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Abstract

We are researching a new paradigm for cad which aims to support
the early stages of mechanical design well enough that designers are
motivated to use the workstation as a conceptual design tool. At the
heart of our approach is shape synthesis, the computer generation of
part designs. The need for such design automation arises from the fact
that many mechanical parts can be defined by two kinds of geometry:
features that are critical to its function (application features), and the
material that merely fleshes out the rest of the part {bulk shape). Ap
plication features are most often associated with contact surfaces of
the part, for example, a bore for a bearingor a mountingsurfacefor a
motor. They are the high-level entities in terms of which the designer
reasons about the design. Bulk shape must obey certain constraints,
such as noninterference with other parts, minimum allowable thickness
of the part, etc., but is somewhat arbitrary.

We are developing a system wherein the designer inputs the appli
cation features, along with topological constraints, degrees of freedom,
and boundary volumes, then the bulk shapes of the parts are syn
thesized automatically. Overall economy is enhanced by reducing the
amount of input necessary from the designer, by providing for more
complete exploration of the design space, and by enhancing manu-
facturability and assemblability of the component parts. This paper
presents the functional requirements of such a system, and discusses
preliminary results.

Keywords: Concurrent Design, ShapeSynthesis, ComputerAided
Design, Design Automation.



1 Introduction

Today's mechanical CAD programs require a user to specify a design using
mostly explicit geometry. However, a CAD application that relies on explicit
geometric input is not well matched to the design process and thus is usually
relegated to the task of design documentation rather than a true aid to
designers [1]. In the early stages of design, only a fraction of the geometric
elements are known, yet solid modelling software requires models to have
physically realizable shapes, even for simple visualization. At any stage of
design, routine changes such as resolving interference between two parts may
require extensive alteration to the geometric database—a laborious process
for the designer.

Not only is it time consuming to edit explicit geometry, it has been noted
that geometry alone is incomplete as a design specification language [2]. Af
ter a design is complete, much valuable information is not represented. It is
difficult to decide what can be changed, what parts of the design are crucial,
and why certain decisions were made in the first place. In fact, a major impe
tus for feature recognition research is the inference of knowledge lost during
the design process [3]. A method of specification that facilitates the design
process and is richer in information is necessary as a foundation for future
mechanical CAD systems. Further, if it is to be useful, this method of spec
ification must have a way of automatically resolving itself into a consistent
design that is expressed in explicit geometry.

Approaches to better specification paradigms can be roughly grouped
into geometry-based and artificial intelligence (AI) based. The geometry-
based approaches combine pieces of geometry into groups and augment them
with higher level information. These are generally classed as Feature Based
Design methods. The term feature is subject to a variety of interpretations.
In its broadest definition, "a feature is an element used in generating, analyz
ing, or evaluating a design." [3] Design-with-features approaches are similar
to solid modellers in the level of automation they provide. They still require
that parts be explicitly defined by a combination of features—the empha
sis is on recording more information than just geometry. In contrast, AI-
based paradigms usually seek to provide automation by reasoning in terms
of higher-level entities like machine components. They include constraint
satisfaction systems and knowledge-based systems. These methods tend to
be domain dependent (e.g. for designing helical gears), and do not handle
the geometric design well, if at all [4]. For example, an AI system might
determine the required size of a bearing, or select an appropriate motor, but
rarely is consideration given to designing appropriately shaped parts to hold



that bearing or motor in place.
A new approach that holds promise is based on the realization that any

mechanical part is defined by two kinds of geometry: features that are criti
cal to its function (application features), and the material that merely fleshes
out the rest of the part (bulk shape). Several authors have made this obser
vation [1, 4, 5]. Shapiro and Voelker [6] introduce a new view to interpret
mechanical function in terms of energy exchanges and to consider some key
portions of geometry as energy ports. These are the discrete subsets of a
system's physical boundary through which it interacts with its environment.
Energy ports on a mechanical part exist at contact surfaces, such as the
internal surface of a bearing bore. Their shape is usually dictated by the
nature of the contact (e.g. once a specific bearing has been selected, the di
mensions of the bore are implied). Thus, the geometries of the energy ports
are fully specified, and can be considered to be the application features of
the part to be designed. In other words, an application feature is a known
geometric solution to a local problem.

In a typical design cycle, the geometries of the application features are
known by the designer before that of the bulk shape. A missing link in
current approaches to design automation is the automatic synthe
sis of bulk geometry. Since a part's function is determined by its appli
cation features, it is possible to automate the synthesis of the bulk shape,
using the application features as a design specification. A few authors have
begun to explore shape synthesis on these terms. DufTey and Dixon [7] auto
mate the design of cross sections for extruded beams given load and support
points and forbidden areas. Graham and Ulrich [8] automate the design of
2-D bending patterns for sheet metal parts using path planning and iterative
refinement. Given application features and paths, Shimada and Gossard [9]
generate skinning boundaries by solving for the shape of a deformable curve
in a potential energy field. In this paper we present a paradigm for
integrating shape synthesis into the design environment.

