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Abstract. We model a steam-boiler control system using hybrid au
tomata. We provide two abstracted linear models of the nonlinear be
havior of the boiler. Fur each model, we define and verify a controller
that maintains the safe operation of the boiler. Tht less abstract model
permits the de.«icn of a more efficient controller. We also demonstrate
how the tool II v J Lch can be used to automatically synthesize control-
parameter constraints that guarantee the safety of the boiler.

1 Introduction

A description of an industrial steam boiler has been proposed as a benchmark
problem for the formal specification and verification of embedded reactive sys
tems [1, 2]. Our approach to the problem is unique in that we use algorith
mic techniques to analyze directly, without discretization, the mixed discrete-
continuous components of the system. In this way we are able to fully auto
matically synthesize safe values for the parameters that control the continuous
behavior of the boiler.

We describe the steam boiler and its controller using hybrid automata [4, 3].
These automata model nondeterministic continuous activit >< ithin a nondeter-

ministic discrete transition structure. Since the nonlinr; ;\ ior of the steam-

boiler system is not directly amenable to automati. .'•>sis, we provide an
approximating model using linear hybrid automata Li;;- -ir hybrid automata are
a subclass of hybrid automata with linearity restrictions on continuous activities
(inequalities between linear combinations of first derh uives) and discrete transi
tions (inequalities between linear combinations of transition sources and targets).
Model-checking based analysis techniques [5] for this subclass have been imple
mented in HyTech [16, 17] and used to verify numerous distributed real-time
systems [14, 19]. Borrowing ideasfrom the field of abstract interpretation [9, 15],
we choose our approximations such that if a desired property holds for an ap
proximating linear automaton, then it holds also for the original nonlinear au
tomaton.

* This research was supported in part by the ONR YIP award N00014-95-1-0520, by
the NSF CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the
AFOSR contract F49620-93-1-0056, and by the ARPA grant NAG2-892.



We also take algorithmic analysis a step beyond the checking of system prop
erties. Given a parametric description of a controller, we use HyTech to au
tomatically synthesize constraints on the safe values for the control parameters
[6, 10]. These constraints are necessary and sufficient for the correctness of the
approximating linear automaton, and because of our choice of approximations,
they are also sufficient (though not necessary) for the correctness of the original
nonlinear automaton. More accurate approximations thus provide less restric
tive constraints on the controller, which can be used to control the system more
efficiently.

Steam-boiler description. The steam boiler consists of a water tank, four
pumps, and sensors that measure the pumping rates, the steam evacuation rate,
the water level, and the operational status of each component (see Figure 1). The
entire physical system operates under the guidance of a controller. The controller
must keep the water level between the extreme values M\ and i\/o at all times,
and it should try to keep the water level between the normal operating levels
of A^i and N? as much as possible. All communication between the controller
and the physical plant occurs in discrete rounds, once every A seconds. In each
round, all units send information to the controller, and the controller responds
by sending messages to the units. All communication is assumed to take place
instantaneously.

The controller operates in five modes: initialization (waiting for the steam
boiler to signal its readiness for operation), normal, rescue (the water-level sensor
has failed), degraded (other components have failed, but the water-level sensor is
working correctly), and emergency stop. In the initialization mode, the controller
receives a signal that the boiler is ready, and then tests the amount of steam
escaping from the boiler. If this is nonzero, it enters the emergency stop mode.
Otherwise, it cither drains the water level to Ar2 or activates a pump to raise the
water level to N\. Once the range of normal water levels has been reached, the
controller sends a signal to the physical units, waits for acknowledgements, and
then proceeds with normal operation. In normal mode, the controller makes its
decisions to turn pumps on or off based on the current water level, the states of
the physical units, and the rate at which steam is being emitted. No action is
taken if the water level lies in the range [N\, Aro]. In degraded mode, some unit,
other than the water-level sensor, has failed. Messages are sent to repair the
faulty components, and the controller attempts to maintain correct water levels
with the operational components. The reader is referred to [2] for a description
of the rescue mode.

Our goal is not to provide a detailed model of the message passing between
system components and the controller; to do so would result in state explosion.
Rather, we focus on the high-level interactions between discrete control deci
sions and the continuous aspects of the underlying physical plant. To this end,
we restrict most of our discussion to two fault-free pumps in normal operating
mode. This simplifies the discrete control space of the system and allows us to
concentrate on the continuous evolution of variables modeling the water level,
steam and pumping volumes. Only in a later section do we briefly consider four
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Fig. 1. Overview of the steam boiler

pumps and a simple fault-tolerant system with a degraded mode.
Steam-boiler analysis. We provide two models of the system, at two differ
ent levels of abstraction. For each model, we design controllers that ensure that
whenever all physical components operate correctly, then the water level is main
tained within the desired bounds, and the emergency stop mode is never entered.
Our controllers rely on sensor values to determine how many pumps should be
operating. The simpler the model of a system, the more complex the questions
we are able to answer using HyTech. Our first model ignores all information
about the second derivative of the steam output. For this simple model, we pro
vide a controller whose decisions are based solely on the water level. We verify
the controller, determine the minimal and maximal water levels that can occur,
determine a safe upper bound on the time period A that separates consecutive
rounds of communication, and determine constraints on the water-level thresh
olds that triggerdecisions to turn a pump on or off. All of this isdone completely
automatically using HyTech.

The simpler the model, the more extraneous behaviors it admits. There
fore, a simple model may lead to an unnecessarily restrictive choice of control-
parameter values such as water-level thresholds. Our second model achieves a
closer approximation of the original system by taking into account the steam
rate at the beginning and end of each round, and inferring bounds on the steam
volume emitted during a round. A controller that utilizes this information is
strictly superior to the previous one in that it requires the pumps to be on less
often, while still maintaining the required water levels.
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2 Hybrid Automata

We define hybrid automata, which are used to model mixed discrete-continuous
systems [4]. Informallv. a hybrid automaton consists of a finite set A' of real-
valued variables and a labeled multigraph (V, E). The edges E represent discrete
transitions and are labeled with guarded assignments to A". The vertices V rep
resent continuous activities and are labeled with constraints on the derivatives
of the variables in A'. The state ofthe automaton changes either instantaneously
through adiscrete transition or, while time elapses, through a continuous activ
ity. We use the pump automaton in Figure 2as an example accompanying the
formal definition.

2.1 Definition

Given a set A' of variables, a predicate over A' is a boolean combination of
inequalities between algebraic terms with free variables from A'. Ahybrid au
tomaton A consists of the following components.
Variables. A finite ordered set X = {xu...,xn) of real-valued variables, and
a subset V= {t/i,. ..,yk) QA' of controlled variables. For example, the pump
automaton has two controlled variables, p, and c,, representing the pumping
volume and a clock. A valuation isa point a = (ax,..., a„) in the n-dimensional
real space F:n, or equivalents, afunction mapping each variable x, to its value a,-.
Control modes. A finite set V of vertices called control modes. The pump
automaton has three control modes, on, off, and going.on, used for modeling
the pump when it is on, off, and in the process of going on. Astate (v, a) of the
hybrid automaton Aconsists of a control mode v€ Vand a valuation aGRn.
Invariant conditions. A labeling function inv that assigns to each control
mode v € V an invariant condition inv{v), which is a predicate over X. A
state (t»,a) is admissible if inu(t;)[A' := a] is true. The automaton control may
reside in control mode v only while the invariant condition inv{v) is true; so the
invariant conditions can be used to enforce progress. For example, in the pump
automaton, the invariant condition ct- < 5 of the control mode going.on ensures
that the automaton control must leave at the latest when the monotonically
increasing clock ct- reaches the value 5.



Flow conditions. A labeling function flow that assigns to each control mode
v 6 V a flow condition flow(v), which is a predicate over the set X U A' of
variables, where X = {&i,.. . ,xn}. Each dotted variable x,- represents the first
derivative of the variable x,- with respect to time. While the automaton control
resides in control mode v, the variables change along differentiable trajecto
ries whose first derivatives satisfy the flow condition. Formally, for each real
6 > 0, we define the binary flow relation —> on the admissible states such that
(v,a)-»(v',a') if v' = v, and there is a differentiable function p: [0,6] -> Rn such
that

- the endpoints of the flow match those of p, i.e. p(0) = a and p(S) = a';
- the invariant condition is satisfied throughout the flow, i.e. for all reals

t € [0,<$], inv(v)[X := p(t)] is true; and
- the flow condition is satisfied throughout the flow, i.e. for all reals t € (0,6),

flow(v)[X,X := p(t).p(t)] is true, where p(t) = (Pl(t)/dt,.. .,pn(t)/dt).

For example, in the pump automaton, the flow condition p, = 0 A c,- = 1 of the
control mode going.on ensures that the pumping volume stays unchanged (at 0)
and that the clock c, measures the amount of elapsed time.

Initial conditions. A labeling function init that assigns to each control mode
v € V an initial condition init(v), which is a predicate over Y. The automaton
control may start in control mode v when init(v) A inv{v) is true, where a[Y]
denotes the restriction of a to the variables in Y. A state (v,a) is initial if it
is admissible and init(v)[Y := a[V']] is true. In the graphical representation of
automata, we omit initial conditions of the form false. For example, in the pump
automaton, the initial condition of the control mode off is true, and the initial
conditions of the other control modes are false.

Control switches. A finite multiset E of edges called control switches. Each
control switch (r, r') has a source mode v 6 V and a target mode v' € V. For
example, the pump automaton has three control switches.

Jump conditions. A labeling function jump that assigns to each control switch
e € E a jump condition jump(e), which is a predicate over the set X U Y' of
variables, where Y' = {y\,..., y'k). The unprimed symbol y,- refers to the value
of the controlled variable before the control switch, and the primed symbol yj
refers to its value after the control switch. Only controlled variables are updated
by a control switch. Formally, for the control switch e = [v,v'), we define the
binary jump relation A on the admissible states such that (v,a)-»(v',a') iff

- jump(e)[X,Y' := a,a'[y]] is true; and
- for all uncontrolled (environment) variables x, 6 A' \ Y, a(- = a,-.

The control switch e is enabled in the valuation a if there exists a state (v',a')
such that (r,a)A(t;',a/). We use nondeterministic guarded interval-valued as
signments to write jump conditions. For example, we write 4> -¥ y,- := [l,u] for
thejumpcondition <f> A/ < yj < u Af\j^{ j/j = yj, where / and u are predicates
over A'. Intuitively, a control switch is enabled in the valuation a if the guard



is satisfied, i.e. <f>[X := a] is true. Then, the controlled variable y,- is updated
nondeterministically to any value in the interval [l[X := a],u[X := a]]. In the
graphical representation of automata, guards of the form true and identity as
signments are omitted. For example, in thepump automaton, thecontrol switch
from going.on to on has the jump condition c, = 5 A p(- = Pi A c'{ = Ci.
Events. A finite set E of visible events, and a labeling function event that assigns
to each control switch e G E either a visible event from E or the internal event r.
The internal event r is contained neither in E, nor in the set of visible events of
any other automaton. The event labels are used to define the parallel composi
tion of automata. Internal events are omitted in the graphical representation of
automata. For example, in the pump automaton, event (off, going.on) = pi-on
and event (going.on, on) = r.

2.2 Parallel composition

Nontrivial systems consist of several interacting components. We model each
component as a hybrid automaton, and the components coordinate with each
other through both shared variables and events. For example, the controller
communicates with the ?-th pump by synchronizing control switches with the
events Pi-on and Pi-off. A hybrid automaton that models the entire system is
obtained from the component automata using a product construction.

Let A\ be the hybrid automaton (A'i, Y\, V\, im>\,flow1, init\, E\,jump1,Ei,
eventi), and define A2 similarly. In the product automaton A\ x A?, two con
trol switches ei and eo from the two component automata A\ and A? occur
simultaneously if event\(ei) = euenfo^)- They are interleaved if eventi(ei) ^
eventofe) and neither et'enfi(ei) is a visible event of A?, nor event2(en) is a
visible event of A\. Internal events may occur simultaneously or interleaved.
Formally, provided V"i and Yo are disjoint, the product A\ x ,4o of A\ and Ao is
the following hybrid automaton A = (A'i UA'o, Y"i UY'2, V\ x Vo, inv,flow, init, E,
jump, Ei U E2, event).

