follows that for a g B(x, p2),

(2.35a)
£2(A) = H'2(A) = lA - [A - £(A)]+|2 = £ (a')2 + £ (A* - [a' - g']+)2 > £ (*')2

i6 3[J) i^aiJ) ie«;)

and hence,

a' < £(x), Vi € B(a) and a g B(a, p2) • (2.35b)

Alsoi since (a)'>0 for all i &B(x) and £(a) = w(x) = 0, there exist scalars e >0 and

P3 g (0, p2] sucn tnat

a' > f > £(x), Vi 4 Ofa) and a g B(x, p3). (2.35c)

Thus, we see from (2.34b). (2.35b), (2.35c) and the definition of A(a) given in (2.4a), that

A(jc) = B(x), Va e B(x,pi) . (2.36)

To establish the next point, we need to assert that there exists A > 0 such that Xk> X for all

k such that xk g B(x, p3). We cannot directly use (2.24) in the proof of Lemma 2.7 because that

quantity was derived by assuming, in the derivation of equation (2.20a), that a was not a station

ary point. However, from (2.35c) and (2.36), we know that if a* g 5(a,/?3) then x'k > £ for

/ g Ik. We can therefore use £ for equation (2.20a) in lieu of the £. Thus, Xk> X for all k such

that xk g B(x, pi), where A is defined in (2.24) with £ replaced by £. Now for any k, i such that

xk g B(x,py) and i g Ak we have d'k = -mkg'k < 0, a* < £(xk) and by (2.36), i g 3(a). Thus,

from (2.32b), the continuity of V/() and the fact that Xk > Xfor all k, there exists a p4 g (0, p3]

such that for any / g Ak and xk e B(x, p4), 0 < x'k+] = [x'k - Xkmkg'k]+ < [x'k - Xm'kg'k]+ - 0.

This implies that / g %xk+\ ). Hence.

Ak c <B(xk+]), Vxk g B(x,p4). (2.37)

On the other hand, for any k,i such that xk g B(x,p4) and i £ Ak, we have from (2.36) that

/ g* 28(a) and hence, by (2.35c), x'k> £ . Since a is a stationary point, we see from (2.2b) that

df(x)/ax' =0 for all / e" $Kx). Also, Xk is bounded, e(-) is continuous, and by (2.5c),

ldkljk<a2lgkljk. Therefore, since

l**+i - xkl < lxk+l - xklAk + lxM - xkl,k < £(xk) + a2lgkllk is arbitrarily small for xk suffi

ciently close to a, there exists p5 g (0, p4] such that if xk e B(x, p5), then (i) xk+] g B(x, p4)

and (ii) x'k+l > £(xk+l) for / e- Ak. It follows from (i) and (2.36) that Ak = Ak+l = ®(a). From

(ii) it follows that / £ Ak implies that / ^ ®(aa+|) and hence, 2Kxk+\) c Ak. These facts

together with (2.37) allow us to conclude that
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QLxM) = AM =Ak = Q(x), Vxk e B(x,p5). (2.38)

Hence, the (k +1 )-th iteration is equivalent to an unconstrained minimization on the subspace

{ a g IR" I a' = 0 for i g ©(a) }. Therefore, since (2.5c) and (2.32a) hold and since a is a sta

tionary point, we can invoke Proposition 1.12 in [89] which states that there exists an open set

N(x) containing a such that N(x) c B(x,p5) and with the property that for any k such that

xk+] g N(x) and *B(xM) = 3(a), xk+2 e N(x) and, by (2.38), <B(xk+2) = <B(x). By continuing

in this manner, we can conclude that if there is an N such that a^+! g N(x) and 2(jc^+i) = 28(a),

then xk g N(x) and $Xxk) = (B(x) for all k > N + 1. We show that such an N exists as follows.

Using the same arguments that led up to (2.38), there exists p6 e (0, p5] such that if

xk g B(x.pb) then aa.+, g N(x) c B{x,p5) and, by (2.38), <B(xk+]) = ®(a). Since a is an

accumulation point, there exists N < oo such that xN g B(x,p6). Thus, xN+l g N(x) and

®(av+i) = !B(a) and therefore xk g N(a) and (BU*) = ®(a) for all k > N + 1. This allows us to

conclude, also using Proposition 1.12 in [89], that a* —> x. D

It follows from Theorem 2.10 that, under the conditions stated, Algorithm Model PD will

identify the constrained components of the solution a after a finite number of iterations N.

Hence, for all k>N + \, x'k =0 if / g 0(a) and a^. >0 if i £ %x). Consequently, for all

k > N +1, Algorithm Model PD reduces to an unconstrained optimization algorithm on the sub-

space { a g IR" Ia' = 0 , V; e %x)} and its rate of convergence is governed entirely by the

rules used in the construction of the components d'k, i e lk, of the search direction.

The use of other step-size rules.

Typically, the unconstrained portion. d'k. i e lk, of the search direction required by Algorithm

Model PD is constructed from a standard method such as the conjugate gradient method or a vari

able metric method (we demonstrate this construction in Section 3). Depending on the method

used to construct the unconstrained direction, it may be useful to require the step-size to satisfy a

stronger condition than the Armijo rule. For instance, the conjugacy of search directions pro

duced by a conjugate gradient algorithm depends strongly on the accuracy of the line search and,

therefore, it is usually more efficient to use a step-size that provides a more accurate line mini

mization than the Armijo step-size.

In order to incorporate a more accurate line search method into Algorithm Model PD, we

propose the following modification which preserves the results of Theorem 2.10.
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Modified Step-size Procedure: Let a3 g (0,1] and a4 g (0,oo) be given. At iteration k of

Algorithm Model PD, let Xk be the Armijo step-size satisfying (2.6a) and let X'k g [0, <j4] be

another step-size. If X'k > oyXk, then set a = xk(X'k,dk). Otherwise, set

[ x'k(cjiXk,dk) if/ GAk

If f(x ) < f(xk(Xk,dk)) then set xk+\ = a . Otherwise, set a*+| = xk(Xk, dk). D

Proposition 2.11. Suppose /(•) is twice continuously differentiable. Consider a sequence

{xk }JIq produced by Algorithm Model PD using the Modified Step-size Procedure. If

{xk ) J1q has an accumulation point a that satisfies the second order sufficiency conditions

(2.32a,b), then a* -» x and there exists ah N < oo such that

Ak = &xk) = !B(a) . Vk>N+l . (2.40)

Proof Let {xk }J1q be a sequence of iterates produced by Algorithm Model PD using the

Modified Step-size Procedure. First, by construction f(xk+\) < f(xk(Xk,dk)) for all k. There

fore, by Theorem 2.8, any accumulation point, a , of {a* }J1q mustbe a stationary pointof prob

lem P. This being the case. Proposition 2.11 follows from the proof of Theorem 2.10 with the

following modification. In deriving (2.37). we used the fact that Xk > X > 0 for all k such that

xk g B(x, p3). However, the new step-size, X'k, may not be bounded away from zero. Nonethe

less, we can show that (2.37) still holds. First, if f(x ) > f(xk(Xk,dk)) then xk+l = xk(Xk,dk).

Clearly then, (2.37) holds since .\>+1 is determined from the unmodified step-size rule in Algo

rithm Model PD as in Theorem 2.10. If. on the other hand, /(a ) < f(xk(Xk,dk)), then by con

struction of a we have, for all i g Ak, that x'k+l = a ' < [x'k - <y$Akg'k]+ ^ [x'k - (T$Xg'k]+. Now,

by (2.36), the continuity of V/() and the fact that df(x)/dx' > 0 for all / g 3(a), there exists

p4 g (0, p3] such that [x'k-a^Xg'k]+= 0 for all i e Ak and xk e B(x,p4). Thus, if

xk g B(x,p4) and i g Ak, then a^j = 0 and, hence, i e S(A|.+i). So, again, (2.37) holds. The

rest of the proof of Theorem 2.10 holds without further modification. D

The important aspect of the Modified Step-size Procedure is that once the active constraint

set is identified and those variables in the active set are at their bounds,

x'k(Xk,dk) = x'k(X'k,dk) = 0, for all i e Ak. Therefore, a = Ajt(A/,d*) and the algorithm

behaves as an . unconstrained algorithm using the step-size X'k (so long as

f(xk(X'k,dk) < f(xk(Xk,dk))). This fact can used to obtain the properties associated with almost

any step-size procedure. For instance, consider the strong Wolfe criterion:
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f(xk + akdk)-f(xk) < a\Xk(gk,dk) (2.41a)

I (Vf(xk + Xkdk),dk)\<-a2(gk,dk), (2.41b)

with 0 < ct\ <a2<^. This step-size rule can be implemented in Algorithm Model PD using the
Modified Step-size Procedure by requiring X'k to satisfy

f(xk(Xfk,dk))-f(xk) <or, | X,k(gk,dk)h - (gk,xk-xk(X'k,dk))A 1. (2.41c)
and

I (Vf(xk(Xfk,dk)),dk)h\<-a2{gk,dk)h . (2.41d)

Then, by Proposition 2.11, Algorithm Model PD reverts to an unconstrained minimization over

the subspace {i I x'k e" *B(x)} in a finite number of iterations and, therefore, conditions (2.41c,d)

become equivalent to conditions (2.41a,b).

The usefulness of Proposition 2.11 is demonstrated in our next result which deals with the

rate of convergence of an implementation of Algorithm Model PD that uses the Polak-Ribiere

conjugate gradient rule to construct the components dk%i g Ik, of the search direction dk. Corol

lary 2.12 states that Algorithm Model PD with the Modified Step-size procedure using exact line

searches, with search directions dk given by (2.45a,b,c) and restarts imposed every m + 1 itera

tions, has iterates that converge (m + l)-step linearly with a root rate constant that depends on

only the smallest n-r-m eigenvalues of the Hessian at the solution restricted to the uncon

strained subspace. Here, r = I2J(a)I is the number of constraints binding at the solution. Since it

follows from the interlacing eigenvalue property of symmetric matrices [72, Cor. 8.1.4] that the

condition of the restricted Hessian is no worse than that of the Hessian itself, the presence of

bounds on the decision variables can only serve to reduce the convergence rate constant. For

problems that include penalty functions, if m is taken to be the number of penalized constraints

then Corollary 2.12 shows that the (m + l)-step convergence root rate constant is independent of

the size of the penalty constant (see [90]).

Corollary 2.12. Suppose that

(a) in problem P, /(•) is three times continuously differentiable with positive definite Hessian

H(x) on if and that a, the unique global minimizer of P, satisfies the sufficient conditions

(2.32a,b) . and that 2J(a) = { n - r + 1, n], with 1 < r < n (achieved by renumbering the

The convexity of the constraint set and the strict convexity of the objective function guarantees that P has a unique global
minimizer.
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variables, if necessary).

(h) { xk } is a sequence produced by Algorithm Model PD using the Modified Step-size Proce

dure with search directions dk determined as follows (with d_! = 0 g IRn):

j/ / ji • i l PR ' \8k*8k ~~ 8k-\)it ,_ ._ „d'k = -8t• + Mi-i .'€/*, where pk = //£* = -^ *•, (2.42a)
*8k-\*ik

di \d\ if Cdk,gk)h<-oxlgkl2lk and IdJ^o^l,, ^ws; 0i42b)
1 -gi otherwise

dk = -*»*£* . ^i £ «'* ^ ^2 . V/ e ,4* , (2.42c)

and with the step-size X'k determined by an exact line search, and with restarts (d'k = - g'k for

/ G Ik) imposed every m + 1 < n-r iterations.

Let Hu(x) denote the upper-left (n - r) x (n - r) diagonal block of H(x), and let a denote

its minimum eigenvalue and b its (m + l)-th largest ((/i-m-r)-th smallest) eigenvalue. If, in

Algorithm Model PD, a2 > 1 + b/a, then for any 8 > 0 there exists N < oo such that for all

k>N/(m + \),

"*(*+/»)<»»+h ~ xl ^ ck

Tl

b-a c
+ 6

b + a
,« = 0,1,2,... (2.43)

where ck is a bounded constant.

Pnw/ By Proposition 2.11. there exists N, < oo such that for all * > Nj +1, (BU*) = ®(a), i.e.,

for all it > Nj +1, a* = 0 for / g %x) and for all / & %x), d'k is determined by equations

(2.42a,b). Furthermore, it can be shown (see [2], equations 2.64, 2.65 and 2.66) that with the

choice for a2 given in the Corollary statement the tests in (2.42b) will not fail for k > N\ +1.

Thus, the search direction dk = (dk •• -d'k), k > N{ + 1, is determined by the unconstrained, par

tial conjugate gradient method, with restarts every m +1 iterations, applied to the unconstrained

subspace { a g IR" I a' = 0 , / g 2(a) }. It follows from Corollary 5.1 in [90] that there exists a

finite N >N] + \ such that (2.43) holds. •

Remark 2.13. If exact line searches were not used in the implementation of the conjugate gra

dient method given in Corollary 2.12, the tests in (2.42b) would provide an automatic restarting

mechanism. It is possible to avoid restarts altogether (after a finite number of iterations) even

without using exact line minimization if the search direction dj., i g Ik, in (2.42a,b) are con

structed using the Fletcher-Reeves conjugate gradient method (pk =pkR = lgkl2k /lg*-il/4). or
using the Polak-Ribiere modified so that pk = //£* if l//f*I <\p^R\ and pk = //£* if l//£*l >\pkR\.
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To achieve this the Modified Step-size Procedure must be used with X'k satisfying the strong

Wolfe conditions given by (2.41 c.d). Proposition 2.11 shows that Algorithm Model PD using the

Modified Step-size Procedure reverts to an unconstrained minimization after a finite number of

iterations and, for the remaining iterations, a^, = a'* + X'kd'k, i 4. 3(a). For these iterations, the

results in [91] show that the tests in (2.5b,c) will always be satisfied if <j\ =^p and a2 = y^-.

Extension to upper and lower bounds. Algorithm Model PD can easily be extended to deal

with upper and lower bounds of the form b\ < a' < b'u, i = 1,..., n. Merely replace the projec

tion operator [•]+ with the projection operator [•]#,defined for z g IR" and / = 1,...,n,by

uj; =

b\ if z'<b',,
if b\ < z' < b'u ,

K if z' > b\t ,
(2.44)

define the feasible set as J= {a g IR" I b\ < a, < b'u , / = 1 n } and set Ak = A(xk) where,

for a g £

A(xk) = {i\bi<xik<b) + £(xk) and g'k > 0 , or b'u - £(xk)< x'k < b'u and gk < 0 } (2.45)

The set Ik is defined, as before, as the complement of Ak in (1,2 n }.

3.3 COMPUTATIONAL RESULTS

One source of large-scale optimization problems is discretizations of optimal control prob

lems. An optimal control problem can be discretized by replacing the differential equations

describing the system dynamics with a system of difference equations that describes some inte

gration algorithm applied to the differential equations, and by replacing the infinite dimensional

function space of controls with a finite dimensional subspace of parameterized controls. The

result is a standard nonlinear programming problem whose decision variables are the control

parameters. The number of decision variables in the nonlinear program is equal to the dimension

of the approximating control subspace. For optimal control problems with control bounds, the

nonlinear program is in the form of problem P and is suitable for solution by Algorithm Model

PD.

We used Algorithm Model PD to solve a discretization of the following optimal control

problem:
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OCP

subject to

minimize Cat(2.5)+ f at(/) +u2(t) dt
u € L2[0.2.5] L Jo J

J|(/) = *2(') : JCi(0) = -5,

i2(0 = -^i(0 + [1.4-0.14A?(/)]A2(r) + 4M(r) ; a2(0) = -5.

w(/)>-4lr-1.5l, V/€[0,2.5],

with C 10 a parameter.

The discretization was carried out using a second order Runge-Kutta method (the explicit

trapezoidal rule) with «(•) restricted to the subspace of continuous, piecewise linear functions.

Specifically, the decision variables for the discretized problem are u = (w°,u\...,un~]) e TR"

where u' = «(;,) are the values of w() at the breakpoints /, = i(2.5/1000), / = 0,..., 1000. Thus

n = 1001. The use of Runge-Kutta integration for discretization of optimal control problems is

described in detail in Chapter 2. We utilized the natural coordinate transformation, given by

(2.7.19c), associated with this discretization in order to prevent unnecessary ill-conditioning. For
i

this case, the transformation isgiven by ii = M^w where, due tocontinuity imposed at the break

points tk, MN is an nxn diagonal matrix with diagonal(M) =[\ 11•••11j]/N*.
In addition to the coordinate transformation required by the theory of consistent approxima

tions, we also pre-scale the problem by multiplying /(•) by the factor y, where y is defined as fol

lows:

5 = (l+h/0Boe)/(100B^0Ieo) (3.1a)

8u = [uQ - Sg{)]# (3.1b)

r'l
(8u,8u)lo

f(u0 + 8u) - f(u0) - (g0,8u)ln (3.1c)

with [•]# as given by (2.44). This pre-scaling makes it likely that a step-size of one is accepted in

the first iteration of the algorithm (y is the distance along the projected steepestdescent direction,

8u, to the minimum of a quadratic fit to /(•)) and it acts as a normalization on the problem so that

the tests in (2.5a,b,c) and the numerical termination criterion are less scale sensitive.

Other coordinate transformations arealso sometimesuseful. Forexample, a coordinate transformation for use with the conju
gate gradient method applied to optimal control problems with a special structure is discussed, and shown to be extremely effective,
in (92]. Anotherpossibility is to use the inverse of the diagonal of the Hessian This matrix canbe efficientlycomputed usinga recur
sive algorithm similar to the one described in[93]. However, ourexpenence indicates that this is not effective for optimal control
problems discretized as described above.
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For purposes of comparison, we solved the discretized optimal control problem with a pro

jected steepest descent algorithm, a projected conjugate gradient method and a projected version

of the limited memory quasi-Newton algorithm (L-BFGS) presented in [86,94].

The projected steepest descent algorithm uses the search directions dk =-gk.

For the projected conjugate gradient method we used the search directions given in equa

tions (2.42a,b,c) with m\ = 1 for all i g Ak, o\ = 0.2 and a2- 10. After computing a step-size

Xk that satisfies the Armijo-like rule in (2.6a), we construct a quadratic approximation q(X) to

f(uk(X,dk)) such that ^(0) = f(uk), q'(0) = gk and q(Xk) = f(uk(Xk,dk)) and set X'k equal to

the minimizer of this quadratic. We used this X'k in the Modified Step-size Procedure with

03 = 1and <j4 = p~M (the same upper bound as for Xk). This procedure requires one extra func
tion evaluation per iteration.

The L-BFGS algorithm computes an approximation Gk to the inverse of the Hessian based

on a limited number of applications of the BFGS quasi-Newton update formula. At each itera

tion, the algorithm uses vectors sk —uk - uk.\ and yk = gk - gk_\ stored over a fixed number of

previous iterations. The procedure is as follows: Let m = min { k.m-1 }.. Then, at iteration k,

Gk is computed from m+ 1 BFGS updates applied to a starting estimate Gj of the inverse Hes
sian (which can be different at each iteration) according to

+ P, - ,(Vf •• VT A )s, . tsT „ (V, , ••• Vk)rk-m + ] k k-m+2 k-m+\ k-m +\ k-m+2 k'

+ pksksTk. (3.2)

where pk - \l(y[sk), Vk = / - pkyksTk. Here we use / (without any subscript) to denote the

nx n identity matrix. As in [94], we let Gj = / in the first iteration and during restarts, and on

other iterations we let G°k =yk Iwhere yk =(yk,sk),t/\ykl2lt is aself-scaling term demonstrated
in [95] to markedly improve the performance of quasi-Newton algorithms. An efficient, recursive

procedure for computing dk = - Gkgk without explicitly forming any matrices is given in [86].

The L-BFGS algorithm has proven to be quite effective [96]. We used this algorithm, with

m = 12, to compute the search directions d'k, i g Ik, in the unconstrained subspace. This is

accomplished by saving the full vectors sk and yk but restricting the inner product calculations in

the recursive algorithm of [86] to the current estimate, lk, of the unconstrained subspace. In

(2.5a), we chose m'k = yk for all / g Ak. We also added the following tests:
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(i) If (ykiSk)jk <0.001lg*l/t , set yk = 1 and do not use current information yk and sk for

Hessian updates.

(ii) Restart if (dk, gk),k >-0.2yk lgki]k ,

(Hi) Restart if ldkl)k > lOOOtf l^ljt ,

The first test ensures that the Hessian estimate is positive definite. With the tests (ii) and (Hi), the

search direction dk satisfies the conditions in (2.5a,b,c) for some <7\ g (0,1) and a2 g (1,oo) if

we restrict the magnitude of yk so that

0.2ft><r, (3.3a)

and

vToOOr* ^ o2 . (3.3b)

Therefore, with this restriction, algorithm PD with L-BFGS search directions is convergent. In

our implementation, we have o\ =0.2 x 10~3 and a2 =VlOOOx 103.

The remaining data required by Algorithm Model PD were chosen as follows: a = 112,

p =3/5, M = 20, wj) =0 for / = }....,n, and £ - 0.2 except, for the projected L-BFGS

method, a = 113 was used to ensure that a step-size of 1 could be accepted close to a solution.

The termination test in Step 1 of Algorithm Model PD was considered satisfied when

(i) lgkllk/\lk\<£2£ch(\+\f(uk)\),

(H) /<"*) ~ /(M*-l) < lOfmachO + '/(«*)!) .

(Hi) luk - MA._, 1^ < f^ch(1+ If/^) .

(iv) x'k =0 for all; g Ak ,

where the machine precision is £macn = 2.2204e - 16. Note that this is a very demanding termi

nation criterion.

With C = 0, there were 171 binding constraints at the solution and these were identified

after 7 iterations for the projected conjugate and projected L-BFGS methods and after 12 itera

tions for the projected steepest descent method. With C = 100, there were 436 binding con

straints at the solution and these were identified after 19, 28 and 153 iterations, respectively, for

the three methods.

The number of iterations, function evaluations, gradient evaluations and cpu time required

to reach termination for problem OCP with C = 0 are given in Table 3.1. The same information

Experiments were run on a 60MHz Sun SparcStation 20 with 96MB internal memory and 1MB external cache. The algo
rithms were implemented in Mallabs M-scnpt language with the exception of the L-BFGS search direction routine which was written
inC.
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is provided in Table 3.2 for problem OCP with C = 100. It is clear that the projected conjugate

gradient and the projected L-BFGS methods perform significantly better than the project steepest

descent method.

Method Function calls Gradient calls Iterations CPU Time

Conjugate Gradient

L-BFGS

Steepest Descent

70

43

97

20

14

29

19

13

28

4.2 sec.

2.7 sec.

5.3 sec.

Table 3.1: Work done to solve problem OCP with C = 0.

Method Function calls Gradient calls Iterations CPU Time

Conjugate Gradient

L-BFGS

Steepest Descent

249

163

1788

38

38

355

37

37

354

10.9 sec.

8.3 sec.

81.0 sec.

Table 3.2: Work done to solve problem OCP with C = 100.

The optimal solution, u, of the discretized problem with C = 100 is shown in Figure 3.1

3.4 CONCLUDING REMARKS

We have presented an implementable projected descent algorithm model, Algorithm Model

PD. and proved its convergence for any search directions satisfying the conditions in equations

(2.5a,b,c). This algorithm model solves a common class of problems involving simple bounds on

the decision variables. It is particularly useful if the number of decision variable is large such as

can occur in the discretization of optimal control problems with control bounds. Furthermore,

many problems with simple bounds on the decision variables as well as some additional general

constraints can be converted into the form of problem P using quadratic penalty functions or aug

mented Lagrangians. The Algorithm Model PD, when used in conjunction with a conjugate gra

dient method or the limited-memory BFGS method for determining the unconstrained portion of

the search directions, has the advantage of requiring very little storage and work per iteration.

Yet, the rate of convergence behavior can be expected to be the same as that of the unconstrained

conjugate gradient or limited-memory BFGS methods after a finite number of iterations.
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Solution with C = 100.

optimal control

— lower bound

0 0.5 1 1.5 2 2.5

Time

Fig. 3.1: Plot showing the optimal control for problem OCP with C = 0 (n = 1000).
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Chapter 4

NUMERICAL ISSUES

4.1 INTRODUCTION

In Chapter 2, we provided a framework for the construction of approximating problems

{ (Pn,&h) } that are consistent approximations to an original problem (P, 6). In Chapter 3, we

presented an algorithm for solving a particular class of problems PN. In this chapter, we focus

our attention on two practical issues that arise in the numerical implementation of an algorithm

for solving a sequence of problems {PN } whose solutions {nN } converge to a solution if of

P. These issues are, roughly speaking, (/) given an approximate solution nN* toproblem P#. at
discretization level Nj and a new discretization level Nl+\, select a new integration mesh for prob

lem P;v(>1 such that Itjn,^* ~ 77*'̂ 's as small as possible, and (ii) provide estimates of

These issues are important for practical computation because they allow for the discretiza

tion to be refined in a way that leads to more accurate solutions with less computation. Further

more, because we cannot compute the entire sequence {nN* }, it is desirable to know the error,

ItJn, - *1 I//,, of the finite-dimensional solution at some final discretization level Nf. A descrip

tion of the optimal control problems used for the numerical examples in this chapter can be found

in Appendix B. Throughout this chapter we presume that Assumption 2.3.1 holds.

Notation. In this chapter, we will be comparing solutions of approximating problems that are

defined on different integration meshes. Thus we need to extend the notation of Chapter 2 to

explicitly indicate the discretization level of the mesh. We will do this by adding the subscript N

when necessary. We start by defining the discretization mesh for problem VN,

where tNk is the /c-th mesh point at discretization level N. Since we will allow tN to be a non

uniform mesh, we will denote the finite dimensional control subspaces by Lifi instead of just LN.

Similar, the mapping from between controls we Lis and their samples it e Lis will be denoted
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^A.tjv •" LtN -* LiN. Recall from (2.4.5a,b) that elements u e LXn are partitioned as follows:

w = (w0,wj "yv-i) . "*=("*.! "*.r)» (1.1b)

with w*%; e IRm, ; = 1 r. Also recall that the subspaces L%N are defined such that the dis

cretization mesh coincides with the breakpoints of the finite dimensional controls. Thus, we will

also refer to tN as the control breakpoints.

For spline controls we use tN to refer either to the breakpoints or to the knot sequence con

structed from these breakpoints, depending on the context. Thus, for example, we will re-write

L{£ as Lt£ where, in this context, tN is the general knot sequence for the p-th order spline sub-
space with breakpoints {tNk } k=0. The map from splines to their coefficients is

Sts%p: L[^ -» VfJ. So, given u€ L[£\ a =S%sP(u) is the vector

a = ( ax , a2 a^p.\ ), (1.1c)

with ak e IR'", of coefficients for the spline u defined on the knot sequence tN. When used in

linear algebra operations, elements of Lis. and L[PJ will be treated, respectively, as mx Nr and
m x (N + p - \) matrices in keeping with our previous convention.

Non-uniform meshes. The discussion of approximating problems in Chapter 2 was based on

a uniform discretization mesh {t#mk }ke ^with f#.* = k/N. In fact, theconvergence results still

hold for any sequence of meshes with the property that max* //v.*+i - f#.* -» 0 as TV -> oo. In

practice, we also require min* tfj.k+\ ~ fN.k > 0 f°r aH W. Both of these mesh characteristics are

ensured if the following property holds for each N:

Definition 1.1 (Quasi-uniformity). Let tN = {tNmk }Jio be a mesh for problem PN and let

A\,k =tN.k+\ ~*N.k • (1.2a)

Then tN is said to be a quasi-uniform mesh if

max* Aw * -
. A <8, (1.2b)

mm* A^.k

for some fixed constant 8 < oo independent of N. We will refer to 8 as the quasi-uniformity

ratio. D

This definition ensures that, for any sequence of quasi-uniform meshes,

AN —max* A^* —> 0 as N —> oo . (1.2c)
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4.2 INTEGRATION ORDER AND SPLINE ORDER SELECTION

The results of Chapter 2 show that Runge-Kuttaintegration methods satisfying the assump

tions for Corollary 2.5.10 produceconsistent approximations. Additionally, Lemma 2.4.10 states

orderof integration error results and Proposition 2.6.2 provides one result on the orderof errorof

approximating problem solutions for unconstrained problems. We will now discuss the relation

ship of the integration and spline orders to the error, In* - nN*l, of the solutions of the approxi
mating problems. For the remainder of this discussion, we will refer to this quantity simply as the

solution error. A solution is said to have high accuracy if the solution error is small relative to the

discretization level.

The desire to obtain high solution accuracy is, of course, the motivation for studying higher-

order Runge-Kutta methods in the construction of the approximating problems PN. Unfortu

nately, very little is known, in general, about the relationship between integration error and the

error of the solutions of P#. The primary obstacle to such an understanding is the fact that little

is known about the smoothness of optimal controls (i.e., the regularity of solutions) for con

strained optimal control problems. In this section, we will collect some positive and some neg

ative results concerning the smoothness of optimal controls and the solution errors of approximat

ing problems. These results provide a basis for selecting the order of the Runge-Kutta method

and the order of the control representation in the construction of P#.

In what follows, we will consider only the four, full-order RK methods whose Butcher

arrays are displayed below. We stop at fourth order simply because there is no fifth order RK

method with less than six stages.
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A, =
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2

1

2
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1 0 0 1

1

6

1

3

1
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The first of these RK methods, Aj, is obviously Euler's method and the second, A2, is an explicit

trapezoidal rule (also known as the Euler-Cauchy or improved Euler method). The third order

method, A3, is Kutta's formula and the fourth order method, A4. is the classical Runge-Kutta

method. These four methods are selected because, from what is known about RK discretization
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of optimal control problems (both theoretically and experimentally), these provide the best results

for thegiven number of stages. Needless to say, all of these methods satisfy the Assumptions 4.1,

4.3 and 4.6 required for consistent approximations. These methods also have a symmetry

property that is used in [42,Thm. 3.1] to derive some of the error bounds we will now discuss.

For methods Aj, A2, and A3, there are no repeated values in the c vector of the Butcher array.

Thus, for these methods, r = s where r is the number of control samples per integration interval

and s is the number of stages in the RK methods. For method A4 however, c2 =c3 = \, and
therefore r = 3 and 5 = 4.

4.2.1 Solution error for unconstrained problems

The best error results are known for unconstrained problems with fixed initial conditions of the

form

p min { f(u) I x = h(x,u), t e [0,1]} ,
« 6 /.^[O.IJ

where f(u) = /(*"(!)). We will assume that /(•) and /?(•,•) are sufficiently smooth so that all

required derivatives exist. The approximate problems are defined, for a given discretization level

N, byreplacing f(u) with fN(uN) = f(xu£N) where uN e LN and xuNNN is the computed value of

x"s(tN) obtained by Runge-Kutta integration on the mesh tN. The known error results depend on

the assumption that the differential equations can be integrated with full-order accuracy at a solu

tion u . That is,

lx,r(tk)-xi,J =0(A>N). Vke {0 N] , (2.1)

where s is the order of the RK method. Essentially, this is the same as a regularity condition on

m*. namely 1* e C(O[0.1]. The following table, based on [42] and Proposition 2.6.2, provides the
order ofmax*mj lus*kj - i*(Tkj)l, where uN* =VAlv(wA*), relative to AA; =max* ANtk. The last
column is only experimentally supported conjecture.

Each method is equivalent to the transpose of itself run backwards in time [67].
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RK Method maxlMN**iy-i*(r*j)l
k.j

max lx*k - x*(tk)l
k

A,

A2

A3

A4

0(A]N)

0(Al)

0(A2N)

0{&?N)

0(AlN)
0(A2N)

<K6?N)
0(A4N)

Table 1.1: Order of solution errors for the approximating problems.

sk skNote that for method A3, the order of the control solution error, max*,; Im# kj - u (rkj)l, is only

0(A2N) even though r = 3. Because of this, it makes sense when using method A3 todepart from

our convention of using r-th order polynomials for methods that use r control sample per integra

tion interval and instead use second order polynomials. Generally, it may be advantageous, espe

cially for constrained problems, to use splines of order lower than r. Thus, we will henceforth

make it a convention that r represents the number of distinct controls samples required by the RK

method during each integration time step while p < r represents the order of the control represen

tation. General formulas for the gradient computations for controls u e LljH with p not necessar
ily equal to r are given in the RIOTS user's manual.

If representation Rl (piecewise polynomials of order p, where p is the exponent of A#

given in the middle column ofTable 1.1) is used for the controls uN, then luN - u 1^ = 0(APN)

since u is assumed to be smooth. We will show this for the harder case of spline approximations

below.

The bounds in Table 1.1 are derived assuming that their are no constraints between the con

trol samples uk j. Such is not the case for splines because the continuity and smoothness condi

tions on splines implicitly enforce constraints between the control samples. For example, if

w# e Lfj (linear splines), then for each k e { 0..., N - 2 }, uk2 = w*+i.|. That is, continuity is

imposed across breakpoints. Proposition 2.2 below indicates that, nonetheless, the same error

results do hold for finite-dimensional controls represented by splines. Before stating this proposi

tion, we note the following result for spline approximations.

Theorem 2.1 [63,Thm. XII.l (p. 170)]. Given a spline order p, there exists a constant

cp < 00 such that for all knot sequences tN with

/_r+i = ••• = /0 = a </,••• < /#_! < b = tN = •••= //v+p_i and for all u e C{p)[a, b],

miriJu-vl00<cpApNluip)l00,
v e Lts

where Ayv =max* AN kand u{p) is the p-th derivative of u(t) with respect to /.
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We will now provided a bound for the solution error luN* - u*lLeo for approximating problems
defined with spline controls. For the statement and proof of Proposition 2.2, we will use the fol

lowing notation for derivatives of the approximating functions with respect to spline coefficients

and with respect to control samples. First, let u e L[p be a p-th order spline with coefficients

a = StNtP(u). We define Jn(oc) —fN(^iP(a)). Then, we use the notation
dafN :Rmx(A/+p-,) -> R'»>«"+p-l> with

dafNW =f-2- fN{a) •••-j-^ fN(a) ] (2.3a)
Vdax daN+p.i J

to denote the derivative of fN(a) with respect to the components of a. Since L,[p c Ltfi (the
space of piecewise polynomials), we can also define /^(w) = /aK^^Cm)) where u= VAJs(u).
Whether the argument of /#(•) is spline coefficients or control samples is always clear from con

text. We will use the notation dsfN :JR'"xNr -^JRmxNr with

dJN(u) =(-^hm--'-^-fsm ••• -J—fN(u).-.--J—fN(B)\ (2.3b)
V du0l duQj tfWA'-l.l ""N-l.r J

to denote the derivative of /#(//) with respect to the control samples. As usual, r is the number of

control samples per interval. Note that (2.3a,b) define gradients with respect to the Euclidean

norm on the coefficient spaces; these derivatives are not the gradients with respect to the norms

we have defined on L\p and Ltv.

Theorem 2.2 (Error ofspline solutions). Let i* e Clp)[a, b] be a local solution ofP where p
is the exponent of AN = max* AA-* in Table 1.1 corresponding to the RK method under consider

ation and assume that (2.1) holds. Suppose that {wA* } is a sequence such that uN* e L\p? with
spline coefficients a^ = SXs p(uN ), us is a local solution of P/y and uN —» u . Also, assume

that for each N, drafs() exists and is continuous, d2afN(as )>0 and Afi\d\f^(')~l\ is uni

formly bounded with respect to N. Then lu -u^ !«, - 0(APN).

Proof For each N, let uN = arg minw L<olw -ul^ and let aN = StNf>(uN). We will first

obtain a bound for lor N- 5/yl in terms ofl^57A/(VA,v(MyV))l which we will then show isoforder

0(APN). Finally, we will use this bound to show that Im* - u^l^ is oforder 0(APN).

