

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

VISUALIZING ARCHITECTURE AND ALGORITHM

INTERACTION IN EMBEDDED SYSTEMS

by

Farhana Sheikh

Memorandum No. UCB/ERL M96/50

13 September 1996

VISUALIZING ARCHITECTURE AND ALGORITHM

INTERACTION IN EMBEDDED SYSTEMS

by

Farhana Sheikh

Memorandum No. UCB/ERL M96/50

13 September 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Embedded systems are increasingly becoming integral parts of almost all
technology-oriented applications. The complexity and sophisticated nature
of these such systems make it very difficult for engineers to exploit the full
potential of the system's underlying resources. More often than not, this
results in sub-optimal performance. Tools that allow an engineer to quickly
evaluate system behaviour and performance can reduce development costs
and time-to-market. Visualization techniques have proven invaluable to the
design process in the past as they have greatly simplified tasks faced by
engineers.Visual representations of views that depict algorithm and
architecture interaction are developed to highlight poor algorithm design,
problematic hardware-software interfaces, and otherreasons behind poor
performance in embedded systems. An objected-oriented framework for
visual display of design informationhas been designed and an
implementation of this model is discussed. The framework is then used to
develop a prototype that implements architecture-algorithm visualization
techniques. The theoretical background and issues relatingto effective
embedded system design are also discussed.

Acknowledgements

I am grateful to my advisor Professor Edward A. Lee for his support and
guidance. I would also like to thank John Reekie, Alain Girault, Mike
Williamson, and Jose Pino for their invaluable comments and advice. This
work was supported in partby the National Science and Engineering
Research Council of Canada and I am grateful for their financial backing.

Table of Contents

Introduction 4

Background and Theory 6
2.1 Embedded Systems and Their Design 6
2.2 Scheduling Concepts 7
2.3 Evaluating Algorithms and Their Performance On Given Architectures 8

2.3.1 Performance and Performance Models 9
2.4 Visual Display of Design Information 10

2.4.1 Visualization Basics 10

2.4.2 Gantt Charts. 11

2.4.3 Trace Displays 11
2.4.4 Space-Time Diagrams 12

The Ptolemy and Tycho Frameworks 13
3.1 Ptolemy 13
3.2 Tycho 16
3.3 Scheduling in Ptolemy 16

3.3.1 Scheduling Terminology 17
3.3.2 Schedule Files 19

Techniques to Visualize Algorithm and Architecture Interaction 21
4.1 VisualRepresentationof HardwareComponents 21
4.2 VisualRepresentationof SoftwareComponents 23
4.3 Visual Representation of Schedules 23

4.3.1 Modifying Schedules. 27
4.4 Visual Representation of Execution Traces 27
4.5 Visual Representation of Interprocessor Communication 28
4.6 Combining Views 29

An Object-Oriented Model for Visual Display of Design Information 30
5.1 Display Management 32

5.1.1 View Management 33
5.1.2 Menu Management 33

5.2 Views 33
5.3 Data Filters 33
5.4 Applications 34

Implementation of the Object-Oriented Model For DesignVisualization 35
6.1 Overview 35
6.2 Displayer 37

6.2.1 Displayer Options 37
6.2.2 Displayer Methods and Variables 37

6.3 Menubar 38
6.3.1 Menubar Methods 39

6.4 View 39
6.4.1 View Options 40
6.4.2 View Methods and Variables 40

6.5 Slate View 40
6.5.1 Slate View Options 40
6.5.2 Slate View Methods 41

6.6 Data Filter 41
6.6.1 Data Filter Options 41
6.6.2 Data Filter Methods. 42

1of2

6.7 Architecture View 42

6.8 Gantt View 43

6.8.1 Gantt View Options 43
6.8.2 Gantt View Methods and Variables 44

6.8.3 Gantt Data Filter 44

6.8.4 Modifying Schedules. 44
6.9 Trace View 45

6.10 Communication View 45

7 Summary and Future Work . 46

8 References 47

2of2

List of Figures

Figure 1. Traditional DesignProcess Versus Performance-Based Design 7
Figure2. Ptolemy Terminology 13

Figure 3. Visual Representation of Hardware Architectures 22

Figure 4. Visual Representation of An Execution Trace 28

Figure 5. Visual Representation of Communication Between Interconnected Processors 29

Figure 6. Summary ofObject Model Notation 30

Figure 7. Overview of the Object-Oriented Model for Visual Display of Design Information 31
Figure 8. The Displayer, MenubarandView Objects 32
Figure9. The DataFilterConcept 34
Figure 10. Data Filter 34

Figure 11. Summary of NotationUsed to DepictImplementation 35
Figure 12. An Overviewof the Implementation of the Model for Design Visualization 36
Figure 13. Implementation of Displayer. 37
Figure 14. Implementation of Menubarwidget 38
Figure 15. Implementation ofView 39

Figure 16. Implementation of a Data Filter 41

Figure 17. Implementation of Gantt View 43

Figure 18. Generating Communication PatternView from a Schedule File 45

1of1

List of Tables

Table 1. Some applicationsthat incorporate embedded systems 4
Table 2. Types of Design Information 10
Table 3. Summary of Domains in Ptolemy 14
Table 4. Single ProcessorSchedulers in Ptolemy 18
Table 5. Multiple ProcessorSchedulers in Ptolemy 18
Table 6. Schedule File Format 20

Table 7. Visual Representation of Different Schedules 25
Table 8. Architecture File Format 42

Table 9. TVace File Format 45

1of1

Introduction

Introduction

Over the pastdecade, there has been a steady increase in the number of applicationsthat demand
customized computer systems that offer high performance at low cost. These applicationsare,more often
than not, characterizedby the need to process largeamounts ofdata in real time. Examples include
consumerelectronics,scientific computing, and signalprocessing systems. A selection of applications is
given in Table 1 below.

Constraintson performance, cost and power make software implementations ofdata processing algorithms
for such systems infeasible. Non-programmable hardware, however, does not support modifications of
algorithms. The solution to this dilemma has been to develop application-specific hardware that is flexible
and programmable -these systems arecommonly referredto asembedded systems. They typically include
embedded software that is burned into EraseableProgrammable Read Only Memory (EPROM) or resident
in memory, special-purpose hardware,and Field ProgrammableGate Arrays (FPGAs); often there are
stringent requirements on powerconsumption, performance, and cost. Embedded systems cannot be
redesignedor removed easily once the device that incorporates the system has been built.

Embedded systems development thus requires concurrent work on both hardware and software
components. The sophisticatednatureof the algorithmsthat arerun on these customized computer systems
and the complexity of the hardware architecture make it very difficult for engineers to design algorithms
thattake full advantage of the underlyingresources. This often resultsin sub-optimal performance and
under-utilized hardware. Timing the algorithm for optimum performancecan be a very time-consuming
and difficult task, especially if the system architecture is complex.

Table 1. Some applications that incorporate embedded systems

Military

Automotive

Medical

Telecommunications

Consumer

Industrial

Communications, radar, sonar, image processing,navigation, missile guidance

Engine control, brake control, vibration analysis, cellular telephones, digital
radio, air bags, driver navigation systems

Hearing aids, patientmonitoring,ultrasound equipment, image processing,
tomography

Echo cancellation, facsimile, speakerphones, personal communication
systems (PCS), video conferencing, packet switching, data encryption,
channel multiplexing, adaptiveequalization

Radardetectors, power tools, digital TV, music synthesizers, toys, video
games, telephones, answeringmachines, personaldigital assistants, paging

Robotics, numericcontrol, securityaccess, visual inspection, lathe control,
computer aided manufacturing(CAM), noise cancellation

Interfacing software with hardware is a critical issue in embedded system design, sincethe best
performance is achieved when algorithm and architecture interact to reduce communication costs -
between hardware components, inputor output operations, and memoryoperations. Tools that provide the

4 of 48

Introduction

engineer with the ability toquickly develop, test, and refine algorithms on different hardware architectures
are invaluable tothe design process. Time tomarket and development costs are reduced, cosdy bugs can be
eliminated, possible system failures may be avoided, and awider set of possible solutions may be
explored.

In the past, visualization techniques have been applied tovarious areas in engineering tosimplify tasks
faced byadesign engineer. These techniques vary from drawing free-body diagrams or circuit diagrams to
visualizing scientific data. In all cases, the visual techniques have proven to be invaluable to the design
process. Anearly example of how visualization was used toimprove worker performance is given in
Gantt's 1919 paper, "Organizing for Work", where he shows how charts - visual representations of
machine utilization, distribution of tasks across machines, and worker performance - easily disclose
possible reasons forpoor worker performance [7].

Recently, system engineers have realized that visualization techniques can bevery useful tothe embedded-
system design process. Poor algorithm design, problematic hardware-software interfaces, and other
possible reasons for sub-optimal performance are easily discovered byusing such techniques. They have
also realized that performance-based design can reduce the time tomarket aproduct greatly.

Scheduling is an important part of performance-based design. The scheduling process assigns software
tasks to available hardware resources and determines theexecution order of thetasks. For instance, a
schedule that results inhigh resource utilization and low communication overhead can greatly improve

,performance. Even though engineers have realized that scheduling isan extremely important part of the
design of an embedded system, they lack adequate tools for exploring appropriate scheduling strategies
that exploit the full potential of atarget architecture tomeet timing and other performance constraints.

This report isdivided into four parts. Following this introduction, concepts and issues relating toembedded
system design are discussed. The next section builds upon the previous section and describes techniques
that can beused tovisualize the interaction between agiven hardware architecture and an algorithm that is
toberun on it.The goal is toeasily identify whether the design of the algorithm is well-suited tothe
underlying hardware architecture of theembedded system orviceversa (the architecture is well-suited to
the algorithm). This allows the designer toachieve the best performance possible. Itmay also provide a
means to predict performance atan early stage ofdesign. The third part focuses onthe development of an
object-oriented model for visual display ofdesign information. The final part describes the software
implementation of this model in aprototype that isused within the Ptolemy framework. The prototype
implements architecture-algorithm interaction visualization techniques.

5 of 48

Background and Theory

Background and Theory

This section presents some of the principles and issues concerning the design of embedded systems that
motivated the research presented in this report.

' 2.1 Embedded Systems and Their Design

A system can be defined as a group of devices or artificial objects or an organization forming a network
especially for distributing something or serving a common purpose [13]. To embeda system into some

•object means to make that system an integral part of the object. When an engineer talks about an embedded
; system, he or she is usually referring to a system that satisfies a well-definedneed at a specific instant in
time. The system is usually dedicated to that need, and its operational limits are clearly defined: lifetime,
power consumption, performance, and so on. The system usually has limited capabilities for future
development, simply because it is permanently installed in a device that provides a certain service to its

*user. Examples include DSPprocessors in hand-held communication devices, programmable controllers
installedin robots or cars, and video signal processors in television sets.

. Because thesesystems cannotbe redesigned or removed easily oncethe device that incorporates the
embedded systemis built, the development procedure mustproduce a correct systemthat meetsall of its
operational requirements. In addition, techniques usedto design suchsystems must reduce development
costs and time therebyreducingtime to market. This is important since introducinga product to the
consumer marketearlycan meanthat the producer willbe facing fewercompetitors and henceearning
greater revenues and market share.

