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Abstract

Wirelessvideo transport is becoming a popular topic in current multimedia network

ing. Video services such as video conferencing, video broadcasting and video-on-de

mand in an wireless environment challenge the existing video compression standard

designed for wired, circuit-switch services.

Asynchronous Video Coding (ASV) was proposed as an efficient video compression

strategy for applications in wireless communication.^ ASV uses joint source channel
coding inconjunction with variable-QoS^16^ using a multiple-substream abstraction for
the transport. ASV tries to simultaneously achieve high spectral efficiency, good subjec

tive quality, and low perceptual delay. These features are especially important for a wire

less channel. By identifying packets to the transport with relaxing reliability and delay

requirements, the wireless transport can hopefullyachieve higher channel capacity than

existing video coding techniques.

We describe our software implementation of ASV algorithms in this report. Tech

niques involved include substream abstraction, vector quantization, fuzzy control, and

multiple codebooks design. The implementation strategy is described in full detail. Sim

ulation results are presented and compared. The direction of future ASV development is

also proposed.

The implementation is written in C programming language. Simulation on a SunSparc

20 workstation gives an encouraging result.
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Chapter One

Introduction

1.1 Overview of ASV

Theperformance ofconventional videocompression algorithms, which typically gen

erate a single bit stream with high reliability requirements, is severely compromised by

the high error-rate typical of an interference-dominated wireless access link. At the ex

penseof increasing end-to-end delay and channel bandwidth, sophisticatederror correc

tion/data retransmission schemes are often used to achieve high reliability. In contrast to

theseconventionalalgorithms, asynchronousvideo coding allows the receivingend to re

construct video asynchronously, thereby reducing an application's perceptual delay. This

project is motivated by the needs of wireless video applications with low delay require

ments, such as video conferencing, multimedia editing and interactive TV.

ASVcoding scheme is described in figure 1.1.ASV coding scheme includes four ma

jor parts: Video Frame Partition, Fuzzy Control, Vector Quantization and Transmission

1) Frame Partition segments each video frame into small blocks;

2) Fuzzy Control takes each block's fuzzified values of texture estimation, motion es

timation, as well as the feedback of rate monitor as its inputs. Based on user-defined fuzz-

ification rules, it outputs the codebook-selector and substream-selector to specify the

codebook and substream for the block;

3) Vector Quantization codes the block using a specific pre-designed codebook ac

cording to the codebook-selector. It can achieve compression ratio around 16:1;

4) Transmission packetises the codec data and transports the codec output along a
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ASVfor Wireless Communication Chapter 1 Introduction

Th asynchronous video coder segments its output data into multiple bit streams

(called substreams) based on motion and texture estimates. These substreams are trans

ported with different quality-of-service (QoS) requirements such as reliability and delay.

Blocksof the video presentation in low-motion areas are transported with relaxed delay

objectives, which can be exploited to achieve higher traffic capacity in the statisticalmul

tiplexing. Data in high motion areasis transported with released reliability requirements

than data in low motion areas, taking advantageof the masking effect that the motion af

fords. Overall, this approach affords the traffic-increasing benefits of joint source-channel

coding, while maintaining good system modularity through the substream transport ab

straction.

The bit rate of each substream, as a part of the QoS contract with the network transport

service, is used by the transport layer with other QoS parameters to allocate network re

sources. Rate control functions as a traffic-regulator in the video coder to make sure the

generated traffic does not violate its rate contract.The advantage of building the rate con

troller within the video coder rather than leaving the traffic shaping to the transport is

that the coder can adjust the bit rate of each substream with the objective of minimizing

the subjective impairment, while the transport must indiscriminately drop data resulting

in greater subjective impairment.

Using fuzzy descriptions for rate feedback and fuzzy descriptions for video character

istics provides a structured unified approach to build a knowledge-based coding system.

The motion and texture contents of video, which can be perceived by human visual sys

tem but are difficult to quantify, are fuzzified and expressed as linguistic variables.They

are jointly considered with rate feedback, based on the fuzzy rule base, to select quanti

zation levels and outgoing substreams of video blocks.

This report presents the software implementation of such an ASV coding system.
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1.2 Overview of thesis

In this thesis we describe the algorithm and implementation of a AsynchronousVideo

Application software in C programming language.

Chapter 2 is an introduction to the main techniques used in ASV. These techniques in

cludes Substream Abstraction, Vector Quantization(VQ), Fuzzy Logic Control Engine.

