

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

MINIMAL LOGIC RE-SYNTHESIS

by

Gitanjali M. Swamy, Sriram Rajamani, Chris Lennard,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/22

15 April 1996

MINIMAL LOGIC RE-SYNTHESIS

by

Gitanjali M. Swamy, Sriram Rajamani, Chris Lennard,
and Robert K. Brayton

Memorandum No. UCB/ERL M96/22

15 April 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Minimal Logic Re-synthesis

Gitanjali M. Swamy Sriram Rajamani Chris Lennard

Robert K. Brayton

Abstract

Mostproblems in logic synthesis are computationally hard, and are solved using heuristics.

This often makes algorithms un-stable; if the input is changed slightly, the new result of

synthesis can be significantly different. A designer can spend much effort hand-optimizing a

circuit, so it is desirable to retain as much of this human insight as possible. This motivates

the need for incremental synthesis. We propose a re-synthesis algorithm, which allows the

designer to designate non-resynthesizable portions of a circuit. We define the concept of

minimal change caused by re synthesis, i.e. given a functional change to the circuit, we

examine the minimal change to implement this change. For the evaluation of a region for

re-synthesis we present techniques for evaluating the "sensitivity" or gain possible with re-

synthesis of a set of nodes. We conclude with experimental results and future directions.

1 Introduction

Logic synthesis refers to the process of optimizing a logic description of a circuit, given as a

net-list of logic (boolean) gates [1]. This representation can be optimized for area(minimum),

delay (minimum or meeting requirements), and power(minimum). Since these problems are hard

to solve exactly, heuristic algorithms are generally used. However, these algorithms are unstable;

if a small change is made in the network function, the output of the synthesis algorithm may

vary greatly from the previous implementation. A designer can invest effort in optimizing the

original design by hand, so it is desirable that the hand-designed or optimal parts be preserved,

even when changes are made to the specification. In addition, the network may have already

been implemented in silicon at a lower level of the design hierarchy, and it can be inconvenient to

change.

Previous algorithms for the problem ofincremental synthesis have dealt with post-rectification

(Watanabe et al. [2]), and preserving cones of logic (Brand et al.[3]) in the design. Some relevant

work has also been done by Kukimoto and Fujita [4] but this is concerned with FPGA's rather than

general logic. In addition, this work restricted re-synthesisizable partsof the network to all nodes

at a level, rather than general re-synthesis region. Other approaches to this problem, which use

boolean unification were proposed by Fujita et al [5], andLin et al [6], howeverthese approaches

do not consider the optimality of sub-regions in the network as a factor in choosing candidate

regions for re-synthesis. None of the above approaches have dealt directly with preserving the

"highly-optimal" parts of the circuit.

Changes to the system are defined as changes in the functions computed at theprimary output

nodes. The problem is stated as: We are givenalogicdesign that has inputs.r« e x, outputs z; e c,

andanimplementation / of z = F(x). I hasalready beenoptimized for anobjective, which may

be power, delay or area. A new specification is given, z = Fnow{x). We assume that F and

Fnew are completely specified; the extensions to incomplete specifications are straightforward.

The designer candesignate whichregions may notbe resynthesized, ororder the regions in terms

of where re synthesis is more acceptable.

We use anevaluation criteria for the acceptability of regions for re-synthesis called sensitivity

is generated. In this paper we compute the sensitivity (or acceptability for re-synthesis) for power.

In this respect, we rely heavily on the work done by Lennard [7] for the computation of power

sensitivities of nodes.

We propose an iterative solution to the problem: we begin with a small region for re-synthesis

(selected using the sensitivity criteria), and iteratively expand that region until a solution is

obtained. At each stage, we test if this re synthesis region alone can realize the new specification.

As a second pass, we trim the region iteratively, so that it becomes minimal in the sense that no

subset of the current region can alone realize the change in functionality.

This paper is organized as follows: Section 2 describes the terminology and definitions in

this paper. In Section 3 we give a procedure for determining whether re-synthesis of a given a

sub-region of the network can realize an implementation with the new functionality z = Fnew (z) •

In Section4, we examine strategies for determiningnodesin the network that are good candidates

for the re-synthesis region. A good candidate for re-synthesis must give gains in the designers

objective (power, area, delay) as well as implement the new functionality. This goodness is

estimated by its sensitivity. Section 5 gives an iterative algorithm for incremental synthesis that

begins with an empty re-synthesisregion, and iterativelypicks nodes from the rest of the network to

add to the region (in order of their sensitivity). Wepresent some experimental results in Section 6,

and conclude with directions for future work in Section 7.

