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Abstract

This report describes how to produce a state transition table (or state transition graph) of an FSM
reduced by using implicit minimization algorithms. Thecases of ISFSM's (minimized implicitly by the
program ISM) and PNDFSM's (minimized implicitly by theprogram PND.REDUCE) are considered. A
technique to reduce the size of the FSM tabledescription is presented.

1 Introduction

Programs to perform implicit state minimization of incompletely specified FSM's (ISFSM's) and pseudo-
nondeterministic FSM's (PNDFSM's) have been reported, respectively, in [2] and in [3]. These programs
read a tabular description of thetable and build as an internal representation the reduced ordered binary
decision diagrams (ROBDD's orsimply BDD's) of the characteristic functions of thenext state and output
relationsrepresenting an FSM.

The computations reported in [2, 3] go as far as computing aminimum closed cover of compatibles,
but the transition relation of a reduced machine is notdefined. Moreover, a conversion from the relational
domain back into a compact tabular representation (or state transition graph, STG) of the reduced FSM
is missing. The conversion is necessary to inspect the solution and to prepare an input for subsequent
optimization steps.

In this report we present a solution to these unaddressed problems and show experimental data of a
benchmark set of reduced PNDFSM's.

2 Implicit Representation of FSM's

We will use the unified implicit framework proposed in [21 K Implicit techniques are based onthe idea
of operating on discrete sets by their characteristic functions represented by binary decision diagrams
(BDD's) [1]. For example, the state transition relation of an FSM is represented by the BDD of the
characteristic function of its transition relation. We may have aunique transition relation 7~(i, p,n, o),or
both anextstate relation T(i, p,n) and an output relation 0(i, p,o).

lb perform state minimization, one needs to represent and manipulate efficiently sets of sets of states.
Withn states, each subset of states isrepresented in positional-set form, using asetof n Boolean variables,

13x{?) (Vx(^)) denotes the existential (universal) quantificationoffunction ^overvariables x; =• denotes Booleanimplication;
& denotes XNOR; -> denotes NOT.
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x= xix2... xn. The presence ofastate sk inthe set isdenoted bythe fact that variable xk takes the value
1in the positional-set, whereas xk takes the value 0if state sk is not amember ofthe set. For example, if
n= 6, the set with asingle state s4 isrepresented by000100 while the set ofstates s2S3S5 isrepresented by
011010.

A set of sets of states is represented as a set 5 of positional-sets by a BDD characteristic function
Xs :Bn -> Bas: xs(x) = 1ifand only ifthe setofstates represented by the positional-set xis in the set 5.
A BDD representing xs(z) will contain minterms, each corresponding to astate set inS. Asan example,
Tuplentk{x) denotes all positional-sets xwith exactly k states inthem (i.e. \x\ = k). For instance, the set
ofsingleton states is Tuples(x), the set ofstate pairs is Tuplent2 (x), the set offull states is Tuplenttl (x),
and the set ofempty states isTuplento(x). Analternative notation for Tuplenyk(x) isTuplek(x).

Lemma 2.1 Set equality, containment and strict-containment between two positional-sets x and y are
expressed by: (x = y) = Uk=\ixk <* yk): (Oll) = n?=ifet =• xk): and (x Dy) = {xDy)-(x # y).

Lemma 2.2 Given two sets ofpositional-sets, complementation, union, intersection, and sharpcan be
performed on them as logical operations (-«, +, •, —<) ontheir characteristic functions.

Lemma 23 Given acharacteristicfunction xa (x) representing asetAofpositional-sets, setuniondefines
a positional-set y which represents the union ofall statesets in A, andcan be computed by:

n

Unionx^y(xA) = II(^ ^ 3* \Xa(x) •xk])
Jfc=i

3 Transition Relation of Reduced FSM

In Section 3.1 we discuss how to determine the transition relation of a reduced FSM starting from the
implicit representation of a closed cover of compatibles as found in the program ism [2], which minimizes
thenumber of states of an ISFSM. InSection 3.2 wedo the same for the program pnd_reduce 2 [31, which
minimizes the number of states of a PNDFSM.

The logic variables c, d, c",d> d} p, n denote sets of state variables, while i is a set of input variables
and o, o aresets of output variables. Let S(c) be the the relation of the compatibleschosen in a minimum
solution and r(p) be the relation of the reset state(s).

3.1 Reduction of ISFSM's

The following equations compute the transition relation Tred^jC^cf^o) and the reset state rred(c) of a
reducedFSM, starting from a minimum closed coverof compatibles S(c) computed by ISM for an ISFSM
represented by the next state and output relations T(i,p, n), b(i, p, o) with initial state r(p).