Chapter 3 introduces the detailed ASV coding and decoding schemes. We will discuss the

implementation of spacial partition, motion and texture estimation, codebook design,

fuzzy logic control and etc. Results of the simulation running on a SunSparc20 worksta

tion are shown in Chapter 4. Possible future directions of ASV implementing are pro

posed in Chapter 5.



Chapter Two

Techniques Involved in ASV

2.1 Substream Abstraction

Substream partition is the key feature of ASV. Motivated by the scant bandwidth and

high error rate of the wireless channel, joint source coding is desirable for the optimal

wireless transportation. A multiple substream abstraction for source traffic with different

delay, loss and reliability characteristics is proposed in ASVvideo application (Seefigure

2.1).

Source

High Motion Block

low delay, high loss

Medium Motion Block

Medium delay, loss

Low Motion Block

high delay, low loss

Transport Sink

Figure 2.1Joint video source coding with substreams and asynchronous reconstruction
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For a particular video stream, the transport provisionssubstreams (through a link-

layer protocol).Eachsubstream has a quality ofservice(QoS) specification of loss,corrup

tion, and delay characteristics.The QoS of the substreams are different, as negotiated at

session establishment. Video data is segmented into multiple substreams based on mo

tion and texture estimations. Blocks of the video with different motion and texture char

acteristicsare transported through differentsubstreams with various delay and reliability

requirement. Video data arrives at the receiverasynchronously due to the different delay

of substreams. We reconstruct the data asynchronouslyby updating the most recently re

ceived block and throwing away the stale data which violates ordering of arrival con

strains.

In the absence of substreams, the delay characteristics of all the data in a continuous-

media stream is the same. With substreams, on the other hand, data can be segregated

into parts with different delay characteristics, and the network can exploit the relaxed de

lay constrain of some substreams to achieve higher overall traffic capacity. Substreams

are helpful in obtaining high traffic efficiencyin networks with wireless access links.

2.2 Vector Quantization

The compression method used in ASV is Vector Quantization(VQ). ASV has the ob

jective ofhigh error tolerance rate to10"2 to10"3 bit/sec, which isdesired inawireless ac
cess environment. The current video compression method MPEGl and MPEG2 are

unsuitable for a wireless environment due to their low error tolerance rate of 10"8 to 10"12

bit/sec.

Vector quantization^10^ is an extension of the scalar quantization to the multidimen
sional form. It is a mapping of an input vector X,onto a representative vector Yin a code-

book according to some distortion criterion, d(X,Y). For images, X is generally a two-
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dimensional(2-D) nonoverlapping block of pixels of dimension K. In ASV,VQ vector size

is 4x4 pixels. The encoder generates the index;', such that

</(x,y,)<d(x,yf-), i = 1,2,...,L, i*j (1)

where Yj is the zth codevector of the codebook of size L. The distortion measure used in

ASV is the square error distortion given by

K-\

2 v^ ,„ ,, ,2d(X,Y) = \\x-y\r = Z.&J-YJ)
j = 0

(2)

Figure 2.2 shows the general VQ applied in image/video compression.

Coder

Blocked Vectors

(4x4 pixels)

/
/

r

'
•

-

Decoder

[Table Output

)Index of best

Codeword

1lookup
(4x4 pixels

\

\

1
i
I Codebook I

Figure 2.2 Vector Quantization for video compression

To make rate control feasible, multiple codebooks are designed in ASV to achieve scal

able resolution level as well as bit rate of the transport. Codebooks of different sizes are
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designed in this implementation. The detail of such codebook design will be covered in

section 3.2.7. The compression ratio of vector quantization is about 16:1.

2.3 Fuzzy Logic Control System

Afuzzy logic system (FLS)'2^ is unique in that it is able to simultaneously handle nu
merical data and linguistic knowledge. It is a nonlinear mapping of an input data (fea

ture) vector into a scalar output, i.e., it maps numbers into numbers. Fuzzy set theory and

fuzzy logic establish the specifics of the nonlinear mapping.

Figure 2.3 depicts a FLS that is widely used in fuzzy logic controllers, signal process

ing and communication applications. A FLSmaps crisp inputs into crisp outputs. It con

tains four components: rules, fuzzifier, inference engine, and defuzzifier. Once the rules

have been established, a FLScan be viewed as mapping from inputs to outputs (the solid

path in Fig. 2.3, from "Crisp Inputs" to "Crisp outputs").