4As stated in the introduction, someof the characteristics of embedded systems includeembeddedsoftware
that is burnedinto EPROM or resident in memory, special-purpose hardware, FPGAs,stringent
requirements on powerconsumption, performance, andcost.Clearly, an embedded systemconsists of both

_hardware and software components. Theperformance andcostconstraints makeit necessary for thedesign
engineerto explorea combination of possiblehardware architectures or custom hardwarecomponents and
softwareor programmable parts that wouldbest suit the natureof the application.Hence, the division
betweenthe programmable and non-programmable components and their interfacecan becomea critical
issue in the design.

The development processis usually cyclic. The engineer oftenprototypes an algorithm, tests it on a
specific hardware architecture, and then refines the software to make mostefficient use of the underlying
hardware. If software is to be embedded, this typeof development can be veryexpensive and time-
consuming as performance analysis is done after systemcomponents havebeen functionally testedand
integrated. Thistraditional approach to design is shown in Figure 1andis contrasted toperformance-based
design. Performance-based design advocates evaluating performance at earlystages of design [27] such as
afterfunctional testing is complete. It is apparent from thefigure thatthe number of iterations required to
refine the design after integrationof hardware and softwarewould be much less than if the traditional
approach was takensinceperformance is evaluated at a veryearlystage in development. Clearly, this
strategy reduces implementation cost and time-to-market.

Modeling a system andsimulating it before actual implementation canfurther reduce implementation cost
andallowthe user to explore the design spacein search of an optimal solution. Finding this optimal
solution can be a complicated task.The designerneedsto be able to measureperformance and decide
whether otheroperational constraints willbe met. Thedata that needs to be analyzed - processor

6 of 48

Background and Theory

utilization, number of input oroutput accesses, number ofmemory accesses, and inter-processor
communication overhead - can belarge and difficult tosiftthrough. Agood visual display ofdata can lead
the designer to quickly determine whether an algorithm and architecture will perform thegiven task
optimally.

There are very few tools available that allow forperformance-based design analysis through visualization
aswell asanalytical techniques [28]. There areeven fewer tools that allow a designer toexplore embedded
software solutions formultiple existing "off-the-shelf* hardware architectures. An important partoffitting
software to hardware resources is the scheduling process. Thisis discussed in the nextsection.

Develop
Requirements
Specification

Develop
Software

\
Develop ^-
or choose <j~
hardware "^

Functional
test hardware

JFunctional
test software
on hardware
simulator

Integrate
and test

*
Evaluate
Performance'

Traditional Approach

Develop
Software

I

Develop
Requirements
Specification

Develop
or choose
hardware

t
Functional

test hardware

t
Evaluate —1
Performance

Functional _
test software

t
Evaluate
Performance

Integrate
and test

t
Evaluate
Performance

Performance-based Design

Figure 1. Traditional DesignProcess Versus Performance-Based Design

2.2 Scheduling Concepts

Scheduling is an important part of the synthesis andoperation of anysystem. The scheduling process
assigns a subsetof all the tasksthat the systemmustperform to its available resources. The performance of
a systemcan be greatlyaffectedif the tasks are allocated to components that cannot efficiently perform
those tasks. The sequence in which the tasksare executed can affect performance also.

Whendesigning embedded systems, the engineertries to ensurethatutilization of hardware resources by
software is high at all times.Mapping software to hardware components can be a formidable task if there
area largenumberof possiblehardware resources (e.g.processors) anda largenumberof waysto partition

7 of 48

Background and Theory

the software. A number of schedulers, mainly based on heuristics, have been developed to aid the designer
map tasks to available processing units and determine their execution order [2][3][23][26].

Scheduling can be performed statically or dynamically. A static scheduler maps tasks to processing units
and determines their execution order at compile time, whereas a dynamic scheduler determines this
information during run-time. Sometimes choosing one schedule over another may cause a great
enhancement in performance. It has not yet been determined whether the reason behind this is that the
scheduler is well-suited to the target architecture, or simply because the scheduler does an inadequate job
in scheduling the tasks within the given constraints.

Normally, the engineer needs to quickly determine whether the mapping produced by a scheduler will
cause the system to perform its intended function within the performance constraints at the lowest possible
cost.Traditionally, Gantt Charts, based on conceptsdeveloped by Gantt in [7], havebeen used to visually
represent schedules. These charts showhow software components are mappedonto processingunits over
time. A detailed discussion of Gantt Charts is presented in Section 2.4.2.

Current visual displays of scheduling information, which arebased on the linearrepresentation developed
by Gantt, are only effective in highlighting resource utilization, processoridle time, and task execution
order. This representation is inadequate forrevealing possible performance bottlenecks and problematic
hardware-software interfaces which can greatly affect overall system performance. Inaddition, scheduling
techniques have evolved anda number of the schedulers thatuse these techniques generate schedules that
cannot beeffectively displayed using thetraditional Gantt Chart. Section 4.3discusses ways ofmodifying
this display to effectively visualize schedules generated by thesenewerschedulers.

2.3 Evaluating Algorithms and Their Performance On Given Architectures

It is necessary to gather dataabout theexecution of thealgorithm on a target architecture andanalyze it in
order to evaluate system performance. Evaluating theperformance ofa system requires gathering, sifting,
anddisplaying many types of information: datafrom manufacturers, measurements onearlier systems,
estimates made during analysis, and availability of logical and physical resources [27]. Scheduling
descriptions for logical and physical resources andallocation of processes to hardware or software are
emerging to bequite important factors indetermining theperformance of a system. This section briefly
discusses thevarious types of information thatarerequired to evaluate algorithm performance andcurrent
techniques that are used to presentthe data to design engineers.

• Processor Utilization

Processor utilization isnormally determined byfinding the time spent computing ordoing useful work
inrelation to the total time required forthe task. Traditional Gantt Charts arenormally used todisplay
this information.

• Input or Output Accesses
Aninput oroutput access occurs when datais either input to thesystem oroutput from thesystem. An
input oroutput operation's performance can bemeasured interms ofresponse time or throughput [11].
Theresponse timeis measured as the length of time taken for theoperation to complete, starting from
when thedatawas placed ina buffer until thetime when it is finally output or input. Thethroughput is
the average amountof data that is inputor outputduring a given amountof time.

• Memory Operations
A memory operation occurs when data is eitherwritten to or readfroma memory location. The
memory accesstimeis measured as the hit timeplusthe missratemultiplied by the misspenalty (avg.

8 of 48

Background and Theory

mem. access time =hittime +miss rate * miss penalty) [11]. It is clear that amemory operation that
needs toaccess data residing inlocal memory on aprocessor will take less time than an operation that
needs to access dataresidingat a remote location.

• Communication Overhead

Communication overhead isusually considered important inevaluating multiple processor systems. It
is the total time spent sending and receiving data between processors inrelation tothe total execution
time. This information has traditionally been displayed inGantt Charts. Communication overhead can
also bedescribed as the time spent sending and receiving messages between concurrent processes in
relation to the overall execution time.

• Critical Paths

A critical path is thelongest serial thread, orchain of dependencies, running through an execution of
analgorithm [9]. Critical paths are important performance analysis abstractions asthe total execution
timecannot be reduced without shortening thelength of acritical path. Critical paths are potential
places for performance bottlenecks.

• Architecture Bounds

Thereare physical limits placed on allhardware resources such asprocessor speeds, memory access
times,bus speeds, andso on.This of course limitsthe performance of any software. Each architecture
hasdifferent bounds, hence a single piece of software may perform differently on different

y architectures.

-2.3.1 Performance and Performance Models

*There are number of ways of measuring the performance of acomputer system. A system user may
evaluate performance by measuring the time thatit takes between the start andcompletion of anevent,
♦otherwise knownas response time orexecution time, or latency. Other people, such asnetwork managers,
may use the total amount of work donein a givenamount of time which is commonly referred to as
throughput asameasure of performance. Inallcases, timeis thebasis for measures of system performance

* [11]. A system that can performa given task in the leastamountof time is said to be the fastestor has the
'best performance.

Performance models can be usefulastheycan be usedto abstract systembehaviour and canallow
engineers to predict and analyze system performance. Performance-based design dictates that performance
models should be integrated with functional design and resource scheduling. Models that useearly
estimates of processing costs of parts of adesign can aid in planning software architectures, assessing
needs to distribute data and functionality, and hardware planning [27].

In order to obtain adequate and predictable performance, it is important to characterize system behaviour:
' sequences of events, actions, and delays. Inaddition, it is important to provision and schedule physical and
~logical resources: hardware (processors, input oroutput devices, memory, interconnections) and things

such aslocksand semaphores. Abstract models such as queuing networks, Petri nets, orother simulation
models of available resources have beendeveloped in order to aid in performance analysis whichhelps in
determining contention delays, resource saturation atbottlenecks, load imbalance, and interprocessor or
interprocess communication overhead [27]. Simulating asystem can generate possible execution paths that
mayreveal critical paths which can lead to discovery of bottlenecks and other causes of low performance.

9 of 48

Background and Theory

2.4 Visual Display of Design Information

Design information comes in a multitude of flavours: Whether a system is implemented in hardware or
software or both, design information is always present and required at all stages of development. An
attempt has been made in Table 2 to categorize the various types in terms of high-level or low-level details
whether the design is hardware-based or software-based.

Table 2. Types ofDesign Information

High-Level Low-Level

Specification (requirements, architecture Implementation (software programs, netlists,
descriptions, interface descriptions) hardware description language code)

Documentation (includes bug reports)

Design constraints (performance, cost, power,
memory)

Execution history (traces, execution times, latency
measurements)

Modification history and version information

- For many years, hardware engineers have relied on visual representations of design information to guide
4 them through the development process. Some of the forms that these visualizations take are circuit
' diagrams, signal traces, and architecture block diagrams. Comparable visualizations for systems

implemented in software are few in number.For purely parallel systems, tools that visualize execution,
schedules, and communication patterns exist [9] but are sometimes inadequate for complicated

. architectures. For uniprocessor and multiprocessorembedded systems, especially those that incorporate
both hardware and software modules, very little exists in terms of visualizing architecture, execution, and
performance.

Recent interest in visualizing software performance analysis of parallel systems has brought about the
advent of some basic visualization concepts and principles. These concepts which are briefly summarized
in the following section can be used to create effective visual representations of design information.

2.4.1 Visualization Basics

«• In [9] and [10] M. T. Heath et. al. outline basic concepts and principles that are necessary to produce
effectivegraphical displays. Good visualization techniquescan have dramatic impact in areas where they
can lead to a discovery of unexpected phenomena. This is something that must always be kept in mind
whendesigningnew visualization techniques. Usersare not interested in pretty pictures but something that
will lead them to construct an empirical model of behaviour.

Someof the basicprinciples that mustbe considered whendeveloping visualization techniques are:

. • Users should be able to relate the display of information to a context [9]. The visualization should
allow a user to connect the display to an environment from which it is derived.

• Any visualization tool must be able to scale easily to large data sets and there must be a means for a
user to give the tool feedback.

• A user should be able to tune the tool to their needs.

10 of 48

Background and Theory

• An important but often overlooked concept isgeneration ofmultiple views ofa body ofdesign
information. This is important for yielding insight into the behavioural characteristics ofthe system
and their causes [9].

• Techniques such as using colour orsize to highlight useful information from large raw data sets are
also necessary.

