Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MINIMAL LOGIC RE-SYNTHESIS

by

Gitanjali M. Swamy, Sriram Rajamani, Chris Lennard,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/22

15 April 1996

o~
e

MINIMAL LOGIC RE-SYNTHESIS

by

Gitanjali M. Swamy, Sriram Rajamani, Chris Lennard,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/22

15 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Minimal Logic Re-synthesis

Gitanjali M. Swamy Sriram Rajamani Chris Lennard

Robert K. Brayton

Abstract

Most problems in logic synthesis are computationally hard, and are solved using heuristics.
This often makes algorithms un-stable; if the input is changed slightly, the new result of
synthesis can be significantly different. A designer can spend much effort hand-optimizing a
circuit, so it is desirable to retain as much of this human insight as possible. This motivates
the need for incremental synthesis. We propose a re-synthesis algorithm, which allows the
designer to designate non-resynthesizable portions of a circuit. We define the concept of
minimal change caused by re synthesis, i.e. given a functional change to the circuit, we
examine the minimal change to implement this change. For the evaluation of a region for
re-synthesis we present techniques for evaluating the “sensitivity” or gain possible with re-

synthesis of a set of nodes. We conclude with experimental results and future directions.

1 Introduction

Logic synthesis refers to the process of optimizing a logic description of a circuit, given as a
net-list of logic (boolean) gates [1]. This representation can be optimized for area(minimum),
delay (minimum or meeting requirements), and power(minimum). Since these problems are hard
to solve exactly, heuristic algorithms are generally used. However, these algorithms are unstable;

if a small change is made in the network function, the output of the synthesis algorithm may

vary greatly from the previous implementation. A designer can invest effort in optimizing the
original design by hand, so it is desirable that the hand-designed or optimal parts be preserved,
even when changes are made to the specification. In addition, the network may have already
been implemented in silicon at a lower level of the design hierarchy, and it can be inconvenient to
change.

Previous algorithms for the problem of incremental synthesis have dealt with post-rectification
(Watanabe et al. [2]), and preserving cones of logic (Brand et al.[3]) in the design. Some relevant
work has also been done by Kukimoto and Fujita [4] but this is concerned with FPGA's rather than
general logic. In addition, this work restricted re-synthesisizable parts of the network to all nodes
at a level, rather than general re-synthesis region. Other approaches to this problem, which use
boolean unification were proposed by Fujita et al [5], and Lin et al [6], however these approaches
do not consider the optimality of sub-regions in the network as a factor in choosing candidate
regions for re-synthesis. None of the above approaches have dealt directly with preserving the
“highly-optimal” parts of the circuit.

Changes to the system are defined as changes in the functions computed at the primary output
nodes. The problem is stated as: We are given alogic design that has inputs x; € =, outputs z; € =,
and an implementation / of z = F'(z). / has alrcady been optimized for an objective, which may
be power, delay or area. A new specification is given, = = Fpew(z). We assume that F and
Fnew are completely specified; the extensions to incomplete specifications are straightforward.
The designer can designate which regions may not be resynthesized, or order the regions in terms
of where re synthesis is more acceptable.

We use an evaluation criteria for the acceptability of regions for re-synthesis called sensitivity
is generated. In this paper we compute the sensitivity (or acceptability for re-synthesis) for power.

In this respect, we rely heavily on the work done by Lennard [7] for the computation of power

sensitivities of nodes.

We propose an iterative solution to the problem: we begin with a small region for re-synthesis
(selected using the sensitivity criteria), and iteratively expand that region until a solution is
obtained. At each stage, we test if this re synthesis region alone can realize the new specification.
As a second pass, we trim the region iteratively, so that it becomes minimal in the sense that no
subset of the current region can alone realize the change in functionality.

This paper is organized as follows: Section 2 describes the terminology and definitions in
this paper. In Section 3 we give a procedure for determining whether re-synthesis of a given a
sub-region of the network can realize an implementation with the new functionality z = Fpew(z).
In Section 4, we examine strategies for determining nodes in the network that are good candidates
for the re-synthesis region. A good candidate for re-synthesis must give gains in the designers
objective (power, area, delay) as well as implement the new functionality. This goodness is
estimated by its sensitivity. Section 5 gives an iterative algorithm for incremental synthesis that
begins with an empty re-synthesis region, and iteratively picks nodes from the rest of the network to
add to the region (in order of their sensitivity). We present some experimental results in Section 6,

and conclude with directions for future work in Section 7.

