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Abstract

Integrated Circuit Process Design for Manufacturability Using Statistical

Metrology

by

CridYu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

The design of a VLSI process can be described as a procedure to center and optimize pro

cess settings. Using a suitable design of experiments, such as Response Surface Methodol

ogy (RSM), the space relating output process parameters (i.e. film thickness, critical

dimensions, etch rate) to input process settings (equipment types and settings) is mapped

out. The process designer then explores this mapped space to determine the vector of set

tings which will produce a set of parameters that meets the process specifications and is

manufacturable. In this context, the manufacturability of a process is related to the vari

abilityof anoutput process parameter. Higher manufacturability requires lowervariability.

To incorporate process variability into the design, the process manufacturability as well as

the output process parameters (nominal values) must be determined over the range of pro

cess settings.
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Statistical Metrology, which combines conventional metrology with statistical filtering,

has been presented as a methodology to extract and calculate error budget items versus

process controls (equipment and recipe) over a range of circuit design variables (critical

dimension, proximity). As an example, we have developed a comprehensive error frame

work and error characterization methodology and applied it on the decomposition of the

error budget of photolithography. We formulated an error structure which describes both

deterministic and random critical dimension variability as the sum of variability compo

nents contributed by physical sources (process, equipment, recipe). This information was

then used to impact process Design for Manufacturability (DFM) in: 1) processing equip

ment selection and matching, 2) recipe optimization for manufacturability, and 3) accurate

and efficient calculation of process margins. DFM was implemented by managing the pro

cess error budget, which is a tabulation of the error introduced by each process step and

the way in which errors accumulateover a sequence of steps.

Chair Date
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Chapter 1

Introduction

While aggressive CD control specifications are projected for future device genera

tions, process or equipment variability is not necessarily falling at the same pace. This is a

result of both pushing equipment technologies to the limit, especially in the areaof optical

lithography, and the decrease in nominal critical dimensions. In particular, systematic

equipment variability in some segmentsof the IC process chain has become a significant

fraction of the error budget. These trends call for careful management of the process error

budget.

Ideally, there would be three types of information contained in an error budget: (1) a

classification of process error in useful, quantified components, (2) the correlation struc

ture between components, and (3) the relationship between process variability compo

nents and process design variables. Such acomplete understanding of the error budget can

provide many opportunities to engineer process variability. Variability bottlenecks can be

identified so as to direct the focus ofengineering efforts. Process error can be manipulated

by changing settings and/or redesigning equipment. Trade-offs between process perfor

mance and yield become possible. In short, process variability becomes designable. How

ever, not all items of interest inaprocess error budget can bedetermined by conventional
means.

Statistical Metrology [1] is a methodology which combines measurements from

existing metrology with subsequent data filtering to extract items in the error budget. An

ideal experimental or test structure design would provide data free oferror or confounding
variations, though this is almost never the case in the real world. However, simple error

reduction techniques by statistical manipulation (such as averaging or regression) of raw

experimental data has been common practice. Statistical Metrology uses statistical proce-
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dures to extendthe capability of experimental techniques in order to decompose raw mea

surements into variability components. To demonstrate this by example, we have applied

this methodology towards extracting equipment and measurement errors from electrical

and automated SEM CD measurements.

1.1 Background

The growing visibility of systematic error, that is variability with some structure in

either space or time, suggests that there may be some lower limit to the amount of variabil

ity which can be achieved. Spatial variability of this sort is usually an intrinsic feature of

the equipment and as such is a concern in process design.

Process parameter variation is often deterministic and can thus be assigned a cause.

For example, the variation of film thickness across a wafer may appear as a continuous

function (such as radial variation) of the coordinates of the wafer, and may be caused by

non-uniformity introduced by the equipment. These types of systematic variation are rou

tinely observed in processing, and have been used by operators as qualitative visual indi

cators of process well-being. This suggests that the causal nature of these variations is

physical and therefore can be characterized and modeled. A causal classification of pro

cess error may also provide anopportunity to control thaterror.

Variation generally classified as "random" may simply bedeterministic variation that

is uncharacterized. Moreover, the truly random process variation associated with today's

well-characterized process equipment is very well bounded and subject to fundamental

quantification. This gives us the (as yet discarded) opportunity to assign causes to varia

tion and to systematically remove and/or modelthese causes.

In addition to spatial and causal qualities of process error, a correlation structure

between different variabilities can provide another lever to control CD's. For example,

consider two or more systems in sequence which have relatively poorer control on the

wafer edge than in the center. The resulting parameter distribution on the wafer will be dif
ferent for different individual spatial distributions of error, even if the individual contribu

tions of each equipment remain the same.



To formulate an error budget, it is also necessary to understandand accurately quan

tify the structure of process error, whether systematic orrandom, spatial ortemporal. Error

with causal and spatial structures will require statistical descriptions different from the

uncorrelated gaussian distribution assumed in most conventional error budget calcula

tions. Work done by other authors have characterized spatial features of process errorand

used them in process diagnosis [2]. Obviously, the spatial structure in process error must

be taken into account in order to formulate an accurate error budget. Furthermore, the spa

tial distribution of process parametershas implications for both process and circuit design.

Processes producing opposite trends over the wafer may be combined to cancel one

another. Similarly, process variation within a die may be of concern to circuit designers.

From the error budget, yield bottlenecks can be identified and engineering efforts can

be focused to the particular process steps introducing the most process variation. A design

space for process variability can be mapped versus controllables, such as the equipment

and the recipe used. The space is analogous to the response surface used in determining

the mean or target performanceof a process. Both the performance and manufacturability

responses will be used to determine an optimal operating point (Figure 1.1). Given quanti

fied responses for performance and manufacturability, informed trade-offs between the

two may be possible.

Equipment Settings
FIGURE 1.1 Concurrent
manufacturability design curves.

performance and
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1.2 The Structure of Patterning Variability

Determinism, spatiality, andcausality are three attributes that describe the variability

one might observe in VLSI fabrication. These constitute a complete process error frame

work shown in Figure 1.2. Spatial classifications, such as within die and between die, are

frequently used to factor process error. However, the exact spatial patterns of variation

have not been extensively characterized and cannot be fully known with a limited amount

of data samples. Moreover, spatial classification alone does not provide the means to con

trol process error, which is of ultimate engineering use.

The next category, causality, classifies process variability by its contributing sources.

Just as in the case of spatial hierarchies, there are many levels of causality. Assignment of

variability by equipment and process recipe is the most common form of causal classifica

tion. Environmental factors, which are more difficult to identify and control, are also vari

ability sources. It is unlikely that all sources of process error will ever be identified.

Finally, process variability can be deterministic or random. As an example, consider

an etcher (cause) that introduces a radial (deterministic) etch rate variation within the

wafer. The same etcher could also introduce random variability over the same wafer. In

this conceptual framework, the error budget is primarily acausal decomposition of process

error.
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FIGURE 1.2 Process variability categories.
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1.3 Statistical Metrology- Critical Dimension (CD)

One of the basic requirements of an IC process is the ability to pattern features of

specified sizes in a repeatable manner. Critical dimension (CD) control is a popular metric

for gauging fab performance because it indicates whetherequipment is functioning within

control and also anticipates the final circuit yield. CD error is the result of aggregate errors

in the sequence of film deposition, resist patterning, and film etching. The error contribu

tion of each process step cannot always be determined by conventional metrology. Electri

cal CD measurements of patterned conductors provide fast and precise counts of



variability. Further, because the measurements can only be taken at the end of the pattern

ing sequence they include confounded error contributions from all steps in the sequence.

On the other hand, while SEM CD measurements may be able to isolate variability contri

butions of certain process steps, they may lack the required precision due to measurement

errors.

Statistical Metrology

Conventional

Metrology

Electrical

SEM

Meas.

Spatial

Causal

>

FIGURE 1.3 Statistical metrology concept and applications.

Process Design

Equipment
Selection

Error Budget

Sampling

Control

Diagnosis

... —. -

This situation has prevented assignment of error contributions amongst various pro

cess segments, most notably between lithography and etch, and between different choices

of process equipment. Ultimately, it is the electrical performance that must be delivered to

the customer, so a manufacturability metric should be based on electrical performance

variation. Following Statistical Metrology concepts, a methodology has been developed in

this thesis to extract individual equipment variability from electrical CD measurements.

Similarly, a methodology has also been developed to characterize and to remove SEM

measurement artifacts in variability sampling.

In this thesis, a novel metrology system is demonstrated by examples in electrical or

SEM CD decomposition (Figure 1.3). The measurement of process parameters is by

nature a sampling of errors: measurement error and components of process error. While



the raw data is rich in information about process error, this information is usually inscruta

ble because the errors are confounded. Error filtering and signal extraction has been asso

ciated with metrology, even in simple forms such as averaging to reduce random error.

Statistical Metrology is proposed in this thesis as a methodology which extends error fil

tering in metrology to include process error components as well as experimental error.

Measurements from conventional metrology, such as SEM or electrical CD's are decom

posed into error components with the use of a series of filters. Metrology is "enhanced"

because the error structure can be discerned.

1.4 Statistical Metrology- Methodology

A methodology has been developed to extract the error budget of a process sequence

by accurate and systematic characterization of the variation, both deterministic and ran

dom, associated with each process parameter. Shown in Figure 1.4, this methodology con

sists of four phases: (1) Experimental design and data collection, (2) Physically based

statistical filtering, (3) Error budget decomposition and, (4) Verification.

Experiment and

Sampling Pattern

Sampling
Experiment

••
Physical and

Statistical

Filtering

FIGURE 1.4 Schematic ofdecomposition methodology.

^.Metrology
"Error

Error Budget Items

1.4.1 Experimental Design

Statistically significant quantities of data can be collected efficiently with short loop
processing experiments in the real time environment of a wafer fab. An experiment was
designed to collect data over the deterministic, spatial, and causal error dimensions of



8

interest by sampling CD variability at a fixed operating point in the process using line-
width measurements [3][4]. This is in contrast to conventional process design experiments
which seek to determine the optimal process setting, orroughly the mean value ofthe pro
cess response.

Spatial variability is sampled by repeating CD patterns over the reticle in a grid and

repeating the reticle patterns over the wafer. The dimension and proximity conditions of

the CD patterns were varied in each location on the reticle as sample systematic variability

due to mask CD variations and proximity effects. A variety of linewidth topologies can be

considered. The linewidth structures are electrically measurable and use the Kelvin 4 point

measurement design, with the sheet resistance determined by adjacent Van der Pauw

structures. The raw data from the experiment consists of periodic repetitions of the reticle

over the wafer.

The experiment isconducted over ashort-loop process sequence as to sample a mini

mum number ofprocess error components. Because ofthe large amounts ofhigh precision

data required, the metrology has been constrained to that ofelectrically measurable test
structures and automated SEM measurements. However, since fabricating even the sim

plest electrical structure involves multiple process steps, the final measurable variability
actually confounds the individual error sources. Because of this, it is necessary to decom
pose the observed lumped variability into individual error components from each equip

ment.

1.4.2 Statistical Filter Creation

Statistical Metrology makes use ofmeasurements from existing metrology combined

with subsequent data filtering algorithms to infer causal variability. Ideally, experimental
ortest structure design would provide data free oferror or confounding variations. How

ever, this is almost never the case. Meanwhile, simple statistical manipulation (such as

averaging or regression) of raw data has always been used in practice to reduce measure
ment error. Statistical procedures are used to extend the capability ofexperimental tech
niques in order to decompose raw measurements into equipment contributions.
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The data collected exhibit particular spatial structure due to the operation of the pro

cessing equipment (for example, within the exposure field vs. over the wafer). Further

more, these spatial patterns can be linked to physical causes. We propose a two step data

decomposition process to exploit these datafeatures. A statistical signal filter first decom

poses the raw data into signal subcomponents based on spatial characteristics. Because

different processing equipment affect different spatial domains, the physical sources of

variability for a particular, signal subcomponent is only a subset of the total variability

components of the experiment. Then, a second physical decomposition involving addi

tional experimentation is carried out for particular signal subcomponents to determine

error contributions from specific equipment. These filters may be implemented through

separate experiments and analysis.

1.4.3 Error Budget Decomposition

Error decomposition is performed using a set of test structures sensitized to particular

process disturbances in conjunction with subsequent statistical and physically based filter

ing techniques. Raw data is collected from an experiment which samples variability over a

particular spatial extent and over a particular process sequence. Through the use of data

filters described in Section 1.4.2, the deterministic components of the variation can be

identified and decomposed into components associated with individual process equip

ment. This decomposition process may be aided by multiple structures with sensitivity

optimizations for each tool. Thus, the system consisting of conventional CD measure

ments and data filtering is actually a metrology system with enhanced ability to resolve

confounded causes over various spatial extents.

1.4.4 Filter Verification

The system of enhanced metrology yields outputs which are essentially spatial and

causalerror components which can be usedas responses in process design. The effective

ness of the filters need to be verified before sucha metrology systemis to be put to use. An

additional set of experiments should be carried out to corroborate the estimates from the

filters. In some cases independent, alternate metrology would suffice, such as the use of

SEM measurements to confirm the decomposition of electrical measurements. In other
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instances deliberate known perturbations to equipment variability can be introduced to

verify the causal filter.

The combinedeffectsand interactions of a completeIC process are enormouslycom

plex. Smaller, more tractable portions of this problem will be approached first in charac

terizing process modules. Photolithography is used extensively in IC manufacturing and is

a relatively well-characterized process. Our work will start first with applying the pro

posed methodology to the lithography process module and demonstrating the feasibility of

this methodology with a 0.35|im poly gate patterning sequence.

1.5 Impact of Statistical Metrology on DFM

The Statistical Metrology system yields extracted error components which can be

used to impact process DFM in several ways. The effects of the stepper and the reticle on

CD error has been determined. Methodology has being developed to extract the variability

contribution from plasma etch in the metal patterning sequence. Characterization and

removal of measurement errors from automated SEM tools have allowed the estimation of

develop and etch contributions to CD variability.

1.5.1 IC Manufacturability as it Relates to Processing Equipment

Increasing complexity in IC fabrication has put tremendous demands on equipment

manufacturers to meet next-generation process specifications. This is true, for example, of

steppermanufacturers. However, technologies exist thatextend the usefulness of lithogra

phy tools half or even a full generation, i.e. higher contrast resist, phase-shift masks, off-

axis illumination schemes. In process design, the option exist between using existing tech

nology withenhancements or going to more advanced but less familiar technology. Inevi

tably, the manufacturability of the process becomes the deciding factor. Statistical

Metrology can be used to extract an estimate of the isolated equipment error contribution

as a basis for machine comparison to determine equipment and technology choices.

In the case of poly CD's, a statistical filter extracted the periodic signal component

over the wafer. Subsequently, additional experimentation and physical filtering yielded
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separate reticle and stepper components of CD variability. This allows equipment bench

marking studies independent of process variability from other parts of the processing

sequence. The sensitivity of CD error to reticle error makes it possible to provide realistic

specifications to reticle vendors. Manufacturability bottlenecks can be identified in the

error budget to optimize design priorities.