The visualization ofalgorithm and architecture interaction developed inthis project use the above
principles asthe basis for their design in combination with the principles underlying Gantt Charts, trace
displays, and space-time diagrams which are summarized inthe following three sections.

2.4.2 Gantt Charts

The Gantt chart was the brainchild ofH. L. Gantt, aconsulting management engineer who developed
methods ofplanning, production recording, stores-keeping and cost-keeping. He developed three basic
charts: Machine Record Chart, Progress Chart, and Man Record Chart. The first displays the amount of
time amachine isworking, the cumulative working time ofan individual machine, the cumulative working
time ofa group ofmachines, and reasons for idleness [7]. The Progress Chart gives a distribution oftasks
across machines, therate of work, and the activities onthe chart are measured bythe amount oftime
needed toperform them. This chart defines a schedule asit maps tasks tomachines and determines their
the task execution order. Itshows how that schedule isbeing lived up to by comparing what has been done
and what should have been done. Ifthis chart isdetailed enough, itcan indicate probability offuture
performance and anticipate needs. The third chart compares what a worker has done with what should have
been done: it records a worker's performance. This chart makes itpossible totrace the lack ofproduction
to its sources.

Gantt created these charts in order to:

• find outhow plants areperforming the function forwhich they were created;

• find outreasons why they arenotdoing aswell asthey should;

• remove obstacles which hamper them in theperformance of theirfunction.

Gantt was trying tosolve a planning problem. Designing an embedded system requires similar planning,
production recording, stores-keeping, and cost-keeping in order toachieve optimal performance. Hence
applying the basic concepts developed by Gantt toembedded system design leads naturally to
performance-based design depicted inFigure 1. Inaddition tousing Gantt Charts todiscover possible
reasons for poor performance, trace displays and space-time diagrams can beuseful inempirically
modeling system behaviour.

2.43 Trace Displays

Atrace represents an instance ofexecution ofa system. Ithelps a user model system behaviour and can
lead to discovery ofunexpected phenomena. Trace files are used to capture performance details by logging
operations performed by a system toa file. This raw data then can beanalyzed todetermine system
behaviour. Good visualizations oftraces allow the user to look atthe traces in aformat similar to looking at
signals on anoscilloscope which may reveal critical paths.

11 of 48

Background and Theory

2.4.4 Space-Time Diagrams

A space-time diagramshows messagepassingand communication betweendifferentprocessing units in a
system [10]. Diagramsdepicting communicationbehaviourcan bring to light patterns of behaviour that
can indicateprogramloops,or can allowa user to determine reasonsfor low utilizationsuch as poor
message-passing techniques and inadequate pipelining.

12 of 48

The Ptolemy and Tycho Frameworks

The Ptolemy and Tycho Frameworks

3.1 Ptolemy

Ptolemy is an environment for specifying, simulating, and synthesizing heterogeneous systems. Many of
these systems combine control-flow orientedprocesses with data-flow oriented processes resulting in
subsystems that must be modeled using different models of computation. Ptolemy was designed to allow
mixing of different models of computation to specify such systems [18]. A system, application, or
algorithmcan be specified in Ptolemy by representing it visually in terms of whicheversemantics seem
feasible for the problem. The system specification may contain homogeneous or heterogeneous semantics
and a user may wish to divide the system into subsystems that manage specific tasks in a modular fashion.
These functional blocks are known as stars in Ptolemy. Data that flows along the arcs connecting the stars
are known as particles. An interconnection of stars is known as a galaxy which may represent the entire
system or a part of the system. A complete application is known as a universe which is an interconnection
of stars and galaxies. Hierarchy is used to managecomplexity and mix different models of computation
[24].

A target is a modular object in Ptolemy which describes particular features of the target hardware
architecture which will implement the design. It manages a simulation or synthesis process. A user can
specify target-specific information eitherat run-time or choose from a standard set of pre-specified options.
If no processor-specific information is provided, the target is asked to determine the communication costs
and each of the functional blocks are asked to determine execution time and resources required. The target
controls operations such as scheduling, compiling, assembling, and downloading code. A schedulerobject
is associated with each target and it determines how stars will be mapped onto available resources and their
execution order.A domain is a collection of stars, schedulers, and targets. It implementsa particular model
of computation [24] and either performs simulation or code generation. Figure 2 clarifies the afore
mentioned terms and Table 3 [24] summarizes all the domains available within Ptolemy.

particle

Figure 2. Ptolemy Terminology

rstarj
rstarl

fstarj L target J

K target J

^scheduler^

^scheduler

13 of 48

The Ptolemy and Tycho Frameworks

Table 3. Summary ofDomainsin Ptolemy

Domain

Synchronous Data Flow (SDF)

Dynamic Data Flow (DDF)

Boolean Data Flow (BDF)

Integer and State Controlled Data Flow
(STDF)

Discrete Event (DE)

Finite State Machine (FSM)

14 of 48

Description

Oldest and most mature domain; it is a sub-domain of
DDF, BDF, and PN.

Special case of data flow model of computation
developed by Dennis [5].
Flow is completely predictable at compile time thus
allows for efficient scheduling.
Allows for static scheduling.
Good match for synchronous signal processing systems
with sample rates that are rational multiples of one
another.

Supports multi-rate applications and has a rich star
library.
Range of applications is limited.

Versatilemodel of computation as it supports
conditionals, data-dependent iteration, and true
recursion.

More general than SDF.

Uses dynamic (run-time) scheduling which is more
expensive than static scheduling.
Good match for signal processing applications with a
limited amount of run-time control.

Relativelynewdomain which supports run-time flow of
control.

Attempts to construct a compile-time schedule to try
and achieve efficiency of SDF with generality of DDF.
More limited than DDF.

Constructs an annotated schedule: execution of a task is
annotated with a boolean condition.

Verynew to Ptolemy and still experimental.
Realizes data flow control by integer control data and
port statuses. It is an extension to BDF.
Scheduling is static and conditional like BDF.
It has user-defined evaluation functions.

Relatively mature domain which uses an event-driven
model of computation.
Particles carry time-stamps which represent events that
occur at arbitrary points in simulated time.
Events are processed in chronological order.

Verynew to Ptolemy and still experimental.
Good match for control-oriented systems like real-time
process controllers.

Uses a directed node-and-arc graph called a state
transition diagram (STD) to describe the FSM.

The Ptolemy and Tycho Frameworks

Table 3. Summary ofDomainsin Ptolemy

Domain

Higher Order Functions (HOF)

Process Network (PN)

Multidimensional Synchronous Data
Flow (MDSDF)

Synchronous/Reactive (SR)

Code Generation (CG)

Code Generation in C (CGC)

Code Generation for the Motorola DSP

56000 (CG56)

Description

Implements behaviour of functions that may take a
function as an argument and return a function.
HOF collection of stars may be used in all other
domains.

Intended to be included only as a sub-domain by other
domains.

Relatively new domain that implements Kahn process
networks which is a generalization of data flow -
processes replace actors.
Implements concurrent processes but without a model
of time.

Uses POSDC threads.

SDF, BDF, and DDF are sub-domains of PN.

Relatively new and experimental.
Extends SDF to multidimensional streams.

Provides ability to express a greater variety of dataflow
schedules in a graphically compact way.
Currently only implements a two-dimensional stream.

Very new to Ptolemy and still experimental.
Implements model of computation based on model of
time used in Esterel.

Good match for specifying discrete reactive controllers.

Base domain from which all code generation domains
are derived.

Supports a dataflow model that is equivalent to BDF
and SDF semantics.

This domain only generates comments, allows viewing
of the generated comments, and displays a Gantt Chart
for parallel schedules.
Can only support scalar data types on the input and
output ports.

All derived domains obey SDF semantics.
Useful for testing and debugging schedulers.
Targetsinclude bdf-CGC which supports BDF, default-
CGC which supports SDF semantics, TclTk_Target
which supports SDF and must be used when Tcl/Tk
starsarepresent, and unixMulti.C which supports SDF
semanticsand partitions the graph for multiple
workstations on a network.

Uses data flow semantics and generates C code.
GeneratedC code is statically scheduled and memory
used to buffer data between stars is statically allocated.

Synthesizes assembly code for the Motorola DSP56000
family.

15 of 48

The Ptolemy and Tycho Frameworks

Table 3. Summary ofDomains in Ptolemy

Domain Description

• Relatively new and experimental
• Generates VHDL code.

• VHDL domain supports SDF semantics whereas
VHDLB supports behavioural models using native

Code Generation inVHDL (VHDL, VHDL discrete event model of computation.
VHDLB) • Many targets tochoose from.

• VHDL domain is good for modeling systems at
functional block level whereas VHDLB is good for
modeling behaviour of components and their
interactions at all levels of abstraction.

A user may simulate the specified system or generate code for a specific target architecture. Once a user
selects a target architecture, code generation can begin. Scheduling is the first stage of code generation in
Ptolemy and Section 3.3 discusses it in detail

Developersand users of Ptolemy have found that it has lacked proper facilities to visualize execution
traces, schedules for uniprocessorand multiprocessorsystems,and performance data. This project aims to
fill this need by incorporating appropriate visualization techniques into Ptolemyusing Tychoas the basis
for the implementation. Tycho is briefly described in the next section.

3.2 Tycho

Tycho is a softwaresystemdesignedto complement the Ptolemy framework with a hierarchal syntax
manager.Some of the key objectives of the Tycho project are to provide an extensible framework for
experimentation with visual syntaxes and to provide a mechanism for systemdesignmanagement. Tycho
is based on an object-oriented softwarearchitecture which is designedto allow for easy integration of
textualand graphicaleditors and displays.The focus is on allowingusers to mix different syntactic models
suchas allowing combinations of textualand graphical syntaxes. It is a relatively new projectand is still in
its infancy stages.

3.3 Scheduling in Ptolemy

As statedearlier, scheduling is the first stage of codegeneration in Ptolemy. Currently, code generation
facilities existfor Synchronous DataFlow(SDF), Boolean DataFlow(BDF), and Integerand State-
controlled DataFlow (STDF) semantics [24]. Sinceall of thecodegeneration domains support SDF
semantics anddue to the fact that the SDFdomain is the mostmature of all the domains, the following
description of scheduling willbe discussed withrespect to SDFsemantics. The concepts are easily
extended to the other domains.

Code generation begins after theapplication or algorithm has been specified using a dataflow graph and a
target hardware architecture description hasbeenselected. The target objectcontains information specific
to thehardware architecture: number of processors, communication costs,interconnection topology, andso
on.Several singleand multiple processor schedulers usedifferent algorithms for determining partitioning
andorderof execution of functional blocks. For multiprocessor systems, an acyclic precedence graph
(APEG) mustbe created for every SDFgraph before a schedule can be generated. The APEG displays the

16 of 48

The Ptolemy and Tycho Frameworks

precedence relations between the invocations ofthe SDF functional blocks. All schedulers designed for
multiprocessor systems use the generated APEG as input [24].

Several types ofschedulers exist within the Ptolemy framework. Some schedulers ignore hierarchy that
may bepresent inthe SDF graph inorder tomaximize concurrency, whereas others use hierarchy to
^minimize complexity. There are some schedulers that have been designed by Ptolemy researchers that
create a new hierarchy by clustering a scheduling graph totake advantage ofthe natural looping structure
ofthe code. No single scheduler can handle allsituations soPtolemy allows a user tomix and match
different schedulers for specific applications [24].