Fuzzy Logic System (FLS)

Rules

Crisp |
Inputs| i

} 1

| Crisp
• Outputs

Fuzzifier Defuzzifier

i \

Infe

En;
rence t

Fuzzy input sets
rine

F uzzy output sets

Figure 2.3 Fuzzy logic systems (FLS)
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In ASV the rate control, substream abstraction and codebook selection are controlled

by the fuzzy logic system. The crisp inputs of this FLS are the motion estimation, texture

estimations of video blocks, as well as the transportbit rateon each substream. The crisp

outputs are the substream selector and codebook selector. The inference engine fuzzy

rules are user defined principles which define the mapping of the fuzzy input set and

fuzzy output set. The detailed implementation of this fuzzy logic control engine will be

described in section 3.2.5.



Chapter 3

ASV Coding

3.1 Overview of ASV Codec

The scheme works in the following way: First,we block scan each video frame raw da

ta. Each video frame is partitioned into small blocks of 8x8pixels. Then we apply motion

estimation and texture estimation to these blocks. After the fuzzifier, the fuzzified results

from the two estimations are fed into Fuzzy Control Engine along with the rate informa

tion from the rate monitor (which traces the traffic on each transport substream). The

fuzzy control engine then outputs two control-signals, codebook selector and substream

selector, to select the codebook and substream for each video block. Each step will be dis

cussed in detail in the following sections.

For the convenience of the reader, the diagram of overview of ASV coding scheme is

quoted again in this section in Figure 3.1. (Note this figure is the same as Figure 1.1).

10
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ASVfor Wireless Communication Chapter 3 Implementation ofASV

3.2 Implementation of ASV coder

In this section,we describe our software implementation of the ASV coder.

3.2.1 ASV Coding Flow Chart

Figure 3.2 shows the ASV coding flow chart.

Mpeg Movie
*

Decode MPEG

I L, Cr, Cb Image
Resize Frame

1 L= 128x240 Cr,Cb =64x120
Color Space Conversion

Raw Video Datain VQ format (Y, I, Q)
Spacial Partition

480 8x8 blocks / fr

n — block id

for n = 0, n < 480?, ++n

No

Luminance based
Motion & texture detection

Fuzzy Control

i
Codebook & Substream Selection

T
ASV Video Packetizaion

ASV Video File

i Feedback from

Rate Control Module

Figure 3.2 ASV coding flow chart

12
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3.2.2 Mpeg to VQ Transcoding

Mpeg to VQ transcoding includes color space transformation and frame resizing.

Color space transformation

The source stores video in the MPEG format. Therefor, before we can apply ASV cod

ing scheme, we need to transcode the video from MPEG format to VQ format.

There are many representations of color images. According to trichromatic theory,

ideally, three arrays of samples should be sufficient to represent acolor image'12l RGB is
one example of a color representation requiring three independent values to describe the

colors. Each of the values can be varied independently, and we can therefor create a three-

dimensional space with the three components, R, G, and B, as shown in Figure 3.3. Note

that shades of gray from black to white are found on the diagonal line in this plot. In gen

eral pixels in a color image have information from the samples of each component, and

the color image is compromised of the two-dimensional arrays of pixels.

Line where R=G=B (Gray values)

R.

White

Black

B

Figure 3.3 RGB (red-green-blue) color coordinate system.

Colorrepresentationsuch as RGB isnot alwaysthe most convenient. A colorspaceor

colorcoordinate system in which one component is the luminance and the other two com

ponents are related to hue and saturation is called luminance-chrominance

representations. The luminance provides a grayscale version of the image, and the

13
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chrominance components provide the extra information that converts the grayscale im

age to a color image. Luminance-chrominance representations are particularly important

for good image compression. Both MPEG and VQ use this lurnmance-chrominance rep

resentation except for different coefficients.

In MPEG, the colorspace representationis LCrCb. LCrCbwas used extensively in the

development of the JPEG and MPEG standard. It defines:

R = L + 1.402x(Cb- 128)

G = L-0.344x(Cr-128)-0.174x(Cj,-128)

B = L+ 1.772x(Cr- 128)

Vector Quantization uses a different color space known as YI Q. YIQ is used in the

North American television systems. It defines (here using Info-pad as an example):

R = Y + 1.188 x (/- 128) + 0.719 x(Q- 128)

G = Y - 0.328 x (/- 128)- 0.750 x (Q -128)

B = Y- 1.375 x (/- 128)+ 1.969 x(Q- 128)

Thus, overall we have

Y = L

I = -0.384 x Cr+0.831 x Cb +70.784

Q = 0.630 x Cr+0.583 xCb-27.264

as the color space transformation.