2 Terminology and Notation

• A completely specified Boolean function F with n inputs and m outputs is a mapping

F : Bn —> Bm, where B = {0,1}. If m = 1 the onset and offset are the set of points

satisfying F(x) = 1 and F(x) = 0 respectively. A minterm v of a function F is a vertex

(i.e. a point in Bn) such that F(v) = 1. The cofactor FXt of F (completely specified)

with respect to variable x, is the function F evaluated at x:,- = 1. The Shannon form of

F = x,-FXt+^7F3r-(i.e. in terms of itscofactors). Thesizeof F(x),(\F{x)\) denotes the

numberof minterms (onset points) in F(x). An incompletely specified Boolean function

is a mapping F : Bn —• Ym where Y = {0,1, *}(•=> F can be 0 or 1). If m = 1 the

onset,offset, anddon't careset (dcset) arethesetof pointssuchthatF(x) = 1,F(x) = 0,

and F(x) = * respectively.

• A Boolean network (Figure 1)Mf is a directed acyclic graph (DAG) such that each node

in Ar has a Boolean function (r? = fn{n\...nm)). There is a directed edge from node

Hi to node n if the function /„ is dependent on node n,; node m is a fanin of a node n,

node n is a fanout of node ti,. A node nt- is a transitive fanin of a node n if there is a

directed path from n, to n\ n is a transitive fanout of n,-. The inputs x = (zi,..., xn) of

the Boolean network are called primary inputs and outputs z = {z\i...,zm) are called

primary outputs. Nodes with at least one fanin and one fanout are called internal. The

projection (Qj(S(t?))) is the representation of set <S(t?) in terms of the variables of some

input set J (in general / denotes the inputs the node in concern, i.e if n = G{I), then

Q/(S(n)) = GH(S(n))).

• An Observability Relation is a mapping 0F{x, z) : Bn x Bm —> B, where x are

inputs and y outputs. Given any function of the network with inputs x = (x\,..., xn)

and outputs z = {zu...,zm), (z = F(x)) may also be represented as its observability

relation 0F{x, z) := zWF(x). Given inputs x and outputs z, an observability relation is

characterized as 0F(x, z) = 1if z = F{x) and 0F{x,z) = 0\fz^ F(x).

• Consensus or universal quantification Vis defined as Vx,/(xi,.. .xn) = fXt • fa. It is

the largest boolean function contained in / that is independent of a:,.

Smoothing or existential quantification 3 is defined as 3*,f(xi,..., xn) = fXt + fa. It

Figure 1: Network

is the smallest Boolean function containing / that is independent of zt.

• The Boolean difference of a function / with respect to a variable x is defined as |£ =

f*fx+fxfx- Thisfunction gives alltheconditions under which thevalue of / is influenced

bythevalue of£. Itscomplement therefore is alltheconditions under which / is insensitive

toz.

3 Conditions on a Valid Re-synthesis Region

As stated before, we have a logic function (possibly multi-output) z = F(x) (z = (z\. ..zm)),

which is a function of inputs x = (X]...xn). We already have a network realization for this

function. The logic function ofthis network ischanged to a new function z = FncwM- We may

also represent the new function as a separate network. The objective istorealize Fnew(z) while

simultaneously preserving as much of the old network structure / (particularly hand-optimized

portions) as possible.

We recognize the following sub-problem: Given a network with original functionality z =

F{x), which istobe changed to z = Fnew(x), and aregion for re-synthesis R(see figure 2) with

inputs vand outputs u, determine whether the new function can beimplemented by re-synthesizing

the region R exclusively.

To answer this question, we first compute an observability relation for the region R, that is

consistent withtheoverall implementation* = Fnew(z)andcompatiblewiththeimplementations

for the remainder of the original network. Next we imposeconditions on this relationthat ensure

that it is implementable.