1.5.2 DFM in Process Design

Statistical metrology can be used to generate a manufacturability space in which to

design a process or a circuit. Equipment and process variability is determined as a function

of operating controls so that manufacturability is designed concurrently with process per

formance. In this way, a process is designed to be manufacturable as well as functional.

This can help speed up time to market as well as increase yield learning. With a quantified

manufacturability metric, informed trade-offs can be made between process performance

and manufacturability.

1.5.3 Flexible Design Rules

A measure of manufacturability can be assigned to a circuit layout and comparisons

made between alternative circuit designs. Layout design rules become flexible because

aggressive design can be justified by taking quantifiable penalties in manufacturability. A

simple example would be to use narrower metal lines to improve performance at the

expense of linewidth control.

The IC industry has become quite homogenous. That is, constrained by the availabil

ity of technology and their manufacturability, process technology of a given generation is >

essentially the same across the industry. Furthermore, equipment is in general available to

all parties. This has made it more difficult to gain a competitive advantage from the fabri

cation process alone. The focus of competition has shifted to manufacturability issues,

such as yield ramping rate and time to market. Statistical metrology can lend competitive

advantage in these critical areas.
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1.6 Thesis Organization

Statistical Metrology as described in Section 1.4 will be demonstrated through exam

ples in pattern transfer. Chapter 2 describes the reticle and measurement setup used to

sample electrical CD's. Various versions of this reticle will be documented. Chapter 3 is

an example of a complete iteration of the methodology implemented on the stepper/reticle

decomposition of a poly CD patterning sequence. The use of automated SEM measure

ments to estimate develop and etch components of poly patterning is described in Chapter

4. In Chapter 5, the contribution of metal etch to metal CD variation will be characterized.

Applications of Statistical Metrology to process DFM and equipment manufacturability

analysis will be discussed in Chapter 6. In Chapter 7, concluding remarks will be made

and future work will be discussed.
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Chapter 2

CD Sampling Experiment and Short-loop Process How

In this chapter, the metrology issues (Section 2.1) associated with variability sam

pling as well as the experimental designs (Section 2.2) used in this thesis will be

described. The process parameter monitored in this thesis is critical dimension (CD) or

linewidth. Most of the experiments in this thesis have been performed on the polysilicon

gate patterning sequence. Because of increasing concern over the control of interconnect

dimensions, metal CD variation will also be treated in Chapter 5. Electrical CD measure

ments will be used to characterize polysilicon gate patterning, specifically the reticle and

stepper error contributions (Chapter 3) as well as the metal CD variations. Automated

SEM measurements will be used to estimate the contributions of the etch and develop

steps in the gate patterning sequence. In all experiments, the process sequences used were

part of the 35\im generation technology.

Ultimately, the goal of this work is to isolate equipment contributions to CD variabil

ity. However, to form measurable patterns in a thin film, a number of process steps must be

involved, and their contributions to process error are confounded in the final measure

ments of CD. While both the metrology and the test structures used can be sensitized to

decouple equipment variability, such as separate sheet resistance and linewidth structures,

this is not always possible. A feature of the methodology proposed in this thesis is the use

of physically based statistical filters to decouple sources of variability present in raw data

from conventional measurements. This topic will be addressed in subsequent chapters.

The experiments described in this chapter have been designed to sample the variability of

interest and to facilitate error decomposition. In general, short-loop sequences in state of

the art processes were used.
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2.1 Metrology for Variability Sampling

Metrology used to sample process variability must fulfill two criteria: 1) Cost effec

tiveness- because of the high volume of data required for statistical characterization of a

complex space of spatial and causal attributes, economies in both time and resources are

crucial. As an example, the number of CD test structures placed in the experiment

described in (2.1.1) total to 51,840. At one measurementper secondthe test time per wafer

would be -14 hours. 2) High data precision- the magnitude of the variability interest is in

some cases on the order of nanometers. Currently, only electrical measurements satisfy

these criteria. Recently, automated SEM's with a sampling rate of ~1 Hz have also become

attractive metrology choice. However, the data may suffer from significant measurement

artifactswhich confound the actual spatial variability. This will be discussed in Chapter4.

Electrical measurements used in this thesis were made at Hewlett Packard Co.'s

ULSI Laboratories, using the HP ICMS [5] automatic electrical test platform. The testing

methodology, including mask design and metrology system, follows the description given

by C. Weber [6]. The hierarchy of structures, with increasing specificity, is as follows:

wafer, die, module device. Dice refer to an instance of a periodic pattern on the wafer, and

could be the whole or part of the stepper field. The module refers to the set of structures

that can be tested with one touch-down of the probe card. "Devices" are measured struc

tures in the module. The test program hierarchy is structured in parallel to the levels of

physical abstraction. A library of all the structures and locations is referenced. At the

device level standard measurement algorithms (such as sheet resistance or linewidth) are

applied.

The hardware consists of measurement, analysis, and storage devices connected on

an HP-IB bus. An automated probe station with movable stage and pattern recognition

capability measures the structures automatically. A switching matrix multiplexes the mea

surement meters and power sources between the various probe pins. Test execution is

driven by a UNIX workstation.

For the polysilicon structures, the test current for the Van der Pauw and the Kelvin

structures is set at 0.01mA. This gives ~10mV of voltage difference across the CD struc-
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ture. For the metal structures, the current is set at 1mA to compensate for the much lower

sheet resistivity (60m& vs. 12 Q, for poly) to yield a voltage drop of similarmagnitude.

SEM CD measurements used in Chapter 4 were taken at the Advanced Process

Development Laboratoryof Advanced Micro Devices. SEM experimental setup and error

analysis will be discussed in Chapter 4.

2.2 Experimental Design For CD Analysis

2.2.1 CD Test Structures and Reticle Design

A test mask designed at Hewlett Packard was used to generate a range of CD struc

tures in various layout configurations over the space of interest [7]. The mask design is

summarized here for reference.

Five topologies consisting of isolated lines, double lines, triple lines (measuring the

center line), triple lines (measuring the side line), and a nested line in 5 lines were created

(Figure 2.1). Lines were placed in both x and y orientations over 5 nominal dimensions

ranging from 0.25 to 0.45 urn in .05u,m increments. All nested lines were designed at 1

|Xm pitch to reflect the process requirements. The range of CD variations was designed to

span the linewidth choices of interest to the process, nominally targeted at .35u,m. In pro

cess design the pitch is usually fixed for a given generation of technology, while the actual

dimensions on the wafer are manipulated by adjusting the mask dimensions as well as the

processing conditions, such as exposure dose and etch bias. This mask design was also

adapted at Advanced Micro Devices to characterize lithographic performance. In this ver

sion the pitch (spatial frequency) of the lines were varied. Additional structures were also
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included to characterize aberrations in optical lithography. In addition, this design has

5 Linewidth Structures:

0.25-0.45um in x and y

36 modules/field 24 fields/wafer

FIGURE 2.1 Schematic of linewidth topologies and placement in the reticle and wafer.

been adapted and scaled for the 2u.mCMOS process at the UC Berkeley Microfabrication

Laboratory. This is shown in Figure 2.2 as an example. For metal CD decomposition

described in Chapter 5, another version of this test mask was created where the nominal
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CD dimension is .5 p,m and the patterns are placed in a5x5 array within the stepper field.

IrKSH

FIGURE 2.2 Test structure design for electrical linewidth measurements over 5 nominal dimensions.
Design shown is adapted and scaled for a 2um CMOS process. Original design was fabricated on
0.35um CMOS process.

Structures of all topologies with one nominal dimension were placed in a "track" of

2x12 probe pads.These structures could be visited by two touch-downs of the 2x12 probe

card. All linewidth structures use variations of the 4-point Kelvin structure, with two sets

of separate current and voltage taps to eliminate contact resistance. To conserve pad use,

different structures may share common current taps and one of two voltage taps. Van der



18

Pauw structures were used to obtain the sheet resistance value used in the linewidth calcu

lations. Sheet resistance values in proximity to the CD structures were used to calculate

linewidth in order to eliminate the effects of sheet resistance non-uniformities. Two sheet

resistance values were used in each exposure field for all linewidth measurements in the

field. Sheet resistance variability was characterizedafter sampling to detect large gradients

within one field. In general the variation over the field was less than one percent.

These structures were placed in a group and were replicated 36 times within the step

per field in a 6 x 6 array and the resulting 20mm by 20mm die was repeated 24 times over

a 6 inch wafer (Figure 2.1). Depending on the stepper, 22x22mm fields were also used.

These test structures span a continuum over design parameters in gate length and layout

configuration, as well as over physical space- over the field and over the wafer.

2.2.2 Measurement Error Characterization

Measurement error from electrical metrology was characterized. Both polysilicon

and thin TiW film patterns were characterized as appropriate for the gate CD (Chapter 3-5)

and metal interconnect CD experiments (Chapter 6). Measurements (600 on TiW and 864

on poly) were repeated on each wafer in order to estimate the measurement error. Both

sheet resistances and linewidths CD, nominally .35u,m for poly and .50)Lim for TiW, were

measured and calculated. The results are shown in Table 2.1. The poly and TiW results are

Table 2.1 Electrical CD Measurement Error Summary

Sheet

Resistance

Std.Err. (Q/O)

Sheet

Resistance

% Error

CD Std. Error

(nm) CD % Error

Poly 1.3 0.765% 1.5 0.68

TiW .066 0.465% 1.72 0.45

comparable, and representative of the repeatability of electrical measurements used

throughout this work. This is an advantagederived from the inherent averaging in current

flow over a length of material and the repeatability of the electrical instrumentation. High

precision, the fact that electrical metrology does not interact with the sample to produce

measurement proximity or memory effects (such as SEM), as well as superior throughput
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and sampling ratesmakeelectrical measurements suitable for variability analysis.

In Chapter 4, automated SEM CD measurements will be used to estimate the etch

and develop contributions to CD variability. SEMmeasurement error will be characterized

and compared to electrical results.

2.3 Pattern Transfer Sequence Process Flow

Gate length control in an IC process is crucial because channel length variations

strongly impact circuit performance. Furthermore, poly CD's are the smallest features of

an IC process and usually challenge existing lithographic and etch technology. CD mea

surements were obtained from electrically testable structures that involve a minimum of

processing steps so that large amounts of data can be collected with relatively few sources

of variation. The sequence of short loop gate patterning processing steps includes poly

CVD, resist coat, exposure, development, and finally gate definition by plasma etch (Fig

ure 2.3). This short-loop process represents the minimum steps required for patterning,

and this simplicity facilitates decomposition. Because pattern transfer constitutes the basic

module of IC fabrication, understanding derived from short-loop experiments is easily

leveraged to other sections of the process sequence. In this work, the patterning sequences

involved used I-line lithography technology. This is used in the .35nm generation of pro

cess technology without optical or process enhancements, such as annular illumination or

antireflective coatings.

Design CVD Litho "^ Etch T

Equipment Settings...

CD

en Si cd Si02

ssssssss

Photoresist

FIGURE 2.3 Schematic of pattern transfer process sequence.

Conducting Film

For demonstration purposes, the effects of wafertopography or parameters in profile
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control, such as sidewall angle, were not considered. Gate profile control was verified

independently by SEM measurements. This experiment takes advantage of the relatively

high density of structures that can be placed on a reticle to explore systematic variability

as a function of process settings. However, only a small subset of the total process space

will produce a process which is acceptable, i.e. meets the specified nominal performance

targets. Process variability is only meaningful in this subspace of process conditions. In

the experiment, independent metrology and experiments have been used to determine the

process operating points. For example, prior to this experiment, SEM measurements were

used to determine appropriate stepper exposure conditions to pattern lines with the target

dimensions.

2.4 Thin Film Variability

Measurements were taken to assess the uniformity of the deposited films in the poly

patterning process. Film thickness measurements over the wafer were taken using stan

dard reflectometry methods. Resist films were deposited over bare silicon wafers to facili

tate measurement. Polysilicon film thicknesses on 4 wafers selected from a lot of 24 were

measured by reflectometry. The results are summarized on Table 2.2. The variation over

the wafer in each case was less than 15A, 3-sigma. Allmetrics are very consistent over the

sampled wafers. Moreover, the systematic thickness trend over the wafer is consistent

across all the wafers.

Table 2.2 Polysilicon Film Uniformity Summary

Wafer # Mean (A) Stnd. Dev. (A) % Stnd. Dev. Max-Min(A)

1 2470.5 4.594 0.186 15.5

2 2470.9 4.686 0.190 15.4

3 2470.9 4.832 0.196 163

4 2469.6 4.253 0.172 15.1

Similarly, resist thickness measurements were made over a number of wafers as well
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as over arange of thicknesses. The uniformity ranges between over -10 to25 A, 3-sigma.

Table 23 Photoresist Film Uniformity Summary

Wafer # Mean (A) Stnd. Dev. (A) % Stnd. Dev. Max-Min(A)

1 7034.6 7.816 0.111 34.8

2 7105.3 2.589 0.036 11.0

3 7019.6 7.733 0.110 24.1

A simple sensitivity analysis can be performed to estimate the impact of resist vari

ability on CD variation. The effect of resist thickness uniformity on CD is estimated from

dose-to-clear measurements. In short, dose-to-clear (DTC) is the amount of exposure nec

essary to completely develop an areaof resist and is proportional to the dose required to

pattern a line, or dose-to-size (DTS). From empirical DTC curves [8], the DTS varies

3.89% for 100A of thickness variation around the nominal resist thickness used in these

experiments. Using 24Aas an upper-bound ofwithin-wafer thickness variation from Table

2.2, the DTS varies correspondingly by approximately 0.93%. In other words, the equiva

lent dose modulation from resist thickness variations over the wafer is <1%. From this

analysis, resist and poly thickness variationtypically obtained in this process have negligi

ble effect on the final CD variation and do not have to be considered in the decomposition.

2.5 Sampling Experiment and Process Flow Summary

Large quantities of data are easily collected using electrical or SEM measurements.

However, resulting CD variation includes contributions from confounded sources. In the

past, this has been a shortcoming of short-loop electrical measurements. However, taking

advantage of the quantity and placement of the measurement structures and applying sta

tistical and signal-processing techniques, it is possible to extract the errors introduced by a

particular process tool. In this way the observed error can be decomposed into individual

sources and attributed to specific modules, steps, or equipment. This procedure is demon

strated in the following chapters.

References for Chapter 2

[5] IC-MS User's Manual, Hewlett-Packard Co., Semiconductor Systems Center.



22

[6] C. Weber, "A Standardized Method for CMOS Unit Process Development", IEEE
Transactions on Semiconductor Manufacturing, Vol. 5, No. 2, May 1992, pp. 94-
100.

[7] H-Y Liu, et al. "Contributions of Stepper Lenses to Systematic CD Errors Within
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Chapter 3

Stepper/Reticle Decomposition of Poly CD Variation

The variability in the raw electrical CD measurements is the aggregate process vari

ability from each step in the patterning sequence. However, ultimately it is the categoriza

tion of variability by cause that is of engineering importance. The itemization of the

systematic spatial variability is significant because only a subset of the process steps con

tribute variability to each spatial component. While the raw electrical measurements from

this experiment containconfounded variability from all parts of the process, the number of

variability sources are reduced for any particular spatial component. Effectively, isolating

a spatial component will reduce the number of variability causes that have to be decom

posed. This chapter will focus on the decomposition of error contributions from the step

per and reticle from the collected raw data. We proceed by first extracting the periodic

component p(x,y) through the use of a spatial filter. Then, the contributions of the stepper

and reticle will be determined by a separate physical filter. Our approach exploits the spa

tial structure of the measured data so that the causal variability is isolated through the use

of a statistical and a physical filter used in sequence.