Frame Resizing

The frame size of MPEGvideo varies. In Infopad, the display terminal can only accept

video fixed to an image size of 128x240. Consequently,we need to resize the sourcevideo

frame before applying ASV coding.

14
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The C program function"rescale_image()" is called to implement this image resizing.

/*

* rescale_imageis
* Called to rescale an image from one size to another
* using precomputed image rescale aux buffers

* Results:

* Destination image is computed.

* Side effects:

* None.
•

*/

void rescale_image(src__image, dst_image, ri, src__x_offset,
src_y_offset, dst_x__offset, dst_y_offset)

unsigned char *src_image;

unsigned char *dst_image;

Rescalelnfo *ri;

int src_x_offset, src_y_offset;

int dst_x_offset, dst_y_offset;

{}

For data structure of "Rescalelnfo", see appendix A.

After transcoding, the raw video data of each frame in YIQ color space is stored in

three buffers which store Y, I, Q respectively:

static u_char *L_Y_scaled_buf;

static u_char *Cr_I_scaled_buf;

static u_char *Cb_Q_scaled_buf;

In general, the chrominance data are not as important as the luminance data. Thus,

the resolution of I and Q is half of Y, which means that the buffer size of I and Q are one

quarter of the size of the Y buffer.

75
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3.2.3 Spacial Partition

One of the main procedures in ASV coding is the spacial partition. After transcoding

from MPEG, each frame is partitioned into small 8x8pixels blocks on which motion and

texture estimation will be applied. These blocks are called a "Video Block". They are de

scribed by data structure as follows:

struct Video_Block {

int substream_id; /* substream id */

int temp_loc; /* temporal locator */
int cs; /* codebook selector */

int x_loc; /* horizontal locator */

int y_loc; /* vertical locator */

unsigned char Y[BLOCKSIZE][BLOCKSIZE]

unsigned char I[BLOCKSIZE][BLOCKSIZE]

unsigned char Q[BLOCKSIZE][BLOCKSIZE]

/* Y data */

/* I data */

/* Q data */

The substream id identifies the substream along which the block will be transported.

The temporal locator indicates the time stamp of the motion block. Codebook selector

specifies the codebook to be used in vector quantization. Also, horizontal and vertical lo

cator are the ordinate of the video block.

After spacial segmentation, the results are ready for motion and texture estimation.

3.2.4 Motion Estimation and Texture Estimation

Human eye has the characteristics of a lowpass filter in the temporal domain, and a

bandpass filter in the spatial domain^. Theses visual characteristics are applied inour
ASV coding scheme.

16
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Perception of temporally changing stimuli isextremely important in interframe cod

ing. The sensitivityofhuman eye depends onthedegree ofdetail in imageblocks. Human

eye has thecharacteristic of low pass filter on the temporal domain, and the filtering ef

fects arestronger in thelower spatial frequency region than in thehigherspatialfrequen

cy region. That is, human eye hardly senses the image quality in the higher spatial

frequency region at low frame rate.

Meanwhile, edges are very important in the perception of image quality. Human eye

isverysusceptible to the degradation along edges, e.g., edgejaggedness. Thehuman eye,

whichcanbe viewedas a bandpass filter on the spatialfrequency axis, has different peak

frequency and passbanddependingon the moving speedof the imageblocks. As the ve

locity of an object becomes greater, the peak frequency approaches zero and the relative

sensitivity decreases. In otherwords, coarse resolution is permitted in the blocks where

movements are relatively large.

Consideration of these human visual characteristics enables us to use the mixture in

formation of motion estimation and texture estimation as factors of tuning the video block

resolution level.

1) Motion Estimation

Motions are classified into three motion levels: No Motion, Low Motion and High Mo

tion, which correspond to specific substream and codebook. The result of motion level

classification is then fed into the fuzzifier to obtain the motion-fuzzified value of each vid

eo block, which will be the input to the Fuzzy Control Engine. Due to human eye charac

teristics, high motion blocks can use coarse resolution coding, while lower motion blocks

require finer resolution coding.

17
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Another consideration is that if a video block is detected as no motion, we can use the

block of the same spatial location in the previous frame to display it. Thus we can save

coding time as well as the transmission bandwidth by skipping the no motion blocks of

each frame. In ASV we update a no motion block every 10frames if motion is consistently

detected.