Expanding the derivative of fN(-) to first order, we have

dafN(aN) =dafN(aN*)+ \ (cxN-aN*)d2afN(aN* +s(aN-aN*))ds
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'0

since dafN(a^) = 0. Next, uN* —> w* and, from Theorem 2.1, uN -» u as N -» oo, we have

that ttN -> u Nsls N -> oo. Now, since uN=tiN- u*N is itself a spline and m# —» 0, it follows
from Corollary XI.2 [63,p. 156] that

a N—» a% as N -> oo . (2.4b)

Using the hypotheses that d2ttfN() is continuous and d2fN(aN*) >0, we see from (2.4a) and
(2.4b) that there exists an N* < oo such that

=(aN-aN*)j d2afN(aN* +s(aN-aN*))ds. (2.4a)

A. *

-1-1
1

i dlfN(aN* +s(5N- aN*))ds
0

;2 7 / x-1

dafN0N), VN>N* . (2.5a)

Thus, since Asld"afs() I is uniformly bounded with respect to N and a^-» or , there exists a

constant # < oo such that

* /*A^AT-a^U </Tl^/^^ = KldsMV^Xttv))®^^

± KldJN(yAAN®N))U*x.tMlao . (2.5b)

where we have used (2.7.12c) for the equality. The Nrx(N +p - 1) matrix <J>AIa. was defined by

(2.7.1 la): the /r-th column of 0Atv contains the value of the Jt-th B-spline evaluated at the Nr

control sample times. Now. there exists a «•] < oo such that

ne 2

w^(VA.i,<a,v))ioo ^ Mfi/ArfWfi *)> - ^7^(vA.tA (w*))ioo +mJaKW"*))^

<V, AA,IVA,tA.(t/W- M*)^ +Wfi/^CVAj^M*))!.,

<KiANtuN- u*^ +Wfi/^(VA<tA.(w*))loo

<kxcp^1 +Wb/a,(Va.Iw(ii*))I00 . (2.6)

The second of these inequalities was obtained from the Lipschitz continuity of dufN(). The con

stant cp in the fourth inequality comes from Theorem 2.1. The quantity l«/fi/jv(VA<l (k*))!^ is
used in the proofs of Theorem 3.1 in [42] and Proposition 2.6.2 which provide the bounds in the

middle column of Table 1.1. These proofs show that

for some constant k2 < oo independent of N. Combining (2.5b), (2.6) and (2.7) with the fact that
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WVt/Joo = 1 (due to the normalization of the B-splines), we see that

Iflr^-a^-OCAj), (2.8a)

Noting that aN -aN are the spline coefficients for uN* - w#, we can use Corollary XI.3 in [63,p.
156] to show that (2.8a) implies that

lM**-aA,leo-0(A5). (2.8b)

Finally, using (2.8b) and Theorem 2.1, we obtain the desired result:

Iw* - Wa*Ito <In* - u^ +.ftN- mA. - 0(APN). (2.9)
D

Remark 2.3. The assumption in Theorem 2.2 that A^ld2fN(a)~]l isuniformly bounded in A#

and a is essentially the same as the assumption used by Hager for Theorem 3.1 in [42]. In that

paper, Hager argues that the assumption is reasonable. D

There are optimal control problems whose approximating problems based on RK integra

tion have solutions of higher accuracy than those listed in Table 1.1. However, this does not occur

generically even for linear/quadratic problems. Therefore, based on the result in Table 1.1, the

order p of the control representation should be chosen equal to the order of error given in the sec

ond column. Choosing p too small reduces the benefit of the higher-order integration accuracy (it

does not eliminate this benefit, see below). Choosing p too large results in extra computational

work and can actually reduce the accuracy of solutions due to an over-parameterization effect of

the controls. In particular, for problems without control bounds and/or trajectory constraints, a

piecewise linear control representation should be used with method A3 and either a piecewise lin

ear or a piecewise quadratic representation should be used with method A4.

4.2.2 Constrained Problems

It is difficult to extend error results of the type given in Theorem 2.2 to constrained problems for

many reasons. To explore some of the issues involved, it is helpful to consider two separate

sources of error: the error due to numerical integration and the error due to the limited approxi

mating capabilities of finite dimensional controls. For the sake of brevity we will only consider

spline controls and we will not deal with free initial conditions. Define

u = arg minH 6 v { f(u) I w e ft } , (2.10a)

uN* =arg minu 6^ { fN(u) li/eii) , (2.10b)
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uN = arg minM 6u(,> {f(u) luefl) , (2.10c)

where the set £2 c L^2[0,1] represents state constraints. Any control constraints in the optimal

control problems are specified in the sets Uand U(^). As usual, u represents the solution ofP
and uN* represents the solution ofPN. Additionally, we have defined uN* as the solution ofP but

with the control space restricted to Ijff. By the triangle inequality, the solution error for the
approximating problem VN satisfies

luN*-u% <luN*-uSrl2 +luN-u% = £int +£rep , (2.11a)

where

E\m-Iun*-unI2 (2.11b)

£rep = If/ A>- u l2 (2.11c)

are the errors due to, respectively, the numerical integration and the finite dimensional representa

tion of controls for the approximating problems. Ideally, the integration order and the spline

order should be chosen to make £in, and £rep roughly equal. Otherwise some computational

effort is being wasted. Below, we will present some evidence that second order splines are the

best choice when using RK methods A2 and A3. The choice of the appropriate spline order for

use with RK method A4 and the choice of which RK method to use is more involved and is also

discussed.

Considerations for spline order selection. Since the error bounds for constrained problems

are usually worse than the error bounds for unconstrained problem, one can conclude from the

results in Table 1.1 and Theorem 2.2 that, at most, only first or second order splines should be

used in conjunction with RK methods A2 and A3 (for Euler's method the only choice is first order

splines), and that only first, second or third order splines should be used with RK method A4.

The selection of an appropriate order for the spline control subspace depends on how that order

affects the representation error £rep. The size of £rep for a given mesh t# depends primarily on

the smoothness of the optimal control w*(). For many constrained optimal control problems, the

optimal control m*() is not even continuous. The strongest regularity result available for con
strained optimal control problems, [97], provides conditions for the optimal control of strictly

convex problems to be Lipschitz continuous. Thus, £rep may be only of order0(AN).

For our method of discretization, there is clearly no reduction in the solution error to be

gained by using a higher order control representation when the optimal control is discontinuous .
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On the other hand, even though it generally impossible (without knowing the location of disconti

nuities in the optimal control) to improve upon Erep - 0(A), there is little to be lost by using sec

ond order, instead of first order, splines in conjunction with RK methods A2, A3 and A4 because

there is very little extra work involved in computing a solution to P#. At the same time it seems

that, at "non-asymptotic" values of the discretization level N, second order splines produce

somewhat better results than piecewise constant controls even for problems with discontinuous

optimal controls. Moreover, for convex problems it has been shown in [28,31,98] that the Ritz-

Trefftz method gives an approximation error of order 0(t^ff~) assuming sufficient smoothness of

the problem data. This is due to the fact that ^ u*(t) e L2[0,1]. Hence, in this case, there is a
clear benefit to using second order splines over piecewise constant controls.

Based on these considerations, the best choice for the control representation when using

method A2, A3 or A4 for problems whose solutions are likely to be non-smooth (such as problems

with control constraints) is second order splines. If there are no control constraints and there is

reason to believe that the optimal control is smooth then third order splines should be used with

RK method A4 since third order convergence can be achieved. There is a caveat to this statement,

however. If the spline coordinate transformation given by (2.7.18) is to be used during the solu

tion of P# and the work used by optimization algorithm that solves P# requires less than N~

operations (such as the projected descent method of Chapter 3 based on conjugate-gradient or the

limited-memory BFGS search directions), then at a some discretization level N, the work

required to compute and apply the coordinate transformation will exceed the amount of work

required by the optimization algorithm. In this case, quadratic splines should not be used because

it will be less expensive to solve the problem at a higher discretization level using second order

splines.

Finally, it is very common for £jn, » £rep at low to moderate discretization levels. If this is

the case, it makes sense to use method A4 with linear splines because, as seen from (2.11a), the

reduction in £rep afforded by the use of quadratic splines will be rendered meaningless by the size

of£im.

To demonstrate the effect of the spline order on Erep, we have solved an unconstrained prob

lem and a constrained, free final time problem using first, second, third and fourth order splines

on a uniform mesh with N = 20 intervals. The two problems are the unconstrained Rayleigh

problem and the Bang problem which are described in Appendix 2. The solution errors are given

Although, as discussed in Chapter 6. it may be possible with a two-phase optimization approach to achieve better error re
sults. During the second phase some grid points are allowed tomove towards discontinuities inu*(). The efficacy of this approach re
lies on the fact that, under suitable conditions. u*( ) is analytic on every interval in which the binding constraints do not change,
see (28.31].
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in Table 2.1 and the solutions are plotted in Figure 2.2a and Figure 2.2b. We computed the solu

tion error as

il/2

i *• f / */.\ */.\\2jrN - - ...IUn —U It = fW(/)-M*(/))2<// (2.12)

where T is the (optimal) final time. For problem Rayleigh, T - 2.5; for problem Bang, 7* =30.
All of these solutions were computed using a variable step-size integration method so that the

integration error £,„, would be negligible compared to the error from the spline approximations.

The results show that, for the unconstrained problem, the error decreases substantially as the

spline order is increased. On the other hand, using higher-order splines for the constrained prob

lem does not cause a significant reduction in the error. It should be noted, however, that the error

is slightly less for second order splines than for first order splines.

Spline order luN* - w*l2 (Rayleigh, T =2.5) lwA* - m*I2 (Bang, 7* = 30)

1 0.3119 1.7146

2 0.1071 1.2357

3 0.0166 1.4585

4 0.0092 1.4166

Table 2.1: Solution error for an unconstrained and a constrained problem as a function of spline
order.

These results suggests that, for problems with control constraints, either a first or a second order

control representation should be used.

Piecewise polynomial controls versus splines. Recall the L.\p) c L]ts,. That is, the spline con
trol spaces are subspaces of the piecewise polynomial control subspaces. Because the controls in

L\s are allowed to be discontinuous at mesh points tk, it would seem beneficial to use LiN rather
than splines if we could place some of the mesh points at the locations of any discontinuities in

the optima] control. There are two reasons this does not help. First, we don't not know the loca

tions of such discontinuities a priori. Second, even if we were able to place the control break

points at the locations of discontinuities in the optimal control it is important to realize that loca

tions of discontinuities in the optimal control for p will not be the same as the location of discon

tinuities for the solutions of PN because of the error £,„, due to the fixed step-size integration (but

see previous footnote). It should also be noted that we could allow discontinuities in the splines

by defining the spline subspaces with repeated interior knots (see [63]).
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Fig. 2.2a: Effect of spline order on the solution uN for the unconstrained problem Rayleigh.
The plots show u ,\(r) versus /.
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Fig. 2.2b: Effect of spline order on the solution uN for the constrained problem Bang. The plots
show«Ar(/) versus t.
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Considerations for integration order selection. The Runge-Kutta order should, ideally, be

chosen to minimize the amount of work required to obtain a solution of specified accuracy. This

choice depends on a combination of factors: the integration error which depends on the nonlinear

ity and stability of the differential equations x = h(x, u), the smoothnessof solutions to the origi

nal optimal control problem, and the amount of work used by the optimization algorithm used to

solve the approximating problems to perform each iteration. Generally speaking, however, none

of these quantities is known in advance. Thus, we can only offer guidelines for the RK order

selection. Further research is needed to provide a more systematic approach.

The amount of work, WN, to solve a the discretized problem P^ is roughly

WN = nilcr(WinX + Wopl), (2.13)

where /?jter is the number of iterations needed to achieve a certain optimality tolerance, WiM is the

work required to integrate the system dynamics for a given nN and to compute the gradients for

each function, and Wopl is the amount of work (linear algebra) done by the optimization algorithm

during each iteration (primarily in computing the search direction). Typically, Wint is linear in N

(unless there are trajectory constraints) and linear in the integration order. The relationship

between Wop, and N depends on the integration algorithm. Equation (2.13) is only approximate

because the system dynamics usually have to be integrated more than once during line searches.

But it does show that increasing the discretization level and/or the integration order (in order to

decrease £,nt) will increase WN. At the same time, equation (2.1 la) shows that just decreasing

£in, does not necessarily imply that the overall solution error will decrease.

Without a more quantitative analysis, we consider RK method A4 to be the best choice,

except in the two situations described below, because at low or moderate discretization levels, it is

typically the case that £jn, » £rep. This is partly due to the fact that the errors in the control are,

to some extent, "integrated out" by the system dynamics. Therefore, even if £rep ~ 0(A^/), the

solution error will be smaller for low to moderate discretization levels if £jnt is made smaller by

using a higher order RK method. Also, for many unstable nonlinear systems, a certain amount of

integration accuracy is required simply to be able to obtain a numerical solution to the differential

equations. In this situation, the minimum required discretization level may be quite large for a

low-order RK method. Thus, it is usually best to use method A4.

However, there are at least two situations in which it is may be better to use a lower order

RK method. The first case is problems with reasonably behaved linear dynamics and control

bounds. According to the preceding discussion, only first order second order splines should be

used. Thus, £rep - 0(A2N) at best. On the other hand, because of the simple system dynamics,
£in1 is likely to be much smaller than £rep if RK method A4 is used. Thus, more work will be
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done in the integrations while the overall error of the approximating solutions will be no greater

than those produced using method A2 .

The second case is problems that include trajectory constraints. When solving the dis

cretized problems, the gradients for each point tk in the trajectory constraint must be computed.

Because trajectory constraints are evaluated at N + 1 such points, the amount of work to compute

these gradients is proportional to sN~ operations , where s is the number of stages in the RK

method. This can amount to a great deal of work, especially if the gradients are computed using

adjoint equations. The amount of work can, therefore, be substantially reduced by using a lower

order RK method.

When solving problems with control and/or trajectory constraints at high discretization lev

els, it is probably disadvantageous to use anything but methods Aj or A2 since the overall solu

tion error is. at best, 0(A%).

4.3 INTEGRATION ERROR AND MESH REDISTRIBUTION

From (2.1 la), we see that Iw* - wA*l2 =£jm +£rep- It turns out that £int and £rep are, in
fact, closely related. To see this, let u:[0,1] —»IR'" becontinuous on each interval [tk,r*+i) and

let uN e L\N be a piecewise polynomial function of order p>2. Then, by Jackson's
Theorem [63, p. 33], there exists a constant K < oo such that, on each interval Jk = [tk, tk+\),

lu-uvl! <K^cok(uN;-^^), *=0,...,/V-l, (3.1a)
p-\ 2(p-l)

where lul\kM —max, € jk \u(t)\ and ak(u\ : ) is the modulus of continuity of u^(t) on the inter

val / e [tk, tk+i] defined by

cok(u;8) = ma\[lu(t])- u(t2)l\t],t2 e [tk.tk+]] , \t2-t]\<8] . (3.1b)

If u(t) is continuously differentiable on each interval (tk,tk+\, then cok(u; 8) < litlitoe8. In partic

ular, the approximation error lu-u^lik00 is largest on intervals where luljk00 is largest. Jack

son's theorem also applies to approximation of smooth functions in which case it is the norm of

the higher derivatives of u that determine the approximation error.

A secondary problem in this regard is that the integration accuracy of method A4 can make it difficult to refine the mesh based
on the procedures discussed in the next section.

* In fact, the amount of work is proportional N{N+ l)/2 operations sincethe gradient of the trajectory constraint at time r4 is
zero for t > tk. Even if an r-active set method (such as in [99] ) is used to bypass unneeded gradient computations, the work is still
proportional to A': operations
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At the same time, we have that the local integration error produced by one step of an .s-th

order RK method (see proof of Lemma 4.10 in Appendix A) is

xN.k+\ = xNtk(tM) + eN,kA$k +0<Aj£), (3.2)

where xNk() is the solution ofx = h(x, u) with x(tk) = xN,k. The quantity eNtkAsj$\ is called the
principal local truncation error (PLTE) and Jfjv,*+i ~*jv.*(f*+i) is the local truncation error

(LTE). We will refer to eN^k as the coefficient of the PLTE. It is possible to produce an expres

sion for eff.k by comparing the Taylor expansion of xN%k+] with the Taylor expansion for

*au('*+i)» DOtn around xNmk. However, this expression, which depends on the RK method, is

quite complicated. As an example, e^k for method A2 applied to a scalar system with u differen

tiable between mesh points is

1
eN.k = r - (hxxh2 + huxhu + huxhu + huuit2 + huu) - - (hxh + huu)

3 o
(3.3)

The important aspect of the local truncation error is that es\k depends on time derivatives of u.

Therefore, regions where uN provides a poor approximation to u according to (3.1a) are likely to
t

coincide with regions where the LTE for the integration is large . Thus, it is desirable to place

many mesh breakpoints in time intervals where there is a relatively high level of local integration

error, and fewer mesh points elsewhere. This leads to higher integration accuracy for a given dis

cretization level and also a better sequence of breakpoints for the approximation of u by m^.

4.3.1 Computing the local integration error

For a given N, we can compute ?#.*, k = 0 N - I approximately by comparing .*#,*+! to the

value which would have been obtained by taking two RK half-steps from jr^*. As in equation

(3.2). let xx.k\tk+\) be the solution of x - h(x.u) with x(tk) = .v/y* and define the following

quantities:

xNxi^^-F(xNJk9vkl) (3.4a)

XN.k.2 =~Y~ F{<X N,k.\S> kl) * <3'4b)

where

This heuristic can fail if the local integration errorsare very small. This can happen, for instance, when integrating a linear
system with piecewise linearcontrol using a fourth orderintegration methodbecause the derivatives of the spline do not show up. or
are multiplied by very small quantities, in the Taylor expansion for the LTE.
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A* &N,k
v*l =(W[^.*+Cl ^1 ••• «['AU+e, TD (3.4c)

V*2 =(w[/iV.*+(l+C1)T]---M[^.*+(,+^)T])- (34d)
and F(x, v ) is the composite function defined in (2.5.1) that implements one Runge-Kutta inte

gration step for the given set of control samples v . The quantity x ^tkt2 thus defined represents

the result of taking two RK half-steps from xNtk. These quantities are displayed in Figure 3.1.

By making the approximation that the coefficient of the PLTE of the first half-step is the same as

that for the second half-step (which is reasonable since the control is smooth over the whole inter

val), we obtain, by adding the PLTE for each half-step,

x N.k.2 = xNtk(tNMl) +2eN<k\ -z± | +OCAjft).w.* L5+2 (3.5)

Combining this expression with (3.2) and dropping the higher order terms, we obtain the follow

ing estimate of the norm of the PLTE,

I'AulAftl - l*A'.*+l ~ X s.kj}
(1-1/2-0

, k =0,...,/V-l (3.6a)

For systems of differential equations, e^k is a vector and I• I can be taken as any norm on IR".

Instead of the absolute size of the PLTE, the relative size of the PLTE can be estimated using

Sec. 4.3

. IA,+i _ lxs.k+\-x'N.k.2\/(\+\xK.k\)
I'au'V*- (1-1/2*) ' *=0'--";v-1

Fig. 3.1: The quantities is used in computing e^ k.

Integration Error and Mesh Redistribution

(3.6b)
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Remark 3.1. It is important to state that this type of computation would not normally be done

when solving differential equations because it involves essentially re-integrating the differential

equations on a doubled mesh (although it is possible to reduce the amount of work by re-using

quantities computed in the full-step length calculation for the half-step calculations). However,

this amount of work is small relative to the number of simulation required to solve P/y.. More

over, the work required to compute an integration mesh that achieves a certain accuracy with as

small of a discretization level as possible is greatly offset by the savings in solving P^, that

result from having fewer decision variables in the discretized problem. D

Remark 3.2. There are several other interesting methods for approximately computing the

local truncation errors for Runge-Kutta integration. The method in [100], presented for RK4, is

similar to ours except that it uses the doubled step computation for the integration result and use

the single step computation for the purpose of constructing an embedded third order RK method

to compute the error estimation. In this way, the error estimate is produced from a (3,4) pair with

local extrapolation and requires no additional function evaluations. Another very efficient

approach based on a similar idea is given in [101]. Also, it is possible to obtain error estimates by

constructing interpolating polynomials as is done with linear multi-step methods [102]. A com

parison of the efficiency and accuracy of error estimation methods is given in [103]. D

Global Integration Error. It is sometimes useful to have an estimate for the total integration

error. Based on the convergence proofs for RK integration, it follows that

lxN N- x(tN)l < I \es>.k\A%[ +0(A%1) = 0(A%), (3.6c)

where A# —max* A^*. Hence, the quantity

(3.6d)

provides an estimate of the total integration error.

4.3.2 Strategies for mesh refinement

The preceding discussion suggests that it may be advantageous to consider non-uniform meshes

for the approximating problems. The non-uniform mesh would be chosen to distribute the esti

mates of the local integration error in such away that max* \eNk\As^k is minimized. There are
two approaches for choosing an integration mesh. The first, static mesh refinement, uses the inte

gration error evaluated at the solution, or approximate solution, n;V( of PNi to produce t#i+| as a

refinement of t^ • In the second approach, dynamic mesh refinement, the approximating problem
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Pyv is modified to include the breakpoints of the mesh tA. as decision variables. In this way, the

optimization problemthat solves PN alsoadjusts the integration mesh.

We choose the first approach because it easily fits into our theory of consistent approxima

tions and we believe it to be the more efficient approach. Before discussing static refinement in

more detail, we will describe dynamic refinement andexplain why we feel that it is a less efficient

approach for ultimately obtaining solutions to P.

One method for introducing mesh breakpoints as decision variables in solving optimal con

trol problems was given in [104]. In that paper the mesh points were allowed to move in order to

help minimize the objective function in the optimization of ¥N. However, it was discovered that

this led to the placement of breakpoints in a manner that reduced the objective function by allow

ing the violation of trajectory constraints to increase between mesh points. This problem was

alleviated by constructing approximating polynomials to the state trajectories and ensuring con

straint satisfaction for the polynomial over its whole interval of definition. In [41], Stryk notes

that there are serious convergence and conditioning problems associated with this method. Other

strategies based on equidistribution of the discretization error which avoid this problem altogether

are developed in [34,41]. These methods lead to serious complication of the nonlinear program

which must be solved to obtain a solution to P#. Specifically, a large system of nonlinear con

straints that approximately equidistributes the integration error is added to the original nonlinear

program. This results in a significant increase in the computation time.

The advantage of dynamic mesh refinement is that, for a given discretization level N, the

mesh points can be placed quite accurately with respect to minimizing the integration error for

that discretization level. However, this does not mean that the solution nN of PN is the best

approximate solution of P that can be obtained for a discretization level N. Furthermore, adding

so much extra computational burden in order to dynamically refine the mesh only makes sense if

only one approximating problem is to be solved. Since we plan to solve a sequence of approxi

mating problems PA<r, we can obtain meshes tN. that are almost the same as a mesh produced by

dynamic refinement simply by refining the meshes between the solution of problems PN. The

reason for this is that once nN< is close to if, the distribution of the local integration errors will
not change much. Thus, the relative sizes of tNhk+\ - '#,.* wiH change very little once
It//^, - nN\ becomes small.

It should be noted that neither dynamic mesh refinement nor static mesh refinement will be

able to locate discontinuities in the optimal control or exit and entry points for trajectory con

straints exactly. Nor will they be able to ensure that control and trajectory constraints are satisfied

exactly for all t e [0,1]. A strategy for producing solutions of very high accuracy is discussed in

the chapter on future research.
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Static Mesh Refinement (Strategy 1, movable knots). We propose two strategies for static

mesh refinement. Both attempt to choose the mesh points in order to approximately equidis-

tribute the principal local truncation error eNtkA$k, k=0,..,N-\. The first strategy is based
on the algorithm NEWKNT for the repositioning of splineknot locations [63, pp. 182-184]. Given

a mesh tNi and a solution rjN. to VN. defined on that mesh, we seek to choose a new mesh

*nm = {*n„,.* }j£o with the property that

\eNMjk\d$lxJk =\eN^k+i\A^M, , V* e {0 NM-2) , (3.7a)

where A^,.* —t^M%k+i - *a^,.*- Clearly, this is equivalent tochoosing {t^Mtk } such that

I'n,+1.*I,/j+V,.* = l^r+„,+1l,/?+,A^,.,+l . (3.7b)

We proceed by defining the piecewise constant function E(t) which interpolates the values

(tN,.k^eNhk\A^k). Thus, for t e [tk,tk+]), E(t) = \eNiJi\A%*k. Then, satisfying (3.7b) is equiv
alent to choosing {tN.^lk } such that for each k e {0,..., Ni+l - 1},

'A\.i.*-»l ., .
1 el 1 ^',-1

>=0
j £(/)""'* =-L f' E(t)u'+'dt =̂ -t \eNJM&NiJ . (3.7c)

This problem is easily solved, once N(+] is specified, by constructing the continuous, monotone

increasing, piecewise linear function

G(r)= p E(t)ys+ldr (3.8a)

and setting

'̂ .t^G-'f^-GO)). *=0,...,/V,+l. (3.8b)
To choose N,+1 we can use the following heuristic. Since the total integration error is approxi

mately given by

Ex^l^A^*-^, (3.9)
*=0 Nj

we could reduce by a factor of FAC the total integration error without redistributing by choosing

a discretization level

AT = TAWAC)1'11, (3.10a)

where Tr 1 is the smallest integer larger than r. Since this value of N' does not taken into account
the benefit of redistributing the mesh, we instead use
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(CAS- \^J

n—ft "•>' (3-10b)m&xk{\eNhkVe) J

where e=^SS^,,*!-
Finally, in order to ensure that the mesh refinement strategy will produce quasi-uniform

meshes, we set

eN<k = max {\eA/Jtl,maxA \eNtk\IS } , (3.11)

where 8 is the constant in Definition 2.1 of quasi-uniformity, before computing the new mesh.

Also, an estimate, 8A, of the effect of redistribution is computed as:

max* \ek\Us+]AN k
A min^M^'A*,*

The larger S& is, the larger the benefit received from redistribution will be.

Static Mesh Refinement (Strategy 2, fixed knots). Our second strategy is based on the

heuristic in [105] which allows mesh points to be added or deleted, but not moved. Thus, if no

deletion occurs, the control subspaces nest, i.e. Llv c LXfj. The estimates in (3.6a) or (3.6b)

for the local truncation error are used to divide each interval [/*,'*+!1 into nk subinteryals. The

only subtlety is that, whenever an interval is removed, the local truncation error associated with

that interval is added to the local truncation error of the previous interval. The refinement is per

formed iteratively as follows:

Step 1: Compute the average local truncation error

] *',-1

and compute the relative local truncation errors,

f =7rl l<-A',.»l"'+V* • (3.13a)

=l^tl""V< f FAC f
e ^max* {\eNtJt\/e } J

where the second term, as in Strategy 1, equation (3.10b), specifies that the integration

error should decrease by a factor of FAC.

Step 2: Choose a € (0, \). Determine which mesh points, tk, are to be removed and add their

relative local truncation errors, ek, to the relative local truncation error, ek_\, of the pre

vious interval. A mesh point is to be removed (in Step 4) if ek <a. The following loop

implements this procedure:
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for k = Ni; - 1 by -1 to 2,
if ek< 0.25

e*-i = £*-i + **
•** = 0

endif

if 0.25 < ^ < 1

endif

endfor

Step 3: For each k = 0,..., N - 1, let nk = [ek], where [ek] is the integer nearest to ek. If

n0 = 0 set n0 = 1 (so that the leftmost breakpoint will not be removed).

Step 4: Let / = { k I nk > 1 } and create the new mesh

t^,= { [tNiJl +̂ )n£l)kei- (3.14)
nk

D

Before performing the redistribution, we set, as in Strategy 1,

eNnk = max {1*^1, max* \eNk\IS } , (3.15)

where 8 is the constant in Definition 2.1 of quasi-uniformity, in order to ensure that the mesh

refinement strategies which use these local truncation errors will produce quasi-uniform meshes.

As in Strategy 1, an estimate, 8A, of the effect of redistribution can be computed as:

ma\k\ek\Us+lANM
°a = —:—, ,1A+lA— • (3-16)mmk\ek\],s+]AN,k

In the program that implements this redistribution strategy (see distribute in Chapter 5.7), a

mechanism has been added before Step 2 that causes mesh points to be added at or near active

trajectory constraints. Specifically, for each k such that tNk is at or near an active trajectory con

straint, ek is set to

ek<r-ek + \ (3.17)

Redistribution examples. The following plots demonstrate the effect and usefulness of mesh

redistribution. We have set 8 = 50 for both redistribution strategies and have set a - 1/4 for

Strategy 2. The first three plots were based on integrating the differential equations for the

Rayleigh problem with the solution uN* e L^ of the approximating problem discretized using
RK method A2 with N = 50. The first figure, Figure 3.2a, shows the local truncation errors,

XN,k+\ ~ xK,k(tk+\), k = 0,..., N - 1, produced by RK method A2 before and after mesh redistri

bution. We are actually plotting the time function
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where

(*AU+i-W'*+i))n*(0, k = 0,...,N-\, re [0,2.5],

n,(/) =
1 ,te[tk,tM)

0 , otherwise.

Notice that local truncation errors for the mesh produced by Strategy 1 are almost equidistributed.

Strategy 2 does not quite achieve equidistribution and the number of mesh intervals increased

from N = 50 to N = 64. Strategy 2 does, however, achieve nesting. Figure 3.2b is a close-up look

at these local truncation after mesh redistribution. Finally, Figure 3.2c show the effect on the

solution uN before and after redistribution.

0.03

Change in local integration error following mesh redistribution

0.025 -

-

1 1 1 1

Before Redistribution (N=50)

Strategy 1 (N=50)

Strategy 2 (N=64)

"

1 — 1 — ^ , r^ 1

"

0.02-

0.015

0.01 -

0.005

0 0.5 1 1.5 2 2.5

Fig. 3.2a: This plot shows the values of the local truncation versus time before and after mesh
redistribution.
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2.5

1.5

0.5

-3
x 10 Comparison of local integration error after redistribution

Strategy 1 (N=50)
Strategy 2 (N=64)

nr-PhJ
L

0 0.5 1 1.5 2 2.5

Fig. 3.2b: Closeup up view of the local truncation errors following the mesh redistribution by
Strategies l and 2.

Effect of mesh redistribution

0.5

Solution before redistribution

- - Solution after redistribution

Time

Fig. 3.2c: This plot compares of solution of the Rayleigh problem before and after mesh redistri
bution. Same number of points (N - 50) in both meshes.

2.5
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The next table provides some quantitative results on the effect of the mesh redistribution. The

error luN* - w*l2 was calculated according to (2.12) with T =2.5.

total integration error IWyv —Ul2

Before redistribution

After Strategy 1

After Strategy 2

0.1806

0.0652

0.0490

1.06e-l

1.56e-2

8.12e-3

Table 3.3: Integration errorand solution errorbefore and after mesh redistribution.

Note that the Strategy 1 results in almost a seven-fold decrease in the solution error without

increasing the size of the mesh. For Strategy 2, the error is reduced by a factor of 13 with only a

small increase in the number of mesh points.

As another example, we show the solution uN* e L{2J of problem Bang before and after
mesh redistribution using Strategy 1. Again, we use RK method A2. In this case there are

N = 20 intervals. The circles in Figure 3.4 indicate where the mesh points occur.

Control soln. before redistribution Control soln. after redistribution

1.5 1.5

0.5 - 0.5

-0.5 - -0.5

-1 -

-1.5 - -1.5

-2

-2.5 -2.5

Fig. 3.4: Comparison of solution for problem Bang before and after mesh redistribution. Same
number of points (N = 20) in both meshes. The optimal control is a bang-bang solution.

The next table provides quantitative results on the effect of redistribution. Again, luN* - ul2 is

computed according to(2.12), this time with T =7* =30.
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total integration error IM# - U l2

Before redistribution

After Strategy 1

8.44e-l

7.098e-3

1.251

0.465

Table 3.5: Integration error and solution error before and after mesh redistribution.

4.4 ESTIMATION OF SOLUTION ERROR

In this section we consider the sequence { nN } of approximate solutions computed for the

approximating problems { P# }. For each N, we would like to be able to determine the solution

error lnN - n l#,. We will provide a formula for estimating this error that is based on heuristics.

For simplicity we will consider problems of the form

p min { /(n) I g(n) = 0 } ,
77 e H

where g: H —> IR^ with H = IR" x U and U, the feasible control set, is given by

U=(«g C.2[0> 1] I"(') € tf for / e [0,1] a.e.}

U=[veJR"'\lvl<Pmax)

(4.1a)

(4.1b)

(4.1c)

with pmax sufficiently large so that, for all iterates. u(t) is in the interior of U almost everywhere

in [0,1]. Effectively then, there are no control constraints. The results are easily extended to

problems with inequality endpoint and trajectory constraints. The extension to problems with

control bounds is presented following the current discussion.

A useful quantity to consider for constrained problems is the augmented Lagrangian

L((^^) =Un,A) +̂ g(7j)Tg(n),
where

L(n,k) = f(i1)^XTg(i1)

is the Lagrangian with A a vector of multipliers.

The error estimate we derive below depends on a positive-definiteness property of the Hes

sian of the augmented Lagrangian. This property is associated with solution points that satisfy

second-order sufficiency conditions for local optimality. Second-order sufficiency conditions are

easily stated for finite dimensional optimization problems but are significantly more difficult to

derive for optimal control problems. For instance, the proofs for the sufficiency conditions given
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in [3,106] are incorrect. In the statement of the following theorem, the required Fr6chet differen

tiability of /(•) and g() with respect to H is established in [58]. A proof of Theorem 4.1 can be

found in [107, Theorem 2 (p. 187)].

Theorem 4.1 (Second-Order Sufficiency). Suppose that /(•) and g() are twice continuously

Frechet differentiable (so that Lt.(-, X) is). Assume that at n* e H,

g(tf) = 0 , (4.3a)

i*and there exists a X g IRV and a scalar <r, > 0 such that

VnL(n*,X*) = 0, (4.3b)

(£77. V^Kn*, f)8n)H2 ><r, IJr/l)/, (4.3c)

for all 8n e H2 such that gn(n*)8n = 0. Then 77* is a local minimizer for P, i.e., there exists a
o2 > 0 and a corresponding £: > 0 such that

/(n)- f(if) >\ a2ln - 77% (4.3d)

for all 77 g H such that I/7 - 77 lw, < £2. D

The proof of the following Proposition concerning the Hessian of the augmented Lagrangian is

based on the finite-dimensional result given in [89, Lemma 1.25 (p. 68)].

Proposition 4.2. Suppose that /(•) and g() are twice continuously Frechet differentiable and

that n g H is a point satisfying the second-order sufficiency conditions for problem P (without

control constraints) in Theorem 4.1. Let A* g IR'' be such that (4.3b) holds. Then there exists

scalars c > 0 and c g (0,00) such that for all c £ c

(8ny2T)nLc(n*,A*)8n)2>al8nl2H: , V8tj e H2 . (4.4a)

Proof Let H= V2nr}L(n*, f) and G= ^(77*). Since g(n*) = 0, we have that for all £77 g H2,

(8n, Vj7L,(77*, A*)8t1)h2 = {Sn, H8n)H^ clGSn^ . (4.4b)

Suppose that there is no c such that (4.4a) holds. Then, for each k € N and any a > 0, there

exists 8nk e H2 such that l8nklH, = 1 and

<8nk,H8nk)Hz+klG8nklrHl < a . (4.4c)

Choose a = oV4 where C\ is the positive scalar from Theorem 4.1. Taking the limit superior,

lim (8nk.H8nk)+klG8nkl2, <^- . (4.4d)
k —» 00 "4

Since IG£t7*I>0, (4.4d) implies that IG^fl-^O as k -» 00. Next, since LC(-,X?) is twice
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Frechet differentiable, V2nLc(if, A*) is abounded bi-linear operator. Thus, it follows from (4.3c)
and the fact that lG8nkl —»0 as k —> oo that there exist a k such that, for all k > k,

(8nk,H8nk)> &• I8nkl2 =^. But this contradicts (4.4d). D

We now proceed with a heuristic derivation of an estimate for lnN - n lHi assuming there

are no control bounds. In what follows, all of the norms are H2 norms. The following assump

tion is needed for our derivation.

Assumption 4.3.

(a) L(-, X) is twice continuously differentiable.

(b) if g H is a local minimizer for P and there exists scalars c> 0 and c > 0 such that

<6ii,V*nLr(jj*,f)6ji)Hz ><jl8niy2 , V8n e H2 . (4.5a)

(c) { nN )J/=o *s asequence such that 77,v g Hand nN -> if as N -> 00. •

Note that that this assumption does not specify that g(ijN) = 0; generally, g(r}N) * 0 even if 77^ is

a solution of PN.

Now, let 8tjn = nN -if. Expanding VnL,(nu,X*) to first order around 77* and using the
fact that VnLc(if, A*) =0, we get

VnLc(ris) =f' V:,„L(.(77* +5*77*. X*)8nN ds . (4.6)

For convenience, define

H((8ris)= f V2nnL{(rf +s8TjN.A*)ds (4.7a)

so that (4.6) can be written

VnLc(riN) = Hc(8nN)8nN . (4.7b)

From (4.7b), we have for any 8nN g H2,

(VnLc(r}N,X%8ijN) =(8vs,Hc(8Vn)8ijn) =-^-l^l2, (4.8a)
Km

for some KN. We will show that KN is finite and bounded away from zero. From the continuity

of V^Lr(, A*), the fact that 8nN -»0 as N -»00, and Assumption 4.3(b), there exists an
N] < 00 such that for N > N],

(8VN,H(.(8nM)8ns)>U8nN.VlnL^*^)Sns')>^l8v^2 • (4-8*>)
Comparing (4.8a) and (4.8b), we see that KN <^ <00 (since o >0) for all N> N\. Also, since
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V~nnL(.(n. A) isa bounded bi-linear operator, there exists an M< oo such that

{8nylnLt.(rf,f)8Ti)2 <MlSti\2„2 , VSn e H2 . (4.8c)

Hence, there exists an N2 such that, for all N> N2, •£- ^ 2M. Thus,

^-<KN<-, VAf>max{N,,#2} , (4.8d)
2M a

and from (4.8a),

l^l2 = KN{VnLe(riN)%SjiN)^KN\VnLc{fiN%tWriN\. (4.8c)

This implies that, for N > max { N\, N2 },

l6riN\ZKNWiLe(TiN,£)l. (4.9)

At this point, we could try to estimate M, use 1/2M in (4.8d) as a lower bound for KN and use

(4.9) as our estimate. However, this would lead to a very conservative estimate. Instead, we will

attempt to estimate Km directly using two solutions, tjn. and 77^ computed for Nj * Ni+]. We

have SrfN^ = 77^ - nN. + 5nN. and 8ijn, = rjN. - tjNm + 8t}Nm. Hence

\SrjNJ-l8vNl<lriN^-riN} (4.10a)

and

l8nMl-l8ijNJ<lnN^-7jNi. (4.10b)

We conclude that

ll^^.l-l^ll^li?^,-^!. (4.10c)

Proceeding heuristically, we are going to assume that for N sufficiently large there is a K < 00

such that we can replace (4.9) with

Wna-I « JnV,Lf07*Jf )l . (4.1 la)

Then, from (4.10c) and (4.1 la), we have

K\lVnLc(nNi^f)l -IVjLcfojv,, A*)ll < \i,Nm - nNi , (4.1 lb)

from which we estimate

177 A/. . —77 W.I
K< nP—^ -=—. (4.12)

HV,M^(+1^)I-IV,M^(,^)H

Substituting this bound back into (4.1 la) we get
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•V,M^w./)l-IV,Lf(^,/)l|
(4.13a)

In this result, neither the the Lagrange multipliers A* nor the minimum penalty parameter c are

known apriori. So, for the purpose ofimplementation, we use Lc(nN, XN) in place ofLc(nN, A?)
where XN is the vector of Lagrange multiplier estimates obtained from the solution of PN. Also,

instead of a single penalty parameter c, we use separatepenalties for each constraint. For the /-th

constraint, we choose

c( = \*!N\t i=],...,q. (4.13b)

These values for c, are used because, with this choice, the function /(77)+ c\gj(n)\ has an uncon

strained minimum at rf if c> £/ c, with c, given in (4.13b), see. [89, Proposition 4.1] This, of
course, does not imply that with this choice for c, the augmented Lagrangian has an uncon

strained minimum at 77 . But (4.13b) seemed to work well in our limited experiments. A rigorous

choice for the c, is an open question at this point.

