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Abstract

The analysisand designof largescalesystems is usuallyan extremely complex process. In order
to reduce the complexity of the analysis, simplified models, called abstractions, which capture the
system behavior of interest are obtained and analyzed. If the abstraction of system can be shown
to satisfy certain properties of interest then so does the original complex plant. This can result
in significant complexity reduction in the analysis of complex systems.

1 Introduction

Large scale systems such as intelligent highway systems [1] and air traffic control systems [2] result
in systems of very high complexity. The analysis process for complex systems consists of proving
that the designed system meets certain specifications. However, the analysis may be formidable due
to the complexity and magnitude of the system.

Forexample, in air traffic control systems, aircraft are usually modeled by detailed differential equa
tions which describe the behavior of engine dynamics, aerodynamics etc. The desired specification
requires that any two aircraft do not collide with each other. Proving that the system indeed meets
the specification may be prohibitingly complex due to the detailed modeled dynamics as well as the
large scale of the system.

However, in the above example, it is clear that the specification is not interested in the details of
aircraft operation, but only in the relative position of the aircraft. We can therefore reduce the
complexity of the analysis by focusing only on dynamics which are of interest. This is performed by
ignoring certain aspects of system behavior in a manner which is consistent with the behavior of the
original system. This is essentially the idea behind system abstraction.

Webster's dictionary defines the word abstraction as uthe act or process of separating the inherent
qualities or properties of something from the actual physical object or concept to which they belong".
In system theory, the objects axe usually dynamical or control systems, the properties are usually the
behaviors of certain variables of interest and the act of separation is essentially the act of capturing
all interesting behaviors. In summary, Webster's definition can be applied to define the abstraction
of a system to be another system which captures all system behavior of interest.
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Once a system abstraction has been obtained, standard analysis methods are utilized on the ab
stracted models. For example, verification algorithms of hybrid systems [3, 4], which contain both
discrete event dynamics at higher levels and continuous dynamics at lower levels, are based on ab
stracting continuous dynamics by rectangular differential inclusions [5, 6]. A similar methodology
for reducing the verification complexity of discrete event systems can be found in [7].

In this paper, notions of system abstractions for dynamical and control systems are defined. Behaviors
of interest are captured by abstracting maps. Abstracting maps are provided by the user depending
on what information is of interest. Necessary and sufficient geometric conditions under which one
system is an abstraction of another with respect to a given abstracting map are derived. Although
abstractions of systems may capture all behaviors of interest, they might also allow evolutions which
are not feasible by the original system. This is due to the information reduction which naturally
occurs during the abstraction process and it is the price one has to pay in order to reduce complexity.
System abstractions can therefore be ordered based on the "size" of redundant allowable system
evolutions leading to a notion of best abstraction. Furthermore, we show that certain properties of
interest, such as controllability, propagate from the original system to the abstracted system.

The structure of this paper is as follows: In Section 2 we review standard differential geometry which
will be used throughout the paper. In Section 3 abstracting maps are introduced in order to define
system behaviors of interest. A notion of an abstraction of a dynamical system is defined in Section 4
and we discuss when one vector field is an abstraction of another. Section 5 generalizes these notions
for control systems while Section 6 discusses issues of further research.

2 Review of Differential Geometry

We first review some basic facts from differential geometry. The reader may wish to consult numerous
books on the subject such as [8, 9, 10].

2.1 Differentiable Manifolds

Definition 1 (Manifolds) A manifold Mofdimension n is a metric space l which is locally home-
omorphic to Rn.

A simple example of a manifold, which is of great interest to us, is Rn itself. Other examples are the
circle S1, the sphere S2 and the Euclidean groups 50(3) and SE{3).

A subset N of a manifold M which is itself a manifold is called a submanifold of M. Any open
subset N of a manifold M is clearly a submanifold, since if M is locally homeomorphic to Rn then
so is N. In particular, an open interval J C R is also a manifold.

A coordinate chart on a manifold M is a pair (17, re) where U is an open set of M and a; is a
homeomorphism of U on an open set of Rn. The function x is also called a coordinate function and
can alsowritten as (a?i,..., xn) whereX{: M —> R. If p GU then x(p) = (x\(p),..., xn{p)) is called
the set of local coordinates in the chart {U,x).