In the system we are designing, the interface is a feature-based design
environment wherein the user manipulates application features directly. All
reasoning about the design is provided by the user. Synthesis of bulk shapes
is provided by a shape synthesis engine. Alternatively, one could imagine
decoupling the shape synthesis engine from the user interface for use as an
agent in a system of collaborating software agents. In that case reasoning
about the design may be provided by other agents.

In our system, user input takes the form of interactively specified ap
plication features, design constraints, manufacturing process information,
prefabricated vendor parts, and ranges of motion. Higher-level information,



such as the kinds associated with design-with features, is not required by
the shape synthesis engine. It requires only that a geometric representa
tion be extractable from each feature, that each feature's membership in a
specific part be indicated, and that the relative motions of those parts be
available. Part geometry need not be completely specified by the
user. Much of the geometry of the design is then synthesized automatically
by the program.

In contrast to currently available CAD modellers, this approach will strongly
support the early stages of design (conceptual design), where widely varying
concepts are explored. There are several advantages of such a system over a
conventional solid modeller:

• Far less tedium is imposed on the designer because the need for explicit
detailed geometric specification is greatly reduced.

• Rapid design space exploration is facilitated and thus can be much
more thorough.

• Manufacturing process knowledge can be applied at the part synthesis
stage to yield parts that are cheaper and faster to manufacture.

• Design of the assemblysequence can influence the shape synthesis pro
cess and vice versa.

• The design is "live." If a subdesign is dropped into a larger context or
assembly, interferences and conflicts can be automatically resolved.

• A measure of design intent is implicitly encoded. Less documentation
and explanation is needed to pass a design from one designer to another
because the design is represented in a more functional way.

1.1 A Design Example

To illustrate the utility of this application of shape synthesis, we describe
a design example. Suppose a design specification requires that a tool have
a linear motion along a given axis over a given range (see figure 1). This
is the only design requirement; any other parts introduced will exist solely
to support this single function. The designer knows that there must be a
linear bearing with its axis parallel to the tool's. Further, she knows that
certain connectivity relationships exist: one side of the bearing must be
rigidly coupled to the tool, the other side to the machine baseplate. These
relationships imply the existence of glue parts (shown in dashed lines in
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Figure 1: A design example.

the figure), whose sole function is to hold the primary parts fixed in proper
orientation to each other.

In the design system we envision, the designer would proceed as follows:
Since she knows there must be a linear bearing, she selects one from an on
line catalog of off-the-shelf parts. She then interactively positions it in three-
dimensional space relative to the baseplate, and indicates that a part must
connect the two. At this point a glue part is automatically synthesized (B in
the figure) and displayed showing the bearing mounted to the baseplate. In
addition, the synthesized part has the appropriate mating holes and doesn't
interfere with the linear bearing throughout the range of its motion. Further,
it is manufacturable by the currently selected process, say milling with a
three-axis, numerically controlled milling machine. If she decides that the
part should be a little more rugged, she increases the minimum allowable
thickness for the part and it is automatically resynthesized.

The designer next chooses a tool from the on-line catalog and positions
it in space. She selects the linear bearing and the tool to be connected and
a part is automatically synthesized that mounts the two (A in the figure).
Finding that the tool must be repositioned, the designer drags it to the
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Figure 2: A specification and seven conforming designs.

correct place. As she does so the glue part is resynthesized to accommodate
the new position and avoid interferences.

With this design stage completed, this subassembly can be imported into
a higher-level assembly. As it is positioned in the machine, there may be
several points of interference that must be resolved. Synthesized portions
of parts in the assembly and subassembly can be automatically adjusted to
eliminate many of these, minimizing the burden on the designer.

1.2 Observations

Our enthusiasm for this new paradigm is based on several observations:

• During conceptual design exploration, only the application features are
interesting, e.g. bearing bores, bolt patterns, and load contact points.

• The bulk shape of a part determines much about the manufacture of
the part and vice versa.

• Every part design starts with an initial guess. The refinement of this
design depends on the relative importance of manufacturing costs, part
performance, etc.

The first observation, as Shapiro and Voelker [6] point out, is that in a
typical design cycle the geometries of the application features are known by
the designer before that of the bulk shape. In other words, during conceptual
design exploration, only certain details of each part are interesting—the
application features. The rest of the shape of the part, the bulk shape, is much



more arbitrary. It must obey geometric constraints such as connectivity and
noninterference with other parts, but this allows an infinite variety of actual
shapes.