Motion classification is performed similarly to interframe motion compensation (See

figure 3.4).

Previous Frame *- Current Frame

Figure 3.4 Interframe Motion Estimation

For each video block in the current frame, we compute the Local Minimum Absolute

Error of this block and the position-shifted blocks in the previous frame within 24x24 pix

els area. The motion level is detected based on the location where the error is below cer

tain threshold, as well as the value of this error. If the error is detected within 10x10 pixels

area in the previous frame, the block is then classified as No Motion block. If it is detected

within 24x24 pixels area, then it is a Low Motion block. If the detection fails within 24x24

pixels area, then it is a High Motion block.

Figure 3.5(a) and 3.5(b) show the distribution of absolute error and distance while run-

18
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ning frames of test video sequence Michael Jackson.

Motion estimation: distribution of absolute errors

15
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Figure 3.5(a) Distribution of absolute errors while running MJ video sequence

Motion estimation: distribution of distance
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Figure3.5 (b) Distribution of distance while running MJ video sequence
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The Motion Fuzzifier is applied after motion classification to compute the fuzzy

value of each video block. The fuzzified values of each block will be fed into the Fuzzy

Control Engine to determine the substream ID and codebook selector. We fuzzify the mo

tion information into fuzzy sets based on the distance of which the absolute value is be

low the threshold as well as the error itself. In order to reduce time needed to perform

computations, a precalculated square value of distance is used rather than the distance

(xCur-xPrev)2 +(YCur- YPrev)2 itself to avoidthesquarerootcomputation. Thefuzzysetsofall

the blocks in a video frame are stored in an arrayfuzzifled_motion[row][column][3J where:

*[0] —stores the fuzzy value of no_motion;

*[1] —stores the fuzzy value of low_motion;

*[2] —stores the fuzzy value of hi_motion;

Each element of fuzzified_motion value is calculated in the following way: for the

motion level of each video block, if the error close to the upper bound of threshold, we

compare the error with the 80% threshold. If the error is close to the lower bound, we

compare it with 20% threshold. Then use the interpolation to calculate the percentage of

each fuzzified value. Figure 3.6 shows

fuzzified_motion value

No Low High

min_err & dst

Figure 3.6 Motion fuzzifier

See appendix B motion_estimaition() for commented source code.

20
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2) Texture Estimation

Three texture levels are defined in ASV: High Texture, Medium Texture, and Low

Texture. We use the edge detection schemes to estimate texture information. Foreach pix

el, we calculate the standard deviation of Luminance difference between this pixel and its

neighborhood in the same frame as a criteria. The more edges are detected, the more tex

ture information the block contains. Blocks with high and low texture information may

be coded in lower resolution without significantlyaffecting subjective video quality due

to human eye characteristics.

After edge detection, we fuzzify the texture informationinto fuzzy sets and store the

value of in an array fuzzihed_texture [row] [column] [3] where:

*[0] —stores the fuzzy value of low_texture;

*[1] - stores the fuzzy value of medium_texture;

*[2] —stores the fuzzy value of high_texture;

Figure3.7 shows the texture fuzzifier.

fuzzified_textiire value

Low Medium High

std_div

Figure 3.7Texture Fuzzifier

3.2.5 Fuzzy Logic Control Engine

Fuzzy logic ControlEngineof ASV takesthe output of motion/texture estimation and

rate module as its input fuzzy sets, applies the user defined fuzzy rules, and determines
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the fuzzy setoutputs.After defuzzification, it gives the crisp output of codebook selector

and substream selector.

Table 3.1 describes the rules for determining the codebookand substreamselectors of

the fuzzy logic engine.

Table 3.1: Rules for the Fuzzy Logic Engine

^vMotion

Texture^s^
High Low

No

(when refreshing)

High coarse resolution,

low-delay substream
normal resolution,
medium-delay substream

normal resolution,
high-delay substream

Medium medium resolution,
low-delay substream

fine resolution,
medium-delay substream

fine resolution,
high-delay substream

Low coarse resolution,
low-delay substream

normal resolution,
medium-delay substream

normal resolution,

high-delay substream

The fuzzy rules in ASV implementation are also described in figure 3.8.