2 Terminology and Notation

¢ A completely specified Boolean function F' with » inputs and m outputs is a mapping
F : B" — B™, where B = {0,1}. If m = 1 the onset and offset are the set of points
satisfying F'(xz) = 1 and F(z) = O respectively. A minterm v of a function F is a vertex
(i.e. apointin B") such that F(v) = 1. The cofactor F,, of F' (completely specified)

with respect to variable z; is the function F evaluated at 2; = 1. The Shannon form of

F = ;- F;,+7; F5 (i.e. interms of its cofactors). The size of F(z), (| F(z)|) denotes the
number of minterms (onset points) in F'(z). An incompletely specified Boolean function
is amapping F : B® — Y™ whereY = {0,1,*} (x= FcanbeOor1). f m = 1 the
onset, offset, and don’t care set (dcset) are the set of points such that F(z) = 1, F(z) = 0,

and F(z) = * respectively.

A Boolean network (Figure 1) V, is a directed acyclic graph (DAG) such that each node
in A has a Boolean function (n = f,(n;...nn)). There is a directed edge from node
n; to node n if the function f,, is dependent on node n;; node n; is a fanin of a node n,
node n is a fanout of node n;. A node n; is a transitive fanin of a node n if there is a
directed path from n; to n; n is a transitive fanout of n;. The inputs x = (z,,...,z,) of
the Boolean network are called primary inputs and outputs z = (zy, ..., z,) are called
primary outputs. Nodes with at least one fanin and one fanout are called internal. The
projection (£2;(.S(n))) is the representation of set S(n) in terms of the variables of some
input set I (in general I denotes the inputs the node in concern, i.e if n = G([), then

Q(S(n)) = GH(S(n))).

An Observability Relation is a mapping O (z,z) : B" x B™ — B, where x are
inputs and y outputs. Given any function of the network with inputs z = (zy,...,2,)
and outputs z = (23,...,2m), (z = F(2)) may also be represented as its observability
relation OF (z, z) := 2@ F(x). Given inputs z and outputs z, an observability relation is
characterized as OF (2, 2) = 1if z = F(z) and OF (z,2z) = 0if z # F(z).

Consensus or universal quantification V is defined as V., f(z1,...2,) = fr, - f&= Itis

the largest boolean function contained in f that is independent of z;.

Smoothing or existential quantification 3 is defined as 3., f(z1,...,&,) = fo, + f5- It

Figure 1: Network

is the smallest Boolean function containing f that is indepcndent of z;.

¢ The Boolean difference of a function f with respect to a variable z is defined as %ﬁ =
fofz+f.f5. This function gives all the conditions under which the value of f is influenced
by the value of . Its complement therefore is all the conditions under which f is insensitive

toz.

3 Conditions on a Valid Re-synthesis Region

As stated before, we have a logic function (possibly multi-output) z = F(z) (z = (21...2m)),
which is a function of inputs z = (z,...2,). We already have a nctwork realization for this
function. The logic function of this network is changed to a new function = = Fnew(). We may
also represent the new function as a separate network. The objective is to realize Fnew(z) while
simultaneously preserving as much of the old network structure 7 (particularly hand-optimized
portions) as possible.

We recognize the following sub-problem: Given a network with original functionality = =
F(z) , which is to be changed to z = Fhew(z), and a region for re-synthesis R (see figure 2) with

inputs v and outputs u, determine whether the new function can be implemented by re-synthesizing

. theregion R exclusively.
To answer this question, we first compute an observability relation for the region R, that is
consistent with the overall implementation z = Fpew(z) and compatible with the implementations

for the remainder of the original network. Next we impose conditions on this relation that ensure

that it is implementable.