Consider the example in figure 2, which shows specification for a 2-D
mechanical part and several conforming designs. In this example, a part
is needed with several holes and a curved edge (the application features),
and there is an illegal region that it must avoid. Strength requirements
dictate a minimum thickness of material around each hole and behind the

curved edge (dark shading). The curved edge contacts some object during
operation, which gives rise to the illegal region (light shading). There are
infinitely many part designs that satisfy this specification, and seven such
solutions are shown. They all share the same application features, yet differ
in their bulk shapes. (See also figure 6.)

A second observation is that the bulk shape of a part determines much
about the manufacture of the part and vice versa. In many cases, a designer
will choose the bulk shape of a part based on knowledge of manufacturing
considerations. A shortcoming of using a conventional solid modeller (or even
sketching on the back of an envelope) is that since the designer is forced to
give some shape to each part, she introduces a bias about how that part is
likely to be manufactured long before it is desirable to do so. For example,
if a part is initially modelled as though it will be milled, it becomes difficult
to alter the CAD model to show the part as it would be if stamped and bent
from sheet metal.

Another fundamental manufacturing issue is the choice of stock from
which the part will be made. There might be an alternative between hogging
the part out of a single block versus welding it from bars and plates. Even
the simple flat-plate part in figure 2 can be manufactured in many different
ways. Design (b) could be made easily on a three-axis milling machine with
mostly x and y cuts. If the scale of the problem is larger, design (h) would
make more efficient use of stock. Designs (e) and (f) might be appropriate
for stamping or if weight is to be minimized. At very large scales, design
(g) could be made from bent and welded bars or box-section beam. Ideally,
the designer would be able to browse through various manufacturing options
at any point in the design process, thus freeing the conceptual phase from
such concerns. Conventional CAD systems offer no support for exploring the
design variations necessary to accommodate this.

Our final observation is that all part designs require an initial guess. De
pending upon the domain, this guess will get refined in different ways. A
component in the landing gear of an aircraft, for example, will be subject
to iterations of finite element analysis and shape revisions until a satisfac-



tory strength to weight ratio is achieved. In other domains manufacturing
and assembly concerns dominate. In high-volume products, only the most
cost-efficient processes are practical, like injection molding and sheet metal
stamping. The nature of the chosen process will dictate the bulk shape of
the parts.

On the other hand, a large class of design problems are best satisfied by
parts with simple shapes because these are quick to manufacture with pro
cesses like milling. Examples include prototypes, custom laboratory equip
ment, tooling, jigs, fixtures and even low-volume for-market products. Such
parts are traditionally designed by intuition and rules of thumb. Mechanical
requirements, like strength and stiffness, are met simply by oversizing the
parts by a large margin. The primary consideration for such parts is the
ability to quickly design and manufacture them.

In all of these cases the bulk shape of the part must obey geometric
constraints. In the latter cases, design criteria such as ease of milling can
be translated to geometric constraints as well, such that satisfactory shapes
could be generated automatically. In the case of more highly engineered
parts, like aircraft parts, the synthesizer can generate a sensibleinitial guess
for input to the refinement process.

1.3 Design System

Motivated by these observations, we are developing a system wherein the
designer enters the application features of each part into the system, then
the software rapidly synthesizes bulk shapes to support these features. The
synthesis will observe implicit geometric constraints such as connectivity and
noninterference. Considerations of strength, manufacturing methods, and so
forth, will alsocontrol the synthesizer. In a sense, the functional specification
of the design is captured in the feature system that is input by the designer.
By changing parameters to the shape synthesizer, the designer can examine
various solutions that satisfy the functional specification.

This descriptioncouldequallywellbe appliedto the system developed by
Shimadaand Gossard [9]. Our goal is to expandon those ideasto presentthe
user with a selection of shape styles. A basic tenet of our researchis that the
CAD system and the user shouldwork in concert, and the link between them
should be a highly interactive interface. Further, we strive to minimize the
volume of information required from the user, particularly during conceptual
design. For example, we do not want to require the designer to specify all
of the loads that will be applied to each part. In many cases this would be
inappropriate. Designers often don't know what the loads will be beyond
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the points of application and a general feeling of "large" or "small." Further,
it is often desirable to design a part to withstand not just service loads, but
general loads from all directions, to make it robust to unmodelled loads,
assembly, and accident. This is especially true when designing prototypes,
tooling, and other applications where parts are traditionally designed "by
eye." Our approach will be to synthesize designs that look reasonable, and
present them to the designer for assessment. If the part looks too weak, she
may choose a different style, or may issue commands like "fatten it up here,"
until the part is satisfactory. In other words, the system we envision is not
so much one of design automation, but one of designer facilitation.