Control modes. Each control mode (v\, V2) in V\ x V-j has the invariant condi
tion inv(vi,vo) = t'nt'i(t'i) A tm'2(i'2), the flowcondition flow(v\, uo) = flow^vi)
Aflow2(v2), and the initial condition init(v\,V2) = initi(vi) A init(vi).
Control switches. E contains the control switch e = ((t'i, V2), (v\, v2)) if

(1) e\ = (v\,v\) G Ei, v'2 = t'2, and eventi(ei) £ E2', or
(2) eo = (t'2i^2) € ^2> v[ = vi, and event2(e2) &E\; or
(3) ei = (vi,v\) G Ei, en —(v2,v2) € £"2, and et>en*i(ei) = event2(e2)-

In case (1), event(e) = eventi(ei) and jump(e) = jumpi(ei) A Ay6y2J// = V-
In case (2), event(e) = et/en^eo) and jump(e) = jump2(e2) A Aygy, ^ ~ v-
In case (3), event(e) = eventi(ei) = event2(e2) and jump(e) = jump^ei) A
jump2(e2).



2.3 Verification

Let A be a hybrid automaton with n variables and the control graph (V,E). A
subset of the state space S = V x Rn is called a region. We define the binary
transition relation -> on S as (Jee£""^u U«$€E ""*• *°ra reSi°n •#>tne successor
region post(R) is the set of states that are reachable from some state in R via
a single transition, i.e. post(R) = {s' \ 3s G R.s -* s'}. The reachable region
reach(A) is the set of states that are reachable from some initial state via any-
finite number of transitions, i.e. reach(A) = Ui>oPos''(^) ^or tne setl ^ °^
initial states of A.

Safety and timing analysis. Safety and timing verification problems can be
posed in a natural way as reachability problems. For this purpose, the system is
composed with a special monitor automaton that "watches" the execution of the
system and enters a violation state whenever the system violates a given safety
or timing requirement. The automaton .4 is correct with respect to the region
T C 5 of violation states if reach(A) C\ T is empty.

Parameter synthesis. A system description often contains symbolic (unknown)
constants, which we call system parameters. We are interested in the problem of
finding the values of the parameters for which the system is correct. When the
correctness criterion is a safety or timing requirement, expressed via a monitor
with violation states, then necessary and sufficient conditions on the parameter
values can be discovered automatically using reachability analysis. W;e model a
parameter as a controlled variable whose derivative is 0 in every control mode,
and whose value is left changed by every control switch. Then, the system is
correct for precisely those parameter values for which the region reach(A) C\T is
empty.

2.4 Linear hybrid automata and the tool HyTech

Linear hybrid automata are a subclass of hybrid automata that can be analyzed
algorithmically. A linear term is a linear combination of variables with rational
coefficients. A convex linear predicate is a conjunction of inequalities between
linear terms. A hybrid automaton A is linear if (1) all invariant, flow, initial, and
jump conditions of .4 are convex linear predicates, and (2) no flow condition of A
contains undotted variables, i.e. all flow conditions are convex linear predicates
over the set A* of first derivatives. Hence, in flow conditions, linear dependencies
between the rates of variables can be expressed, but the current flow must be
independent of the current state. The convexity restrictions can be achieved by
splitting control modes and control switches, if necessary. For example, the pump
automaton is a linear hybrid automaton.

A region is linear if it can be defined by a disjunction of convex linear pred
icates. The computation of the successor region post(R) is effective for a linear
region R, and yields again a linear region [5]. Therefore, the reachability prob
lem, which can be solved by iterating successor computations, is semidecidable



for linear hybrid automata. Our analysis of linear hybrid automata is performed
using the symbolic model checker HyTech [17].3

2.5 Approximation

While it may be difficult to reason automatically about a complex automaton, in
order to establish a particular property, it may suffice to prove a related property
for a simpler approximating automaton. If the correctness criterion for an au
tomaton A is a safety property, expressed via a set of violation states, then it suf
fices to consider an approximating automaton B such that reach(A) C reach(B).
Then, the safety property holds for A if it can be verified for B. The same idea
applies to parametric analysis. Suppose that wecan find necessary and sufficient
parameter constraints for the correctness of the approximating automaton B.
Since more states are reachable in B than in A, all parameter values that cause
violations in A also cause B to be incorrect. Hence, the parameter constraints
for the correctness of B are sufficient for the correctness of the original automa
ton A. However, it may not be the case that the conditions are necessary, and a
closer approximation may yield more permissive conditions.

The use of HyTech demands approximation if the hybrid automaton A to
be analyzed is nonlinear. In this case, we approximate A by a linear hybrid
automaton B [13, 18]. For a system with several components, it may suffice to
approximate only the nonlinear components. The steam-boiler system contains
only one nonlinear component —the automaton that models the steam— and we
replace it first by a very rough and then by a more accurate linear approximation.

3 Steam-boiler Description

We model the steam-boiler system at various levels of detail. The primary mod
eling issues are (1) modeling the nonlinear behavior of the steam exiting the
boiler, (2) how many of the failure modes are considered, and (3) the design of
the controller. To facilitate algorithmic analysis, we first restrict the state space
by considering only two pumps and omitting the failure modes. We use the fol
lowing variables: p,- for the volume of water pumped by pump i, c,- for a clock
of pump i, v for the volume of water drained through the valve, w for the wa
ter level in the boiler, s for the volume of steam emitted from the boiler, r for
the rate at which steam is emitted from the boiler, ts for an auxiliary clock for
modelingsteam emission, and t for the clock of the control program.
Pumps. The automaton for pump i appears in Figure 2. Control is initially
in the mode off, where the flow condition p\ = 0 indicates that the pump is
idle. The pump synchronizes with the controller automaton on the events pi-on,
through which the controller commands the pump to be turned on, and Pi-off,
through which the pump is turned off. The pump takes 5 seconds to respond to
the command pi-on to begin pumping, modeled as follows. The variable c,- is a
clock, with first derivative equal to 1 at all times. When the switch from mode

HYTECH can be obtained on the web at http://www.eecs.berkeley.edu/~tah.
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off to mode going.on occurs, the clock c, is set to 0 and measures the delay
before water is actually pumped. The invariant condition c, < 5 together with
the guard c,- = 5 on the switch to mode on ensures that the delay is exactly
5 seconds. The flow condition p, = P in mode on reflects our assumption that
when the pump is on. it operates at its maximal capacity P.

Valve. The valve automaton appears on the left of Figure 3. The controller
automaton communicates with the valve through the events open-valve and
close.valve. We assume that the valve opens and closes instantaneously, and
we assume a draining rate of 1 liter per second. The valve is used only in the
initialization phase.

Boiler. The boiler automaton, appearing on the right of Figure 3, uses a single
control mode to model the relationship between the water level and the flow
rates into and out of the boiler. The water level is initially wq. For simplicity,
we refer to the value of the water level and the water volume interchangeably,
whereas in reality they are related via a formula dependent on the geometry of
the boiler tank. Notice that the rate at which the water level changes and the
pumping, steam, and drain rates, are all measured in liters per second.

Steam. The behavior of the steam is specified by the nonlinear automaton in
Figure 4. The two control modes reflect whether the physical system is running
or not. When the boiler system is active, the rate of the steam emission is
bounded by 0 and W, i.e. s G [0, W], and the acceleration of the steam emission
is bounded by —IU and Ui, i.e. s G [-U2, lh]. Since the hybrid-automaton model
does not allow the direct modeling of higher derivatives, we represent information
about the second derivative of the steam volume s using the auxiliary variable
r, which represents the first derivative of s. Hence s = r and s = r. The flow
condition s = r is not linear, and cannot be directly analyzed using HyTech.
For automatic analysis, we will therefore approximate the steam automaton by
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Controller. The controllers we use vary according to which model of steam
is being used. Here, we describe the basic controller in Figure 5, which uses
only information about the water level to decide how many pumps should be
active. The controller assumes that the physical components never malfunction.
It performs initialization, and then operates in normal mode, until disaster causes
abortion to the emergency-stop mode.

Initially, control is in mode idle. The controller waits to receive a steam-boiler,
waiting signal from the physical system, indicating that the steam boiler is ready
and waitingfor operation. It then checks whether the steam rate is zero (modeled
by the event steam.rate-eq-O) or nonzero (modeled by the event steam-rate.neq.O),
reads the initial water level, and if necessary, either opens the valve, or acti-
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Fig. 6. Control strategy

vates the first pump, until the water level is within the normal operating range
[Ai,A2].

During normal operation, the controller disregards all information except for
the water level when making its control decision. It uses four parameters for the
water level —V, L, U, and V— to decide how many pumps should be active
(see Figure 1). Normal operating mode contains three submodes. depending on
whether zero, one, or two pumps are intended to be on. The table in Figure 6
shows the strategy of the controller. We assume that whenever only one pump
is active, the system uses pump 1. Normal operating mode of the controller
is indicated by the dashed box in Figure 5. All submodes within the dashed
box inherit the flow condition / = 1 and the outgoing control switches to the
emergency-stop mode.

Safety requirements. The steam boiler should meet the requirement that the
water level is always between A/i and A/2, provided it is initially between L
and U. We also require that the emergency-stop mode is never entered.4 Thus
the violation states are defined by the region containing all admissible states for
which w < Mi V w > Mn is true, and all admissible states whose controller
component is the emergency-stop mode.

4 Steam-boiler Analysis

We analyze two linear approximations of the nonlinear steam automaton. For
the simpler steam model, A, we first verify the safety requirements for fixed
values of all system constants. Then we perform three parametric analyses: we
determine the minimal and maximal water levels that can occur; we determine
the safe values of the sampling rate, holding all other constants fixed; and we
determine constraints on the safe values for the control parameters V, L, U,
and U', holding all other constants fixed. For the more accurate steam model,
B, we show how information about the steam rate can be used to design a more
flexible control algorithm that reduces the use of the pumps.

4 This is a reasonable requirement given the assumption that no components fail.
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4.1 Model A: ignoring the steam acceleration

Consider the simple model of the steam output shown in Figure 7. We assume
that the rate s of the steam emission varies between the two bounds 0 and W,
and wecompletelydisregard all informationabout the acceleration s of the steam
emission. It is easy to see how this automaton is derived from that of Figure 4
by dropping all predicates that restrict the variable r. Clearly, reach(As) C
reach (Aa).
Verification. We fix the values of the system constants as follows: sampling
time A = 5 seconds, maximal steam rate W = 6 liters per second, pumping
capacity P —Aliters per second, interval of normal water levels [Ni = 100, No =
150] liters, interval of acceptable water levels [M\ = 5, M2 = 220] liters. Using
HyTech, we verify that the controller with V = 25, L - 70, U = 170, and
U' = 200 maintains the water level within the required bounds.

Parametric analysis of the achievable water levels. We can use HyTech
to determine the exact minimal and maximal bounds on the water level for the
steam model .4^. For this purpose, we introduce two parameters, minJevel and
maxJevel. These play no role in the automaton descriptions, i.e. they are sym
bolic constants whose values never change. We perform reachability as before,
and use as violating states all admissible states where w < minJevel V w >
maxJevel is true. Then, there is a violation whenever the water level exceeds
maxJevel or drops below minJevel. HyTech outputs the following condition
for unsafe parameter values

max_level <= 190 I min_level >= 30

from which we infer that the maximal water level reached is 190, and the minimal
water level reached is 30. Since the steam model .4^ is a conservative overap-
proximation ofthe nonlinear behaviors ofthesteam automaton ^4S, we conclude
that these bounds are true upper and lower bounds for the physical nonlinear
system.