3.1 Computing the Observability Relations

The overall observability relation for the original circuit is characterized by OF (2, z) = zZ F(z),
and the new relation is characterized by Ofiew (2,) = z®Fnew(z). The region of re synthesis
R, with inputs v and outputs u, is characterized in its current implementation, by an observability
relation Of (v, u) that is consistent with OF (z, z) and compatible with the remainder of the
network. The remginder of the network is characterized by the network N (with the region
R deleted), with inputs z and 2 and outputs z and v. Its characteristic function is given by
N(z,v,u,z). Figure 2 illustrates these regions, and their inputs and outputs. In this section
we illustrate how to compute the required functionality of a predefined region when the output

function is changed. We first state the following thcorem, which is adapted from [8].

Theorem 3.1 The observability relation for region R that is consistent with N (x.v,u,z) and
compatible with OF (z, z) is:

OR(v, u) = Vg (N(z,v,u,z) = OF(m, z2)).

When F has been changed to Fhew, we can simply replace F by F;.,, in the above and give

a condition for realizability of the new functionality.

Theorem 3.2 Let ORpow(v,u) = Vi :(N(z,v,u,z) = Oﬁew(x, z)). The new functionality can

be realized by re-synthesizing R iff (V,3.0Rpew(v,u) = 1),

2=Rx)->2= l&a;x)

u=U(x)

Resynthesis N(xvu2)

Region R

v=V(x)

Figure 2: Network

A relation that satisfies Theorem 3.2 cannot directly yield a hardware realization, since hard-
ware can only implement functions. In general, OFpew(v, u) is not a function. However, any
OFfpew (v, u) satisfying the theorem has at least one function as a subset. To find such a function,
we have to solve a set of boolean equations. The following theorem from boolean unification [9],

details all solutions y = (7(2) to the equation f(z,y) = 1, when y is a single bdd variable.

Theorem 3.3 The solutions y = G(z) 10 an equation f(z,y) = 1, where y is a single variable,

can be characterized by the inequalities f(z,0) C G(z) C f(z,1).

The following theorem, adapted from [9], characterizes a family of functions that yield a valid
implementation of the relation. We assume that ORpew (v, u) satisfies Theorem 3.2. Note that

Theorem 3.4 is a generalization of Theorem 3.3 for multiple output variables.

Theorem 3.4 If ORpew(v,u), u = uy...u, is the observability relation for a region R, then

any function v = R(v) = gy ...gn, that satisfies:

® fi+di=FOCi= (3.4, Ofnew(v,u))- [i<i(ur®gr ()4, =1
ri+d;=FRC; = (3...u,...(#,)0Rnew(v,u)) Tr<i (we®gk (v))] ;=0

fi9i< fi+d;

satisfies the relation OR pew (v, u). (i.e, R(v) = u = OR(v, u) = 1). Arevery stage f; represents

the onset, d; the don’t care set, and r; offset from which g; is chosen.

We can use the freedom provided by the d; to optimize the function. Reordering the u; gives

rise to different functions; in general a good ordering should be found.

4 Sensitivity

The sensitivity of a node (or region) in the circuit is defined according to the choice of objective

(area, delay, power).

Definition 1 The sensitivity of a node is the change in the objective function (area, delay or

power) that is expected if the node is re-synthesized.

The definition of sensitivity is easily extended to regions. We reply on the work done by
Lennard [7] et al. on computing the power sensitivity of a node. A node n is a good candidate
for re-synthesis if local change in activity (power) plus change in activity in the transitive fanout
reduces overall power. A method for determining expected activity E'(n) is outlined in [7].

Consider a node n in the network with immediate fanins »n, . . . n,, (refer to Figure 1). Node n
computes a function f,(n; ...nn,) of its fanins. Let A,, denote an arbitrary set of minterms that

are added to the onset of fanin n;. Let this be the only change made to the fanins of n. The sct

of of minterms that are added to the onset of f, are those minterms in A, that actually change
the value of the function f,, from 0 to 1. Similarly, the set of minterms that are removed from the
onset of f, are those minterms in A, that actually change the value of f, from 1t0 0. Let A,
denote the set of minterms that arc added to the onset of f, and R, denote the set of minterms

that are removed from the onset of fn due to this change. A,, and R,, can be computed as follows:

1. An(Anl) = Ql(f"‘nl:l : f"|n1=0) : A"l'

2. Rn(Am) = QI(fn|n|=1 : fn|n|=o) * Ap,.

The quantities S?,,(n1) = ful,1=) * falpi=or a0d S™a(n1) = falui=y * fala=o are called
the functional positive and negative sensitivities. Similar measures can be computed for set of
minterms that are added and subtracted from the onset of f,,, when R, minterms are subtracted
from the onset of its fanin.