3.1 Computing the Observability Relations

Theoverall observability relation for theoriginal circuit ischaracterized by0F{x, z) = z&F(x),

and the new relation is characterized by Onew(x, z) = z®Fnew(^)- The region of re synthesis

R, with inputs v and outputs u, is characterized in its current implementation, by an observability

relation 0R{v, u) that is consistent with 0F(x,z) and compatible with the remainder of the

network. The remainder of the network is characterized by the network N (with the region

R deleted), with inputs u and x and outputs z and v. Its characteristic function is given by

N(x} u, u, z). Figure 2 illustrates these regions, and their inputs and outputs. In this section

we illustrate how to compute the required functionality of a predefined region when the output

function is changed. We first state the following theorem, which is adapted from [8].

Theorem 3.1 The observability relation for region R that is consistent with N(x. i\ u, z) and

compatible with 0F(x, z) is:

0R(v,u) = Vx,x(N(x, u, u, z) =» 0F(x, z)\

When F has been changed to Fnew, we can simply replace F by Fnew in the above and give

a condition for realizability of the new functionality.

Theorem 3.2 Let 0Rnew{v, u) = Vx,z{N(x, t>, w, z) => 0Few(x, z)). Vie newfunctionality can

berealized by re-synthesizing R iff Civ^uORnew{^, w) = U

Resynthesis
Region R

i =F(x)->i =̂ x)

U(x) ' ;

f R(v)) Nfow)

1

V(x)
— —

i

X

Figure 2: Network

A relationthat satisfiesTheorem 3.2 cannotdirectly yield a hardware realization, since hard

ware can only implement functions. In general, 0Hnew(v, u) is not a function. However, any

0Rnew(v, u) satisfying the theorem has at least one function as asubset. To find such afunction,

we have to solvea setof boolean equations. The following theorem from boolean unification [9],

details all solutions y = G{x) to the equation /(.r, y) = 1, when y isasingle bdd variable.

Theorem 3.3 The solutions y = G{x) to an equation f(x, y) = 1, where y isasingle variable,

can be characterized by the inequalities f{x, 0) C G{x) C f{x, 1).

The following theorem, adapted from [9], characterizes a family of functions that yield avalid

implementation of the relation. We assume that O^newK u) satisfies Theorem 3.2. Note that

Theorem 3.4is ageneralization of Theorem 3.3 for multiple output variables.

Theorem 3.4 IfORnew{v, u), u= u\... um is the observability relation for a region R, then

anyfunction u = R{v) = gi .. .gm that satisfies:

• /« +di = FOG = P..M,..V¥i)0Rnew(v, «)) •Uk<i(ukWgk(v))\{Ut=l)

r{ + di = Fi?C, = (3..Mj...U¥i)0Rnew(v, u)) •nkit^^^))^,^)

/, < <7, </,-M,

satisfies the relation 0Rnew{v,u). (i.e, R(v) = u=$> 0R{v, u) = i;. At every stage f represents

the onset, di the don 7care set, andr, offsetfrom which gi is chosen.

We can use the freedom provided by the d, to optimize the function. Reordering the w, gives

rise to different functions; in general a good ordering should be found.

4 Sensitivity

The sensitivity of a node (or region) in the circuit is defined according to the choice of objective

(area, delay, power).

Definition 1 The sensitivity of a node is the change in the objective function (area, delay or

power) that is expected if the node is re-synthesized.

The definition of sensitivity is easily extended to regions. We reply on the work done by

Lennard [7] et al. on computing the power sensitivity of a node. A node n is a good candidate

for re-synthesis if local change in activity (power) plus change in activity in the transitive fanout

reduces overall power. A method for determining expected activity E(n) is outlined in [7].

Consider a node n in the network with immediate fanins n\... nm (refer to Figure 1). Node 7?

computes a function /n(7?i... nm) of its fanins. Let .4ni denote an arbitrary set of minterms that

are added to the onset of fanin n\. Let this be the only change made to the fanins of n. The set

8

of of minterms that are added to the onset of fn are those minterms in Ani that actually change

the value of the function fn from 0 to 1. Similarly, the set of minterms that are removed from the

onset of fn are those minterms in Ani that actually change the value of fn from 1 to 0. Let An

denote the set of minterms that are added to the onset of /„ and Rn denote the set of minterms

that are removed from the onset of fn due to this change. An and Rn can be computed as follows:

1. An(Ani) —£2/(/„|nj_i • /n|„i=o)' Ani

2. Rn{Anx) = Q/(/„|nlssl -/n|„i=o) '^W

The quantities 5pn(n,) = /„|nl=, • /n|„i=0. and Snn(ni) = /„|nlssl • /n|„i=0 aie called

the functional positive and negative sensitivities. Similar measures can be computed for set of

minterms that areadded and subtracted from the onset of /„, when Rm minterms are subtracted

from the onset of its fanin.