Parametric analysis of the sampling time. According to the steam-boiler
specification, all communication and control occurs in rounds that are separated
by intervals of 5 seconds. We can use HyTech to determine how much the
delay between consecutive rounds can be stretched without violating the safety
requirements. For this purpose, we introduce the parameter A, which represents
the sampling time, i.e. the time between two consecutive rounds. Using the
original set of violation states, HyTech outputs the (unsimplified) condition for
unsafe sampling times as

12



2delta >= 15 I 4delta >= 25 & 100 >= 4delta

from which we infer that the system is correct as long as the sampling time is
less than 25/4 seconds.
Parametric analysis of the control parameters. If the designer is free to
choose values for the threshold parameters V, L, U, and U', HyTech can be
used to determine which relationships between these control parameters en
sure the safety requirements of the steam-boiler system. For this purpose, we
introduce the four parameters V, L, U, and U'. We add the consistency as
sumptions Mi < V < L < Ni and As < U < U' < M2 to the initial
conditions of the system. Then HyTech automatically generates the follow
ing condition5 as necessary and sufficient for the correctness of the abstracted
system: U' > U + 20 A (V > 190 V L < 60) A L > V + 20 A (L < 40 V V <
30 V L > Z/ + 40) A (V < 40 V L < 70). We give an intuitive explanation of each
of these conjuncts. Recall that the sampling time is A = 5 seconds, the pumping
rate is P = 4 liters per second per pump, and the maximal steam emission rate
is W = 6 liters per second.

V > U + 20: Suppose that the water level is exactly U liters and a single
pump is running. If the steam emitted during the next round is minimal, i.e. 0
liters, then the water level may rise as high as U + 20 liters by the end of the
round. If V is not greater than this value, then the controller must enter the
emergency-stop mode the next time the water level is checked.

U' > 190 V L < 60: This condition is equivalent to L > 60 => U' > 190.
Assume that L > 60. We show that then U' > 190. Clearly there are situations
in which both pumps will be turned on, because the water level can easily drop
from the normal range above Ari = 100 liters down to below 60 liters. Suppose
that the controller has to make a decision when the water level is exactly L
liters with both pumps active. It may leave both pumps running through the
next round. Minimal steam emission over this period causes the next water-level
reading to lie in the normal range [100.150], because the net input of the two
pumps is 8 liters per second. Within the range of normal water levels, no control
action is taken, so both pumps are still active. It is therefore possible for a future
water-level reading to occur at exactly Ar2 = 150, and again both pumps remain
operating. Minimal steam emission causes the water level to rise 40 more liters
to 190 liters. Now if V is not above 190, then the controller must enter the
emergency-stop mode.

do: L > V -r 20: The explanation here is similar to that for the constraint
U' > U+20 above. The controller maydecide to leave exactlyone pump running
when it reads the water level as L. The earliest time that the second pump could
be active is 10 seconds later, because the next decision is made after 5 seconds,
and there is a delay of 5 seconds before an activated pump begins pumping
water. Within 10 seconds, the water level may drop by 20 liters.

di : L < 40 V V < 30 V L > V + 40: Intuitively, this condition addresses
the spacing between L and V when the parameters are set close to the minimal

5 HyTech'soutput is theconjunction oftheconsistency assumptions and thenegation
of this condition.

13



idle

3 = 0

start

t, := 0
s := 0

r := 0

running

t, < A A r € [O.JV]
r = 0 A f , = 1

A s € [0, W]

t. = 4

Ar' e[(s-a)/A,(s + 0)/A)
A r' 6 [r - 4l/*i, r + AU2)

checked

t, < A A r € [0, W)
r = 0 A tt = 1

i € [0, W]

Fig. 8. Second steam approximation A~B

normal water level JV"i. Assume that V > 30. We show that L > V + 40.
Consider the following scenario. The controller reads the water level when it is
exactly Ari = 100 with no pumps active, reads it again at 70 liters and activates
only one pump. By the end of the next round, the water level drops to 40 liters,
and then the first pump is active in the round after that, leading to a water level
of 30 liters. If V > 30, then the controller will enter the emergency-stop mode.
To avoid this kind of situation, it is necessary for both pumps to be active before
the water level drops to V. In particular, the above scenario shows that L must
be above 70. It is therefore possible for the controller to read the water level as
L with no pumps active, and for the water level to drop to L —40 over the next
two rounds. Thus we conclude that V < L — 40.

cj2 : L' < 40 V L < 70: First, observe that the conjunction c>o A <£i A fc is
equivalent to e>0 A <pi A V < 40, because 0O A <j>i A L < 70 implies V < 40.
The condition <j>2 can therefore be simplified to L' < 40, but currently HyTech
does not perform minimality checks on expressions in conjunctive normal form.
It is easy to see that V < 40 is a necessary condition. From a water level of
Ari = 100, it may take two rounds before a pump is activated, and during that
time a total of 60 liters of water may be lost.

In hindsight, the necessity of each of the above conditions is not difficult to
explain. However, it would have been nontrivial to manually generate each one,
and justify that their conjunction is sufficient for the safe operation of the boiler.
As explained in Subsection 2.5. the conditions are necessary and sufficient for
the approximating linear system, but only sufficient for the correctness of the
approximated nonlinear system.

4.2 Model B: linear approximation of the steam acceleration

We now give a closer approximation of the steam automaton, which allows us
to prove the correctness of a controller that lets the water level drop lower than
previously before operating the pumps. We use the variable r to represent the
steam rate at the end of each round. The consistency between the steam volume
emitted during a round and the steam rate is maintainedby ensuring that (1) the
emitted steam volume is consistent with the steam rate at the beginning of
the round and the possible steam acceleration, and (2) the steam rate at the
end of the round is consistent with the emitted steam volume and the possible
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steam acceleration. The linear hybrid automaton for this steam model appears
in Figure 8. The derivative of the variable r is always 0. If the steam rate at the
beginning of a round is s = ro, and the steam emission accelerates constantly
at A* liters per second per second, then the volume of steam emitted over the
next A seconds is fQ (ro + kt)dt = Aro + \kA2. Thus the steam emitted lies
in the range [Ar0 —a, Ar0 + /?], where a = \A2Ui and 0 = |A~U2- The jump
condition on the control switch from mode running to mode checked enforces
the consistency condition (1), and the jump condition from checked to running
enforces the consistency condition (2).

Improved controller. If the controller has access to the measured steam rate r,
in addition to the water level w, then it can bound more tightly the possible fu
ture behaviors of the boiler. It may therefore be able to maintain the water level
correctly in situations where this is not possible without a steam-rate measure
ment. In this subsection, we assume that the controller keeps the pumps either
both active or both idle at any given time. The key control decision is when to
turn on the pumps. The controller (see the appendix) makes this decision at the
end of each round based on the water level it' and the steam rate r. As before,
when the water level falls below the control parameter V, or rises above U',
then the controller enters the emergency-stop mode. For water levels between
V and A?i, the controller activates both pumps if w < <p(r), and determines
that the pumps should be idle if w > <p(r), where the values of the function <p
are sufficiently high to avoid the water level dropping to L' over the next two
rounds. The controller turns off both pumps whenever the water level is between
A72 and U', and aborts when the level is above V.

We define the function <^. A decision not to turn on the pumps means that
at least two rounds will pass before the pumps begin actively filling the boiler
tank. The controller must ensure that no disaster can occur during this pe
riod. Leaving the pumps inactive will not cause the water level to drop to V if
w— max2(r) > V, where max2(r) is the maximal amount of steam emitted dur
ing the next 2A seconds, given a current steam rate of r. However, max2(r)
is quadratic, and therefore cannot be expressed in a linear hybrid automa
ton. We instead use the upper bound Max2(r) on max2(r), which is defined
as Max2(r) = mm(2\VA,2rA + 2A2l>2)- Thus the function y> is defined by
<p(r) = L' + Max2(r).

Verification of the improved controller. Given the bounds Ui = l?2 = 2/5
on the steam acceleration, HyTech verifies that the controller Cb, with the
control parameters set to V = 25 and U' = 200, guarantees the safety require
ments. This controller is more flexible than a comparable controller that relies on
the simple steam model ASA. Consider a simple controller C'A (see the appendix)
that activates both pumps between V and L, and neither pump between L and
A:i and between Ar2 and V. Parametric analysis of C'A for V = 25 and U' = 200
determines that the safe values of L are characterized by L > 85. The improved
controller Cb is more relaxed than the simple controller C'A, in that it does not
activate the pumps as often. For a given steam rate r, the threshold value for
turning on the pumps is ^p(r) = V + Max2(r). When the steam rate is high
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Fig. 9. Automaton for pump i, assuming possible failure

(i.e. above 4), then <p(r) = 85, and both pumps are activated just as in C'A. But
when the steam rate r is lower than 4, then the threshold value <p(r) is only
V + lOr-f 50t'*2 = 45 + lOr. In particular, if r = 0, then the improved controller
allows the water level to drop as low as 45 before turning on the pumps.

4.3 A fault-tolerant system

Finally, wedescribe a simple fault-tolerant model of a steam-boiler system where
pumps may fail. The new model of pump i appears in Figure 9. It includes a
broken mode and a repair mode. The pump may fail at any time other than
when it is in the off mode. It remains in the broken mode until the controller
is informed of the status of the pump via the events pi-OK and p,--broken, at
which point the pump may be repaired and restored to the off mode. While
broken or in the process of being repaired, the pump delivers water at any rate
between 0 and P.

The controller (see the appendix) attempts to maintain the water level within
the required bounds by using operational pumps wherever possible. It aborts to
the emergency-stop mode if it cannot guarantee a safe water level for the next
two rounds, assuming that any active pump may break at any time. The control
decisions are based on fivecontrol parameters: if the water level is below h-abort,
then the controller aborts because of a danger of reaching the minimal allowable
level; it activates all functional pumps if the water level is between lo-abort and
L, and at most one functional pump if the water level is between L and N\\
if the water level is above hLabort.both-off with both pumps off, or it is above
hLaborLone-off with exactly one pump on, or it is above hLaborLnone-off with
both pumps on, then the controller also aborts.

It makes no sense to check the same safety requirements as before, because
in the presence of pump faults it is impossible to avoid extreme water levels.
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We instead show two properties of the fault-tolerant system. First, if no pumps
ever break (i.e. we remove the pi-break edges), then the system never enters the
emergency-stop mode, and the water level remains within the required bounds.
Second, if the system can be completely shutdown (i.e. no steam being emitted
and no water being pumped) within 5 seconds of entering the emergency-stop
mode, then the water level is always safe. HyTech verifies both these properties
for the system with two pumps and the simple steam model AA.

4.4 Computational data

The analysis reported in this paper was performed on a Sun Sparcstation 5 with
32 MBytes of main memory and additional swap space. For the simple steam
model .4j, HyTech requires 5 seconds and3 MBytes ofmemory forverification.
7s (5MB) to generate bounds on the water level, lis (7MB) for synthesizing the
sampling time, and 62s (8MB) for analyzing the control parameters. For the more
sophisticated steam model B, HyTech requires 119s (9MB) for verification.

The complexity of our models has been restricted by HyTech's computa
tional capacity. For a boiler with four pumps and the simple steam model A,
HyTech completes the verification in 33s (15MB). The fault-tolerant system
with a degraded mode strains resources, taking 123 seconds and 39 MBytes.
However, for neither system does a parametric analysis of the allowable sam
pling rates complete.

5 Evaluation and Comparison

Hybrid automata enable a natural, yet mathematically precise, modeling of the
steam-boiler system. Both discrete and continuous phenomena are modeled di
rectly in one integrated formalism. The theory of abstractions for this formalism
ensures that the automatic analysis results apply to the original mixed discrete-
continuous system. Because our modeling language includes continuous informa
tion about the physical behavior of the boiler, we were able to discover nontrivial
control constraints, e.g. a lower bound on the safe delay between rounds of com
munication, and parametric correctness criteria for the water thresholds used by
the controller. The advantage of an expressive model comes at the cost of com
putationally expensive automated analysis. We presented fault-free components
as well as a simple fault-tolerant system because of restrictions on the size of the
model that HyTech can currently handle.