When doing operations on a manifold, we must ensure that our results are consistent regardless of
the particular chart we use. We must therefore imposesome conditions. Two charts {U, x) and (V, y)

*Or better replace metric space with Hausdorffand second countable topological space



with U n V j^0, are called C°° compatible if the map

yox'1 : x(Uf)V) C Rn —> y(U f\V) C Rn

is a C°° function. A C°° atlas on a manifold M is a collection of charts {UaixQ) with a e A which
are C00 compatible and such that the open sets Ua cover the manifold M, so M = \JaeA ^»- An
atlas is called maximal if it is not contained in any other atlas.

Definition 2 (Differentiate Manifolds) A differentiable or smooth manifold is a manifold with
a maximal, C°° atlas.

Now that we have imposed this differential structure on our manifold M we can perform calculus on
M. In particular let / : M —> R be a map. If (£/, re) is a chart on M then the function

/ = / oaT1 : x(U) C Rn -—> R

is called the local representative of / in the chart (U,x). We therefore define the map / to be C°°
or smooth if its local representative / is C°°. Notice if / is C°° in one chart, then it is C°° in every
chart since we required our charts to be C°° compatible and our atlas to be maximal. Hence our
results are intrinsic to the manifold and do not depend on the particular chart we use. Similarly, if
we have a map / : M —> JV, where M,N are differentiable manifolds, the local representation of /
given a chart (U, x) of M and (V,y) of N is

/ = yofox'1

which makes sense only if f(U) n V ^ 0. Again / is a C°° map if / is a C°° map.
Let / : M —¥ N be a map between two manifolds. The map / is called a diffeomorphism if both /
and f~l are smooth. In this case, manifolds M and N are called diffeomorphic.

2.2 Tangent Spaces

Let p be a point on a manifold M. Let C°°(p) denote the vector space of all smooth functions in a
neighborhood of p. A tangent vector Xp at p GM is an operator from C°°{p) to R which satisfies
for f,g G C°°(p) and a, 6 G R , the following properties,

1. Linearity Xp(a• f + b-g) = a-Xp(f) + b• Xp(g)

2. Derivation Xp(f •g) = /(p) •Xp(g) + Xp(f) •g(p)

The set of all tangent vectors at p G M is called the tangent space of M at p and is denoted by
TPM. The tangent space TPM becomes a vector space over R if for tangent vectors Xp,Yp and real
numbers ci,C2 we define

(Cl •Xp + c2 •Yp)(f) = Cl •Xp(/) + c2 •Yp(f)

for any smooth function / in the neighborhood of p. The collection of all tangent spaces of the
manifold,

TM= |J TPM
p6M



is called the tangent bundle. The tangent bundle has a naturally associated projection map 7r :
TM —¥ M taking a tangent vector Xp GTPM C TM to the point p£M. The tangent space TPM
can then be thought of as 7r_1(p).

The tangent space can be thought of as a special case of a more general mathematical object called
a fiber bundle. Loosely speaking, a fiber bundle can be thought of as gluing sets at each point of the
manifold in a smooth way.

Definition 3 (Fiber Bundles [11]) A fiber bundle is a five-tuple (B,M,7r,l7,{Oj}i€j) where B,
M, U are smooth manifolds called the total space, the base space and the standard fiber respectively.
The map w : B —¥ M is a surjective submersion and {Oi}iei is an open cover of M such that for
every* GI there exists a diffeomorphism $*: 7r_1(Oj) —> OiXU satisfying

7T0 O$ = 7T

where n0 is the projection from 0{XU to Oi. The submanifold 7r-1(p) is called the fiber atp€ M. If
all the fibers are vector spaces of constant dimension, then the fiber bundle is called a vector bundle.

The tangent bundle is a vector bundle and the fiber at each point p G M is the tangent space TPM.
Prom Definition 3 it is clear that fiber bundles are locally diffeomorphic to Oi x U. Therefore, fiber
bundles are manifolds of dimension um + n\j where um and ny are the dimensions of M and U
respectively. In particular, the tangent bundle TM has dimension 2n.