These quantities have no real significance as yet, since we do not know the exact change that
is actually made to an internal node of the network. However, if we assume that any change in
the onset size is equally likely, the expected size of the sets A, and R,, can be computed with just
the knowledge of the size of the change (without knowing the actual minterms in the change!) by

computing the expectations of the quantities in equations (1) and (2):

Q(SPn(n T
o E(|An(An,)]) = |An,|" J(m,((fnl,)))lf I

o B(|Rn(An)]) = |4y, | il
Given a probability p of evaluating to high at a node, the functional transition activity is given by
2(1-p)p. Thus, a p far from 0.5 implies a smaller transition activity. Given a change in onset size at
a given node n) , the the expected change in onset size can be derived for all nodes in the transitive
fanout of n). The expected onset sizes of nodes directly relate to their switching probabilities and

hence can be used to get a measure of the expected change in power for the circuit.

9

We use this analysis to compute a “good” ordering of nodes for re-synthesis. The efficacy of
this measure of the sensitivity of a node has been demonstrated statistically in [7]. For the purpose

of this paper, we will not discuss this further.

S Iterative Algorithm

We combine the method for determining whether a region is sufficient to realize the new func-
tionality (Section 3), and the means of evaluating which nodes to add to the re-synthesis region
(Section4), and propose an iteraﬁve algorithm. Before we give th¢ details of the iterative algorithm,
we impose certain restrictions on the structure of valid ‘regions.

We require a loose form of structural contiguity restriction on R. In particular, we do not
allow the inputs of R to be dependent on outputs from R. This structural restriction is needed to

use Theorem 3.2. For instance in Figure 3, R, which is composed of two non-contiguous regions,

36

Figure 3: Invalid Regions

is not a valid region, since input A depends upon output C. This restriction is imposed, since

resynthesis of such a region might possibly create a combinational cycle within the network.

5.1 Searching for Minimal Regions

Definition 2 A resynthesis region is minimal if no node can be removed from R without destroying

10

the ability, by re-synthesis of R, to obtain the new functionality F,..,.

It is easy to see that, if a region R is sufficient for re-synthesis (Theorem 3.2), then every
superset R C R’ is also sufficient for re-synthesis. Consequently, if we greedily remove nodes
from a feasible region, while maintaining feasibility and structural validity, our search is guaranteed
to terminate in a locally minimal region. However, finding a global minimum is much harder.
We are currently examining a strategy that implicitly enumerates all feasible sub-regions and is

guaranteed to find a global minimum.

5.2 Iterative Algorithm

First, the designer is allowed to mark out regions that may not be re-synthesized. For the remaining
network, we compute the approximate sensitivities for every node in the network. Computing the
sensitivity of a node requires determining which of its transitive fanins may be re-synthesized.
First a quick measure of sensitivity is computed to estimate the region that must be re-synthesized
with the node. We use an iterative algorithm that progressively adds nodes to the re-synthesis

region.

Algorithm 5.2
Mark regions designer wants unchanged (M)
R=¢
While R not sufficient (Theorem 3.2)
p = Node of highest sensitivity (excluding M and R)
R=R+p '
Reduce R to get a minimal region (Section 5.1)

Compute u = R(v) (Theorem 3.4)

11

Synthesize u = R(v) to get Rpew
replace R with R,,ey

return

We add the node of highest sensitivity to the resynthesis region R, and examine whether re-
synthesizing the current region R could achieve the new functionality. If not, we add the nodes of
next highest sensitivity to the region and repeat the process. This greedy process iteratively tries
to determine a small partition of the initial circuit that has high potential for gains in the objective
(power for our current implementation) that can be re-synthesized in order to implement the new
functionality. In order to make the region minimal (Section 5.1, we post process it by attempting

to remove nodes to get a smaller feasible region.

6 Experiments and Results

We have implemented the iterative algorithm and sensitivity measures described in this paper
in SIS [1]. Though not explicitly stated during this paper, we used the BDDs to represent our
functions and relations. Logical predicates may be represented as a sequence of BDD operations:
we used BDD’s for the computation of logical predicates.