Designing the nonlinear hybrid automata was reasonably straightforward,
even for the full fault-tolerant system (not shown in this paper). We expect
an average programmer with some background in a state-machine formalism to
have little difficulty understanding our model, and to be able to produce a similar
solution after a couple of weeks' training6. The majority of time developing the

6 A U.C. Berkeley graduate student took three weeks to learn the formalism from
scratch, acquaint herself with HyTech, and generate a solution to a nonlinear control
problem of similar complexity.
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solution was spent in the iterative process of abstracting the nonlinear model to
linear models, designing a suitable controller, testing whether HyTech is able to
produce useful results, and then redesigning the abstraction and the controller.
The simplest abstraction adn its controller was easy to derive, but produces
coarse results that may be too conservative to establish system correctness for
safe parameter combinations. On the other hand, more accurate approximations
sometimes cause HyTech to fail, due to either memory overflow, arithmetic
overflow in solving linear constraints, or a nonterminating sequence of successor
computations. Finding a useful balance between detail and abstraction, and
modeling the system to optimize the use of HyTech's analysis algorithms, is
still somewhat of an art.

Our goal is the direct and automatic analysis of mixed discrete-continuous
systems such as the steam boiler. Among the papers in this volume, many ab
stract the continuous behavior into a discrete system (e.g. [8, 11. 22]) or into a
simple timed system (e.g. [21, 24]). which may then be subjected to automated
analysis. Others analyze the continuous behavior deductively with the possible
assistance of a mechanical proof checker (e.g. [7,12, 20, 23]).This paper is unique
in that we retain continuous information about the boiler's physical quantities
during the automated analysis. While computational complexities force us to
keep our models simpler and smaller compared to discrete-state based methods,
our approach allows a fully automatic synthesis of constraints on parameters
that control continuous behavior.
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A Appendix: HyTech Input Files

We provide the HyTech input files for the following analyses:

1. Verification of the fault-free two-pump steam-boiler system with controller
Ca and steam model AA

2. Parametric analysis of the achievable water levels of the fault-free two-pump
steam-boiler system with controller Ca and steam model AA

3. Parametric analysis of the sampling time for the fault-free two-pump steam-
boiler system with controller Ca and steam model AA

4. Parametric analysis of the control parameters for the fault-free two-pump
steam-boiler system with controller Ca and steam model AA

5. Verification of the fault-free four-pump steam-boiler system with the steam
model .4^

6. Verification of the fault-tolerant two-pump steam-boiler system with steam
model A^

7. Parametric analysis of the control parameter L in the dual-pump fault-free
steam-boiler system with controller C'A and steam model .4^

8. Verification of the dual-pump fault-free steam-boiler system with controller
Cb and steam model A%

All but the last analysis use the simple model of the steam that ignores the
steam acceleration.

A.l Verification of the fault-free two-pump steam-boiler system
with controller Ca and steam model AA

— HyTech input file

— Steam boiler

define(P_rate,4)

define(Wl,0) — min steam rate

define(W2,6) — max steam rate

define(MIN,5)

define(param_l_prime,25)
def ine(param_l,70)
define(N_1,100)

define(N_2,150)

def ine(param.u,170)
define(param_u_prime,200)
define(MAX,220)

define(delta,5)
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var

w, — water level

pi, — pump volume from Pump 1 for a time slot
p2, — pump volume from Pump 2 for a time slot
steam, — steam volume for a time slot

drain

: analog;

t, — controller's clock

tl, — pump controller l's clock

t2 — pump controller 2's clock

: clock;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi + dp2 - dsteam - ddrain}

end

automaton pump_cont_l

synclabs: p_l_on, p_l_off;

initially off ;

loc off: while True wait {dpl=0}
when True sync p.l.on do {tl'=0} goto going.on;

loc going.on: while tl<=5 wait {dpl=0}
when tl=5 do {tl'=tl'} goto on;

loc on: while True wait {dpl=P_rate}
when True sync p_l_off goto off;

end

automaton pump_cont_2

synclabs: p_2_on, p_2.off;

initially off ;

loc off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto going.on;
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loc going.on: while t2<=5 wait {dp2=0}
when t2=5 do {t2'=t2'} goto on;

loc on: while True wait {dp2=P_rate}
when True sync p_2_off goto off;

end

automaton valve

synclabs: open.valve, close.valve;
initially closed;

loc closed: while True wait {ddrain=0}

when True sync open.valve goto open;

loc open: while True wait {ddrain=l}
when True sync close.valve goto closed;

end

automaton steam

synclabs: start ;

initially idle ;

loc idle: while True wait {dsteam=0}

when True sync start goto running;

loc running: while True wait {dsteam in [W1.W2]}

end

automaton controller

— in normal mode, look at water level only, and decide what to do

synclabs:

steam.boiler.waiting,
steam.rate.zero,

start, — to turn on all systems, esp. the boiler

p_l_on, p.l.off, p_2_on, p_2_off,

open.valve, close.valve;

initially idle & t=0;

22



— the initialization mode

loc idle: while True wait {}

when True sync steam.boiler.waiting do {t'=0} goto test;

loc test: while t=0 wait {}

when True sync steam.rate.zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open.valve goto wait.till.drained;
when w<=N.l sync p.l.on goto wait.till.fill;
when N_K=w ft w<=N_2 sync start do {t,J=delta} goto oii.oit

loc wait.till.drained: while w>=N_2 wait {}

when w=N_2 sync close.valve goto wait.till.drained.b;

loc wait.till.drained.b: while True wait {}

when asap sync start do {t,=delta} goto off.off;

loc wait.till.fill: while w<=N_l wait {}

when w=N_l sync start do {t'=delta} goto on.off;

— the normal operating mode

loc off.off: while t<=delta wait {}

when t=delta ft w<=param_l.prime goto emergency.stop;
when t=delta ft w>=param_u_prime goto emergency.stop;
when t=delta ft param_l_prime<=w ft w<=param_l

do {t'=0} sync p.l.on
goto going.on.on;

when t^delta ft param_K=w & w<=N_l do {t'=0} sync p.l.on
goto on.off;

when t=delta & N_2<=w ft w<=param_u do {t'=0} sync p.l.on
goto on.off;

when t=delta & param_u<=w ft w<=param_u_prime do {t'=0}
goto off.off;

when t=delta ft N_K=w & w<=N_2 do {t>=0} goto off.off;

loc on.off: while t<=delta wait {}

when t=delta & w<=param_l_prime goto emergency.stop;
when t=delta & w>=param_u_prime goto emergency.stop;
when t=delta & param_l_prime<=w ft w<=param_l

do {t'=0} sync p_2_on
goto on.on;

when t=delta ft param_K=w ft w<=N_l do {t'=0}
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0}
goto on.off;
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when t=delta ft param_u<=w ft w<=param_u_prime
do {t'=0} sync p.l.off
goto off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto on.off;

loc on.on: while t<=delta wait {}

when t=delta ft w<=param_l_prime goto emergency.stop;
when t=delta ft w>=param_u_prime goto emergency.stop;
when t=delta ft param_l_prime<=w ft w<=param_l do {t'=0}

goto on.on;

when t=delta ft param_K=w ft w<=N_l do {t'=0} sync p_2_off
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0} sync p_2_off
goto on.off;

when t=delta ft param.u<=w ft w<=param_u_prime

do {t'=0} sync p.l.off
goto going.off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto on.on;

loc going.on.on: while True wait {}
when asap sync p_2_on goto on.on;

loc going.off.off: while True wait {}
when asap sync p_2_off goto off.off;

— emergency stop mode

loc emergency.stop: while t<=delta wait {}
end

— analysis commands

var

init.reg, final.reg, reached, reached.final: region;

init.reg := loc[steam_boiler]=sO
ft param_K=w ft w<=param_u

ft loc[pump_cont_l]=off
ft loc[p\imp_cont_2]=off
ft loc[valve]=closed

ft loc[steam]=idle

ft loc[controller]=idle
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ft MIN<=param_l_prime ft param_l_prime<=param_l
ft param_K=N_l

ft N.2<=param_u
ft param_u<=param_u_prime ft param_u.prime<=MAX
ft delta>=0

final.reg := w>=MAX
I w<=MIN
I loc[controller]=emergency.stop;

reached := reach forward from init.reg endreach;

reached.final := reached ft final.reg;

if empty(reached.final)
then prints "Water level maintained between bounds MIN and MAX";
else prints "Water level NOT maintained between bounds MIN and MAX";

prints "Violating states";

print reached.final;
prints "End of reached and final";
print trace to final.reg using reached;

endif;

A.2 Parametric analysis of the achievable water levels of the
fault-free two-pump steam-boiler system with controller Ca and
steam model AA

— HyTech input file

— Steam boiler

— Parametric analysis of achievable water levels

define(P.rate,4)

define(Wl.O) — min steam rate

define(W2,6) — max steam rate

define(MIN,5)

def ine(param.l.prime,25)
define(param.l,70)
define(N_1,100)

define(N.2,150)

def ine(param.u,170)
def ine(param.u.prime,200)
define(MAX,220)
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define(delta,5)

var

w, — water level

pi, — pump volume from Pump 1 for a time slot

p2, — pump volume from Pump 2 for a time slot

steam, — steam volume for a time slot

drain

: analog;

t, — controller's clock

tl, — pump controller l's clock

t2 — pump controller 2's clock

: clock;

min.param,

max.param: parameter;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi + dp2 - dsteam - ddrain}

end

automaton pump.cont.l

synclabs: p.l.on, p.l.off;

initially off ;

loc off: while True wait {dpl=0}
when True sync p.l.on do {tl'=0} goto going.on;

loc going.on: while tl<=delta wait {dpl=0}
when tl=delta do {tl'=tl'} goto on;

loc on: while True wait {dpl=P_rate}
when True sync p.l.off goto off;

end

automaton pump_cont_2

synclabs: p_2_on, p_2_off;
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initially off ;

loc off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto going.on;

loc going.on: while t2<=delta wait {dp2=0}
when t2=delta do {t2'=t2'} goto on;

loc on: while True wait {dp2=P_rate}
when True sync p.2_off goto off;

end

automaton valve

synclabs: open.valve, close.valve;

initially closed;

loc closed: while True wait {ddrain=0}

when True sync open.valve goto open;

loc open: while True wait {ddrain=l}
when True sync close.valve goto closed;

end

automaton steam

synclabs: start ;

initially idle ;

loc idle: while True wait {dsteam=0}

when True sync start goto running;

loc running: while True wait {dsteam in [W1.W2]}

end

automaton controller

— in normal mode, look at water level only, and decide what to do

synclabs:

steam.boiler.waiting,
steam.rate.zero,

start, — to turn on all systems, esp. the boiler
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p.l.on, p.l.off, p_2_on, p_2_off,

open.valve, close.valve;

initially idle ft t=0;

— the initialization mode

loc idle: while True wait {}

when True sync steam.boiler.waiting do {t'B0} goto test;

loc test: while t=0 wait {}

when True sync steam.rate.zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open.valve goto wait.till.drained;
when w<=N_l sync p.l.on goto wait.till.fill;
when N.K=w ft w<=N_2 sync start do {t'=delta} goto off.off;

loc wait.till.drained: while w>=N_2 wait {}
when w=N_2 sync close.valve goto wait.till.drained.b;

loc wait.till.drained.b: while True wait {}
when asap sync start do {t'=delta} goto off.off ;

loc wait.till.fill: while w<=N_l wait {}
when w=N_l sync start do {t'=delta} goto on.off;

— the normal operating mode

loc off.off: while t<=delta wait {}
when t=delta ft w<=param_l_prime goto emergency.stop;
when t=delta ft w>=param_u_prime goto emergency.stop;

when t=delta ft param_l_prime<=w ft w<=param_l
do {t'=0} sync p.l.on
goto going.on.on;

when t=delta ft param_K=w ft w<=N_l do {t'=0} sync p.l.on
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0} sync p.l.on
goto on.off;

when t=delta ft param_u<=w ft w<=param_u_prime do {t'=0}
goto off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto off.off;

loc on.off: while t<=delta wait {}
when t=delta ft w<=param_l_prime goto emergency.stop;
when t=delta ft w>=param_u_prime goto emergency.stop;

when t=delta ft param_l_prime<=w ft w<=param_l
do {t'=0} sync p_2_on
goto on.on;
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when t=delta ft param_K=w ft w<=N_l do {t'=0}
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0}
goto on.off;

when t=delta ft param_u<=w ft w<=param_u.prime
do {t'=0} sync p.l.off
goto off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto on.off;

loc on.on: while t<=delta wait {}

when t=delta ft w<=param_l_prime goto emergency.stop;

when t=delta ft w>=param_u.prime goto emergency.stop;

when t=delta ft param_l_prime<=w ft w<=param_l do {t'=0}
goto on.on;

when t=delta ft param_K=w ft w<=N.l do {t'=0} sync p_2_off
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0} sync p_2_off
goto on.off;

when t=delta ft param_u<=w ft w<=param_u_prime

do {t'=0} sync p.l.off
goto going.off.off;

when t=delta ft N_K=w ft w<=N_2 do {t*=0} goto on.on;

loc going.on.on: while True wait {}
when asap sync p_2_on goto on.on;

loc going.off.off: while True wait {}
when asap sync p_2_off goto off.off;