Extension to Problems with Control Bounds. In the presence of control bounds, expression

(4.13a) is not useful because (i) requiring Assumption 4.3(b) to hold may be too much to ask and

(ii) the expansion in (4.6) is incorrect since VnnLc(if, X?) * 0. However, we can easily produce
a modification to handle control bounds. For simplicity of presentation, we will only deal with

single input systems and problems with fixed initial conditions. The extension to problems with

vector inputs and free initial conditions is straightforward.

Consider a problem of the form

P min { f(u) I g(u) = 0 } ,
u e U

where /: U -»IR, g: U -» IRV are defined as

f(u) = Ux"(\)). (4.14a)

gv(u)= C(xu(D), v=l q, (4.14b)

where xu() is the solution of

x = h(x, u), x<0) = 4 , t g [0,1], (4.14c)

and the feasible control set is defined as

U=(«e Li2[0,1] I b,(t) < 11(f) < *,(/), V; e [0,1]} (4.14d)

where b{ : [0,1 ] —> IR and bu : [0,1 ] —»IR are functions such that -00 < bt(t) < bu(t) < 00 for
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all/ g [0,1].

There are several versions of Kuhn-Tucker like sufficiency conditions for problems with

control bounds which can be found in [108-113]. The results provided in [109] are the most use

ful for our purposes. The statement of the second-order sufficiency conditions requires the

Hamiltonian which, for problem P, is defined as

H(x,p,u)= pTh(x,u), (4.15a)

where, with ueU and Ag IRV and the adjoint variable puA(t), t g [0,1], is the solution of

jjP(t) =-Hx(xu(t),p(t),u(i))T ; p(\) =VUxu(\)) +ATV£AxuO)). (4.15b)

With this definition, VuL(u, X)(t) = Htl(xu(t), pu'\t),u(t)), t g [0,1] (see [109, Note 4.1] ). We

also need to define the quantity

HX,u;v,t)±{!Hu(K(t\p(t),u(t)),v-u(t))

+ i(v - u(t), Huu(xu(t), /(/), m(/))(v - u(t))) . (4.15c)

Given a solution u of problem P, define the set

A= {t g [0,1] | u*(t) = b,(t) or £#*(/) = bu(t)} . (4.15d)

The following theorem is a special case of [109, Theorem 4.2].

Theorem 4.4 (Second-Order Sufficiency with Control Bounds). Suppose that /(•) and g()

are twice continuously Frechet differentiable (so that L(.(-. A) is). Assume that the following con

ditions hold at w* g U:

#(<*) = 0, (4.16a)

there exists A g IR^ such that

VL(w*.A*)(/) = 0 if / * A, (4.16b)

VL(w*, A*)(/) > 0 if u*(t) = b,(t), (4.16c)

VL(z*. A*)(/) < 0 if u*(t) = bu(t), (4.16d)

holds for / g [0,1] a.e., and there exists scalars 0\ > 0 and a2 > 0, such that

(8u,V2L(u*,X*)8u)2 >oilSull (4.16e)

for all for all 8u e L^^O, 1] such that 8u(t) - 0 for t g A, and gu(u)8u = 0, and, with

HX*, u ; v) as defined in (4.15c),
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9Af,u;v,t)>\c2lv-u(t)l\, Vb,(t)<v<bu(t) (4.16f)

holds for / g [0,1] a.e.. Then u is a local minimizerfor P, i.e., there exists a 03 > 0 and a corre

sponding £3 > 0 such that

f(u)-f{u*)Z{a3lu-u*$ (4.16g)

for all u g Usuch that g(u) = 0 and \u - u*l2 < £3. D

Remark 4.5 In[109], Dunn presents a set of conditions which ensure that /(•) and g() are

twice continuously Frechet differentiable. One of those conditions,

lim I5(v) - S(u)^ = 0 , (4 j7a)

where S(u)(t) = Huu(xu(t), puX(t). u(t)), can only hold if the Hamiltonian is w-quadratic (i.e., has
no terms higher than quadratic in u). However, Frechet differentiability relative to the set U was

established in [58] without condition (4.30- D

Remark 4.6. Condition (4.16f), which does not have a counterpart for finite-dimensional non

linear programs is, locally, a strengthening of the Pontryagin Minimumprinciple,

H(x*(t),p*(t),i?(t))= min H(x*(t),p*(t),v), Vre[0,l]. (4.17b)
net' v '

Also, condition (4.16f) can be replaced by the locally stronger Legendre-Clebsch condition

(v,Hull(x*(t),p*(t).i*(t))v) ><r2lvl? , Vv e R'" . a.e.t e [0,1] . (4.17c)

Proposition 4.7. Suppose that /(•) and g() are twice continuously , that Lc(•,A) is twice con

tinuously Frechet differentiable and that u el is a point satisfying second-order sufficiency

conditions for problem P with control constraints b{(t) < u(t) < bu(t) for almost all t e [0,1].

Then there exists A* g IR'' such that equations (4.16b,c,d) hold and there exists scalars a > 0 and
c g (0,00) such that for all c > c

(8u,V2Lc(u*,X*)8u)L: >o-|<5wfli: , VSu gL^O. 1] with 8u(t) =0 Vt e A. (4.18)
D

We now assume that {um } is a sequence in U such that m# —» u g U where m* is a solu

tion of P for which there exists a a > 0 and c < 00 such that (4.18) holds for all c>c. Condition

(4.18) allows us to make use of the first order expansion ofVLr(wAN X*) around u with perturba
tions Su restricted such that 8u(t) = 0 for all / g A. Let / = {t e [0,1] I / £ A }. For any N,

let um g U be a solution (or approximate solution) to VN and define
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Then,

1

'o

Now, using the same reasoning that led to equation (4.13), we have

. j uN(i)-u*V) if/ € /
*""= o if/«/»- (419a)

VL((i* +8uN, A*) =J V2Lc(u +s8uN, f)8uN ds . (4.19b)

Ium -UmIiIVLJum ,,^*)l/
18un ,1 < ^ J5r ' I— . (4.20)"'*' \lVL(.(uNM,f)l, -lVL(.(uMt, A*)l,l

where we have used the notation

lul2, = f u(t)2dt .

Next, since / u A = [0.1 ]. we have for any N

lwiV - i*l2 = Ik* - M? + Dm* - uN\\ . (4.21)

In expressions (4.20) and (4.21), the subset / and A are unknown. To proceed, we must compute

an approximation IN to /. We can obtain this approximation using the index set

Js = { k g { 0 N }I />/(/) < w.v(/t) < bu(t)} corresponding to the unconstrained portion of

the numerical solution //A- for the approximating problem PA-. Let

h' =, u, [>A'.*-h'A\*+i]> (4.22)

where we treat /#.-! = 'a'.o ar|d 'a'.A'+i = 'a'.a'- Then let A# = [0,1] - / #. With this construc

tion, we can assume that

luN-i*U =0 (4.23a)

since, if N is large enough, the set A,\ « A, and hence, «#(/) = u (t) for / g An. Thus, with

/V = /V,+i, (4.21) becomes

l^/+1 - W*l2 - In* - uNJ2 = ISuNm I2 . (4.23b)

where 8u^.+l is defined by (4.19a). Finally, since I m is only an estimate of /, instead of using

(4.20), we estimate the total error with a more conservative estimate (and will replace u with 77

since this formula works in the more general case of H —IR" x U) to get
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IVnm -nl = lr}Nl^ - 77 1/ < lVLe(rfNM,f)U -lVLc(nNi,X*)U I
(4.24)

where I77I2 = l£l2 + lul2. As in (4.13a), we use Lc(nN, XN) in place of Lc(nN, X*), where XN is
the vector of Lagrange multipliers obtained from the solution of PN. Also, instead of a single

penalty parameter c, we use separate penalties for each constraint. For the i-th constraint, we

choose c, = \X'N\ as in (4.13b).

Numerical Examples. To demonstrate the usefulness of formula (4.22), we have computed

this error estimate for several optimal control problems using the numerical solutions from two

different meshes, r^, and t^. To compute the required function space norms we used a variable

step-size integration algorithm with its local error tolerance set to

£joca, = min {max {£tv /1000,10-12 },10^ } ,

where £tv is the global error estimate given by (3.6d) for the fixed integration routine that was

used to discretize the optimal control problem.

The following table compares the estimate ofthe error I77* - nN *lwith the actual error. The
norm used in these computations is defined for 77 = (£, u) by

I77I2 =l^l2, +f lu{t)l\dt . (4.25)

For each problem, we constructed the approximating problems using both (i) linear splines with

RK method A2 and (ii) quadratic splines with RK method A4. For the first four problems, the

meshes were uniformly spaced. For the last problem tA>, was uniformly spaced and tNi was deter

mined by redistributing /#, witn mesh redistribution Strategy 1. The problems used in this table

are described in Appendix B. The quantities in Table 4.1 marked with a were computed using

approximations of 77* obtained by solving the discretized problem with N = 1000. The last prob
lem has control bounds so we did not solve it with quadratic splines (see discussion of spline

order selection for constrained problems). The results in Table 4.1 show that the estimates pro-
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vided by (4.22) are remarkably good.

Problem

A2. P = 2 A4 , p = 3

tf| N2 Estimate Actual Estimate Actual

LQR (7= 1) 10 20 3.6677e-4 3.6008e-4 1.5721e-6 1.5801e-6

Switch (T = 1) 40 80 0.0148 0.0322 0.01235 0.0229

Rayleigh (T = 2.5) 50 80 0.0410 0.0335 0.0021 0.0020

Constr. Rayleigh 50 80 0.0369 0.0355 0.0023 0.0021

Bang (T = 30) 20 20 0.4737 0.4653

Table 4.1: A comparison of the estimate for the error It; - 77N} I produced by formula (4.22)
and the actual error. N] and N2 are the discretization levels of the two meshes for which solu
tions were computed. The estimates and actual error are given for solutions produced using RK
method A2 with linear splines and RK method A4 with quadratic splines (except for Bang which
has control constraints). For the last problem, Bang. Nj = N2 but the mesh t#, is a uniform mesh
and tAr, is a non-uniform redistribution of tN .

4.5 SINGULAR CONTROL PROBLEMS AND THE PIECEWISE DERIVATIVE VARIA

TION OF THE CONTROL

It is quite possible for an optimal control problem to not satisfy second order sufficiency

conditions as needed in Section 4. A common practical situation in which this occurs are prob

lems called singular control problems. For the purpose of illustration, consider the optimal con

trol problem

p min { /(ii) I g(u) = 0 } ,
m e I*

where f(u) = £n(x"(\)) g IR. g(u) = Cc(x"(\)) e ]R«, *"(/), / g [0,1], is the solution of

x = h(x,u) ; jc(0) = £ . (5.1a)

and U = {u g L™>2[0,1] Iu(t) eU , Vt e [0,1]}. We assume that /(•), g() and h() are twice

continuously differentiable. For this problem, we define the Hamiltonian as

H(x, p, u) = p h(x, u). (5.1b)

Foru g U and Ag Rv, let the adjoint variable puk(t), t g [0,1], be the solution of

—p(t) = -Hx(x"(t).p(t),u(t))T ; /7(1) = V^Uw(1)) + A7"V^(jcu(1)). (5.1c)
at

If u is a local solution of problem P. then the following condition (Pontryagin's minimum
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principle, see [1]) holds for some A g IR*:

u*(t) = arg min //(/(/),p(t),u), Vt e [0,1], (5.id)
u e U

where jc = xu and p = p" '* . At this point, we assume that the set U does not include control

constraints, i.e., U = [v e IRm I IvI < pmax } with pmax sufficiently large that the values of u(t)

always lie in the interior of U. Then, in addition to (5.Id), the Legendre-Clebsch condition must

hold at a solution:

Huu(x*(t),p*(t),u*(t))Z0, t g [0,1] . (5.1e)

Definition 5.1. An extremal arc, (jc*, ff, if), is a triple that satisfies the necessary conditions
(5.1a,b,c,d,e) for optimality. An extremal arc for problem P without control constraints is said to

be singular if Huu(x*(t), ff(t),u*(t)) is singular for any / g [0,1]. Any interval of an extremal

arc on which Huu(x (t), p (/), u (/)) is singular is called a singular sub-arc. If (x , p , u ) is sin

gular, then u* is called a singular control. An optimal control problem that has singular extremal
arcs is called a singular optimal control problem. D

The contrapositive of the following proposition (which is proved in [111,Lemma 2] for a more

general setting that includes control constraints; also see Notes 4.1 and 4.2 in [109] ) indicates

that for a singular control, the Hessian of the Lagrangian for problem P is not strongly positive.

Proposition 5.2. Let L(u, X) = f(u) + XTg(u) be the Lagrangian for problem P. Let u be a

stationary point for P and let A* g JRq be the Lagrange multipliers associated with the constraint

g(u ) = 0. If there exists a a > 0 such that

(8u, VuL(if, X*)8u)2 >oUull (5.2a)

for all 8u e L'^2[^ 1] such that i*+8u el) and gu(u*)8u = 0, then

Huu(x*(t),p*(t),u*{t))>o, V/e[0,l]. (5.2b)
D

Singular arcs occur most commonly when the Hamiltonian is linear in one or more of the

components of u. Then w* is always a singular control. Suppose that

H(x, p,u) = H \(x, p) + H2(x, p)u. In this case, when there are no control bounds (or in regions

where the control bounds are inactive), it follows from (5.Id) that a necessary condition for u to

be extremal is

Hu(x*(t),p*(t),u*(t)) = H2(x*(t),p*(t)) = 0, V; e [0,1]. (5.3)

It is clear that, in this case, not only is i* a singular control, but Pontryagin's minimum principle
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(because of equation (5.3)) provides no information about the value of the optimal control. If u

is to be obtained from the solution of the two-point boundary value problem defined by (5.1a),

(5.1c) and (5.3), i.e. by the so-called indirect method [5,114,115], then additional conditions on

u* are needed. Such conditions are available as generalized necessary and sufficient conditions

(in particular, generalizations of (5.1d,e) involving time derivatives of Hu), see. [3,116-118]

For problems that have control constraints, (5.1e) is not a necessary condition and therefore

Definition 5.1 is not useful. In the case that //(jc, p,u) = H \(x, p) + H2(x, p)u, the problem is

singular if H 2(x(t), p(t)), the so-called switching function, is zero for any non-zero interval of

time. On such an interval, it is clear that the Pontryagin minimum principle, equation (5.Id),

gives no information about the optimal control since the Hamiltonian does not involve u.

If m* is a singular control, we have from Proposition 5.2 that the Hessian of the Lagrangian

at w* projected onto the subspace {8u g L^2[0,1] Igu(u)8u - 0 } is singular. Thus, from the

Taylor expansion of the Lagrangian we see that, on singular arcs, small perturbations in the con-

trol have only fourth', or higher, order (very small) effects on the projected Hessian of the

Lagrangian. Singularity of problem P will manifest itself as singularity or near-singularity in the

approximating problems P# for N sufficiently large. From a computational point of view, singu

larity of the Hessian can inhibit superlinear convergence of mathematical programming algo

rithms that rely on second order information.

Our primary concern, however, is that we have observed, as have other authors (for

instance [119] ), that the numerical solutions uN{-) of singular optimal control problems can

exhibit spurious oscillations along singular sub-arcs that are artifacts of the numerical method

rather than being an approximation to the solution of P. This seems to be especially true when

trajectory constraints are active on singular sub-arcs. When spurious oscillations occur in the

solutions uk of the approximating problems, the sequence { uN } may not have any accumula

tion points. In other words, if the oscillations persist as N -» oo, the sequence of solutions will

not converge. Besides preventing convergence, these oscillations also prevent useful estimates of

'77*01 ~ ^ 0Dtamed from (4.13) or (4.22). This is because the oscillations on singular sub-arcs
are erratic and prevent the quantity !«#, - «/v.+11 from converging to zero. We believe that these

spurious oscillations appear due to the accumulation of numerical errors which, on the singular

sub-arcs, have very little effect on the Lagrangian because of the singularity of its Hessian. The

reason this problem appears when trajectory constraints are active may have to do with the fact

that the optimization algorithm chooses control iterates that cause the trajectory to follow the

On an extremal arc. the third variation is necessarily zero with respect to any perturbation in the null-space of the Hessian.
Otherwise, u would not be a local solution
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constraint over the active region. It may be "easier" to accomplish this using an oscillatory con

trol.

Numerical Method for Solving Singular Control problems.

We propose here a modification to the approximating problems that reduces the numerical diffi

culties associated with singular control problems. Our modification involves adding to the objec

tive function a penalty on the variation of the control derivative. The only other method

(see [116,120] ) that has been proposed for solving singular optimal control problems involves

adding the term eIuIq = e \ u(t)TQu(t) dt, where Qis positive definite and e isa positive scalar,

to the cost function. With this additional term, the Hamiltonian becomes, with H being the

Hamiltonian of the unmodified problem,

He(x(t),p(t),u(t)) = H(x(t),p(t),u(t)) +eu(t)TQu(t), t g [0,1] . (5.4a)

Hence, assuming that the minimum eigenvalue of Huu(x(), p(),u()) is bounded below, there

exists an e > 0 such that

Heuu(x(t), p(t), u(t)) = Hull(x(t), p(t). u(t)) + eQ>0. (5.4b)

This method has some numerical drawbacks as discussed in [121]. One difficulty is that adding

the term ehtlg is a brute-force way to eliminate the singularity of Huu. In order to get a reason

able solution with this approach, e must be driven to zero. But this causes the problem to become

singular again.

The method we propose for handling singular optimal control problems is motivated as a

direct approach to preventing the erratic oscillations that can appear in numerical solutions. It has

the property that, as the discretization level N -» oo, the solutions of the approximating problems

converge to solutions of the original problem. At the same time, our method does not cause the

approximating problems to become increasingly singular as N -* oo. For simplicity of presenta

tion, we will only discuss single-input systems but the ideas are easily extended to multiple-input

systems. Also, the treatment is developed for second order splines (p = 2). The application of

these results to first order splines is taken by formally setting p = 1 in the given formulas. We do

not consider higher order splines because (a) we do not recommend using higher-order splines for

control and trajectory constrained problems in general, and (b) the smoothness of higher-order

splines tends to automatically prevent spurious oscillations in the numerical solution.

The total variation of a function u: [0,1] -> IR is defined as
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AM

v<*r{oA)(u) = sup £ \u(tM) - u(tk)\, (5.5a)
N k=0

N

where, for each N, the supremum is taken over all sequence {tk)k=o such that

0 = tQ < t\ < --•< //v_i < tN = 1. If Vflr|0 |](w) < oo, then u is said to be of bounded variation.

The space of all functions it of bounded variations isdenoted by BV. Note that, if u g L%n, then

N

Vflria„(M) = 2 \u{tM)-uitk)\ . (5.5b)
*=i

In order to prove epi-converge of the approximating problems, constructed below, to the original

problem, the space of controls will have to be restricted to those of bounded variation. Hence, we

define the original problem as

P min { yrtl(n) I y/c(n) <0 }, (5 6a)

where H = IR" x U and

U = { u g BV I u(t) g U . V; g [0,1]} (5.6b)

with U c B(0, Pmax) acompact, convex set. We note that BV cL^fO, 1], so this new defini
tion is a restriction on the set of controls that we had previously used.

If u is of bounded variation, then its derivative m() exists almost everywhere. Unfortu

nately, the fact that the derivative does not exist at every point prevents us from being able to

compute the total variation of it for all u e BV. However, for u g L\p we can define the piece-
wise derivative variation of the control as

A'+/>-3

ferlv(H)= I \sM -5*1, (5.7a)
A=l

where

,,.»<'»>-«<'«->,,_, N+,_2, (5.7b)
AN.k

where Ajs/k —tN k+l - tu.k- Note that for second order splines (p = 2), sk is the slope of u(t) on

the interval t g [/*,/*+!] and u(tk) = ak+\, where { ak }k^] are the spline coefficients of u. So,

in what follows, we will use the notation uk = ak = u(tk_i )fork = 1,..., N + 1. Note that this is

different than our notation in Chapter 2 where we had m* = (uk\,..., ukr) fork = 0,..., N - 1.

To deal with the non-differentiability of Vfartv() we define the modified approximating

problems as
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P/V.r

where

min , {V<,A») +cNVar2 u I \yc,N(n)<0) ,

. ] N+p-3
v<"iN(u)±- X 1^+1-^i2

1 *«l

C

"" (N + p-3)N2

(5.8a)

(5.8b)

(5.8c)

In (5.8c), c £ 0 is a small number supplied by the user, N + p - 3 is the number of terms in the

summation in (5.8b) and the N2 roughly cancels the A2N kterms in the definition ofs2 (ifthe mesh

is uniform then A"Nk = 1IN2). The parameter cm goes to zero as N —» oo fast enough to ensure

that rjvVfarf (m) stays bounded as N —> oo (as long as the meshes are quasi-uniform). To wit, we

t(2) (2)have from (5.7b) and (5.8b) that for any it g \stf c L;;',

«*+2 ~ w*+i "*+i - "*c/vVarr^Cii) = 2(/V +p-3)N2 ^ W.*+l ^/V.Jfc

2(N + p-3)N2 A~

r<T

I 8pm2</V + p-3) ffl

= 4r(^pmax)' . (5.9)

where we have used the fact that ii) l/7A+1 - uk\ <2pmax since, by definition ofU(^\ U^ c U
where U is given by (5.6b). (ii) (a-b)2 < 2(a2 +b2) and (Hi) the meshes are quasi-uniform

with quasi-uniformity ratio 8, which by (1.2b), implies that 1/ AN k < 8N for all k. On the other

hand, the fact that the bound in (5.9) is independent of N (in particular, does not go to zero as

N -» oo) indicates that cN stays large enough so that the penalty term will be effective in damp

ing out unwanted control oscillations even as N -» oo. Thus, cN is the correct order in 1 / N\ any

smaller and the penalty term would not damp out unwanted oscillations and any larger and we

would not be able to prove epi-convergence as we do below. Typically, the fixed parameter c will

be chosen very small so that the penalty term does not affect the solution away from singular arcs.

Even so, erratic control behavior on singular sub-arcs will be damped because even a small

penalty effects control perturbations on singular sub-arcs that would otherwise have very little

effect on the Lagrangian.
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Our first task is to show that the modified problems Pmc epi-converge to the original prob

lem P. We emphasize that Theorem 5.3 relies on the fact that P is defined over the set of controls

with bounded variation.

Theorem 5.3 (Epi-convergence). Suppose {P/v } is a sequence of approximating problems

defined on quasi-uniform meshes {t/v } with quasi-uniformity ratio 8 using second order splines

(p = 2) and that {P# } epi-converges to problem P as N -» oo. Also suppose that { PNtC } is a

sequence of modified approximating problemsformed by adding to the objective functions of P#

the term c^Var2(u). Then {VNc } epi-converges toP asN —> oo.

Proof. Since {PN } epi-converges to P we merely need to show that the extra term,

CfjVar^N(u), in P#.< epi-converges to zero. Because CMVar~(uN) £ 0 for all m# g LtJ, it is clear
cithat for any sequence {uN } with uN g L{[! such that uN —» u g BV as N —• oo,

UmcNVar2(us) > 0. Thus, part (b) of Definition 2.2.1 is satisfied. We will now show that part

(a) of Definition 2.2.1 is also satisfied. Let u g BV. For each N, define the piecewise constant

function

where

vjv(/)= I vNJJlNtk(t). / e [0,1],
A-1

nA..4(0=-

SM =J u(t)dt ,

1 if; g [/*_,,/*)

0 otherwise,
k = \,...N-\

n(/) N=\l if'€['AM-'*]
I 0 otherwise.

(5.10a)

(5.10b)

(5.10c)

(5.10d)

We then construct uN g L\"J as uN =S^(aN) where »#* = v/v(Jt for k= \,...,N. We see that

w/v -> m as N -> oo (5.11a)

since the space ofpiecewise constant function is dense in L2[0,1] 3 ^io.2^ 1] 3 5V. Also, for
allN,

v<*rlo.))(uN) = ^Ho.n^'A') - Var[0.i)(u). (5.1 lb)

where the equality in (5.11b) follows immediately from the definition of Var^,ij(-) and the

inequality follows from Lemma 3.2 in[122]. Next, with our notation UMk=u^(tk.\) for

k = 1,..., N + 1, we have from (5.8b,c),
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cwforW =2(A,;,)A,2i;' uNk+2~uNk+l uNk+\~uNk

c N-\
<—-—2 y
~2(N + 1)N2 £j

Wft+|

uNk+2~uNk+\

*N,k+\

where we have used thefact that (a - b)2 < 2(a2 + b2)

2c *

2(N+\)N2 k% WJt+l

where we have used the quasi-uniformity condition Ayy.* ^ 1/£N,

2c<52 ' ^
yv + i

2c(T

£ '"A'A+l -"Nil
U=l

=7?TT Var|0"("A,) •
(2)since uN g L[" . Therefore, from (5.1 lb) and (5.12),

• -, 2c8'
cNVar(uN) < ——-1 Var[{U](u) | -» 0 as N -» oo

W*

uNk+\ ~uNk

*N,k

(5.12)

(5.13)

since mg 5V implies that Var^0]^u) < oo. This shows that. MmcsVar2(uN) <0. Hence, Defini
tion 2.2.1(a) holds. D

We can gain insight into how the penalty term cMVar2K(u) damps out spurious control oscil

lations by considering its Hessian. Given ug Li"', let a - Sis%2(u). Ifwe define the row vector

*(<*) = [(5, -s0) (s2-sO ••• (sN+p_2-sN+p_i)], (5.14)

with sk as defined in (5.17b), then

Var2s(u) = - s(a)s(a)T (5.15)

Further, if we define
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then we see that

and

Dm =

A =

-1 1

-1 1

w.o

JNxN+\

WJV-1 _

ds(a)

da
= 5„ = DA/_1A'IDA,,

s(a) = asTa .

Hence, Vbr2v(w) = \ asTasaaT and its second derivative is given by

= s„s,
da-

(5.16a)

(5.16b)

(5.16c)

(5.16d)

(5.17)

(2)Proposition 5.4. For // g L\'J, the matrix

d2Var2
The null-space of — ,, is the two-dimensional subspace

d2Var2s(u)
da2

is symmetric, positive semi-definite.

da-

{ u G LT I!/(/) = a + bt , a, b G IR } (5.18a)

d'VarT, Pv
Proof. That —. , is symmetric, positive semi-definite is obvious. Let u g L\"' have coeffi-

da- N

cients a = S1n2(u). Then, from (5.17) and (5.16d),

d'Varr, _ _
(g ^2 -CT^= <^a^4>= <*(«), 5(a)) (5.18b)

The result now follows by noting from (5.7b) and (5.14) that s(a) = 0 if and only if u = a + bt

for some a, b g IR. D

l2w 2

Thus,
rfa2

is positive-definite except on the subspace of controls that have constant slopes.

To see how this affects the solutions of the approximating problem consider a singular control P

with approximating problems Pm and modified approximating problems Pn,< . First, let { u# }

be a sequence of solutions to {Pyv } such that um —»if where u is a singular optimal control.

For each N, let XN be the Lagrange multipliers associated with the constraints for P/v at the
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solution uN. If N is large enough, the Hessian ofthe Lagrangian, V2uL^(m^, Xn), for P# is sin

gular or near singular. Let 8uN e L[2) be a vector in the null-space of VluLN(uN). Then,

expanding the Lagrangian around w#, we see that

L(ttN+8uN, AN) = L(uN, XN) +0(l8uNl4) (5.19a)

since the first and third order variations with respect to 8uN are zero for a solution to P/y. Thus,

small perturbations in the null-space of V^L^(w/V, XN) have very little affect on the Lagrangian

for P/y. Next, consider the modified approximating problem P#%r. Let { um } be a sequence of

solutions to {Pmx } such that uN -> u*. As before, let XN be the Lagrange multipliers and let

8itAr be a vector in the null-space of VlLN(uN, Xn). Now when we expand the Lagrangian for

the modified approximating problem we find that

i A2V 2
L(un+8un,Xn) =L(um,Xm) +-(8um,—^8un) +0(18unIa). <519b)

2 aa-

Thus, according to Proposition 5.4, any perturbation, 8uN, that is not a straight line, i.e. contains

oscillations, will lead to a second-order increase in the value of the Lagrangian. It is this property

that tends to damp out control oscillations that may occur on singular arcs of the numerical solu

tions.

Remark 5.5. Any control it e L^ can be written as it = it] +u2 where u2 - m(0) +w(1)/.
Proposition 5.4 shows that u2 does not contribute to the penalty term in P#.<-. This is precisely

the behavior we want because any spurious oscillation in u must be contained in u\. Had we cho

sen to penalize the variation of the control, Var^^iu), rather than the piecewise derivative varia

tion of the control, the null-space of the Hessian of the penalty term would consist of only con

stant functions. Thus, even u2 would contribute to the penalty term. That would be undesirable.D

Remark 5.6. Another possibility for solving singular optimal control is to use the proximal

point method. In this approach, the approximating problems are defined as

p min {y„.A'(77) +cNlu - uN_fl2 I ^(77) <0) , (520)

where «_* is chosen by the user and uN_f is the solution obtained for Pam,C/v_,. Clearly, the
additional term !«#_*- wl2 adds a positive definite matrix to the Hessian of the Lagrangian for

P/v<(.v. This is similar to the idea of adding the term elulg to the objective function. However,

lwtf_* -uN*l -» 0 automatically if uN* -> m*, even if cN = c is fixed. In this way, some of the
numerical difficulties associated with the former method may be overcome. Convergence results

for the proximal point method can be found in [123,124]. One advantage we see to our
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modification over both of these methods is that it has a minimal impact on the solutions of the

approximating problems since the value of c in the definition (5.8c) of c# can be chosen to be

very small. Thus, a good numerical solution can be obtained even if only a single P^c is solved

using a moderate value of N. In the other methods, N must be allowed to grow large. D

Numerical Examples. Below we present the results of solving two trajectory constrained sin

gular control problems with and without the addition of a penalty on the piecewise derivative vari

ation of the control. We used second order splines and the fourth order RK method A4 and solved

the discretized problems using NPSOL [125]. The first problem is the Obstacle problem and the

second problem is the Goddard Rocket maximum ascent problem with a trajectory constraint on

the dynamic air pressure (see Appendix B).

The first problem has two trajectory constraints, /,(/, x(t),u(t) < 0 and l2(t, x(t), u(t)) < 0.

Two versions of this problem were solved. One version includes these trajectory constraints

directly as part of the optimization problem. The second version of this problem has these trajec

tory constraints replaced with the endpoint constraint

g(n)= f max{(0,/,(/,jc(r),M(;))2} +max{(0,/2(r,jc(/),M(/))2}^ =0. (5.21)

Clearly, the trajectory constraint is satisfied if and only if g{n) = 0. However, this is not an equiv

alent representation of the constraint because Vg(r/) = 0 for any feasible 77. Hence, g(rj) does not

satisfy the usual constraint qualification. No penalty on the piecewise derivative variation of the

control was needed when using (5.21).

The solution of the first problem at discretization level N = 100 and a uniform mesh is

shown in the first three plots. The first plot shows the solution with and without a penalty of

c = 10~3 on the piecewise derivative variation ofthe control. The next plot shows the solution for

this problem with the trajectory constraints replaced by the endpoint constraint. We did not use a

penalty on the piecewise derivative variation of the control to produce this solution which does

not exhibit control oscillation. The final plot shows a phase plot of the system trajectory and

shows how the trajectory constraints (depicted as dotted lines) are avoided.

The table below lists how many iterations and how much CPU time (in seconds on a Sun

SparcStation 20) were required to solve the two formulations of this problem. Also listed, is the

maximum constraint violation for the continuous-time systems (computed using a variable step-

size integration method with the tolerance set to 10"12). For each solution, the difference in the
computed objective functions was negligible.
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Constraint Type Variation Penalty c Iterations CPU time Constraint Violation

trajectory

trajectory

endpoint

0

le-3

0

37

16

154

29.4

14.8

7.2

2.62e-8

2.47e-8

3.00e-5

Table 5.1: Work required to solve the Obstacle problem. The last row is for the problem refor
mulated with an endpoint constraint.

The reason the solution for the first two versions take much longer than the problem with the tra

jectory constraint converted to an endpoint constraint (even though the latter version requires

many more iterations to solve) is that, at each iteration, a gradient is computed at each point, tk,

of the trajectory constraint. Currently, this is done with adjoint equations which is inefficient for

trajectory constraints. The optimization procedure was not able to converge (although the solu

tion was reasonable) with the endpoint constraint formulation. This is because the endpoint con

straint does not satisfy the standard constraintqualification.

1.5

0.5

o

.i
"5.
o

-0.5 -

-1

-1.5
0.5

Effect of Penalizing Variation of Control Derivative

With penalty

Without penalty

i ,

1.5

Time
2 2.5

Fig. 5.2a: Solution of trajectory constrained, singular optimal control problem Obstacle. The
oscillations are damped out by adding a small penalty on the piecewise derivative variation of the
control to the objective function.
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o

O

Solution for problem with trajectory constraints converted to endpoint constraint.
1.51 1 p

0.5 -

-0.5 -

-1.5

Fig. 5.2b: Solution of the same problem with the trajectory constraints converted into an end-
point constraint. Here there is no unwanted oscillation in the solution.

Phase plot showing optimal trajectory and trajectory constraints

Fig. 5.2c: Phase plot of the optimal trajectory for problem Obstacle. The dotted lines represent
the two trajectory constraints.
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The next two plots show the solution for the Goddard rocket problem with the trajectory

constraint max* Aq(tk) < 10 where Aq(t) is the dynamic pressure given by

qit) ={ p0e^-ril))v2(t) (5.22)

with Ap0 = 12,400 and p = 500. We first solved this problem on a uniform grid with a dis

cretization level of N = 40 using RK method A4 with second order splines. The solution exhib

ited oscillations. So, the mesh was redistributed using mesh redistribution Strategy 1 with

FAC = 50. This produced a non-uniform grid with N = 79. We then solved this problem with

and without a penalty on the piecewise derivative variation of control. This penalty was set at

c = 10~\ A plot of the control solutions for both cases is presented in Figure 5.4a. The plot
includes marks on the time axis that show the locations of the mesh points. Figure 5.4b shows a

plot of the dynamic pressure clearly indicating that the dynamic pressure constraint is satisfied.

Table 5.3 shows how many iteration and how much CPU time (in seconds on a Sun SparcStation

20) was required to solve this problem with and without the penalty.

Variation Penalty Iterations CPU time

0

io-s

35

20

15.1

9.2

Table 5.3: Work required to solve the trajectory constrained Goddard problem with and without
a penalty on the piecewise derivative variation of the control. The difference in the objective val
ues is negligible.

4.6 OTHER ISSUES

4.6.1 Fixed versus Variable step-size integration

The notion of using a fixed step-size integration routine to solve optimal control problems runs

counter to the standard understanding of how to efficiently integrate differential equations. One

could instead use variable step-size integration to approximately solve the differential equations

and integrals in the statement of the optimal control problem. For optimal control problems, how

ever, the overall error in the numerical solutions is not determined only by integration accuracy.

Instead, as shown in equation (2.1 la), the approximating capability of the finite-dimensional con

trol representation also affects the solution error. Furthermore, many simulations will be required

to solve an optimal control problem. So, having high integration accuracy in the early iterations

will provide little, if any, benefit. The solution error can always be reduced in later iterations
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With penalty
Without penalty

—0.5 l''i iinwmiii milium i nil i in mi ii i illinium m i i'i 11 i i i i i
0.05 0.1

-i—hM—t—i—i 1 1—l-H
0.15 0.2 0.25

Time

Fig. 5.4a: Solution of the trajectory constrained Goddard maximum ascent rocket problem
showing how a small penalty on the piecewise derivative variation of the control can damp out
spurious oscillations in the numerical solution. The tick marks indicate the locations of the mesh
points.