We had to design a set of experiments where we emulated the design process on which these
methods would be applied. We assume that an original design has been hand optimized for the
design objective (in this case power) and that a new specification has been given. The designer,
feeling that the old design is not only highly optimal, but maybe has been tuned to some other
objectives or has already been physically designed, wants to keep as much of this around as

possible.

12

To emulate a design change, we took benchmark examples with external don’t cares and
optimized them to obtain a circuit called "old". The new spec Fy,,, for each example is the same
circuit benchmark but without the external don’t cares given. If we optimize this without trying
1o preserve any of "old", we get a circuit "new". This represents the best we could do with the
new specification, but most of "old" would have been changed. Note that "new" should always be
worse than "old" in this scenario, in terms of power.

Our primary objective is to preserve as much of the old implementation as possible by re-
synthesizing the re-synthesis region alone. However, we would also like to get “good” power
results while preserving as much of the old network structure as possible.

In general our primary goal conflicts with an objective of minimal power; we can always
get better power results by completely ignoring "old" (hence we have more flexibility). Thus
we expect to get a power number for the incremental approach which is worse that for "new".
However, using a good measure of power sensitivity to pick nodes to add to the re-synthesis region
should give us better power results than using any random method to pick the nodes. There may be
many minimal regions in a network that can implement the same functional change; our objective
is to pick the minimal region that gives good power results.

Inourexperiments, we used two methods for choosing the region for re- synthesis: "sensitivity"”
and "random”. In "sensitivity", we chose the new node to be put in the region of re synthesis
according to the power sensitivity measure discusseq in Section 4. In "random" we chose the new
node randomly. Note that both approaches do not take the ability of a node to resynthesize the new
function when choosing a node. The iterative algorithm (Section 5.2) and the greedy search for a
minimal region (Section 5.1) atter.npt to minimize the resynthesis region. We compared the sizes
of the regions, as well as total power of the resultant network obtained for both these measures.

Figure 4 summarizes the percentage of the network preserved; these numbers were consistently

13

over 50% and quite often as high as 90%. We were indeed preserving large portions of the old
network. However, at this stage we do not know what the exact minimum answer is; our future
work will determine this.

We also tabulate the results of our experiment on some sample examples in Table 1. Isyn
denotes the results obtained by our incremental synthesis and Nsyn denotes results obtained by
complete resynthesis. In 10 out of 14 examples,"sensitivity” outperformed "random”. We see
that for the first ten examples in Table 1, (alu3 through x1dn), "sensitivity" produces circuits
with better power numbers than "random", mostly with smaller or equivalent sized regions. We
were chosing re-synthesis regions that were both small as well as better in power (as compared
to a random criteria). For the last four examples, "random" produces circuits with lower power,
sometimes at the cost of larger re-synthesis regions. Note that in all but two examples (cmb and
sa02), lower power numbers correspond to smaller regions of re-synthesis. This is surprising since
re-synthesizing the entire network leads to lowest power. However, this can be attributable to the
fact that script.rugged does not necessarily produce a circuit of minimal power. As part of future
work, we plan to examine a better power synthesis routine. The power numbers were computed

assuming a 2017 hz clock and a Vdd of 5v.

7 Conclusions and Future Work

Given an original network and a changed specification, we have shown how to realize the new
specification while preserving much of the old network. In particular, we have defined and used
a measure of power sensitivity of the node, and shown that by choosing nodes for re-synthesis
according to this , we get mostly better results than any random selection of nodes. Our method of

re-synthesis is effective in preserving much of the old network. It is also effective in picking the