Tred(i,c,d) = Unionn^d{Bp[S(c)(cDp)'r(i^n)]} (1)
Trcd(i,c,cO = 3d{Tred(i,c,d)S(cf)(ctDd)-3c,,[S(c,,)(c"-<ct)(c,,Dd)]} (2)

Tred(i,c, c',o) = Tred(i, c,cO Vp [Tuplex(p)(c Dp) =» <9(t,p, o)] (3)
rraed(c) = 3p[(r(p)5(c)(Op)] (4)
r (c) = r-"(c)-3c'[c^c>r"W(o'-:c) (5)

2Referred to asISM2 in [3].



Tlus second set of equations is equivalent to the previous one, except that it works with a unique
transition relation T(i, p, n, o),instead of thenext stateandoutput relations T(t\ p, n) and<9(i, p, o).

Tre<f(i,c,d,o) = Unionn->d{3p[S{c)(cDp).T(i,p,n,o)]} (6)
T^ftc^.o) = 3d{rred(i,c,rf,o)5(cO(c,Dd)-3c,,[5(c,,)(c/,-Cc/)(c,,Dd)]} (7)

r^(c) = 3p[(r(p)5(c)(cDp)] (8)
rred(c) = r^(c)-3e'[c-><rlr^(c)(ci^c) (9)

3.2 Reduction of PNDFSM's

The following equations compute the transition relation Tred(i,c,d,o) and the reset state rred(c) of a
reducedFSM, startingfrom a minimumclosedcoverof compatibles S(c) computedby PND-REDUCE for a
PNDFSM represented by thetransition relation T(i, p, n, o) withinitial stater(p).

T"d(i,c,7i,o) = 3p[5(c)(c2p)-r(i,p,n,o)]} (10)
Tred(i,c,(f,o) = Unionn->d{Tred(i,c} n,o) - 3p[Tup/ei(p)(c Dp) •(3n T(i,p,n,o))]} (11)
Tred(i,c,c',o) = 3d{Tred(i,c,d,o)5(cO(c,Dd)-3cw[5(c/,)(c/,-(c,)(c,/Dd)]} (12)
rred(i, c,c', o) = rred(i, c, c', o) - 3?o[rred(i, c,?, o)(£ # ^(Ja -< c'o)] (13)

r;ed(c) = 3p[(r(p)5(c)(cDp)] (14)
rred(c) = rjed(c)-3c/[c^c,]r;ed(c)(c/^c) (15)

The third equation is necessary to enforce that in the reduced FSM, given an input and present state,
there is aunique specified next state. Indeed iftransitions icd'oand i cd! bare in relation Tred (i, c, d, o),
then transitions i c d o and i c d bwould bein transition Tred(i, c,d,o) (thesecond equation only makes
surethatfora given i, c and o there is at most oned). Thethird equation chooses oneof thetwotransitions.
The term (d ^ d) ensures that wemake unique only the next state and not theoutput; therefore we may
obtain anISFSM (when forthesame input, present state andnext state there areall theoutputs). If weomit
(d ^ d) we obtaina DFSM.

4 Conversion from Implicit Relation to Compact Table

Once the transition relation of the reduced FSM has been obtained, it is important to convert it into a compact
tabular representation, inorder toinspect the solution and generate a file inkiss format, which is aninput to
subsequent optimization steps.

The obvious way to perform theconversion is toenumerate theminterms of theBDD of thetransition
relation and create atabular line for each ofthem. For instance, from the following relation Tred(i, c,d,6)
(with variable order o, i, i, c,d, c, c7, c,d, c,c',c, c7, c,d):
001010010011001

001100100100110

010100001100110

011010010011001

011011000011001

011110000110011

101001001001100

101010010011001



110010010011001

110011000011001

111010010011001

111110000110011

the direct method producesthe following tabular representation:
01 C54 C126 0
01 C126 C34 0
IOC125C54 0

11 C54 C126 0
11 C34 C\26 0

11C126C126 0
01 C34 C54 1

01 C54 Ci26 1
10 C54 C126 1

IOC34C126 1

11 C54 C126 1

11 Ci26 C126 1

Tlie table so obtained is not most compact one (fewest number of symbolic cubes), as the following
observations show:

1. The two symbolic cubes
01 C54 C126 0
11 C54 C126 0
could be merged into one
-IC54C126 0.

2. The two symbolic cubes
11 C54 C126 0

11 C54 C126 1
could be merged into one

llc54ci26 -.

These two examples show that enumerating the minterms of the BDD representation, where the variables
havethe orderi, o, c, d does not yield symbolic cubesthat are maximally expanded. Ourobjectiveis to find
a two-level representation with a minimum number of symbolic cubes; a secondary objective is to maximize
the incomplete specification of the tabular representation.