0.05 0.15 0.25
Time

Fig. 5.4b: A plot of the dynamic pressure showing that the trajectory constraint Aq(t) < 10 is
satisfied.
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using the mesh refinement strategies discussed in Section 3.

On the other hand, the price of using a variable step-size algorithm is that they are much

slower than fixed step-size algorithms. There are two main factors that contribute to this ineffi

ciency. One problems is that the gradients computed for the objective and constraint functions

cannot be computed exactly. Rather, they are computed as numerical approximations to the gra

dients of the continuous-time systems. This reduces the desirability of the search directions that

depend on these gradients. Another problem occurs during line searches. Since the evaluation of

function values depends on the integration mesh, part of the change in function values obtained

from simulations with different step-lengths of the line search is due to the fact that the integra

tion mesh changes from one simulation to the next when using a variable step-size method. This

can cause line searches to fail if the integration tolerances are not tight enough.

In the following table we provide some experimental results that show that solutions
+

obtained using a variable step-size integration routine take much longer to compute and, yet, are

no more accurate than the solutions obtained using the fourth order, fixed step-size Runge-Kutta

integration method A4.

We used linear spline defined on a uniform mesh with N - 100 intervals for each of the

problems. The problems were solved using NPSOL [125] (a sequential quadratic programming

algorithm). Problems Switch and Goddard2 were solved with penalties of 10~3 and I0"4, respec
tively, on the piecewise derivative variation of the control added to the objective function.

Rayleigh 1 is the unconstrained Rayleigh problem and Rayleigh 2 includes the endpoint con

straint .t|(2.5) = 0. Goddard 1 is the Goddard rocket maximum ascent problem, and Goddard 2

is the same problem with a trajectory constraint on the dynamic pressure, Aq(t) < 10, included.

These problems are described in Appendix B.

The results are shown in Table 6.1. The CPU time is given in seconds on a Sun SparcSta-

tion 20. For the problems which took only a few iterations to solve, a substantial amount of the

execution time was involved in computing the coordinate transformation. The optimization was

terminated when all of the following termination criteria were met: (i)

lZTVmf(n)lH2 < l<r*(l +max {1+1/07)1.IVra/07)lff2 }), (6.1a)

where ^j^f(Tj) is the gradient of the objective function with respect to free variables (variable not

at their bounds) and Z7VFR/(n) is the projection of the free gradient into the feasible region, (ii)

7Weused LSODA which isa very efficient linear, multi-step Adams-Moulion method with variable step-size and variable or
der. The integration was reset at each mesh point because of discontinuities in u{iL). Furtherdetails of the implementation can be
found in the RIOTS user's manual.
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maxj\resj\ < 10"

where resj is the violation of the y-th nonlinear constraint, and (Hi)

l/^-r/^s: 10T«(1+ lnl)H2.

The relative and absolute integration tolerances for the variable step-size integration routine were

both set to 10"8. At lower tolerance the line searches often failed.

(6.1b)

(6.1c)

Problem

RK method A4 Variable step-size integration

Iterations CPU time In -77 Nl Iterations CPU time \rf-ifNl

LQR 5 1.0167 2.9087e-6 5 2.3500 3.0363e-6

Rayleigh 1 18 1.300 0.00142 18 5.5333 0.01042

Rayleigh 2 22 1.9833 0.00152 22 10.4167 0.14P22
Bang 12 3.500 0.5471 12 9.1167 0.5471

Switch 1 2.500 0.0134 2 9.4833 0.0134

system 5 16 14.3000 0.05242 15 282.0833 0.05242

Goddard 1 103 4.2333 1.00622 481 22.8833*
Goddard 2 27 24.4667 1.07892 71 90.7333]

Table 6.1: Comparison of the amount of worked required to solve problems using fixed step-
size RK method A4 and a variable step-size integration method.

The superscript indicates that the optimization algorithm failed to converge for the marked
2

entry. The solutions returned in these two cases were unacceptably bad. The superscript indi

cates that the quantity I77* - if ^l was estimated using (4.20).

We make the following observations from the data in Table 6.1:

• The execution time for the variable step-size method was about two to twenty times greater

than the execution time for the fixed step-size RK method.

• The solution errors obtained with the variable step-size integration method was no better, and

in some cases was worse, than the solution errors obtained with the fixed step-size RK

method. The reason for this is that the gradients computed with the variable step-size routine

are computed as approximations to the continuous-time gradients for the original problem.

They are not exact gradients for the approximating problem. This prevents the optimization

algorithm from being able to obtain very accurate solutions to the approximating problems.

• The optimization algorithm failed to converge for the Goddard Rocket problems when using

the variable step-size integration routine.
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These observations strongly suggest that, without a specific reason to the contrary, it is bet

ter to use a fixed step-size RK method than a variable step-size integration method. Cases where

this may not be true arise when the differential equations describing the system dynamics are stiff

or very difficult to numerically integrate.

4.6.2 Problems with equality constraints and constraints that do not satisfy the

Slater Condition.

Although we did not consider equality constraints in our convergence theory in Chapter 2, our

discretization scheme can still be formally applied to optimal control problems with state end-

point equality constraints. If any constraints, equality or inequality, in P do not satisfy the Slater

conditions, Assumption 2.4.11, then the approximating problems P# may have no solution even

though there is a solution to the original problem P (see [44,51,126] ). However, from a practical

point of view, the outcome is that the algorithm which is used to solve Pm will simply terminate

without being able to satisfy the constraints beyond a certain accuracy. It is, therefore, a good

idea to use large constraint violation tolerances when the discretization level is low to avoid any

unnecessary iterations that occur trying to satisfy the constraints. The achievable accuracy will,

however, increase as the discretization level N increases.
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Chapter 5

USER'S MANUAL FOR RIOTS

1. INTRODUCTION

t
This chapter describes the implementation of a Matlab toolbox called RIOTS for solving

toptimal control problems. The name RIOTS stands for "Recursive"1" Integration Optimal Trajec

tory Solver." This name highlights the fact that the function values and gradients needed to find

the optimal solutions are computed by forward and backward integration of certain differential

equations.

RIOTS is a collection of programs that are callable from the mathematical simulation pro

gram Matlab. Most of these programs are written in either C (and linked into Matlab using Mat-

lab's MEX facility) or Matlab's M-script language. All of Matlab's functionality, including com

mand line execution and data entry and data plotting, are available to the user. The following is a

list of some of the main features of RIOTS.

• Solves a very large class of finite-time optimal controls problems that includes: trajectory

and endpoint constraints, control bounds, variable initial conditions (free final time prob

lems), and problems with integral and/or endpoint cost functions.

• System functions can be supplied by the user as either object code or M-files.

• System dynamics can be integrated with fixed step-size Runge-Kutta integration, a discrete-

time solver or a variable step-size method. The software automatically computes gradients

for all functions with respect to the controls and any free initial conditions. These gradients

are computed exactly for the fixed step-size routines.

• The controls are represented as splines. This allows for a high degree of function approxi

mation accuracy without requiring a large number of control parameters.

Matlab is a registered trademark of Mathworks. Inc. Matlabversion 4.2c with the Spline toolbox is required.

* Iterative ismore accurate but would not lead toanice acronym
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• The optimization routines use a coordinate transformation that creates an orthonormal basis

for the spline subspace of controls. The use of an orthogonal basis can results in a signifi

cant reduction in the number of iterations required to solve a problem and an increase in the

solution accuracy. It also makes the termination tests independent of the discretization level.

• There are three main optimization routines, each suited for different levels of generality of

the optimal control problem. The most general is based on sequential quadratic program

ming methods. The most restrictive, but most efficient for large discretization levels, is

based on the projected descent method. A third algorithm uses the projected descent method

in conjunction with an augmented Lagrangian formulation.

• There are programs that provide estimates of the integration error for the fixed step-size

Runge-Kutta methods and estimates of the error of the numerically obtained optimal control.

• The main optimization routine includes a special feature for dealing with singular optimal

control problems.

• The algorithms are all founded on rigorous convergence theory.

In addition to being able to accurately and efficiently solve a broad class of optimal control

problems, RIOTS is designed in a modular, toolbox fashion that allows the user to experiment

with the optimal control algorithms and construct new algorithms. The programs outer and

augjagrng, described later, are examples of this toolbox approach to constructing algorithms.

RIOTS is a collection of several different programs (including a program which is, itself,

called riots) that fall into roughly three categories: integration/simulation routines, optimization

routines, and utility programs. Of these programs, the ones available to the user are listed in the

following table,

Simulation Routines Optimization Routines Utility Programs

simulate riots control_error

check_deriv pdmin distribute

check_grad augjagrng est_error

eval_fnc outer make_spline

transform

Several of the programs in RIOTS require functions that are available in the Matlab Spline tool

box. In addition to these programs, the user must also supply a set of routines that describe the

optimal control problem which must be solved. Several example optimal control problems come
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supplied with RIOTS. Finally, there is a Matlab script called RIOTS_demo which provides a

demonstration of some of the main features of RIOTS. To use the demonstration, perform the fol

lowing steps:

Step 1: Follow the directions in §8 on compiling and linking RIOTS. Also, compile the sam

ple systems rayleigh.c, bang.c and goddard.c that come supplied with RIOTS.

Step 2: Start Matlab from within the 'RIOTS/systems' directory.

Step 3: Add the RIOTS directory to Matlab's path by typing at the Matlab prompt,

» path (path, 'full_path_nameJorJilOTS' )

» RIOTS_demo

Limitations. This is the first version of RIOTS. As it stands, there are a few significant limita

tions on the type of problems which can be solved by RIOTS:

1. Problems with inequality state constraints that require a very high level of discretization can

not be solved by RIOTS. Also, the computation of gradients for trajectory constraints is not

handled as efficiently as it could be.

2. Problems that have highly unstable, nonlinear dynamics may require a very good initial

guess for the solution in order to be solved by RIOTS.

3. General constraints on the controls that do not involve state variables are not handled effi

ciently: adjoints are computed but not used.

4. RIOTS does not allow delays in the systems dynamics (although Pade approximations can

be used).

5. Numerical methods for solving optimal control problems have not reached the stage that,

say, methods for solving differential equations have reached. Solving an optimal control

problem can, depending on the difficulty of the problem, require significant user involvement

in the solution process. This sometimes requires the user to understand the theory of optimal

control, optimization and/or numerical approximation methods.

Conventions. This manual assumes familiarity with Matlab. The following conventions are

used throughout this manual.

• Program names and computer commands are indicated in bold typeface.

• User input is indicated in Courier typeface.

• Optional program arguments are listed in brackets. The default value for any optional argu

ment can be specified using [ ].

• Optional program arguments at the end of an argument list can be omitted in which case
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these arguments take on their default values.

• Typing a function's name without arguments shows the calling syntax for that function.

Help can be obtained for M-file programs by typing help followed by the function name at

Matlab's prompt. Typing help RIOTS produces a list of the programs in RIOTS.

• The machine precision is denoted by £macn.

2. PROBLEM DESCRIPTION

RIOTS is designed to solve optimal control problems of the form

OCP minimize \ max { .f'(w,£) =g)',(£, x(b))+ f l]',(t,x,u)dt } \(u.4) e LZ.2lti.b]xJR" [ v€q„ J(l J

subject to: x = h(t, x, it), x(a) = £ .t e [a.b] ,

"min^^U^MmaxCO, 7=1 ™, t G [a,b] ,

^min - V - Vmax -> J - l " •

/J(f,jr(r).n(/))^0. v eq„,t e [a,b],

g^,x(b))<0, veqei.

gee(4<x(b)) = 0, veqee,

where x(t) e IR", m(/) e IR"', g: IR" x IR" ^ IR, /: IR x IR" x IR'" -> IR, h: IR x IR" x Rm -> IR"

and we have used the notation q= { 1,...,<?}. Only with the optimization program riots linked

with CFSQP (see description of riots) can q„ > 1. The functions in OCP can also depend upon

parameters which are passedfrom Matlab at execution timeusingget.flags (described in §4).

The subscripts o, ti, ei, and ee on the functions g(,) and /(•,-,) stand for, respectively,

"objective function", "trajectory constraint", "endpoint inequality constraint" and "endpoint

equality constraint". The subscripts for g(,) and /(•,-,) are omitted when all functions are

being considered without regard to the subscript. The functions in the description of problem

' Not all of the optimizationroutines in RIOTS can handle the full generality of problemOCP
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OCP, and the derivatives of these functions*, must be supplied by the user as either object code

or as M-files. The bounds on the components of 4 ar,d u are specified on the Matlab command

line.

The optimal control problem OCP allows optimization over both the control u and one or

more of the initial states 4- To be concise, we will define the variable

n = (u,4)eH2±LZ,2[a,b)xJRn .

Note that the order of u and 4 is reversed of the orderused in the rest of this thesis because of

programming considerations. With this notation, we can write, for example, f(ij) instead of

/(£, w). The inner product on H2 is given by

("h"2>W: = <Wl»«2>Z.2+(£l*£2> •

The norm corresponding to this inner product is given by

I'/ltf, = (V,V)h2: •

Transcription for Free Final Time Problems.

Problem OCP is a fixed final time optimal control problem. However, free final time problems

are easily incorporated into the form of OCP by augmenting the system dynamics with two addi

tional states (one additional state for autonomous problems). The idea is to specify a nominal

time interval, [a, b], for the problem and to use a scale factor, adjustable by the optimization pro

cedure, to scale the system dynamics and hence, in effect, scale the duration of the time interval.

This scale factor, and the scaled time, are represented by the extra states. Then RIOTS can mini

mize over the initial value of the extra states to adjust the scaling. For example, the free final time

optimal control problem

a+T

min g(T,y(T)) + f l(t,y,u)dt
u.T J

ti

subject to y = h (/, y, u), y(a) = £ , / e [a, a + T] ,

can, with an augmented state vector x=(y, jc"-1, jc"), be converted into the equivalent fixed final

time optimal control problem

*lf the userdoes not supply derivatives, the problem can still be solved using riots with finite-difference computation of the
gradients.
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min g(4,x(b))+ [l(t,x,u)dt

rx"h(x"-],y,u)) (£\
subject to x - h(t, x, u) = JC

0
J

, x(a) = 4 = a

K4"J

,t e[a,b],

where y is the first n- 2 components of jc, g(4, x(b)) = g(a + T4'\y(b)), l(t,x,u) = l (jc"-1 ,y,u)
and b = a + T. Endpoint and trajectory constraints can be handled in the same way. The quantity

T = b- a is the nominal duration of the trajectories. In this transcription, jc""1 plays the role of

time and 4" is the duration scalefactor, so named because T4" is the effective duration of the tra

jectories for the scaled dynamics. Thus, for any t e [a,b], x"(t) = £", jc""1^) = a +(t-a)4"

and the solution, tf, for the final time is tf = x"~l(b) = a+(b- a)4". Thus, the optimal duration

is 7* = tf -a = (b- a)4n = 7£". If a = 0 and b= 1, then tf = 7* = 4". The main disadvan
tage to this transcription is that it converts linear systems into nonlinear systems.

For autonomous systems, the extra variable jc"-1 is not needed. Note that, it is possible,

even for non-autonomous systems, to transcribe minimum time problems into the form of OCP

using only one extra state variable. However, this would require functions like

h(t, x, u) = h (/jc", y, u). Since RIOTS does not expect the user to supply derivatives with respect

to the / argument it can not properly compute derivatives for such functions. Hence, in the cur

rent implementation of RIOTS, the extra variable at""1 is needed when transcribing non-

autonomous, free final time problems.

Trajectory constraints.

The definition of problem OCP allows trajectory constraints of the form /„(/, jc,u) < 0 to be han

dled directly. However, constraints of this form are quite burdensome computationally. This is

mainly due to the fact that a separate gradient calculation must be performed for each point at

which the trajectory constraint is evaluated.

At the expense of increased constraint violation, reduced solution accuracy and an increase

in the number of iterations required to obtain solutions, trajectory constraints can be converted

into endpoint constraints which are computationally much easier to handle. This is accomplished

asfollows. The system is augmented with an extra state variable a"+1 with

jc"+1(r) = //max {0,/„•(/, jc(/),w(r))} 2 , jc"+1(a) = 0 ,

where p > 0 is a positive scalar. The right-hand side is squared so that it is differentiable with

respect to jc and u. Then it is clear that either of the endpoint constraints
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gei(4,x(b)) = xn+](b)<0
or

gee(4,x(b))±x"+1(b) = 0

is satisfied if and only if the original trajectory constraint is satisfied. In practice, the accuracy to

which OCP can be solved with these endpoint constraints is quite limited because these endpoint

constraints do not satisfy the standard constraint qualification (described in the next section).

This difficulty can be circumvented by eliminating the constraints altogether and, instead, adding

to the objective function the penalty term g„(£, x(b)) = xn+](b) where now p serves as a penalty

parameter. However, in this approach, p must now be a large positive number and this will

adversely affect the conditioning of the problem. Each of these possibilities is implemented in

'obstacle.c' for problem Obstacle (see Appendix B).

Continuum Objective Functions.

Objective functions of the form

min max l(t,x(t),u(t))
m i e [a.b]

can be converted into the form of problem OCP by augmenting the state vector with an additional

state, w, such that

w = 0 ; h-(0) = 4"+]

and forming the equivalent, trajectory constrained problem

mm g

subject to

/(f,jr(/).n(/))-4"+] £0, t e[a,b].

This transcription also works for standard min-max objective functions (which are only supported

for problem OCP when riots is linked with CFSQP) of the form

•b

min max gx'(u,4)+ I lv(t,x(t),u(t)dt

In this case, an equivalent endpoint constrained problem with a single objective function,

n+\min 4

subject to
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gv(u,4)-4n+lZO, veq0

is formed by using the augmented state vector (jc, w, z) wtih

u=0, w(0) = £"+I

zv = lv(t,x(t),«(/)), zv(0) = 0, veq0,

and defining

gv(u,4) = gv(u,4) + zv(b)

3. USING RIOTS

This section provides some examples of how to simulate systems and solve optimal control prob

lems with the RIOTS toolbox. Detailed descriptions of all required user-functions, simulation

routines, optimization programs and utility programs are given in subsequent sections. These

programs are all callable from within Matlab once Matlab's path is set to include the directory

containing RIOTS. The Matlab command

>> path (path, 'full_path_nameJorJUOTS' )

» RIOTS_demo

should be used for this purpose. Refer to the §8, "Compiling and Linking RIOTS", for details on

how to install RIOTS.

RIOTS provides approximate solutions of continuous time optimal control problems by

solving discretized "approximating" problems. These approximating problems are obtained by

(/) numerically integrating the continuous time system dynamics with one of four Runge-Kutta

integration methods' and (ii) restricting the space of allowable controls to finite-dimensional sub-

spaces of splines. In this way, the approximating problems can by solved using standard mathe

matical programming techniques to optimize over the spline coefficients and any free initial con

ditions. It is not important for the user of RIOTS to understand the discretization procedure or

splines.

The accuracy of the solutions obtained in this manner depends on several factors which

include:

'RIOTS also includes a discrete-timesystem solverand a variable step-size integration routine.
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(1) The accuracy of the integration scheme (which depends on the order of the integration

scheme and the selection of the integration mesh).

(2) How well elements of the spline subspace can approximate solutions of the original, infi

nite-dimensional problem (this depends on the order and knot sequence of the splines and on the

smoothness of the optimal control).

(3) How accurately the approximating problems are solved by the underlying mathematical

programming algorithm.

The allowable spline orders are related to the particular integration method used (see

description of simulate in §5). For problems that have smooth optimal controls, higher order

splines will provide solutions with higher accuracy. Smoothness is not, however, typical of opti

mal controls for problems with control and/or trajectory constraints. In general, the spline knot

sequence is constructed from the integration mesh

1n - \ h ) *=i •

We start our indexing from k = 1 rather than k = 0, as we did in previous chapters, because Mat

lab's indexing begins with one. This integration mesh also represents the breakpoints for the con

trol splines. The subscript N, referred to as the discretization level, indicates that there are N

integration steps and N + 1 spline breakpoints. Each spline is determined from the knot sequence

and its coefficients. For a spline of order p, each control input requires N + p - 1 coefficients and

these coefficients are stored as row vectors. Thus, a system with m inputs will be stored in a

"short-fat" matrix with m rows and N + p-\ columns. More details about splines are given in

the next section.

Typically, we use the Matlab variable u to store the spline coefficients. The system trajecto

ries computed by integrating the system dynamics are stored in the variable x. Like u, x is a

"short-fat" matrix with n rows and N + 1columns. Thus, for example, x (: , k) is the computed

value of x(tk). Other quantities, such as gradients and adjoints, are also stored as "short-fat"

matrices.

The following sample sessions with RIOTS solve a few of the sample optimal control prob

lems that are supplied with RIOTS as examples. Appendix B provides a description of these

problems and the C-code implementations are included in the 'RIOTS/systems' sub-directory.
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Session 1 (unconstrained problem). In this session we compute a solution to the uncon

strained nonlinear Problem Rayleigh. This system has two states and one input. We start by

defining the initial conditions and a uniform integration mesh over the time interval [0,2.5] with

with a discretization level of N = 50 intervals.

We can take a look at the solution trajectories by simulating this system with some initial control.

We will specify an arbitrary piecewise linear (order p = 2) spline by using N + p - 1 = N + 1

coefficients and perform a simulation by calling simulate.

» N=50;

» x0=[-5;-5];

» t=[0:2.5/50:2.5];

>> u0=zeros(1,N+1);

» (j.x]=simulate(1,xO.uO,t. 4 ,2) ;

>> plot(t,x)

% Initial conditions

% Uniform integration mesh

% Spline with all coeff's zero.

6

[j.x]=simulate(i .xO.uO.1.4.2):

4

2 •

•

O

.''

-2
„ "

-4

-6

_Q

-

2.5

Next, we find an approximate solution to the Problem Rayleigh, which will be the same type of

spline as uO, by using either riots or pdmin.

» [ul,xl,fl]=riots(xO,uO,t,[),[],(],100,4) ;

» [ul,xl(fl]=pdmin(x0,u0,t,[].[],[].100,4) ;

The first three input arguments are the initial conditions, initial guess for the optimal control, and

the integration mesh. The next three inputs are empty brackets indicating default values which, in

this case, specify that there are no control lower bounds, no control upper bounds, and no systems

parameters. The last two inputs specify that a maximum of 100 iterations are to be allowed and

that integration routine 4 (which is a fourth order Runge-Kutta method) should be used. The out

puts are the control solution, the trajectory solution, and the value of the objectivefunction.
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The displayed output for pdmin is shown below. The displayed output for riots depends on

the mathematical programming algorithm with which it is linked (seedescription of riots in §6).

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,

1 objective function,

0 nonlinear and 0 linear trajectory constraints,

0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 0 linear endpoint equality constraints.

Initial Scale factor = 0.02937

Method = L-BFGS.

Quadratic fitting off.

Completed 1 pdmin iter

Completed 2

Completed 3

Completed 4

Completed 5

Completed 6

Completed 7

Completed 8

Completed 9

Completed 10

Completed 11

Completed 12

Completed 13

Completed 14

Completed 15

Completed 16

pdmin iters

pdmin iters

pdmin

pdmin

pdmin

pdmin iters

pdmin iters

pdmin iters

pdmin iters

pdmin iters

pdmin iters

pdmin iters

pdmin iters

pdmin iters

pdmin iters

ters

ters

ters

step = -1.67e*00 (k= -1), ||free_grad|

step = *4.63e-»00 (k= -3), Mfree_grad|

step = *2.78e-»0C (k= -2), ||free_grad|

step = +1.67e*00 (k= -1), ||free_grad|

step = +1.00e-00 <k= *0), M'ree_grad|

step = ♦1.67e-0C <k= -1). ||free_grad|

step = +1.00e*CC <k= *0). ||free_grad|

step = *1.00e-CC (k= *0), j|free_grad|

step = ♦1.00e«0C (k= *0), ||free_grad|

step = *1.00e*00 <k= *0>, ||free_grad|

step = -1.67e-C>0 <k= -1), ||free_grad|

step = -l.C&e-rc (k= *0), ||free_grad|

step = -l.OOe-CC (k= +0), ||free_grad|

step = *1.00e*CC (k= +0), ||free_grad|

step = *1.00e»OC (k= -0), ||free_grad|

step = -6.00e-Ci (k= »1). ||free_grad|

Finished pdmin Ioof en the 16-th iteration.

Normal termination test satisfied.

1.47e-01, FFF. cost = 34.40807327949193

1.01e-01. FFF. cost = 31.33402612711411

5.26e-02, FFF, cost = 29.78609937166251

2.25e-02, FFF, cost = 29.30022802876513

9.03e-03, FFF, cost = 29.22362561134763

2.61e-03, FFF, cost = 29.20263210973429

5.06e-04, FFF, cost = 29.20066785222028

1.80e-04, FFF, cost = 29.20060360626269

1.86e-05, FFF, cost = 29.20059986273411

5.94e-06, FFF, cost = 29.20059981048738

2.07e-06, FFF, cost = 29.20059980021174

1.57e-07, FFF, cost = 29.20059979946436

5.18e-08, FFF, cost = 29.20059979945842

1.16e-08, FFF, cost = 29.20059979945757

3.20e-10, TTF. cost = 29.20059979945753

1.66e-10, TTT, cost = 29.20059979945752

Thecolumn labeled | |free_grad| | gives the value of IV/(77)1^. Forproblems with bounds

on the free initial conditions and/or controls, this norm is restricted to the subspace where the

bounds are not active. The column with three letters, each a T or F, indicates which of the three

normal termination criterion (see description of pdmin in §6) are satisfied. For problems with

control or initial condition bounds there are four termination criteria.

We can also solve this problem with quadratic splines (p = 3) by using N + p-\ = N + 2 spline

coefficients.

>> u0=zeros(l.N+2);

» [u2,x2,f2]=pdmin(x0,u0,t, [],[],[],100,4);

We can view the control solutions using sp_plot which plots spline functions. The trajectory

solutions can be viewed using plot or sp_plot.
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>> sp_plot(t,ul)

>> sp_plot(t,u2)

% Plot linear spline solution

% Plot quadratic spline solution

158

sp_plot(t,u1)

5- \

I I 1

4- \ -

3- \ -

2- \ -

1- \ -

o-

1-
1 1 1 1

0.5 1.5 2.5

spj)lot(t,u2)
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Session 2 (problem with endpoint constraint). The user-defined functions for Problem

Rayleigh, solved in session 1, are written so that it will include the endpoint constraint

jt)(2.5) = 0 if there is a global Matlab variable called FLAGS set to the value of 1 (see get.flags

in §4). To solve this problem with the endpoint constraint we can use either riots or augjagrng.

We must clear simulate before re-solving so that the variable FLAGS gets read.

>> global FLAGS

>> FLAGS = 1;

>> clear simulate % Reset simulate so the it will check for FLAGS

>> simulate(0,[]); % Initialize

Loaded 1 flag.

Rayleigh

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,

1 objective function,

0 nonlinear and 0 linear trajectory constraints,

0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 1 linear endpoint equality constraints.

The output displayed above shows that one flag has been read from the Matlab workspace. The

next two lines are messages produced by the user-supplied routines. The last set of data shows

the value of the system information (see discussion of neq [ ] in the description of init, §4, and

also simulate, §5). Since this problem has a state constraint, we can use either augjagrng or

riots to solve it.

>> x0=[-5;-5];

>> u0=zeros(1,51);

>> t=[0:2.5/50:2.5];

>> u=aug_lagrng(x0.uO,t,[),[],[],100,5,4);

Finished pdmin loop on the 2-nd iteration.

Step size too small.

Completed 1 Outer loop iterations.

Multipliers

Penalties

Constraint Violations

-2.81973

10

1.90255

Norm of unconstrained portion of Lagrangian gradient = 0.00646352

Rayleigh

Finished pdmin loop on the 15-th iteration.

Normal termination test satisfied.

Completed 2 Outer loop iterations.

Multipliers

Penalties

Constraint Violations

Norm of unconstrained portion of Lagrangian gradient = 0.000206008
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Rayleigh

Finished pdmin loop on the 8-th iteration.

Normal termination test satisfied.

Completed 3 Outer loop iterations

Multipliers

Penalties

Constraint Violations

-0.653453

10

-7.91394e-06

Norm of unconstrained portion of Lagrangian gradient = 1.37231e-06

Rayleigh

Finished pdmin loop on the 7-th iteration.

Normal termination test satisfied.

Completed 4 Outer loop iterations.

Multipliers

Penalties

Constraint Violations

-0.653431

10

-8.6292e-07

Norm of unconstrained portion of Lagrangian gradient = 2.19012e-07

Objective Value : 29.8635

Normal termination of outer loop.

The displayed output reports that, at the current solution, the objective value is 29.8635 and the

endpoint constraint is being violated by -8.63 x 10"6. There is some error in these values due to
the integration error of the fixed step-size integration routines. We can get a more accurate mea

sure by using the variable step-size integration routine to simulate the system with the control

solution u:

>> simulated,x0,u, t, 5, 0)

>> simulated, 1,1)

ans =

29.8648

» simulate(2,2,1)

5.3852e-06

% Simulate system using LSODA

% Evaluate the objective function

% Evaluate the endpoint constraint

So the reported values are fairly accurate.
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Session 3 (Problem with control bounds and free final time). This session demonstrates the

transcription, explained in §2, of a free final time problem into a fixed final time problem. The

transcribed problem has bounds on the control and free initial states. Also, distribute (see §7) is

used to improve integration mesh after an initial solution is found. A more accurate solution will

then be computed by re-solving the problem on the new mesh.

The original problem. Problem Bang, is a minimum-time problem with three states and one

input. This problem is converted into a fixed final time problem using the transcription described

in §2. Only one extra state variable was needed since the problem has time-independent

(autonomous) dynamics. The augmented problem is implemented in the file *bang.c\ First we

will define the integration mesh and then the initial conditions.

» N = 20;

» T = 10;

» t=[0:T/N:T];

% Discretization level

% Nominal final time

% Nominal time interval for maneuver

The nominal time interval is of duration T. Next, we specify a value for £3, the duration scale

factor, which is the initial condition for the augmented state. The quantity 7*£3 represents our
guess for the optimal duration of the maneuver.

>> X0=[0 0 1]';

>> fixed=[l 1 0]';

>> x0_lower=[0 0 0.1]';

>> x0_upper=[0 0 10]';

>> X0=[xO,fixed,x0_lower,x0_upper]

X0 =

% Initial conditions for augmented system

% Which initial conditions are fixed

% Lower bound for free initial condition

% Upper bound for free initial condition

0

0

1.0000

1.0000

1.0000

0

0

0

0.1000

0

0

10.0000

The first column of X0 is the initial conditions for the problem; there are three states including the

augmented state. The initial conditions for the original problem were x(0) = (0,0)r. The initial

condition for the augmented state is set to xO (3) = 4* = 1 to indicate that our initial guess for
the optimal final time is one times the nominal final time of T = 10, i.e., 4*T. The second col

umn of X0 indicates which initial conditions are to be considered fixed and which are to be

treated as free variables for the optimization program to adjust. A one indicates fixed and a zero

indicates free. The third and fourth columns provide lower an upper bound for the free initial

conditions.
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>> uO=zeros(1,N+1);

» [u,x,f]=riots(XO,uO,t,-2,l,[],100,2) ;

» f*T

29.9813

% Solve problem; f=x(3,l)=x0(3)

% Show the final time.

In this call to riots, we have also specified a lower bound of -2 and an upper bound of 1 for all of

the control spline coefficients. Since we are using second order splines, this is equivalent to spec

ifying bounds on the value of the control at the spline breakpoints, i.e. bounds on u(tk). We also

specify that the second order Runge-Kutta integration routine should be used. The objective

value f =4* is the duration scale factor. The final time is given by a+(b-a)43 = T£3 = lOf.
Here we see that the final time is 29.9813. A plot of the control solution indicates a fairly broad

transition region whereas we expect a bang-bang solution. We can try to improve the solution by

redistributing the integration mesh. We can then re-solve the problem using the new mesh and

starting from the previous solution interpolated onto the new mesh. This new mesh is stored in

new_t, and new_u contains the control solution interpolated onto this new mesh.

>> [new_t,new_u]=distribute(t,u,x,2,[] ,1,1) ;

redistribute_factor = 7.0711

Redistributing mesh.

>> X0(:,1) = x(:,1);

>> [u,x,f]=riots<XO,new_u.new_t,-2,1, [] ,100,2)

» f 10

30.0000

% Re-distribute mesh

Notice that before calling riots the second time, we set the initial conditions (the first column of

X0) to x (: , 1), the first column of the trajectory solution returned from the preceding call to

riots. Because 4* is a free variable in the optimization, x (3,1) is different than what was ini

tially specified for xO (3). Since x (3 ,1) is likely to be closer to the optimal value for £3 than
our original guess we set the current guess for X0 (3,1) to x (3 ,1).

We can see the improvement in the control solution and the solution for the final time. The

reported final time solution is 30 and this happens to be the exact answer. The plot of the control

solution before and after the mesh redistribution is shown below. The circles indicate where the

mesh points are located. The improved solution does appear to be a bang-bang solution.
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Session 4 (Example using outer). This exampledemonstrates the experimental program outer

which repeatedly adjusts the integration mesh between calls to riots in order to achieve a desired

solution accuracy. We use outer to solve the Goddard rocket ascent problem implemented in the

file 'goddard.c'. The Goddard rocket problem is a free-time problem whose objective is to maxi

mize the rocket's altitude subject to having a fixed amount of fuel. This problem is particularly

difficult because its solution contains a singular sub-arc. We use an initial guess of u(t) = 1 for

all / so that the rocket starts out climbing and does not fall into the ground. We will use a second

order spline representation and start with a discretization level of N = 50. Also, since this is a

minimum-time problem, we augmented the system dynamics with a fourth state that represents

the duration scale factor. We start by guessing a duration scale factor of 0.1 by setting £4 = 0.1

and we specify [0,1] for the nominal time interval. Thus the nominal final time is 7"£4 = 0.1.

>> x0=(0 1 1 0.1]';

>> fixed=[l 1 1 0]';

» t=[0:l/50:l];

>> u0=ones(1,51);

Now outer is called with lower and upper control bounds of 0 and 3.5, respectively; no systems

parameters; a maximum of 300 iterations for each inner loop; a maximum of 10 outer loop itera

tion with a maximum discretization level of N = 500; default termination tolerances; integration

algorithm 4 (RK4); and mesh redistribution strategy 2.

>> !new_t,u,x]=outer([xO,fixed;,uC.t,C,3.5, Ij,500, [10;500),4, [),2);

Goddard

Completed 70 riots iterations. Normal Termination.

Doubling mesh.

========Completed 1 OUTER iteration=========

Norm of Lagrangian gradient = 3.42 8B2e-Q5

Sum of constraint errors = 4.57119e-09

Objective function value = -1.01284

Integration error = 1.49993e-C6

Goddard

Completed 114 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 2 OUTER iterations===

Norm of Lagrangian gradient = 4.64618e-06

Sum of constraint errors = 4.41294e-10

Objective function value = -1.01284

Integration error = 2.C1538e-C"

Change in solutions = 0.128447

Control error estimate = 0.0200655
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Redistribution factor = 2.07904

Redistributing mesh.

New mesh contains 146 intervals. Old mesh contained 100 intervals.

Goddard

Completed 206 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 3 OUTER iterations===

Norm of Lagrangian gradient = 2.38445e-08

Sum of constraint errors = 8.49733e-ll

Objective function value = -1.01284

Integration error = 4.67382e-09

Change in solutions = 0.0878133

Control error estimate = 0.000452989

Normal Termination.

CPU time = 26.9167 seconds.

The message stating that the Kuhn-Tucker conditions are satisfied but that the sequence did not

converge is a message from NPSOL which is the nonlinear programming algorithm linked with

riots in this example. This message indicates that, although first order optimality conditions for

optimality are satisfied (the norm of the gradient of the Lagrangian is sufficiently small), the con

trol functions from one iteration of riots to the next have not stopped changing completely. The

sources of this problem are (/) the Goddard problem is a singular optimal control problem; this

means that small changes in the controls over some portions of the time interval have very little

effect on the objective function and (ii) outer calls riots with very tight convergence tolerances.

Because of this, the calls to riots probably performed many more iterations than were useful for

the level of accuracy achieved. Choosing better convergence tolerances is a subject for future

research.

The optimal control and optimal state trajectories are shown on the next page. Notice that

to plot the optimal control we multiply the time vector new_t by x (4,1) which contains the

duration scale factor. The optimal final time for this problem, since a = 0 and b = 1, is just

x(4,l)=0.1989. Note that the final mass of the rocket is 0.6. This is the weight of the rocket

without any fuel. The maximum height is the negative ofthe objective function, h*(t) » 1.01284.

>> sp_plot(new_t*x(4,1),u)

» plot(new_t*x(4,1),x(l,:))

» plot(new_t*x(4,l),x(2,:))

» plot(new_t*x(4,1),x(3,:))
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4. USER SUPPLIED SYSTEM SUBROUTINES

All of the functions in the description of OCP in §2 are computed from the user functions h, I and

g; the derivatives of these functions are computed from the user functions Dh, Dl and Dg. Two

other user functions, activate and init, are required for the purpose of passing information to and

from RIOTS.