— emergency stop mode

loc emergency.stop: while t<=delta wait {}
end

— analysis commands

var

init.reg, final.reg.param, reached, reached.final: region;

init.reg := loc[steam_boiler]=sO
ft param_K=w ft w<=param_u
ft loc[pump_cont_l]=off
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ft loc[pump_cont_2]=off
ft loc[valve]=closed

ft loc[steam]=idle

ft loc[controller]=idle

ft MIN<=param_l_prime ft param_l_prime<=param_l
ft param.K=N_l

ft N_2<=param_u
ft param_u<=param_u_prime ft param_u_prime<=MAX
ft delta>=0;

f inal.reg.param :*» w>=max_param
I w<=min_param

I loc[controller]=emergency_stop;

reached := reach forward from init.reg endreach;

prints "Parametric constraints on min and max water levels";
print omit all locations

hide non.parameters in reached ft final.reg.param endhide;

A.3 Parametric analysis of the sampling time for the fault-free
two-pump steam-boiler system with controller Ca and steam
model AA

— HyTech input file

— Steam boiler

— Parametric analysis of sampling time delta

def ine(P.rate,4)

define(Wl,0) — min steam rate

define(W2,6) — max steam rate

define(MIN,5)

define(param_l_prime,25)
define(param.l,70)
define(N.l,100)

define(N.2,150)

define(param.u,170)
def ine(param.u.prime,200)
define(MAX,220)

w, — water level

pi, — pump volume from Pump 1 for a time slot
p2, — pump volume from Pump 2 for a time slot
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steam, — steam volume for a time slot

drain

: analog;

t, — controller's clock

tl, — pump controller l's clock

t2 — pump controller 2's clock

: clock;

delta

: parameter;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw=dpl + dp2 - dsteam - ddrain}

end

automaton pump.cont.l

synclabs: p.l.on, p.l.off;

initially off ;

loc off: while True wait {dpl^O}
when True sync p.l.on do {tl'=0} goto going.on;

loc going.on: while tl<=5 wait {dpl=0}
when tl=5 do {tl'=tl'} goto on;

loc on: while True wait {dpl=P_rate}
when True sync p.l.off goto off;

end

automaton pump_cont_2

synclabs: p_2_on, p_2_off;

initially off ;

loc off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto going.on;

loc going.on: while t2<=5 wait {dp2=0}
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when t2=5 do {t2'=t2'} goto on;

loc on: while True wait {dp2=P_rate}
when True sync p_2_off goto off;

end

automaton valve

synclabs: open.valve, close.valve;

initially closed;

loc closed: while True wait {ddrain=0}

when True sync open.valve goto open;

loc open: while True wait {ddrain=l}
when True sync close.valve goto closed;

end

automaton steam

synclabs: start ;

initially idle ;

loc idle: while True wait {dsteam=0}

when True sync start goto running;

loc running: while True wait {dsteam in [W1,W2]}

end

automaton controller

— in normal mode, look at water level only, and decide what to do

synclabs:

steam.boiler.waiting,
steam.rate.zero,

start, — to turn on all systems, esp. the boiler
p.l.on, p.l.off, p_2_on, p_2_off,
open.valve, close.valve;

initially idle ft t=0;

— the initialization mode
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loc idle: while True wait {}

when True sync steam.boiler.waiting do {t'=0} goto test;

loc test: while t=0 wait {}

when True sync steam.rate.zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open.valve goto wait.till.drained;
when w<=N_l sync p.l.on goto wait.till.fill;
when N_K=w ft w<=N_2 sync start do {t'=delta} goto off.off;

loc wait.till.drained: while w>=N_2 wait {}

when w=N_2 sync close.valve goto wait.till.drained.b;

loc wait.till.drained.b: while True wait {}

when asap sync start do {t'=delta} goto off.off;

loc wait.till.fill: while w<=N_l wait {}

when w=N_l sync start do {t'=delta} goto on.off;

— the normal operating mode

loc off.off: while t<=delta wait {}

when t=delta ft w<=param_l_prime goto emergency.stop;
when t=delta ft w>=param_u_prime goto emergency.stop;

when t=delta ft param_l_prime<=w ft w<=param.l

do {t'=0} sync p.l.on
goto going.on.on;

when t=delta ft param_K=w ft w<=N_l do {t'=0} sync p.l.on
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0} sync p.l.on
goto on.off;

when t=delta ft param_u<=w ft w<=param_u_prime do {t'=0}
goto off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto off.off;

loc on.off: while t<=delta wait {}

when t=delta ft w<=param.l_prime goto emergency.stop;
when t=delta ft w>=param.u_prime goto emergency.stop;
when t=delta ft param_l_prime<=w ft w<=param_l

do {t'=0} sync p_2_on
goto on.on;

when t=delta ft param_K=w ft w<=N_l do {t'=0}
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0}
goto on.off;

when t=delta ft param.u<=w ft w<=param.u.prime

do {t'=0} sync p.l.off
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goto off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto on.off;

loc on.on: while t<=delta wait {}

when t=delta ft w<=param_l_prime goto emergency.stop;
when t=delta ft w>=param_u_prime goto emergency.stop;

when t=delta ft param_l_prime<=w ft w<=param_l do {t'=0}
goto on.on;

when t=delta ft param_K=w ft w<=N_l do {t'=0} sync p_2_off
goto on.off;

when t=delta ft N_2<=w ft w<=param_u do {t'=0} sync p_2_off
goto on.off;

when t=delta ft param_u<=w ft w<=param_u_prime
do {t'=0} sync p.l.off
goto going.off.off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto on.on;

loc going.on.on: while True wait {}
when asap sync p_2_on goto on.on;

loc going.off.off: while True wait {}
when asap sync p_2_off goto off.off;

— emergency stop mode

loc emergency.stop: while t<=delta wait {}

end

— analysis commands

var

init.reg, final.reg, reached, reached.final: region;

init.reg := loc[steam_boiler]=sO
ft param_K=w ft w<=param_u
ft loc[pump_cont_l]=off
ft loc[pump_cont_2]=off
ft loc[valve]=closed

ft loc[steam]-idle
ft loc[controller]=idle

ft MIN<=param_l_prime ft param_l_prime<=param_l
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ft param_K=N.l

ft N.2<=param_u

ft param.u<=param_u.prime ft param_u_prime<=MAX
ft delta>=5

final.reg := w>=MAX
I w<=MIN

I loc[controller]^emergency.stop;

reached := reach forward from init.reg endreach;
reached.final := reached ft final.reg;

if empty(reached.final)
then prints "Water level maintained between bounds MIN and MAX"

prints " for all values of delta";

else prints "Violating values for delta";
print omit all locations

hide non.parameters in reached.final endhide;
endif;

A.4 Parametric analysis of the control parameters for the fault-free
two-pump steam-boiler system with controller Ca and steam
model AA

-- HyTech input file

— Steam boiler

— Parametric synthesis of controller cut-off values

def ine(P.rate,4)

define(Wl,0) — min steam rate

define(W2,6) — max steam rate

define(MIN,5)

define(N.l,100)

define(N.2,150)

define(MAX,220)

define(delta,5)

w, — water level

pi, — pump volume from Pump 1 for a time slot

p2, — pump volume from Pump 2 for a time slot
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steam, — steam volume for a time slot

drain

: analog;

t, — controller's clock

tl, — pump controller l's clock

t2 — pump controller 2's clock

: clock;

param.l, — parameter L

param.l.prime, — parameter L'

param.u, — parameter U

param.u.prime — parameter U'

: parameter;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi + dp2 -dsteam - ddrain}

end

automaton pump.cont.l

synclabs: p.l.on, p.l.off;

initially off ;

loc off: while True wait {dpl=0}
when True sync p.l.on do {tl'=0} goto going.on;

loc going.on: while tl<=5 wait {dpl=0}
when tl=5 do {tl'=tl'} goto on;

loc on: while True wait {dpl=P.rate}
when True sync p.l.off goto off;

end

automaton pump_cont_2

synclabs: p_2_on, p_2_off

initially off ;
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loc off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto going.on;

loc going.on: while t2<=5 wait {dp2=0}
when t2=5 do {t2'=t2'} goto on;

loc on: while True wait {dp2=P_rate}
when True sync p_2_off goto off;

end

automaton valve

synclabs: open_valve, close_valve;

initially closed;

loc closed: while True wait {ddrain=0}

when True sync open.valve goto open;

loc open: while True wait {ddrain=l}
when True sync close.valve goto closed;

end

automaton steam

synclabs: start ;

initially idle ;

loc idle: while True wait {dsteam=0}

when True sync start goto running;

loc running: while True wait {dsteam in [W1,W2]}

end

automaton controller

— in normal mode, look at water level only, and decide what to do

synclabs:
steam_boiler_waiting,

steam_rate_zero,

start, — to turn on all systems, esp. the boiler

p_l_on, p_l_off, p_2_on, p_2_off,
open.valve, close.valve;
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initially idle 6 t=0;

— the initialization mode

loc idle: while True wait {}

when True sync steam_boiler_waiting do <t'=0} goto test;

loc test: while t=0 wait {>

when True sync steam_rate_zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open_valve goto wait_till_drained;
when w<=N_l sync p_l_on goto wait_till_fill;
when N_K=w ft w<=N_2 sync start do {t'=delta} goto off.off;

loc wait_till_drained: while w>=N_2 wait {}

when w=N_2 sync close_valve goto wait_till_drained_b;

loc wait_till_drained_b: while True wait {}

when asap sync start do {t'=delta} goto off.off;

loc wait_till_fill: while w<=N_l wait {}

when w=N_l sync start do {t'=delta} goto on.off;

— the normal operating mode

loc off.off: while t<=delta wait {}

when t=delta & w<=param_l_prime goto emergency_stop;
when t=delta & w>=param_u_prime goto emergency.stop;
when t=delta & param_l_prime<=w ft w<=param_l

do {t'=0} sync p_l_on
goto going_on_on;

when t=delta & param.K^w & w<=N_l do {t'=0} sync p_l_on
goto on.off;

when t=delta & N_2<=w & w<=param_u do {t'=0} sync p_l_on
goto on_off;

when t=delta & param_u<=w & w<=param_u_prime do {t'=0}
goto off_off;

when t=delta ft N_K=w & w<=N_2 do {t'=0} goto off.off;

loc on_off: while t<=delta wait {}

when t=delta & w<=param_l.prime goto emergency_stop;
when t=delta ft w>=param_u_prime goto emergency_stop;
when t=delta ft param_l_prine<=w ft w<=param_l

do {t'=0} sync p_2_on
goto on_on;

when t-delta & param_K=w ft w<=N_l do {t'=0}
goto on_off;
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when t=delta & N_2<=w & w<=param_u do {t^O}
goto on_off;

when t=delta & param_u<=w ft w<=param_u_prime

do {t'=0} sync p_l_off
goto off_off;

when t=delta & N_K=w ft w<=N_2 do <t'=0} goto on.off;

loc on.on: while t<=delta wait {}

when t=delta ft w<=param_l_prime goto emergency_stop;

when t=delta ft w>=param_u_prime goto emergency.stop;

when t=delta ft param_l_prime<Bw & w<=param_l do {t'=0}
goto on_on;

when t=delta & param_K=w ft w<=N_l do {t'=0} sync p_2_off
goto on_off;

when t=delta & N_2<=w & w<=param_u do {t'=0} sync p_2_off
goto on_off;

when t=delta & param_u<=w ft w<=param_u_prime
do {t'=0} sync p_l_off
goto going_off_off;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto on_on;

loc going_on_on: while True wait {}
when asap sync p_2_on goto on_on;

loc going_off_off: while True wait {}
when asap sync p_2_off goto off_off;