Finally, since our application will decide on the specific part geometry,
manufacturing process knowledge can be applied at the part synthesis stage
to yield parts that are cheap and easy to manufacture. If geometric op
erations that correspond to actual machine steps are used (e.g. drill hole,
angled cut), a construction plan is implicitly generated with the part. This
simulates the destructive solid geometry approach [10] without requiring the
designer to work in terms of these low-level primitives. Global part proper
ties, such as manufacturing process or style of construction, may be changed
with relative ease because the shape synthesizer is responsible for the details
of the geometry and the manufacturing plan.

2 Shape Synthesis

2.1 Part Shapes

The question that must be addressed is, "what should synthesized designs
look like?" To answer this, we begin by categorizing the kinds of require
ments that mechanical parts must meet. Though not comprehensive, the
following list includes the most common and most important categories:

1. Connectivity: A part must be a single, connected, physical body.

2. Interference: The part must not interfere with any other parts in the
machine, their paths of motion, nor with illegal regions arising in any
other way.

3. Strength and Stiffness: The part must be strong enough not to fail in
service or during assembly, and it must be stiff enough to perform its
function correctly.



4. Manufacturability and Assemblability: The part design must be able
to be fabricated by cost-effective means, and the machine itself must
be able to be assembled efficiently.

5. Dynamics: A moving part must meet acceptable ranges for mass, mo
ments of inertia, resonant modes, etc., as defined by its function.

6. Electromagnetic characteristics, aerodynamics, hydrodynamics, aes
thetic styling, thermal expansion, etc.

This list is shown in an approximate order. Those requirements near the
top must be met by all parts, regardless of the application. As we move
down the list, the requirements become progressively more specialized, and
may or may not be important for a given part.

2.2 Division of Labor

We have chosen to divide the synthesis problem into two steps. In the first
step we will generate a skeleton which abstracts the structure of the part.
That is followed by a material synthesis step which fleshes out the actual
shape of the part using the skeleton as a guide. This is identical to the
procedure of Shimada and Gossard [9], who apply the term skeleton to the
energy paths of Shapiro and Voelker [6]. We also observe that the skeleton
is analogous to the sticks diagram [11] used in CAD for integrated circuit
design.

There are alternatives to this two step approach. For example, Duffey
and Dixon [7] use recursive application of topological operators to generate
designs for extrusions. In figures 2 and 6, there are examples which could
be synthesized in a single step. Design 2(b) is a modification of a rectilinear
bounding box. Designs 2(c) and 6(b) are modifications of the convex hull
of the features. In these cases the modification is essentially the removal of
illegal regions.

In morecomplex cases however, these simple design styleswillneedsome
help. For example, if an illegal region completely divides the bounding box
or convex hull, it becomes unclear where material must be added to make a
connected part. Further, the more refined design styles are much easier to
generate if we first abstract their structure with a skeleton. Designs 2(d),
(e), (h), and 6(d), (g), and (h) are based on tree-type skeletons. Designs 2(f),
(g) and 6(b), (e), and (f) are based on triangulations.

The skeleton also has the advantage of being an intuitive intermediate
abstraction. If the designer feels the needto make minormodifications to the
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synthesized skeleton, it would be natural to add or delete paths to change its
overall character—a process much faster than editing explicit geometry. In
this way, the skeleton can be seen as a tool to manage the vast complexity
of the design space. It is a representation of an infinite family of parts with
different geometry, but the same topology.

Skeletons (which have zero width), are synthesized so that they can
be widened by some amount without interfering with illegal regions. This
amount will be dictated by the current design rules. The first action of the
material synthesizer is to perform this widening, yielding a thick skeleton.
This thick skeleton is essentially the minimally sufficient part, satisfying the
required connectivity and providing at least the minimum allowable material
thickness everywhere. The remainder of material synthesis adds material to
the thick skeleton to improve manufacturability, reworkability, and assem-
blability. Figure 6(a) and (c) depicts two styles of thick skeleton for the
same specification.

A further advantage of separating the synthesis process into two steps is
that it allows us to mix and match skeleton and material synthesis algorithms
and thus multiply the number of design styles we are capable of generating.
Some combinations may not be as useful as others, of course, but we should
still realize a rich selection.

3 Program Structure

Figure 3 depicts the program flow schematically. A strength of this paradigm
is that it separates into fairly independent components, and it allows a single-
pass program flow (complications are discussed in Section 3.6). In the dia
gram all information flows down. The user inputs a functional description
of the machine, which includes descriptions of the application features of
each part and its position or relative motion within the machine. There
may also be stationary or moving illegal regions that the designer wishes to
reserve so that no material will be synthesized in them. This information is
preprocessed to yield a set of required and illegal regions. The set is then
passed to the shape synthesizer, which consists of the skeleton and material
synthesizers.

