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Abstract

This report describes how to produce a state transition table (or state transition graph) of an FSM
reduced by using implicit minimization algorithms. The cases of ISFSM’s (minimized implicitly by the
program IsM) and PNDFSM’s (minimized implicitly by the program PND_REDUCE) are considered. A
technique to reduce the size of the FSM table description is presented.

1 Introduction

Programs to perform implicit state minimization of incompletely specified FSM’s (ISFSM’s) and pseudo-
nondeterministic FSM’s (PNDFSM’s) have been reported, respectively, in [2] and in [3]. These programs
read a tabular description of the table and build as an internal representation the reduced ordered binary
decision diagrams (ROBDD’s or simply BDD’s) of the characteristic functions of the next state and output
relations representing an FSM.

The computations reported in [2, 3] go as far as computing a minimum closed cover of compatibles,
but the transition relation of a reduced machine is not defined. Moreover, a conversion from the relational
domain back into a compact tabular representation (or state transition graph, STG) of the reduced FSM
is missing. The conversion is necessary to inspect the solution and to prepare an input for subsequent
optimization steps.

In this report we present a solution to these unaddressed problems and show experimental data of a
benchmark set of reduced PNDFSM’s.

2 Implicit Representation of FSM’s

We will use the unified implicit framework proposed in [2] 1. Implicit techniques are based on the idea
of operating on discrete sets by their characteristic functions represented by binary decision diagrams
(BDD’s) [1]. For example, the state transition relation of an FSM is represented by the BDD of the
characteristic function of its transition relation. We may have a unique transition relation 7 (¢, p, n, 0), or
both a next state relation 7 (i, p, n) and an output relation O(z, p, 0).

To perform state minimization, one needs to represent and manipulate efficiently sets of sets of states.
With n states, each subset of states is represented in positional-set form, using a set of n Boolean variables,

'3z(F) (Vz(F)) denotes the existential (universal) quantification of function F over variables z; = denotes Boolean implication;
& denotes XNOR; — denotes NOT.



z = 2122 ...Za. The presence of a state sy in the set is denoted by the fact that variable z takes the value
1 in the positional-set, whereas z; takes the value 0 if state si is not a member of the set. For example, if
n = 6, the set with a single state s, is represented by 000100 while the set of states 25385 is represented by
011010.

A set of sets of states is represented as a set S of positional-sets by a BDD characteristic function
xs : B® = Bas: xs(z) = 1ifand only if the set of states represented by the positional-set z is in the set S.
A BDD representing xs(z) will contain minterms, each corresponding to a state set in S. As an example,
Tuplen i (z) denotes all positional-sets z with exactly k states in them (i.e. |z| = k). For instance, the set
of singleton states is Tuple,, (), the set of state pairs is T'uplen 2(z), the set of full states is Tuplenn(2),
and the set of empty states is T'uple, o(z). An alternative notation for T'uple, k() is Tuplex(z).

Lemma 2.1 Ser equality, containment and strict-containment between two positional-sets = and y are
expressed by: (z = y) = [Thz1(zk & wi); (2 2 y) = [Tici (o = zk); and (z D y) = (2 2 ) - (= # 9)-

Lemma 2.2 Given two sets of positional-sets, complementation, union, intersection, and sharp can be
performed on them as logical operations (-, +, -, -—) on their characteristic functions.

Lemma 2.3 Given a characteristic function x o (z) representing a set A of positional-sets, set union defines
a positional-set y which represents the union of all state sets in A, and can be computed by:

Uniongy(x4) = ﬁ(yk & 3z [xa(z) - 21))
k=1

3 Transition Relation of Reduced FSM

In Section 3.1 we discuss how to determine the transition relation of a reduced FSM starting from the
implicit representation of a closed cover of compatibles as found in the program ISM [2], which minimizes
the number of states of an ISFSM. In Section 3.2 we do the same for the program PND_REDUCE 2 [3], which
minimizes the number of states of a PNDFSM.

The logic variables c, ¢, ¢”, ¢, d, p, n denote sets of state variables, while i is a set of input variables
and o, 5 are sets of output variables. Let S(c) be the the relation of the compatibles chosen in a minimum
solution and r(p) be the relation of the reset state(s).

3.1 Reduction of ISFSM’s

The following equations compute the transition relation T...q(:,c, ¢/, 0) and the reset state r.q(c) of a
reduced FSM, starting from a minimum closed cover of compatibles S(c) computed by ISM for an ISFSM
represented by the next state and output relations 7 (¢, p, n), O(¢, p, 0) with initial state r(p).