These quantities have no real significance as yet, since we do not know the exact change that

is actually made to an internal node of the network. However, if we assume that any change in

theonsetsize is equally likely, theexpected size of the sets An and Rn canbe computedwith just

the knowledgeof the size of the change (without knowingthe actual mintermsin the change!) by

computing the expectations of the quantities in equations (1) and (2):

. E(\An(Ani)\) =\Am\^0^

.g(|fl.(>4.,)|) =M.,||a,(g>-ff))|/-'1

Given a probability p of evaluating to high at anode, the functional transition activity is given by

2(1-p)p. Thus,ap far from 0.5 implies asmaller transition activity. Givenachange inonsetsize at

a given node n\, the the expected change in onset size can be derived for all nodes in the transitive

fanout of 711. The expected onsetsizesof nodes directly relate to their switching probabilities and

hence can be used to get a measureof the expected change in power for the circuit.

We use this analysis tocompute a "good" ordering of nodes for re-synthesis. The efficacy of

this measure ofthe sensitivity ofanode has been demonstrated statistically in [7]. For the purpose

of this paper, we will not discuss this further.

5 Iterative Algorithm

We combine the method for determining whether a region is sufficient to realize the new func

tionality (Section 3), and the means of evaluating which nodes to add to the re-synthesis region

(Section 4), andpropose aniterative algorithm. Before wegive thedetails of theiterative algorithm,

we impose certain restrictions on the structure of valid regions.

We require a loose form of structural contiguity restriction on R. In particular, we do not

allow the inputs of R to be dependenton outputs from R. This structural restriction is needed to

use Theorem 3.2. For instance in Figure 3, R, whichis composedof two non-contiguous regions,

[R 1

f cOn\

Figure 3: Invalid Regions

is not a valid region, since input A depends upon output C. This restriction is imposed, since

resynthesis of such a region might possibly create a combinational cycle within the network.

5.1 Searching for Minimal Regions

Definition 2 A resynthesis region is minimalifno nodecan be removedfrom R without destroying

10

the ability, by re-synthesis ofR, to obtain the newfunctionalityFnew.

It is easy to see that, if a region R. is sufficient for re-synthesis (Theorem 3.2), then every

superset R C R' is also sufficient for re-synthesis. Consequently, if we greedily remove nodes

from a feasible region, while maintaining feasibility and structural validity, our search is guaranteed

to terminate in a locally minimal region. However, finding a global minimum is much harder.

We are currently examining a strategy that implicitly enumerates all feasible sub-regions and is

guaranteed to find a global minimum.

5.2 Iterative Algorithm

First, the designer is allowed to mark out regions that may not be re-synthesized. For the remaining

network, we compute the approximate sensitivities for every node in the network. Computing the

sensitivity of a node requires determining which of its transitive fanins may be re-synthesized.

First a quick measure of sensitivity is computed to estimate the region that must be re-synthesized

with the node. We use an iterative algorithm that progressively adds nodes to the re-synthesis

region.

Algorithm 5.2

Mark regions designer wants unchanged (M)

R = 4>

While R not sufficient (Theorem 3.2)

p =f Node of highest sensitivity (excluding M and R)

R= R + p

Reduce R to get a minimal region (Section 5.1)

Compute u = R(v) (Theorem 3.4)

11

Synthesize u = R{v) to get Rnew

replace R with Rntw

return

We add the node of highest sensitivity to the resynthesis region R, and examine whether re-

synthesizing the current region R could achieve the new functionality. If not, we add the nodes of

next highest sensitivity to the region and repeat the process. This greedy process iteratively tries

to determine a small partition of the initial circuit thathashigh potential for gains in the objective

(power forour current implementation)that canbe re-synthesized in orderto implement the new

functionality. In orderto make the region minimal(Section5.1, we post process it by attempting

to remove nodes to get a smaller feasible region.