Notice that part of the problem has to do with the chosen variable ordering. For instance, in case 1.,
if the inputs would be ordered as the last set of variables, the BDD representation would yield the cube
-1 C54 C126 0. In the same fashion, in case 2., if the outputs would be ordered as the last set of variables,
the BDD representation would yield the cube 11 C54 cne -. We propose an approximate solution to the
problem of producing a compact tabular representation, based on the following facts.

Consider the following transitions with the same present state and next state c54 cne-
01 C54 C126 0

IIC54C126 0
01 C54 C126 1

IOC54C126 1



11 C54 Ci26 1
and restrict them to the input and output fields:
01 0

11 0

01 1

10 1

11 1.

The relation of the inputs and outputs, given that outputs precede inputs in the chosen BDD ordering, has
the following three cubes:
-1 0

1-1

01 1.

A minimization with espresso {.typefd by default) returns the cover:
-1 1

1- 1.

The best solution(i.e. havingthe minimum numberofcubeswith themaximum ofincompletespecification)
is:

-1-

1- 1.

As another example consider the transitions:

11 C126C126 0
11 C126C126 1
The related input-outputrelationhas one cube, as desired:
11 -.

A procedure that builds the input-relation for each available pair (present state, next state) toexploit the
simplifications allowed by theenumeration of BDD cubes is shown in Fig. 1.

TredJoJciss {
Tred(c,d) = 3i oTred(i,c,d,o)
for each minterm M(c, d) e Tred{c, d) {

T#(i, o) = Tred(i, c, d, o)M{c, d)
for each cube i,oe T£J?(», 6) {

create symbolic cube i, c, c;, o
}

}
}

Figure 1: Pseudo-code to produce a tabular representation.

The following figures shows pairs of initial PNDFSM's and reduced machines obtained by thecompu
tations described in the last two sections.



Rgure 2: The STG of the PNDFSM damianLpnd.

Figure 3: The STG of the reduced FSM obtained with pnd_reduce from the PNDFSM damianLpnd.



Figure 4: The STG for the PNDFSM mc9.pnd.

Figure 5: The STG of the reduced FSM obtained with PND-REDUCE from the PNDFSM mc9.pnd.



Figure 6: The STG for the PNDFSM yoshLpnd.

'Ka^X}"

Figure 7: The STG of the reducedFSM obtained with pnd_reduce from the PNDFSM yoshLpnd.



5 Results

We have augmented the programs ism and PNDJffiDUCE {aliter ism2 in [3]) with procedures to produce the
relationof the reduced FSM and generate a tabularrepresentation, according to the computations described
in this report.

We report the experiments described in [3] for PNDFSM state minimization. Of each example we list
the initial and final number of states, and the initial and final number of transitions (symbolic cubes). The
last parameter was not known from [3] and it is the size of the tabularrepresentationof the reduced FSM
produced by our procedure. Foreachexample a filein kiss format is obtained. Note that allreducedFSM's
happen to be of Mealy type.

original PNDFSM reduced FSM

example I/O states | trans. states trans. | FSMtype CPU time

L3 2/3 17 204 2 5 Mealy 6.24

am9 6/6 13 489 1 94 Mealy 1.49

ax4 5/6 11 340 1 32 Mealy 0.41

ax7 3/5 20 422 2 111 Mealy 3.94

bx7 3/5 23 418 2 43 Mealy 4.62

damiani 1/1 5 14 3 6 Mealy 0.55

e4at2 5/4 14 324 17 Mealy 0.66

e4bpl 5/5 11 317 12 Mealy 0.55

e4tl 7/4 6 125 8 Mealy 0.14

e69 2/1 8 43 2 Mealy 0.18

e6tm 4/4 21 993 58 Mealy 1.9

exlO 3/4 13 239 17 Mealy 0.36

exl2 3/4 13 116 5 Mealy 0.47

mc9 2/1 4 22 3 Mealy 0.04

mt51 5/6 16 490 106 Mealy 2.25

mt52 5/6 9 464 180 Mealy 0.76

pm03 2/4 15 87 4 Mealy 0.44

pm04 2/4 79 513 4 Mealy 48.46

pmll 8/8 9 586 88 Mealy 2.47

pml2 8/8 7 231 40 Mealy 0.29

pm31 6/6 22 1109 274 Mealy 4.59

pm33 6/6 21 1220 132 Mealy 4.2

s3pl 5/5 38 2857 34 Mealy 335.82

s3t2 5/4 36 1663 52 Mealy 15.95

tmOl 4/4 10 603 39 Mealy 0.54

tm02 4/4 7 177 4 Mealy 0.24

tm31 3/4 9 95 3 Mealy 0.16

tm32 3/4 9 132 | 2 21 | Mealy 1.52

Table 1: Results on problems from PNDFSM benchmark suite
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