T (i, c,d) = Union,a{3p[S(c)(c 2 p)- T(i,p,n)]} @
T (i, ¢,¢) = 3d{T"(i,¢c,d)S(c)(c' 2 d) — 3" [S(c")(c" < ) (" 2 d)]} )
T (i, ¢c,cy0) = T (i, c,c) Yp [Tuplei(p)(c 2 p) = O(i,p,0)] €))
re(e) = Ip[(r(P)S()(c2p)] @
red(c) = ri*d(c) — 3c'[c = I (c)(c' < ¢) ®)
?Referred to asISM2 in [3].



'I:his second set of equations is equivalent to the previous one, except that it works with a unique
transition relation 7 (4, p, », 0), instead of the next state and output relations 7 (%, p, n) and O(%, p, o).

T™%(i,c,d,0) = Unionnoa{3p[S(c)(c2 p) - T(i,p,n,0)]} (6)
Trd(i,c,c,0) = 3d{T"(i,c,d, 0)S(c)(c' 2d) - 3" [S(") (" < )(" 2 d)]} ¥))
recl(c) = Fp[(r(®)S(c)(c2 p)] ®
rred(e) = ri*d(c) — Ic[c = I (e) (¢’ < ©) ©

3.2 Reduction of PNDFSM’s

The following equations compute the transition relation T...q4(i, ¢, ¢, 0) and the reset state r.q4(c) of a
reduced FSM, starting from a minimum closed cover of compatibles S(c) computed by PND_REDUCE for a
PNDFSM represented by the transition relation 7(z, p, n, o) with initial state r(p).

T *%(i,c,n,0) = 3p[S(c)(c2 p)- T(i,p,n,0)]} (10)
T"d(i, ¢,d,0) = Unionn_,d{T'ed(i,c, n,0) — 3p [Tuple;(p)(c 2 p) - (3n T (4,p,m,0))]} (11)
T d(i,¢,c’,0) = 3d{T"*(i,c,d,0)S(c)(c' 2 d) — 3c" [S(c") (" < ) (" 2 d)]} 12)
Tr*d(i,c,c',0) = T’ed(i, ¢,c,0) — 3F6[TT4(i, ¢, &, 8) (¢! # c')(c'a < c0)] (13)
rete) = Ipl(r(®)S(c)(c2 p)] (14)
rrede) = r¥e) — 3 [c = Irid () (¢ < ¢) (15)

The third equation is necessary to enforce that in the reduced FSM, given an input and present state,
there is a unique specified next state. Indeed if transitions i ¢ &’ 0 and i ¢ d 5 are in relation T (i, ¢, d, 0),
then transitions i ¢ ¢/ o0 and i ¢ ¢ & would be in transition T7°4(3, ¢, ¢/, 0) (the second equation only makes
sure that for a given 4, ¢ and o there is at most one ¢’). The third equation chooses one of the two transitions.
The term (¢’ # ¢’) ensures that we make unique only the next state and not the output; therefore we may
obtain an ISFSM (when for the same input, present state and next state there are all the outputs). If we omit
(¢’ # ¢} we obtain a DFSM.

4 Conversion from Implicit Relation to Compact Table

Once the transition relation of the reduced FSM has been obtained, it is important to convert it into a compact
tabular representation, in order to inspect the solution and generate a file in kiss format, which is an input to
subsequent optimization steps.

The obvious way to perform the conversion is to enumerate the minterms of the BDD of the transition
relation and create a tabular line for each of them. For instance, from the following relation T7*4(i, ¢, ¢, 0)
(with variable order o, 1,1, ¢,d, ¢, ¢, ¢,c,¢,d, ¢, ¢, ¢, c):

001010010011001
001100100100110
010100001100110
011010010011001
011011000011001
011110000110011
101001001001100
101010010011001



110010010011001
110011000011001
111010010011001
111110000110011

the direct method produces the following tabular representation:
01 cs4 €126
01 c126 €34
10cys5¢54 O
11 csqciz6 O
11e3ge126 O
11 126 €126 0
1
1
1
1
1
1

(=R

01 c34 cs4
01 cs4 c126
10 cs4 126
10 ¢34 €126
11 cs54 126
11 126 €126

The table so obtained is not most compact one (fewest number of symbolic cubes), as the following
observations show:

1. The two symbolic cubes
01 C54 C126 0
11esqc126 O
could be merged into one
—1lecsger6 O.

2. The two symbolic cubes
1l1esqcr6 O
Ilesqerzs 1
could be merged into one
11 csqc126 —.

These two examples show that enumerating the minterms of the BDD representation, where the variables
have the order i, o, ¢, ¢/ does not yield symbolic cubes that are maximally expanded. Our objective is to find
a two-level representation with a minimum number of symbolic cubes; a secondary objective is to maximize
the incomplete specification of the tabular representation.