Smoothness Requirements. The user-supplied functions must have a certain degree of

smoothness. The smoothness requirement comes about for three reasons. First, the theory of dif

ferential equations requires, in general, that h(t,x,u) be piecewise continuous with respect to /,

Lipschitz continuous with respect to x and u and that «(•) be continuous, in order to ensure the

existence and uniqueness of a solution satisfying the system of differential equations. A finite

number of discontinuities in h(-,x,u) and w() are allowable. Second, the optimization routines

needs at least one continuous derivative of the objective and constraint functions g(-,) and

/(/, •,•). Two continuous derivatives are needed in order for there to be a chance of superlinear

convergence. The third reason is that the accuracy of numerical integration of differential equa

tions depends on the smoothness of h(-,•,•) and /(•, •,•). For a fixed step-size methods with order

s, d{s)h(t, x, u)/dxs and d{s)h(t, x,u)/dux should be continuous (or the (r - l)-th partial should be

Lipschitz continuous). Furthermore, any discontinuities in h(-, x, «(•)) or its derivatives should

occur only at integration breakpoints'. Conversely, the user should place integration breakpoints

wherever such discontinuities occur. The same considerations also hold for the function /(/, x, u).

For variable step-size integration, h(t,x,u) and l(t,x,u) should have at least continuous partial

derivatives of order one with respect to x and u. Again, any discontinuities in h(-,x,u()) and

/(•, x, u()) or its derivatives should only occur at integration break points.

Constraint Qualifications. A common requirement of mathematical programming algorithms

is linear independence of the active constraints gradients at a solution. It is easy to mathemati

cally specify a valid constraint in such a way that this condition is violated. For example, con

sider a scalar constraint of the form g(u) = 0. This constraint can be specified as

g(u)2 =0 .

However, ^ (g(u)2) = 2g(u) -£. Thus, if this constraint is active at the solution u, i.e.,
g(u*) = 0, then the gradient of this constraint is zero. So this specification for the constraint vio

lates the constraint qualification. However, if the constraint is specified simply as

Note that discontinuities in win can only occur at the spline breakpoints, it.
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g(u) = 0,

then the constraint qualification is not violated.

The user functions can be supplied as object code or as M-files. The C-syntax and M-file

syntax for these functions are given below. Because all arguments to the object code versions of

the functions are passed by reference, the object code format is compatible with Fortran. A tem

plate for these functions can be found in the file systerns/template, c. There are also sev

eral example problems in the systems directory. In addition to the user-supplied routines, this

section also describes two other functions, get_flags and time_fnc, that are callable by user object

code.

There are three main differences between object code and M-file versions of the user functions:

• The programs in RIOTS execute much faster when object code is given.

• Object code versions of the user functions do not need to assign zero values to array compo

nents which are always zero. M-file versions must set all array values (with the exception of

sys_init).

• There must be a separate M-file for each function with the same name as that function. The

names begin with sys_ followed by the name of the function. For example, sys_Dh.m is the

M-file for the user function sys_Dh. The directory in which these M-files are located must be

in Matlab's search path.

• Important: Arrays in Matlab are indexed starting from 1 whereas in C arrays are indexed

starting from 0. For example, neq [4 ] in C code has an M-file equivalent of neq (5).
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activate

activate, sys_activate

Purpose

This function is always called once before any of the other user-supplied functions. It allows the

user to perform any preliminary setup needed, for example, loading a data array from a file.

C Syntax

void activate(message)
char **message;

{
♦message = "" ;

/* Any setup routines go here. */

}

M-file Syntax

function message = sys_activate

message = ' ';

Description

If the message string is set, that string will be printed out whenever simulate (form 0) or an opti

mization routine is called. It is useful to include the name of the optimal control problem as the

message.

See Also: get.flags.
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init

init, sys_init

Purpose

This function serves two purposes. First, it provides information about the optimal control prob

lem to RIOTS. Second, it allows system parameters to be passed from Matlab to the user-defined

functions at run-time. These system parameters can be used, for instance, to specify constraint

levels. Unlike activate, init may be called multiple times. The array neq [ ] is explained after

the syntax.

C Syntax

void init(neq,params)
int neq[];
double *params;

{
if ( params == NULL ) {

/* Set values in the neq[] array. */

}

else (

/* Read in runtime system parameters. */

)

}

M-file Syntax

function neq = sys_init(params)

% if params is NULL then setup neq. Otherwise read system
% parameters in params. In Matlab, arrays are indexed
% starting from 1, so neq(i) corresponds to the C statement
% neq[i-l].

if params == [],
% Each row of neq consists of two columns. The value in
% the first column specifies which piece of system
% information to set. The value in the second column is

% the information. For example, to indicate that the
% system has 5 system parameters, one row in neq should be
% [3 5] since neq(3) stores the number of system
% parameters.

% Here we set nstates = 2; ninputs = 1; 1 nonlinear
% endpoint constr..
neq = [1 2 ; 2 1 ; 12 1 ];

else

% Read in systems parameters from params and store them in
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% the global variable sys_params which will be accessible
% to other systems M-files.
global sys_params
sys_params = params;

end

Description

When this functions is called, the variable params will be set to 0 (NULL) if init () is

expected to return information about the optimal control problem via the neq [ ] array. Other

wise, params is a vector of system parameters being passed from Matlab to the user's program.

When params==0, the values in neq [ ] should be set to indicate the following:

neq [ 0 ] — Number of state variables.
neq [ 1 ] — Number of inputs.
neq [ 2 ] — Number of system parameters.
neq[3] — Not used on calls to init(). Contains time index.
neq[4] — Not used on calls to initQ. Used to indicate which function to evaluate.
neq [ 5 ] — Number of objective functions.
neq [ 6 ] — Number of general nonlinear trajectory inequality constraints.
neq[7] — Number of general linear trajectory inequality constraints.
neq [8 ] — Number of general nonlinear endpoint inequality constraints.
neq [ 9 ] — Number of general linear endpoint inequality constraints.
neq [10] — Number of general nonlinear endpoint equality constraints.
neq [11] — Number of general nonlinear endpoint equality constraints.
neq [12] — Indicates type of system dynamics and cost functions:

0 --> nonlinear system and cost,
1 —> linear system,
2 --> linear and time-invariant system,
3 --> linear system with quadratic cost,
4 --> linear and time-invariant with quadratic cost.

Remember that, for M-files. neq (i) is equivalent to the C-code statement neq [ i-1 ]. The val

ues of neq [ ] all default to zero excepi neq [ 5 ] which defaults to 1. The relationship between

the values in neq [ ] and the general problem description of OCP given in §2 is as follows:

n = neq[0], /?? = neq[l], /? = neq[2], <?„ = neq[5], qu; = neq[6) +neq[7],

qei = neq [ 8 ] +neq [ 9 ] and qee - neq [10 ] +neq [ 11 ]. The locations neq [ 3 ] and neq [ 4 ]

are used in calls to the other user-defined functions.

If init sets neq [2 ] >0, then init will be called again with params pointing to an array of

system parameters which are provided by the user at run-time. These parameters can be stored in

global variables for use at other times by any of the other user-defined functions. Some examples

of useful system parameters include physical coefficients and penalty function parameters. These

parameters are fixed and will not be adjusted during optimization. Parameters that are to be used

as decision variables must be specified as initial conditions to augmented states n with n = 0.
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Notes

1. Control bounds should be indicated separately when calling the optimization routines. Do

not include any simple bound constraints in the general constraints. Similarly, simple bounds on

free initial conditions should be specified on the command line.

2. For nonlinear systems, all constraints involving a state variable are nonlinear functions of the

control. Thus, the constraint g(4, x(b)) = x(b) = 0, while linear in its arguments, is nonlinear

with respect to u. The user does not need to account for this situation, however, and should indi

cate that g is a linear constraint. RIOTS automatically treats all general constraints for nonlinear

systems as nonlinear.
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h, sys_h

Purpose

This function serves only one purpose, to compute h(t, x, u), the right hand side of the differential

equations describing the system dynamics.

C Syntax

void h(neq,t,x,u,xdot)
int neq[ ];
double *t,x[NSTATES] ,u[NINPUTS] ,xdot [NSTATES] ;

{
/* Compute xdot(t) =h(t,x(t),u(t)). */

}

M-file Syntax

function xdot = sys_h(neq,t,x,u)

global sys_params

% xdot must be a column vector with n rows.

Description

On entrance, t is the current time, x is the current state vector and u is the current control vector.

Also, neq[3 ] is set to the current discrete-time index, k- \, such that tk < t < tk+] .

On exit, the array xdot [ ] should contain the computed value of h(t,x, u). The values of

xdot [ ] default to zero for the object code version. Note that for free final time problems the

variable t should not be used because derivatives of the system functions with respect to t are

not computed. In the case ofnon-autonomous systems, the user should augment the state variable

with an extra state representing time (see transcription for free final timeproblems in §2).

See Also: timejfnc.

' The index is it —1 since indexing for C code startsat zero. For M-files. neq(4) = k.
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Purpose

This function serves two purposes. It is used to compute values for the integrands of cost func

tions, /„(/, x, u), and the values of state trajectory constraints, /„•(/, jc, u).

C Syntax

double l(neq,t,x,u)
int neq[];
double *t,x[NSTATES],u[NINPUTS];

{
int F_num, constraint_num;

double z;

F_num = neq[4];

NFUNS = neq[5];
if ( F_num <= NFUNS ) {

/* Compute z = l(t,x(t),u(t) for the F_num integrand. */
/* If this integrand is identically zero, */
/* set z = 0 and neq[3] = -1. */

}

else (

constraint_num = F_num - NFUNS;
/* Compute z = l(t,x(t),u(t) for the */
/* constraint_num trajectory constraint. */

)

return z;

}

M-file Syntax

function z = sys_l(neq,t,x,u)
% z is a scalar.

global sys_params
F_NUM = neq(5);
NFUNS = neq(6);

if F_NUM <= NFUNS
% Compute z = l(t,x(t),u(t)) for the F_num integrand,

else

constraint_num = F_num - NFUNS;
% Compute z = l(t,x(t),u(t)) for the constraint_num
% traj. constraint,

end
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Description

On entrance, t is the current time, x is the current state vector and u is the current control vector.

Also, neq [3 ] is set to the current discrete-time index k - 1 such that tk<t < tk+i (see footnote

for h) and neq [4 ] is used to indicate which integrand or trajectory constraint is to be evaluated.

Note that, for free final time problems, the variable t should not be used because derivatives of

the system functions with respect to t are not computed. In this case, the user should augment

the state variable with an extra time state and an extra final-time state as described in §2.

If 1<neq[4] < q„, then z should be set to l^{A\t, x,u). If ln0eq{\, •, •) =0 then, besides

returning 0,1 (in object code versions) can set neq[3] = - 1 to indicate that the function is identi

cally zero. The latter increases efficiency because it tells RIOTS that there is no integral cost.

Only the function 1 is allowed to modify neq[3). Regardless of how neq[3] is set, 1 must always

return a value even if the returned value is zero.

If neq[4] >q(l. then z should be set to /))• " q"(t, x,u). If there are both linear and nonlin

ear trajectory constraints, the nonlinear constraints must precede those that are linear. The order

ing of the functions computed by 1is summarized in the following table:

Sec. 5.4

V function to compute

1 < neq[4] < q„ neq[4] lXo(t,x,u)

neq[4] > q„ neq[4] - q„
l)](t,x,u), nonlinear

rt](t, x, u), linear
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g, sys_g

Purpose

This function serves two purposes. It is used to compute the endpoint cost function g„(4* x(b))

and the endpoint inequality and equality constraints #„•(£, x(b)) and gee(4> x(b)). The syntax for

this function includes an input for the time variable / for consideration of future implementations

and should not be used. Problems involving a cost on the final time T should use the transcription

for free final time problems described in §2.

C Syntax

double g(neq,t,x0,xf)
int neq[];
double *t,xO[NSTATES],xf[NSTATES];

{

)

int F_num, constraint_num;
double value;

F_num = neq[4];

NFUNS = neq[5];

if ( F_num <= NFUNS ) {
/* Compute value of g(t,xO,xf) for the */

/* F_num cost function. */

)

else (

constraint_num = F_num - NFUNS;

/* Compute value g(t,xO,xf) for the */
/* constraint_num endpoint constraint. */

)

return value;

M-file Syntax

function J = g(neq,t,xO,xf)

% J is a scalar.

global sys_params
F_NUM = neq(5);

if F_NUM <= sys_params(6)
% Compute g(t,xO,xf) for cost function,

elseif F_NUM == 2
% Compute g(t,xO,xf) for endpoint constraints

end
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Description

On entrance, xO is the initial state vector and xf is the final state vector. The value neq [4 ] is

used to indicate which cost function or endpoint constraint is to be evaluated. Nonlinear con

straints must precede linear constraints. The order of functions to be computed is summarized in

the following table:

V function to compute

1 < neq[4) < q(, neq[4] gVa(4,x(b))

q„ < neq[4] < qn + qei neq[4] - q„
gvie(4, x(b)), nonlinear

gU^ x(b)), linear

q„ + qei < neq[4) < qa + qa + qec neq[4] - q„ - qei
gvee(4, x(b)), nonlinear

gvee(4, x(b)), linear

See Also: time fnc.
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Dh, Dl, Dg

Dh, sys_Dh
Dl, sysJDl
Dg, sys_Dg

Purpose

These functions provide the derivatives of the user-supplied function with respect to the argu

ments x and u. The programs riots (see §6) can be used without providing these derivatives by

selecting the finite-difference option. In this case, dummy functions must be supplied for Dh, DI

and Dg.

C Syntax

void Dh(neq,t,x,u,A,B)
int neq[];
double *t,x[NSTATES],u[NINPUTS];

double AfNSTATES][NSTATES],B[NSTATES][NINPUTS];

{

}

/* The A matrix should contain dh(t,x,u)/dx. */
/* The B matrix should contain dh(t,x,u)/du. */

double Dl(neq,t,x,u,l_x,l_u)
int neq[];

double *t,x[NSTATES],u[NINPUTS],l_x[NSTATES],l_u[NINPUTS];
{

)

/* l_x[] should contain dl(t,x,u)/dx */

/* l_u[] should contain dl(t,x,u)/du */

/* according to the value of neq[4]. */
/* The return value is dl(t,xO,xf)/dt which */

/* is not currently used by RIOTS. */
return 0.0;

double Dg(neq,t,x0,xf,g_x0,g_xf)
int neq[];

double *t,x0[NSTATES],xf[NSTATES],J_xf[NSTATES];
{

/* g_x0[] should contain dg(t,x0,xf)/dxO. */
/* g_xf[] should contain dg(t,x0,xf)/dxf. */
/* according to the value of neq[4]. */
/* The return value is dg(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;
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M-file Syntax

function [A,B] = sys_Dh(neq,t,x,u)
global sys__params
% A must be an n by n matrix.
% B must be an n by m matrix.

function [l_x,l_u,l_t] = sys_Dl(neq,t,x,u)
global sys_params
% l_x should be a row vector of length n.
% l_u should be a row vector of length m.
% l_t is a scalar not currently used.

function [g_xO,g_xf,g_t] = sys_cost(neq,t,xO,xf)
global sys_params

% g_xO and g_xf are row vectors of length n.
% g_t is a scalar not currently used.

Description

The input variables and the ordering of objectives and constraints are the same for these derivative

functions as they are for the corresponding functions h, 1, and g. The derivatives with respect to t

are not used in the current implementation of RIOTS and can be set to zero. The derivatives

should be stored in the arrays as follows:

Function Firsi output index range Second output index range

Dh AMU) =
dh(t.x.u)

dx
. i+I.H

/ = 0: n - 1

j = 0:n-\
B[i][j] =

dh(t,x,u)

du Ji+l.y+l

i = 0: n - 1

; = 0: m - 1

Dl /_*m =
did..x. u)

dx
r~]

i = 0: n - 1 /_«[/] =
dl(t,x,u)~

du
l+l

i = 0: m - 1

Dg *-*0M =
dgU.xO.xf)

dxO
i+)

i = 0: n - 1 g.xf[i) =
'dg(t,x0,xf)

dxf
1+1

/ = 0: m - 1

sys_Dh A(i,j) =
dh(t.x.u)

dx
ij

/= \:n
B(iJ) =

dh(t,x,u)

du
»'.;'

i = \:n

j - \:m

sys_Dl /_*(/) =
dl(t.x.u)

dx
/= \:n I_u(i) =

dl(t, x, u)

du
i = 1: m

sys_Dg S-JrO(i) =
dg(t,xO,xf)

dxO
/

i = 1:/j g.xfd) =
dg(t,xQ,xf)

dxf
1

i - \:m

Note that, for sys_Dh. RIOTS automatically accounts for the fact that Matlab stores matrices

transposed relative to how they are stored in C.
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get_flags

Purpose

This function allows user-supplied object code to read a vector of integers from Matlab's

workspace.

C Syntax
int get_flags(flags,n)

int flags[], *n;

Description

A call to get_flags causes flags [ ] to be loaded with up to n integers from the array FLAGS if

FLAGS exists in Matlab's workspace. It is the user's responsibility to allocate enough memory in

flags [ ] to store n integers. The value returned by get_flags indicates the number of integers

read into flags [ ].

The main purpose of get_flags is to allow a single system program to be able to represent

more than one problem configuration. The call to get_flags usually takes place within the user-

function activate. In the example below, get_flags is used to read in the number of constraints to

use for the optimal control problem.

Example

extern int get_flags();
static int Constraints;

void activate(message)
char *"message,-

(

int n,flags[l];

♦message = "Use FLAGS to specify number of constraints.";
n = 1;

if ( get_flags (flags,icn) > 0 );
Constraints = flags[0];

else

Constraints = 0;

}
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Notes

1. It is best to define FLAGS as a global variable in case simulate gets called from within an M-

file. This is accomplished by typing

» global FLAGS

At the Matlab prompt. To clear FLAGS use the Matlab command

» clear global FLAGS

2. Since activate is called once only, you must clear simulate if you want to re-read the values

in FLAGS. To clear simulate, type

>> clear simulate

at the Matlab prompt.

3. For M-files, any global variable can be read directly from Matlab's workspace so an M-file

version of get_flags is not needed.
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timejhc

time fnc

Purpose

This function allows user-supplied object code to make calls back to a user-supplied Matlab m-

function called sys_time_fnc.m which can be used to compute a function of time. Call-backs to

Matlab are very slow. Since this function can be called thousand of times during the course of a

single system simulation it is best to provide the time function as part of the object code if possi

ble.

C Syntax

void time_fnc(t,index,flag,result)
int *index,* f1ag;
double *t,result[];

Syntax of sys_time_fnc.m

function f = sys_time_fnc(tvec)

% tvec = [time;index;flag]
% Compute f(time,index,flag).

Description

If time_fnc is to called by one of the user-functions, then the user must supply an m-function

named sys_time_fnc. The inputs tvec (1) =time and tvec (2) =index to sys_time_fnc are

related by tindex < time < tindex+\. The value of index passed to sys_time_fnc is one greater

than the value passed from time_fnc to compensate for the fact the Matlab indices start from 1

whereas C indices start from 0. The input flag is an integer that can be used to select from

among different time functions. Even if flag is not used, it must be set to some integer value.

The values in the vector f returned from sys_time_fnc are stored in result which must

have enough memory allocated for it to store these values.
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Example

Suppose we want 1 to compute f(t)x\(t) where /(/) = sin(t) +yd(t) with yd(t) is some pre-
computed global variable in the Matlab workspace. Then we can use time_fnc to compute /(/)

and use this value to multiply x [ 0 ]:

extern void time_fnc();
double l(neq,t,x,u)

int neq[];
double *t,xINSTATES],u[NINPUTS];

(

int i.zero;

double result;

i = neq[3]; /* Discrete-time index. */
zero = 0;

}

time_fnc(t,&i,fczero.&result) ; /* Call time_fnc with flag=0
return result*x[0]; /* Return f(t)*xl(t). */

Here is the function that computes /(/). It computes different functions depending on the value

offlag=t(3). In ourexample.it is only called with flag=0.

function f = sys_time_fnc(t)

global yd % Suppose yd is a pre-computed, global variable,
time = t(1);

index = t (2) ;

flag = t(3) ;

if flag == 0
f = yd(time) + sin(time);

else

f = another_fnc(time);
end
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5. SIMULATION ROUTINES

This section describes the central program in RIOTS, simulate. All of the optimization programs

in RIOTS are built around simulate which is responsible for computing all function values and

gradients and serves as an interface between the user's routines and Matlab.

The computation of function values and gradients is performed on the integration mesh

*N = {'tft%k } k=\ •

Note that the indexing starts from k = 1 (rather than k - 0 as in earlier chapters) to conform with

Matlab's indexing convention. For any mesh t# we define

&N.k =tN.k+\ ~*N.k •

This mesh also specifies the breakpoints of the control splines. The values of the trajectories

computed by simulate are given at the times tNk and are denoted, xN,k, k = ],...,N + ]. Thus,

xN.k represents the computed approximation to the solution jc(/a> k) of the differential equation

x = h(t, x, u), x(a) = 4- The subscript N is omitted when its its presence is clear from context.

Spline Representation of controls. The controls u are represented as splines given by

"(0= £ ***,.,.*(')

where ak e IR'" and 4fif.<p>k(-) is the A-th B-spline basis element of order p, defined on the knot

sequence formed from tN by repeating its endpoints p times. Currently, RIOTS does not allow

repeated interior knots. We will denote the collection of spline coefficients by

<*={(Xk) M •

For single input systems, or is a row vector. Those interested in more details about splines are

referred to the excellent reference [63]. The times tk,k = 1,..., N, define the spline breakpoints.

On each interval [tk, tk+]], the spline coincides with an p-th order polynomial. Thus, fourth order

splines are made up of piecewise cubic polynomials and are called cubic splines. Similarly, third

order splines are piecewise quadratic, second order splines are piecewise linear and first order

splines are piecewise constant. For first and second order splines, ak = u(tk). For higher-order

splines, the B-spline basis elements are evaluated using the recursion formula in (A2.2a).

The following pages describe simulate. First, the syntax and functionality of simulate is

presented. This is followed by a description of the methods used by simulate to compute func

tion values and gradients. Finally, two functions, check_deriv and check_grad, for checking

user-supplied derivative information, and the function eval_fnc are described.
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Purpose

This is the central program in RIOTS. The primary purpose of simulate is to provide function

values and gradients of the objectives and constraints using one of six integration algorithms. The

optimization routines in RIOTS are built around simulate. This program also serves as a general

interface to the user-supplied functions and provides some statistical information.

There are currently seven different forms in which simulate can be called. Form 1 and form

2 (which is more conveniently accessed using eval_fnc) are the most useful for the user. The

other forms are used primarily by other programs in RIOTS. The form is indicated by the first

argument to simulate.

Form 0

[info,simed] = simulate(0,{params})

Form 1

[f,x,du,dz,p] = simulate(1,x0,u,t,ialg,action)

Form 2

f=simulate(2,f_number,1)

[du,dz,p] = simulate(2,f_number,action)

Form 3

[xdot,zdot] = simulate(3,x,u,t,{f_num,{k}))
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

Form 4

[h_x,h_u,l_x,l_u] = simulate(4,x,u,t,{f_num,(k)})

Form 5

[9/9_x0,g_xf] = simulate(5,x0,xf,tf,{f_num})

Form 6

stats = simulate(6)

Form 7

lte = simulate(7)
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Description of Inputs and Outputs

The following table describes the inputs that are required by the variousforms of simulate.

Table SI

Input number of rows number of columns description

xO n It initial state

xf n 1 final state

u m N + p-1 control vector

t 1 N + \ time vector

tf 1 to4 1 final time

ialg 1 1 integration algorithm
action 1 1 (see below)

f num 1 1 (see below)
params (see below) (see below) system parameters

The following table describes the outputs that are returned by the variousforms of simulate.

Table S2

Output number of rows number of columns description
f 1 1 objective or constraint value
X n A' + l state trajectory
p n N + \ adjoint trajectory
du m N + p-\ control gradient

dxO n 1 gradient of initial conditions
lte n + \ N + \ local integration error

xdot n N + \ h{t,x,u)
zdot 1 N + ] l(t,x,u)

h_x n n dh/dx

h u n m dh/du

1 X 1 n dl/dx

1 u 1 m dl/du

g_x<3 1 n dg/dx0
g_xf 1 n dg/dxf

If a division by zero occurs during a simulation, simulate returns the Matlab variable NaN, which

stands for "Not a Number", in the first component of each output. This can be detected, if

desired, using the Matlab function isnan ().

' xO can be a matrix but only the first column is used.
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Note: The length of the control vector depends on the control representation. Currently, all of

the integration routines are setup to work with splines of order p defined on the knot sequence

constructed from t#. The current implementation of RIOTS does not allow repeated interior

knots. The length (number of columns) of u and du is equal to N + p -1 where

N=length(t)-1 is the number of intervals in the integration mesh. The allowable spline

orders depends on the integration algorithm, ialg, according to the following table:

Table S3

IALG Order of spline representation
0 (discrete) discrete-time controls

1 (Euler) p=l
2 (RK2) p = 2
3 (RK3) p = 2
4 (RK4) p = 2,3.4

p= 1,2.3,4!
p= 1,2,3,4T

5 (LSODA)
6 (LSODA w/0 Jacobians)

When more than one spline order is possible, the integration determines the order of the spline

representation by comparing the length of thecontrol input u to the length of the time input t. If

LSODA is called with ialg=5, the user must supply ^ and ^ in the user-functions Dh and Dl.
If the user has not programmed these Jacobians, LSODA must be called with ialg=6 so that, if

needed, these Jacobians will be computed by finite-differences. The different integration methods

are discussed in detail following the description of the various forms in which simulate can be

called.

Bugs

1. There may be a problem with computation of gradients for the variable step-size integration

algorithm (ialg=5, 6) if the number of interior knots n^n0{s is different than one(see description

of form 1 and gradient computations for LSODA below).

See Also: eval.fnc

' The maximum spline order allowed b> simulate when using LSODA can be increased by changing the pre-compiler define
symbol MAX_ORDER in adams.c.
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Description of Different Forms

[info,simed] = simulate(0,{params})

This form is used to load system parameters and to return system information. If params is sup

plied, simulate will make a call to init so that the user's code can read in these parameters. Nor

mally params is a vector. It can be a matrix in which case the user should keep in mind that

Matlab stores matrices column-wise (Fortran style). If the system has no parameters then either

omit params or set params= [ ]. If no output variables are present in this call to simulate the

system message loaded on the call to activate and other information about the system will be dis

played.

The following is a list of the different values in info returned by simulate:

info(l) number of states

info (2) number of inputs

info (3) number of system parameters

info (4) (reserved)

info (5) (reserved)

info (6) number of objective functions

info (7) number of nonlinear trajectory inequality constraints

info (8) number of linear trajectory inequality constraints

info (9) number of nonlinear endpoint inequality constraints

info (10) number of linear endpoint inequality constraints

info (11) number of nonlinear endpoint equality constraints

info (12) number of linear endpoint equality constraints

info (13) type of system (0 through 4)

0: nonlinear dynamics and objective

1: linear dynamics; nonlinear objective

2: linear, time-invariant dynamics; nonlinear objective

3: linear dynamics; quadratic objective

4: linear, time-invariant dynamics; quadratic objective

info (14) number of mesh points used in the most recent simulation

The scalar output simed is used to indicate whether a call to simulate, form 1, has been made.

If simed=l then a simulation of the system has occurred. Otherwise simed=0.
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[f,x,du,dxO,p] = simulate(l,xO,u, t, ialg,action)

This form causes the system dynamics, x = h(t,u,x) with x(a) = xO, to be integrated using the

integration method specifiedby ialg (cf. TableS3). Also, the value f of the first objective func

tion, and possibly its gradients, du and dxO and the adjoint p, can be evaluated. Only the first

column of xO is read. The strictly increasing time vector t of length N + 1 specifies the integra

tion mesh on [a, b] with t(l) = a and t{N + 1) = b. The control u is composed of m rows of

spline coefficients.

The calculations performed by simulate, form 2, depend on the value of action. These

actions are listed in the following table:

Table S4

Action Return Values

no return values

function value /
/ and system trajectory x
f. x and control and initial condition gradients du and dz
f, x, du, dz and the adjoint trajectory p.

When using the variable step-size method LSODA (ialg = 5,6), the argument ialg

can include three additional pieces of data:

ialg(2)

ialg(3)

ialg(4)

Setting

Number of internal knots used during gradient computation.

Relative integration tolerance.

Absolute integration tolerance.

Default Value

1

le-8

le-8

The meaning of "internal knots" is discussed below in the description of gradient computation

with LSODA.

Example

The following commands, typed at the Matlab prompt, will simulate a three state system with two

inputs using integration algorithm RK4 and quadratic splines. The simulation time is from a = 0

until b = 2.5 and there are N = 100 intervals in the integration mesh.

» N=100;

» t = [0:2.5/N:2.5];
» xO = [1;0;3.5];
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» uO = ones(2,N+2);

>> Ij.x) = simulate(l.xO.uO,t,4,2) ;
% uO(t)=[l;l]

j s simulate(2,f_number,l)
[durdxO,p] & simulate(2,£_number,action)

This form allows function values and gradients to be computed without re-simulating the system.

A call to this form must be proceeded by a call to simulate, form 1. The results are computed

from the most recent inputs (xO, u, t, ialg) for the call to simulate, form 1. The following

table shows the relationship between the value of f _number, and the function value or gradient

which is computed.

Table S5

f _number range Function Function to be evaluated

1 < f_number < «j g],(4..x(b)) +\ roU..x,u)d! v = f_number

n, < f__number < n2 /;;</. xu).u(t)) v = n7c(N + 1) + 1 , / = tk where
n = f_number - «j —1 and
k - f _number - n j - v(N + 1).

n2 < f _number < ;?3 g'M-xib)) i' = f _number - n2

Hi < f_number < n4 glMx(b)) v = f .number - n$

where «, = qt) is the number of objective functions. n2 - ;i, +q,,(N + 1) with qti the number of

trajectory constraints, w? = n2 + qei with qei the number of endpoint inequality constraints, and

«4 = n? + qee with qee the number of endpoint equality constraints. The notation n%m means the

remainder after division of n by m (n modulo m). Thus, for trajectory constraints, the v-th con

straint (with v = n9c(N + \)+\) is evaluated at time tk.

If action=l, only du and dxO are returned. If action=2, du, dxO and p are returned.

The function, eval_fnc, provides a convenient interface to this form.

[xdot,zdot] s simulate(3,x,u,t,{f_num,<k>>)
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

This form evaluates (as opposed to integrates) the following quantities: x = h(t,x,u),

z= l)',(t, x, u), and p- - (dh{'£u) p+^'^»)T) at the times specified by t. These functions are
evaluated at the points in t. If f_num is specified, v = f_num. otherwise v = 1. The function

lv(-, •, •) is evaluated according to Table S5 above. The last input, k, can only be supplied if t is a

single time point. It is used to indicate the discrete-time interval containing t. That is, k is such
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that tk < t < tk+\. If k is given, 1is calledwith neq [3 ] = k - 1. In this call, the values in u rep

resent pointwise values of u(t), not its spline coefficients. The inputs x and u must have the same

number of columns as t.

[h_x,h_u,l_x,l_u] s simulate(4,x,u,t,{f_num,{k>>)

This form evaluates ^f^, ^^, ^^il, and 2£%£*1. In this call, t must be asingle time
point. If f_num is specified, v = f_num, otherwise v = 1. The function /"(•, •,•) is evaluated

according to Table S5 above. The last input, k, indicates the discrete-time interval containing t.

That is, k is such that tk < t < tk+l. If k is given, 1 is called with neq[3 ] = k - 1. In this call,

the values in u represent pointwise values of u(t), not its spline coefficients.

[g/g_xO/g_xf] & simulate(5,xO,xf,tf,{f_num>)

This form evaluates gl'(xO,xf), '̂(^00xf), and ^"(5xx°f-xf>. If f_num is specified, v= f_num.
Otherwise v = 1. The input tf gets passed to the user functions g and Dg (see descriptions in

§2) for compatibility with future releases of RIOTS.

stats = simulate(6)

This form provides statistics on how many times the functions h and Dh have been evaluated,

how many times the system has been simulated to produce the trajectory x, and how many times

functions or the gradients of /l'(-. •), gy{-, •) or /))(-, •, •) have been computed. The following table

indicates what the components of stats represent:

Table S6

Sec. 5.5

Component Meaning

stats(1)

stats(2)

stats(3)

stats(4)

stats(5)

Number of calls to h.

Number of calls to Dh.

Number of simulations.

Number of function evaluations.

Number of gradient evaluations.
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lte = simulate(7)

This form, which must be preceded by a call to simulate, form 1 with ialg=l, 2,3,4, returns

estimates of the local truncation error for the fixed step-size Runge-Kutta integration routines.

The local truncation error is given, for k = 1,..., N, by

ltek = f xk(h+\)~xN,k+\
ZkOk+\)-ZN,k+\

where xk(tk+\) and zk(tk+\) are the solutions of

x\ ( h(x,u) \ x(tk) = xN,k
z) \l;,(t,x,u)j z(tk) = 0

and xN k+i and znm\ are tne quantities computed by one Runge-Kutta step from x^tk and 0,

respectively. These local truncations errors are estimated by taking double integration steps as

described in Section 4.3.1. The local truncation error estimates are used by distribute (see

description in §7) to redistribute the integration mesh points in order to increase integration accu

racy.
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IMPLEMENTATION OF THE INTEGRATION ROUTINES

Here we discuss some of the implementation details of the different integration routines built into

simulate.

System Simulation

System simulation is accomplished by forward integration of the differential equations used to

describe the system. There are four fixed step-size Runge-Kutta integrators, one variable step-

size integrator (LSODA), and one discrete-time solver. The RK integrators and LSODA produce

approximate solutions to the system of differential equation

x = h(t,x,u), x(a) = 4

z = Id, x,u), z(a) = 0

on the interval t e [a, b]. The Runge-Kutta integrators, described by the Butcher arrays Ah A2,

A3 and A4 given in Chapter 4.2, are of order 1, 2, 3 and 4 respectively. Thediscrete-time integra

tor solves

**+i = b(tk,xk,uk), x0 = 4

zk+[ = l(tk,xk,uk), z0 = 0

fork = 1 N.

The variable step-size integrator is a program called LSODA [127,128]. LSODA can solve

both stiff and non-stiff differential equations. In the non-stiff mode, LSODA operates as an

Adams-Moulton linear, multi-step method. If LSODA detects stiffness, it switches to backwards

difference formulae. When operating in stiff mode, LSODA requires the system Jacobians

dhu£M) and dlu£M). If the user has not supplied these functions, LSODA must be called using
ialg=6 so that these quantities will be computed using finite-difference approximations. Other

wise, LSODA should be called using ialg=5 so that the analytic expressions for these quantities

will be used.

The integration precision of LSODA is controlled by a relative tolerance and an absolute

tolerance. These both default to l<?-8 but can be specified in ialg(3:4) respectively (see

description of simulate, form 1). The only non-standard aspect of the operation of LSODA by
simulate is that the integration is restarted at every mesh point tk due to discontinuities in the

control spline w(-), or its derivatives, at these points.
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Gradient Evaluation

In this section we discuss the computation of the gradients of the objective and constraint func

tions of problem OCP with respect to the controls and free initial conditions. These gradients are

computed via backwards integration of the adjointequations associatedwith each function.

Discrete-time Integrator. For the discrete-time integrator, the adjoint equations and gradients

are given by the following equations. For the objectivefunctions, v e qot k = N,..., 1,

dgv(4>xN+lf
Pk - hx(tk,xk,uk)TpM +lvx(tk,xk,uk)T ; pN+\ =

dxN+l

dfv<4,u)
-\T

du
= hu(tk,xk,uk)Tpk+]+ru(tk.xk,uk)T

-lk

dfX4,u)T ^dgv(4.xN+])T
d4 d4

For the endpoint constraints, v e qej n qee, k = N,...,\,

+ Po-

Pk = hx(tk,xk,uk)Tpk+] ; pN+l =
BxN+]

dgv(4<xN+\)
du

= lhMkiXk,uk)Tpk+i

dgvtf.xN+l)T Bgx\4,xN+l)T
d4 *4

For the trajectory constraints, v e q„, evaluated at the discrete-time index / e { 1,..., N + 1 },

Pk: = hx(tk,xk,uk)Tpk+] ,k = /-!,..., 1 ; p, = lx(thxhUi)T

+ P\

194

-i7

dlv(tk,xk,uk)
du

J A-

hu(h^xk,uk)TpM k = ] /-I
ll«k<xk,uk)T k = l

0 * = /+! N

dlv(t,,x,,uljr
d4

= P\
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Runge-Kutta Integrators. For convenience, we introduce the notation

ukj = "(Tkij), k = \,...,N, ; = l,..,r,

where

rkj-tk + CjAk

and Cj e [0,1] are parameters of the Runge-Kutta integration method. For RK1, RK2 and RK3,

r = s where s is the number of stages and ij - j. However, because RK4 has a repeated control

sample (cf Chap 2.4), we have r = 3, ii - 1, i2 = 2 and i'3 = 4.