— emergency stop mode

loc emergency_stop: while t<=delta wait {}
end

— analysis commands

var

init.reg, final_reg, reached, reached.final: region;

init.reg := loc[steam_boiler]=sO
ft param_K=w ft w<=param_u
ft loc[pump_cont_l]=off
ft loc[pump_cont_2]=off
ft loc[valve]=closed
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ft loc[steam]=idle

ft loc[controller]=idle

ft MIN<=param_l_prime ft param_l_prime<=param_l
ft param_K=N_l

ft N_2<=param_u

ft param_u<=param_u_prime ft param_u_prime<=MAX;

final_reg := w>=MAX
I w<=HIN

I loc[controller]»emergency_stop;

reached := reach forward from init_reg endreach;

reached_final := reached ft final_reg;

prints "Safety requirements maintained unless";
print omit all locations

hide non.parameters in reachedjf inal endhide;

A.5 Verification of the fault-free four-pump steam-boiler system
with steam model ASA

HyTech input file

Steam boiler

— using 4 pumps
— abort below param_l_4

— activate

4 between param_l_4 and param_l_3
3 between param_l_3 and param_l_2

two between param_l_2 and param_l_l,

one between param_l_l and H

none between H and N

one on between N and c_u_l

none between c_u_l and c_u_0

— always turn on, going up in sequence, turn off going down in sequence

define(P_rate,2)

define(Wl,0) — min steam rate

define(W2,6) — max steam rate
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def ine(param_l_4,25)
def ine(param_l_3,40)
def ine(param„l_2,60)
def ine(param_l_1,80)
def ine(param_u_1,170)
def ine(param_u_0,200)

define(MIN,5)

define(N_1,100)

define(N_2,150)

define(MAX,220)

define(delta,5)

w, — water level

pi, — pump volume from Pump 1 for a time slot
p2, — pump volume from Pump 2 for a time slot
p3, — pump volume from Pump 3 for a time slot

p4, — pump volume from Pump 3 for a time slot
steam, — steam volume for a time slot

drain

: analog;
t, — controller's clock

tl, — pump controller l's clock

t2, — pump controller 2's clock

t3, — pump controller 3's clock

t4 — pump controller 4's clock

: clock;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi + dp2 + dp3 + dp4 - dsteam - ddrain}

end

automaton pump_cont_l

synclabs: p_l_on, p_l_off;

initially off ;
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loc off: while True wait {dpl=0}
when True sync p_l_on do {tl'=0} goto going_on;

loc going.on: while tl<=5 wait {dpl=0}
when tl=5 do {tl'=tl'} goto on;

loc on: while True wait {dpl=P_rate}
when True sync p_l_off goto off;

end

automaton pump_cont_2

synclabs: p_2_on, p_2_off;

initially off ;

loc off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto going.on;

loc going.on: while t2<=5 wait {dp2=0}
when t2=5 do {t2'=t2'} goto on;

loc on: while True wait {dp2=P_rate}
when True sync p_2_off goto off;

end

automaton pump_cont_3

synclabs: p_3_on, p_3_off;

initially off ;

loc off: while True wait {dp3=0}
when True sync p_3_on do {t3'=0} goto going.on;

loc going.on: while t3<=5 wait {dp3=0}
when t3=5 do {t3'=t3'} goto on;

loc on: while True wait {dp3=P_rate}
when True sync p_3_off goto off;

end

automaton pump_cont_4

synclabs: p_4_on, p_4_off;

initially off ;
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loc off: while True wait {dp4=0}
when True sync p_4_on do {t4'=0} goto going_on;

loc going.on: while t4<=5 wait {dp4=0}
when t4°5 do {t4'=t4'} goto on;

loc on: while True wait {dp4=P_rate}
when True sync p_4_off goto off;

end

automaton valve

synclabs: open_valve, close.valve;

initially closed;

loc closed: while True wait {ddrain=0}

when True sync open_valve goto open;

loc open: while True wait {ddrain=l}
when True sync close_valve goto closed;

end

automaton steam

synclabs: start ;

initially idle;

loc idle: while True wait {dsteam=0}

when True sync start goto running;

loc running: while True wait {dsteam in [W1,W2]}

end

automaton controller

— in normal mode, look at water level only, and decide what to do

synclabs:

steam.boiler.waiting,

steam_rate_zero,

start, — to turn on all systems, esp. the boiler

p_l_on, p_l_off,
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p_2_on, p_2_off,

p_3_on, p_3_off,

p_4_on, p_4_off,

open_valve, close_valve;

initially idle ft t=0;

— the initialization mode

loc idle: while True wait {}

when True sync steam_boiler_waiting do {t'=0} goto test;

loc test: while t=0 wait {}

when True sync steam_rate_zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open.valve goto wait_till_drained;
when w<=N_l sync p_l_on goto wait_till_fill;
when N_K=w ft w<=N_2 sync start do {t'=delta} goto op_0000;

loc wait_till_drained: while w>=N_2 wait {}

when w=N_2 sync close.valve goto wait_till_drained_b;

loc wait_till_drained_b: while True wait {}

when asap sync start do {t'=delta> goto op.OOOO;

loc wait_till_fill: while w<=N_l wait {}

when w=N_l sync start do {t'=delta> goto op_1000;

— the normal operating mode

loc op_0000: while t<=delta wait {}
when t=delta ft w<=param_l_4 goto emergency.stop;

when t=delta ft w>=param_u_0 goto emergency.stop;
when t=delta ft param_l_4<=w ft w<=param_l_3

do {t'=0} sync p_l_on
goto going_llll_2;

when t=delta ft param_l_3<=w ft w<=param_l_2
do {t'=0} sync p_l_on
goto going_1110_2;

when t=delta ft param_l_2<=w ft w<=param_l_l

do {t'=0} sync p_l_on
goto going_1100_2;

when t=delta ft param_l_K=w ft w<=N_l

do {t'=0} sync p_l_on
goto op_1000;

when t=delta ft N_2<=w ft w<=param_u_l

do {t,=0} sync p_l_on
goto op_1000;

when t=delta ft param_u_K=w ft w<=param_u_0 do {t'=0}
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goto op.OOOO;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto op.OOOO;

loc op.1000: while t<=delta wait {}

when t=delta ft w<=param_l_4 goto emergency_stop;
when t=delta ft w>=param_u_0 goto emergency.stop;
when t=delta ft param_l_4 <=w ft w<=param_l_3

do {t'=0} sync p_2_on
goto going.llll_3;

when t=delta ft param_l_3 <=w ft w<=param_l_2

do {t'=0} sync p_2_on
goto going.l110.3;

when t=delta ft param_l_2 <=w ft w<=param_l_l

do {t'=0} sync p_2_on
goto op.1100;

when t=delta ft param_l_K=w ft w<=N_l do {t'=0}
goto op.1000;

when t=delta ft N_2<=w ft w<=param_u_l do {t'=0}
goto op.1000;

when t=delta ft param_u_K=w ft w<=param_u_0

do {t'=0} sync p_l_off
goto op.OOOO;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto op.1000;

loc op.1100: while t<=delta wait {}
when t=delta ft w<=param_l_4 goto emergency.stop;

when t=delta ft w>=param_u_0 goto emergency.stop;

when t=delta ft param_l_4 <=w ft w<=param.l_3
do {t'=0} sync p_3_on
goto going_llll_4;

when t=delta ft param_l_3 <=»w ft w<=param_l_2
do {t'=0} sync p_3.on
goto op.1110;

when t=delta ft param_l_2 <=w ft w<=param_l_l
do {t'=0>

goto op.1100;
when t=delta ft param_l_K=w ft w<=N_l

do {t'=0} sync p_2_off
goto op.1000;

when t=delta ft N_2<=w ft w<=param_u_l

do {t'=0} sync p.2_off

goto op.1000;
when t=delta ft param_u_K=w ft w<=param_u_0

do {t'=0} sync p_2_off

goto going.0000.1;

when t=delta ft N_K=w ft w<=N_2
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do {t'=0} goto op.1100;

loc op.lllO: while t<=delta wait {}
when t=delta ft w<=param_l_4 goto emergency.stop;

when t=delta ft w>=param_u_0 goto emergency.stop;

when t=delta ft param.l_4 <=w ft w<=param_l_3
do {t'=0} sync p_4_on
goto op.llll;

when t=delta ft param_1.3 <=w ft w<=param_l_2
do {t'=0}

goto op.lllO;

when t=delta ft param_l_2 <=w ft w<=param_l_l

do {t'=0} sync p_3_off
goto op.1100;

when t=delta ft param_l_K=w ft w<=N_l
do {t'=0} sync p_3_off
goto going_1000_2;

when t=delta ft N_2<=w ft w<=param_u_l

do {t'=0} sync p_3_off
goto going.1000.2;

when t=delta ft param_u_K=w ft w<=param_u_0

do {t'=0} sync p_3_off
goto going_0000_2;

when t=delta ft N_K=w ft w<=N_2 do {t'=0} goto op.lllO;

loc op.llll: while t<=delta wait {}
when t=delta ft w<=param_l_4 goto emergency.stop;

when t=delta ft w>=param_u_0 goto emergency.stop;
when t=delta ft param_1.4 <=w ft w<=param_l_3

do {t'=0}

goto op.llll;

when t=delta ft param_l_3 <=w ft w<=param_l_2

do {t'=0} sync p_4.off
goto op.lllO;

when t=delta ft param_l_2 <=w ft w<=param_l_l

do {t'=0} sync p_4_off
goto going_1100_3;

when t=delta ft param.l.K^w ft w<=N_l

do {t'=0} sync p_4_off
goto going.1000.3;

when t=delta ft N_2<=w ft w<=param_u_l

do {t'=0} sync p_4_off
goto going.1000.3;

when t=delta ft param_u_K=w ft w<=param_u_0

do {t'=0} sync p_4_off
goto going_0000_3;
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when t=delta ft N_K=w ft w<=N_2

do {t'=0} goto op.llll;

— intermediate states

loc going.l111.2: while True wait {}
when asap sync p_2_on goto going.l111.3;

loc going_llll_3: while True wait {}
when asap sync p_3_on goto going.l111.4;

loc going.l111.4: while True wait {}
when asap sync p_4_on goto op.llll;

loc going.l110.2: while True wait {}
when asap sync p_2_on goto going.l110.3;

loc going.l110.3: while True wait {}
when asap sync p_3_on goto op.lllO;

loc going_1100_2: while True wait {}
when asap sync p_2_on goto op.1100;

— turning off

loc going_1100_3: while True wait {}
when asap sync p_3_off goto op.1100;

loc going.1000.3: while True wait {}
when asap sync p_3_off goto going_1000_2;

loc going_1000_2: while True wait {}
when asap sync p_2_off goto op.1000;

loc going.0000_3: while True wait {}
when asap sync p_3_off goto going_0000_2;

loc going_0000_2: while True wait {}
when asap sync p_2_off goto going.0000.1;

loc going.0000.1: while True wait {}
when asap sync p.l.off goto op.0000;

— emergency stop mode
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loc emergency.stop: while t<=delta wait {}
end

— analysis commands

var

init.reg, final.reg, reached, reached.final: region;

init.reg := loc[steam_boiler]=sO
ft param_l_l<=w ft w<=param.u_l

ft loc[pump_cont_l]=off
ft loc[pump_cont_2]=off
ft loc[valve]=closed

ft loc[steam]=idle

ft loc[controller]=idle

ft MIN<=param_l_3 ft param_l_3<=param_l_l
ft param_l_K=N_l

ft N_2<=param_u_l
ft param_u_l<=param_u.O ft param_u_0<=MAX;

final.reg := w>=MAX
I w<=MIN

I loc[controller]^emergency.stop;

reached := reach forward from init.reg endreach;

reached.final := reached ft final.reg;

if empty(reached.final)
then prints "Water level maintained between bounds MIN and MAX";

else prints "Water level NOT maintained between bounds MIN and MAX";

prints "Violating states";
print reached.final;
prints "End of reached and final";
print trace to final.reg using reached;

endif;

A.6 Verification of the fault-tolerant two-pump steam-boiler system
with steam model A^

— HyTech input file
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— Steam boiler

— fault-tolerant version.