A summary of thetypes of schedulers available inPtolemy isgiven inTable 4 and Table 5 [24]. The
terminology used in thetables isdescribed inthe following section.

3.3.1 Scheduling Terminology

This section briefly describes some of the terms used in Table 4 and Table 5.

• APEG

APEG abbreviates acyclic precedence graph. The nodes inthis graph represent tasks orcomputations
and thedirected arcs represent precedence constraints and data paths. Each arc has a label which
specifies theamount ofdatathatthesource node passes to thedestination node. AnAPEG can be
derived from a SDF representation [26].

• Looped Schedule
A looped schedule isone which may contain any number ofschedule loops. Aschedule loop consists
ofmnumber ofactors orfunctional blocks that are repeated insuccession ntimes. Loops in a looped
schedule may be nested [3].

• Clustering
For each node ina SDF graph, there are qcorresponding nodes inan APEG. The number qrepresents
how many times the SDF node must be invoked inorder tosatisfy data precedences inthe SDF graph.
This expansion can result inexponential growth ofnodes in the APEG. Clustering SDF graph nodes
into composite nodes can limit the expansion resulting ina simpler APEG. The clusters may be
scheduled much likeactors resulting in hierarchical schedules [22].

• Buffers and Buffering
Each edge ina SDF graph corresponds tofirst-in-first-out queue that buffers tokens that pass along the
edge. The queue isknown asthe buffer for the edge; the process ofmaintaining the queue oftokens is
known as buffering [3].

• Single Appearance Schedule
Asingle appearance schedule is one inwhich each actor orfunctional block appears only once inthe
entire schedule [3].

17 of 48

The Ptolemy and Tycho Frameworks

Table 4. Single Processor Schedulers in Ptolemy

Scheduler Name

Default SDF Scheduler

Joe's Scheduler

SJS (Shuvra-Joe-Soonhoi)
Scheduler

Acyclic Loop Scheduler

Features

Performed at compile time.
Many possible schedules but schedule is chosen based on a
heuristic that minimizes resource costs and amount of buffering
required.
No looping employed so if there are large sample rate changes,
size of generated code is large.

Performed at compile time.
Sample rates are merged wherever deadlock does not occur.
Loops introduced to match the sample rates.
Results in hierarchicalclustering.
Heuristic solution so some looping possibilities are undetected.

Performed at compile time.
Uses Joe's Scheduler at front end and then uses an algorithm on
the remaining graph to find the maximum amount of looping
available.

Performed at compile time.
Constructs a single appearance schedule that minimizes amount
of buffering required.
Only intended for acyclic dataflow graphs.

Table 5. Multiple Processor Schedulers in Ptolemy

Scheduler Name

Hu's Level-based List Scheduler

Sih's Dynamic Level Scheduler

18 of 48

Features

Performed at compile time.
Most widely used.

Tasks assigned priorities and placed in a list in order of
decreasing priority.
Ignores communication costs when assigning functional blocks
to processors.

Performed at compile-time.
Assumes that communication and computation can be
overlapped.
Accounts for interprocessor communication overheads and
interconnection topology.

The Ptolemy and Tycho Frameworks

Table 5. Multiple Processor Schedulers in Ptolemy

Scheduler Name

Sih's Declustering Scheduler

Pino's Hierarchical Scheduler

Features

Performed at compile-time.
Addresses trade-off between exploiting parallelism and
interprocessor communication overheads.
Analyzes a schedule and finds the most promising placements of
APEG nodes.

Not single pass but takes an iterative approach.

Performed at compile time.
Partially expands the APEG.
Can use any of the above parallel schedulers as a top-level
scheduler.

Supports user-specified clustering.
Realizes multiple orders of magnitude speedup in scheduling
time and reduction in memory usage.

3.3.2 Schedule Files

Allscheduler objects in Ptolemy have a method thatwillallow a userto display a schedule in text form.
Theformat of the stringis constructed to allow visualization toolsto easily parsethe schedule information
andconstruct a visual representation of the schedule. The format of the stringis displayed below in
Table 6.

The notation used in Table 6 is explained below:

• (<name>) + means one or more itemsof typename;

• <type:description> means an itemof the given typeand description;

• { and }are included to makethe stringtrivial to parsein Tel;

• bold-faced words are key words indicating whattypeof information will follow.

Allentries are optional andas moreschedulers are added to Ptolemy, the list is expected to grow. Some
items areused onlyby specific schedulers. For example, theassign itemis usedby a BDFscheduler to
record a value that affects the schedule.

A schedule file contains a <schedule> string thatcontains oneor more entries of the type<entry> which
can be many different itemsas shown in the table. It can be eithera nested schedule, a numerical entry
indicating eitherperformance or schedule data, or it canbe an identifier. Some examples of schedule files

, can be foundin Table 7. Visualization representations of schedule files is discussed in the next section.

19 of 48

The Ptolemy and Tycho Frameworks

Table 6. Schedule File Format

Entry Format

<schedule> { (<entry>)+ }

<entry>

<nestedSchedule>

<num>

<star>

<fJnfo>

<f_entry>

20 of 48

{scheduler <string:scheduler_identifier>}
{galaxy <string:galaxy_or_universe_name>}
{target <string:target_name>}
{(<nunt>)+ }
{utilization <float:uulization>}
{(<nestedSchedule>)+}
{ duster <string:name> <schedule> }
{ assign <string:token> <string:value> }
{ fire <star>}
{ fire <star> <f_info> }
{ processor <string:name> <schedule> }
{ repeat <int:repetitions> <schedule> }
{<string:annotation> <schedule> <string:endannotation>}

{ preamble <schedule>)
{ cluster <schedule> }
{ <string:annotation> <schedule>)

{ numberOfProcessors <int:numprocs> }
{ numberOfStars <int:numstars>}
{numberOfStarOrClusterFirings <int:sizeofDAG>}
{ makespan <int:makespan> }
{totalldleUme <int: idletimo }
{idle <int:idletime>}

send

receive

<string:star_name>

{(<f-entry>)+)

{ exec_time <int:exec_time>}
I { start_row <int:start_row_index> }
I { start.col <int:start_col_index> }
I { end_row <int:end_row_index> }
I { end_col <int:end_col_index> }
I { <string:label> <string:value> }

Techniques to Visualize Algorithm and Architecture Interaction

Techniques to Visualize Algorithm and Architecture Interaction

This section presents techniques that can be used tovisualize the interaction between an embedded system
architecture and algorithms that are run onit.Theconcepts that were summarized in Section 2 are used as
the basis for the design of atool that allows an engineer to visualize the interaction and performance of
various components inan embedded system. Details of the software architecture and implementation are
the subjects of the final two parts of this project.

The initial goals are tobeable toanimate execution of algorithms onselected targets and tobeable to
easily identify performance bottlenecks, load imbalances, and problematic hardware-software interfaces.
This requires designing visual representations ofembedded system hardware and software components,
schedules, execution traces, communication patterns, and performance data. All the representations
described inthis section are discussed with respect toTycho and Ptolemy, however, they are not
necessarily tied to these frameworks.

The first subsection that follows describes visual representation of hardware components of an embedded
system. Following sections describe visualization of various types of schedules, execution traces, and
communication patterns. The final subsection discusses what sort of extra insight can be gained about
system behaviour by merely combining these views intoa single display.

4.1 Visual Representation of Hardware Components

As stated in thediscussion of visualization basics, it is important for any visualization tool to allow auser
torelate displayed design information toacontext. In the case of embedded system design, an engineer
would like torelate visual representations of execution and performance data tothesystem under analysis.
A visual representation of system components and how they are being employed provides away of relating
execution behaviour to thesystem environment. For example, if a visual representation of thehardware
architecture and its bounds are available tothe engineer, heor she can quickly determine whether poor
performance is due to the architecture bounds ordue to poor software design oracombination of both.

A simple yeteffective method of representing an architecture visually is shown inFigure 3 below. Each
large block represents aprocessing unit. A processing unit may bean off-the-shelf processor oramemory
management unit, or a FPGA, oreven anapplication specific integrated circuit (ASIC). The amount that
each block is filled indicates how well that resource isbeing utilized. If the block iscompletely filled then
the resource is fully employedin executing tasks atall times.

Interconnections between processing unitsis indicated by solid lines. Dashed lines indicate that a
connection is possible however, in thedepicted configuration, noconnection hasbeenmade. The benefit of
indicating different architecture configurations and delineating them from what isactually being used in
the current setup reminds the user that other design possibilities exist which may achieve better
performance. In addition it may allow adesigner togain insight into system behaviour bychanging
configurations quickly and observing changes in execution patterns and performance. The thickness of
each of thearcs connecting the processing units indicates the relative amount of communication taking
place between the units.

21 of 48

Techniques to Visualize Algorithm and Architecture Interaction

Processing Unit

% utilization

connection

possible connection

1 amount of communication

#input accesses

#output accesses

throughput

overhead

Average Memory Access time

architecture

bound

% system utilization

Figure 3. Visual Representation ofHardware Architectures

Clicking on an individualprocessing unit block bring up information regarding bounds inherent in the
resource such as speed, and size of local memory. In addition, statistical information such as the number of
inputor output accesses, throughput, and average memory access timesare also displayed. These statistics
are shown in a manner that allow a designer to compare the observed throughput or average memory
access time with what is actually possible for that resource. This is useful in indicating to the designer how
well the architecture is beingemployed in comparison to its fullpotential and helps in determining whether
thesystem projected onto the hardware should be redesigned or whether the hardware should be changed
to suit the system needs.

The visualization described above allows an engineer to quickly determine how the interconnection
topology is being used and at glance he or she can determine utilization and communication overhead. If
thedesigner wants to dig deeper and get more detail, clicking oneach individual block representing a
processing unit will bring up relevant information. Layering information in this manner allows for
uncluttered displays and allows a user to tune the tool his or her needs.

22 of 48

Techniques to Visualize Algorithm and Architecture Interaction

.4.2 Visual Representationof Software Components

Ptolemy provides a means tocreate an abstract functional model ofan entire system. However, the system
. may beimplemented ineither hardware or software ora combination ofboth. In theprevious section,

visual representation of hardware components was discussed andit was shown how thiswasuseful in
gaining insight into system behaviour and providing a means forrelating performance data and execution
traces to thesystem environment. Dueto thefact that notallembedded systems areimplemented solely in
hardware, it is notenough toonly provide a user with a hardware context. A representation of software
architectures equivalent to hardware representations would beextremely useful indepicting

": interconnection andinteraction of software components. It would also serve asaneffective way of
f displaying software designs. This work isbeyond the scope of this project, however, developers ofTycho

may envision adding this capability at a later time.

4.3 Visual Representation of Schedules

The GanttChartdiscussed in Section2.4.2has traditionally beenused to display schedules, specifically in
*the form of the Progress Chart. The other two charts - MachineRecordChart and Man Record Chart -
havebeen used to a much lesserextentas a basis for charts that showschedulesor otherperformance data.
In attempting to create an effective display of schedules generated for uniprocessor and multiprocessor
systems by Ptolemy schedulers, the following questions were asked:

• How are various components of the embedded system performing the function for which they were
created?