The computation of the control gradients is a two-step process. First, the gradient of f(4, u)

with respect to the control samples ukj, k = ],..., N, j = 1,..., r, where r is the numberof con

trol samples per integration interval, and with respect to 4 is computed. Second, the gradient with

respect to the spline coefficients, ak. of u{t) is computed using the chain-rule as follows,

—j = II-j -H- * *=1 N + p-\ ,dak ,=1;=, duLj dak

where p is the order of the spline representation. Most of the terms in the outer summation are

zero because the spline basis elements have local support. The quantity

du, j
dak

is easily determined from the recurrence relation (2.7.2a) for the B-spline basis.

A general formula for df/duLj is given in Theorem 2.5.1. However, due to thespecial struc

ture of the specific RK methods used by simulate there is a much more efficient formula, discov

ered by Hager [42]. We have extended Hager's formula to deal with the various constraints and

the possibility of repeated control samples (seeChapter 2.4). To describe this formula, we use the

notation for k = 1 N - 1 and j = 1 s,

Akj=hx(TkJ,ykj,u(TkJ))T ,

Bk.j - hu(Tkj, y*.;, u(TkJ))T ,

lxlj±^(Tkj,ykJ,u(Tkj)jr ,
and

Iltk\j±ru(Tk,jiykj'U(Tkj))T.

where, with akj parameters of the Runge-Kutta method.
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H
yu=xk, ykJ=xk+Ak £ aj.„Myk.m>u(Tk.m))J = 2 s

m=\

The quantities ykj are estimates of x(rkj), seeequation (2.4.3d).

The gradients of the objective and constraint functions with respect to the controls ukj and

the initial conditions 4 are given as follows. In what follows as+ij —bj, qks = 44+1.0 and the

standard adjoint variables, pk, are given by pk = qkq. For the objective functions, we have for

v e q,„ k = N,...,\,

dgv(4>xN+l)T
Qn+\.o = dxN+]

<ik.j = <7*+!.o +A* X «.<-;+].*-»!+1M*.,,,^..™ +/•**.,„+]) 1 j = s-],s-2,...,0

du

-I7

= bjAk Rkjikj + l\,j , j =\,...,s ,
Jk.J

df\4<u)T dglX4,xN)T , 0
7Z = =r: + <7i *

For the endpoint constraints, we have for v e qci n qee, k = N,..., 1,

dgv(4,xN^)T
Qk.j = <?*+].0 +A* X °.v-j+i.5-m+i>U.w<7a.„; . y = s- 1,s- 2 0 ; tf/v+i.o = ->

n7

dgv(4>XK+0
du

= bjAkBkJqkj , j=\ s
k.J

dgv(4,x^)T dgv(4>xN+l)T , 0
—di—= —T4—+*"

For the trajectory constraints, v e q„, evaluated at the the discrete-time index

/e {1 N + ] }.

q(l = rx(tl,xl,u(TLs))T

196

Qk.j = <?*+1.0 +A* X a.t-;+|..<-m+| ^*.m<7*.»; • * = / - 1. . . J . 7 = 5-1,5-2 0 /
m=7+l
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dlv(tk,xk,u(tk))

du

simulate

bjAkBkJqkJ k = 1,...,/- 1 , j=\ s
lxu(tk. xk,u(rkJ)) k=l;j= 0 if / <N, else j = s

J k.j 0 otherwise

dlv(t,,x,,u(tl))T 0
d4 =*'-

For method RK4, we have the special situation that rkt2 = r*>3 for all k because

c2 = c3 = ^2. Hence, there is a repeated control sample: uk%2 = M(r*2) = M(**,3)- Thus, for any

function /, the derivatives with respect to ukl, uk2 and ukm$ are given by the expressions,

df
du k.\ du

df

J A.l
du k.2

'df'
du

+

*.2

'df'
du

-U.3

df
duu du

J A.4

Variable Step-Size Integrator (LSODA). For the variable step-size integrator, LSODA, the

adjoint equations and gradients are given by the equations below which require knowledge of x(t)

for all t € [a, b]. As in [25], jc(/) is stored at the internal knots {tk +n '+1 A* }?%kt\'N+l dur
ing the forward system integration. By default, /?*„„„ = 1, but the user can specify n^w ^ 1 by

setting ialg (2) = nknols (see description of simulate, form 1). Then, during the computation of
+

the adjoints and gradients. x(t) is determined by evaluating the quintic Hermite polynomial

which interpolates (r. x(t), x(t)) at the nearest three internal knots within the current time interval

[r*»'*+)]• Usually nknols = 1 is quite sufficient.

We now give the formulae for the adjoints and the gradients. It is important to note that,

unlike the fixed step-size integrators, the gradients produced by LSODA are not exact. Rather,

they are numerical approximations to the continuous-time gradients for the original optimal con

trol problem. The accuracy of the gradients is affected by the integration tolerance and the num

ber of internal knots used to store values of x(t). Under normal circumstances, the gradients will

be less accurate than the integration tolerance. Forthe objective functions, v e q0,

p=-(hx(t,x,u)Tp +lx(t,x.u)T), te[a,b) ; p(b) =a*y^\*(*)}
ox(b)

The order of the Hermite polynomial can be changed by setting the define'd symbol ORDER in the code adams.c. If the tra
jectories are not at least five time differentiable between breakpoints, then it may be helpful to reduce the ORDER of the Hermite
polynomials and increase "knots
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dfv(4,")
dak

=J (hu(t,x.u)Tp(t) +/;,'(;,x,u)T)(pt^k(t)dt , k=\,...,N +p-\

dfv(4,u)T dgv(4,x(b))T
d4 K

+ p(a)

For the endpoint constraints, v e q^, n qfp,

/? =- hx(t, x, u)Tp . t e [a, b] ; p(b) =
dgv(4,x(b)f

dx(b)

dgv(4*u)
dai

rb
=J hu(t.x,u)Tp(t)0Xspk(t)dt , k=\,...,N+p-\

dgv(4,u)T dgx(4,x(b))T
d4 H

For the trajectory constraints, v e q„. evaluated at time t = //, / e { 1,..., N + 1 },

p = - hx(t, x,u)Tp . t e [a,;,] ; /?(/,) = /£(//, *(/,), wfr,))7"

7

+ p(a)

dV\thxhu(tl))
dai

=J" hu(t,x,u)Tp(t)0ts^k(t)dt . *=1 N+p-\

dlv(thxhu(tiyf
d4

= P(a)

The numerical evaluation of the integrals in these expressions is organized in such a way that they

are computed during the backwards integration of p(t). Also, the computation takes advantage of

the fact that the integrands are zero outside the local support of the spline basis elements
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check deriv

Purpose

This function provides acheck for the accuracy of the user-supplied derivatives Dh, Dl and Dg by
comparing these functions to derivative approximations obtained by applying forward or central
finite-differences to the corresponding user-supplied function h, I and g.

Calling Syntax

[errorA,errorB,max_error] = check_deriv(x,u,t,{params),{index),
(central),(DISP))

Description

The inputs x e IR", it e IR'" and / e IR give the nominal point about which to evaluate the
derivatives hx(t, x, u), /?„(/, x, it), lx(t, x, u), /£(/, x, it), gx(t, x,u) and gvu(t, x,u). If there are sys

tem parameters (see description ofinit in §3), they must supplied by the input params. If speci
fied, index indicates the discrete-time index for which t (index) <t <t (index+1). This

is only needed if one of the user-supplied system functions uses the discrete-time index passed in

neq[3].

The error in each derivative is estimated as the difference between the user-supplied

derivative and its finite-difference approximation. For a generic function f(x), this error is com

puted, with e, the /-th unit vector and 8, a scalar, as

r f(x)-f(x + fig) df(x)
E = — e; ,

8, dx

if forward differences are used, or

,. f(x-8iel)-f(x + 8iel) df(x)
E~ 28, dx '"

if central differences are used. The perturbation size is 8; =f^chmax { l,Lx(l}. Central differ
ence approximations are selected by setting the optional argument central to anon-zero value.
Otherwise, forward difference approximations will be used.

The first term in the Taylor expansion ofEwith respect to 8j is oforder is 0(8?) for central
differences and 0(<5,) for forward differences. More details can be found in [129, Sec. 4.1.1].
Thus, it is sometimes useful to perform both forward and central difference approximations to

Sec. 5.5 Simulation Routines 199



checkjderiv

decide whether a large difference between the derivative and its finite-difference approximations

is due merely a result of scaling or if it is actually due to an error in the implementation of the

user-supplied derivative. If the derivative is is correct then E should decrease substantially when

central differences are used.

If DISP=0, only the maximum error is displayed.

The outputs errorA and errorB return the errors for hx(t, x, u) and hu(t,x, u) respec

tively. The output max_error is the maximum error detected forall of the derivatives.

Example

The following example compares the output from check_deriv using forward and central finite-

differences. The derivatives appear to be correct since the errors are much smaller when central

differences are used. First forward differences are used, then central differences.

» check_deriv([-5;-5],0,0);

System matrices:
Error in h_x

1.0e-04 *

=

0

-0.0000

-0.0000

-0.6358

Error in h_u
1.0e-10 *

=

0

0.9421

Error in l_x

For function 1

1.0e-04 *

-0.3028 0

Error in l_u = 6.0553e-06

For function 1:

Error in g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 6.35823e-05
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» check_deriv([-5;-5].0,0,[],0,1);

System matrices:

Error in h_x

1.0e-10 *

"~

0

-0.2355

-0.0578

-0.3833

Error in h_u
1.0e-10 *

=

0

0.9421

For function 1:

Error in l_x = 1.0e-10 *

0.5782 0

Error in l_u = 0

For function 1:

Error in g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 9.42135e-ll

See Also: check_grad

checkjderiv
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check_grad

Purpose

This function checks the accuracy of gradients of the objective and constraint functions, with

respect to controls and initial conditions, as computed by simulate, forms 1 and 2. It also pro

vides a means to indirectly check the validity of the user-supplied derivative Dh, Dl and Dg.

Calling Syntax

max_error = check_grad(i,j,k,xO,u,t,ialg,{params},(central),
{DISP})

Description

The input xO, u, t and ialg specify the inputs to the nominal simulation simu

lated,xO,u,t,ialg,0) prior to the computation of the gradients. The gradients are tested at the dis

crete-time indices as specified in the following table:

Index Purpose

Spline coefficient control it that will be perturbed. If i=0, the
gradients with respect to it will not be checked.
Index of initial state vector, £, that will be perturbed. If j=0, the
gradients with respect to the 4 will not be checked.
For each trajectory constraints, k indicates the discrete-time in
dex, starting with k=l, at which the trajectory constraints will be
evaluated. If k=0, the trajectory constraint gradients will not be
checked.

The finite-difference computations are the same as described for check_deriv.

If there are system parameters (see description of init, § 3), these must be given by the input

params. Central difference approximations will be used if a non-zero value for central is

specified; otherwise forward differences will be used. If DISP=0, only the maximum error is

displayed. This is particularly useful if check_deriv is used in a loop on any of the indices

i, j , k. The output max_error is the maximum error detected in the gradients.
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Example

The following example checks the tenth component of the control gradient and the second com
ponent of initial condition gradient as computed by RK2 using central differences. The mtegra-
tion is performed on the time interval, e[0,2.5] with N=50 intervals. T*e gradients are evalu
ated for the second order spline control u(t) =1for all t(i.e., ak =1, k=1 N+1).

» t = [0:2.5/50:2.5];
>> u = onesd, 51) ;
» xO = t-5;-5];
» check.grad{10, 2. 0, xO. u, t. 2, 11 .1W =================================

Using'perturbation size of 6.05545e-06

Evaluating function 1.

error_u = 1.84329e-09
error.xO = -4.88427e-ll 52B21e-07%Relative error in control gradient = 2.52821e 0/*
Gradient OK

Relative error in xO gradient = 1.14B42e-09%
Gradient OK

Evaluating endpoint constraint 1.
error_u = -5.46737e-ll
error xO = -5.98271e-12 n^,n0 or*Relative error in control gradient = 6.04337e-08%
Gradient OK

Relative error in xO gradient = 1.87846e-09%
Gradient OKMaximum error reported is l:84329e-09=^====================:================

See Also: check_deriv
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eval fnc

Purpose

This function provides a convenient interface to simulate, form 2, for computing function and

gradient values. A system simulation must already have been performed for this function to

work.

Calling Syntax

[f,du,dxO,p] = eval_fnc(type,num,k)

Description of Inputs

type A string that specifies the type of function to be evaluated. The choices are

' ob j ' Objective function
' ei ' Endpoint inequality constraint
' ee' Endpoint equality constraint

' tra j ' Trajectory constraint

num Specifies v for the function of the type specified by type is to be evaluated.

k For trajectory constraints only. Specifies the index for the time, tk, in the current

integration mesh at which to evaluate the trajectory constraint. If k is a vector, the

trajectory constraint will be evaluated at the times specified by each mesh point index

in k.

Description of Outputs

f The function value.

du The gradient with repect to u. Not computed for trajectory constraints if index is a

vector.

dxO The derivative of the function with respect to initial conditions, 4- Not computed for

trajectory constraints if index is a vector.

p The adjoint trajectory. Not computed for trajectory constraints if index is a vector.
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Examples

The following examples assume that a simulation has already been performed on a system that
has at least two endpoint equality constraints and a trajectory constraint. The first call toeval_fnc
evaluatesthe second endpointequalityconstraint.

>> f=eval_fnc('ee',2)

f =

0.2424

Since equality constraints should evaluate to zero, this constraint is violated. This next call evalu

ates the first trajectory constraint at the times tk, k = 5 15, in the current integration mesh.

>>. eval_fnc('traj',1,5:15)

ans =

Columns 1 through 7

-1.0182 -1.0222 -1.0258 -1.0288 -1.0311 -1.0327 -1.0338

Columns 8 through 11

-1.0335 -1.0318 -1.0295 -1.0265

Since inequality constraints are satisfied if less than or equal to zero, this trajectory constraint is
satisfied at these specified points.
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6. OPTIMIZATION PROGRAMS

This section describes the suite of optimization programs that can be used to solve various cases

of the optimal control problem OCP. These programs seek local minimizers to the discretized

problem. The most general program is riots which converts OCP into a mathematical program

which is solvedusing standard nonlinear programming techniques. Currently, riots can be linked

with one of two sequential quadratic programming (SQP) algorithm as described later. Besides

being able to solve the largest class of optimal control problems, riots is also the most robust

algorithm amongst the optimization programs available in RIOTS. However, it can only handle

medium size problems. The size of a problem, the number of decision variables, is primarily

determined by the number of control inputs and the discretization level. What is meant by

medium size problems is discussed in the description of riots.

The most restrictive program is pdmin which can solve optimal control problems with con

straints consisting of only simple bounds on 4 and it. State constraintsare not allowed. The algo

rithm used by pdmin is the projecteddescent method described in Chapter 3. Because of the effi

ciency of the projected descent method, pdmin can solve large problems.

Problems that have, in addition to simple bounds on u and £, endpoint equality constraints

can be solved by augjagrng. The algorithm is a multiplier method which relies upon pdmin to

solve a sequence of problems with only simple bound constraints. This program provides a good

example of how the toolbox style of RIOTS can be used to create a complex algorithm from a

simpler one. Currently, the implementation of augjagrng is fairly naive and has a greatdeal of

room left for improvement. Also, it would be relatively straightforward to add an active set strat

egy to augjagrng in order to allow it to handle inequality constraints.

Finally, the program outer is an experimental outer loop which repeatedly calls riots to

solve a sequence of increasingly accurate discretizations (obtained by calls to distribute) of OCP

in order to efficiently compute the optimal control to a specified accuracy.

Choice of Integration and Spline Orders.

Each of these optimization programs requires the user to select an integration routine and the

order of the spline representation for the controls. There are several factors involved in these

selections. Some of these factors are discussed below and summarized in the Table 02 that fol

lows. Consult Chapter 4.2 for a more in-depth discussion.

Fixed step-size integration. The first consideration is that, for each of the fixed step-size

Runge-Kutta methods, there is a limit to how much accuracy can be obtained in the control solu

tions at certain discrete time points. The accuracy, lw,v ~ Ml« °f tne control splines can not be
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greater than the solutions at these time points. The order of the accuracy of spline solutions with

respect to the discretization level for unconstrained problems is given in the following table. The

quantity A used in this table is defined as A = max* tNk+] - tNk. The third column is a reminder

of the spline orders that areallowed by simulate foreach RK method.

Table Ol

RK Method Order of Accuracy Allowable Spline Orders

1

2

3

4

0(A])

0(A2)

0(A2)

0(A3)

1

2

2

2, 3,4

While it is possible with some optimal control problems to achieve higherorder accuracies, this is

a non-generic situation. The order of spline representation should therefore not exceed the accu

racies listed in the second column of this table. Thus, for RK4, even though cubic splines are

allowed there is usually no reason to use higherthan quadratic splines (p = 3).

The orders listed in the above table are usually only achieved for unconstrained problems.

For problems with control constraints it is typically impossible to achieve better than first order

accuracy. This is even true if the discontinuities in the optimal control are known a priori since

the locations of these discontinuities will not coincide with the discontinuities of the discretized

problems. For problems with state constraints, the issue is more complicated. In general, we rec

ommend using second order splines (except for Euler's method) for problems with control and/or

trajectory constraints. Even if first order accuracy is all that can be achieved, there is almost no

extra work involved in using second order splines. Furthermore, second order splines will often

give somewhat better results than first order splines even if the accuracy is asymptotically limited

to first order.

A second consideration is that the overall solution error is due to both the integration error

and the error caused by approximating an infinite dimensional function, the optimal control, with

a finite dimensional spline. Because of the interaction of these two sources of error and the fact

that the accuracy of the spline representations is limited to the above table, improving the integra

tion accuracy by using a higher order method does not necessarily imply that the accuracy of the

solution to the approximating problem will improve. However, even if the spline accuracy is lim

ited to first order, it is often the case that the integration error, which is of order 0(AS), where s is

the order of the RK method, still has a significantly greater effect on the overall error than the

spline error (especially at low discretization levels). This is partly due to the fact that errors in the
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control are integrated out by the system dynamics. Thus, it is often advantageous to use higher-
order integration methods even though the solution error isasymptotically limited tofirst order by
the spline approximation error.

The importance of the RK order, in terms of reducing the overall amount of computational

work required to achieve a certain accuracy, depends on the optimization program being used.
Each iterations of riots requires the solution of one or more dense quadratic program. The
dimension of these quadratic programs is equal to the number of decision parameters (which is
m(N + p - 1) plus the number of free initial conditions). Because the work required to solve a

dense quadratic program goes up at least cubically with thenumber of decision variables, at a cer

tain discretization level most ofthe work at each iteration will be spent solving the quadratic pro
gram. Thus, it is usually best to use the fourth order RK method to achieve as much accuracy as
possible for a given discretization level. An exception to this rule occurs when problem OCP
includes trajectory constraints. Because a separate gradient calculation isperformed ateach mesh

point for each trajectory constraint, the amount ofwork increases significantly as the integration
order is increased. Thus, it may be beneficial to use a RK3 or even RK2 depending on the prob
lem.

On the other hand, for the optimization programs pdmin and augjagrng (which is based
on pdmin) the amount of work required to solve the discretized problem is roughly linear in the
number of decision variables which is basically proportional to the discretization level N. The

amount of work required to integrate the differential equations is linearly proportional to Ns
where s the order of the Runge-Kutta method. Since the integration error is proportional to
1/ Ns, ifnot for the error for the spline approximation it would always be best touse RK4. How
ever, because there is error from the finite dimensional spline representation, it does not always
pay to use the highest order RK method. If, roughly speaking, the error from the control repre
sentation contributes to the overall error in the numerical solution to larger extent than the integra
tion error (note that the spline error and the integration error are in different units) then it is

wasteful to use a higher order RK method. This usually happens only at high discretization lev
els.

The relative effect of the spline error versus the integration error depends on the nature of
the system dynamics and the smoothness of the optimal control. Unfortunately, this is hard to
predict inadvance. But a sense of the balance ofthese errors can be obtained by solving, if possi
ble, the problem at a low discretization level and viewing the solution using sp_plot and using
simulate (form 7) or est_errors to obtain an estimate of the integration error.

There is a third consideration for selecting the integration order. For some problems with

particularly nonlinear dynamics, in may not be possible integrate the differential equation if the
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discretization level is too small. In these cases, the minimum discretization level needed to pro
duce a solution is smallest when using RK4. For some problems, it may not be possible to
achieve an accurate solution of thedifferential equation at any reasonable discretization level. For

these problems, the variable step-size integration method, discussednext, will have to be used.

Regardless of the integration method used, higher order splines (p > 2) should not be used

unless the optimal control is sufficiently smooth. Of course, the optimal control is not known in

advanced. Generally, though, when solving control and/or trajectory constrained problems, sec

ond order splines should be used (except with Euler's method which can only use first order

splines) as per the discussion above. For other problems being integrated with RK4, it may be
advantageous to use quadratic splines.

The following table provides a set of basic guidelines for the selection of the integration

method and the spline order for solving different classes of problems. These choices may not be

ideal for any specific problem but they are generally acceptable for most problems.

Table 02

type of problem optimization program
RK order

(ialg)

spline order

(P)

no control nor trajectory con
straints

pdmin/augjagrng
4 (N small)

2 (N large)

3 (N small)

2 (N large)

riots 4 3

control constraints
pdmin/augjagrng

4 (N small)

2 (N large) 2

riots 4

trajectory constraints riots 2* 2

Variable step-size integration. From the point of view of integrating differential equations, it

is much more efficient to usea variable step-size integration routine than a fixed step-size method.

However, this is usually not the case when solving optimal control problems. There are three

basic reasons for this. First, the overall solution accuracy cannot exceed the accuracy with which

splines can approximate the optimal control. Thus, it is quite conceivable that a great deal of

work will be spent to achieve a very accurate integration but this effort will be wasted on a rela

tively inaccurate solution. Second, the solution of the discretized problem can easily involve

Sometimes a higher-order method must beused to provide a reasonable solution to the system differential equations.

Sec. 5.7 Optimization Programs 209



hundreds of simulations. The integration accuracy during most of the simulations will have very

little affect on the accuracy of the final solution. Therefore, it is usually much more efficient to

solve a sequence of discretized problems, each with a more accurate integration mesh, using a

fast, fixed step-size integration method. Third, the gradients produced for the variable step-size

method are approximations to the actual, continuous-time gradients for the original problem

OCP; they are not exact gradients for the discretized problems. Thus, the solution of the dis

cretized problem will usually require more iterations and will be less accurate (relative to the

actual solution of the discretized problem) when using the variable step-size method than when

using one of the fixed step-size integration routines.

There are, however, situations in which it is best to use the variable step-size integration

method. The first situation is when the system dynamics are very difficult to integrate. In this

case, or any other case in which the the integration error greatly exceeds the spline approximation

error, it is more efficient to use the variable step-size method. In some cases, the integration has

to be performed using the variable step-size method. This can occur if the system is described by

stiff differential equations or if the systemcontains highly unstable dynamics.

Another situation in which it can be advantageous to use the variable step-size integration

method is if the location of discontinuities in the optimal control, or discontinuities in the

derivatives of the optimal control, are known a priori. In this case, it may be possible to increase

the solution accuracy by placing breakpoints in the discretization mesh where these discontinu

ities occur and then using a spline of order one greater than the overall smoothness of the optimal

control . The location of the discontinuity for the discretized problem will be very close to the

discontinuity in the optimal control if the integration tolerance is small and the optimal control is

well-approximated by the spline away from the discontinuity. Hence, the overall accuracy will
not be limited by the discontinuity.

The variable step-size integration routine can use first, second, third, or fourth order splines.

For unconstrained problems, or problem with endpoint constraints, it is best to use fourth order

splines so that the spline approximation error is as small as possible. For problems with control

and/or trajectory constraints, first or second order splines are recommended.

' Aspline ofhigher order would be too smooth since RIOTS currently does not allow splines with repeated interior knots.
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Coordinate Transformation

All of the optimization programs in RIOTS solve finite-dimensional approximations to OCP

obtained by the discretization procedure described in the introduction ofSection 5. Additionally,
a change of basis is performed for the spline control subspaces. The new basis is orthonormal.

This change ofbasis is accomplished by computing the matrix Ma with the property that for any
two splines w() and v() with coefficients a and p,

<",v)L2 = (aMa,0),

(recall that a and /? are row vectors. The splines coefficients in the transformed basis are given

by a = orM]/2 and /? = 0M"2 (see Section 6and Remark A.2.8). In the new coordinates,

<".v>L2 = (a J)-

In words, the L2-inr\zr product of any two splines is equal to the Euclidean inner product of their

coefficients in the new basis. The matrix Ma is referred to as the transform matrix and the

change of basis is referred to as the coordinate transformation.

By performing this transformation, the standard inner-product of decision variables (spline
coefficients) used by off-the-shelf programs that solve mathematical programs is equal to the

function space inner product of the corresponding splines. Also, because of the orthonormality of

the new basis, the conditioning of the discretized problems is no worse than the conditioning of

the original optimal control problem OCP. In practice, this leads to solutions of the discretized

problems that are more accurate and that are obtained in fewer iterations than without the coordi

nate transformation. Also, any termination criteria specified with an inner product become inde

pendent of the discretization level in the new basis.

In effect, the coordinate transformation provides a natural column scaling for each row of

control coefficients. It is recommended that, if possible, the user attempt to specify units for the

control inputs so that the control solutions have magnitude of order one. Choosing the control

units in this way is, in effect, a row-wise scaling of thecontrol inputs.

One drawback to this coordinate transformation is that for splines of order two and higher

the matrix M~1/2 is dense. Adiagonal matrix would be preferable for two reasons. First, comput
ing M~,/2 is computationally intensive for large N. Second, there would be much less work
involved in transforming between bases: each time a new iterate is produced by the mathematical

programming software, it has to be un-transformed to the original basis. Also, every gradient

computation involves an inverse transformation. Third, simplecontrol bounds are converted into

general linearconstraints by thecoordinate transformation. This point is discussed next.
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Control bounds under the coordinate transformation. Simple bounds on the spline coeffi

cients takes the form ak < ak < bk, k = 1,.., N + p - 1. If ak and bk are in fact constants, a and

b, then for all t, a< u(t) < b. Now, under the coordinate transformation, simple bounds of this

form become

( fl| (*n+p-\ )^a M~„m <( bx ,..., bN+p.} ).

Thus, because of thecoordinate transformation, thesimple bounds areconverted into general lin

earbounds. Since this is undesirable from an efficiency point of view, RIOTS instead replaces the
bounds with

(fli tf/v+p-i M]J2<d <(bx bN+/h.i )MlJ2.

For first order splines, these bounds are equivalent to the actual bounds since Mj/2 is diagonal.
For higher order splines, these bounds are not equivalent. They are, however, approximately cor
rect since theentries of the matrix Ma fall offrapidly to zero away from thediagonal.

It turns out that the problems enumerated above can be avoided when using second order

splines which are, in any case, the recommended splines for solving problems with control

bounds. Instead of using Ma in thecoordinate transformation, thediagonal matrix

A,
A! +A2

A^+A,

M =

A/v'-i + AA-

with Ak = tNk+] -tNk, is used. This transformation matrix is derived in (2.7.19c) and retains the

important attributes of the transformation given by Ma. In riots and pdmin, M is used for the

coordinate transformation, instead of Ma, when second order splines are used if (i) problem
OCP has control bounds or if (ii) RK2 is being used as the integration method.

If higher than second order splines are to be used with control bounds and exact bound sat

isfaction is required, then the transform mechanism should be disabled by setting TRANS-
FORM=0 inriots and/or pdmin . Finally, when N is large, p > 1and RK3 orRK4 is being used,
the computation of the square-root of Ma can take a very long time. In this case if the discretiza

tion level N is greater than about 300, the transform mechanism should also be disabled.

In pdmin, setting TRANSFORMS causes the transform mechanism tobedisabled forsplines of greater than two. For sec
ond order splines. M is used regardless of the RK method and for first order (piecewise constant) splines, the usual, diagonal, transfor
mation is used
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Description of the Optimization Programs

The first six inputs are the same for all of the optimization programs; they are listed in the follow

ing table. Default values for vectors apply to each component of that vector. Specifying [] for

an input causes that input to be set to its default value. In the following, N is the discretization

level and p is the orderof the control splines.

Table 03

Input Rows Columns Description

xO n l,2or4 xO=[xO, (fixed, (xOmin,xOmax)}] where

xO is the nominal value of the initial state 4.

fixed For each 1 such that fixed (i) =0, the cor

responding initial state value 4' is treated as a

free decision variable. Default: 1

xOmin Specifies lower bound for each free initial

condition 4'- Default: -oo

xOmax Specifies upper bound for each free initial

condition 4'• Default: 00
uO m N + p-\ Initial guess for the spline coefficients of the control u.

t 1 yv + i The integration mesh points/spline breakpoints.
Umin m N + p - 1 or 1 Lower bounds on the spline coefficients for u. If Umin

is specified asa single column, its values will apply asa
lower bound on all of the spline coefficients. Default:
— 00

Umax m N + p - 1 or 1 Upper bounds on the spline coefficients for u. If Umax
is specified as a singlecolumn, its values will apply as
an upper bound on all of the spline coefficients. Default:
00

params P 1 Provides the system parameters if required.

The first two outputs are the same for all of the optimization programs; they are listed in the fol

lowing table:

Table 04

Output Rows Columns Description

u

X

m

n

N + p-]
N+\

The optima] control solution.
The optimal state trajectory solution.
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augjagrng

Purpose

This function uses pdmin as an inner loop for an augmented Lagrangian algorithm the solves
optimal control problem with, in addition to simple bounds on 4 and u, endpoint equality con
straints. Only one objective function is allowed.

Calling Syntax

[u,x,flambda,I_i] = aug_lagrng( [xO, {fixed, (xOmin,xOmax))] ,u0, t,
Umin,Umax,params, N_inner, N_outer,
ialg,(method),{[toll,tol2]),(Disp))

Description of the Inputs

The first six inputs are described in Table 03.

N_inner Maximum number of iterations for each inner loop call to pdmin.

N_outer Maximum number of outer iterations.

ialg Specifies the integration algorithm used bysimulate.

method Specifies the method for computing descent directions in the unconstrained sub-

space. Thechoices areexplained in thedescription of pdmin. Default: ' vm'.

toll, tol2 Optimality tolerances. Default: [ fjgch , f^ch ]. The outer loop terminates if

Wf(rj)- X A,.V^P(/7)| < toll(\+\f(ij)\)
)•= i

and

max \gxee(n)\ < tol2 .
v e q„

Disp Passed on to pdmin tocontrol amount ofdisplayed output. Default: 0.

Description of the Outputs

The first two outputs are described in Table 04.

f The objective value at the obtained solution.

!_i Index set of elements of [u(:); 4] that are not at their bounds.
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lambda Vector of Lagrange multipliers associated with theendpoint equality constraints.

Description of the Algorithm

This program calls pdmin to minimize a sequence of augmented Lagrangian functions of the

form

L,.Av) =/<*)- X Kgvee(n)+ i Z cvgvee(n)2

subject to simple bounds on 4 and u. The value of the augmented Lagrangian and its gradient are

supplied to pdmin by a_lagrng_fnc viaextension 1 (see description of pdmin).

The values of the Lagrange multiplier estimates Xv, v = 1,..., qee, are determined in one of

two ways depending on the setting of the internal variable METHOD in augjagrng.m. Initially
A,, = 0, v = 1 qee.

Multiplier Update Method 1. This method adjusts the multipliers at the end of each iteration

of pdmin by solving the least-squares problem

A= min Wf(n)- %WgU*)*} , ,

where the norm is taken only on the uncstrained subspace of decision variables which is indicated

by the index set I_i. This update is performed by multiplier.update which is called by pdmin

via extension 2. If update method 1 is used, the tolerance requested for the inner loop is

decreased by a factor of ten on each outer iteration starting from 10min< 6-N-outer Ie^h until the
tolerance is fJ£ch.

Multiplier Update Method 2. This method is the standard "method of multipliers" which
solves the inner loop completely and then uses the first order multiplier update

Av <^K-cvgvee(n) ,Vvelv

where

/,. = {r € q„ I\gx;e(n)\ < \ lg;,(nprCvious)l or 1^,(77)1 < tol2 } .

Ifupdate method 2 is used, the tolerance requested for the inner loop is fixed at fJ2ch.
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Penalty Update. The initial values for the constraint violation penalties are c„ = 1,
v = 1,..., qee. It may be helpful to use larger initial values for highly nonlinear problems. The
penalties are updated at the end ofeach outer iteration according to therule

cv <r- \0cv ,\/vtIv,

where Iv is as defined above.

Note that this algorithm is implemented mainly to demonstrate the extensible features of pdmin
and ismissing features like, (i) constraint scaling, (ii) an active set method for handling inequality
endpoint constraints, (Hi) a mechanism for decreasing constraint violation penalties when possi
ble and, most importantly, (iv) an automatic mechanism for setting the termination tolerance for
each call to pdmin.

Notes

1. On return from a call to augjagrng. the variable opt_program will be defined in the Mat

lab workspace. It will contain the string ' aug_lagrng'.

See Also: pdmin, a_lagrng_fnc.m, multiplier_update.m.
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outer

Purpose

This program calls riots to solve problems defined on a sequence of different integration meshes,

each of which result in a more accurate approximation to OCP thanthe previous mesh. The solu

tion obtained for one mesh is used as the starting guess for the next mesh.

Calling Syntax

[new_t,u,x,J,G,E] = outer([xO,(fixed,(xOmin,xOmax>}],u0,t,
Umin, Umax, params, N_inner, [N_outer, (max_N) ]
ialg,{[toll,tol2,tol3]),(strategy),(Disp))

Description of the Inputs

The first six inputs are described in Table 03.

N_inner Maximum number of iterations for each inner loop of riots.

N_outer Maximum number of outer iterations.

max_N The maximum discretization level; outer will terminate if the discretization level

exceeds max_N. Default: oo

ialg Specifies the integration algorithm used by simulate.

toll,tol2,tol3

Optimality tolerances. The outer loop terminates if

IVL(7/)I < toll( 1+1/07)1),

where IVZ,(77)I7 is the /Vi-norm of the free portion of VL(n),

and

max \gveAn)\ < tol2 ,
v e q(1.

luN-u*l < tol3(l +luNl00)b ,

where b is the nominal final time. The default values for these tolerances factors

are l^mach' fmach' fmachJ-

strategy Passed on to distribute to select the mesh redistribution strategy.

Default = 3.

Disp Passed on to riots to control amount of displayed output. Default= 1.
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Description of the Outputs

The first two outputs are described in Table 04.

new_t The final integration mesh obtained from the final mesh redistribution.

u The optimal control solution defined on the final meshnew_t.

x The optimal trajectory solution.

J A row vector whose /-th component is the value of the objective function, computed
using LSODA, after the /-th call to riots.

G A row vector whose /-th component is the sum of the constraint violations, computed
using LSODA. after the /-th call to riots.

E A row vector whose /-th component is an estimate of lnN - rflH, after the (/+l)-th
iteration. With 77 = (u. 4), lnlH, is defined by

r -11/2
ebHh +j lu(t)l2dt

Description of Algorithm

outer is an outer loop for riots. During each iteration, riots is called to solve the discretized

problem on the current mesh starting from the solution of the previous call to riots interpolated
onto the new mesh. After riots returns a solution, est_errors and contro!_error are called to

provide estimates of certain quantities that are used to determine whether outer should terminate

or if it should refine the mesh. If necessary, the mesh is refined by distribute, with FAC=10,

according to strategy except following the first iteration. After the first iteration, the mesh is

always doubled.

After each iteration, the following information isdisplayed: the //2-norm of the free portion
of the gradient of the Lagrangian, the sum of constraint errors, objective function value, and inte

gration error of the integration algorithm ialg at the current solution. All of these quantities are
computed by est_errors. The first three values are estimates obtained using LSODA with a toler

ance set to about one thousandth of the integration error estimate. The control solution is plotted

after each iteration (although the time axis is not scaled correctly for free final time problems).

Additionally, following all but the first iteration, the change in the control solution from the

previous iteration and an estimate of the current solution error. Itj/j* - iflH„ are display.
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Notes

1. If solutions exhibit rapid oscillations it may be helpful to add a penalty on the piecewise
derivative variation of the control by setting the variable VAR in outer.m to a small positive value.

2. The factor by which distribute is requested to increase the integration accuracy after each
iteration can bechanged by setting the variable FAC in outer.m.

3. An example using outer is given in Session 4 (§3).

See Also: riots, distribute, est_errors, contro!_error.
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pdmin

Purpose

This is an optimization method based on the projected descent method. It is highly efficient but

does not solve problems with general constraints or more than oneobjective function.

The user is urged to check the validity of the user-supplied derivatives with the utility pro
gram check_deriv before attempting to use pdmin.

Calling Syntax

[u,x, J, inform, I_a, I_i,M] = pdmin( [xO, (fixed, (xOmin,xOmax)) ],u0, t,
Umin,Umax,params,[miter,(tol)],
ialg,(method),([k;(scale)]),(Disp))

Description of Inputs

The first six inputs are described in Table 03. The remainder are described here.

mi ter The maximum number of iterations allowed.

tol Specifies the tolerance for the following stopping criteria

l^.l/i/l/A.l<tol2/3(l+lf(77k)l),

/(»*)-/<"*-!X lOOtold + lf(uk)l).

•w*-«*-]loo<tOl,/2(l +11**10.).