Low

3fc?*

High

Sugges ted Rate

Figure 3.8 Fuzzy rules for fuzzy logic inference engine
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We use VQ codebook of size 128 for coarse resolution, size 256 for normal resolution

and size 512 for fine resolution. The design of these VQ codebooks are described in the

next section.

3.2.6 Multiple Codebook Design

In ASV, vectorquantizationis used to performvideocompression. Toachieve adjust

able resolution level and scalabletransmission rate, multiple codebooks are designed us

ing the Predictive Classified Vector Quantization (PCVQ) method1111. We use
predesigned codebook to avoid codebook transmission and to save valuablebit rate. In

addition, the code vectors in the codebooks are arranged in an intelligent way to allow

fast searching. Each 8x8 pixels video block uses thesame codebook determined by code

book-selector fromthe FuzzyLogic Engine. ThesizeofVQvectoris4x4. Thus,eachvideo

block contains 4 codewords.

In PCVQ, the classification informationis predicted depending on a classification pro

cesscalled the Hadamard transform. Sucha design of codebooknot only classifies vector

into shade and edge class,but also determines the orientation of the edge.

The Hadamard Transform Classifier (HTC) uses the Hadamard matrix H. A Hadama

rd matrix is characterizedby an orthogonal matrix consistingof elements with values of

1 and -1 only. A Hadamard matrix of order 4 is used in the design of codebooks:

H =

1111

1 1-1-1

1-1-1 1

1-1 1-1
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The Hadamard transform of an image vector X (i.e., 4x4 pixels) is given by

F = HXH=

/ft) /oi /02 /03

/lO f\l fl2 /l3

/20 /21 /22 fl3

/30 Al ^32 /33

(2)

The first coefficient}qq gives the mean intensity of the vector while the rest of the co

efficients indicate the strengths of the different transitions occurring in the vector X. In

general, the histograms of the coefficients other than those along the first row and first

column are insignificant and can be ignored. The remaining coefficients indicate transi

tion horizontally, via,/0I,/02 andf03, and vertically, via,/02,/02,/o3.

In designing HTC, two arrays Fh = [/0I, /02, /03] and Fv = [/10, /20, f30] are

formed. Define Vector E is as:

where

= aK + e,

_ tMAX[\Fh(j)\)
£h " \-MAX[\Fh(j)\]

if

if

FhU)>0

Fh(j)<0

(MAX[\Fv(j)\]
*v ~\-MAX[\FvU)\)

if

if

Fv(j)>0

Fv(j)<0

(3)

(4)

(5)

E is plotted on the vector space diagram in figure 3.9. It is used to determine whether

a 4x4 pixels block is a shade or an edge vector. In figure 3.8, the eight edge orientations

are defined. Note that the arrowpointstowardthe direction of transition fromlow to high

intensity. The decision rules for shade and edge vectors are:
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a) X is classified as a shade vector if IEI < Th, where Th is a threshold.

b) X is classified as an edge vector if IEI > Th, and its orientation is determined by

the decision region, Rn, n = 1,2,...,8, where it is located as shown in figure 3.9.

Figure 3.9 Decision regions of HTC

Mean Classification is applied to further classify the shade and each edge orientation

class. The shade class is subdivided into 32 mean classes. And for each of the 8 edge ori

entation classes, 8 mean classes are allocated. Less number of mean classes are allocated

to the edge classes because of the smaller population of edge vectors. The mean classifi

cation of the shade and edge vectors is shown in table 3.2.Note that the distribution of the

mean classes for the edge class is nonuniform.
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Table 3.2

Mean Classification

Mean Intensity Range

Edge Class Shade Class

0-47 0-7

48-79 8-15

80-103 16-23

104-127 24-31

128-151 32-39

152-175 40-47

176-205 48-55

206-255 56-63

- 64-71

- 72-79

- etc.

Mean Class

0

1

2

3

4

5

6

7

8

9

etc.

Three codebooks of size 128,256 and 512are designed using PVCQ and Mean Classi-

fication.Table 3.3 shows the construction of each codebook.