3.1 Polysilicon Electrical CD- Raw Data

In this chapter causal variability decomposition will be demonstrated by assigning

variability contributions to the stepper and reticle pair from sampled poly CD's. The reti

cle used was describedin Chapter 2. Spatial variability was sampledby repeating CD pat

terns over the reticle in a 6X6 grid and repeating the reticle patterns over the wafer. The

dimension andproximity conditions of theCD patterns werevaried in each location on the

reticle as sample systematic variability due to reticle CD variations and proximity effects.

A variety of linewidth topologies were considered including isolated, dual, triple, and 5

line arrays in both x andy orientations spanning arange of nominal linewidths from .25to
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.45 urn. The raw data from the experiment consists of periodic repetitions of the reticle

over the wafer and can be seen for the case of .35|im isolated lines in Figure 3.1.

FIGURE 3.1 Raw poly CD measurements over the wafer for nominally
.35 urn isolated lines.

Several observations can be made about the CD response over the wafer. First, most

of the variability appears to be systematic. This would not have been determined without

the periodic full field sampling. Second, the systematic variability appears to have several

components. The variations within each stepper field appear as "dome"-shaped response

surfaces which correspond exactly to the periodicity of the stepper fields. This variability

component is repeatable with each exposure and appears to be the dominant source of

variability within the wafer. Other, less obvious, sources of variability can also be

observed. For example, there appears to be a slowly varying trend over the entire wafer.

Systematic variability is easily associated with equipment error. These associations will be

used to structure the decomposition strategy.

3.2 Poly CD Variability Components

The possible types of spatial variation are determined a priori to construct a list of

effects which contribute to the CD response over the wafer (Figure 3.2). This formulation

is based on physical understanding of the process mechanics, and is one of many ways to

decompose the CD variation. As will be discussed in a later section, this decomposition is
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advantageous because it facilitates subsequent decomposition of CD variance into equip

ment causes. Next we define the following variability components:

1) The stepper operates by exposing the pattern on the reticle repeat

edly over the wafer. In these experiments the same reticle is used for the

entire wafer. Automatic leveling of the exposure field is performed at

each exposure to compensate for wafer or film flatness. Given identical

exposure conditions and perfect spatial uniformity from the rest of the

process steps, the stepper/reticle pairwill generate perfectly periodic and

identical CD responses in each exposure, corresponding to the periodicity

of the stepping pattern. This is denoted by p(x,y), where the variables x

and v denote spatial coordinates over the wafer.The periodicity of p stip

ulates that

P(x,y) = pix+ns^y + mSy)

where sx and sy correspond to the field dimensions and nand mthe indi

ces of periodicity.

2) Exposure to exposure variation is modeled by the signal rTjcv).

This represents perturbations to the intra-field CD responses described in

p, and are assumed to be additive. These perturbations may be exposure

dose errors, which change the CD response over the entire field by a con

stant value. Similarly, focus errors can be modeled by a mean shift over

the field. Another source of variation in/is leveling error, in which case

the field is tilted linearly, translating into linearly varying defocus across

the field. The signal/has the characteristic that it is systematic within the

field and random from field to field.

3) Slowly varying trends over the wafer. w(x.v). are introduced by

batch or single-wafer processes, such as etch, develop, and resist or film

coat (CVD). No functional form will be assumed.
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4) A stationary error series over the wafer. sfa.v)~NfO.A. This repre

sents random (white) noise from the process or measurement. Random

ness was establishedin the repeatability measurements from Chapter2.

The spatial dependence of p(x, y), w(x, y), and./fa y) is stated explicitly by the func

tional dependence on spatial coordinates x and y.We assume anadditive nature of the error

components so that,

cd{x,y) = p(x, y) + f(x, y) + w(x, y) + e (3.1)

where cd is the electrically measured CD value after processing. The random component

of the error, or "white noise" is normally distributed but has no spatial dependence. Also,

although p, f, and w all vary systematically over the wafer, p and/affect one stepper field

per exposure. Thus, p consists of the CD response of the stepper and reticle occurring

identically within each exposure field. The error components are illustrated in Fig. 3.3 in

one dimension only for simplicity of representation.

The causal associations of the signals are also shown in Figure 3.2. The periodic vari

ation p is caused by the stepper and reticle pair.The signal/is caused by variations in the

stepper exposures. The signal w is caused by the etch, develop, and film depositions. From

Chapter 2, the film thickness variations for resist and polysilicon have negligible effect on

CD. Thus the dominant sources of w in poly gate patterning come from the resist develop

and plasma etch steps. A subset of causes contribute to each isolated signal component.

The decomposition strategy applies signal decomposition to estimate one of the signals. If

applicable, subsequent causal decomposition of the isolated signal into the subset of

equipment causes is performed.

The additive model stated in (3.1) assumes no interactions between the signal compo

nents. Similarly the independence of variation between stepper/reticle if) and etch/develop

(w) is assumed. An obvious scenario of interacting effects would be the presence of varia

tions in the CD profile due to stepper field imperfections. The variability in resist profiles

would interact with the etch process. Similarly, the additive model would not hold if the

etch responses for different resist CD values were not uniform. In short, these assumptions
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hold for a small range of values around the processoperatingpoint. Therefore, this meth

odology is appropriately applied at legitimate process operating points and when the pro

cess response is well controlled over the spatial extent of interest.

cd = p + f+w + e Signal

Periodic:

rVYVWYA

Shot-to-shot:

Wafer:

Error series:

Deterministic Within Field

Deterministic Within Field

Random Field to Field

Deterministic Within Wafer

y.^/ifr N^/VV^

♦/

••w

Cause

Reticle

Stepper (Optics)

Stepper (Dose/

Focus/Leveling)

Random

FIGURE 3.2 One dimensional illustration of variability signal components.

3.3 Signal Decomposition

We will now focus on the decomposition of systematic error contributions from the

stepper and reticle from the collected raw data. A step-and-repeat exposure system oper-
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ates by printing mask images periodically over a wafer, modeled by p. Because the same

mask is used in the same optical system for all exposures, CD variability over each expo

sure field should be identical. In reality, this periodic variability is perturbed by errors in

focus and dose, modeled by /, and wafer effects from the rest of processing, modeled by

w. The decomposition scheme takes advantage of this error structure. We proceed by first

extracting the periodic component p(x,y) through the use of a spatial filter. Then, the con

tributions of the stepper and reticle will be determined by a separate physical filter.

Several methods are available to isolate the periodic variability p(x, y) from the rest

of the error components. Analysis using discrete Fourier transforms in frequency and two-

dimensional time series models in space will be presented. In the case of very distinct peri

odic signals that are the dominant variability component, a simple ANOVA model can be

sufficient.

3.3.1 Frequency Domain Analysis for Periodic Component Identification

Taking advantage of its periodic nature of over the wafer, p(x, y) can be approxi

mately decoupled from other sources of variability so that an isolated systematic stepper

error can be assigned. cd(x, y) can be represented as a two-dimensional image. In our

experiment, this signal is sampled digitally inthe x and y directions with period Tx and Ty

respectively toyield a 2D discrete signal cdin^ ny) where

cd(nx,ny) = cdc{x,y)\ , nx - 1, 2, 3,...; ny = 1,2,3,... (3 2)
*«* ~" x x*y ~" v v

The discrete Fourier transform (DFT) ofcdin^ny) is CDik^ky). DFTs can bequickly com

puted by fast Fourier transform (FFT) algorithms [8]. We will follow the convention of

using lower case variables to denote digitally sampled space domain signals, and variables

in capital to denote the corresponding signal is the spatial frequency domain.

A data decomposition scheme has been implemented to extract the isolated within-

field stepper variation from the conglomerated wafer data. This is done by filtering the

wafer CD response signal in the spatial frequency domain and then reconstructing the fil

tered portions via the inverse FFT into p(nx,ny) and the remainder components lumped in
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w+f+e. In this decomposition scheme, first the raw data is transformed to the spatial fre

quency domain as CDfk^ ky) by FFT. A perfectly periodic signal in space only contains

energy attheN/np multiples of the sampling frequency

*.-&• &>)-'*>-&)
V-^-^)-'"--^)

(3.3)

where Npx and Npy are the numbers of sample points within each repetition of the periodic

signal and npx and n^ are the numbers of periods ofp(nx, ny) in either direction. p(nx, ny)

is periodic so that in spatial frequency domain

Pik^ky) = P(kx\ky<) , (3.4)

where the primed variables indicate the frequency multiples. A filter can be implemented

to select only these harmonics:

1, Kx —Kx, Ky — Kv

0, otherwise

Applying this filter on CDfk^ ky) yields:

*(***,) = \ .*". ' O-5)

CD'(KX, ky) = P(^, ky) +F^, ky^ ^W^ ^ 4" ^ (3.6)

which is a purely periodic signal with spatial periodicity determined by the size of an

exposure field. The remaining frequency content of CD isAf and 0-valued at kx and ky'.

The first term on the right side of (1.6) is the stepper error contribution and is the desired

output of this decomposition. The next two terms are lumped contributions from W and F,

which degrade the periodic signal P. However, the values of the degradation terms can be

estimated because their frequency spectrum is continuous. Thus, W+F can be estimated

from M' by interpolation and can be removed from CD'. In this way, we obtain an esti

mate/? from the inverse FFT of the estimated P. The datadecomposition algorithm is sum

marized in Fig. 3.3.
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FIGURE 3.3 Data decomposition architecture for the extraction ofp(x,y).
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Figure 3.4 shows one example of the data extraction applied to wafer CD measure

ments obtained from the poly gate CD experiment described in Chapter 2. Figure 3.4a

shows the three-dimensional mesh plot of raw data cd(nx,ny). After filtering, the compo

nents f+w+E is shown in Fig. 3.4b. The stepper variability p has been isolated and is

shown for one period in Fig. 3.4c. Note that without appropriate grouping of the data by

fields and subsequent filtering, the entire collection of data points would generate a histo

gram that appears random. However, given some physical insight into the causes of the

variation, it has been possible to isolate some components of the observed variability and

identify them as systematic, i.e., a deterministic effect having a specified origin. This pre

sents the opportunity to understand, model, and control variations which until now we

have thought of as random.
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cd

a)

f+w+e

*»*** b>

<*

FIGURE 3.4 Three-dimensional mesh plots of: a) Raw CD data over a wafer, b) Residual wafer CD
variation f+w+t. c) Extracted CD variation pfn^ riy) within an exposure field. Vertical axis are on
identical scales.
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3.3.2 ANOVA Model for Periodic Component Identification

Because p is perfectly periodic by definition, it can be estimated by estimating one of

its periods. In a simple case, p can also be estimated from an ANOVAmodel,

cd(x', y') = p(x\ /) + *(*', Y), (3.7)

where e(x', y') is has mean zero andx\ y' are coordinates within the field. This condi

tion is satisfied when both the field-to-field and within wafer variabilities behave like ran

dom error and can be found in the case where both w and/are negligible within a stepper

field. This is generally true for fields printed in the center of the wafers in a well controlled

process. In this case, p can be estimated simply by

n

M^/> =JX«V*'./) ' (3,8)
i=l

where i indexes different exposure fields over a wafer, or over several wafers. The

extracted p(x\ yf) is the isolated spatial signature of the reticle/stepper combination.

3.3.3 Verification of Signal Decomposition

Independent metrology was used to verify the results of the signal decomposition. In

this case SEM metrology was used to measure resist CD's over several fields in the middle

of a wafer processed in the same sequence. The assumption is that the periodic component

extracted would contain negligible variability from the etch or develop processes. There

fore the extracted results from electrical measurements (which included the etch step) and

the SEM measurements of resist CD's (which do not include the etch step) would yield the

same results. The results are shown for one decomposition example in Figure 3.5. The cor

relation coefficient between the two sets of measurements is 0.64, and the spatial features

of the two sets of CD contours are also slightly different. The contour in the verification

measurements is slightly rotated from the extracted contours. This could be explained by

the fact that a period of several months had elapsed between the electrical and SEM mea

surements and a change had occurred in the process or equipment. Additional verification

is provided in Section 6.1.2.3, where it is shown that the intrafield spatial characteristics

reflect changes in the equipment state.
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a) b)
FIGURE 3.5 Countours of periodic component p within stepper field: a) extracted from electrical
measurements b) obtained from independent metrology. Contour intervals are the same for both plots.

3.4 Further Causal Decomposition of the Periodic Component

In this section, the analysis will focus on the stepper/reticle pair where a second

physically based variability filter is implemented to separate the reticle and stepper error

contributions. Experimental verification of the physical filter will be provided. The results

of decomposition and its impact on error budget analysis will also be presented. All analy

sis will be performed across the spatial coordinates x'and y'within one stepper field.

3.4.1 Causal Decomposition Method

The variation in the periodic spatial pattern p has two sources, the stepper/reticle pair.

The reduced number of variability contributors to the extracted periodic signal p facili

tates separation of the variability contributions of the stepper and reticle. The remaining

causal decomposition proceeds by considering the printed CD signal p as a response of the

reticle CD through the stepper. Spatial variability is accounted for when we consider each

of the 36 reticle CD's and the corresponding 36 printed CD's on the wafer. Spatial correla

tion between the reticle and printed CD's may exist. However, no interaction is considered

among the 36 CD's.

In subsequent discussions, we adopt the printed stepper field as the frame of refer

ence. In this frame, mask dimensions are quoted at IX to account for the stepper magnifi

cation. For each point x', y' in the reference frame of the stepper field, the mask CD can

be related to the printed CD by an empirical relationship:
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p{x\ /) =A{x\ y') +B(x', y') •cdr{x\ y') +C(x\ /) •cdr\x\ y') °'9)
over a continuous rangeof CD's of interest, where cdT refers to the reticle CD dimensions.

This second order approximation is justified for a range of reticle CD variation about a

nominal value that and can be verified empirically by examining the printed vs. the reticle

values on the test reticle. Physically, the coefficients A, B, and C are purely empirical

parameters that describe the lumped optical effects of the projection system.

The actual reticle dimensions can be measured directly with great accuracy because

the chrome patterns aremagnified by a factor of4 or 5 and placed on a transparentplate. A

range of CD patterns from .25 to .45 urn at .05 |im intervals has been placed on the test

reticle so A, B, and C can be estimated using linear regression techniques. The extracted

value of the within field p is used so as to not include variability from other portions of the

process. Measurements from the 36 positions over the field are used to generate a set of

transfer functions, one at each field position. Collectively, these describe the full field

mask CD/printed CD transfer function of the stepper system. Because the nature of the

variability is systematic within the stepper field, the parameters in the transfer functions

are smooth over the stepper field. In this way the variability is spatially correlated. How

ever, this spatial stepper CD transfer function does not take into account the interaction of

optical effects of the features over the spatial extent, as in the case of optical proximity

effects. Thus, the variability in this formulation is spatially correlated but not spatially

interacting.