3.1 Input

As stated above, the input to our system includes application features, part
positions and motions, and reserved illegal regions. In an ideal implemen
tation the user would have some help from an online catalog. This would
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Figure 3: Program Flow.

be a database of off-the-shelf parts that can be included in the design of the
machine. In addition to modelling the parts themselves, each database en
try would contain parametric information about the features that glue parts
must have to support it.

Recall the example in figure 1. The shape of glue part A is defined by
the mating requirements of the tool and the linear bearing. Specifying this
part could be as simple as selecting the tool and bearing from the catalog,
and commanding a glue part between them. The program would extract the
necessary mounting surfaces, threaded holes, etc., from each model, and syn
thesize a part that has these features. The addition of "interface geometry"
to part databases has been proposed by Johannesson [12].

In figure 3, the information yielded by the input process includes applica-
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Figure 4: A feature is composed of required and illegal regions.

tion feature descriptions for each part, general illegal regions, part positions,
and motion descriptions. This forms a kind of functional specification of the
design.

3.2 Feature Decomposition

The shape synthesizer needs its input in the form of required and illegal
regions, connectivity relationships, and design rules. Thus, features must
somehow be expressed in terms of these more primitive entities. In practice,
we will view a feature as a sort of macro that specifies a structure of these
entities. Let us use the term target part to refer to the one currently being
synthesized. Some illegal regions apply only to the target part, others apply
only to other parts, and some apply to all parts. Figure 4 illustrates a
hypothetical bolt-hole feature in cross section. Region 6 is an annulus of
required material, and applies to the target part. Region a is an illegal
region which arises from the mating part, and applies to all parts in the
design except the mating part. Region c reserves space for the bolt and
applies to all parts except the bolt, washers, nut, etc. Region d is an illegal
halfspace which reserves access for a tool to insert and tighten the bolt. It
may apply to all parts, or only to parts that come earlier in the assembly
sequence. To instantiate a bolt hole, the user would supply the dimensions
v, w, x, y, and z.

This is a very simple example. If it were undesirable to reserve the entire
halfspace d so close to the bolt, an additional cylindrical region might be
interposed between regions c and d to reserve space for a socket wrench and
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extension.

In figure 3 the output from the feature decomposition step is a system
of required and illegal regions suitable for input to the shape synthesizer.
This system is part-specific, and must be recomputed for each part to be
synthesized. The system must be computed in the frame of reference of the
target part, and include only illegal regions applicable to that part.

3.3 Illegal Region Computation

As described above, illegal regions are generated by feature decomposition,
and may also be input explicitly by the user. In addition, illegal regions
arise because, from the point of view of the target part, all other parts
define illegal regions. By extension, if a part moves relative to the target
part, the entire space it sweeps out, as viewed from the coordinate frame of
the target part, is an illegal region. Note that our whole approach of starting
with illegal regions and synthesizing noninterfering parts contrasts with the
method supported by traditional CAD systems. There the designer models
all of the parts, then has the software check for interference. If any is found,
she edits the offending geometry.

In our system, all applicable illegal regions must be computed so that
they can be used as input to the shape synthesizer. In the case of parts that
are stationary relative to the target part, this is trivial. For parts that move
relative to the target part, we must do some work. Though it may at first
appear difficult to synthesize shapes in the presence of moving obstacles, it
turns out that the problem of synthesis is separable from the motion if we
make one assumption: we must have full descriptions of the relative motions
of all parts in the machine. In many cases, this will be easy for the designer
to input, because the motion of the various parts is intimately related to
their application features. For example, a bearing bore is associated with a
revolute degree of freedom, coaxial with the bore. Most moving parts have
simple kinematics—either a revolute or prismatic axis of movement relative
to some other part. Even complex motions, such as those of linkages, can be
simple for the designer to input by specifying how parts are connected with
joints. Many of the degrees of freedom in a machine will be associated with
off-the-shelf parts like bearings and crossed-roller slides. Their entries in
an online catalog would include information about degrees of freedom they
provide.

With this information in hand, we can compute static illegal regions for
all parts in the machine. This is important: shape synthesis for the
target part can always be done in a static environment. The illegal
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regions that populate this environment are the swept volumes of the other
parts in the machine. Each part is swept along its degrees of freedom, as
viewed from the frame of reference of the target part. If a part has multiple
degrees of freedom relative to the target part, it must be swept recursively,
starting with the axis most distal from the target part along the kinematic
chain. The process is similar to the computation of the work envelope of a
robot [13, 14].