Notice that part of the problem has to do with the chosen variable ordering. For instance, in case 1.,
if the inputs would be ordered as the last set of variables, the BDD representation would yield the cube
—1 ¢s54 €126 0. In the same fashion, in case 2., if the outputs would be ordered as the last set of variables,
the BDD representation would yield the cube 11 ¢s4 ¢126 —. We propose an approximate solution to the
problem of producing a compact tabular representation, based on the following facts.

Consider the following transitions with the same present state and next state cs4 c126:

Olesqcize O
11 esqcr26 O
01 csq 126 1
10csq €126 1



11 Cs54 C126 1
and restrict them to the input and output fields:
01 0
11 0
01 1
10 1
11 1
The relation of the inputs and outputs, given that outputs precede inputs in the chosen BDD ordering, has
the following three cubes:
-10
1-1
01 1.
A minimization with espresso (.type fd by default) returns the cover:
-11
1- 1.
The best solution (i.e. having the minimum number of cubes with the maximum of incomplete specification)
is:
-1-
1- 1.
As another example consider the transitions:
11 c1z6 €126 0
11 e1z6 €126 1
The related input-output relation has one cube, as desired:
11 -
A procedure that builds the input-relation for each available pair (present state, next state) to exploit the
simplifications allowed by the enumeration of BDD cubes is shown in Fig. 1.

T tokiss {
Tred(e, ) = Ji 0 T4 (i, ¢, ¢', 0)
for each minterm M (¢, ¢) € T*%(c, ) {
Tred(i,0) = T™(i,c, ¢, 0) M (c, )
for each cube i, 0 € T/ (i, 0) {
create symbolic cube i, ¢, ¢/, 0
}

}
}

Figure 1: Pseudo-code to produce a tabular representation.

The following figures shows pairs of initial PNDFSM’s and reduced machines obtained by the compu-
tations described in the last two sections.



Figure 2: The STG of the PNDFSM damiani.pnd.

Figure 3: The STG of the reduced FSM obtained with PND_REDUCE from the PNDFSM damiani.pnd.



Figure 4: The STG for the PNDFSM mc9.pnd.
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Figure 5: The STG of the reduced FSM obtained with PND_REDUCE from the PNDFSM mc9.pnd.



Figure 6: The STG for the PNDFSM yoshi.pnd.
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Figure 7: The STG of the reduced FSM obtained with PND_REDUCE from the PNDFSM yoshi.pnd.




5 Results

We have augmented the programs ISM and PND_REDUCE (aliter ISM2 in [3]) with procedures to produce the
relation of the reduced FSM and generate a tabular representation, according to the computations described

in this report.

We report the experiments described in [3] for PNDFSM state minimization. Of each example we list
the initial and final number of states, and the initial and final number of transitions (Symbolic cubes). The
last parameter was not known from [3] and it is the size of the tabular representation of the reduced FSM
produced by our procedure. For each example a file in kiss format is obtained. Note that all reduced FSM’s

happen to be of Mealy type.
original PNDFSM reduced FSM

example | /O | states | trans. | states | trans. | FSMtype | CPU time
L3 2/3 17 204 2 5| Mealy 6.24
am9 6/6 13 489 1 94 | Mealy 1.49
ax4 5/6 11 340 1 32 | Mealy 041
ax7 3/5 20 422 2 111 Mealy 3.94
bx7 3/5 23 418 2 43 | Mealy 4.62
damiani | 1/1 5 14 3 6| Mealy 0.55
edat2 | 5/4 14 324 1 17 | Mealy 0.66
edbpl | S/5 11 317 1 12 | Mealy 0.55
edtl 7/4 6 125 1 8| Mealy 0.14
e69 2/1 8 43 1 2 | Mealy 0.18
e6tm | 4/4 21 993 1 58 | Mealy 19
ex10 3/4 13 239 1 17 | Mealy 0.36
ex12 3/4 13 116 1 5| Mealy 047
mc9 21 4 22 1 3| Mealy 0.04
mt51 5/6 16 490 1 106 | Mealy 2.25
mt52 | 5/6 9 464 1 180 | Mealy 0.76
pm03 | 2/4 15 87 1 4 | Mealy 0.44
pm04 | 2/4 79 513 1 4 | Mealy 48.46
pmll | 8/8 9 586 1| 88| Mealy 247
pmi12 | 88 7 231 1| 40| Mealy 0.29
pm31 | 6/6 22 1109 1 274 | Mealy 459
pm33 |66 | 21 1220 1| 132| Mealy . 42
s3pl 5/5 38 2857 1 34| Mealy 335.82
s3t2 5/4 36 1663 1 52| Mealy 1595
tmO01 4/4 10 603 1 39 | Mealy 0.54
tm02 | 4/4 7 177 1 4 | Mealy 0.24
tm31 3/4 9 95 1 3| Mealy 0.16
tm32 | 3/4 9 132 2 21 | Mealy 1.52

Table 1: Results on problems from PNDFSM benchmark suite
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