Now let M be a manifold and let ([/, x) be a chart containing the point p. In this chart we can
associate the following tangent vectors

d d

dx\ dxn

defined by
d d(fox-1)

dxiU) dri
for any smooth function / G C°°(p). The tangent space TPM is an n-dimensional vector space and
if (£/,x) is a local chart around p then the tangent vectors

_d_ J_
dx\ dxn

form a basis for TPM. Therefore if Xp is a tangent vector at p then

where oi,... ,a„ are real numbers. From the above formula we can see that a tangent vector is an
operator which simply takes the directional derivative of function in the direction of [oi,..., an].

Now let M and iV" be smooth manifolds and / : M —¥ N be a smooth map. Let p G M and let
q = f(p) e N. We wish to push forward tangent vectors from TPM to TqN using the map /. The
natural way to do this is by defining a map /» : TPM —¥ TqN by

(U(XP))(g)=Xp(gof)



for smooth functions g in the neighborhood of q. One can easily check that f*(Xp) is a linear
operator and a derivation and thus a tangent vector. The map /* : TpM —¥ Tj^N is called the
push forward map of/. Thepushforward map /*: TPM —¥ Tf^N isa linear map. andfurthermore
if / : Af —-¥N andgiN—¥K then

(9 ° /)* =9*°f*

which is essentially the chain rule.

2.3 Vector Fields

A vector field or dynamical system on a manifold M is a continuous map F which places at each
point p of M a tangent vector from TPM. Such functions are called sections of the tangent bundle
TM since they satisfy n o F = i where n is the projection from TM onto M and i is the identity on
M. If F is of class C°° it is called a smooth section of TM.

Therefore since a vector field, F, places at each point p a tangent vector F(p) we have that in the
chart (U,x) the local expression for the vector field F is

i=l ox%

We can easily see from the above that the vector field is C°° if and only if the scalar functions
a{: M —¥ R are C°°.

Let J C R be an open interval containing the origin. An integral curve of a vector field is a curve
c : J —¥ M whose tangent at each point is identically equal to the vector field at that point.
Therefore an integral curve satisfies for all t G /,

c' = c*(l)=X(c)

Finally, let / : M —¥ N be a smooth map between two manifolds and let X be a vector field on M.
At every point p GM we can pushforward X(p) of the vector field to Tj^N. Then f*(X) is a well
defined vector field only if / is a diffeomorphism or when / and X axe such that f*(XPl) = f*(XP2)
whenever /(pi) = /(P2). In that case Y = f*(X) and X are called /-related. Equivalently, we have
the following definition.

Definition 4 (/-related Vector Fields) Let X and Y be vector fields on manifolds M and N
respectively and f : M —¥ N be a smooth map. Then X and Y are /-related iff the following
diagram commutes

M —?—¥ N
A y[ w
TM —^¥ TN

or otherwise iff /* o X = Y o /.

3 Abstracting Maps

Let M be the state space of a system. In abstracting system dynamics, information about the state
of the system which is not useful in the analysis process is usually ignored in order to produce a



simplified model of reduced complexity. The state p G M is thus mapped to an abstracted state
q G N. It is clear that complexity reduction requires that the dimension of N should be strictly lower
than the dimension of M.

For example, each state could be mapped to part of the state or to certain outputs of interest.
What state information is relevant usually depends on the properties which need to be satisfied.
The desired specification, however, could be quite different even for the same system since the
functionality of the system may be different in various modes of system operation. It is therefore
clear that it is very difficult to intrinsically obtain a system abstraction without any knowledge of the
particular system functionality. System functionality determines what state information is of interest
for analysis purposes. Given the functionality of the system, a notion of functionally equivalent states
is obtained by defining an equivalence relation on the state space.

For example, given a dynamic model of some mechanical system one may be interested only in the
configuration of the system. In this case, two states are functionally equivalent if the corresponding
configurations are the same.