• Is it possible to identify obstacles that hamper performance of the various components?

• Are all resources being used effectively? If not, why not?

• If all components are busy,are they executingtasks that havehigh priority? If not, why not?

.-. • If all components are busy and executinghigh priority tasks, are they doing it as fast as possible? If
not, why not?

Clearly large amounts of data are requiredto answerthe abovequestionsand it is not possible to display all
the data in a single view. This is where it is necessaryto employ the conceptof multiple views.Combining

, these viewsin a singledisplaycan provideextra insightinto behaviour and possiblereasonsbehind poor
performancethat would not be gained if the viewswere seen separately. This is discussed in detail in
Section 4.6.

A visual representation of the chosen hardware architectureconstitutes the first view which provides a
' description of the systemenvironment and at a glancegivesan indication of performance, litis was
. discussedin the precedingsectionand it is similarto the Machine RecordChart conceptdiscussedin

'• Section2.4.2. It tries to giveclues to the designerregarding possiblereasonsfor poor utilization, and why
some resources may not be effectively employed in performing tasks.

The Progress Chart concept is used as the basis for a view that displays scheduling information. It shows
the distributionof functionalblocks overavailableresources. The chart indicatesthe number of processors,
the distribution of tasks across the processors, times whenthe processors are idle or are busy sendingand
receivingmessagesfrom connectedprocessors.It does not showcommunication patternsbut does indicate
utilization. The chart created for Ptolemy schedules is different from traditional Gantt Charts in that the
display is not strictly linear. Because Ptolemy allows mixing of schedulers which sometimes results in

23 of 48

Techniques to Visualize Algorithm and Architecture Interaction

hierarchical scheduling, it was necessary to create a display that would indicate this mixing and the
resulting hierarchy.

The various forms that a schedule can take in Ptolemy are shown in Table 7. The simplest form is a
sequence of firings of actors or functional blocks on a single processor. Due to the fact that no execution
times areassociated with the actor firings, the sequence is depicted as a train of coloured circles, each
colour representing a different actor. If execution times are associated with each actor then a strip of
coloured blocks represents the firing sequence. The length of each block gives an indication of relative
time spent executing that particular task. The time line at the top of the view indicates the total length of
the schedule and processor utilization is given below the schedule.

Loops in a schedule are shown in the third example in Table 7. If a sequence of actors occurs within a
schedule loop, then an ellipse with a certain thickness is drawn around the actors to indicate the looping.
The legend on the side provides a key to which colours correspond to which actors and how many
iterations of the schedule loop the thickness of the ellipse represents. Even though this is a very simple
visualization, it compactly displays looping and loop nesting, and order of execution.

Hierarchy which canoccurbecause ofclustering is indicated by a box that has a raised relief and a special
cluster icon. It can be opened up by clicking on it with a mouse to reveal a nested schedule which is shown
in a separate display. The nested schedulemay be a loopedschedule or another clusterorany othertype of

. schedule.

- Formultiprocessorschedules,communication between processors is shown by send and receiveblocks
<that areindicatedby blocks that have specialicons.The length of the blocks indicatehow much time is

required by eachsendandreceive. Displaying communication on a schedule allowsa userto gauge how
much time is spent in communication overheadversustime spent performinguseful tasks. If the schedule
shows that too much time is being spent in sendingandreceivingmessages, then either the architecture
topology is not well-suited to the application or the algorithmis not well-suited to the architecture.

24 of 48

TechniquestoVisualizeAlgorithmandArchitectureInteraction

Table7.VisualRepresentationofDifferentSchedules

ScheduleExample

SimpleSequenceofactorfiringswithno
executiontimes:

{scheduler"Identifier"}
{fireA}
{fireB}
{fireC}
{fireB}
{fireC}
{fireC}
{fireC}

Sequenceofactorfiringswithexecution
times:

{scheduler"Identifier"}
{fireA{exec_time200}}
{fireB{exec_time100}}
{fireC{exec_time50}}
{fireB{exec_time100}
{fireC{exec_time50}}
{fireC{exec_time50}}
{fireC{exec_time50}}

LoopedSchedules-Example1:
{fireA}
{repeat2

{fireB}
{repeat2

{fireC}

LoopedSchedules-Example2:
{fireA}
{repeat2

{fireB}

}
{repeat4

{fireC}

}

VisualRepresentation

•A
•B
OC

O

300

•<§)C

•o—o—O

600

•A
•B
Oc
02

•B

Oc

O4

25of48

Techniques to Visualize Algorithm and Architecture Interaction

Table 7. Visual Representation ofDifferent Schedules

Schedule Example

Looped Schedules - Example 3:
{fire A}
{repeat 2

{fireB}
{fireC}

}
{repeat 2

{fireC}

Clusters:

{cluster {
{scheduler "Identifier"}
{galaxy galName}
{numberOfProcessors 2}

{processor 0 {
{target target 1}
{totalldleTimeO}
{fire ClusterA {exec_time 300}}
{fire B {exec_time 10}}
{fireC {exec_time20}}

{processor 1 {
{target target2}
{totalIdleTime80}
{fireCIusterB {execjime 250}

}}

{cluster ClusterA {
{fire Al {exec_time 100}}
{fire A2 {exec_time 50}}
{fire A3 {exec_time 150}}

{cluster ClusterB
{repeat 128
{fireBl}
{fireB2}

}}}

26 of 48

Visual Representation

Q

A3

• A
• B

Oc
02

300

330

2?50 ^ B1
1 # B2

P) <0 128

Techniques to Visualize Algorithm and Architecture Interaction

Table 7. Visual Representation ofDifferent Schedules

Schedule Example

{processor 0 {
{fire send {exec_time 5}}

)}

{processor 1 {
{fire receive {exec_time 10}}

Visual Representation

4.3.1 Modifying Schedules

Most of the schedulers in Ptolemy are based on heuristics and do not give point solutions, therefore it is
beneficial to allow users to edit a scheduleso that the system can be optimizedfor whichevermeasure of
performance the engineer feels is important for the application. This added flexibility gives usersmore
control overthe design of the system and gives themthe ability to explore effects of slight schedule
modifications on performance. It can also help in providing insight into the scheduling algorithm being
employed.

Editable schedules only makesense for those thatare static or quasi-static. Theseschedules are generated
at compile time according to some heuristic. Dynamic schedules are generatedat run-time hence they
cannot be modified before the system executes. The static schedulers listed in Table 4 and Table 5 all
consider the data precedences inherent in the data flow specification of the application. Hence, when a user
modifies a schedule he or she mustnotbe allowed to make changes that would cause a deadlock in the data
flow graph. It is clear that the schedule editormustemploy some sort of validation criteriaand prevent the
user from making inappropriate changes to theschedule. In addition, if a change is madeto the schedule in
a particular place, it may cause changes to occur in other places. Of course, the editor should have the
capability of reflecting the changes caused by these dependencies.

An outline of how back annotation of schedulescould be implemented within the software framework
developed in this project is discussed in Section 6.8.4.

4.4 Visual Representation of Execution Traces

In Ptolemy it is possible to output an execution traceof any algorithm from anydomain. From this a user
can create a trace file which like a schedulefile can be displayed in graphical form. Visual representation
of execution behaviour can reveal critical pathsand help determine execution patterns [1].Much like an
oscilloscoperecords the evolution of a signal over time, the execution trace tracks system behaviour over
time. It keepsa record of what tasks were executed, when they were executed, and how long they took to
complete. The tracemay also be annotated with expected or estimated behaviour. Clearly, this is very
similar to the Man Record Chart concept developed by Gantt [7].

A simple visualization of an executiontrace is shownin Figure4. Each task is listed along the vertical axis
and time is given along the horizontal axis. The thick lines represent how longeach task wasexpected to
takeand the thin lines below represent actual execution. The different colours represent different
processingunits. This simple visualization gives a very good picture of execution behaviourand how it
compares to what a designer may have expected or estimated.

27 of 48

Techniques to Visualize Algorithm and Architecture Interaction

Task3

Task2

Taskl

• processor 0
• processor 1

: ; |

l

5
I

10 15

I

20
I

25

I

30

I
35

I
45

I
50

Figure 4. VisualRepresentation ofAn Execution Trace

4.5 Visual Representation of Interprocessor Communication

For most parallel systems it is extremely useful to be able to discern communication patterns as they can
disclose important properties of algorithms or poor message-passing techniques which would result in
poor performance. Schedule files in Ptolemy contain information regarding communication in the form of
times taken to send and receive messages however, source and destination information is missing. The
string representing schedule information will be modified to incorporate source and destination
information. The modifications are discussed in detail in Section 6.10.

The visualization of communication is shown in the figure below. Processing units are shown along the
vertical axis and time is given along the horizontal axis. Lines drawn from one processing element to
another indicate message-passing between the two and the length of the horizontal lines at each processing
unit indicate how much time that processing element is spending executing some task. The time spent
sending and receiving messages is shown by the space between when a processor finishes executing its
task and when the unit receiving the message starts executing its task. Parallelism can be depicted by
overlaying all on-going communication in the same view.

28 of 48

Techniques to Visualize Algorithm and Architecture Interaction

10

'*+^ communication
!overhead

15 20 25
T
30 35 45 50

Figure 5. Visual Representation ofCommunication Between Interconnected Processors

time ns

4.6 Combining Views

Multiple views ofdesign information can provide extra insight into system behaviour. Combining these
views into a single display can be extremely useful in gaining important information that may not have
been gained otherwise. For example, ifaview ofaschedule and aview ofthe communication patterns is
combined into a single display with one view above the other, then the designer isable todetermine how
the processors are communicating with one another and how much time they are taking sending and
receiving messages in relation to thetime taken toexecute other tasks. Another useful combination is that
ofan architecture view and aview ofaschedule. The engineer can almost instantly relate scheduling
information to acontext and gain insight into how topology can effect task execution and performance.
This may also helps in making changes to aschedule that would make better use of the underlying
resources.

29 of 48

An Object-Oriented Model forVisual Display of Design Information

An Object-OrientedModel forVisual Display of Design Information

This section presents an object-oriented model for visual display of design information. The model
consists of three keyobjects that allow for combinations of multiple views of design information:
Displayer, View, and Data Filter. Each of these objects are described indetail in the following subsections.
Thenotation used in the figures describing theobject-oriented architecture is described in [25] and
summarized in the figure below.

Class: Inheritance:

Class Name superclass

Class Name I
attribute

subclass-1 subclass-1

operation

Aggregation:

Assembly Class

~Q v7

Part-1-Class Part-2-Class

Figure 6. Summary ofObject Model Notation

Association:

association nameclass-1

qualifier

ClaSS-1 Y\ association name

class-2

class-2

Multiplicity of Associations:

Exactly one

Many (zero or more)

Optional (zero or one)

class

class

-Q class

Ternary Association:
association name

class-1

An overview of the design is given in Figure 7. Two key issues that motivated the design are:

• Different views of information need to be easily combined in a single display. This is useful in
providing insight as a single view may not present enough information to the designer to construct a
proper empirical model of system behaviour. Combining multiple views of design information in a
single display can sometimes give a user more information than if the views were seen separately. The
benefits of this with regards to algorithm and architecture interaction were discussed in Section 4.6.