An example is shown in figure 5. At (a) the target part, a clamp, is
shown as a set of desired features. It is to have one revolute degree of
freedom relative to the base plate, with joint limits at +45 and —30 degrees.
At the left is a stage which has a prismatic degree of freedom relative to the
base. The stage and the clamp thus have two degrees of freedom relative to
each other. To compute all the illegal regions that apply to the clamp, we
first attach ourselves to its frame of reference. Starting with the part farthest
down the kinematic chain (the stage), we sweep along its axis through its
complete range of motion. This gives rise to an intermediate illegal region,
shown (shaded) at (b). Proceeding along the kinematic chain toward the
target part, we sweep these intermediate regions, plus other parts, along
their degrees of freedom. The final illegal region applicable to this target
part is shown at (c), along with a possible design.

In this example, we have assumed that the individual degrees of freedom
are fully independent. This is the most conservative assumption, yielding
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the largest illegal regions, but it maynot always be appropriate. There could
be mechanical stops, or the actuation could be under software control, such
that, say, the clamp only moves when the stage is at one specific position.
To handle this we need only modify the sweeping process slightly. Rather
than sweepingthe intermediate region recursively, the stage would be swept
along both axes separately, and the union of the two resultingregions would
be used as the illegal region.

Any kind of interdependence between part motions can be handled sim
ilarly, as long as we are provided with an accurate description of the rules
governing these dependencies. Note that if the dependencies are imposed by
software control, it is worthwhile to discard them wherever possible and use
the most conservative illegal regions. This guarantees that no software error
can ever cause a physical machine crash. We also note that linkages do not
represent dependent degrees of freedom between their links, just complex
degrees of freedom. Computation of the swept areas of planar links has been
studied by Ling and Chase [15].

3.4 Skeleton Synthesis

As mentioned earlier, the heart of our system is shape synthesis, which
we divide into skeleton synthesis and material synthesis. We represent a
skeleton as a graph plus a Euclidean embedding, where the embedding may
have non-straight edges. Algorithms to generate appropriate skeletons are
a primary area of research. Graphs include several specializations, such as
triangulations and spanning trees, and there are two broad categories of ap
proach: computational geometry and numerical optimization. Of interest to
us is a class of definitions that require the graph to meet some cost based on
geometric characteristics of the edge set, such as length of edges or length
of node-to-node paths. Many such graphs are treated in the literature, in
cluding the Euclidean minimum spanning tree, Steiner minimum spanning
tree,[16] i-spanners,[17, 18] and Delaunay triangulations [19]. The differ
ences between these are the nature of the cost function that the graph must
satisfy, and whether the algorithm can add nodes.

Regardless of the algorithm we use to create the skeleton, we must en
sure that it can be widened appropriately to create the thick skeleton without
interfering with any illegalregions. In its simplest form, the problem is anal
ogous to finding a path for a mobile robot through a roomful of obstacles,
and we can borrow the algorithms used to solve those problems. This tech
nique was investigated by Graham and Ulrich [8]. Most techniques account
for the size of the robot by transforming the problem to configuration space
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(CSPACE) [20, 14]. In the case of a circular robot moving through a two-
dimensional field of obstacles, cspace is parameterized by the coordinates
of the center of the robot. For skeleton synthesis, CSPACE is parameterized
by the coordinates of a point on the skeleton. Obstacles in CSPACE are sets
that must not contain any point on the skeleton, lest the thick skeleton in
terfere with an illegal region in physical space. If the thick skeleton is to be
of uniform width, CSPACE is computed simply by growing the illegal regions
by one-half the width of the thick skeleton. The skeleton synthesis algorithm
can then operate in this transformed space to plan the skeleton, and we will
be assured of being able to grow the thick skeleton without interference. In
fact, clearance can be added by growing the obstacles an extra amount. If
the thick skeleton is to have varying widths, e.g. tapered struts, CSPACE must
acquire an extra dimension to account for the half-width of the skeleton. For
a 2-D design problem, CSPACE becomes three-dimensional and obstacles are
generalized frustums whose tops are the physical illegal regions, and whose
sides have a slope of unity. This is an issue we are currently researching.

In all of the skeletonizing algorithms we will consider, there are two
general approaches to avoiding illegal regions. The first implementation
generates a connectivity graph without regard for the illegal regions, then
uses path planning to route the edges. The second implementation directly
generates a skeleton in CSPACE that respects the illegal regions. In most
cases this produces a superior skeleton, but many of the algorithms studied
in the literature have not been extended to handle obstacles.

We are investigating both computationally exact and numerically ap
proximate methods to compute these graphs. Some heuristics use a hybrid
approach, where a starting point is found using computational geometry,
then an optimization is performed to yield the final result. Numerical meth
ods will often start by computing some structure for which a good algorithm
exists, like the minimum spanning tree. For example, some heuristics for ap
proximating the Steiner minimum spanning tree start this way, then choose
sites for additional nodes, and finally drive the graph to a (local) minimum
weight by moving these new nodes [16].