Once a specific equivalence has been chosen, then the quotient space Mj ~ is the state space of
the abstracted system. In order for the quotient space to have a manifold structure, the equivalence
relation must be regular [9]. The surjective map a : M —¥ Mj ~ which sends each state p G M
to its equivalence class [p] G Mj ~ is called the identification map and is the map which sends each
state to its abstracted state. In general, we have the following definition.

Definition 5 (Abstracting Maps) Let M and N be given manifolds with dim(N) < dim{M). A
surjective map a : M —¥ N from the state space M to the abstracted state space N is called an
abstracting map.

The identification map is an example of an abstracting map. In this paper, we will assume that M
and N are manifolds and the abstracting maps to be smooth submersions.

4 Abstractions of Dynamical Systems

Once an abstracting map a has been given, then given a vector field X which governs the state
evolution on M, then one is interested in obtaining the evolution of the abstracted dynamics. The
evolution of a dynamical system is characterized by its integral curves. Let c be any integral curve
of X. Then if we push forward the curve c by the abstracting map a we obtain that aoc describes
the evolution of the abstracted dynamics on N. If we therefore want to abstract the vector field X
on M by a vector field Y on JV, then aoc should be an integral curve of Y. This motivates the
following definition.

Definition 6 (Abstractions of Dynamical Systems) Let X and Y be vectorfields on M and N
respectively and leta:M —¥ N be a smooth abstracting map. Then vector field Y is an abstraction
of vector field X with respect to a iff for every integral curve c of X, aoc is an integral curve ofY.

Therefore if the curve c satisfies

c' = c.(l)=X(c)

then it must also be true that

(a o c)' —(a o c)«(l) = Y(a o c)



From Definition 6 it is clear that a vector field Y may be an abstraction of some vector field X for
some abstracting map c*i, but may not be for another abstracting map 02-

The following theorem shows that the Definition 6 is equivalent to saying that the two vector fields
are a-related.

Theorem 1 Vector field Y on N is an abstraction of vectorfield X on M with respect to the map
a if and only if X and Y are a-related.

Proof: Let vector field Y on N be an abstraction with respect to a of vector field X on M. Then
by Definition 6, for any integral curve c of X, a o c is an integral curve of Y. Thus

(aoc)' = (aoc)»(l) = y(aoc)=^
a* o c*(l) = Y o a o c =>•

a* o X(c) = Y o a o c =^

a*oXoc = Yoaoc=>

a* o X = Y o a

But then, by Definition 4, X and Y are a-related. Conversely, let X and Y be a related. Then for
any integral curve c of X,

a*oX = Yoa=>

a*oXoc = Yoaoc=>

a* o X(c) = y(a o c) =»

a* o c*(l) = Y(a oc) =>

(aoc),(l) = y(aoc)

and thus a oc is an integral curve of Y. Therefore Y is an abstraction of vector field X with respect
to a. D

Theorem 1 is important because it allows to check a condition on the vector fields rather than explic
itly computing integral curves and verifying Definition 6. However, a-relatedness of two vector fields
is a very restrictive condition which limits the cases where one dynamical system is an abstraction
of another. Fortunately, this is not true for control systems.

5 Abstractions of Control Systems

The notions of Section 4 for dynamical systems will be extended to control systems. We first need
to introduce some facts about control systems.

Definition 7 (Control Systems) A control system S = (B, F) consists of a fiber bundle n : B —¥
M called the control bundle and a smooth map F : B —¥ TM which is fiber preserving and hence
satisfies

tt' o F = ir

where it: TM —¥ M is the tangent bundle projection.



Essentially, the base manifold M of the control bundle is the state space and the fibers fl"-1(p) are
the state dependent control spaces. In a local coordinate chart (V,x), the map F can be expressed
as x = F(xiu) with u GU(x) = ir~1(x).

Definition 8 (Integral Curves of Control Systems) A curve c : I —¥ M is called an integral
curve of the control system S = (B,F) if there exists a curve c3 :1 —¥ B satisfying

7T o cB = c

J = c(l) = F{cB)

Again in local coordinates, the above definitionsimplysays that x(t) is a solution to a control system
if there exists an input u G U(x) = 7r_1(x) satisfying x = F(x,u). We now define abstractions of
control systems in a manner similar to dynamical systems.