• If one set ofdesign information is being used in multiple views, then the current information state
needs to be preserved across views. In other words, if a piece of design information is being edited in
one view, then the changes must be reflected in the views that may be displaying the same piece of

30 of 48

An Object-Oriented Model for Visual Display of Design Information

. information in a different format. In addition, it must be possible to save changes to the design
information in the format that it was originallystoredin. Forexample, if a text file was renderedin
graphical form in a view and changes were made to the view graphically, then it should be possible to
save those changes in a text form that may be re-read and displayed in another form by another view
later on in the design process.

As one can see from the figure below, the Displayercan house zero or more views and in turn, the view can
includesub-views.This makes it possibleto combinemultipleviews in a singledisplay andcombine
varioussyntaxes (e.g. text and graphics) in a single view.

TextSource

T
Displayer ™View uses x-n DF m filters data "1index

r# a
\J w :

<l
y\

1 1
ArchDF GanttDF CommDF TraceDF

/ \

Slateview FileView

^ ^

1 1 1 |
GanttView TraceView ArchView CommView

Figure 7. Overview of the Object-Oriented Model for Visual Display of Design
Information

The Displayer is responsible for inserting and removing Views. It also responsible for assigning menuberas
toregistered Views. The Displayer isdiscussed indetail inSection 5.1. The main purpose of aView isto
render design information. It can choose aData Filter (DF) which will present the View with asequence of
display data that indicates how the information should be displayed. The View can query the Data Filter for
any keyparameters inaddition toasking for the display data at any moment intime.

The Data Filter transforms data presented toit from one form into another. For example, itmay take aSDF
data flow graph representation and generate an APEG representation. Itmay also take atext string, strip
out important information, and then generate another string consisting of graphical annotations that aView

31 of 48

An Object-Oriented Model forVisual Display of Design Information

canuse to graphically display information contained within the original textstring. The View and the Data
Filterarediscussed in Section 5.2 and Section 5.3, respectively. BothView and DataFilterare abstract
objects that other objects can inherit from.

5.1 Display Management

The Displayerclass manages the display of viewsand menus. Viewscan be inserted or removed from the
Display using methods such as setView or removeVlew. It is alsoresponsible for providing Views with a
menubar for their use. Each View can configure its own menubar by employing tie menu bar methods and
once complete, theView need only telltheDisplayer thatit now hasthefocus andwould likeit to Display
its menubar.

Even though the Displayer can house any number and type of Views, it is assumed that users of the
Displayer will practisegoodjudgementwhen mixing Views. If one or moreradically different Views are
mixed, then theuserdoesnotgainanything from putting theViews intoa single display. Themain purpose
of mixing Views is to gain insight that would not have beenobtained otherwise. Details of the Displayer
implementation are discussedin Section6.2 and a brief summaryof the intendedfunctionality is discussed
in the sections immediately following this one.

Displayer

name

deregisterView
menubar
registerView
removeView
setView

contains

-O- View

addMyMenus
addSubview
busy
currentPoint
focusin
hyperjump
insertlnDisplay
markModified
removeSubview
seePoint
setDisplayer
setMenubar

7

Figure 8. The Displayer, Menubar and View Objects

32 of 48

Menubar

menu

menuitem
separator

addMenu
addMenultem
addMenuSeparator
disableMenu
disableMenultem
enableMenu
enableMenultem
insertMenultem
insertMenuSeparator
queryMenultemState
queryMenuState
removeMenu
removeMenultem

An Object-Oriented Model for Visual Display of Design Information

5.1.1 View Management

The View is responsible forregistering itselfwithitsDisplayer after it hasbeenconstmcted. Registration is
necessary becausethe Displayer needs to know whichViews it is responsible for and must assign a
menubar to eachof its Views.When the View registers itself with its Displayer, it obtains a unique
menubar identifier which it can use to build up its menus. Once thisis complete, it can call the setView
methodin the Displayer to insert itself intotheDisplayer. The Displayer is responsible for keepingtrack of
whichViews havebeen inserted andwhichhave merely beenregistered.

When aView removes itself from the Displayer, it is notde-registered. That is, the Displayer stillknows
vabout the presence of that view asit may wish to bere-inserted in thewindow. De-registration destroys the
View and its menubar, and if that particular Viewis required again by theapplication it mustbe
reconstructed. If aView hasnot beenremoved from the Displayer beforede-registration, it will be
removed before destruction. The focus passes to the next View in the list of insertedViews.

5.1.2 Menu Management

-WhentheView registers itselfwith theDisplayer, it is assigned aunique menubar identifier based ona
unique label provided by theView. The Displayer creates thismenubar for useby theView. After this, the
View can operate onthemenubar independently of the Displayer. TheView can indicate to the Displayer
that it would like it todisplay itsmenubar byconfiguring the menubar option. A View can also query its
menubar identifier by using the menubarmethod.

Adding and removing menus and menu items isaccomplished bycalling the appropriate Menubar methods
which are shown inFigure 8. Interface details of the Menubar object are described in the final part of this
report.

5.2 Views

Views are responsible for rendering design information. Each type ofView knows how to display specific
types ofinformation. For example, aFile View knows how to display files and isresponsible for providing
amechanism toperform operations on a file such as opening, closing, and editing. A View may employ a
Data Filter to either convert a particular representation of data that mustberendered intoa form that it will
understand or to filter out unnecessary pieces of information that auser may not want tosee.

Itcan also incorporate sub-views which allow different forms ofdesign information to be combined in a
single View. If sub-views are present in the View then the View's menubar will contain asuperset ofall the
menu items required for all views. A sub-view isnot allowed to manipulate the parent View's menubar.
The parent is responsible for creating its menubar. The View methods and attributes are shown in Figure 8

• and the implementation details arediscussed in Section 6.4.

53 Data Filters

A Data Filter (DF) transforms one data representation toanother. It may filter out pieces of information
that may not be required in the new representation. Data Filters may be cascaded as shown in Figure 9
allowing data to go through multiple transformations before being passed on to aView for rendering. One
of the advantages of employing Data Filters is that different views of the same basic information canbe
easilygenerated by interchanging one filter with another.

33 of 48

An Object-Oriented Model forVisual Displayof Design Information

Figure 9. TheData Filter Concept

Each Data Filterknows therelationship between theoriginal piece ofdataandthetransformed counterpart
hence it can save an edited version of the new representation in thepre-processed form. EachDataFilter
must keep track of anyfilter preceding it as it would need to communicate withits predecessor when it
passes backeditedinformation which mayneedto be saved in its original form. The concept of a Data
Filter is fairly general so each particulartypeof DataFilterwill havediffering details. The attributes and
methods common to all Data Filters are shown in the figure below.

^ filtersView
uses ^

DF datav->

? prevDF
file

transform
save

update

Figure 10. Data Filter

5.4 Applications

The Displayer-View-Data Filter paradigm presented above can be useful for displaying many different
types of design information such as schedules, performance metrics, architecture diagrams, and class
browsers. This project concentrates on applying this framework to displaying visual representations of
algorithm and architecture interaction. This is discussed in the next section.

34 of 48

Implementation of the Object-Oriented Model For Design Visualization

Implementation of the Object-Oriented Model For Design
Visualization

This section describes the final part of this project - the implementationof the object-oriented model for
design visualization and the implementationof the techniquesused to visualize algorithm and architecture
interaction in embedded systems. The prototype is written in [incr Tel] and [incrTk] [14], and is part of the
Tycho project. As mentioned in the previous section, the two key classes are the Displayer and the View.
The functionality ofeach was described in detail earlier. The Data Filter manipulates design information or
data and presents it to another Data Filter or a View in a different form. Data Filters can be cascaded to
allow for editing interrelated data or enabling multiple views of the same data. An overviewof the
interactionbetween these three mainclasses is shownin Figure 12. A summaryof the graphicalnotation is
provided in the figure below.

6.1

className

(^variable/data^

•• flow of data

method/procedure

protected method

\inrtialization.optiop^ \ constructor X
\

Figure 11. Summary ofNotation Used to Depict Implementation

Overview

Tycho, the syntax manager for Ptolemy, iswritten entirely in [incr Tel] and [incr Tk]. The Tycho kernel is
comprised ofa number ofbase classes that are used inalmost all editors and displayers. However, the
slate, which provides a basic drawing surface for graphical objects and pictures, serves asa base for the
TVcho visual language toolkit and isindependent ofthe kernel. The classes developed in this project use
the slate (and other associated classes) as well as some ofthe classes inthe Tycho kernel.

The Displayer and View interact inthe following manner. When a View wants touse a Displayer, it will
register itselfwith theDisplayer byproviding theregisterView method with a label andits identifier. The
registerView method acknowledges the registration byreturning a unique menubar identifier which the
View can then use tocreate its menus and menu items. Once the View has completed its setup, itasks tobe
displayed by calling the setView method. In response, the Displayer inserts the appropriate menubar and
the View grabs the focus. AView can remove itself from the Display simply by calling the removeView
method. Even though a View may not be displayed, itmay still beregistered with the Displayer. To

35 of 48

Implementation of the Object-Oriented Model For Design Visualization

deregister itself, the View must call the deregisterView method which will destroy the View and its
menubar. After having called the deregisterView method, an application desiring tore-display the View
must reconstruct andregister it again with the Displayer.

?The View can employ the services ofaData Filter byspecifying a particular instance of aspecific Data
Filter as an initialization option. The"View isresponsible for calling thecreate method of the Data Filter to
create any appropriate data structures that it may require to transform data from one representation to
another. Each specific type of Data Filter maybe verydifferent from another, hence, the abstract Data
Filterclass is rather sparse.

Details of each class are described inthe following subsections followed byadescription of how the
techniques usedto visualize algorithm and architecture are implemented.

Displayer deregisterView

registerView

•
setView

removeView

menubar —i

A name

/menubar

♦► -♦*-

View

setDisplayer

insertlriDisplay U
addSubview

removeSubview

setMenubar

addMyMenus

busy

currentPoint

focusin

d
hyperJump

markModified

seePoint

getClipboard

setClipboard

setUp

**+-

DF

create

transform

save

prevD^

iT7

Figure 12. An Overview ofthe Implementation ofthe Model for Design Visualization

36 of 48

Implementation of the Object-Oriented Model For Design Visualization

6.2 Displayer

The Displayerinherits from the TychoDismiss class whichprovides basic windowfunctionality and a
status bar. It has two options that can be configured to givetiieDisplayera name and a menubar. Methods
exist to insert and remove Views. Uponconstmction, the Displayer will set up frames to housea menubar
andviews. It willalsocreatea default menubar thatis visible when therearenoviews in theDisplayer. The
figure below describes the implementation in graphical form. Details regarding themethods and variables
follow.

set up menubar
frame

setup view frame

create a default

menubar

initialize options

[L menubai^^ -^-(^prevMenubar
name^

Figure 13. Implementation of Displayer

setView

• •» •»

removeView

registerView

deregisterView

menubar

viewLabelside

viewLabel

viewLabe! viewName

"^* menubar**

viewLabel

viewLabel

menubar

6.2.1 Displayer Options

The Displayer has two options: menubar and name. The menubar option allows auser to configure the
Displayer with auser-specified menubar. The name option gives the Displayer aname which is displayed
as a window title.