The formulation shown in equation (3.9) can be used to decouple stepper and reticle

errors. Note that each of the variables in (3.9) are spatially varying. The reticle dimensions

cdT will contain some error in actual cases, and will vary over the field coordinates x', y'.

In the absence of reticle error, or in the case when a single value cdxr (the superscript t

indicating the target value) hasbeen measured overthe reticle, the quantity pl{x',y'), orp

evaluated at a single value over x' and y', will describe the printed CD's without reticle

error.We rearrange the transfer function so that,
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P(x\ /) =/><(*', y') +Apcdr(x', /) ™d (3-10)

Ap[cdr(x',y')] = p[^'/)]-p'(^/) . (3.11)

The variability can be decomposed if we take the sample variance of (3.10):

var(p) = var(p') + var(Ap) + 2cov(pt,Ap) . (3.12)

In the case where the reticle error is small compared to the change in the printed CD,

(3.11) can be locally linearized:

Ap(;c',y') =MAcdr(x',y') (3.13)

where M = p(x', y')l is the slope of the transfer function evaluated at the
dcdr lCdr

nominal mask CD value. In this form, it is easy to see that the slope factor M magnifies

reticle error. In diffraction limited optics the value ofM is greater or equal to 1, thus reticle

error is always enhanced. Because M could be non-uniform over the stepper field, the spa

tial correlation between M and AcdT could also impact the net spatial distribution of the

MAcdT product.

The first of factored variance terms on the right side of (3.12) is the stepper-alone

within-field variance. The second term is the variance from the impact of reticle error on

printed CD error. According to our formulation, reticle error is defined as CD's over the

reticle differing from the target value px. Then, Ap is not a pure reticle nor stepper error

because it represents the combined effect of propagating reticle errors through the stepper

system, or the stepper/reticle interaction term. Last of the terms in (3.12) is the covariance

between the stepper alone error and the reticle induced errors. This accounts for the spatial

correlation between the two error terms where the spatial distribution of individual errors

could enhance or cancel each other as to increase or reduce the net error.

3.4.2 Implementation of Causal Decomposition

Causal decomposition of p{x',yr) is implemented following the procedure

described in the previous section. First the CD transfer function of the stepper is mapped



37

versus field coordinates for .30 to .45 \im nominal mask CD's. Actual measured reticle val

ues will be used to reduce fitting error. Figure 3.6 shows a subset of the transfer curves

over positions in the field. Forclarity, only 3 field positions are shown. Symbols mark data

points derived from spatial filtering, which are essentially an averaged value for the fields

sampled. Therefore, we assume that there is very little error associated with them. A sec

ond order polynomial is fitted to each of the transfer curves in order to obtain continuous

values around the nominal CD, the results of which are also plotted. A collection of such

fitted transfer functions will constitute an empirical form of p(x\ y') as a function of ret

icle dimensions described in (4) and will allow subsequent causaldecomposition.
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FIGURE 3.6 Mask vs. printed CD transfer function. Symbols mark measured data and lines show
fitted values.

Before proceeding with the decomposition, we examine the spatial behavior of the

transfer function parameter estimates. Figure 3.7 shows the spatial variation of the param

eters A(x',y'), B(x',y'), and C(x',y') from (4) corresponding to plots a), b), and c). The spa

tial variation is radially symmetric, as one would expect for an optical system. As a result

of both spatial and causal decomposition, the variation of these parameters describes the
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variability within the stepper field only, and is most likely due to optical effects. However,

because these parameters are empirical in nature, they are a lumped description of the

aberrations and nonuniformities in the stepper system, and thus have no physical signifi

cance as such. Also implicit in the decomposition is that the process conditions are fixed.

While the decomposition has isolated within field stepper variability from other process

variability, the CD transfer function will still depend on stepper defocus, as well as the

resist and develop process operating points, and will be demonstrated in a later section.

FIGURE 3.7 Contours over the stepper field of fitted parameters a) A, b) B, and c) C of the CD transfer
function.

With the determination of the empirical transfer function, poly CD variation can be
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factored by cause according to (3.12) and (3.13). Figure 3.8 shows the contours of the ret-

b)

FIGURE 3.8 Contour plots of CD's over the stepper field after causal decomposition: a) Measured
reticle dimensions at IX. b) Stepper contribution, c) Reticle induced error, d) Resulting stepper
alone error. (Interval between contours is constant.)

icle CD cdv the printed CD p, the reticle error correction Ap, and the stepper alone term px

evaluated at the target dimension of 350 nm, all are spatial quantities. The variance contri

butions are tabulated below:

Table 3.1 Variance Summary of Causal Decomposition ofp(x,y)

Symbol Variance (nm2) Percentage

PX 107.5 48

Ap 36.1 16

2*Cov 79.4 36

Total 223.0 100

From (1.11) and (3.13), the variability introduced through the reticle/stepper system

has two parts: the stepper alone component p* and the reticle induced error

Ap = MAcdr . Of the latterM is also a stepperdependent term. In fact, it is obvious that
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M is the first derivative of the CD transfer function (3.9) with respect to cdr Ideally, M=l

over all field coordinates, or perfect transfer of the reticle CD pattern. For reference, the

reticle CD variance is only 17.9 nm2, which is smaller than the reticle induced error con

tribution term Ap.This can be explained by examining(3.13), which shows that the reticle

error is in fact magnified by M, the local slope of the transfer function, shown in Figure

3.9. In this example, the spatial variation of M tended to be similar to cdr This andthe fact

FIGURE 3.9 Contour of the reticle errorgain factorM over the field.

that M is greater than one for these process conditions leads to the net effect that reticle

error on printed CD was enhanced. Similarly, there is a covariance term in the table above

due to correlation between the reticle induced and the stepper-alone errors. This is due to

the fact that the spatial distributions of px and Ap are similar and additive with theeffect of

increasing net CD variability. From the table above the covariance contributes 36% of the

total within-field variance. While p{ depends on the stepper optics and may not be easily

manipulated, it is possible to manipulate the spatial distribution of Ap by manipulating ret

icle CD error. In this way, it would be possibleto tune the correlation between the variance

components so as to reduce oreveneliminate netCD variation.

Following the previous section, the stepper alonecomponent of CD variabilitycan be

extracted. Figures 3.10 and 3.11 show the field CD contours for the stepper-alone variabil

ity as a function of the target reticle dimensions from 310 to 390 nm forboth isolated hor-
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izontal lines as well horizontal lines in an array. As expected, a trend of decreasing

variability can be observed with increasing reticle dimensions. Similarly, Mcan be calcu

lated from the fitted transfer function and its contours plotted as a function of reticle pat

tern dimensions (Figure 3.12 and 3.13). Again, a trend of decreasing variability and

decreasing mean value of M is seen versus reticle dimensions.

FIGURE 3.10 CD contour plots of the stepper alone contribution to CD error for horizontal isolated
lines. Each of plots a)-e) evaluated at nominal reticle CD's from 310nm to 390nm by increments of
20nm.

a) b) c) d) e)

FIGURE 3.11 CD contour plots of the stepper alone contribution to CD error for horizontal lines in
an array. Each of plots a)-e) evaluated at nominal reticleCD's from 310nm to 390nm by increments
of20nm.



FIGURE 3.12 Contour plots of the reticle errorenhancement factor M for horizontal isolated lines.
Each of plots a)-e) evaluatedat nominal reticleCD's from 310nm to 390nm by increments of 20nm.

a) b) c) d) e)
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FIGURE 3.13 Contour plots of the reticle error enhancement factor M for horizontal lines in an
array. Each of plots a)-e) evaluated at nominal reticle CD's from 310nm to 390nm by increments of
20nm.
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3.4.3 Verification of Causal Decomposition of Periodic Component

Causal verification was carried out in a separate experiment. The stepper error com

ponent px accounts for the variability introduced by the stepper alone. (What the stepper

would print given no reticle CD variability.) A number of reticles were fabricated. From

these a **uniform" reticle with very little CD variability was chosen and printed. The

resulting comparison is shown in Figure 3.14. As expected, the as-printed variability from

the "uniform" reticle agrees well with the extracted stepper variability from the original

reticle (r2=0.92, n=36).

Original Reticle

MAcdr

'Uniform" Reticle

FIGURE 3.14Causal verification by comparing decomposition results using two reticles. All contours
are within the exposure field and equal intervals. The columns are: reticle error (IX), intrafield error,
reticle induced error, and extracted stepper error. The contours in the uniform reticle represent the
same value.
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3.5 Stepper/Reticle Decomposition Summary

Coat -0%

Develop

Poly
/ CVD-0%

Lithography
Stepper 38% \ \ Module

Covariance 12%

FIGURE 3.15 Error budget diagram for .3Sum horizontal
isolated lines as a fraction of total wafer CD variance.

We have developed a methodology which decomposes and categorizes systematic

spatial CD variability into individual equipmentcontributions and is advantageous for sev

eral reasons: 1) It identifies bottlenecks in manufacturability and offers an opportunity to

manipulate various variability components through the choiceof equipment hardware and

equipment settings. 2) The isolated equipment variability components can be used as a

benchmarking metric between equipment choices. 3)The correlation between spatial vari

ability can be manipulated to reduce net variability.

Systematic, orroughly time-invariant process error inthe form of poly CDvariability

is captured by sampling spatial variability. The large amounts of data required for this

analysis was provided by electrical measurements. However, raw electrical measurements

contain confounded sources of error from the fabrication sequence. Decomposition of the

net CD error was achieved by a series of statistical and physical filters. The statistical spa

tial filter isolated the systematic variability within theexposure field whilethe physical fil

ter captured the reticle CD/printed CD transfer function of the stepper system. From this

empirically determined transfer function, CD variability was decomposed into stepper-

alone andreticle-induced components. Because thesevariability componentsare spatial in

nature, their correlation also affects the net CD variability. In the next chapter, we will

address metrology variability introduced by automated SEM measurements.
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Chapter 4

Poly Etch/Develop Decomposition Using SEM

Chapter 3 demonstrated Statistical Metrology on one component of the poly CD pat

tern transfer sequence. Using this methodology we were able to assign poly CD variability

to individual equipment contributions from the stepper and reticle. Raw data from electri

cal metrology was decomposed using a series of filters developed through experimental

and statistical methods. In this chapter, the methodology is extended to the determination

of CD error contributions from the remaining components in the patterning sequence:

resist develop and plasma etch. Automated top-down SEM CD measurements can be used

to provide estimates of the develop and etch CD variability. However, metrology error,

specifically in the form of sequencing artifacts, needs to be characterized and removed. An

updated error budget diagram is shown in Figure 4.1, where the dashed entries have

already been determined.

Resist Coat -0%

Resist Develop

Stepper 38% \ Module

Covariance 12% 0„ «_ _ «J

Reticle ' 78%
Induced 28%' ^

.wfResist

/SS, 0% /SEM ^^^ A0ly /SEM* CVU~U% /Metrology / Etch j Metrology

FIGURE 4.1 Error budgetdiagramfor .35um poly gate patterning.
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4.1 SEM CD Metrology

4.1.1 Sequencing Trend and Autocorrelation

Electrical measurements confound the etch and develop contributions to CD variabil

ity becausethe measurements are taken afterthe entirepatterntransfersequence. SEM CD

measurements, on the other hand, can sample variability at intermediate steps in the pat

tern transfer sequence: after resist developand after etch. This and the increased efficiency

of automated CD SEM's make SEM metrology a viable means of sampling CD variability.

However, experimental evidence suggests that SEM CD precision is degraded by the sam

pling sequence as well as structure proximity.

Figure 4.2 shows sequential measurement trends from an automated CD SEM. The

observed errors take two forms. First, systematic trend or drift vs. sequence in the mea

sured values can be observed. The bottom plot in Figure 4.2a shows the top-down SEM

measurement values of CD's over a wafer vs. sampling sequence. By comparison, the top

plot shows the measurement from the same locations on the wafer made with alternate

metrology. A clear trend can be observed for the SEM sequence. The magnitude of the

errors introduced by the SEM are comparable to the cross-wafer variability observed

(~10nm). Moreover, these errors are confounded with the true spatial variation on the

wafer.

Another form of sequencing error is autocorrelation in the measurement error. Anal

ysis of the measurement error series, after removal of the measurement trend and the esti

mated values of the CD, shows significant autocorrelation. Finally, these two sequencing

errors, the trend and the autocorrelation, must be accounted for in order to estimate CD
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FIGURE 4.2 Metrology sampling artifacts in forms of: a) systematic trend observed in the bottom
graph compared to the reference data in the top plot and b) autocorrelation structure in the
measurement error series.

4.1.2 Methodology for SEM Measurement Error Analysis

Following the signal decompositionstrategy outlined in Section 3.2, the across-wafer

variability signal w is extracted. This can be done simply by fitting a low order polynomial

surface to the spatial variability. From film thickness measurements and sensitivity analy

sis in Chapter 2, it was determined that the effects of resist and poly film thickness varia

tions on CD variation were negligible. Of the contributors to the error, only the develop

and etch components remain unquantified. From Figure 4.1, it is obvious that the wafer

component w obtained from resist CD measurements after develop includes primarily the

variability from develop, while the variability of the difference between the after-etch and

after-develop CD's can be assigned to the etch step. Automated, top-down SEM metrology

can provide high quantities of samples nondestructively, and can be used to measure non-

conductive patterns such as photoresist. Thus, the develop and etch variability can be sim

ply determined by taking SEM samples of CD's after develop and after etch.

As shown in Figure 4.1, SEM metrology can be used to sample at intermediate points

in a process sequence to avoid confounding etch and develop errors. However, it may

introduce error from the sampling sequence which could confound the spatial variability

being measured. Evidence suggests that SEM CD measurements can be tainted by

sequencing artifacts such as trend and autocorrelation. A methodology is developed in this
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chapter to characterize the CD variability introduced by automated SEM measurements

and remove this variability through statistical filtering. This technique is applied to esti

mate variability from resist develop and plasma etch.

4.2 Poly CD Experiment for SEM Sampling

A .35 firn poly gate patterning process using I-line lithography was used to demon

strate the methodology. Following Chapter 2, a test mask of electrically measurable struc

tures was used to sample CD over the wafer. Experiments were performed to sample the

within-wafer variability of patterned resist as well as patterned poly CD structures using

automated SEM measurements. Another series of sampling experiments were carried out

to determine the measurement trend.

4.2.1 Test Reticle and Processing Sequence

The reticle and process sequence follow the description given in Chapter 2. A test

mask was designed to sample systematic CD variability at a fixed operating point in the

poly gate patterning sequence. Spatial variability was sampled by repeating CD patterns

over a reticle in a 6X6 grid spanning a 22x22mm stepper field. This reticle pattern was

repeated21 times overa 6" wafer. The dimension and proximity conditions of the CD pat

terns were varied in each location on the reticle to sample systematic variability due to

mask CD variations and proximity effects. Linewidth topologies of both isolated and

dense arrays were considered with drawn .35nm lines at lum pitch. The linewidth struc

tures are electrically measurable using the Kelvin 4-point measurementdesign. The sheet

resistance was determined by adjacentVan der Pauw structures to compensate for errors in

film resistivity.