Definition 9 (Abstractions of Control Systems) Let Sm = (Bm,Fm) with ttm ' Bm —• M
and Sn = (Bni Fn) with ttn : Bn —• N be two control systems. Let a : M —¥ N be an abstracting
map. Then control system Sn is an abstraction of Sm with respect to abstracting map a iff for
every integral curve cm of Sm, Qocm is an integral curve of Sn-

From Definition 9 it is clear that a control system Sn may be an abstraction of Sm for some
abstracting map a\ but may not be for another abstracting map a<i. Since the definition of an
abstraction is at the level of integral curves, it is clearly difficult to conclude that one control system
is an abstraction of another system by directly using Definition 9 since this would require integration
of the system. One is therefore interested in easily checkable conditions under which one system
is an abstraction of another. The following theorem, provides necessary and sufficient geometric
conditions under which one control system is an abstraction of another system with respect to some
abstracting map.

Theorem 2 (Necessary and Sufficient Conditions for Control System Abstractions) Let Sn
(Bn,Fn) and Sm = (Bm,Fm) be two control systems and a : M —¥ N be an abstracting map.
Then Sn is an abstraction of Sm with respect to abstracting map a if and only if

o* oFM o7rMl(p) CFNo irjf1 oa(p) (2)

at every p G M.

Proof: Before we proceed with the proof, we remark that condition (2) can be visualized using the
following diagram,

M -±¥ N

BM Bn (3)

FM[ [Fn
TM -^¥ TN

Then condition (2) states that in the above diagram the set of tangent vectors produced in the

direction (M ^4 Bm ^ TM ^ TN ) is a subset of the tangent vectors produced in the direction
(M A N *A BN 5 TN).



We begin the proof, by first showing that if a* oFm ° ^m C Fn onj^1 oa at every point p€ M then
Fn is an abstraction oi Fm- We will prove the contrapositive. Assume that Fn is not an abstraction
of Fm- Then there exists an integral curve cm of Fm such that a o cm is not an integral curve of
Fn- Therefore for all curves cjj : J —¥ Bn such that itn ° cjv = a ° cm we have that at some point
t*el

(aoCM)'(t*)?FN(CN(t*))

But since thisis true for all curves cjj satisfying itnocj(f) = aocM(**) and since itn isa surjection
we have

(a oCM)'(t*) # F^w^a ocM(t*))) =*
(a ocM)'(<*) g Fjv ott^1 oa ocm(**) =*
a* ocM*(t*)W ^FNonffoaocM(t*) =>
<x*°FMocM(t*) <?FNonNloaocM(t*) (4)

for some curve cM - I —• Bm such that ttm ° cM = cm- But then cM(t*) G 7TAf(cA/(^*)) =
TrMl oCA/(t*). Therefore, there exists a tangent vector l^(CM(r)) € 2a(cM(t"))-^> namely

such that

since cM{t*) Gtt^1 ocm(**) but

Ya(cM{t-)) =a*oFMo cM(t*)

Y*(cM(r)) Ga* oFM onMl ocM{t*)

yQ(cM(«•)) ^FNon^oaocM(t*)

by condition (4). But then we have that at cm(**) G M,

a* oFM ott^1 (cM(0) %FNo tt^1 oa(cM(**)) (5)

Conversely, we now prove that if Fn is an abstraction ofFm then a* oFm ° ^m —^ ° ^N1 ° a- We
will use contradiction. Assume that Fn is an abstraction of Fm but at some point p G M we have

a* ° Fm ° Tt~Ml(p) &Fn ° ""jy1 ° °(p)« Then there exists tangent vector Ya^,) GTQ(p)JV such that

Ya(p) e a*oFMo7r^(p) (6)
Yaip) I Fsoxj+oato) (7)

Since Ya^ G a* oFm ° ^^(p), we can write 1^) = a#(Xp) for some (not necessarily unique)
tangent vector Xp GFm ° ^(p). But since Xp GFm ° ^M'ip) *^en there exists an integral curve
cm : I —• M such that at some t* G / we have

cm(**) = P (8)

4/(0 = *p 0)

To see that such a curve exists assume that such an integral curve does not exist. But then for all
curves cm satisfying (8,9) and for all curves cff :I —¥ Bm such that itm °cJ = cMwe nave tnat

c'M(n ± FM(cM) *>Xp± Fm(cm) (10)



But since this is true for all such cff we obtain

which is clearly a contradiction. Therefore, an integral curve satisfying (8,9) always exists.