3.5 Material Synthesis

The material synthesizer has the responsibility of generating the final shape
of the part. As it does so, it follows design rules relating to minimum material
width, manufacturing methods, assemblability, etc. The material synthesizer
must guarantee that the finished shape completely contains the skeleton, and
that no portion violates any design rules or illegal regions. The output of the
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Figure 6: Two thick skeletons (A & C) and six designs, all satisfying the
same specification (not shown).

material synthesizer is the actual part design. Shimada's and Gossard's [9]
elegant method of generating skinning boundaries by placing a deformable
curve in a potential field representsone possiblematerial synthesis style. Our
goal is to be able to generate a wide selection of part styles, some similar to
those shown in figures 2 and 6. l

Of the material synthesis techniques we are considering, the simplest is
to approximate the thick skeleton using the selected manufacturing process.
For example, if the selected process is milling, material is added to the thick
skeleton until the part is composed of flat faces and fillets. Examples are
seen in figure 6 (e), (g) and 7. An interesting problem to be solved then is
how to synthesize skeletons that ensure sufficient clearance for fillets to be
added without creating interferences.

Perhaps the next simplest material synthesis technique is to conceptu
ally wrap a skin around the thick skeleton and pull it tight, letting it drape

*It is worth noting that the parts illustrated in fig 6 took over 30 hours to model
interactively in Pro/ENGINEER [21]. This highlights the difficulty ofusingsolidmodellers
to explore design space.
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around the illegal regions. Figure 2(c) shows one such design in two dimen
sions. This can be thought of as a modification of the convex hull of the
application features.

More sophisticated material synthesis will add more knowledge about
the selected manufacturing process. We envision a planner that reasons in
terms of subtractive operations that correspond to milling, turning, drilling,
etc., and additive operations that correspond to bolting and welding. This
knowledge will be used to add material strategically to yield an easily-
manufacturable part. This raises the specter of the well-known difficulties
of automatically generating manufacturing plans for a given design. In this
case the problem is easier because the synthesizer has the freedom to alter
the shape of the part.

In most cases it will be desirable for the material synthesizer to generate
axis-aligned geometry wherever possible. This will yield parts that are easier
to machine, inspect, and assemble than those with freeform geometry. Fig
ure 2(h) displays an example with almost exclusively rectilinear geometry,
typical of built-up parts in a prototype. In figure 6, all six designs exhibit
geometry that is aligned to one or moreprincipleaxes. Solutions (e) through
(h) have all geometry restricted to axis-aligned slabs.

In the case of prototyping, evolution of the design often requires part
designs to be modified. When possible, it is often faster and more economical
to re-machine the same physical part than to make a new part from scratch.
It may be desirable for the synthesizer to add excess material judiciously to
improve reworkability of the parts.

3.6 Complications

There are several issues which complicate using the single-pass approach we
have outlined. The most important complication is the simultaneous design
of multiple parts. In this single-pass model, a problem arises when we must
synthesize designs for all the parts in a machine: illegal regions cannot be
computed for parts whose shape is not yet known. Our first approach to
solving this problem is to use prioritization and iteration. The application
features of a part should provide a good placeholder for the space that it will
ultimately occupy. We can imagine that the designer first inputs all features
of all parts, then to each part she assigns a priority. The synthesizer begins
with the highest-priority part, using the application features of all other
parts as illegal regions. One by one, each of the parts are synthesized in
order of descending priority.
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Clearly, prioritization will not always work. It may happen that the zin
part cannot be synthesized at all because of the way a higher-priority was
synthesized. Sometimes a reordering of the part priorities will solve this,
but not always. In some cases, each part must give a little so that both
can coexist. Another approach is to try to carve up space and apportion
a region to each part before any synthesis begins. A Voronoi partitioning
based on application features is one possibility. In this scheme space is
divided into cells, each belonging to a particular part. The shape of each
cell is determined so that at any point inside the cell, the nearest application
feature is one belonging to the same part as the cell. In other words, the
cell walls appear "halfway" between the nearest features of adjacent parts.
This may be modified to a weighted Voronoi partition if it is necessary to
give some parts proportionally more space.

A further complication is that the two stages of shape synthesis may have
to become more tightly integrated than we have described. For example, the
material synthesizer may be able to recognize potential improvements to the
design that require modification of the skeleton it was passed. For instance,
it might be that a simpler machining operation would be usable if some
portion of the skeleton were moved a bit. Iteration between the skeleton and
material synthesizers is a possible approach to try first, and can be viewed
as a form of optimization.