Short loop processing on flat wafers minimized the numberof confounding process

ing effects. Poly deposition and oxide growth on bare Si wafers yielded astack of 2000A
undoped poly / 1000ASi02. Polysilicon was doped after patterning for electrical testing.

Resist was coated, patterned with the reticle, and developed in an I-line lithography pro

cess. Three sets of 4 wafers were exposed at nominal dose +/- lOmJ. Film patterning was

accomplished by plasma etching.
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4.2.2 Automated SEM Metrology Setup and Operation

Automated SEM metrology was provided by Advanced Micro Devices in an OPAL

7830i®. The information provided in this section can be found in the tool operation man

ual [9]. In this metrology system, secondary electrons are detected by a collector mounted

in the beam column over the sample. This is in contrast to previous generations of tools

where a pair of detectors is placed to the sides of the sample at an angle. The side detector

setup required signal averaging from both detectors to account for the asymmetrical col

lection of electrons from the sides of specimen. It was also ineffective for the detection of

electrons emitted around obstructing structures, such as those electrons from the bottom of

the space between closely spaced line pairs.

Autofocus is performed in two parts. The focus levels at the measurement sites are

determined by optical microscope before SEM measurements. Within-die target selection

is done by pattern recognition. With positional information over the wafer, die to die selec

tion is accomplished. CD values are extracted from the intensity scan of a structure. Three

CD values are given for each measurement location. Reference points are determined by

points of maximum slope along the intensity trace. This is the estimate for the CD value at

the middle, or half height of the structure. The CD value at the bottom of the structure is

estimated by linear extrapolation of the point of maximum slope with the wafer surface.

The CD value on the top of the structure is estimated by the distance between intensity

peaks. The accelerating voltagesused were 0.6kV for resist structures and 1.2kVfor poly

silicon.

4.2.3 Sampling Schemes and Decomposition Strategy

The trend and correlation errors introduced by the metrology can be confounded with

the spatial variability being measured. A separate set of experiments and analysis was con

ducted to characterize the measurement errors. Section 4.3.1 will describe how statistical

analysis and modeling coupled with experiments in the CD sampling sequence are used to

differentiate the process induced variability signatures from the measurement errors. This

analysis is implemented in the form of a data filter. Raw CD measurements are filtered to

yield accurate estimates of CD variability. By comparing the measurements after resist
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patterning, the develop step contribution to CD variability is assessed using the filtered

data.

To sample the intra-wafer variability between exposure fields, one measurement in

the center of each field was taken yielding a total of 21 measurements over the wafer. The

sampling algorithm on the CD SEM ordered the measurements so that adjacent points

were measured in sequence. This had the effect of confounding measurement errors with

the true spatialCD variability on the wafer. Another experiment was carried out to charac

terize the measurement error. Two sequences of measurements were taken on the same

structures over the wafer in different order to break up the spatial structure and to isolate

the sequencing artifacts. Two rows of thirty measurements each span the center of a wafer.

The sixty points were visited in two different sequences, as shown in Figure 4.3. This was

done for all the wafers, on resist as well as poly CD's. Because of the pattern recognition

and targeting algorithm of the measurement tool, it was not possible to program a random

ized sampling pattern.

Sequence A

'31 36 41 46 51 56 32 37 42 47 52 57 33 38 43 48 53 58 34 39 44 49 54 59 35 40 45 50 55 60

26 21 1611 6 1 27 221712 7 2 28 231813 8 3 29 241914 9 4 30 25 2015 10 5*

•1 6 1116 2126 2 7 1217 22 27 3 8 1318 23 28 4 9 1419 24 29 5 10 15 20 25 30

• •••••••••••••••••••••••••••••
56 51 46 41 36 31 57 52 47 42 37 32 58 53 48 43 38 33 59 54 49 44 39 34 60 55 50 45 40 35^

Sequence B

FIGURE 4.3 Sequence order versus location. Sixty positions (symbol "•") are sampled along two
rows on the wafer with 30 positions each. The 60 positions are visited by two sequences in different
order.

4.3 Analysis of SEM CD Variability Decomposition

Following the methodology described in Chapter 3, decomposition of CD variability

is accomplished through both spatial and causal filtering. The general variability model

over the wafer is restated here:
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cd(x, y) = p(x, y) + f(x, y) + w{x, y) + E , (4.1)

where the variables x and y are spatial coordinates over the wafer. The signal p(x,y) is the

within exposure field signature from the stepper/reticle pair and is perfectly periodic field

to field. The exposure to exposure variabilityf[x,y) from dose, focus, or leveling error is

also systematic within the field. Variability over the wafer w(x,y) is continuous and slowly

varying. Random error, e, is normally distributed and has no spatial structure. These com

ponents are assumed to be additive.

4.3.1 Analysis of Intra-wafer Poly CD Variation

The separation of the variability into systematic components within the exposure

field and between exposure fields is effectively a separation of the stepper/reticle variation

(within field) and the variation from the rest of the process as slowly varying variability

over the wafer (intra-wafer). The sampling pattern described in Section 4.2.3 achieves this

separation by fixing the sampling point within the exposure field and removing, to first

order, the contributions from p and /. The variability of interest, w, includes variability

from film deposition, resist coat resist develop, and etch. From independent measure

ments, the intra-wafer variation in film thickness for both the resist and the poly films are

<1% (Chapter 2). Their effects on CD variability are negligible. The components of w are

then from etch and develop. Again assuming additivity and implicit spatial dependence of

the variables, w, in this specific case wpoiy can befurther decomposed as:

Wpoly = ™develop +Wetch' <4'2)

Using automated SEM, CD measurements can be taken over the wafer after resist

patterning and after etch. The sampling plan described above eliminated the intra-field

contributions p and/. The signal wpoiy is the wafer component of final poly variation and

can be estimated from the final poly measurements, w™e0°yUre , which also includes mea
surement error, the superscript "measured" indicating measured data. Because there is no

significant contribution from the resist or poly thickness variations, wdevelop can be esti"
mated from the resist CD measurements w™*™s"re . Summarized in the following equa
tions:
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W
measured

poly = wpoly +Spoly +Z>poly md

measured
Both w

measured « «.
(4.3)resist

measured
and w

develop T ^resist T ^resist '

fpoly oiiu rvrcjJJ/ are measured quantities, and contain measurement

errors in the forms of 8, or a systematic trend with measurement sequence, and £, a ran

dom error with zero mean. The trend 5 can be characterized and subtracted, as is done in

the following section. The parameters wpoiy and ^develop can men De estimated by regres

sion over the spatialvariables x and y over the wafer. Finally, the etch variability wetch can

be obtained by subtracting wdevelop fr°m wpoly Therefore, in principle, the quantities Wde.

velop dnd wetch can De measured separately after develop and after etch. However, SEM

metrology itself needs to be characterized in termsof 8 beforethis analysis canbe accom

plished. For reference, the variables used in this chapter are summarized in the following

table:

Table 4.1 Variable Definitions in Section 43.1

Variable Definition

Wpoiy parameter for intra-wafer poly CD variability

^develop parameter for develop contribution to intra-wafer CD variability

wetch parameter for poly etch contribution to intra-wafer CD variability

measured
'resist

measured values for intra-wafer resist CD variability

measured

wP»ly
measured values for intra-wafer poly CD variability

A measured
^develop

estimated values for develop contribution to intra-wafer CD variability

A measured

wpoly estimated values for intra-wafer poly CD variability

A measured
^etch

estimated values for poly etch contribution to intra-wafer CD variability

^resist measurement trend error for resist CD's

^resist measurement random error for resist CD's

$poly measurement trend error resist for CD's

Spo/y measurement trend error resist for CD's
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4.3.2 Analysis of SEM CD Measurement Errors

In order to characterize the measurement errors 8 and £, separate sequencing experi

ments, described in the previous section, are conducted on both the poly and resist levels.

The following general model is assumed for the measured values in this experiment:

j measured , actual , s . e ia a\cd{ = cd{ +0,- +^. (4.4)

Here cd e are the measured values, cd°c ua the actual values on the wafer, 8

the mean offset due to measurement drift, and %the measurement error series, a random

variable with zero mean. The subscript i denotes the index of the sequence of the measure

ments. The quantity ^develop ls systematic over x and y while the measurement offset and

noise series may have correlation structureover the sampling sequence i. This formulation

is general, and is applied in the following sections to both poly and resist CD's. Note that

in this experiment, we attempt to estimate 8 and %, while the actual values cd°c ua are

not of interest.

A randomized sampling sequence over the wafer would separate the measurement

error from the actual CD values. However, the sampling algorithm used by the tool in this

experiment arranges the sequence to measure neighboring points. This may confound the

spatial structure that we wish to observe with the measurement error. In the following sec

tions we develop an experiment andmethodology to estimate the mean drift values 8j as a

function of sampling sequence so that it can be subtracted from the raw data.

The effects of measurement sequence are determinedby a separate sampling experi

ment. First, the resist CD measurement errors are characterized. On the resist two sets of

measurements were taken on 60 sites on the wafer. For this experiment the measurement

sites were different from the sites sampled to determine the wafer variability. The two sets

of measurements traverse the identical sites in different order so that we obtain vectors of

the measured values
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.measured .actual . ai^^ V**J)cdA = cdA +d + z

.measured .actual . » (A fi\cdB = cdB +d + v - v^-o;

Variables in bold denote 60x1 vectors with the itfa element corresponding to the ith
_n .measured . .measured

measurement in that sequence. The vectors caA and cdB denote vectors

of measured values in each of the two sampling sequences A and B. Their entries are the

measured CD values corresponding to the measured sites in the sequence. The vectors

cdA and cdB are the vectors of the actual values on the wafers. The entries

of cd^tua and ca*B ua are permuted with respect to each other to reflect to the
different sampling sequence. The permutation can be represented by a 60x60 matrix oper

ator R such that Rcd?B ua = ctf*A ua . Entries of d are the sequence trend values hv
The vector d is the systematic measurement sequence trend, and is therefore the same

sequence for both cdAeasur and cdB .The vectors z and v are different realiza

tions of the error series £.

The measurement sequence trend d is of interest and is estimated as follows. The
_ . ,. , .measured . ^

operator R is applied to caB so that:

Rcdmeasured =^^ual +Rd +Ry ^

Rcd~ed = ^actual + Rd + Ry (4.7)

The measurement trend d and error series v are randomized by R so that their respective

correlations to sequence are lost. Rd and Rv are not correlated to each other and are

lumped into one random vector

u = Rd + Rv

where u has a sample average equal to the sample average of d and (4.7) becomes

„ .measured .actual , /a o\RcdB = cdA +u (4.8)

Then, subtracting (4.8) and (4.5) results in
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(4.9)

Similarly, by defining areverse operator Qsuch that cdaBcua = QcdaAcua ,we obtain

.measured ,* .measured , fcdB -QcdA = d-u =eB

where u', the sum of a randomized d and a random error series with zero mean, and is

analogous in this derivation to u in (4.7). The vectors eA and eBcontain the trend d with

the addition of a random vector u or u'. The trend d in vectors eA and eBcan then be esti

mated by linear regression techniques. Forreference, the variables used in this section are

summarized in the following table:

Table 4.2 Variable Definitions in Section 4.3.2

Variable Definition

-^measured sequence of measured CD values

^actual sequence of actual CD values

8, sequence of measurement trend error

?T sequence of measurement random error

cd measured 60x1 vector of measured CD values, sequence A

cdmeasured 60x1 vector of measured CD values, sequence B

cd/actual 60x1 vector of actual CD values, sequence A

cdBactual 60x1 vector of actual CD values, sequence B

d 60x1 vector ofmeasurement trend error values 8;

z 60x1 vector ofarealization of^

V 60x1 vector ofa realization of^

R 60x60 matrix of a matrix to permute sequence B

Q 60x60 matrix of a matrix to permute sequence A

u 60x1 vector of a lumped random variable in sequence A

u 60x1 vector ofa lumped random variable in sequence B

eA 60x1 vector containing trend series d from sequence A

*B 60x1 vector containing trend series d from sequence B
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4.4 Poly CD Develop Error Through Resist Measurements

4.4.1 Resist CD Measurement Sequence Error

The resist CD measurement errors are characterized to yield estimates for the

develop contribution wdevelop- ^^* the effects of measurement sequence are determined

by a separate sampling experiment. On the resist two sets of measurements were taken on

60 sites on the wafer. For this experiment the measurement sites were different from the

sites sampled to determine the wafer variability. The sequencing experiment was per

formed on each of the three wafers in Figure 4.3 and the result examined to detect the

cd
measured

A, resist

8
.

B . • •

nJ •••*••*/• • • *
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w

B
4>

Q

Sequence A

measured

B, resistcd

Sequence B

Sequence B

eA,resist

Sequence A

V ' *•. •-.'

Sequence A

FIGURE 4.4 Example of the raw data from the sampling experiment on one wafer. The scale of the
vertical axis is the same for all plots. Sixty points each of isolated and dense features are visited in
two sampling sequences.The resulting error sequenceis anestimate of the measurementerrortrend.

presence of the measurement trend d (Figure 4.4). There the addition subscript "resist"

refers to the analysis carried out on resist CD's. The slightly negative mean of the points in

the three graphs indicates a mean shift between the two measurement sequences. This will

not affect the calculated variability over the wafer. Some structure in the data remains with

respect to sequence. However, these structures are found in small segments over the entire
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sequence and are probably due to incomplete randomization of ^measured by R.
VUB, resist

Because of their relatively short rangesof effect, these localized structures are not likely to

impact the trend we aretrying to estimate if the trend is limited to low orders.

The systematicmeasurement driftdesist*s °f most interestwith respectto the estima-

eA,resist eB,resist

Sequence A

Sequence A

mQd*EB4.—futfi ft''®

1

Sequence B

Sequence B

FIGURE 4.5 Measurement error versus measurement sequence. Scatter points (numbers) represent
raw data from three wafers in one split. Solid line represents the average of three wafers. The
estimated linear trend from linear regression is shown.

tion of ^develop. The assumption is that the error characteristics depend on the factors in

the experimental splits: dense/isolated and exposure dose. Three wafers were measured

for the high and medium dose splits, and the resulting error trends were averaged. The

trends were obtained by fitting a simple linear model using least squares regression. As an

example, the high dose wafers are shown in Figure 4.5. Measurements from the low dose

wafers are quite noisy. This might be due to poor linewidth resolution as a result of under

exposing the wafers. Summary statistics for the high and medium splits are shown in Table

4.3.
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Table A3 Summary Statistics of Trend Regression for SEM Resist CD Measurements

Exposure
Dose

Feature

Type Sequence Slope % of Error

Significant at
5%

High Isolated A -0.04 0.7

High Isolated B •0.054 0.4

High Array A 0.064 11.53 •

High Array B 0.0667 12.51 •

Medium Isolated A 0.099 0.95

Medium Isolated B 0.1023 1.024

Medium Array A 0.02 1.3

Medium Array B 0.018 1.0

In general, the trends are very weak for even the most prominent conditions of arrays

and high exposure doses. A slope of .1 amounts to 6nm of measurement drift over 60 mea

surements. The magnitude of the measurement drift is quite small by metrology standards,

but is significant compared to the magnitude of the error we are trying to detect on the

wafer. The measurement trend for each experimental condition was the same regardless of

measurement sequence. This is consistent with our model which decouples the wafer val

ues from the trend values. The "% of Error" column indicates the amount of variance

explained in the measurement error series by the linear trend. The random portion of the

measurement error dominates in all cases. The significance criterion is the t-value of the

estimated slope with a threshold of 5%. The linear measurement trend has to be accounted

for in the estimates of the wafer trends.