We know that Fn is an abstraction of Fm- Therefore by definition, for every integral curve cm of
FM,aocM must be an integral curveof Fn- Let cm be the integral curve satisfying (8,9). Then it
must be true that

(aocM)' = FAr(c&)

for some c$ : J —¥ Bn such that itn oc$ = a ocm- But at t* GI we have that

(a ocM)'(0 = a, ocM.(**)(l) = <**(XP) = YQ{p)

But by condition (7), Y^) &FNonN1oa(p) and therefore for all curves c$ satisfying 7r^ocf = aocM
we get

(c*ocMy(t*) = Ya(jt)tFN(cN(t*))

But then a o cm is not an integral curve of Fn which is a contradiction since we assumed that Fn
is an abstraction of Fm with respect to the abstracting map a. Therefore, at all points p G M we
must have a* oFm ° %' C Fn ° ^Jy1 ° ol. This completes the proof. •
Theorem 2 is the analogue of Theorem 1 for control systems. However, unlike Theorem 1 which
required the a-relatedness of two vector fields, Theorem 2 does not require the commutativity of
diagram 3. This is actually quite fortunate since, as the following corollaries of Theorem 2 show,
every control and dynamical system is abstractable by another control system.

Corollary 1 (Abstractable Control Systems) Every control system Sm — (Bm,Fm) is ab
stractable by a control system Sn with respect to any abstracting map a : M —¥ N.

Proof: Simply let Bn = TN and Fn : TN —¥ TN equal the identity. Then condition (2) is
trivially satisfied. Thus Sn = {Bn,Fn) is an abstraction of Sm- d

As a subcollorary of Corollary 1 we have.

Corollary 2 (Abstractable Dynamical Systems) Every dynamical system on M is abstractable
by a control system with respect to any abstracting map a : M —¥ N.

Proof: Every vector field X can be thought of a trivial control system Sm = (Bm,Fm) where
Bm = Mx{0) and Fm is equal to X o n. Then Corollary 1 applies. D

In local coordinates, Corollaries 1 and 2 simply state the fact that the behavior of any system can
be abstracted by a differential inclusion x G-Rn where x are the local coordinates of interest and n is
the dimension of manifold N. However, such an abstraction may not be useful in proving properties.
Therefore, it is clear that there is a notion of order among abstractions of a given system.

If one considers fiber subbundles A of the tangent bundle TN where at each q G N,

A(q) = FNoirN1(q)CTqN (11)

10



for a control system Sn —(Bn,Fn) then Theorem 2 essentially allows us to think of abstractions
of a given system Sm = (Bm, Fm) as subbundles A C TN that satisfy at each point pe M,

a*oFMOTrM1(p)CA(a(p)) (12)

and therefore capture all possible tangent directions in which the abstracted dynamics may evolve.
Note that A is not needed to be a distribution or to have any vector space structure.

It is clear from (11,12) that if A is an abstraction of a control system Sm then so is any superset
of A, say A and thus A is also an abstraction. But if A C A then a straightforward application
of Theorem 2 shows that A is an abstraction of A with respect to the identity map i : N —¥ N.
Therefore, any integral curve of A is also an integral curve of A but not vice versa. But since A has
captured all evolutions of Sm which are of interest, A can only contain more redundant evolutions
which are not feasible by Sm- It is therefore clear that A is a more desirable abstraction than A.
This raises a notion of order among abstractions.