Finally, it remains to be seen how natural it will be for designers to
input designs as systems of features and illegal regions. For small models it
seems straightforward, but it may require considerable imagination on the
part of the designer for complex systems. We are hopeful that rapid shape
synthesis will come to the rescue. If a designer is able to see representative
solid bodies for the parts, it should greatly facilitate her understanding of
the design she is constructing. Finding an answer to this question is one of
the main motivations for implementing our system.

4 Work In Progress

We have developed software that minimally demonstrates a design environ
ment with integrated shape synthesis. It allows the design of a single flat part
(2-D) through interactive editing of features, illegal regions, and global part
properties. Features are specified by selecting a feature type and positioning
it in the design with the mouse. Illegal regions, represented by polygons,
are specified and modified interactively. A thick skeleton is generated that
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Figure 7: A 2-D part synthesized by the prototype software.

connects the features and avoids the illegal regions. The resulting design is
rendered by extruding the part into the third dimension, and resembles a
physical part that could be made by bending and welding bars, or by milling.
An example is shown in figure 7.

In addition to specifying local features (application features) we support
global attributes for parts. Two such part attributes are spar width and
illegal region clearance. The user can modify these attributes for the part
via an on-screen slider, and see the part dynamically resynthesize. The
algorithms are currently fast enough to resynthesize a reasonably complex
part several times per second, thus when the user interactively drags a feature
or edits an illegal region, the part appears to stretch.

We currently support a single application feature (holes) and several
skeleton synthesis algorithms (Delaunay Triangulation [19], and ^-spanners [17,
18]). A connectivity graph is computed without regard for illegal regions,
then a path is planned around them for each edge in the graph. This plan
ning is done by computing CSPACE (illegal regions are grown by half the
spar width plus the clearance), and its visibility graph [14]. Dijkstra's algo-
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rithm [22] is then used to find the shortest path for each connectivity edge.
The software is implemented entirely in C++, with the exception of the
Forms [23] and Numerical Recipes [24] C source code libraries.

5 Research Issues

Numerous research topics have been discussed in the preceding text. We
summarize them here, along with a few not previously mentioned. First,
there are a number of data structures, algorithms and heuristics from com
putational geometry that will be important for skeleton synthesis. These
include Delaunay triangulation, spanner graphs, steiner trees, and visibility
graphs. To support a system that can provide rapid feedback to the user
will require changing existing algorithms. By exploiting the temporal and
local coherence inherent in the interactive process, we hope to be able to
devise new data structures that support fast incremental updates. Other
adaptations include extending current algorithms to work in the presence
of illegal regions, and modifying visibility graph techniques to support the
synthesis of tapered paths.

Simultaneous design of multiple parts is a difficult issue. We have pro
posed two approaches (prioritizing and partitioning), but there are many
complex issues to be understood.

In addition to skeleton and material synthesis, there are a number of
new research topics that dovetail with our general paradigm. Part shape
optimization based on finite element analysis is related and could use a syn
thesized shape as a starting point. On-line product databases with interface
geometry have been suggested in the literature.

It seems that shape synthesis could be a powerful aid to designing assem
bly plans in parallel with the parts to be assembled. The assembly planner
and the shape synthesis engine should negotiate and adjust their designs so
that the synthesized parts always admit a rational assembly sequence.

6 Conclusion

We have presented a blueprint for what we believe will be a genuinely useful
new kind of CAD system. Such a system will have clear economic advantages:
Shape synthesis can be compared with automatic placement and routing of
library cells that has provenindispensable in the world of CAD for integrated
circuit design. Minimizing the stream of input required from the designer
will not only speed up the design cycle, it will also facilitate vastly more
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thorough exploration of the design space than is possible with current CAD
systems.

In this design paradigm, conceptual design is more naturally supported
because arbitrary geometric details are not hard coded into the design. A
measure of functional intent is encoded by modelling only application fea
tures and augmenting them with relationship information. This functional
level requires less information to unambiguously specify than does explicit
geometric construction, and is less subject to change over the life of the
design. The representation of the design can be thought of as "live," i.e.
that the design represents an infinite family of designs that satisfy the de
sign criteria. Further, since it is the computer that designs the specific part
geometry, manufacturing processknowledge can be applied at the part syn
thesis stage to yield parts that are cheap and easy to manufacture. Global
part properties, such as manufacturing process or style of construction, may
be changed with relative ease at any time during the design cycle.

An important feature of our view of shape synthesis is that it is, to some
extent, separable from other design issues. Shape synthesis can be provided
by an engine that may be equally well used as a backend to a direct user
interface or as an agent in a system of collaborating software agents. Second,
shape synthesis can be decoupled from the choice of data structure used to
specify application features. We need only that required and illegal regions
be extractable. Finally, shape synthesis is separable from issues of motion
of the parts of the machine if we assume that complete descriptions of the
nature of part motions are available. Thus shape synthesis can proceed in a
static environment.
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