— pumps can break at any time, except when in off mode
— broken pumps use rate [O.P.rate]
— repair them and reinstate in off mode
— controller uses local variable(s) to record status of pumps

from each location, at end of time, it performs interchange of info
with each pump, and updates its local variables

— uses constants, lo.abort B 50

param.l = 80
N.l = 100

N.2 = 150

hi.abort_none.off = 185

hi.abort_one.off = 215

hi.abort_both.off = 245

— when both pumps OK

use: in range (-inf, lo_abort] — abort
[lo_abort, param.l] — both on
[param.l, N.l] — one on

— when one OK, one broken.

use: in range (-inf, lo.abort] — abort
[lo.abort,100] — one on.

— when both broken,

use: (-inf, lo.abort] — abort

[lo.abort = 50,100] — wait

— in range: [N.l,N.2] ~ no action

— with both pump known to be off
use: in range [N_2,hi_abort_both_off] — no action

[hi_abort.both.off,inf) — abort

— with one pump known to be off
use: in range [N_2,hi_abort_one_off] — no action

[hi.one.off,inf.abort) — abort

— with no pumps known to be off

use: in range [N_2,hi_abort_none.off] — no action
[hi.abort_none.off ,inf) — abort

— controller mode names off_on, etc, indicate the expected state

of each pump at the end of the coming cycle, when a pump
breaks we assume it is off since, once it is fixed, it is

in off state.

define(P_rate,3)
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define(Wl.O) — min steam rate

define(W2,4) — max steam rate

define(MIN,5)

define(lo.abort,50)

define(param.l,80)
define(N.l,100)

define(N.2,150)

define(hi.abort.both.off,245)

define(hi_abort_one_off,215)

define(hi.abort_none_off,185)

define(MAX,250)

define(delta,5)

w, — water level

pi, — pump volume from Pump 1 for a time slot
p2, — pump volume from Pump 2 for a time slot

steam, — steam volume for a time slot

drain

: analog;

t, — controller's clock

tl, — pump controller l's clock

t2 — pump controller 2's clock

: clock;

0K_1,

0K.2

: discrete;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi + dp2 - dsteam - ddrain}

end

automaton pump_cont_l

— pump can spontaneously break from any OK mode.

— broken pump outputs at any rate between 0 and P.rate

— it is detected at next cycle of communication.

— nondeterministic time to repair
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synclabs:

p.l.on, — command from controller to turn on

p.l.off, — command from controller to turn off

p_l_0K, — tell controller pump is OK
p_l_broken, — tell controller pump is broken

p.l.repairing — tell controller pump is being repaired

initially OK.off ;

loc OK.off: while True wait {dpl=0}
when True sync p.l.on do {tl'=0} goto OK.going.on;
when True sync p.l.OK goto OK.off;

loc OK.going.on: while tl<=5 wait {dpl=0}
when tl=5 do {tl'=tl'} goto OK.on;
when True sync p.l.OK goto OK.going.on;

when True sync p.l.off goto OK.off;
when True do {tl'=tl'} goto broken;

loc OK.on: while True wait {dpl=P_rate}
when True sync p.l.off goto OK.off;
when True sync p.l.OK goto OK.on;

when True do {tl'=tl'} goto broken;

— broken mode

loc broken: while True wait {dpi in [0,P.rate]}
— p.l.broken can be used to model communication to controller
— and the controller's command to repair the pump

when True sync p.l.broken goto repair;

when True sync p.l.on goto broken;

when True sync p.l.off goto broken;

— repairing mode
loc repair: while True wait {dpi in [0,P_rate]}

when True sync p.l.repairing goto repair;
when True goto OK.off;

when True sync p.l.on goto repair;
when True sync p.l.off goto repair;

end

automaton pump_cont_2

— pump can spontaneously break from any OK mode.
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— broken pump outputs at any rate between 0 and P.rate
— it is detected at next cycle of communication.

— nondeterministic time to repair

synclabs:

p_2_on, — command from controller to turn on
p_2_off, — command from controller to turn off
p_2_0K, — tell controller pump is OK
p_2_broken, — tell controller pump is broken
p_2_repairing — tell controller pump is being repaired

initially OK.off ;

loc OK.off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto OK.going.on;
when True sync p_2_0K goto OK.off;

loc OK.going.on: while t2<=5 wait {dp2=0}
when t2=5 do {t2'=t2'} goto OK.on;
when True sync p_2_0K goto OK.going.on;
when True do {t2'=t2'} goto broken;
when True sync p_2_off goto OK.off;

loc OK.on: while True wait {dp2=P.rate}
when True sync p_2.off goto OK.off;
when True sync p_2_0K goto OK.on;

when True do {t2'=t2'} goto broken;

— broken mode

loc broken: while True wait {dp2 in [0,P.rate]}
when True sync p_2_broken goto repair;

when True sync p_2_on goto broken;

when True sync p_2_off goto broken;

— repairing mode

loc repair: while True wait {dp2 in [0,P.rate]}
when True sync p_2_repairing goto repair;
when True goto OK.off;

when True sync p_2_on goto repair;

when True sync p_2_off goto repair;

end
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automaton valve

synclabs: open.valve, close.valve;

initially closed;

loc closed: while True wait {ddrain=0}

when True sync open.valve goto open;

loc open: while True wait {ddrain=l}
when True sync close.valve goto closed;

end

automaton steam

synclabs: start ;

initially idle;

loc idle: while True wait {dsteam=0}

when True sync start

goto running;

loc running: while True wait {dsteam in [W1,W2]}
end

automaton controller

— in normal mode, look at water level only, and decide what to do
— some redundancy in off.on/on.off modes, since the normal range
— is adjacent to other regions where no action is taken

synclabs:

steam.boiler.wait ing,

steam_rate_zero,

start, — to turn on all systems, esp. the boiler

p_l_on, p_l_off,

P_1_0K, p.l.broken, p.l.repairing,

p_2_on, p_2_off,

p_2_0K, p_2_broken, p_2_repairing,
open.valve, close.valve;

initially idle ft t=0;

— the initialization mode

loc idle: while True wait {}

53



when True sync steam.boiler.waiting do {t'=0} goto test;

loc test: while t=0 wait {}

when True sync steam.rate.zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open_valve goto wait_till_drained;
when w<=N_l sync p_l_on goto wait_till_fill;
when N_K=w ft w<=N_2 sync start do {t'=delta} goto off_off;

loc wait_till_drained: while w>=N_2 wait {}

when w=N_2 sync close.valve goto wait_till_drained_b;

loc wait_till_drained_b: while True wait {}

when asap sync start do {t'=delta} goto off.off;

loc wait.till.fill: while w<=N_l wait {}

when w=N_l sync start do {t'=delta} goto on.off;

— the normal operating mode

loc off.off: while t<=delta wait {}

— find status of pumps

when t=delta sync p.l.OK do {OK.l'=l,t'=t'} goto off.off.b;
when t=delta sync p.l.broken do {OK.l'=0,t'=t'} goto off.off.b;

loc off.off.b: while True wait {}

when asap sync p_2_0K do {0K_2'=1, t'=0} goto off.off.d;
when asap sync p_2_broken do {0K_2'=0,t'=0} goto off.off.d;
when asap sync p_2_repairing do {t'=0} goto off.off.d;

loc off.off.d: while t=0 wait {}

— normal mode

when 0K.1=1 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=1 ft 0K_2=1 ft

lo_abort<=w ft w<=param.l sync p.l.on

goto going.on.on;
when OK.1=1 ft 0K_2=1 ft

param_K=w ft w<=N_l sync p_2_on
goto off.on;

when 0K_1=1 ft 0K_2=1 ft

param_K=w ft w<=N_l sync p.l.on
goto on.off;

when OK.1=1 ft 0K_2=1 ft

N_K=w ft w<=N_2 goto off.off;
when OK.1=1 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_both_off goto off.off;
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when 0K_1=1 ft 0K_2=1 ft

hi.abort_both_off<=w

goto emergency.stop;

— one broken, 0K_vector=10

when OK.1=1 ft 0K_2=0 ft

w<=lo.abort

goto emergency.stop;

when 0K_1=1 ft 0K_2=0 ft

lo_abort<=w ft w<=N_l sync p.l.on

goto on.off;

when 0K_1=1 ft 0K_2=0 ft

N.K=w ft w<=N_2

goto off.off;

when 0K_1=1 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort_one_off

goto off.off;
when 0K_1=1 ft 0K_2=0 ft

hi_abort_one_off<=w

goto emergency.stop;

— one broken, 0K_vector= 01

when OK.1=0 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when OK.1=0 ft 0K_2 =1 ft

lo_abort<=w ft w<=N_l sync p_2_on

goto on.off;

when 0K_1=0 ft 0K_2=1 ft

N_K=w ft w<=N_2

goto off.off;

when OK.l =0 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_one_off

goto off.off;

when OK.1=0 ft 0K_2=1 ft

hi_abort_one_off<=w

goto emergency.stop;

— both broken, 0K_vector=00

when 0K_1=0 ft 0K_2=0 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=0 ft 0K_2=0 ft

lo_abort<=w ft w<=N_l

goto off.off;

when 0K_1=0 ft 0K_2=0 ft

N_K=w ft w<=N_2

goto off.off;

when OK.l =0 ft 0K_2=0 ft
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N_2<=w ft w<=hi_abort_none_off

goto off.off;

when OK.1=0 ft 0K_2=0 ft

hi.abort_none_off<=w

goto emergency.stop;

loc off.on: while t<=delta wait {}

— find status of pumps
when t=delta sync p.l.OK do {0K_1'=1, t'=t'} goto off.on.b;
when t=delta sync p.l.broken do {0K_l'=0,t'=t'} goto off.on.b;
when t=delta sync p.l.repairing do {t'=t'} goto off.on.b;

loc off.on.b: while True wait {}

when asap sync p_2_0K do {0K_2'=1, t'=0} goto off.on.d;
when asap sync p_2_broken do {0K_2'=O,t'=O} goto off.on.d;
when asap sync p_2_repairing do {t'=0} goto off.on.d;

loc off.on.d: while t=0 wait {}

— normal mode

when OK.1=1 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when 0K.1=1 ft 0K_2=1 ft

lo.abort<=w ft w<=param_l sync p.l.on

goto on.on;

when 0K_1=1 ft 0K_2=1 ft

param_K=w ft w<=N_l
goto off.on;

when OK.1=1 ft 0K.2=1 ft

N_K=w ft w<=N.2 goto off.on;
when 0K_1=1 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_one_off sync p_2.off

goto off.off;
when 0K_1=1 ft 0K_2=1 ft

hi_abort_one_off<=w

goto emergency.stop;

— one broken, 0K_vector=10

when OK.1=1 ft 0K_2=0 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=1 ft 0K_2=0 ft

lo_abort<=w ft w<=N_l sync p.l.on

goto on.off;
when OK.1=1 ft 0K_2=0 ft

N_K=w ft w<=N_2

goto off.off;

when 0K_1=1 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort_one_off
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goto off.off;

when OK.1=1 ft 0K_2=0 ft

hi_abort_one_off<=w

goto emergency.stop;

— one broken, 0K_vector=01

when 0K_1=0 ft 0K_2=1 ft

w<=lo.abort

goto emergency.stop;

when OK.1=0 ft 0K_2=1 ft

lo_abort<=w ft w<=N_l sync p_2_on

goto off.on;

when 0K_1=0 ft 0K_2=1 ft

N_K=w ft w<=N_2

goto off.on;

when OK.l =0 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_none_off sync p_2_off

goto off.off;

when OK.1=0 ft 0K_2=1 ft

hi.abort.none.off<=w

goto emergency.stop;