4=0 ,VieAk,

where gk is the k-xb component of the derivative of /(•) in transformed coordinates,

Ik is set of inactive bound indices and Ak is set of active bound indices. Default:

^mach •

ialg Specifies the integration algorithm used by simulate.
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method A string that specifies the method for computing descent directions in the uncon

strained subspace. The choices are:

limited memory quasi-Newton (L-BFGS)
' steepest' steepest descent

' con j gr' Polak-Ribiere conjugategradient method
'vm' limited memory quasi-Newton (L-BFGS)

The default method is the L-BFGS method.

k This value is used to determine a perturbation with which to compute an initial scal

ing for the objective function. Typically, k is supplied from a previous call to pdmin
or not at all.

scale This value is used to determine a perturbation with which to compute an initial func

tion scaling. Typically, scale is supplied from a previous call to pdmin or not at

all.

Disp Disp = 0,1, 2 controls the amount of displayed output with 0 beingminimal out

put and 2 being full output. Default: 2.

Description of Outputs

The first two outputs are described in Table 04.

J A row vector whose (/ + 1)-th component is the value of the objective function at the

end of the /-th iteration. The last component of J is the value of the objective func

tion at the obtained solution.

I_a Index set of elements of [u(:); 4) that are actively constrained by bounds.

I_i Index set of elements of [«(:); 4] that arenotconstrained by bounds.

inform This is a vector with four components:

inform (1) Reason for termination (see next table).
inform (2) Function space norm of the free portion of V/(r/), rj = (u,4).
inform (3 ) Final step-size k = logXI logP where Xis the Armijo step-

length and p = 3/5.
inform (4) The valueof the objective function scaling.
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The possible termination reasons are:

inform(l) Cause of Termination.

Simulation produced NaN or Inf.
Normal termination tests satisfied.

Completed maximum number of iterations.
Search direction vector too small.

AH variables at their bounds andgoing to stay that way.
Gradient too small.

Step=size too small.
User test satisified (user test returned 2).

Description of Displayed Output

Depending on the setting of Disp, pdmin displays a certain amount of information at each itera

tion. This information is displayed in columns. In the first column is the number of iterations

completed; next is the step-size, X- pk, with kshown in parenthesis; next is lVf(n)lh which is
the norm of the gradient with respect to those decision variables that are not at their bounds; next

is a four (three if there are no upper or lower bounds) letter sequence of T's and F's where a T
indicates that the corresponding termination test, described above, is satisfied; next is the value of

the objective function; and in the last column, an asterix appears if the set ofindices correspond
ing to constrained variables changed from the previous iteration.

Extensible Features

Because pdmin isdesigned to be callable by other optimization programs, it includes three exten
sions that allow the user to customize its behavior. These extensions are function calls that are

made to user supplied subroutines at certain points during each iteration. They allow the user to
(i) construct the objective function and its gradients, (ii) specify termination criteria and perform
computations at the end of each pdmin iteration, and (Hi) add additional tests to the step-size
selection procedure. The use ofthe first two ofthese extensions is demonstrated in the program
augjagrng.

Extension 1. If the global variable USER_FUNCTION_NAME is defined in Matlab's workspace
and is a string containing the name of a valid m-file, pdmin will call that m-file, instead of simu

late, to evaluate the system functions and gradients. This can be used to construct a composite
function from several different calls to simulate. For instance, a penalty function can be formed
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to convert a constrained problem into an unconstrained problem. Thesyntax for theuserfunction
is

[fO,x,grad_u,grad_xO] = USER_FUNCTION_NAME(xO,u,t,ialg,action)

where the input and output variables are the same as for calls to simulate. See a_lagrng_fnc.m
for an example.

Extension 2. If the global variable USER_TEST_NAME is defined in Matlab's workspace and
is a string containing the name of a valid m-file, pdmin will call that m-file at the end of each iter

ation. The syntax for the user function is

user_terminate = USER_TEST_NAME (f0, x, u, grad_u, grad_xO, I_i, free_xO)

where I_i is a column vector indexing all elements of [u(:); 4] that are not actively constrained

by bounds and f ree_xO is the index set of free initial conditions. If the user test returns

user_terminate=l and the other termination conditions are satisfied, then pdmin will termi

nate. If user_terminate=2, then pdmin will terminate without regard to the othertermina

tion tests. This function can be used solely for the purpose of performing some operations at the

end ofeach iteration by always returning 1. See multiplier_update.m for an example.

Extension 3. If the global variable ARMIJO_USER_TEST is defined in Matlab's workspace
and is a string containing the name of a valid m-file. the function armijo, which is called by
pdmin to compute the Armijo step-length, will call that m-file in order toguarantee that the step-
length satisfies

ARMIJO_USER_TEST(j,x,xO,u,t,ialg,I_i,free_xO) <= 0'

where x and it are evaluated at the current trial step-length and I_i and f ree_xO have the same

meaning as for Extension 2. This extension can be used, for instance, in a barrier function algo
rithmto prevent trial step-lengths that are outside the region of definition of the barrierfunction.

Notes

The Armijo line search is discussed in Chapter 3. The following additional features are used in

the current implementation of pdmin.

1. A scaling for the objective function is computed using the objective scaling 2 described for

riots. The primary purpose of this scaling is to prevent an excessive number of function evalua

tions during the first line search.
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2. The step-length adjustment mechanism will stop increasing the step-length if k < 0 and and

the next increase in step-length results in an increase in the objective function.

3. If simulate returns NaN, the step-length will be decreased until simulate returns a valid

result.

4. Because of the coordinate transformation, the inner products in the termination tests are

inner-products in L2[a,b]. Thus the tests are independentof the discretization level.

Bugs

1. Control bounds can be violated if using splines of order p > 2 unless the coordinate transfor

mation is disabled by setting the variable TRANSFORM to zero in the code.
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riots

Purpose

This is the main optimization program in RIOTS. It can only be used if the userhas obtained one

of two nonlinear programming algorithms: CFSQP or NPSOL*. Both of these algorithms are
based on sequential quadratic programming (SQP) methods. CFSQP is a feasible point SQP

method and NPSOL is an active-set method based on an augmented Lagrangian merit function.

With CFSQP, riots can solve OCP in its most general version. With NPSOL, riots only allows a

single objective function. On the other hand, because NPSOL is a highly refined, commercial

package, it is much faster and more robust than CFSQP. Multiple objective functions can be han

dled indirectly using the transcription describe in Section 2.3.

The user is urged to check the validity of the user-supplied derivatives with the utility pro
gram check_deriv before attempting to use riots.

Calling Syntax

[u,x,f ,g,lambda2] = riots {[xO, (fixed, (xOmin,xOmax))) ,u0, t, Umin, Umax,
params,[miter,(var,(fd,(feasbl)))],ialg,
{ [eps,epsneq,objrep,bigbnd]),(scaling),
disp,(lambdal));

Description of Inputs

The first six inputs are described in Table 03. The remainder are described here.

miter The maximum number of iterations allowed.

var Specifies a penalty on the piecewise derivative variation* of the control to be added

to the objective function. Can only be used with first and second order splines.

Adding a penalty on the piecewise derivative variation of thecontrol is useful if rapid

oscillations are observed in the numerical solution. This problem often occurs for

singular problems [3,116] in which trajectory constraints are active along singular

CFSQP can be obtained for free by sending a request to Prof. Andn* Tits (andre@eng.umd.edu). NPSOL can be purchased
from Stanford Business Software. Inc.. 2680Bayshore Parkway. Suite304.Mountain View.CA 94043.(415)962-8719.

*The piecewise derivative variation is smoothed lo make itdifferentiable by squaring the terms inthe summation. The smooth
ing can also be accomplished ustng an /, approximation by changing the define'd variable LI inriots.c. However, the /| approxima
tion is not twicecontinuously differentiable and this can inhibit superlinear convergence.
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fd

feasbl

ialg

eps

epsneq

obj rep

bigbnd

scaling

disp

lambda1

arcs. The penalty should be ten to ten thousand times smaller than the value of the

objective function at a solution. See Chapter 4.5 for adiscussion of singular control
problems and the piecewise derivative variation of the control.

If a non-zero value is specified, the gradients for all functions will be computed by
finite-difference approximations. In this case Dh, Dg, and DI will not be called.
Default: 0.

(CFSQP only) If a non-zero value is specified, CFSQP will always check for con

straint violations during its line searches before evaluating objective functions.
Default: 0.

Specifies the integration algorithm used by simulate.

Overall optimization tolerance. For NPSOL, eps is squared before calling NPSOL.

See the SQP user's manual for more details. Default: 10"6.

Nonlinear constraint tolerance. Default: 10"4.

For CFSQP, for problems without equality constraints, optimization will terminate if

the relative change in objective function values is less than objrep. For NPSOL,

objrep indicates function precision. For both, a value of 0 causes this features to

be ignored. Default: 0.

A number large than the largest magnitude expected for the decision variables.

Default: 106.

Allowable values are 00, 01, 10, 11, 12, 21, 22. Default: 00. See description below.

Specify zero for minimal displayed output. Default: 1.

Only applies to NPSOL. Controls warm starts. Default: 0. See description below.

Description of Outputs

The first two outputs aredescribed in Table 04.

f The objective value at the obtained solution.

g Vector of constraint violations in the following order (N.B. linear constraints are

treated as nonlinear constraint for systemswith nonlinear dynamics):
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Table 05

CFSQP NPSOL

nonlinear endpoint inequality
nonlinear trajectory inequality
linearendpoint inequality
linear trajectory inequality
nonlinear endpoint equality
linear endpoint equality

linearendpoint inequality
linear trajectory inequality
linear endpoint equality
nonlinear endpoint inequality
nonlinear trajectory inequality
nonlinear endpoint equality

lambda2 Vector of Lagrange multipliers. This output has two columns if NPSOL is used. The

first column contains the Lagrange multipliers. The first m(N+ p- 1) components

are the multipliers associated with the simple bounds on u. These are followed by

the multipliers associated with the bounds on any free initial conditions. Next are the

multipliers associated with the general constraint, given in the same order as the con

straint violations in the output g. Last, for CFSQP, are the multipliers associated

with the objective functions. If NPSOL is being used, the second column of

lambda2 contains information about the constraints which is used by riots if a

warm start using lambdal is initiated (as described below).

Scaling

There are several heuristic scaling options available in riots for use with badly scaled problems.

There are two scaling methods for objective functions and two scaling methods for constraints.

These are selected by setting scaling to one of the two-digit number given in the following
table:

Table 06

scaling Objective Scaling Method Constraint Scaling Method
00 no scaling no scaling
01 no function scaling constraint scaling 1
10 function scaling 1 no constraint scaling
11 function scaling 1 constraint scaling 1
12 function scaling 1 constraint scaling 2
21 function scaling 2 constraint scaling 1
22 function scaling 2 constraint scaling 2

In the following. FACTOR = 10 if CFSQP is linked with riots and FACTOR = 20 if NPSOL is

linked with riots. Also. ^0 = (f/n.£o)-
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ObjectiveScaling 1: Foreach i- e q,„ the v-th objective function is scaled by

Yo = ;—77 : FACTOR .
1 + l/"(*o)l

Objective Scaling 2: Foreach v g q,„ let

5 = (l+l/7oU/(100IVr(n0)lee)

Srj = [i7o - SVfv(ij0))n ,

(8n,8n),

r=2 fx(lo + Sn0) - p(ij0) - <V/"(i70),8n0)i

where [•]# is the projection operator that projects its argument into the region feasible with respect
to the simple bounds on it and £, and / is the set of indices of /7() corresponding to components

which are in the interior of this feasible region (y is the distance along the projected steepest

descent direction, 8n, to the minimum ofa quadratic fit to /(•)). If y > 10"4, scale the v-th objec

tive function by y', - FACTOR y. Otherwise, compute y = IV/v(n0)l. If y > 10~\ set

yl = FACTOR y. Otherwise, use function scaling 1.

Constraint Scaling 1: For each v g qer the endpoint inequality constraints are scaled by

Yc, = TTTT 7T FACTOR .
max {l,l^((770)l}

foreach v g qee. theendpoint equality constraints are scaled by

&= /1 1v, mx FACTOR.max{ 1. lj?J,f(//(,)!}

and, for each v e q„. the trajectory inequality constraints are scaled by

rS = —n r^ ;rr factor .max{ 1,^ max^^\l),{tk,xk,uk)\)

Constraint Scaling 2: The trajectory constraint scalings are computed in the same way as for

constraint scaling method 1. For each v g qn. the endpoint inequality constraints are scaled by

Yii - y and, for each v e qw, the endpoint equality constraints are scaled by y^ - y where y is
determined as follows. If \g(n0))\ > 10~\ let

y=—]— FACTOR .

otherwise, iflVg(n0)ft > 10~\ let
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r =
i

FACTOR ,

otherwise do not scale.

Scaling will not always reduce the amount of work required to solve a specific problem. In

fact, it can be detrimental. In the following table, we show the number of iterations required to
solve some problems (described in Appendix B) with and without function scaling. All of these

problems were solved using second order splines on a uniform mesh with a discretization level of

N = 50. For both NPSOL and CFSQP, the problems were solved using scaling set to 0, 10,

and 20. No numbers are given for CFSQP in the last two rows since it was not able to solve the

Goddard problem. It should benoted that none of these problems is seriously ill-conditioned.

Table 07

NPSOL CFSQP
Problem ialg 0 10 20 0 10 20

LQR

Rayleigh w/o endpoint constraint
Rayleigh with endpoint constraint
Goddard w/o trajectory constraint
Goddard with trajectory constraint

2

2

2

4

4

5

18

24

69

22

7

17

29

29

17

7

14

19

45

19

5

25

19

13

24

26

11

19

17

For the last row, riots was called with var = 10"4. Constraint scaling did not have any affect on
the number of iterations for these problems. Discussion of scaling issues can be found
in [41,129,130].

Warm Starts

The input lambda1 controls the warm-starting feanire available with riots if it is linked with

NPSOL. There are two types of warm starts.

The first type of warm start is activated by setting lambdal=l. If this warm start is used,

the Lagrange multiplier estimates and Hessian estimate from the previous run will automatically

be used as the starting estimates for the current run. This is useful if riots terminates because the

maximum number of iterations hasbeen reached and you wish to continue optimizing from where

riots left off. This type of warm start can only be used if the previous call to riots specified

lambdal=-l or lambdal =l. Setting lambdal=-l does not cause a warm-start, it just pre

pares for a warm start by the next call to riots.
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The second type of warm start allows warm starting from the previous solution from riots

but interpolated onto a new mesh and isonly implemented for first and second order splines. It is

activated by providing estimates of the Lagrange multipliers in the first column of input

lambda 1 and the status of the constraints in the second column of lambdal. Typically,

lambda 1 is produced by the program distribute which appropriately interpolates the lambda2

output from the previous run of riots onto the new mesh. When lambdal is supplied in this

way, riots estimates H(rj), the Hessian of the Lagrangian at the current solution point, by apply

ing finite-differences to the gradients of all objective and constraint functions weighted by their

Lagrange multipliers (and scalings if a scaling option has been specified).

The estimate H(n) of the Hessian of the Lagrangian is computed by the program

compjiess This computation requires N+ p + nfKex0 system simulations (where nfrecx0 is the

number of free initial conditions) and twice as many gradient computations as there are objective

functions and constraints with non-zero Lagrange multipliers. Also, if a non-zero value for var

is specified, the second derivative of the penalty term on the piecewise derivative variation of the

control is added to the Hessian estimate. When p < 2, the computation takes advantage of the

symmetryof the Hessian by stopping the simulations and gradient computations oncethe calcula

tions start filling the Hessian above its diagonal. After H is computed, it is converted into trans

formed coordinates using the formula H = (M~],2)THM'J12, unless the transformation mecha
nism has been disabled.

Because NPSOL expects the Cholesky factorization of a positive definite Hessian estimate,

the following additional steps are taken. First, aCholesky factorization is attempted on/?. If

this fails (because H is not positive definite) the computation continues with the following proce

dure. A singular value decomposition is performed to obtain the factorization H = USVT, where

S is the diagonal matrix of singular values of H . Next, each diagonal element, cr,, of S is set to

Cj =max {a,,f^ach )• Tnen' we set H =USUT, which, because H =HT, makes all negative
eigenvalues of H positive while preserving the eigenstructure of H . Finally, the Cholesky factor

ization of H is computed.

Notes

1. Since NPSOL is not a feasible point algorithm, it is likely that intermediate iterates will vio

late some nonlinearconstraints. If riots is linked with NPSOL and, during a Iinesearch, NPSOL

tries to evaluate a function which produces a floating point error, it will try backtracking to a
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smaller step-length'. Using this mechanism, it is possible to force NPSOL to keep iterates within
a prescribed region by forcing a division by zero* when iterates are outside that region. Typi
cally, this should be done in conjunction with a constraint such that if the constraint violation is

too great, a division by zero will occur. In this way, it is possible to specify the allowable amount

of constraint violation. Some margin for constraint violations should be allowed so that superlin-

ear convergence is not inhibited.

If riots is linked with CFSQP, the iterates will always be feasible with respect to the con

straints if f easbl is set to a non-zero value.

2. Because of the coordinate transformation, the inner products in the termination tests corre

spond to inner-products in L2[a.b]. Thus the tests are independentof the discretization level.

3. When linked with NPSOL, riots will produce a file called npsol.opt in the current working

directory.

4. On return from a call to riots, the variable opt_program will be defined in the Matlab

workspace. It will contain the string 'NPSOL' or 'CFSQP' according to which SQP method is

linked with riots.

Bugs

1. Control bounds can be violated if using splines of order p > 2 unless the coordinate transfor

mation is disabled. This is done by defining the pre-compiler symbol TRANSFORM to zero in the

code.

2. riots uses the Matlab MEX function mexCallMATLAB to make calls to simulate. There is

a bug in this function that interferes with the operation of ctrl-C. This problem can be circum

vented by compiling simulate directly into riots (see instructions on compiling riots).

3. The full warm-start feature, which requires the computation of the Hessian using finite-

differencing of the gradients, is not allowed if the input f d is set to a non-zero value.

Thebacktracking feature of NPSOL requires apatch for thelinesearch subroutine in NPSOL (see instructions for compiling).
T Adding the statement 1.00.0; to theuser-supplied object code willnot beallowed by most compilers and thestatements

zero=0. 0; 1.0. zero; will probably not causea floating pointerror if compileroptimization is turnedon (and it could result in a
bus error for the exception handling routine). Insteaduse zero=C. 0; zero = 1.0/zero;.
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7. UTILITY ROUTINES

There are several utility programs, some are used by the optimization programs and some are
callable by the user. Those utility programs of interest to the user are described in this section.
These are:

controLerror

distribute

est errors

sp_p!ot

transform

232

Computes an estimate of the norm of the error of the computed solution. If

ijN is the computed solution and if is a local minimizer for problem OCP, the
solution error is lnN* - iflH,.

Redistributes the integration mesh according to one of several mesh refinement

strategies including one which simply doubles the mesh. The control spline
defined on the previous mesh will be interpolated onto the mesh. The order of

the spline is allowed to change.

Returns an estimate of the global integration error for the fixed step-size

Runge-Kutta methods and uses the variable step-size integration algorithm to

obtain accurate measures of the objective functions, constraint violations and

trajectories. It also returns the function space norm the free portion of the gra

dient of the augmented Lagrangian which is needed by controLerror.

Plots spline functions.

Computes a matrix which allows the L2 inner product of two splines to be

computed by taking the inner product of their coefficients.
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control error

Purpose

This function uses values computed by est_errors for solutions of OCP on different integration

meshes to estimate lnN - 77%, for the current solution ijN = (uN, 4N) using results from Chapter
4.4.

Calling Syntax

[error,norm_zd]=control_error(xOl, ul, tl, zel,x02,u2,t2,ze2,{Tf))

Description

This program compares the two solutions nNi = (ul,x01) and nN2 = (u2,x02), corresponding

to the mesh sequences tl and t2 to produce an estimate of lnN, - 77*1^ where if = (u, f) is a
solution for OCP. For free final time problems, Tf should be set to the duration scale factor (see

transcription for free final time problems in §2). Only the first columns of xOl and x02 are used.

The inputs zel and ze2 are the norms of the free gradients of the augmented Lagrangians evalu
ated at 77^ and nNz, respectively, which can beobtained from calls to est_errors.

The output error is the estimate of lns, - n*lw, where

a+ih-u )Tf

•»7\: - »7*lff: -1*02 - f l\ + J lu2(t) - u*(t)l\dt ,

with u2() the spline determined by the coefficients u2. The output norm_zd is lnN, - ijN lw,
where

a+[b-a)Tt

lTjN2-nNil2H2=lx02-x01ll+ J lu2(t)-ux(t)l\dt ,
u

with !!,(•) and u2() the splines determined by the coefficients ul and u2, respectively.
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Example

Let w, be the coefficients of the spline solution for the mesh tl and let u2 be the coefficients of
the spline solution for the mesh t2. Let Xx and X2 be the Lagrange multipliers (if the problem
has state constraints) and let /, and /2 be the index set ofinactive control bounds returned by one
ofthe optimization programs (ifthe problem has control bounds). The Lagrange multipliers and
the inactive control bound index sets are also returned by the optimization routines. Then we can

compute the errors, e] = lijNf - ifl„2 and e2 = lnNi - iflH2 as follows:

» [int_errorl,norm_gLal] = est_errors(xO,ul,tl,1,ialgl,lambdal,II);
» (int_error2,norm_gLa2) = est_errors(x0,u2,tl,1,ialg2,lambda2,12);
>> error1 = control_error(x0,u2,t2,norm_gLa2,xO,ul,tl,norm_gLal,1);
>> error2 = control_error(xO.ul,tl,norm_gLal,xO,u2,t2,norm_gLa2,1);

See Also: est errors.
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distribute

Purpose

This function executes various strategies for redistributing and refining the current integration
mesh. It also interpolates the current control and Lagrange multipliers corresponding to trajectory
constraints onto this new mesh.

Calling Syntax

[new_t,new_u,new_lambda, sum_lte]=distribute(t,u,x, ialg, lambda,
n_free_xO,strategy,
{FAC),{new_K),{norm))

Description of Inputs

t Row vector containing the sequence of breakpoints for the currentmesh.

u The coefficients of the spline defined on the current mesh.

x Current state trajectory solution.

ialg Integration algorithm tobe used during next simulation oroptimization.

lambda Current Lagrange multiplier estimates from riots. Specify lambda= [ ] if you
do not need new multipliers for a warm start of riots.

n_free_xO Number of free initial conditions. This value only affects the extension of

Lagrange multipliers needed for a warm start of riots.

strategy Selects the redistribution strategy according to the following table:
strategy Type ofRedistribution

1 Movable knots, absolute local truncation error.
2 Fixed knots absolute local truncation error.
3 Double the mesh by halving each interval.
4 Just change spline order to new_K.
11 Movable knots, relative local truncation error.
12 Fixed knots, relative local truncation error.

For more information on these strategies, see Chapter 4.3.2. The quasi-
uniformity constant in equations (4.3.13) and (4.3.24) is set to 8 = 50. In Step 2
of Strategy 2 (and 12), o = 1/4.

FAC For use with strategies 1.2.11 and 12. If specified, the number of intervals in the

new mesh ischosen toachieve an integration accuracy approximately equal to the
current integration accuracy divided by FAC. If FAC= [ ] or FAC=0, the number
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of intervals in the new mesh will be the same as the previous mesh for strategies
1 and 11. For strategies 2 and 12, the relative errors ek will be used without

being pre-weighted by FAC.

new_K Specifies the order of the output spline with coefficients new_u. By default,

new_K is the same asthe order of the input spline with coefficients u.

norm Specifies the norm used to measure the integration error on each interval. If

norm=0, then

ek = DIte/,12 , k = 1 N .

If norm=l, then

ek =1116*0... * = 1 N .

The quantity lte* is an estimate of the local truncation error produced by the Jfc-th

integration (see description of simulate, form 7). Default: 0.

Description of Outputs

new_t Contains the sequence of breakpoints for the new mesh.

new_u Contains the coefficients of the spline of order new_K (if specified) interpolated
from u onto the new mesh.

new_lambda Two column matrix of Lagrange multiplier estimates and associate constraint sta

tus indicators. Those multipliers (and indicators) corresponding to control

bounds and trajectory constraints are extended to the new mesh. This is for use

with the warm start facility of riots and only workswith NPSOL-linked riots.

sum_l te An (n +1)-column vector of the accumulated local truncation errors produced by
the integration:

N .

sum_lte(i)= £ ej. , i = l,..,n+ 1 ,
k=l

where e\ is as computed above. The (n + l)-th component represents the accu

mulation of local truncation errors for the integrand of the first objective function.

Notes

1. The algorithm used in strategies 1 and 2 does not take into account the presence, if any, of

trajectory constraints. Strategies 2 and 12 include a mechanism that tends to add mesh points at

times, ornear times, where trajectory constraints are active. The input lambda must be supplied
for this mechanism to be used.
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est errors

Purpose

This function performs a high accuracy integration with LSODA to produce estimates of various

quantities. One of these quantities is used by controLerror to produce an estimate of

Calling Syntax

[int_error,norm_gLa,J,G,x,Ii] = est_errors([xO,{fixed)],u,t,Tf,
ialg,lambda,{I_i))

Description of Inputs

xO

fixed

u

t

Tf

ialg

lambda

Ii

Initial conditions of the current solution. When one or more initial conditions are

free variables, set xO=x (: , 1) where x is the trajectory solution returned byone
of the optimization programs.

An /i-vector that indicates which components of xO are free variables. If

fixed (i) =0 then xO (i) is a free variable. Default: all ones.

Current control solution.

Sequence of breakpoints for the current integration mesh on the (nominal) time

interval [a,b].

The duration scale factor. For fixed final time problems, set Tf=1.

Integration algorithm used to produce the current solution.

Vector ofLagrange multiplier estimates (one or two columns depending on which
optimization program produced lambda).

Index set of controls and free initial conditions that are not at their bounds

(returned by one of the optimization program).

Description of Outputs

int_error int_error (i), / = 1 n+ 1, is an estimate of the global integration error.

i-*"iv.yv-n —a-'(/>)L of the current solution computed by summing the local
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truncation errors produced by the integration method specified by ialg. The

local truncation errors are obtained by a call to simulate (form 7). If the discrete

solver or the variable stepsize integration routine is being used, int__error is

set to a vectors of zeros. If this is the only output requested, the rest of the calcu

lations are skipped.

norm_gLa This is an estimate of the H2 norm of the free gradient of the augmented

Lagrangian LcX evaluated at the current solution 77 = (u,4). The H2 norm of the

free gradient of the augmented Lagrangian is the norm restricted to the subspace
of controls and initial conditions that are not constrained by their bounds. Let

grad_Lu be the gradient of the augmented Lagrangian with respect to controls,

grad_LxO be the gradient of the augmented Lagrangian with respect to initial

conditions and Ma be the spline transformation matrix computed by transform.

If Ii is the index set estimating the free portion of

77 = [u ( :) ;xi (free_xO) ] (see below), then the free norm if computed as
follows:

lVfree^-.;.(>7)l//: = gLM(Ii) '*gL(Ii) ,

where

gLM = [grad_Lu ( : )M;1 ; grad_LxO (free_xO) ]

and

gL = [grad_Lu(:) ; grad_LxO(free_xO) ] .

In forming the augmented Lagrangian, X= lambda (: , 1) and c, = U,l. The

quantity IVfreeL(/l(^)lW; is used by controLerror to estimate the error

^N-jf\Hl.

J An estimate of the objective function at the current solution. This estimate is produced
using LSODA.

G An estimate of the sum ofconstraint violations. This estimate isproduced using LSODA.

x The solution trajectory as producedusing LSODA.

Ii Set of indices that specify those time points in the mesh t that are contained in the estimate

/ of subintervals in [a,b] on which the control solution is not constrained by a control

bound followed by the indices of any free initial conditions that are not constrained by a

bound. This index set is used by controLerror. For the purpose of demonstration,
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consider a single input systems (m = 1) with no free initial conditions. Let

' -, u .['t-h'*+i].
* € I_l

where /0 = r i and tN+2 = r^+,. •/ is an estimate of the time intervals on which the control

bounds are inactive. From / , the index set Ii is set to

Ii = {k I/, g 7 ) .

When there are multiple inputs, this procedure is repeated for each input. When there are

free initial conditions, the indices of the unconstrained components of xO (free_xO) are

added to the end of Ii.

Notes

1. If the user does not supply the derivative functions Dh and Dl then it will be necessary to

change the statement IALG=5 to IALG=6 in the file est_errors.m.

See Also: control error.
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sp_plot

Purpose

Thisprogram allows theuser to easily plot controls which arerepresented as splines.

Calling Syntax

val = sp_plot(t,u,{tau))

Description

Produces a plot of the spline with coefficients u defined on the knot sequence constructed from

the integration mesh t. The order, p, of the spline is presumed equal to length (u) - N + 1. If

tau is specified, u is not plotted, just evaluated at the times tau. Otherwise, u is plotted at 100

points with the same relative spacing as the breakpoints in t. Second order splines can also be

plotted using the Matlab command plot instead of sp_plot.

If the input tau is not given, then the output is val= [t;uval] where t are the data

points and uval are the data values; uval has the same number of rows as the input u. If the
input tau is given, then the output is just val=uval.

Example. This example plots a first, second and third order spline approximation to one
period of a sinusoid using ten data points. The splines are produced using the commands in the
Matlab Spline Toolbox.
>> t=[0:2*pi/10:2*pi];
» spl = spapi<t, t (1:10) ,sin ft(1:10) )) ;
» [dummy,ul] = spbrk(spl);
» knots2 = augknt(t,2); knots3 = augknt(t,3);
» sp2 = spapi(knots2,t,sin(t));
» [dummy,u2] = spbrk(sp2);
>> tau = aveknt(knots3,3);

» sp3 = spapi(knots3,tau,sin(tau));
>> [dummy,u3] = spbrk(sp3);
» sp__plot (t,ul) ; sp_plot (t,u2); sp_plot (t,u3) ;
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transform

transform

Purpose

This function produces thetransformation matrix Mff. It is called by riots and pdmin to generate

the spline coordinate transformation for the controls.

Calling Syntax

Malpha = transform(t,order)

Description

Given two splines ux and w2 of order p = order with coefficient ax and a2 defined on the knot

sequence with breakpoints given by t. (ul,u2)L2 = trace{a^Maa{). This function works with
non-uniform meshes and with repeated interiorknot points.

The output, Malpha is given in sparse matrix format. The transform matrix for p = 1,2,3,

or 4 has been pre-computed for uniformly spaced mesh points. Also, if the inputs to the preced

ing call to transform, if there was a preceding call, were the same as the values of the current

inputs, then the previously computed transform matrix is returned.

Example

This example generates two second order splines and computes their L2 inner-product by inte

grating theirproduct with the trapezoidal rule ona very fine mesh and by using Ma.
» t = [0:.1:1];

» knots = augknt(t,2);

» coefl = rand(1,11); coef2 = rand(1,11);
>> spl = spmak(knots,coefl);

>> sp2 = spmak(knots.coef2);
>> tau = [0:.0001:1];

>> ul = fnval(spl,tau);
» u2 = fnval(sp2,tau);
>> inner_prodl = trapz(tau.ul.*u2)

inner_prodl = 0.2800

>> Malpha = transform(t,2);
>> inner_prod2 = coefl*Malpha*coef2'

inner_prod2 = 0.2800

>> inner_prodl-inner_prod2

ans = 1.9307e-09
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8. INSTALLING, COMPILING AND LINKING RIOTS

This section describes how the components ofRIOTS are compiled and linked together. Some of
the specific details pertain to operation on a Sun SparcStation running SunOS 4.1 and may have
to be modified for other systems. Some ofthe compiling and linking procedures discussed below
use the shell script cmex that comes with Matlab. Please refer to the Matlab External Interface
Guide and 'SMATLAB/bin/README.mex' for details about cmex.

The following files are supplied with RIOTS:

Integration Routines MEX programs and utilities M-files

adams.c

discrete.c

.mexrc.sh

cmex.link

a_Jagrng_fhc.m
armijo.m

euler.c

lsoda_dummy.c
exist_in_workspace.c
LBFGS.c

augjagrng.m
check_deriv.m

RK3.c

RK4.c

m_sys_link.c

NEWJinesearch.f
check_grad.m
comp_hess.m

trapezoids riots.c conj_grad.m
simulate.c control_error.m
system.h distribute.m

utility.c est_errors.m

utility.h eval_fhc.m

extend.m

filMndices.m

gestimate.m
multiplier_update.m
outer.m

pdmin.m
ppual.m
project.m

sortjambda.m

sp_plot.m
transform.m

There are also a few other miscellaneous files: Contents.m, cmex.link, RIOTS.m,

RIOTS_demo.m, RIOTSdeml.m, RIOTSdem2.m, RIOTSdem3.m, RIOTSdem4.m, RIOTS-

dem5.m and RIOTSdem6.m. Additionally, there are examples of user code for several optimal
control problems and a C-code template file in the subdirectory 4RIOTS/systems'. There is also

an executable shell script, 'RIOTS/RIOTS_install.SunOS4' that performs most of the steps

required to compile RIOTS. Read the comments at the top of that file for instructions. Also see

the file 'RIOTS/README'.
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SOME RULES FOR COMPILING.

There are several different programs that must be compiled before using RIOTS. Most of these

programs are written in C, but some are written in Fortran. There are a few points that must be

observed in order to ensure that all of the programs are compiled in a consistent manner.

• Use the compiler option '-cg87' because, on Sun platforms, Matlab comes linked with the old-

style math library.

• Make sure that the alignment of double words is the same for all programs. That is, either all

programs should be compiled with double words aligned on 8 byte boundaries, or none

should. For the Sun supplied compilers, double alignment on 8 byte boundaries can be speci

fied with the option '-dalign'. If the option '-fast' is specified, double alignment on 8 byte
boundaries is automatically turned on.

• Make sure when compiling any Fortran code that the meaning of the Fortran real corresponds

to the C double (8 bytes), and similarly for integers (4 bytes). This is the default behavior for

the Sun Fortran compiler.

• Some problems were noticed when riots.c was compiled with optimization level -02 and riots

was used with the variable step-size integration algorithm. Optimization level -03 did not

produce any problems.

UNPACKING RIOTS.

The RIOTS package is distributed in a compressed UNIX tar file called RIOTS.tar.gz. The fol
lowing procedureuncompresses this file and extracts RIOTS.

Step J. Create a directory for RIOTS called 'RIOTS' by typing the following command at
the UNIX prompt %€k\

% mkdir RIOTS

Step 2. Uncompress RIOTS.tar.gz using the freely available GNU program gunzip*.
% gunzip RIOTS.tar.gz

Step 3. Extract the RIOTS files.

% tar xvf RIOTS.tar

After RIOTS has been extracted, the main programs will be located in the directory 'RIOTS' and

the integration routines will be in the subdirectory 'RIOTS/drivers'. The user should alsocreate a

subdirectory, such as 'RIOTS/systems', for storing system functions and any system data saved

from Matlab. Matlab should be started from this systems directory. Access to the functions in

You can obtain gunzip via anonymous flp toprep.ai.mit.edu. It is located inthe file /pub/gnu/gzip-1.2 4tar.
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RIOTS can thenbe enabled by typing at the Matlab prompt

» path(path,'.. ')

Note that it is not necessary for the 'systems' directory to be a sub-directory of the 'RIOTS'

directory. If it is not, thepath command should specify the full pathname for the 'RIOTS' direc
tory.

Important: Included with RIOTS is a file called '.mexrc.sh' which must exist in the directory

'RIOTS' in order for cmex to work properly with the SunOS 4.1 operating system. This file

should also becopied into the user's 'systems' orhome directory. For other systems, '.mexrc.sh'

should either be deleted or modified according to the instructions in '$MAT-

LAB/bin/README.mex'. The shell variable 'MATLAB' should be set to the Matlab root direc

tor)'. For example,

% setenv MATLAB /usr/local/matlab

If you are running a Bourne shell, you will need to use the export command in place of setenv.

Compiling simulate.

Before compiling and linking the programs the constitute simulate, the user must construct the

library 'drivers.a' which contains the numerical integration routines. Most of the integration rou

tines come supplied with RIOTS. The exceptions are the variable step-size integration routine
LSODA and the linear algebra package, LINPACK, to which LSODA makes calls. If LINPACK

is not already present on your machine , instructions for obtaining it can be received by sending
email to 'netlib@ornl.gov' with no subject and the following message:

send index from Unpack

You must compile LINPACK in double precision and convert it into a library called 'liblin-

packd.a' using the UNIX commands 'ar' and 'ranlib'. You can also obtain LSODA by sending
email to 'netlib@ornl.gov' with the following message:

send lsoda.f from odepack

LSODA consists of fourteen files. Once the LSODA programs are received, they should be com
piled and collected into a library called 'Isoda.a'. This can be accomplished with the following
commands typed at the UNIX prompt:

% £77 -c -fast -03 -cg87 *.f

% ar rev Isoda.a *.o

% ranlib Isoda.a

' One place to look for LINPACK is in/usr/local/lib/liblinpackd.a
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% rm *.o

The resulting file 'Isoda.a' should be placed inthe subdirectory 'RIOTS/drivers'.

Alternatively, you can use the dummy program lsoda_dummy.c, supplied with RIOTS, to
avoid having to obtain and compile LSODA and LINPACK (see below). However, you will not
be able to use the variable step-size option of simulate. Also, est_errors, which requires
LSODA, cannot be used.