Table 3.3: Construction of codebooks

Codebook

Size

# of shade

codevector

# of edge
codevector

128 32 96

256 64 192

512 64 448

Figure 3.10(a), (b) and (c) show the codebooks of size 128, 256 and 512 respectively

(codebooks are displayed in Sun Raster format).
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Figure 3.10(a) Codebook of size 128

Figure 3.10(b) Codebook of size 256
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Figure 3.10(c) Codebook of size 512
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3.3 ASV File Format

The ASV video file consists of codebooks and codewords of each frame in a video se

quence. Three codebooks are sitting at the top of the ASV file with size of 128,256 and 512

respectively. Each frame is separated by a frame breaker mark. Each frame contains video

blocks with structure Video Blocks.

struct Video_Block {

int substream_id;

int temp_loc;

int cs;

int x_loc;

int y_loc;

/* substream id */

/* temporal locator */

/*codebook selector */

/* horizontal locator */

/* vertical locator */

/* Y data */unsigned char Y[BLOCKSIZE][BLOCKSIZE]
unsigned char I[BLOCKSIZE][BLOCKSIZE]

unsigned char Q[BLOCKSIZE][BLOCKSIZE]

};

The header of the VQ file has the structure as follows:

#define VQ_MAGIC_NUM 0x49505651

#define CODE_VECTORS 896

#define VECTOR_BYTES 16

/* All numbers should be in net order */

typedef struct _VQ_file_header {

u_long magic_number;
u_short major_version;

u_short minor_version;

u_long width;

u_long height;

u_long frame_size;

u_long codebook_entries;

u_long codebook_entry__size;

u_long frames_per_sec;

u_long extra__data_len;

} VQ_file_header;
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3.4 Implementation of ASV decoder

In this section we describe our software implementation of the ASV decoder.

3.4.1 ASV decoding flow chart

Figure 3.11 shows the ASV decoding flow chart.

ASV File

Depacketization

I
Video Blocks Codebooks

video data in YIQ format

Color Space Converter
YIQ ==> LCrCb

1 video data in LCrCb format

To MPEG PLAER

Figure 3.11 Decoding flow chart
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3.4.2 ASV Decoding Scheme

At the receiver, the MPEG player is used as a facility to play back the video sequence.

Whenever the VQ file arrives, the decoder depacketises the file, stores the codebook into

memories for table look up, and decodes all video blocks in each frame. After that, color

space transformation is applied again to transform the YIQ VQ format to LCrCb MPEG

format to enable the MPEG play back.

Overall ASV is a front end transparent application. It provides good subjective video

quality over a wireless access environment with perceptual low delay and high traffic ca

pacity.
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Chapter 4

Simulation Result

We have tested ASV with different video sequences. Currently, the real-timecoding

and decoding speed is about 7 frames /sec on a SunSparc 20workstation. While the speed

of playing back an ASV file is over 30 frames/sec.

The results of two testing MPEG video sequences, Jets and Michael Jackson, coded

with MPEG and ASV, are compared in figure 4.1. Due to the vector quantization algo

rithm used by ASV, the block effect is hard to overcome. We can see in JETS video se

quence some of the edge information of the plane wings is lost in vector quantization.

Figure 4.2shows the traffic along different substreams, low delay, medium delay and

high delay respectively, of testing sequence Michael Jackson. The high motion portion of

the frame is sent along the low delay substream to achieve perceptual good subjective

video quality, while low motion portion of the same frame is transported along high de

lay substream to reduce the traffic load of the transport layer. These results are consistent

with the goal of ASV.

The simulation results of this first software implementation of ASV are encouraging.
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Fig. 4.1(a) JETS in MPEG Fig. 4.1(b) JETS in ASV

Fig. 4.1(c) MJ in MPEG Fig. 4.1(d) MJ in ASV

Figure 4.1 Comparison of MPEG Video and ASV Video
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Fig 4.2(a) MJ in ASV display Fig4.2(b) MJ Low Delay Substream

Fig 4.2(d) MJ High Delay SubstreamFig. 4.2(c) MJ Medium Delay Substream

Figure 4.2 Substreams of MJ Video Sequence
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Chapter 5

Conclusion

We have done a implementation of the ASV concept. The simulation results show that

the ASV has potential for wireless video transportation.

The current real time coding speed is about7 frames per second.Thebottleneck of the

processing speed is the motion estimation part. We have put much effort into reducing

the computation time. A possiblesolution (not tried yet) is to take advantage of the mo

tion vector information in MPEG source code to avoid major part of motion estimation

computation.

The block effect of the video display is subjective impairment in the vector quantiza

tion compression method. Though we could have use another sophisticated VQ method

to train the codebook, yet such VQ requires codebook transmission which will consume

large amount of bit rate, thus it is considered not suitable for wireless communication en

vironment. Possible solution for improving subjective video quality is to perform sub-

band coding^16' vector quantization which uses DCT transformation information. Video
quality may be improved with the expense of computing overhead.