14

Percantage of Network Preserved

100 Ty vy rrrrrerrryrryrrirTirr T T Y e rorT
“Sens” —
o} 0]
80| []
°3 0} -
3
z —
3 T 1 A I
8 —
el =nitint
P4
* 0F
$
§ wf 5
20F
10
a3 cm8Scm162emi6da cu dekoder ex7 markl sao2 xidn cmb a2 cc dk17
Examples
Figure 4: Size of the Re-synthesis Region
g Total # Region ISyn Power NSyn Power
Example | Nodes | Sensitivity | Random | Sensitivity | Random | Old | New |
alu3 16 7 8 643.10 | 716.40 | 389.00 | 435.10
cm85a 7 3 4 17290 | 177.30 { 189.10 | 201.30
cml62a 12 5 7 202.00 | 273.70 { 163.40 | 177.30
cml63a 8 4 5 173.10 | 203.90 | 169.20 | 179.60
cu 14 1 1 214.60 | 224.60 | 214.60 | 214.60
dekoder 10 5 6 205.00 | 214.60 | 159.90 | 183.10
ex7 19 1 1 53520 | 575.80 | 535.20 | 535.20
mark1 39 22 28 589.50 | 657.60 | 281.70 | 532.60
sao2 20 10 9 671.30 [759.50 | 658.60 | 674.80
x1dn 11 2 8 483.70 | 640.50 | 435.90 | 443.80
cmb 8 4 5 24920 | 234.20 | 229.30 | 256.50
alu2 22 8 6 1189.70 [872.90 | 360.90 | 492.80
cc 18 8 5 263.80 | 242.80 | 212.50 | 222.40
dk17 16 11 11 360.10 [353.60 | 258.00 | 274.70

Table 1: Results

15

re-synthesis region so as to get good power results (as compared to any other random strategy).

As part of future work, we plan to examine different measures of the sensitivity of a node
(region) (wrt to different objectives), and evaluate the performance of the iterative algorithm using
these strategies. In this paper, we have described a greedy strategy for re-synthesis, however in
the future we plan to examine other alternate strategies. We are currently implementing an exact
formulation for the minimal re-synthesis region to realize a given change. We want to come up
with a related greedy strategy that uses some form of sensitivity wrt to a nodes ability to achieve
re-sythesis.

In Section 3 we implemented one particular function from the entire class of possible func-
tions. We intend to extend this and examine the entire class of solutions for the most optimal
implementation, using the work of Watanabe et al [10] on heuristic boolean minimization. Since
we are recomputing a new ORpew (v, u) many times during the iterative algorithm, it becomes
pertinent to explore incremental ways of updating the relation, rather than re-computing it from

the beginning. We expect that some of the methods adapted from [11] may be used.

References

[1] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Sequential Circuit Design Using Synthesis and Optimization,” in Proc. Intl.

Conf. on Computer Design, pp. 328-333, Oct. 1992.

[2] Y. Watanabe and R. K. Brayton, “Incremental Sythesis for Engineering change,” in Workshop

Notes of the Intl. Workshop on Logic Synthesis, (Tahoe City, CA), May 1991.

[3]1 D. Brand, “Incremental Synthesis,” in Proc. Intl. Conf. on Computer-Aided Design, pp. 126—

129, Nov. 1992.

16

[4] Y. Kukimoto and M. Fujita, “Rectification method for lookup-table type FPGA'’s,” in Pro-
ceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 54-61,

November 1992.

[5] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen, “Application of Boolean unification
to combinational logic synthesis,” in Proceedings of IEEE International Conference on

Computer-Aided Design, pp. 510-513, November 1991.

[6] C. Lin, K. Chen, S. Chang, M. Marek-Sadowska, and K. Cheng, “Logic Synthesis for

Engineering Change,” in Proc. of the Design Automation Conf., pp. 647-652, June 1995.

{71 C. Lennard, Estimation Techniques to Guide Low Power Resynthesis Algorithms For Com-
binational Random CMOS Logic. PhD thesis, University of California Berkeley, Electronics
Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720,

Aug. 1995. Memorandum No. UCB/ERL M95/75.

[8] H. Savoj and R. K. Brayton, “Observability Relations and Observability Don’t Cares,” in

Proc. Intl. Conf. on Computer-Aided Design, pp. 518-521, Nov. 1991.

[9] F. M. Brown, Boolean reasoning : the logic of Boolean equations. Boston : Kluwer

Academic Publishers, 1990.

[10] Y. Watanabe and R. K. Brayton, “Heuristic Minimization of Multiple-Valued Relations,”

IEEE Transactions on Computer-Aided Design, vol. Vol. 12, pp. 1458 — 1472, October 1993.

[11] H. Savoj, Don’t Cares in Multi-Level Network Optimization. PhD thesis, University of
California Berkeley, Electronics Research Laboratory, College of Engineering, University of

California, Berkeley, CA 94720, May 1992.

17

	Copyright notice 1996
	ERL-96-22