6 Experiments and Results

We have implemented the iterative algorithm and sensitivity measures described in this paper

in SIS [1]. Though not explicitly stated during this paper, we used the BDDs to represent our

functions and relations. Logical predicates may be represented as a sequence of BDD operations:

we used BDD's for the computation of logical predicates.

We had to design a set of experiments where we emulated the design process on which these

methods would be applied. We assume that an original design has been hand optimized for the

design objective (in this case power) and that a new specification has been given. The designer,

feeling that the old design is not only highly optimal, but maybe has been tuned to some other

objectives or has already been physically designed, wants to keep as much of this around as

possible.

12

To emulate a design change, we took benchmark examples with external don't cares and

optimized them to obtain a circuit called "old". The new spec Fnew for each example is the same

circuit benchmark but without the external don't cares given. If we optimize this without trying

to preserve any of "old", we get a circuit "new". This represents the best we could do with the

new specification, but most of "old" would have been changed. Note that "new" should always be

worse than "old" in this scenario, in terms of power.

Our primary objective is to preserve as much of the old implementation as possible by re-

synthesizing the re-synthesis region alone. However, we would also like to get "good" power

results while preserving as much of the old network structureas possible.

In general our primary goal conflicts with an objective of minimal power; we can always

get better power results by completely ignoring "old" (hence we have more flexibility). Thus

we expect to get a power number for the incremental approach which is worse that for "new".

However, usingagoodmeasure of power sensitivityto pick nodesto addto the re-synthesis region

shouldgiveus betterpowerresults than usinganyrandom methodto pick the nodes. Theremay be

many minimal regions in a network that canimplement the same functional change; our objective

is to pick the minimal region that gives good power results.

Inourexperiments,we usedtwo methods for choosingtheregionfor re-synthesis: "sensitivity"

and "random". In "sensitivity", we chose the new node to be put in the region of re synthesis

according to the power sensitivity measure discussed in Section 4. In "random" we chose the new

noderandomly. Note thatboth approaches do nottake the abilityof a node to resynthesizethe new

function when choosinga node. The iterative algorithm (Section 5.2) andthe greedy search for a

minimal region (Section 5.1) attempt to minimize the resynthesis region. We compared the sizes

of the regions, as well as total power of the resultant network obtained for both these measures.

Figure 4 summarizes the percentage ofthenetworkpreserved; thesenumberswereconsistently

13

over50% and quite often as high as 90%. We were indeed preserving large portions of the old

network. However, at this stage we do not know what the exact minimum answer is; our future

work will determine this.

We also tabulate the results of our experiment on some sample examples in Table 1. Isyn

denotes the results obtained by our incremental synthesis and Nsyn denotes results obtained by

complete resynthesis. In 10 out of 14 examples,"sensitivity" outperformed "random". We see

that for the first ten examples in Table 1, (alu3 through xldn), "sensitivity" produces circuits

with better power numbers than "random", mostly with smaller or equivalent sized regions. We

were chosing re-synthesis regions that were both small as well as better in power (as compared

to a random criteria). For the last four examples, "random" produces circuits with lower power,

sometimes at the cost of larger re-synthesis regions. Note that in all but two examples (cmb and

sao2), lower power numbers correspond to smaller regions of re-synthesis. This is surprising since

re-synthesizing the entire network leads to lowest power. However, this can be attributable to the

fact that script.rugged does not necessarily produce a circuit of minimalpower. As part of future

work, we plan to examine a better powersynthesis routine. The powernumberswere computed

assuming a 20Mhz clock and a Vdd of 5t».

7 Conclusions and Future Work

Given an original network and a changed specification, we have shown how to realize the new

specification while preserving much of the old network. In particular, we have defined and used

a measure of power sensitivity of the node, and shown that by choosing nodes for re-synthesis

according to this, we get mostly better results than any random selection of nodes. Our method of

re-synthesis is effective in preserving much of the old network. It is also effective in picking the

14

5

z

* 40

100

90

80

70

60

30

20

10

Percentage olNetwork Preserved
t i i i i r i i I I

"Sens" —

11111 111111111111111111111110' 'I'l'
a!u3 cm85cm162em163a cu dekoder ex7 markl sao2 xldn cmb atu2 cc dk17