Further working can be focus on packetization to reduce transmission rate. Also

merging the ASV application into network where rate control (or rate policing) and/or

power control^ are provided, is challenging butworth trying.

Our ASV implementation and simulation results shows that ASV is a good applica-
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tion for wireless video communication. We look forward to the extension of the current

ASV implementation with the hope of providing a valuable wireless video communica

tion technique.
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Appendix A

Listing of Data Structures

% Video Block Data Structure

struct Video_Block {

int substream_id;

int temp_loc;

int cs;

int x_loc;

int y__loc;

/*

/*

/*

/*

/*

substream id */

temperal locator */

codebook selector */

horizontal locator */

vertical locator */

};

unsigned char Y[BLOCKSIZE][BLOCKSIZE]

unsigned char I[BLOCKSIZE][BLOCKSIZE]

unsigned char Q[BLOCKSIZE][BLOCKSIZE]

/* Y data */

/* I data */

/* Q data */

% Rescalelnfo —used in resizing image.(3.2.1)

/* Rescalelnfo is all of the aux info needed to do fast rescaling */

/* of an image from the original mpeg sized image to a reduced VQ */

/* image. There is one per transformation - i.e. one for the L-Y */
/* rescaling and one for the CrCb->IQ transformations. */

typedef struct {

/* orig_width, orig_height, scaled_width/ scaled_height are
* the dimensions of the original and scaled images */

int orig_width;

int orig_height;

int scaled_width;

int scaled_height;

/* orig_bytes_per_line and scaled_bytes_per_line allow

* selecting parts of the source and scaled image for

* zooming and padding*/

intorig__bytes_per_line;

intscaled_bytes_per_line;

/* x_orig2scaledlinebuf is used if the original width is
* larger than the scaled width. It maps from the X coord

* in the original image into the element in linebuf which

* corresponds to the scaled image position. It will be
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* used to select into which linebuf bin each original

* pixel goes */

int **x_orig2scaledlinebuf;

/* x_scaled2origoffset is used if the original width is smaller
* than or the same as the scaled width. It maps from the

* scaled X coord to the original's x coord. It will be used
* to select from which original pixel each linebuf pixel
* comes */

int *x_scaled2origoffset;

/* linebuf is where the X size-scaled array is kept. It is
* the sum of all of the pixels falling into it from all of
* the unsealed rows corresponding to the current scaled pixel.
* If the original height is smaller than this just collects
* for one original row. */

int *linebuf;

/* x_scaled2val_scale_large and x__scaled2val_scale_small

* are used to map from the shifted line_buf value which range
* from 0 to 511 into pixel values ranging from 0 to 255.

* For each scaled bin they point to one of the four xval_scale

* arrays. x_scaled2val__scale_large is used if the original
* height is smaller or equal to the scaled height or if
* the original height is larger but this scaled y corresponds

* to the larger of the y quantization steps.

* x__scaled2val_scale_small is used if the original
* height is larger and this scaled y corresponds

* to the smaller of the y quantization steps. */

u_char **x_scaled2val_scale_large;

u_char**x_scaled2val_scale_small;

/* orig_rows_per_scaled_y counts how many source rows correspond
* to the current scaled row. If the source height is larger

* then this will determine how many rows to collect. If the
* source height is smaller then it will say 1 to get new
* values or 0 to skip. In this case the first entry will

* always be 1. The sum of the values will always be

* the source image height. */
int *orig_rows_per_scaled__y;

/* The value for the smaller rows just for quickly determining
* whether to use small or large arrays */
intsmall_rows__per_scaled_y;
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/* xval_scale holds the scale values pointed to by

* x_scaled2val_scale_large and x_scaled2val_scale_small

* There are 4 arrays of 512 values */

u_char xval_scale[512*4] ;

/* shift_bits_large_y and shift_bits_small_y are the number
* of bits to shift to get the value into 0..511 range before

* indexing into the scale array. They are indexed by
* scaled X column */

int*shift_bits_large_y;
int*shift_bits_small_y;

} Rescalelnfo;

% VQ File Header

typedef struct _VQ_file. .header {

u_longmagic_number;

u_shortmajor__version ;

u_shortminor_version;

u_longwidth;

u_longheight;

u_longframe_size ;

u_longcodebook_entries;

u_longcodebook_entry_size;

u_longframes_per_sec;

u_longextra_data_len;

} VQ_fi1e_header;
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