4.4.2 Resist CD Wafer Component Estimation

The double sequence experiment yielded estimated of the measurement trend §resjst

for measured resist CD variation wresist. Following (4.3), the develop contribution, wde.
. , j. measured ,matedfrom wresist by removing

traction of 5„f^ and filtering of ^resist by regression.

velop, can be estimated from w™ j""re by removing the measurement noise through sub-
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Three sets of three wafers were exposed at three doses. CD measurements were taken

in the center of each of the 21 fields on the wafer, on both isolated and dense lines. Note

that here the intra-wafer variability w™"*"re was sampled in aseparate experiment from

the double sequence experiment. The measurement algorithm produced three values for

each structure, representing CD values at the top, center, and bottom of the pattern. Some

summary statistics are provided in Table 4.4.

Table 4.4 Aggregate Sample Variance (nm2) of Resist CD Measurements for Three Wafers

Exposure
Dose Wafer #

Isolated

(Top)
Isolated

(Center)
Isolated

(Bottom)
Dense

(Top)
Dense

(Center)
Dense

(Bottom)

High 1 32.06 24.95 26.26 21.25 23.21 23.21

High 2 20.83 27.73 32.25 9.13 14.09 13.73

High 3 55.46 47.36 55.05 27.85 21.16 21.16

Medium 1 18.51 15.91 15.99 14.45 13.85 257.35

Medium 2 32.83 32.66 32.66 23.23 13.05 31.06

Medium 3 17.41 21.83 26.13 735 8.91 178.90

Low , 1 30.96 29.76 31.45 27.83 109.05 1369.26

Low 2 19.95 25.50 39.29 24.10 73.59 423.53

Low 3 16.45 23.96 34.10 8.80 78.13 478.53

For the high dose split, sample variances are consistent for top, center, or bottom

measurements. In the cases of medium or low dose, the bottom measurements of arrays

show increasingly higher variation. This is consistent with the fact that with decreasing

dose, more resist remains between the lines, causing non-vertical slopes on the line struc

tures. However, there is also the accompanying effect of weaker electron signals from the

bottom of the structures and obstruction from neighboring lines. Therefore, the center and

bottom measurements from arrays in splits 2 and 3 arenot reliable. For this work the top

measurement is used. In general the variability over the wafer is quite small (~5nm).

The intra-wafer signal wdevelop *s estimated by empirical removal of the measurement

error. The systematic error is removed by simply subtracting the estimated trend from the

raw data. This was performed only for the cases where the linear trend model was signifi-
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cant. The random measurement error is removed by taking advantage of the spatial corre

lation of ^develop- Because of the relatively small number of measurements over the wafer

(21), the systematic component of the wafer variability is best extracted by fitting a slowly

varying surface to the measurements. A low order polynomial form is used:

wdevelop = ao +a\* +*& +a3x +fl4v +a5*y and (4.10)

measured _ «• *
resist ~~ develop ^resist ^resist

where t^fto *s me random experimental noise -NCO.o2).

Figure 4.6 shows the resulting contours from the filtering for the three wafers in the

medium dose split and figure 4.7 shows results for the high dose split. In general, the

model adequately describes the spatial features on the wafers. Moreover, the spatial fea

tures between the array and dense CD's agree for the same wafer. Also, the spatial con

tours between wafers suggest that the systematic pattern has rotational freedom. Both of

these facts are consistent with the mechanisms of the develop process. The bar graph in

Figure 4.6 shows the relative amounts of variation between the wafers as well as between

the signal wdevel and themeasurement errors. Table 4.5 shows thesummary statistics of
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the filtering for these splits wafers. The "vv % meas" column refers to the percentage of
Isolated Lines

Wafer 1 Wafer 2 Wafer 3

X3
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j- §•
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•*-< 2
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fa J

Dense Lines

^develop

v.

•^ Residual
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1 8
O 0)

Wafer 1 Wafer 2Wafer 3

FIGURE 4.6 Raw and filtered intra-wafer CD contours for 3 wafers in the medium dose split.
Interval between contours are the same for all plots. Bar plot shows the relative amounts of variance
between the wafers, and between the systematic intra-wafer signal w^eve/0/, and regression residual
portion (Error).

variance wdevel relative to the variance in the raw data. This is the R value of the

regression in the absence of significant measurement trends. "P-Value" is based on the F-

statistic for model significance, which we set at 5%. The models are significant, and the

systematic trend over the wafer accounts for 10-20% of the measured variation.



Table 4.5 Variation Summary for Medium Dose Wafers Resist CD's

Wafer #

Isolated

vv %meas

Isolated

P-Value

Dense

vv %meas

Dense

P-Value

1 0.88 0 0.8 0.001

2 0.81 0.001 0.9 0

3 0.76 0.003 0.64 0.029

62

Similarly, results are shown for the high dose split. In this case, the measurement

trend calculated from Sect 4.3.1 has been removed from the raw data before the spatial

regression. Figure 4.7 shows the results of the filtering. Again, the systematic patterns of

Raw

measured
vv

resist

Filtered

wdevelop

Raw

measured

resistVV

Filtered

wdevelop

Wafer 1
Isolated Lines

Wafer 2

^

Dense Lines

Wafer 3

FIGURE 4.7Raw (yvresis. ) and filtered (^develop) intra-wafer CDcontours for3 wafers in the
medium dose split. Interval between contours are the same for all plots. Bar plot shows the relative
amounts of variance between the wafers and between error vs. systematic portions.
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^develop
show no rotational registration. They are also consistent for both isolated and

dense features on the same wafer. The variance summary is shown in Table4.6. The "5 %

Table 4.6 Variation Summary for High Dose Wafers Resist CD's

Wafer #

Isolated

vv %meas

Isolated

P-Value

Dense

vv%meas

Dense

8 % meas

Dense

P-Value

1 0.89 <105 0.9 3.3 <10s

2 0.85 <105 0.88 12.8 <10'5

3 0.79 0.001 0.87 0.3 <10s

total" column refers to the percent variance adjustment to the raw sample variance after

removing the measurement trend whereas ''vv % meas" refers to the percent variance in

the measured data explained by fitting the surface wdevel . Positive quantities for the

trend correction indicate that variation increased after removing measurement trends. The

sign of this contribution depends on the spatial correlation of the trend to wdevelop-

4.5 Analysis of Poly CD Etch Error

Following the analysis performed in Section 4.3, the etch error can be estimated.

Measurements of after-etch poly CD's yielded (4.3):

measured

polyvv ~ wpoly + Spoly +kp0ly •

The poly intra-wafer component wpoiy can be estimated by removing the measurement

errors dpoly and fitting alow order polynomial such that

Wpoiy = a0 + axx +a2y + a3x + aAy + a5xy

The etch component is then estimated by

vvetch = W„„i„-Wpoly develop '

Two wafers from each of the three dose splits were plasma etched. Top-down SEM

measurements were taken on the polysilicon CD's in a series of experiments that parallel

the resist CD analysis. The etch contribution to CD variability was found by subtracting
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the develop contribution from the final CD variation.

4.5.1 Poly CD Measurement Sequence Error

Using the sequencing experiment in Section 4.3.1, two wafers were measured for

each dose splits, and the resulting error trends averaged. Only isolated lines yielded satis

factory measurements and are analyzed in this section. The trends were obtained by fitting

a simple linear model using least squares regression. The results are shown in Figure 4.8,

where the subscript "poly" refers to the sequencing experiment carried out on the poly

layer. Summary statistics for the splits are shown in Table 4.7. The "% of Error" column

eA,poly eB,poly

Sequence A Sequence B

Sequence A Sequence B

Sequence A Sequence B

FIGURE 4.8 Measurement error versus measurement sequence. Scatter (numbers) points represent
raw data from two wafers in each split. Solid line represents the average values from the two wafers.
The estimated linear trend from linear regression is shown.

indicates the amount of variance explained in the measurement error series by the linear
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trend. The random portion of the measurement error dominates in all cases. The signifi

cance criterion is the t-value of the estimated slope with a threshold of 5%. As in the case

of resist CD measurements, the trends are very slight in all but the medium dose split.

Again, the measurement trends for eachexperimental condition were the same regardless

of measurement sequence. In these measurements, the split with medium dose exposures

showed significant measurement trend. This trend is also much greaterin magnitude than

the one observed in the resistCDmeasurements. Onaverage thereis lnm drift for every 5

measurements. The trend is positivein slope, as in the resist case, indicating CD gain with

measurement time. The wide scatter in part of the measurement error sequence corre

sponds to the fact that the measurements were over a portion of the wafer. The linear mea

surement trend is accounted for in the next section where the wafer variability is

estimated.

Table 4.7 Summary Statistics ofTrend Regression for Poly CD Measurements

Exposure
Dose

Feature

Type Sequence Slope % of Error

Significant at
5%

High Isolated A 0.0365 4.80

High Isolated B 0.0350 4.41

Medium Isolated A 0.1918 21.02 •

Medium Isolated B 0.1938 21.46 •

Low Isolated A 0.0203 1.58

Low Isolated B 0.0196 1.47

4.5.2 Poly CD Wafer Component Filtering

As in the case of resist structures, CD measurements were taken in a separate experi

ment in the center of each of the 21 fields on the wafer, on both isolated and dense lines.

Three values for each structure, representing CD values at the top, center, and bottom of

the line were produced. Summary statistics are provided in Table 4.8. As in the resist case,

in the high dose split, sample variances are consistent for top, center, or bottom measure

ments. In the cases of medium or low dose, the dense measurements of arrays show unrea-
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sonably high variation. This could be due to either measurement errors, such as electron

obstruction by neighboring structures, or by process errors, such as partially cleared poly

film. In this section only the top measurement from isolated structures are used. There

seems to be significantly more variability in the raw data from the resist measurements.

This is at least in part due to the introduction of variation by the etch process.

Table 4.8 Sample Variance (nm2) of Polysilicon CD Measurements

Exposure
Dose Wafer #

Isolated

(Top)
Isolated

(Center)

Isolated

(Bottom)
Dense

(Top)
Dense

(Center)
Dense

(Bottom)

High 1 32.06 24.95 26.26 21.25 23.21 23.21

High 2 20.83 27.73 32.25 9.13 14.09 13.73

Medium 1 18.51 15.91 15.99 14.45 13.85 257.35

Medium 2 32.83 32.66 32.66 23.23 13.05 31.06

Low 1 30.96 29.76 31.45 27.83 109.05 1369.26

Low 2 19.95 25.50 39.29 24.10 73.59 423.53

As in the case of post-develop measurements, the poly intra-wafer signal w is esti

mated by removal of the measurement error: subtraction of the estimated trend from the

raw data for the cases where the linear trend model was significant and removal of random

error by extracting a continuous CD surface over the wafer from the measurement data.

Figure 4.9 shows the resulting contours after filtering. In general the model adequately

describes the spatial features on the wafers by visual inspection as well as by the amount



of variance explained ("ft %meas" column in Table 4.9).

Wafer 1 Wafer 2
High Dose

Raw

measured

wpoly

Filtered

wpoly

Low Dose

Raw

measured

wpoly

Filtered

wpoly

Medium Dose

Raw
measured

wpoly

Filtered

wpoly
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measured
FIGURE 4.9 Raw (wpoh ) an<l filtered (wpofy) intra-wafer CD contours for 2 wafers ineach
split. Intervalbetween contours arethe same for all plots.



Table 4.9 Variance Summary for Polysilicon (Isolated CD) Regression

Exposure
Dose Wafer* ft %meas P-Value 8 % meas

High 1 70 0.017

High 2 89 <10s

Medium 1 72 0.019 36.8

Medium 2 90 <10"5 7.1

Low 1 71 0.008

Low 2 57 0.078
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Table 4.9 shows the relative amounts of variation between the wafers as well as

between the signal w t and themeasurement errors, "ft % meas" refers to the percent

variance in the measured data explained by fitting the surface ft ly ."8 %meas" refers
to the percent variance adjustment to the raw sample variance after removing the measure

ment trend. The effects of trend variation on net variation depend on the spatial correlation

of the two quantities. In all cases, the models are significant from the p-values of the f sta

tistic. Using these results, etch decomposition can be carried out. From (4.2)

w etch = VV, -VVpoly develop (4.11)

and can be estimated by subtracting the resist measurements from the poly, and then

extracting the systematic portion of the result. The measurement sequencing drift has to be

accounted for when appropriate. Figure 4.10 shows the contours of the decomposition

sequence for two wafers. In both cases, the difference between the two measurements is

quite noisy, as expected. The extracted etch variation is very small in magnitude (~6nm
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FIGURE 4.10 Etch and develop decomposition sequence for 2 wafers: medium dose and high dose.
Contour intervals are the same in all cases.

Table 4.10 Variance Summary of Intra-wafer SEM Poly CD Decomposition

Exposure
Dose Wafer # V develop

(%)
Ktch Cov Wetch

(% meas)
Wetch
p-value

High 1 100 65.6 17.9 16.5 42.6 .292

High 2 100 81.0 34.1 -10.9 43.5 .321

Medium 1 100 81.6 48.0 -40.7 45.2 .336

Medium 2 100 52.1 17.5 32.1 60.4 .069

Low 1 100 132 18.6 -48.7 25.9 .747

Low 2 100 79.4 56.3 -35.8 42.8 .289

Decomposition results are summarized for all six wafers in Table 4.10. Variability

components are expressed in percentages normalized to the final poly CD variation (from

filtered data). Taking the variance of (4.2) yields
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var(vv) =var(vvJeve/op) +var(we/cA) +2cov(vv^ve/op,vvcrc/i) • <4-12)

From this the poly variability w can be decomposed into three components: develop, etch,

and the spatial covariance between develop and etch. Variation due to spatial correlation

between theetchand develop components is listed in the"Cov (%)" columnandis defined

as 2cov( wetch ,wdevelop). Because the develop and etch contributions are determined

using two separate measurements, additional measurement error is injected into the analy

sis. Therefore, the variability components do not always sum to 100%, which is the mea

sured final poly CD variation and includes error from one set of measurements. The last

two columns summarize the wafer trend regression for the etch component, "vv (% meas)"

refers to the percentage of systematic variability extracted relative to the raw data. In gen

eral the systematic component is -40% of the total, the rest can be attributed measurement

noise. We find that the estimated model parameters are significant only for one of the

wafers.

4.6 Develop/Poly Etch Decomposition Summary

Resist Coat -0%

Resist Develop 11.4%

Induced 289K

7
/ Poly

CVD-

stepPCT38* x^rphy
Ct . Covariance 12% <& A \ Etch/Dev
%SS? Reticle " 78% \ \cOIr(7.0%)

^jResist | ^[ Poly
CD

y Metrology
/ ^ ™ /SEM V*—^ /Poly /SEM

/ Metrology / Etch/ ^
(3.85%

(3.3%) SEM metrology error for poly etch
(13.2%) SEM metrology error for resist CD

FIGURE 4.11 Error budget diagram for .35|im poly gate patterning. Percentages of
variancenormalized to the final poly CD variability. Experimental errorlisted separately.