6.2.2 Displayer Methods and Variables

The Displayer has four methods that manage insertion and removal of views. The fifth method provides a
) mechanism for aView to query its menubar identifier. The menubar method requires the View to provide it
i with alabel which is used to obtain the unique menubar identifier. Ifthe label argument is an empty string
then the method will return the name ofthe default menubar. The registerView method allows a View to
register itself with the Displayer. Itrequires the View to provide itwith its name and aunique label. The
label serves two functions - it is used as an index into the list ofregistered Views (viewUst) and inserted
V̂iews (insertedViews), and to create aunique menubar identifier for each View. Once aView is registered
with the Displayer, itis inserted into the viewList array which keeps track ofall registered Views. Views

;cannot be inserted into the Displayer unless they have been registered. AView can deregister itself by

37 of 48

Implementation of the Object-Oriented Model For DesignVisualization

calling thederegisterView method which uses thelabel parameter to find theView in theviewList and then
removes it from the list. TheView and its menubar are consequently destroyed.

If aViewhas been inserted intotheDisplayer and deregisterView is called, thenit is first removed from the
Displayer by calling the removeView method. The removeView method does notdestroy the View and its
menubar; it only removes it from the list of inserted Views. If the removed View hadthe focus, then its
menubar is removedas well and focus is givento the next View in the list of insertedViews. A View canbe
inserted into the Displayer by calling the setView method which will place theView either atthe topor
bottom of theDisplayer orto the left orright of previously inserted Views. The side argument to the
method provides this functionality. TheprevMenubar variable keeps arecord of which menubar wasbeing
displayed before the menubar option changed. The nextsection describes the Menubar widget which is
associated with each view.

6.3 Menubar

The Menubar widget may be inserted into any Displayer or top level window. It provides methods to add
andremove menus and menu items, and to insertmenu separators. It also allows a user to enable and
disable menu items andentiremenus. Each View is given a menubarwhen it registers itself with a
Displayer. The View canthen operate on its menubar independently of the Displayer. Figure 14 showsthe
interface.

name enableMenu

itemName
•^ inMenu disableMenultem

name

arnc Side

*^ before

addMenu

itemName

aras ••
•• inMenu

addMenu Item

aras

•^"inMenu addMenuSeparator

name disableMenu

inMenu itemName enableMenultem

inMenu itemName removeMenultem

Figure 14. Implementation ofMenubar widget

38 of 48

enableMenultem

insertMenultem

insertMenuSeparator

queryMenultemState

queryMenuState

removeMenu

itemName..
inMenu

itemName

a me before

^^ inMenu

ags,
before

inMenu

itemName
inMenu

state

itemName

state

menu

Implementation of the Object-Oriented Model For Design Visualization

6.3.1 Menubar Methods

The menubarwidgetprovidesa simple way of creatingmenubars. Addingmenus is easily accomplished
by calling the addMenu methodand addingmenu itemsis doneby callingthe addMenuItem method.
Removing menus and menu items is done in a similarfashion by callingthe respective remove methods.
Similarly, menus andmenu itemscanbeenabled anddisabled usingtheenable anddisable methods. Menu
itemseparators canbe added using the insertMenuSeparator andaddMenuSeparator methods.

6.4 View

TheView is anabstract class that other Views which specialize in rendering certain types of information
can inherit from. The abstract View classprovides guidelines on how'Views should communicate withthe
Displayer. It also provides some generic methods required by alleditors and displays. The implementation
is shown ingraphical form below. Following the figure, a description of the options, variables, and
methods is given.

menub< r

displayer

subviewName

side type args

subviewName

ons^initialize options

df

W7

addMyMenus

setMenubar

insertlnDisplay-

setDisplayer

addSubview

removeSubview

Figure 15. Implementation of View

busy args

currentPoint
curpo rv

focusin

hyperJump

*•

markModified

seePoint pcirt

getClipboard clipbcad

setClipboard text

setUp

39 of 48

Implementation of the Object-Oriented Model For DesignVisualization

6.4.1 View Options

Theabstract View class has twoconfigurable options. Thefirst, df specifies thename of theDataFilter
that a View may want toemploy to filter some data into aform that itcaneasily understand and render. The
second option, top, allows the user to specify the top level window that contains the View.

6.4.2 View Methods and Variables

Thefirst View method, addMyMenus, doesnotdo anything, however, derived classes should redefine this
method to performall operationsthat are required to create its menubar. This method is called from the
protected method setup. The setup method setstheDisplayer for the View, registers the View withthe
Displayer, and creates theunique label required for registration purposes. The final task insetup is tocreate
themenubar fortheView bycalling theaddMyMenus method. TheinsertlnDisplay calls thesetup method
andthen calls theDisplayer method setView which inserts theView intotheDisplayer. Thenewly inserted
View grabsthe focus. The names of the DataFilter, Displayer, and Menubar are saved in the variables
myDFy myDisplayer, and myMenubar. The unique labelfor the View is preserved in viewLabel.

Views may have subviews. Thisallows for mixing ofdifferent types of syntaxes (e.ggraphics and text).
The addSubview and removeSubview methodsprovidemechanismsto add and removesubviews. A list of

j all subviews within a single View is contained in the variable subviewList. The methods setMenubar and
setDisplayer providea way to change the View'sDisplayerand Menubar. At the present, subview
functionality hasnot been implemented due to some issues that havenot yet been resolved. For example,
there is the issue of how to set up the menubarwhen the View contains manydifferentsubviews. A lot of

• effort needs to be spent on designing the Viewso that it can cleanly support subviews.

Other methodsassociated with the Vieware general and are required for all editors and displays. These
methods were originally written for a standard Tycho widget by Edward A. Lee but now have been
integrated into the View. The reader is asked to look at Tychodocumentation for their details.

6.5 Slate View

The Slate View was developed to act as a scrollable drawing surface that could support graphical objects
>and pictures. John Reekie, a Tycho developer,has created a slate which was designed for this purpose but

does not support scrollbars or menus. The Slate View inherits from 'View and embeds a slate to which it
adds scrolling capabilities. A lot of the code required to implement scrolling was borrowed from the code
written for the scrollable canvas widget created by Sue Yockeyand Mark Ulferts. The Slate View is used as
a base class for all the graphical Views developed for the tool that visualizes architecture and algorithm
interaction. A graphical description of the implementationis not given as Slate View only adds extra
methods and options to those already existing for 'View. The reader should refer to Tycho documentation
for more details regarding the slate.

6.5.1 Slate View Options

The automargin option gives the size of the margin between the edges of the slate and the bounding box
containingall the items on the slate. The autoresize option, when set, allows the scrollbars to adjust
automatically when new items are added to the slate. The height and width of the slate are given by the
height and width options. Scrollbars can be dynamic or static - that is, they can be set so that they

40 of 48

Implementation of the Object-Oriented Model For Design Visualization

disappearwhen they are no longer required.The hscrollmode and vscrollmode options specify this for the
horizontal and vertical scrollbars, respectively.

6.5.2 Slate View Methods

The Slate View contains all the methodsrequired by the View and in additionprovides methodsfor
scrolling the slate. The childsite method returns the name of the slate that is embedded in the view. Also,
wrappers have been created for all the slate methods so that the sameoperations can be performedon the
scrollable slate. For the sakeof brevity, details willnotbe provided hereas Tycho documentation already
contains this information.

6.6 Data Filter

Data Filters that operateon specific types of data inheritfrom the Data Filter abstractbase class. It
provides some general methods to operate ondata, however, derived classes areexpected to overload the
methods withtheirowndefinitions as DataFilters canbe very different fromoneanother. The abstract
class implementation is shown below inFigure 16. Following it is a description of itsoptions, methods and
variables.

newRep

newRep

prevDF>

create

transform

save

Figure 16. Implementation ofa Data Filter

6.6.1 Data Filter Options

«« «• String
X

The Data Filter has three options:file, prevDF, and string. Thefile option isused tospecify the name ofthe
file that will constitute the input tothe Data Filter. Astring may be specified instead ofa file; this isdone
by configuring the string option. Ifboth options happen to be configured, preference isgiven tothefile
option. The prevDF option specifies a "previous" Data Filter that processes data before it ispassed tothe
"current" Data Filter. This option allows cascading ofmultiple Data Filters.

41 of 48

Implementation of the Object-Oriented Model ForDesign Visualization

6.6.2 Data Filter Methods

There are three methods associated with the current implementation of the Data Filter. The create method
createsany data structureswithin the filter that may be requiredwhen data is transformed from one
representation to another.The transform method performsthis transformation.The save method saves a
modified versionof the new representation in the form of the old representation. In other words, it tries to
perform the transformation operation in reverse. It should be noted here that the code for the reverse
transformation has not yet been written. Moreeffort is still requiredin this area as reversing a filtering
operation is normally very difficult.

6.7 Architecture View

The Architecture View represents the visualization of embedded system hardware components. This
sectionprovides an overviewof a possible implementation. It should be noted that at the present, the
Ptolemy target object does not have the capability of writing out an architecture description to a file.
Hence, no code has been written for this view.

In order to help a visualization tool render a graphical display of system components, it is necessary to
provide the tool with some sort of representation of the architecture that can easily be parsed by the tool. A
file similar to the schedule file described in Section 3.3.2 is used to perform this function. The format is
given in Table 8.

Table 8. Architecture File Format

Entry Format

<target>

<entry>

<connection_info>

{(<entry>)+)

{ target <string:target_identifier> }
I { block <string:block_identifier> <target> }
I { connect <string:toBlock> }
I { connect <string:toBlock> <connection_info> }
I { (<estimate>)+ }
I {(<num>)+ }

{ connected}
i { not_connected }

{send <int: exec_time}>}
I { receive <int: exec_time> }
I { utilization <float: utilization> }
I {throughput <float: throughput*}
I { avgMemAccess <float: memAccess> }

{ numberOfBlocks <int:numblocks> }
I {numberOflnputs <int:numinputs>}
I {numberOfOutputs <int:numoutputs> }

<estimate>

<num>

42 of 48

Implementation of the Object-Oriented Model For Design Visualization

A Data Filter similar to the one described for the Gantt View may be developedto parse the architecture
file and generate the display data.

6.8 Gantt View

The GanttView class is responsible for creating a graphical representation of a schedule. It uses the Gantt
DataFilter, GanttDF, to query important information from the schedule file. Details regarding the Gantt
DataFilterare given in a later section. Below is a figure which presents a graphical view of the
implementation. Following it is a description of theoptions andmethods.

setZoomFactor

proc

addMyMenus

drawLabels

makespan drawRuler

direction

Figure 17. Implementation of Gantt View

6.8.1 Gantt View Options

The Gantt View has one option in addition to the options present in its super-class, View. The dag option
-* specifies aDirected Acyclic Graph (DAG) representation ofthe precedence constraints in adata flow graph

which can be used to validate any editing operations that may be made on the schedule displayed by the
, Gantt View. Since editing capabilities have not been implemented, the dag option does not perform any

useful function at this time. Itishoped that in addition to the dag option, there may be other options that
,* would allow easy validation ofamodified schedule - for example, an annotated SDF representation.