Compiling the integration routines. There are six integration programs included with RIOTS.
They are: discrete.c, euler.c, trapezoidx, RK3.C, RK4.C and adams.c.

These programs must becompiled and collected into a library called drivers.a as follows:

Step 1: Compile each integration routine. For example, to compile euler.c, use the following
command at the UNIX prompt,

% cc -c -fast -03 -cg87 -I.. -I$MATLAB/extern/include euler.c

where SMATLAB is the rootdirectory for Matlab.

Step 2: Create the drivers.a library with the following UNIX commands,

% ar rev drivers.a *.o

% ranlib drivers.a

If you do not have LSODA and LINPACK, you must also compile the program
lsoda_dummy.c, after creating drivers.a, in the same way the other integration pro
grams were compiled in Step 1. Then type

>> mv lsoda_dummy.o Isoda.a

The following command, typed at the UNIX prompt will compile program simulates in the
'RIOTS' directory.

% cc -c -I$MATLAB/extern/include -DMATLAB_MEX_FILE -fast simulate.c

Additionally, theprogram utility.c must be compiled:

% cc -c -I$MATLAB/extern/include -fast -03 utility.c

Compiling the User-Supplied System Code

To link simulate, the user must supply object code that defines the optimal control problem. In
the example above that object code was called 'my.system.o'. The following UNIX command
will create *my_system.o' from a file called *my_system.c\

% cc -c -fast -03 my_system.c
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It is a good idea to use a high level of optimization when compiling the user code since the user
functions will be called many times during the course ofeach simulation. If the user-supplied
system code will be supplied as M-files, you must compile the file *m_sysjink.c' instead. This
will create the object code file 'm_sys_link.o' which should then be linked with simulate. This

object code makes the appropriate Matlab call-backs to the system m-files.

Linking in the User's Optimal Control Problem. The next step is to create the
executable MEX program simulate by linking in the user-supplied system code. This executable

should be created in the user's 'systems' directory. This step must be repeated each time a new
optimal control problem is to be solved. In this example, the system code is called
'my_system.o'. First define the environment variable RIOTS_DIR with the name of the

'RIOTS' director}' and then link.

% setenv RIOTS_DIR full_path_name_of_R10TS

% cmex.1ink my_sys t em.o

You needn't set the RIOTS_DIR variable ifyou are going to perform the linking in the 'RIOTS'
directory.

Compiling riots.

Before compiling riots, one ofthe Sequential Quadratic Programming (SQP) codes NPSOL (ver
sion 4.0) or CFSQP (version 2.1) must be procured*. The efficacy of riots depends directly on
the underlying optimization program; riots is much more effective with NPSOL than with

CFSQP. Once obtained, the SQP program should be compiled according to the instructions
included with its user's manuals. If CFSQP is being used, the result should be two object files,
'cfsqp.o' and 'qld.o'. For NPSOL, the result will be a library called 'optlib.a'. In keeping with
standard UNIX conventions, the name of this file should be changed to 'libopt.a' using the UNIX
command 'mv'.

When using NPSOL, the following changes should be made to the Fortran program 'npsol-
subs.f before compiling NPSOL:

1. Change the line

if (ncdiff .eq. 0) then

to

if (ncdiff .It. 0) then

CFSQP can beobtained for free by sending a request lo Prof. Andnf Tits (andre@eng.umd.edu). NPSOL can be purchased
from Stanford Business Software. Inc.. 2680Bayshore Parkway. Suite 304. Mountain View. CA 94043. (415) 962-8719.
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and change the line

if (nfdiff .It. 0) then

to

if (nfdiff .eq. 0) then

2. Add the line

open( ioptns, file = 'npsol.opt', status = 'OLD' )

before the line

call opfile( ioptns, nout, inform, npkey )

3. Replace the subroutinenpsrch with the code in the file 'NEWJinesearch.f'.

Next, riots can be compiled and linked using oneof the following commands.

For NPSOL, use:

% cmex -03 CASE=f -DNPSOL -L$NPSOL riots.c LIBS='-lopt $LIBS'

where SNPSOL is the director)' where 'libopt.a' is located.

For CFSQP. use:

% cmex -03 -I$CFSQP riots.c LIBS='$CFSQP/cfsqp.o $CFSQP/qld.o $LIBS'

where SCFSQP is the CFSQP directory.

Direct linking. With riots compiled and linked with the proceeding commands, it will make

calls to simulate using the Matlab procedure mexCallMATLAB. There are two drawbacks to

this. First, calling simulate via this Matlab procedure is somewhat slow. Secondly, there isa bug
in mexCallMATLAB that prevents ctrl-C from causing an interrupt. To avoid these problems,
riots can be compiled with simulate linked in directly. The following steps are required for
direct linking:

Step L Make a direct version of 'simulate.o' using

% cc -c -I$MATLABextern/include -fast -DDIRECT \

-o simulate_direct.o simulate.c

Step 2. Compile and link riots.

% setenv RI0TS_DIR full_pathj\ame_of_RlOTS

For NPSOL use:

% cmex CASE=f -03 -DDIRECT -DNPSOL -DSTATIC $RIOTS_DIR/riots.c \

LIBS="my_system.o $RIOTS_DIR/simulate_direct.o $RIOTS_DIR/utility.o \

$RIOTS_DIR/drivers/drivers.a $RIOTS_DIR/drivers/lsoda.a \

/usr/tools/lib/liblinpackd.a $NPSOL/libopt.a"'$LIBS'
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For CFSQP use:

% cmex CASE=f -DDIRECT -03 -I$CFSQP $RIOTS_DIR/riots.c \

LIBS="$RIOTS_DIR/simulate_direct.o $ my_system.o CFSQP/cfsqp.o \

$CFSQP/qld.o $RIOTS_DIR/utility.o $RI0TS_DIR/drivers/drivers.a \

drivers/Isoda.a /usr/tools/lib/liblinpackd.a"'$LIBS'

Step 3. Remove the file *simulate_direct.o\

% rm simulate_direct.o

The disadvantage to linking simulate directly into riots is that the size of the executable riots

will be much larger. Also, in order for calls to simulate that are made outside of riots to work

properly, simulate must still be compiled and linked with the user's system code according to the

instruction above for compiling simulate. Even if simulate is not also called directly by the user,

there are many other programs in RIOTS that make calls to simulate. These programs will not

work if simulate is not compiled and linked separately from riots.

Compiling the Other MEX Programs.

There two other MEX programs which must becompiled by typing at the UNIX prompt:

% cmex -03 LBFGS.c

% cmex exist_in_workspace
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The work in this thesis presents a theoretical foundation for the solution of optimal control

problems using Runge-Kutta integration methods. This theoretical foundation underpins the

implementation of our software toolbox, RIOTS, which has been used to solve several challeng

ing optimal control problems. However, the current version of RIOTS has shortcomings in some

important areas. What follows is a discussion of areas in which RIOTS could be improved and
suggestions for how to do so.

Automatic Differentiation of user-supplied functions. To solve an optimal control problems

using RIOTS, the user must supply code for each of the functions and their derivatives used to

thatdescribe that problem. A common source of errors is the computation of function derivatives

which can be quite complicated for nonlinear systems. Currently, RIOTS has two programs to

check derivative calculations and to help locate any errors in these calculations. But. it would be

much more useful to have derivative functions provided automatically using automatic

differentiation [131,132]. Not only would this prevent errors in the derivative calculations, but it

would spare the user the job of programming the derivatives.

Extension to Large-Scale Problems. The size of the mathematical programming problem cre

ated by discretizing an optimal control problem depends primarily on the discretization level N.

The conjugate gradient and L-BFGS implementations of the projected descent algorithm pre

sented in Chapter 3 are well-suited for handling very high discretization levels. These methods

are used in the program pdmin. However, pdmin can only handle state constraints indirectly
through penalty terms. The main program in, riots, is based on sequential quadratic program

ming and can handle state equality and inequality constraints. However, riots is not well-suited

for high discretization levels because at each iteration the SQP algorithm computes a Hessian

update using the BFGS formula and solves a dense quadratic program (QP) at each iteration to
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obtain asearch direction. We list here several possible ways to overcome this problem:

• Instead of computing the Hessian estimate using the BFGS method, a Hessian estimate

can be provided using the limited memory L-BFGS [86,94] method. Still, some means for

efficiently solving the QP basedon this estimate would be needed.

• The QP can be solved efficiently by taking into account the structure of the problem
that gives rise to the QP. Specifically, the QP that is solved at each iteration is actually alin
ear/quadratic (LQ) optimal control problem. This structure can be used todevelop solution
methods for the QP that are much more efficient than standard QP algorithms. One

approach is based on the method in [93] for recursively computing the Newton's direction

for unconstrained problems in order N time and the differential dynamic programming
method in[133-137]. The extension of this method to problems with control constraints is

presented in[138,139]. Finally, an algorithm for the recursive computation of Newton's

direction for problems with state constraints is developed in [140]. The main drawback to

all of these methods is that they have only been developed for Euler's method with piece-
wise constant controls. It is likely that these methods can be extended to any fixed step-size
Runge-Kutta method and to piecewise polynomial representation for the control. It is prob
ably much more difficult to extend these methods to spline representations of the control

(except linear splines which can be treated as piecewise linear functions with linear equality
constraints at the breakpoints). But the main advantage of splines over piecewise polynomi
als is the smaller number of parameters. This advantage is not so important if the work to
solve the QP is only order N.

Another approach is to consider the two point boundary value problem (BVP) that

arises necessary conditions for optimality of asolution to the LQ problem. This BVP is lin

ear with constraints. Numerical methods based on multiple shooting for solving such
BVP's are quite advanced. The solution of this BVP is the required search direction.
Examples of this approach can be found in[5,6,24,114].

• Another major area of research involves discretizing the optimal control using colloca
tion (fixed step-size, implicit Runge-Kutta) methods. In this procedure, finite-dimensional

approximations of both the controls and states are parameterized and their parameters are
used as the decision variables in the resulting mathematical programming problem. In this

method, the differential equations describing the system dynamics are accounted for by
requiring them to be satisfied at collocation points. There are two major disadvantages to
this approach: (i) the number of decision variables in the mathematical program is dramati
cally increased and (ii) the collocation conditions introduce a huge system of nonlinear
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equality constraints into the problem.

There are, however, two major advantages that come with this approach. First,

because thedecision variables include the system states, simple bounds on the state trajecto

ries or endpoints become simple bounds on the decision variables. These bounds can be

handled very efficiently without having to compute gradients and, furthermore, feasibility

with respect to these bounds can be easily maintained even with infeasible point optimiza

tion methods. Second, the Hessian of the Lagrangian is block diagonal because the second

derivatives of the objective and constraint functions with respect to the control and state

parameters are all block diagonal. Additionally, the Jacobian of the constraints is a banded

matrix. Thus, the QP is sparse and can be solved using sparse linear algebra. A complete

software package for discretizing optimal control problems using collocation and solving

the discretized problems using a sparse SQP method is described in [38,105]. One obstacle

with this approach that has not been fully resolved is how to obtain a sparse Hessian esti

mate. The method in [38] obtains the Hessian using sparse finite-differences. This is rea

sonably efficient. Alternatively, but less attractively, the user can be required to supply sec

ond derivatives so that the Hessian can be computed exactly. But for both of these choices,

the fact that the Hessian is not, in general, positive definite causes serious difficulties in the

solution of the QP. A new SQP algorithm which used the true Hessian without requiring

any modification to the QP has been developed [141]. Another possibility is to use trust

region methods. One avenue that has not yet been explored is to use the LANCELOT

package [142] which is a trust region method for minimizing an augmented Lagrangian.

Finally, another approach which we began to work on with some initial success is to attempt

to produce a block diagonal, positive definite estimate of the Hessian using a modified

BFGS update. Generally, the work on sparse Hessian updates has been disappointing. But

the block diagonal structure of the Hessian is a specific case whose updates can. we believe,

be obtain using the partitioned quasi-Newton update method [143,144] modified to handle

the possibility of non-positive-definite updates for individual blocks. This modification can

be either to skip such updates altogether or to use the Powell modification [145]. If the Hes

sian is positive definite, oreven positive semi-definite, the QP can be solved by a sparse QP

algorithm such as BQPD which is based on the algorithm in [146] and is available from that

author. For surveys on the solution of large-scale optimization algorithms, the reader is

referred to the following articles [147-149]. Finally, to obtain sparse Hessian and Jacobian

matrices, the controls (and state trajectories) need to be represented as piecewise discontinu

ous functions (e.g. piecewise polynomial) rather than splines. This has the side-benefit of

producing a transform matrix, MA-, that is block diagonal and trivial to compute.
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TVajectory constraints. Our current method ofcomputing functions gradients with respect to
thecontrol is based on adjoint equations. There is one adjoint equation for each function. This is

quite inefficient when there are trajectory constraints because for each trajectory constraint there
is, in effect, one constraint function per mesh point. Thus, for an integration mesh with TV + 1

breakpoints, roughly N adjoint equations have to be solved to compute the gradients at each point
of a trajectory constraint.

There are two approaches for greatly increasing the gradient computations for trajectory
constraints. These two approaches can be used in conjunction with each other. First, it is really
only necessary to compute gradients at points, tk, where the trajectory constraints are active or

near-active. The other mesh points should be ignored. Algorithms for selecting the active or

almost active constraint are present in [99,150] along with convergence proofs. The second

approach uses the state-transition (sensitivity) matrix, rather than adjoint variables, to compute

gradients. The state-transition matrix is the solution ofa matrix differential (or difference) equa
tion. The solution ofthis equation requires the same amount ofcomputation as solving n adjoint
equations, where n is the number of state variables. But this equation is solved only once for a

given control, w, regardless of how many gradients are required. Thus, if there are more than n
gradients that need to

than adjoint variables.

gradients that need to be computed it is more efficient to use the state-transition matrix rather

Stabilization of Iterates. One of the main limitations of the current implementation of RIOTS
is that it is not well-equipped to deal with problems whose dynamics are highly unstable. For

such problems, the iterates produced by the optimization routines in RIOTS can easily move into

regions where the system dynamics "blow-up" if the initial control guess is not close to a solu

tion. For instance, a very difficult optimal control problem is the Apollo re-entry problem [4].

This problem involves finding the optimum re-entry trajectory for the Apollo space capsule as it
enters the Earth's atmosphere. Because of the physics of this problem, slight deviations of the

capsules trajectory can cause the capsule to skip off the Earth's atmosphere or to bum up in the
atmosphere. Either way, once an iterate is a control that drives the system into such a region of

the state-space, there is no way for the optimization routine to recover. Moreover, in this situa

tion, there is noway to avoid these regions of the state-space using control constraints.

This problem could be avoided using constraints on the system trajectories. However, this

is a very expensive approach for our method (not for collocation-based methods), especially at

Here we are not taking into account the fact that the the adjoint equation for a trajectory constraint at time ik only has to be
solved from time /; (instead of »iV) to time /n.
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high discretization levels. Also, for optimization methods that are not feasible point algorithms,
this approach still might not work. An intermediate solution is possible because it is really only
necessary tocheck the trajectory constraints ata few points, called nodes, in the integration mesh.

This can be accomplished as follows. Let tk be one such node. Then define the decision variable

x k0 which will be taken as the initial condition for integrating the differential equations starting
at time tk. This x A0 >s allowed to be different than the value xk ofthe state integrated up to time
tk. However, to ensure that these valuesdo, in fact, coincide at a solution, a constraint of the form

gk(u) -x k0-xk = 0 must be added at each node. Note that, for nonlinear systems, gk(u) is a

nonlinear constraint. The addition of these node variables allows bounds on that states to be

applied at each node point. This procedure isclosely related to the multiple shooting method for
solving boundary value problems and is an intermediate approach between using a pure control
variable parameterization and a control/state parameterization (as in collocation methods).

See[151 ] fora discussion of node placement formultiple shooting methods.

Diagonalization Strategies. In order to create a truly efficient algorithm for providing solu
tions of a specified accuracy to optimal control problems, the discretization strategy, an "outer
loop", must bedeveloped for increasing the discretization level in a systematic way. Such a strat

egy must be able to predict the integration and control solution errors, the amount of work

required per iteration of an optimization algorithm in solving the discretized problem and the
number of iterations required to obtain a solution of the discretized problem to a given accuracy.
Using this information, the outer loop must specify at each outer iteration the discretization level,

the order of the integration method, the order of the control representation, and the number of

inner iterations to perform so that the overall amount of work required to solve the optimal con
trol problem is minimized. Such a diagonalization strategy was developed in[57] for solving
semi-infinite optimization problems. There are three major obstacles obstructing the use of that

algorithm for optimal control problems. First, the diagonalization scheme proposed in [57] is

based on linearly convergent optimization algorithms. However, we would like to use super-
linearly convergent algorithms such as SQP methods for the inner loop. Second, the errors esti

mates needed by the diagonalization strategy, such the control solution error, are much harder to

predict for optimal control problems. Currently, only first orderbounds on the difference between

the solution of the discretized problems and the true solution are known for general optimal con
trol problems. This may be too conservative, especially when mesh redistribution schemes are to

be used. Finally, an underlying assumption for the effective use of a diagonalization strategy is
that using the solution from one outeriteration as the starting point for the next outer iteration, so-

called "warm starts", will result in a significant reduction in the number of inner iterations

needed. This may not always be true. For example, the program riots is based on an SQP
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algorithm that generates Hessian information using a BFGS update. Super-linear convergence
can only begin once enough Hessian information is gathered so that the search directions are

close to Newton's direction. Since restarting the SQP algorithm at a different discretization level

causes the Hessian information to be lost, many iterations will be used just to obtain the requisite
Hessian information, even when the starting point is close to the solution. Currently, our imple
mentation of riots has the option of computing an initial Hessian approximation by finite-
differences before starting the inner iterations. However, since the Hessian is dense, this takes a

tgreat deal of computational effort . Another possibility is to somehow lift the Hessian informa

tion obtained from the previous outer iteration into the new, higher-dimensional space. We have
tried several approaches fordoing this and have not met with any success.

Mesh Refinement. The mesh refinement strategies presented in Chapter 4 are not suited for all
situations. In particular, they contain no mechanism for directly placing mesh points at or near
locations where control and/or trajectory constraints switch from active to inactive or vice versa.

But. these are the locations where the solutions are likely to be least accurate. One simple, static
adjustment strategy for placing mesh points near constraint switches is tosimply place extra mesh
points wherever such constraint activity transitions occur. Extra mesh points can also be placed
throughout regions where the trajectory constraints are active. A version of this approach has
been added to Strategy 2 (and 12) of the utility program distribute in the RIOTS package. How
ever, changing the mesh also causes the solution to change. Thus, placing a mesh point where a

constraint becomes active for one grid is probably not the correct point for a new grid. Also,

accurate placement of mesh points may not be sufficient if the control solution loses smoothness

at a constraint transition. For instance, if splines are used for the control representation, then it is

impossible to achieve better than first order accuracy in the overall solution unless repeated knots
are used at the point ofdiscontinuity in the solution. Adynamic adjustment approach for locating
mesh points near discontinuities is through the use of super-nodes [34] in the discretization.

These super-nodes are, essentially, movable locations ofextra spline knots that are positioned dur
ing theoptimization to allow discontinuities in the spline or itsderivatives.

It must also be remembered that the location ofcontrol discontinuities depends not only on
the errors due to the control representation, but also the integration error. To circumvent this

complication, it might be beneficial to employ a the two-phase approach [4,24,41] in which a

In the discussion of extensions to large-scale problems, wediscussed toalternatives for solving the QP to obtain a search di
rection. The first involves a recursive procedure for finding Newton's direction. The second involves using collocation as discretiza
tion because it produces a sparse Hessian. In bothcases, the required second derivative information comes in small block matrices
Thus, for these approaches, finite-differencing, either onthe first iteration orall iterations, isa feasible approach.
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rough solution is first obtained using adirect optimization method. In these references, the rough

solution provides structural information and a good initial guess for a more accurate solution

obtained by solving the two point boundary value problem arising from the necessary conditions

for optimality. Alternatively, super-nodes could be used in conjunction with a variable step-size

integration method to refine the solution in a second phase direct approach similar to the first

phase. The use of the variable step-size integration routine would remove the effect that moving

the super-nodes has on the integration accuracy. Thus, the location the optimization algorithm

chooses for the super-nodes in order to minimizes the objective function will coincide with the

discontinuities in the true solution. The number of super-nodes needed can be ascertained by

inspection of the rough solution obtained in the first phase.

Also, trajectory constraints are currently evaluated at discrete mesh points. In the phase II

operation, trajectory constraint satisfaction can be more accurately guaranteed by constructing

interpolating Hermite polynomials for the state in question over each mesh interval and requiring

these polynomials to satisfy these constraints. Such a procedure is adopted in [104] and [24].

Other Issues and Extensions. Some other useful features for RIOTS would include:

• A graphical user interface. This would allow much easier access to the optimization pro

grams and selection of options. Also, important information about the progress of the optimiza

tion such as error messages and warnings, condition estimates, step-sizes, constraint violations

and optimality conditions could be displayed in a much more accessible manner.

• Dynamic linking. Currently, the user of RIOTS must re-link simulate for each new optimal

control problem. It would be very convenient to be able to dynamically link in the object code for

the optimal control problem directly from Matlab (without having to re-link simulate). There are

dynamic linkers available buttheydo not work with Matlab's MEX facility.

• For problems with dynamics that are difficult to integrate, the main source of error in the

solution to the approximating problems is due to the integration error. In this case, it would be

useful to use an integration mesh that is finer than the control mesh. Thus, several integration

steps would be taken between control breakpoints. By doing this, the error from the integration is

reduced without increasing the size (the number of decision variables) of the approximating prob
lem.

• The variable transformation needed to allow the use of a standard inner product on the coef

ficient space for the approximating problems adds extra computation to each function and gradi

ent evaluation. Also, if the transformation is not diagonal, simple bound constraints on the con

trols are converted into general linear constraints. Both of these deficits can be removed for opti

mization methods that use Hessian information to obtain search directions. If the Hessian is
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computed analytically, then the transformation is not needed at all. If the Hessian is estimated

using aquasi-Newton update, it may be sufficient to use the transformation matrix MN or M„ as
the initial Hessian estimate (rather than the identity matrix) and dispense with the variable trans

formation. We have not performed this experiment; it may not work because the the updates will
be constructed from gradients computed in non-transformed coordinates .

• It may be useful to allow the user to specify bounds on the control derivatives. This would

be a simple matter for piecewise linear control representations. Also, currently the only way to

specify general constraints on the controls is using mixed state-control trajectory constraints.

This is quite inefficient since adjoint variables are computed but not needed for pure control con
straints.

• Currently there is no mechanism in RIOTS for handling systems with time-delays or, more

generally, integro-differential equations [153]. This would be a non-trivial extension.

• Add support for othernonlinear programming routines in riots.

• There have been very few attempts to make quantitative comparisons between different

algorithms for solving optimal control problems. The few reports comparing
algorithms [154,155], involve a small number of example problems, are inconclusive and are out

of date. Therefore, it would be of great use to have an extensive comparison of some of the cur

rent implementations of algorithms for solving optimal control problems.

With appropriate choice of #,,. quasi-Newton methods are invariant with respect toobjective function scalings[9.S.l52], but
not coordinate transformations (which is variable scaling).

256 Direction for Future Research Chap. 6



APPENDIX A

In this Appendix we collect a few results used in the analysis of Sections 4 and 5. We will

continue to use thenotation of Section 4: A= 1//V, tk = &A, and rkJ = tk + c,A.

Lemma A.l. For representation Rl, suppose that Assumptions 3.1 (a), 4.1' and 4.3 hold. For

representation R2, suppose that Assumptions 3.1 fa), 4.1', and 4.6 hold. For any bounded subset

ScB, there exists a k < oo such that for any 77 = (£,m) € S nHN, \Sk\ < kA2 for all k e ^
where

^^"(^-^il +AtMU^Uty). ke 9£, (A.l)
i=\

with *"(•) the solution of the differential equation (2.3.1) and u[rkJ] defined by (2.4.6e) for repre
sentation Rl or (2.4.11c) for representation R2.

Proof: Let b} and d} be as defined in (2.4.10) and, for./' e r, let ij e / where / is given by
(2.4.4a). Then, writing a() = xn( •), since the solution of (2.3.1) satisfies

x(tk+]) = x{tk)+ h(x(t), u(t))dt, we see that

Sk =A£vK-v(/A).//[rA,,])- \'M h{x(t),u{t))dt

= I J h(x(tk)MrkJj])dt - I h(x(t\u(t))dt , (A.2a)
j=i *V</,-, j=i JtL+dH

because dj-dH = Afc,, w[rA.,,J = wfr*,] for all / e /,-, d0 = 0 and, by Assumption 4.T.

dr = A2y=i ^> =^ZJ=i bj = A. Since ^ - d,_, >0by Assumption 4.1', we have that

\Sk\ <£ I WnXf*).^.,,]) - h(x(t),u(t))\dt

< 2- *r,[l.v(/A.) - jr(/)l + lu[ru] - u(t)l]dt , {A ->b)

where *-| < 00 is as in Assumption ?>.\(a). Now, for / e [tk. /A+l], thereexists k2 < 00such that
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lx(tk) - x(t)l <[' \h(x(tlu(t))ldt <J"**' K2[lx(t)\ +])dt (A3)

by Assumption X\(a) and the fact that S is bounded. Also because S is bounded, if follows from

Theorem 3.2(H) that there exists L< oo such that l.v(/)l < x-3[l£l + 1] < L. Thus, for t e [/*, f*+iL
f'4-1

\x(tk)-x(t)l< ^ K2[L+\]dt =Ak2(L +\). Next, for representation Rl, for any ke 9i

; e r and / e [r* +^y_i, tk+dj), \u[rkij]-u(t)\ <at^A, where kv is used in (2.4.15a), since, by

construction, i? e U}y is a Lipschitz continuous polynomial on [/*,/*+)) with Lipschitz constant
kv independent of N, rkJ} e [tk,tk +A] by Assumption 4.3, and 0£ dj <Afor ; = 0 r by
Assumption 4.1' which implies that [tk+dhXjk+dj) c [tkjk +A). The same holds for repre
sentation R2 since ue L2N is constant on / e [tk +dhX>tk +dj) and ru. e [tk +dj_lytk +dj] by
Assumption 4.6. Therefore,

'' rh+d, r pik+(t.
iSk\ <£ I v,(a'2(L +1)+KV)Adt =kA £ f dt = kA2 , (A 4)

7=1 J/,+rf,_, y=l J/t+</,_,

where v = V|(a-2(L + 1 ) + kv). Thiscompletes ourproof. D

Remark A.2. The result in Lemma A.l can be shown to hold even if the constraints on \uKTj\
in the definition (2.4.15a) of O.v were removed if h(x,u) = h(x) + Bu and the RK method is
order r. Starting from equation (A.2a), we have

** =Zr ' h(x(tk))-h(x(t))dt+AJ^bjBu[Tkj)- \'^ Bu(t)dt . (A 5a)
7=1 Ju+d,.] ;=i J,k

The first term is 0(A~) by the argument already presented. For the remaining part, we see that

( \
L - rA

.dt
7=1

A^bju[TkJ]- u(t + tk)
7=1 Jl)

B = 0, (A.5b)

since a p-th order Runge-Kutta method, p > r, integrates the equation .v = //(/ + tk) exactly for
any r-th order polynomial u.

D

The next lemma concerns the functions Kki - Kj(xk,a)k) of the RK method defined by
(2.4.3a,b). The proof of this result is easily obtained from the proof for Lemma 222A in [8, p.
131].

Lemma A.3 Suppose Assumptions 3.1(0,1 holds. Let 5cB be bounded. Then there exists

L<oo and A>* <oo such that for all N> A/*, n e Sn HN, k e 9i and i e s,

lKkj-h(xk,u[TkJ])H<LA. (A.6)

D
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Next, we present a proof of Lemma 4.10.

Proof of Lemma 2.4.10.

(i) Convergence. Let 77 = (£,w) e S^HN and, for k € fl£ let ek=xnk-xn(tk). Then,
l^ol = 0 < kA and by adding and subtracting terms,

eM ^xl +AtbjK^-xHtk+O

=ek +̂ (tk) -xHtM) +At bih(xHtk), u[ru]))+ A£bUk4 -h(x"(tk\ u[TkJ))\ (A.7)
The norm of the second term in this expression is bounded by x-jA2 by Lemma A.l where
*-, < 00. Using Lemma A.3, Assumption 3.1(0;, and the fact that 16/1 < 1by Assumption 4.1', we
concludefor the third term that, there exists k2 < 00such that

&t4KkJ-Hxn(tk).u[TU})"

^A£ \Kkj - h{xnkt u[rkJ])l +AJ \h(xl u[tu)) - h(xHtkl u[rk J)l
»=i 1=1

< A~Ls + AK2slek\ . (A.8)

Thus, for all A- e ^

l^+,l < (1 + K2As)\ek\ + v3A2 . (A.9)

where *-, = a*, + Ls. Solving (A.9), we see that for all it e i\J
teAl < (1 + k2As)nle0l + a-./A < a-A. This proves (2.4.18a).

(ii) Rate of Convergence. We prove (2.4.18c) in two steps. First suppose that

#v = HN = IR" x LN and let 77, = (£.//,) e Sn /yj^, be given. The expansion based on higher-
order derivatives (see [8]) needed to prove (2.4.18c) requires smoothness of h(x,u) between time

steps. The stated assumptions on the piecewise smoothness of W|() provide this smoothness.
Alternatively, the result can also be shown tohold without this assumption on w, if the differential

equations describing the system dynamics are linear and time-invariant with respect to u since the
RK method provides exact quadrature integration for u e LN in this case. In either case, using
the same type of reasoning as in the proof of Lemma A.1, we conclude that there exists k < 00.

independent of 77, such that (2.4.18c) holds for representation Rl. Next, to prove (2.4.18c) for

representation R2, let HN = H2N = IR" x L?N. Let n2 = (£,m2) e^ tf2v be given and let
771 = (£«i) g HlN with //, = (VLN)-\V^N(u2)) so that V{A(//,) = V^iV(m2). Then for any
f €[0,1],
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\xni(t)-xn-(t)l =I I' h(x'h{s),ul(s))-h(x',*(s)%u->(s))dsl
Jo

<I \'h(xni(s)) - h(x"*{s)) +B(ui(s) - u,(s))dsl

<a-, f lx"*is) - xnHs)\ds +If B(ut(s) - u2(s))ds\, (A.lOa)
•'o Jo

by Assumption 3.1 (a). Using the BelIman-Gronwall lemma, we conclude that for any / e [0,1],

lx"*V) - *"=(/)! <k^IBU f'(w,(5) - u,(s))dsl. (A. 10b)

Now. let i\t) =*/,(/), / e [0.1], c'(0) =4and z2(r) =u2(t), t e [0,1], z2(0) =£. Let z{ and fj,
A- g f\>e the computed solution of;'(/) and z2(t), respectively, using the RK method under con
sideration. We note that zk = z2k for all ke fA^since V{<A.(w,) = V^JV(w2). Then, since u, is an
r-th order polynomial, any /Mh order RK method, p > r, integrates zV) exactly. Hence,

:J. = -V*). for all Ag 9i Also, from (2.4.3a,b).

-I+1 = zi• + 2- fy"2ir*.iJ = ^* + 2- J w:(-y)^ = z'(tk+]), (A.10c)
»=l ;=! J n+dj.i

since r^- g [tk+dj_lttk +dj) (by Assumption 4.6) with //2() constant on these intervals, and
dr = Aby Assumption 4.1 \ Since z\ = f2. we must have

zlUk)-z2(tk) = zlk-zi=0, VJfcetf. (A.lOd)

Hence, we conclude that

I f*(m,(j) - i#2(j))<fcl =l2'(/*) - z2(tk)\ =0. (A.lOe)

Therefore,

l*"=('*) " •*?» * l**2(/*) - Jr"'(/A)l +!*"(/*) - JrJ'l +Ijfj' - jffl <*-'W, VA€ tf, (A. 100

where we have used (A. 10b) and (A.lOe) for the first term, the fact that \xni(tk) - x^l< k2Mp
since (2.4.18c) holds for 77, g S n H]N by the first part ofthis discussion for the second term, and
the fact that xnk] = x^12 since u\[Tki] = u2[rkJ] for the third term. Thus (2.4.18c) holds for repre
sentation R2 under the stated conditions. n
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Lemma A.4. Suppose that Assumptions 3.1, 4.1' and 4.3 hold for representation Rl and that

Assumptions 3.1, 4.1', and 4.6 hold for representation R2. For any ScB bounded, there exists

a- <oo and TV* < oo such that for any 77 g S^ H# and N > A/*,

\pk-pvitk)l£j;, ke {0 AM , vcq, (A.14)

where /?''(•) is the solution to the adjoint differential equation (2.3.6c) and {pvk }k=G is the solu

tion to the corresponding adjoint difference equation (2.5.5d).

Proof Proceeding as in the proofof Lemma 4.10(i), if we define ek+x = pjf+, - /?"(/*+!) we can

show that

l?*l < L,leA.+1l + L2A2 , Ag 9i, (A.15)

where Lh L2 < 00, using (i) the fact that

Pk = Fx(xkJtk)TpM = p\\i +Aj;i)l/],(.vt,«[y/pt,| + 0(A2) , (A.16)
/=i

(ii) Lemma A.l with h(x(tk).u[Tkj]) replaced by -hx(x(tk),u[Tkj])Tpv(tk+i) and (Hi) the result
of Lemma 4.10(/j that \x(tk)-xk\ < a-A for all Ag 9i Now, by Assumption 3>.\(b) and Lemma

4.10(0, there exists a~| < 00 such that

1**1 = \pvs - pv(\)\ < KAZ<x\)T - CAZ.x(]))T\ < k{\xn - x(\)l < k2A , (A.17)

where k2 - \~k} . Thus, solving (A.15) we conclude that for all A g $£

BfAl<(Z.,)AVvl + ^2'A. (A.18)

which, with (A.17), proves (A.14). D
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APPENDIX B

This appendix describes several optimal control problem examples that are used in Chapter
3 and the RIOTS user's manual.

Problem: LQR [42].

minJ(i/)= f 0.625.y2 +0.5a-m +0.5i/2<//

subject to

x = \x + u ; x(0) = 1 .

This problem has an analytic solutiongiven by

«*(/) = -(tanhd -/) +0.5)cosh(l -0/cosh(l). / g [0,1]

with optimal cost f - e2 sinh(2)/( 1+ e2)2 = 0.380797.

Problem: Rayleigh [26,156].

f25 1 7
mm J(u)= x\ + u-dl

J0
subject to

*\{t) = x2{t) A|(0) = -5

x2(t) = -*,(/) + [1.4 - 0. \4xl(t))x2(t) +4u(t) x2(0) = -5

A constrained version of this problem is formed by including the state constraint

.v,(2.5) = 0.
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Problem: Bang [3, p. 112].

subject to

and

min J(u, T) = T
u.T

a-, = x2 ; x,(0) = 0 , jti(7) = 300

x2 = m ; jc2(0) = 0 , a-2(T) = 0,

-2<w(/)< I , Vt e (0,7).

This problem has an analytic solution which is given by 7* = 30and

0 < ; < 20 20 < t < 30

/*(') I -2

x*(t) ,2/2 - r + 60; - 600

x*(t) / 60-2/

Problem: Obstacle [78].

subject to

Appendix B

min J(u) = 5.v,(2.9)2 + .v^(2.9)2

•vi=.v2 -v,(0) = I

.v2 = u-0. 1(1 +2.v2).v2 .v2(0)= 1

-1 <//(/)< 1 , Vt g [0.1]

l-9(.v,(/)-l)2-
x2(t)-0.4}

0.3
<0, Vt e [0,1]

-0.8-.v2(r)<0, V;e(0.1]
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Problem: Goddard Rocket, Maximum Ascent [157].

maxJ(u,T) = h(T)
u.T

subject to:

v =-(//- D(/j, v)) - -^ , D(/j, v) = \ CDApQv2eP(]-h) v(0) = 0

h = v /7(0) = 1

1
'" = - - u m(0) = 1 ; m(T) = 0.6

0<w(/)<3.5, V/e[0,7].

where p = 500, CD = 0.05 and Ap0 = 12,400. The variables used above have the following
meanings:

v vertical velocity

h radial altitude above earth (Ii = 1 is earth's surface)

m mass of vehicle

u thrust

c specific impulse (impulse per unit mass of fuel burned, c - 0.5)

p airdensity (p = p0efl(l~h))

q dynamic pressure (q = \ pv2)
D drag

The endpoint constraint m(T) = 0.6 means that there is no more fuel left in the rocket. Another

version of this problem includes the trajectoryconstraint

Aq(t)< 10, Vt e [0,7].

This is a upper bound on the dynamic pressure experienced by the rocket during ascent.
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Problem: Switch [3, pp. 120-123,37].

min J(u) = | | u2 dt
J0 -

subject to

x = v ; x(0) = 0, jc(l) = 0

V = W ; V(0)= I , V( I ) = - 1

jr(/)-L<0, V; €[0,1],

with L = 1/9. This problem has an analytic solution. For any L such that 0 < L < 1/6,

the solution is f = ~ with

Appendix B

0 < / < 3L 3L < / < 1 -3L 1-3L</<1

"*(/) -ft^-A) 0 -£<»-£>
v*(/) H-3I)2 0 (l-£)2
•x*(r) L(l-(l-£)3) L L(l-(!-#)')
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