Automated SEM measurements have been used to estimate the develop contribution

to CD variation within the wafer. Separate sequencing experiments and statistical analysis
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were performed to characterizeSEM measurement errorand determine sampling artifacts.

Filtering of the raw data yielded estimates of the systematic error attributed to the develop

process. After plasma etch, the experiments were repeated to determine the poly measure

ment errors and the poly CD variability.The etch variability was then extracted from the

difference between the poly and resist measurements. The etch component is in general

quite small (-20% of total poly CD variability) and in most cases dominated by experi

mental noise.

References for Chapter 4

[9] "OPAL 7830i Automated SEM-CD Wafer Metrology System", Applications Refer
ence Manual.
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Chapter 5

Metal CD Variability

5.1 Metal Etch Variability

In this chapter, the contribution of etch variability to metal CD patterning is deter

mined. By extending the methodology for variability decomposition using Statistical

Metrology, metal CD variability was measured using short loop electrical measurements.

Subsequent statistical and causal decomposition of the raw data isolated the variability

contribution from plasma etch. In Chapters 3 and 4 we developed a methodology which

decomposes variability in electrically measured poly CD's into individualequipment con

tributions using a series of statistical and causal filters. In this chapter this methodology is

extended to determine CD error contributions from metal etch.

5.1.1 Metal Etch Decomposition Methodology

A .50 urn metal interconnect patterning process using I-line lithography is used to

demonstrate the methodology. Following the experiment described in Section 2.2.1, a test

mask of electrically measurable structures was designed to print CD samples over the

stepper field and the wafer. Then the pattern was transferred through a short-loop process

sequence as to minimize the number of confounding sources of variation. A spatial filter

was implemented to separate the within-wafer variability from the variability within the

stepperfield. The intra-wafer variability excludes error introduced by the stepperand reti

cle pair, which consists of variations within the stepper field.

Separate experiments were conducted to isolate the error introduced by metal etch.

The short-loop process sequence was repeated on a thin metal film using the exact litho

graphicprocessas the original metal stackwithrespect to the resist, exposure, and develop

process (Figure 5.1). Metal etchforboth the thin andthickfilms was carried endpoint with
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the same equipment and chemistries. The much shorter etch times used for the thin film

wafers minimize the effect of etching on the CD structures. The variation of the difference

in CD variation between both thick and thin film CD's is used to quantify metal etch vari

ability.

i PR

TiN o
-500 A

-^ PR
~l.l|im

TiWe
1 •, -500 A

Si?3

UJ8B Bfcr.

<-liSllSj>xW\W mww <Si>
FIGURE 5.1 Thin versus thick metal film stacks.

5.1.2 Metal CD Sampling Experiment

A test mask was designed to sample systematic CD variability at a fixed operating

point in the metal interconnect patterning sequence using electrical linewidth measure

ments. Spatial variability was sampled by repeating CD patterns over a reticle in a 5X5

grid spanning a 20x20mm stepper field. This reticle pattern was repeated 24 times over a

6" wafer.

The dimension and proximity conditionsof the CD patterns were varied in each loca

tion on the reticle to sample systematic variability due to mask CD variations and proxim

ity effects. Both isolated and dense arrays of linewidth topologies were considered with

nominally .5um lines at lujn pitch. The linewidth structures are electrically measurable

using the Kelvin 4-pointmeasurement design. The sheet resistance is determined by adja

cent Van der Pauw structures to compensate for errors in film resistivity. The raw data

from the experiment consists of periodic repetitions of the reticle over the wafer. Prior to

the experiment, SEM measurements were used to determine appropriate stepper exposure

conditions to pattern lines with the target dimensions.

No wafer topography was included in order to minimize the number of confounding

processing effects. The thick metal stack consists of ~lum thick Al film with small per-
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centages of Cu topped by ~50nm of TiN on top of lOOnm isolation oxide. The thin metal

film in causal decomposition uses thin TiW (~50nm) in place of the thick metal stack.

Both types of wafers were patterned in the identical process sequence consisting of film

deposition, resist coat, pattern exposure, resist develop, and metal etch (to endpoint).

Resulting CD structures were probed using an automated electrical measurement system.

5.2 Metal CD Results and Analysis

5.2.1 Metal CD Raw Data

FIGURE 5.2 Elevation map of nominally .5jim isolated metal CD's over the wafer for a thick metal
stack.

Figure 5.2 shows the elevation map for the electrically measured values of .5|im iso

lated CD's over the wafer for the thick metal film stack. In all CD plots, the vertical scales

are the same. Roughly radially symmetric spatial variability over the wafer can be

observed. Also spatial variation, less in magnitude, can be observed within exposure

fields.

Figure 5.3 showsthe CD variability for the same structure on the patternedthin film.

The variability over the wafer is much less than for the thick film case. Also, periodic

within-field variability structure is evident. This could be a result of the effect of reduced
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etching over the wafer from the shorter etch time.

FIGURE 5.3 Elevation map of nominally .5\im isolatedmetal CD's over the wafer for a thin metal stack.

5.2.2 Statistical and Physical Filtering of Metal Etch Variability

Restating the error formulation in Chapter 3, the variability over the wafer can be

expressed as:

cdmetal<<x> 30 = Pmetafa 30 + wmetaAx> 30 + fmetafa 30+ * . (5.1)

where Pmetafay) *s me within exposure field signature from the stepper/reticle pair and is

perfectly periodic field to field. The exposure to exposure variabilityfmetafay) from dose,

focus, or leveling error is also systematic within the field. Variability over the wafer

Wmeta&x>y) *s continuous and slowly varying. Random error, £, is normally distributed and

has no spatial structure. These components are assumed to be additive. The explicit sub

scripts in the variables refer to the metal CD's used in this chapter.

The etch variability of interest is incorporated in w^ja/ along with variability from

film deposition, resist coat and resist develop. From independent measurements, the varia

tion in film thickness for both the resist and the metal films are <1%. Their effects on CD

variability are negligible. The components of V9meud are then primarily from etch and

develop. Again assuming additivity:



Wmetal ~ wMdeveiop + ™Metch
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(5.2)

Here the prefix "M" in the subscript distinguish these variables from their counterparts in

poly decomposition (Chapter 4). Combining equations (5.11) and (5.2), the terms Pmetai

and WMdeveiop wiU De approximately the same for both thin and thick film wafers because

of identical process conditions.

wThick - WMdevelop +^MetchThick and

wThin = WMdevelop + WMetchThin

Subtracting the CD values between the thick and thin film wafers yields:

Aw = vvMetchThick -VVMetchThin + £'

(5.3)

(5.4)

where £' combines the differences of/^^ and ebetween the two wafers. Because/mcto/

and £ are not systematic over the entire wafer and the values between the wafers are not

correlated £' is assumed to be random over the wafer.

FIGURE 5.4Elevation map of thedifference in nominally .Sumisolated metal CD's (Acrfmcta/) over the
wafer between the thick and thin metal stacks.

Figure 5.4 shows the elevation plot for Aw. While the variability over the wafer

remains, the spatial structure within the fields is mostly eliminated. The differences in the

etch effects caneasilybe obtained by extracting the systematic componentof aw. This can

be done most easily by fitting a low order polynomial surface overthe wafer through lin

ear regression:



FIGURE 5.5 Fitted polynomial surface extracting the systematic variability over the wafer.

2 2Aw = a0+ a.x + a2y + a3x + a4y + a5xy + 8
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(5.5)

where 5 is random error. The resulting surface from the regression is shown in Figure 5.5

and has an R value of 0.72.

With the additional assumption that the effect of etch on a very thin film is small

compared to that of a thick film, the fitted surface can be used to estimate the metal etch

contribution to CD variability so that

Aw - WMetchThick - WMeichThin = ™MetchThick (5.6)

Also, (5.3) becomes

WThin - WMdevelop ' (5.7)

Summarizing the variability components, (5.3) becomes

WThick = WThin + wMetchThick (5.8)

The variance is given by

var(wThick) = var(wThin) + var(wMe[chThick) + 2cov(wThin, wMetchThick). (5.9)

The etch component WMetchThick 1S estimatedby regression on Aw, and the quantities wThi

and wjhick are measured.

m



The decomposition results are summarized in the following table

Table 5.1 Intra-wafer Metal CD Decomposition Summary

Variability Component
% Variance of

wThick

Thin film wafer (^Thin) 30.4

Estimated etch portion

WMetchThick

32.4

2cov{wThin, wMetchThick) 30.1
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The correlation term refers to the variability contributed by the spatial correlation between

the etch contribution and the contribution from the rest of the process (estimated by vari

ability from the thin film wafer).

5.3 Metal CD Etch Decomposition Summary

In this chapter, Statistical Metrology has been extended to extract etch variability

from a metal CD patterning process sequence. An experiment using a thin metal film was

used to approximate the effects of the process without the etch. Subsequent subtraction of

measured CD's and extraction of the systematic component yielded the estimate for the

etch contribution.
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Chapter 6

Applications of Statistical Metrology

In the previous chapters, we have developed a methodology which decomposes and

categorizes systematic spatialCD variability into individual equipment contributions. Two

applications of the methodology in Chap. 3 and 4 yielded the variability assignments in

the poly patterning sequence. This type of variability assignment is advantageous for sev

eral reasons: 1) It identifies bottlenecks in manufacturability and offers an opportunity to

manipulate various variability components through the choice of equipment hardware and

process settings. 2) The isolated equipment variability components can be used as a

benchmark metric between equipment choices. 3) The spatial correlation between vari

ability components can be manipulated to reduce net variability. In this Chapter, several

results of Statistical Metrology will be applied towards improvements in process design.

In an IC manufacturing sequence, all of the process tools introduce some variation

into the product. In this way, eachtool used along the process sequenceattenuates product

yield in some way. However, systematic variability can be manipulated through judicious

design- by changing the process operating point or by modifying the hardware. With

appropriate filtering and decomposition of the measured data, it is possible to determine

the response surface of the variability of particular process steps over a range of process

conditions. Process variability can be also be manipulated through the choice of process

equipment. Specifically the reticle/stepper and the develop variability will be examined.

Lastly, we show an example in this chapter in which manufacturability is incorpo

rated as an additional criterion in process design. In this way, process manufacturability

can be optimized by minimizing the systematic variability and the sensitivity to random

variability. Processvariability is also a function of the layout of the circuit being manufac

tured. We show that a continuum of process variability versus circuit design parameters
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can be established using Statistical Metrology to facilitate circuit design for manufactura

bility.

6.1 Reticle/Stepper Variability Applications

Spatial features in process variability canbe used to gain insight intothe process and

equipment. In Chapter3 and 4, causaldecomposition provideda methodology to estimate

CD error budget items. Sincethe decomposition procedures, consisting of a test mask and

filtering algorithms, are generic, they can be applied to various process segments and

across fabrication sites. A causal error breakdown also reveals ways to manipulate process

error. The results in Chapter 3 already suggest that the correlation between error compo

nents can reduce net variability. Similarly, altering equipment and equipment settings can

affect CD variability. In Section 3.4.2, causal decomposition of intrafield CD variability

yielded separate error contributions from the stepper and the reticle. The results of this

decomposition can be used to formulate a numerical metric to gauge equipment manufac

turability.

6.1.1 Intrafield Systematic Variability

The detailed spatial information obtained from extensive variability sampling (Chap

ter 2) can provide additional levers to manipulate process variability. Moreover, to incor

porate spatial information may place additional constraints on process design. The effects

of structure topology, in the form of CD proximity designs, were also measured in the

experimental. These measurements, also sampled over the field and the wafer, may pro

vide useful insights into the equipment or process mechanics. The following are a few

examples in which spatial information has supplemented process design or equipment

operation.

Column Tilt

The intrafield variation p, obtained as a result of signal decomposition (Section

3.4.2), shows roughly radial variability which is not perfectly centered within the field. In

subsequent equipment maintenance, an adjustment was made on the optical column of the
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stepper. The signal p obtained after the adjustments shows centered contours. (Figure

a) b)
p(x,y)before p(x,y)after
column adjustment column adjustment

FIGURE 6.1 Intrafield CD contours of p(x,y)a) before and b) after column tilt alignment. CD contours
drawn at same intervals.

6.1b) This example is additional validation of the signal decomposition, in that the signal

responded predictably to equipment manipulation.

Isolated-Dense Bias

Besides spatial variation, other systematic errors can be observed IC processing. One

type of error which has been of concern is proximity effect error, or error between CD's

with different neighboring structures. A common metric of this effect is the difference

between isolated and dense features. In actuality, this metric is a measure of both optical

proximity effects and etch microloading effects. Usually this quantity is characterized by

one scalar quantity, without considering effects of spatial variability. In Figure 4.2, both

the within field and over the wafer variability of isolated minus dense CD's in the horizon-
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tal orientation is shown. The intrafield variability is, by arguments similar to those for

Isolated - Dense

a)

Within Field

b)

Over Wafer

FIGURE 6.2 As printed CD contours a) within field and b) over wafer of isolated minus dense horizontal
CD's. CD contours NOT drawn at same intervals.

causal decomposition, due to stepper optics. The spatial trends observed tend to follow

that of individual CD variability shown in Figure 4.1. This is to be expected, since both

CD and variability in iso-dense differences are manifestations of the same optical aberra

tions. By parallel arguments, over the wafer variability of iso-dense differences are due to

plasma etching. This is shown in Figure 4.2b, in which a trend of variation low in the right

to high in left side of the wafer is observed. This trend is repeatable for other wafers mea

sured.

Orientation Dependence

Similarly, trends in orientation dependence are telling of optical aberrations. In Fig

ure 4.3, the intrafield contours for horizontal minus vertical (x-y) lines are shown. The

resulting pattern is in the shape of a "saddle", or 0 along the diagonals, positive in the top

and bottom quadrants, and negative in the left and right quadrants. This can result as a dif

ference of two elliptical surfaces, one with the major axis along x and one along y, and is
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indicative of astigmatism in the optics.

FIGURE 6.3 CD contours within field of horizontal minus vertical printed CD's in (nm).

6.1.2 Stepper Benchmarking

The stepper/reticle decomposition methodology developed in Chap. 3.4 identified the

stepper contribution to CD variability apart from the process and reticle variability. This

methodology can be applied to benchmarksteppers.Three advanced i-line steppers, each

from a different manufacturer, are characterized. The tools have comparable functionality

and are designed for manufacturing .35jxm technology. In this generation of i-line expo

sure tools, the CD requirements are very close to the resolution limit of the equipment.

Tool variability is expected to be very visible.

Following the electrical experimental procedure described in Chapter 2, short loop

patterning was performed on flat polysilicon wafers made in the same batch. Resist coat

for all wafers was also performed on the same process line. Stepper exposure and develop

were carried-out at the three tool demonstration sites. Wafers were collected, etched and

measured at the original process line. CD's were sampled in a 6x6 array in 22x22mm



square fields. Decomposition results are shown in Figs. 6.4 and 6.5.