43 of 48

Implementation of the Object-Oriented Model For Design Visualization

6.8.2 Gantt View Methods and Variables

The addMyMenus method adds the appropriate menus and menu items tothe menubar supplied by the
Displayer. Menus include File, Edit, Zoom, Legend, and Help. The File menu contains items pertaining to
operations normally associated with files; the Edit menu contains items that allow a user to edit a Gantt
Chart; the Legend provides information regarding the meaning ofcolours, lines, and shapes. The Help
menuprovides the user with information pertaining to the use of the Gantt Chart.

A number of methods exist that help withdrawing various partsof the Chart.The drawLabels methodis
responsible for drawing processor labels, and schedule identifiers in the appropriate places. The
drawMarker method createsa brightmarker that is positioned wherever the user clicksthe mouse.The
marker is usefulfor finding out what tasksare executing at different time instances. The positionof the
marker with respect to the time axis is displayed above the marker.The drawProcessor method creates a
graphical representationof the schedule on the slate. A strip of blocks or other objects such as circles are
associated with each processor. The drawProcessor creates the strip from information providedby the
Gantt Data Filter. This filtering operation is discussed in a later section. The drawRulermethod draws the
time axis that appears above the schedule.

Other methods are associated with the menu items. These include open, close, print,zoom,setZoomFactor,
and help. The names of the methods indicate their function. The redraw method is called each time the
View is resized and it redraws the entire chart so that it fits inside the Displayer.

6.8.3 Gantt Data Filter

The Gantt Data Filter parses a schedule file and provides methods that a Gantt View can use to query
important pieces of information that are required to draw a graphical representation of the schedule. For
each schedule file, the filter searches for nested schedules and when it finds one (indicated by key words
such as cluster, preamble, processor, repeat), it creates a child Gantt Data Filter. This recursive operation
results in a tree of Data Filters that process different parts of the schedule file. Each individual Data Filter
parses the schedule that it is responsible for and generates a string that has the following form: {type,proc,
[name, start, end}+}. The type indicates what type of graphics the Gantt "View should use to render the
information. As shown in Table 7 different schedules have different graphical representations so the View
should be able to delineate between the various types. The proc entry tells the View which processor is
associated with the given schedule. The list of block names, start times, and end times is used to draw the
individual tasks in whichever form is appropriate for that schedule.

6.8.4 Modifying Schedules

It is not yet possible to modify schedules using the Gantt View. There are a number of issues that must be
addressed before proceeding with the implementation. These were outlined in Section 4.3.1. A possible
implementation strategy is outlined below for future reference.

• A data structure that represents a Gantt Chart is required. This would make it easier for saving Gantt
Charts and changes made to them.

• A mechanism to specify constraints on editing needs to be developed. One could envision somehow
attaching a constraint to the editor or an editing operation. If a change is not allowed then it simply will
not be performed and the user will be notified. If the change affects other parts of the schedule then
these changes should be automatically reflected in the Gantt Chart.

44 of 48

Implementation of the Object-Oriented Model For Design Visualization

Withregards to validationstrategies,there are twopossibleroutes:use a compact versionof the APEG
to validate the schedule, or use an annotated versionof the SDF graph. The simplest strategy is to
simulatethe change and check whetherdeadlock occurs. It may be useful to give a user the choice of
using whichever strategy they prefer.

6.9 Trace View

Asmentioned earlier, Ptolemy cangenerate execution traces, however, at thepresent time thetraces arenot
generated in a format that is useful to a visualization tool. Table 9 describes a format more amenable to
visualization. The trace can consist of estimated and actual execution behaviour.

Table 9.

Entry

<trace>

<entry>

</L/«/o>

<star>

Trace File Format

Format

{(<entry>)+ }

{actual <f_info>}
I { estimate <f_info> }

{ <star> { execjime <int: exec_time> } }

send

I receive

I<string:star_name>

The simplicity ofthe file format makes the use ofaData Filter unnecessary. This View has not yet been
implemented.

6.10 Communication View

The Communication View shows how processing units or resources communicate with one another over
time. The schedule file contains communication information however, it does not indicate from where
processing units are receiving information and to where they are sending it. Amodification is necessary.
The receive and send entries should beaugmented with source and destination fields. Once this is done it
will be asimple task tofilter this information from the output ofthe Gantt Data Filter. The Communication
Filter need only search for the key words send and receive in the Gantt Filter output and transmit those
items to the Communication 'View for rendering. The figure below shows this concept.

.sched file i=^g)-^-@_**i CommView

Figure 18. Generating Communication Pattern Viewfrom a Schedule File

45 of 48

Summary and Future Work

Summary and Future Work

Embedded systemsare quickly becoming integral parts of ourdaily lives.They appear in consumer
electronics, automobile parts, medical technologies, and telecommunications equipment. The complexity
associated with suchsystems makesit very difficult for engineers to exploit the full potential of the
underlying system resources. This often results in sub-optimal performance. Tools thatallowanengineer
to easilyassess system behaviourand performance can reduce developmentcosts and time-to-market.

In the past, visualization techniques have proven invaluable to the design process as they have simplified
tasks faced by engineers.Techniques that can highlight pooralgorithmdesign, problematichardware-
software interfacesand other reasons behind poorperformance can greatly simplify the embedded system
design process. The work presented in this report shows that visualization of algorithm and architecture
interactionis an important aspect of performance-baseddesign. Fourviews of algorithm and architecture
interaction have been developed based on visualization fundamentals and Gantt Charts. An object-oriented
framework for editing and displaying various types of design information has been designed, described,
and implemented. The work on implementing the visualization of algorithm and architecture interaction
within this framework has been initiated as well.

A lot of effort still remains to be spent in implementing the remaining parts of the tool that will visualize
algorithm and architecmre interaction. However, the implementation of the object-oriented framework for
displaying design information is complete. Editors and displayers currently available in Tycho will move
over to the Displayer-View-Data Filter paradigm in the very near future. Work on implementing
functionality to back annotate schedules is still required and constitutes a large project in itself. The Data
Filter concept has shown promise but more detailed work needs to be done regarding its development as it
is still a fairly new idea. In conclusion, it would be interesting to explore better visualization techniques
and apply them to embedded system design.

46 of 48

References

8 References

[1] M. Abrams, N. Doraswamy, andA. Mathur, "Chitra: Visual Analysis ofParallel andDistributed Programs in the
Time, Event, and Frequency Domains", IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 6,
November 1992, pp.672 - 685.

[2] M. A. Bayoumi (ed.), VLSI Design Methodologies ForDigital SignalProcessingArchitectures, Kluwer
Academic Publishers, USA, 1994.

[3] S. S. Battacharyya, P. K. Murthy, E. A. Lee, SoftwareSynthesisFrom Dataflow Graphs, Kluwer Academic
Publishers, USA, 1996.

' [4] J. P. Calvez, EmbeddedReal-Time Systems: A Specification andDesignMethodology, JohnWiley & Sons, West
Sussex, England 1993.

[5] J. B. Dennis,"FirstVersion DataFlow Procedure Language", Technical Memo MAC TM61, May, 1975,MIT
Laboratory for Computer Science.

[6] D. D. Gajski, F. Vahid, S. Narayan, andJ. Gong, Specification andDesign ofEmbedded Systems, PTR Prentice
Hall, Englewood Cliffs, N.J., USA, 1994.

[7] H. L. Gantt, "Organizing forWork", Industrial Management, August, 1919, pp.89- 93.

, [8] M. T. Heath, J. A. Etheridge, 'Visualizing the Performance of Parallel Programs", IEEE Software, September
1991 pp. 29-39.

[9] M. T. Heath, A. D. Malony, and D.T. Rover, "Parallel Performance Visualization: From Practice to Theory",
IEEE Parallel andDistributed Technology, Winter1995, pp.44 - 60.

[10] M. T. Heath, A. D. Malony, and D.T. Rover, "TheVisual Display of Parallel Performance Data", IEEE
Computer, November 1995, pp. 21 - 28.

[11] J. L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann
Publishers, Inc., San Mateo, CA, USA, 1990.

[12] D.D. Hils, "Visual Languages and Computing Survey: Data Flow Visual Programming Languages", Journal of
Visual Languages andComputing, Vol.3,1992, pp.69-101.

[13] Hypertext Webster Interface, http://gs213.sp.cs.cmu.edu/prog/webster?

[14] [incrTel] and [incrTk]. http://www.tcltk.com/itcl/index.html

[15] M.-H. Jobin, P. Lefrancois, B. Montreuil, "Using aPublic 3-DGantt Chart Communication Structure between
Agents for Distributed Scheduling Architectures", Integrated Computer-Aided Engineering, Vol. 1,No.2, pp.
147 - 156,1993.

[16] G.M. Karam, "Visualization using Timelines", 1994 International Symposium on Software Testing and
Analysis (ISSTA), Seattle,WA, USA, August 17-19,1994.

[17] J. Kodosky, J. MacCrisken, and G.Rymar, "Visual Programming Using Structured Data Flow", Proceedings of
IEEE Workshop on Visual Languages, October 1991, Kobe Japan.

[18] E. A. Lee, A. Kalavade, W.-T. Chang, "Effective Heterogeneous Design and Co-simulation", NATO Advanced
Study Institute Workshop onHardware/Software Codesign, LakeComo, Italy, June 18 - 30,1995.

[19] A. D. Malony, D. H. Hammerslag, andD. J. Jablonowski, "Traceview: A TraceVisualization Tool", IEEE
Software, September 1991 pp. 19- 28.

47 of 48

References

[20] P. Osmon and P. Sleat, "IDRIS: Interactive Design of Reactive Information Systems", Proceedings of Fourth
International Conference onAdvanced Information Systems Engineering, Springer-Verlag, Germany, 1992, pp.
494-506.

[21] E. K. Pauer and J. B. Prime,"An Architecture Trade Capability Using the Ptolemy Kernel", 1996International
Conference onAcousitics, Speech, andSignal Processing, Adanta,Georgia, May 7-10,1996.

[22] J. L. Pino, S. S. Bhattacharyya, andE. A. Lee, "A Hierarchical Multiprocessor Scheduling System forDSP
Applications", Twenty-Ninth Annual Asilomar Conference onSignals, Systems, andComputers, October, 1995.

[23] J. L. Pino, S. Ha, E. A. Lee and J.T. Buck, "Software Synthesis for DSPUsing Ptolemy", Journal ofVLSI
Signal Processing, 9,7-12,1995.

[24] PtolemyTeam, The Almagest, Vol1-4,Ptolemy 0.5 Kernel Manual, EECS, University of California, Berkeley,
1990-1994.

[25] J. Rambaugh,M. Blaha,W Premeriani, F. Eddy, andW. Lorensen, Object-OrientedModeling and Design,
Prentice-Hall, Inc., Englewood Cliffs, N.J., USA, 1991.

[26] G. C. Sih, MultiprocessorScheduling to AccountForInterprocessorCommunication, Ph.D. DissertationUCB/
ERL M91/29, University ofCalifornia, Berkeley, 1991.

[27] C. M. Woodside, "A Three-View Model for Performance Engineering of Concurrent Software", IEEE
Transactions on Software Engineering, Sept. 1995, vol.21, No.9, pp. 754 - 767.

[28] J. Zhu, et. al., "HaRTS: Performance-BasedDesign of DistributedHardReal-Time Software", Journalof
Systemsand Software, February, 1996, pp. 143 - 56.

48 of 48

	Copyright notice 1995
	ERL-96-50