Let Sm = (Bm, Fm) be a control system and an abstracting map a : M —¥ N be given. Let control
systems 5^ = (Bni,Fnx) and Sn2 = (Bn2,Fn2) be abstractions of Sm with respect to a. Define
at each q G N,

Ai(g) = ^o7r^(g)crgiV
A2(q) = FN2oirNl(q)CTqN

Then we say that Snx is a better abstraction than Sn2, denoted Sjva ^ Sn2 iff at each point p G M
we have

Ai(a(p))CA2(a(p)) (13)

It is clear that z< is a partial order among abstractions since the order is essentially set inclusion
at each fiber. The following Theorem shows that the resulting lattice has a diamond-like structure
since there is a unique minimal and maximal element.

Theorem 3 (Structure of Abstractions) The partial order ^ has a unique maximal and mini
mal element.

Proof: It is easy to see that the unique maximal abstraction is given by S = (TN, i) where i is the
identity map from TN to TN.

From condition (12) it is clear that it is clear that if

A1(q) = FNlo7rN11(q)CTqN
A2(q) = FN20 7r^2(q)CTqN

are abstractions of a control system Sm with respect to a then so is the control system A = Ai PI A2
where the intersection of the two bundles is defined at each fiber. It is therefore clear that the unique
minimal element of ^ is given by the intersection of all abstractions of Sm- But the intersection of
all abstractions can be seen from condition (12) to be the subbundle that satisfies

A(a(p)) = a, oFm o*j}(p) (14)

for every p G M. D

11



Therefore the best abstraction results in diagram (3) being commutative. Since the notion of f-
related vector fields was defined as vector fields satisfying commutative diagram (1), we extend this
notion for control systems by requiring that the control systems Sm and Sn make diagram (3)
commutative.

Definition 10 (f-related Control Systems) Let Sm = (Bm,Fm) with km • Bm —• M and
SN = (Bn,Fn) with itn : Bn —• N be two control systems and f : M —¥ N be a smooth map.
Then control systems Sn and Sm m* called /-related iff the following diagram

M -A N

BM Bn (15)

TM -^ TN

is commutative or equivalently iff at every point pG M we have /* o Fm ° % (p) = Fn °^n ° /(?)•

Therefore, Definition 10 and Theorem 3 simply state that the best abstraction of a control system
Sn is a-related to the original control system Sm-

Once a system abstraction has been obtained, it is useful to propagate properties of interest from
the original system to the abstracted system. For control systems, one of those properties is control
lability.

Definition 11 (Controllability) Let S = (5,F) be a control system. Then S is called controllable
iff given any two points pi,P2 G M, there exists an integral curve c such that for some ii,*2 £ I we
have c(ti) = p\ and c(t2) = P2-

Theorem 4 (Controllable Abstractions) Let control system Sn = (Bn, Fn) be an abstraction
of Sm — (Bm,Fm) with respect to some abstracting map a. If Sm is controllable then Sn is
controllable.

Proof: Let q\ and q2 be any two points on N. Then let p\ G a~l(q\) and P2 G a~l(q2) be any
two points on M. Since Fm on Bm is controllable then there exists an integral curve cm such that
cm(*i) = Pi and cm(*2) = P2- The curve a o cm satisfies a o cm(*i) = Qi and a o cm(<2) = 42- But
since Fn is an abstraction of Fm, then a o cm is an integral curve of Fn on Bn- Therefore, the
abstracted system is controllable. D

6 Issues for Further Research

In this paper, some preliminary results on abstracting dynamical and control systems have been
discussed. A notion of system abstraction has been defined and necessary and sufficient conditions
under which one system is an abstraction of another have been obtained. Furthermore, a notion of
order among abstractions was introduced by ordering the conservativeness of the given abstractions.
Finally, desirable system properties were found to propagate from original models to abstracted
models.
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Issues for further research include, on the theoretical front, obtaining better, less conservative ab
stractions. Better abstractions can be obtained by propagating to the abstracted models qualitative
aspects, such as stability, of the evolution of the ignored system dynamics. Furthermore, approxi
mate abstractions are also of interest. Approximate abstractions approximate integral curves of a
given system with some guaranteed margin of error. If the margin of error is acceptable then analysis
of the approximate system will be sufficient. Furthermore, propagating additional properties from
original models to abstracted models is useful in both system analysis and design.

Finally, the developments presented in this paper will be applied to various applications of interest.
Particular applications of interest include aircraft and automobile models.
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