Stepper Acd,. p ' MAcd,

#1

#2

#3

\. /
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FIGURE 6.4 Stepper/reticledecomposition results for three steppermodels. Contours shown areisolated
pattern .35um CD variation within the field. The intervals between contoursareequal in all plots.

In Figure 6.4, stepper/reticle decomposition results are shown for the .35|im isolated

features. The mask errors, Acdr are quite small. Note that in stepper #3, a different reticle

was used; it's CD is distributed differently over the reticle than the others. Because the ret

icle induced error is subtracted, use of different reticles with different variability does not

compromise the benchmark metrics. The periodic intrafield component p has been

extracted from the electrically measured raw data. By characterizing the stepper CD trans

fer function (following Chapter 3.4.1), the effect of reticle error on p has been calculated

as MAcdr In all cases, the reticleerror is enhanced. Again, this is because IMI>1 as well as

in steppers #1 and #2 the mutually spatialenhancement of M(x,y) and cdj(x,y). The right

most column shows the CD contours of px, the stepper contribution. The different spatial

features indicate different optical aberrations present in the tool designs, with stepper #3

showing the least CD variability. In Figure 6.5, the decomposition has been performed for



the dense features. Qualitatively results are similar to the isolated case.

Stepper Acd,. p MAcdr

#1

#2

#3
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FIGURE 6.5 Stepper/reticle decomposition results for three stepper models. Contours shown are dense
pattern .35um CD variation within the field. The intervalbetween contours areequal in all plots.

The benchmark study is summarized on Table 6.1, where variability components are

expressed in terms ofvariance (nm2). In general the reticle contributions to variability are

comparable,even accounting for the enhancement factor M. While the total extracted vari

ability of p from steppers #1 and #2 were comparable, the estimated stepper contributions

were different by a factor of close to two. The spatial correlationbetween the stepper and

reticle-induced components account for a significant amount of variability in steppers #1

and #2. However, in #3, the spatial distributions of the components were such that there

was very little, even somewhat negative correlation between them.

Since the net CD variability depends on the exact spatial distribution of the reticle

CD's, it is difficult to formulate convenient manufacturability metrics which incorporate

all the spatial information of stepper variability. In the following sections the variation in
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Table 6.1 ErrorComponents asResultof StepperBenchmarking (nm2)

Structure Component Symbol
Stepper

#1

Stepper
#2

Stepper
#3

Isolated Stepper P1 77.4 41.1 15.5

Isolated Reticle-Induced MAcdr 20.9 26.2 28.4

Isolated Covariance 2*Cov 39.5 46.8 -6.7

Isolated Total 137.8 114.1 37.2

Array Stepper P< 21.0 37.3 16.3

Array Reticle-Induced MAcdr 27.4 27.3 21.9

Array Covariance 2*Cov 18.6 23.4 -8.1

Array Total 66.9 87.9 30.0

the stepperaloneerror as well as the valueand variability of the reticleerror gain factor Af

will be presented as the manufacturability metrics of interest.

Following Chapter 3, px, the stepper alone component of CD variability, can be

extracted. Furthermore, it is a function of the reticle dimensions. Figures 3.10 and 3.11

show the field CD contours for the stepper-alonevariability as a function of the target reti

cle dimensions from 310 to 390 nm for both isolated horizontal lines as well horizontal

lines in an array. A trend of decreasing variability can be observed with increasing reticle

dimensions, as expected. Similarly, M can be calculated from the fitted transfer function

and it's contours plotted as a function of reticle patterndimensions (Figure 3.12 and 3.13).

Again, a trend of decreasing variability and decreasingmean value of M is seen versus ret

icle dimensions.

These results can be summarized at the expense of the spatial information contained.

As an example, Figure 6.6 compares the manufacturability of the stepper used in the anal

ysis of Chapter 3 with that from a more advanced model made by the same manufacturer.

The stepper only variation, var(pl), and the scatter of the reticle error enhancement factor

M is shown for both isolated lines and arrays of nominally .35u,m horizontal CD's. For

either structure, the stepper-only variability is smaller for stepper #2 over the range of ret

icle CD's. Furthermore, M for stepper #2 is both smaller in mean value and more uniform

over the field over the range of reticle CD's. This shows that stepper #2 is less sensitive to
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reticle errors. Using the same technique, comparisons of manufacturability can be made

between manufacturers, different models, and even different steppers of the same model.

3 Isolated Features
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FIGURE 6.6 Variance of the stepper only variation var(pl) (figures a) and $)) and scatterplot of the
reticle error enhancement factor M (figures b) and d) versus nominal reticle CD's evaluated from 310nm
to 390nm by increments of 20nm. Isolated (a) and b)) and lines in an array (c) and d)) for steppers #1
and #2 are compared. Separations in the X axis between scatter points for #1 and #2 for ease of display
only.

The variability decomposition discussed so far is an analysis of systematic variation
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about a fixed process point. Therefore, decomposition results would depend on the process

operating point. In fact, this has already been observed in the case of stepper comparisons,

if we consider the equipment choice among the list of process settings. Similarly, variabil

ity decomposition, specifically the causal decomposition via transfer function character

ization, can be affected by process conditions. As examples, the effects of resist process

choice and stepper defocus will be demonstrated. Figure6.7 shows the comparative effects

on stepper-alone and reticle-induced variability components for CD's patterned using

three different resist processes. Both variability components show significant effects from
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changes in the resist process. Similarly, Figure 6.8 shows the effect of changing defocus
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FIGURE 6.7 Variance ofthestepper only variation var(pl) (figures a) and c))and scatter of the reticle
error enhancement factor M (figures b) and d) versus nominal reticle CD's evaluated from 310nm to
390nm by increments of 20nm. Isolated ( a) and b)) and lines in an array ( c) and d)) for resist
processes #1, #2, and #3 are compared. Separations in the X axis between scatter points for ease of
display only
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values on the variability components. This demonstrates the importance of fixing the pro-
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FIGURE 6.8 Variance of the stepper only variation var(pf) ( figure a)) and scatter of the reticle error
enhancement factor M (figure b)) versus nominal reticle CD's evaluated from 310nm to 390nm by
increments of 20nm. Isolated lines for three values of defocus. Separations in the X axis between
scatter points for ease of display only.

cess operating point while applying causal decomposition. While the variability in the pro

cess has been separated, the effects from changes in the process operating point is not

compensated. For example, changes in the resist process and focus conditions would both

affect stepper CD transfer linearity M. This would alter the results of error decomposition.

Also, different process conditions would have different sensitivities to the optical aberra

tions which cause intrafield variability. These are all interactions not accounted for in the

simple additive model of process variation. Therefore the additive model is only valid at a

fixed process operating point and for small perturbations.

6.2 Applications Towards Resist Develop

CD variability over the wafer, vv, is easily decoupled from the rest of the variability

by sampling at a fixed location in printed fields over the wafer. Moreover, in Chapter 4, it

was shown that plasma etching contributes relatively little variability to vv. This allows the

use of final measurements, made electrically or by SEM, of poly CD's as estimates of wde.



91

velop. Simple experiments were performed to observe the effects of both changes in

develop recipe and equipment. In Figure 6.9, wdevelo is shown as a response to two

develop recipes. Effects in both the magnitude and the spatial features of wdevel can be

observed. In manufacturing situations, new equipment undergo a period of characteriza-

Develop Recipe 1 Develop Recipe 2

FIGURE 6.9 Response of CD variability over the wafer (vv) for changes in develop recipe.

tion and qualification, sometimes with the intention of tuning tool performance to match

existing equipment. Figure 6.10 shows the performance of a new develop track (B) com

pared to an existing track (A). These examples show how variability can be used to both

debug process equipment problems as well as provide an additional criterion in process

design.

Develop Track A Develop Track B

FIGURE 6.10 Response of CD variability over the wafer (vv) for changes in develop equipment.

6.3 Process Design for Manufacturability

The electrical measurements obtained from the experiments described in Chapter 2

span a range over gate length and gate configurations. The process designer usually gener-
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ates a response surface for process centering. However, simultaneous optimization of pro

cess center and process margin is necessary since we have shown that process variability

has a significant systematic component and is a function of the process operating point.

Figure 6.10(a) shows the response surface of poly CD as a function of mask bias and

exposure dose. This is an example of a response surface characterizing process perfor

mance, which is typically the mean value of the profile of the parameter in question. The

process calls for 0.35 um poly gate dimensions, which can be achieved by different com

binations of these dose and bias. The target CD intersects the response surface as a hori

zontal contour, so that all operating points along this contour will, in principle, produce

the target gate length. The poly gate length variability due to the stepper may be calculated

along this same contour for all points on a wafer using the data decomposition filter in

Sect. 3.4. Figure 10(b) shows the variance for isolated lines and for lines in the center and

at the sides of a group, each including both over the wafer and within the field variations.

This figure is one form of process margin response surface which may be used in process

design to identify an optimum region, as shown, in the operating space which simulta

neously constraints on both the center point and spread of a process.

a)

o
c
CO

I

Mask CD (nm)

(for actual 350nm CD)

Optimum
Region

b)

FIGURE 6.11 a) Average response surface for linewidth versus exposure dose and mask bias. Vertical
scale obscured to protect proprietary data, b) Total wafer variance for 3 types of linewidths plotted
versus mask bias. Dose was adjusted to meet target CD (350 nm) at each bias.

6.4 Statistical Metrology Applications Summary

With decomposition methodology established by Statistical Metrology, several vari

ability features can be extracted from IC process sequences. Systematic spatial variability
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reveals process errors, as well as provide additional criteriain process design. Spatial cor

relation also provides an additional lever in process manufacturability. Causal decomposi

tion allows the estimation of equipment contributions to variability. This facilitates

equipment benchmarking. Moreover, metrics produced through Statistical Metrology can

be calculated over a continuum of parameters in order to generate a design surface.
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Chapter 7

Conclusions

7.1 Thesis Summary

The management of variability in IC manufacturing is a complex undertaking.

Whereas the issue of managing process variability over time is relegated to the activity of

process control, in this thesis we investigated the structure of systematic process variabil

ity at a fixed time. The results of this investigation yielded a methodology to characterize

the spatial and causal components of process variability. Spatial variability is important for

several reasons. First, spatial information provides additional criteria for process and cir

cuit design. In process design, the process latitude would be different if one considers full-

field response versus a single-point response. In circuit design, systematic variability

affects the performance of circuit elements in a predictable and reproducible manner.This

offers an opportunity for designers to optimize the circuit layout in anticipation of known

variability scenarios. Second, spatial variability contains causal information. Based on

physical understanding of the process and equipment, the spatial structure can be formu

lated and variability components estimated. The signal decomposition performed in Chap

ter 3.3 is such an example. The estimated spatial signatures provide insights into

equipment performance, or can be further decomposed into individual equipment compo

nents. Furthermore, given predictable systematic trends and the ability to control the vari

ability components, it is possible to manipulate spatial correlation to reduce total

variability.

Understanding of the causal structure of variability offers further opportunities to

reduce process variation. Error budget items can be used as outputs in designed experi

ments, yielding response surfaces as a function of process control variables as well as pro

cess equipment. By changing the process settings, individual variability items can be
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manipulated in orderto optimize the overall error budget. Systematic, time-invariant pro

cess error constitutes a lower limit to process variation, with time-varying components

contributing over this lower limit. Then, it becomes crucial to characterize systematic pro

cess variability and to design the process to establish an acceptable lower limit.

To actually obtain the causal and spatialerrorstructures, several challenges were pre

sented to available metrology techniques. Highly precise metrology was needed to quan

tify the very small differences between measurements. Furthermore, the technique had to

be cost-effective for the largeamounts of datarequired. Very significant was also the issue

of the incorporation of processvariation into the sampled variability. From these, a general

view of measurements data was formulated. Variability sampling unavoidably includes

enor from processvariation components as well as the metrology.Causal and spatial error

decomposition, then, required the separation of variability from each process component

of interest as well as from the measurements themselves. To this end, we developed a

methodology which used statistical and experimental algorithms in the form of filters to

decomposed raw measurement data into equipment components.

Statistical Metrology has been demonstrated through a series of case studies. The

basic pattern transfer sequence, which served as the experimental basis in this thesis,

involved process modules frequently used in IC fabrication- film deposition, lithography,

and plasma etch. The polysilicon gate patterning sequence was an effective tool to demon

strate the decomposition of lithographic variability (Chapter 3), the results of which

directly impacted gate-length control. For the .35|im generation of IC technology, stepper

capability presented a serious concern because of limits in I-line resolution. This phenom

enon exasperated the periodic intrafield signatures which were observed in CD measure

ments and facilitated variability decomposition through signal analysis. Subsequently, the

intrafield component obtained from signal decomposition was decomposed into separate

contributions from the stepper and reticle.

In Chapter 4, the etch and develop contributions to poly CD variability were charac

terized. The use of top-down SEM measurements provided a non-intrusive and cost-effec

tive technique to sample CD variability directly after develop and after etch. However, we
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showed that measurement errors in the form of systematic linear drifts of CD's was

present. A separate experiment to characterize and model the measurement trend was

devised so that the errorscan be subtracted from the raw data. In Chapter 5, this methodol

ogy was also applied to estimate the contribution of metal etch to metal CD variation.

In both electrical and SEM CD's, process variability between the process steps was

separated. However, the dependence of the variability responses on the process operating

point was not accounted for. For example, we showed the use of different resist or expo

sure conditions yielded different stepper or reticle contributions. Also, the estimated SEM

trend depended on the exposure conditions of the resist CD's. These phenomena were

symptomatic of the empiricism of the decomposition.

Once the filters and experiments had been developed, the resulting variability compo

nents could be used to impact process design. In Chapter 6, several examples were

shown .The spatial information provided insights into equipment behavior whereas the

estimates of equipment variability provided a means to benchmark equipment. The depen

dence of process variability on controllable inputs was explored in the case of CD target

ing, and provided an example of simultaneous determination of process performance and

manufacturability.

7.2 Future Work

The decomposition of the criticaldimension measurement was useful because pattern

transfer constitutes a basic, and therefore highly leverageable sequence in IC fabrication.

The methodology developed in this work can be extended to include other portions of the

process as well as increased process complexity and interactions. Other features worthy of

investigation include contact holes and spacers. These features have traditionally been dif

ficult to measure because they are non-conductive and because, besides their dimensions,

their profiles are important. Bulk parameters, such as those defined by doping, are critical

to the understanding of device performance. Also, dielectric material stacks, such as

oxides, measured along the vertical direction are of interest.

The exercise of characterizing systematic behavior in process variability was moti-
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vated by the possibility of manipulating process variation. Causal decomposition revealed

the structure of equipment variability contributions to overall CD variation, and allowed

the manipulation of CD variability throughrecipe and equipment changes. Spatial correla

tion between variability contributions can be exploited to reduce net variability. Another

category of systematic variability is the CD differences between structures with different

neighboring topology, such as isolated versus dense lines. An example of this type of vari

ability, specifically to lithography, is optical proximity correction. Similarly, it would be

possible to compensate systematic biases introducedby other parts of the process, such as

microloading effects in plasma etch. These relative spatial effects would interact with the

systematic spatial trends discussed in this thesis, and vary over the field, the wafer, etc.

The behavior of systematic variability over time adds yet another axis of complexity to

this problem.
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