Examples

Figure 4: Size of the Re-synthesis Region

tj Total tf Region ISyn Power NSyn Power
Example Nodes Sensitivity Random Sensitivity Random Old New

alu3 16 7 8 643.10 716.40 389.00 435.10

cm85a 7 3 4 172.90 177.30 189.10 201.30

cm162a 12 5 7 202.00 273.70 163.40 177.30

cm163a 8 4 5 173.10 203.90 169.20 179.60

cu 14 1 1 214.60 224.60 214.60 214.60

dekoder 10 5 6 205.00 214.60 159.90 183.10

ex7 19 1 1 535.20 575.80 535.20 535.20

markl 39 22 28 589.50 657.60 281.70 532.60

sao2 20 10 9 671.30 759.50 658.60 674.80

xldn 11 2 8 483.70 640.50 435.90 443.80

cmb 8 4 5 249.20 234.20 229.30 256.50

alu2 22 8 6 1189.70 872.90 360.90 492.80

cc 18 8 5 263.80 242.80 212.50 222.40

dkl7 16 11 11 360.10 353.60 258.00 274.70

Table 1: Results

15

re-synthesis region so as to get goodpower results (as compared to any otherrandom strategy).

As part of future work, we plan to examine different measures of the sensitivity of a node

(region) (wrt to different objectives), and evaluate the performance of the iterative algorithm using

these strategies. In this paper, we have described a greedy strategy for re-synthesis, however in

the future we plan to examineother alternate strategies. We are currently implementinganexact

formulation for the minimal re-synthesis region to realize a given change. We want to come up

with a related greedy strategy that uses some form of sensitivity wrt to a nodes ability to achieve

re-sythesis.

In Section 3 we implemented one particular function from the entireclass of possible func

tions. We intend to extend this and examine the entire class of solutions for the most optimal

implementation, using the work ofWatanabe et al [10] on heuristic boolean minimization. Since

we are recomputing a new 0Hnew(u, u) many times during the iterative algorithm, it becomes

pertinent to explore incremental ways of updating the relation, rather than re-computing it from

the beginning. We expect that some of the methods adapted from [11] may be used.

References

[1] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli, "Sequential Circuit Design Using Synthesis and Optimization," in Proc. Intl.

Confi on ComputerDesign, pp. 328-333, Oct. 1992.

[2] Y. Watanabe andR. K. Brayton, "Incremental Sythesis for Engineering change," in Workshop

Notes of the Intl. Workshop on Logic Synthesis, (Tahoe City, CA), May 1991.

[3] D. Brand, "Incremental Synthesis,"in Proc. Intl. Conf. on Computer-Aided Design, pp. 126-

129, Nov. 1992.

16

[4] Y. Kukimoto and M. Fujita, "Rectification method for lookup-table type FPGA's," in Pro

ceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 54-61,

November 1992.

[5] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen, "Application of Boolean unification

to combinational logic synthesis," in Proceedings of IEEE International Conference on

Computer-Aided Design, pp. 510-513, November 1991.

[6] C. Lin, K. Chen, S. Chang, M. Marek-Sadowska, and K. Cheng, "Logic Synthesis for

Engineering Change," in Proc. of the Design Automation Confi, pp. 647-652, June 1995.

[7] C. Lennard, Estimation Techniques to Guide Low Power Resynthesis Algorithms For Com

binationalRandom CMOS Logic. PhDthesis, UniversityofCalifornia Berkeley, Electronics

Research Laboratory,College of Engineering, University ofCalifornia, Berkeley, CA 94720,

Aug. 1995. Memorandum No. UCB/ERL M95/75.

[8] H. Savoj and R. K. Brayton, "Observability Relations and Observability Don't Cares," in

Proc. Intl. Conf. on Computer-Aided Design, pp. 518-521, Nov. 1991.

[9] F. M. Brown, Boolean reasoning : the logic of Boolean equations. Boston : Kluvver

Academic Publishers, 1990.

[10] Y Watanabe and R. K. Brayton, "Heuristic Minimization of Multiple-Valued Relations,"

IEEE Transactions on Computer-Aided Design, vol. Vol. 12, pp. 1458-1472, October 1993.

[11] H. Savoj, Don't Cares in Multi-Level Network Optimization. PhD thesis, University of

California Berkeley, Electronics Research Laboratory, College ofEngineering, University of

California, Berkeley, CA 94720, May 1992.

17

	Copyright notice 1996
	ERL-96-22