— both broken, 0K_vector=00

when OK.1=0 ft 0K_2=0 ft

w<=lo.abort

goto emergency.stop;

when OK.1=0 ft 0K_2=0 ft

lo_abort<=w ft w<=N_l

goto off.off;

when 0K_1=0 ft 0K_2=0 ft

N_K=w ft w<=N_2

goto off.off;

when OK.l =0 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort_none_off

goto off.off;

when 0K_1=0 ft 0K_2=0 ft

hi.abort.none.off<=w

goto emergency.stop;

loc on.off: while t<=delta wait {}

— find status of pumps

when t=delta sync p.l.OK do {0K_l'=l,t'=t'} goto on.off.b;
when t=delta sync p.l.broken do {0K_l'=0,t'=t'} goto on.off.b;
when t=delta sync p.l.repairing do {t'=t'} goto on.off.b;

loc on.off.b: while True wait {}

when asap sync p_2_0K do {0K_2'=l,t'=0} goto on.off.d;
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when asap sync p_2_broken do {0K.2'=0,t'=0} goto on.off_d;
when asap sync p_2_repairing do {t'=0} goto on.off_d;

loc on.off.d: while t=0 wait {}

— normal mode

when 0K_1=1 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=1 ft 0K.2=1 ft

lo.abort <=w ft w<=param_l sync p_2_on

goto on.on;

when 0K_1=1 ft 0K_2=1 ft

param_K=w ft w<=N_l
goto on.off;

when OK.1=1 ft 0K_2=1 ft

N_K=w ft w<=N_2 goto on.off;

when OK.1=1 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_one_off sync p.l.off

goto off.off;
when 0K_1=1 ft 0K_2=1 ft

hi_abort_one_off<=w

goto emergency.stop;

— one broken, 0K_vector=10

when 0K_1=1 ft 0K_2=0 ft

w<=lo_abort

goto emergency.stop;

when 0K.1=1 ft 0K_2=0 ft

lo.abort<=w ft w<=N_l sync p.l.on

goto on.off;
when OK.1=1 ft 0K_2=0 ft

N_K=w ft w<=N_2

goto on.off;

when OK.1=1 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort_none_off sync p.l.off

goto off.off;
when 0K_1=1 ft 0K_2=0 ft

hi.abort.none.off<=w

goto emergency.stop;

— one broken, 0K_vector=01

when OK.1=0 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when OK.1=0 ft 0K_2=1 ft

lo_abort<=w ft w<=N_l sync p_2_on

goto off.on;
when 0K.1=0 ft 0K_2=1 ft

N_K=w ft w<=N_2
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goto off.on;
when 0K_1=0 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_one_off sync p.l.off

goto off.off;

when 0K_1=0 ft 0K_2=1 ft

hi_abort_one_off<=w

goto emergency.stop;

— both broken, 0K_vector=00

when OK.1=0 ft 0K_2=0 ft

w<=lo_abort

goto emergency.stop;

when OK.1=0 ft 0K_2=0 ft

lo_abort<=w ft w<=N_l

goto off.off;
when 0K_1=0 ft 0K_2=0 ft

N_K=w ft w<=N_2

goto off.off;
when OK.1=0 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort_none.off

goto off.off;
when OK.1=0 ft 0K_2=0 ft

hi_abort_none_off<=w

goto emergency.stop;

loc on.on: while t<=delta wait {}

— find status of pumps

when t=delta sync p.l.OK do {OK.l'=l,t'=t'} goto on.on.b;
when t=delta sync p.l.broken do {OK.l'=0,t'=t'} goto on.on.b;
when t=delta sync p.l.repairing do {t'=t'} goto on.on.b;

loc on.on.b: while True wait {}

when asap sync p_2_0K do {0K_2'=1,t'=0} goto on.on.d;
when asap sync p_2_broken do {0K_2'=0,t'=0} goto on.on.d;
when asap sync p_2_repairing do {t'=0} goto on.on.d;

loc on.on.d: while t=0 wait {}

— normal mode

when 0K_1=1 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=1 ft 0K_2=1 ft

lo.abort <=w ft w<=param_l

goto on.on;

when 0K_1=1 ft 0K_2=1 ft

param_K=w ft w<=N_l sync p.2.off

goto on.off;
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when OK.1=1 ft 0K_2=1 ft

N_K=w ft w<=N_2 goto on.on;
when OK.1=1 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_none_off sync p.l.off

goto going.off.off;
when OK.1=1 ft 0K_2=1 ft

hi.abort.none.off<=w

goto emergency.stop;

— one broken, 0K_vector=10

when OK.1=1 ft 0K_2=0 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=1 ft 0K_2=0 ft

lo_abort<=w ft w<=N_l sync p.l.on

goto on.off;

when 0K_1=1 ft 0K_2=0 ft

N_K=w ft w<=N_2

goto on.off;
when OK.1=1 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort.none.off sync p.l.off

goto off.off;

when 0K_1=1 ft 0K_2=0 ft

hi.abort.none.off<=w

goto emergency.stop;

— one broken, 0K_vector=01

when OK.1=0 ft 0K_2=1 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=0 ft 0K_2=1 ft

lo.abort<=w ft w<=N_l sync p_2_on

goto off.on;

when 0K_1=0 ft 0K_2=1 ft

N_K=w ft w<=N_2

goto off.on;

when OK.1=0 ft 0K_2=1 ft

N_2<=w ft w<=hi_abort_none_off sync p_2_off

goto off.off;

when OK.1=0 ft 0K_2=1 ft

hi_abort_none_off<=w

goto emergency.stop;

— both broken, 0K_vector=00

when OK.1=0 ft 0K_2=0 ft

w<=lo_abort

goto emergency.stop;

when 0K_1=0 ft 0K_2=0 ft

lo.abort<=w ft w<=N_l
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goto off.off;

when OK.1=0 ft 0K.2=0 ft

N_K=w ft w<=N_2

goto off.off;
when OK.1=0 ft 0K_2=0 ft

N_2<=w ft w<=hi_abort.none_off

goto off.off;
when OK.1=0 ft 0K.2=0 ft

hi.abort.none.off<=w

goto emergency.stop;

loc going.on.on: while True wait {}
when asap sync p_2_on goto on.on;

loc going.off.off: while True wait {}
when asap sync p_2_off goto off.off;

— emergency stop mode

loc emergency.stop: while t<=delta wait {}
end

— analysis commands

init.reg, final.reg, reached, reached.final,
emergency.reg, bounds.viol.reg : region;

— initially t=delta, so that a control decision is made immediately
init.reg := loc[steam_boiler]=sO

ft N.l -20<=w ft w<=N_2 + 20

ft loc[pump_cont_l]=OK_off
ft loc[pump_cont_2]=0K_off
ft loc[valve]=closed

ft loc[steam]=idle

ft loc[controller]=idle

ft 0K_1=1

ft 0K_2=1

emergency.reg := loc[controller]=emergency_stop;

bounds.viol.reg := w>=MAX I w<=MIN;
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reached := reach forward from init.reg endreach;

reached.final := reached ft emergency.reg;

if empty(reached.final)
then prints "Never enters emergency state";
else prints "Can enter emergency state";

print omit all locations

hide pi, p2, steam, drain, t, tl, t2, OK.l, 0K.2

in reached.final endhide ;

endif;

prints "ggsssaaraianaBeancBBXii;i,;maaimces'' •

reached.final := reached ft bounds.viol.reg;

if empty(reached.final)
then prints "Water level maintained between bounds MIN and MAX";
else prints "Water level NOT maintained between bounds MIN and MAX";

prints "Violating states";
print trace to final.reg using reached;

endif;

A.7 Parametric analysis of the control parameter L in the
dual-pump fault-free steam-boiler system with controller C'A and
steam model ASA

— HyTech input file

— Steam boiler

— time slot is 5 units long

define(P.rate,4)

define(Wl,0) — min steam rate

define(W2,6) — max steam rate

define(param.l.prime,25)
—Ndefine(param.l,70)
define(param.u.prime,200)

define(N_l,100)

define(N.2,150)

define(MIN,5)
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define(MAX,220)

var

w, — water level

pi, — pump volume from Pump 1 for a time slot
p2, — pump volume from Pump 2 for a time slot
steam, — steam volume for a time slot

drain

: analog;

t, — controller's clock

tl, — pump controller l's clock

t2 — pump controller 2's clock

: clock;

param.l — parameter L (above L , leave pumps idle,
below activate both)

: parameter;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi + dp2 - dsteam - ddrain}

end

automaton pump.cont.l

synclabs: p.l.on, p.l.off;
initially off ;

loc off: while True wait {dpl=0}
when True sync p.l.on do {tl'=0} goto going.on;

loc going.on: while tl<=5 wait {dpi = 0}
when tl=5 do {tl'=tl*} goto on;

loc on: while True wait {dpl=P_rate}
when True sync p.l.off goto off;

end

automaton pump_cont_2
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synclabs: p_2_on, p_2_off;
initially off ;

loc off: while True wait {dp2=0}
when True sync p_2_on do {t2'=0} goto going.on;

loc going.on: while t2<=5 wait {dp2 = 0}
when t2=5 do {t2'=t2'} goto on;

loc on: while True wait {dp2=P_rate}
when True sync p_2_off goto off;

end

automaton valve

synclabs: open.valve, close.valve;

initially closed;

loc closed: while True wait {ddrain = 0}

when True sync open.valve goto open;

loc open: while True wait {ddrain =1}
when True sync close.valve goto closed;

end

automaton steam

synclabs: start ;

initially idle;

loc idle: while True wait {dsteam = 0}

when True sync start goto running;

loc running: while True wait {dsteam in [W1.W2]}

end

automaton controller

— in normal mode, look at water level only, and decide what to do

— some redundancy in off.on/on.off modes, since the normal range
— is adjacent to other regions where no action is taken
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synclabs:

steam.boiler.waiting,
steam.rate.zero,

start, — to turn on all systems, esp. the boiler

p.l.on, p.l.off, p_2_on, p_2_off,

open.valve, close.valve;

initially idle ft t=0;

— the initialization mode

loc idle: while True wait {}

when True sync steam.boiler.waiting do {t'=0} goto test;

loc test: while t=0 wait {}

when True sync steam.rate.zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open.valve goto wait.till.drained;
when w<=N_l sync p.l.on goto going.wait.till.fill;
when N_K=w ft w<=N_2 sync start do {t'=5} goto off.off;

loc wait.till.drained: while w>=N_2 wait {}

when w=N_2 sync close.valve goto wait.till.drained.b;

loc wait.till.drained.b: while True wait {}

when asap sync start do {t'=5} goto off.off;

loc going.wait.till.fill: while True wait {}
when asap sync p_2_on goto wait.till.fill;

loc wait.till.fill: while w<=N_l wait {}

when w=N_l sync start do {t'=5} goto on.on;

— the normal operating mode

loc off.off: while t<=5 wait {}

when t=5 ft w<param_l_prime goto emergency.stop;

when t=5 ft param_l.prime<=w ft w<=param_l do {t'=0} sync p.l.on
goto going.on.on;

when t=5 ft param_K=w ft w<=N_l do {t'=0}
goto off.off;

when t=5 ft N_K=w ft w<=N_2 do {t'=0} goto off.off;
when t=5 ft N_2<=w ft w<=param_u_prime do {t'=0}

goto off.off;
when t=5 ft w>param_u_prime goto emergency.stop;

loc on.on: while t<=5 wait {}
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when t=5 ft w<param_l_prime goto emergency.stop;
when t=5 ft param_l_prime<=w ft w<=param_l do {t'=0} goto on.on;
when t=5 ft param_K=w ft w<=N_l do {t'=0} sync p.l.off

goto going.off.off;
when t=5 ft N.K=w ft w<=N_2 do {t'=0} goto on.on;
when t=5 ft N_2<=w ft w<=param_u_prime do {t'=0} sync p.l.off

goto going.off.off;
when t=5 ft w>param_u_prime goto emergency.stop;

loc going.on.on: while True wait {}
when asap sync p_2_on goto on.on;

loc going.off.off: while True wait {}
when asap sync p_2.off goto off.off;

— emergency stop mode

loc emergency.stop: while t<=5 wait {}
end

— analysis commands

assumption,

init.reg.loc,
init.reg,

final.reg,
reached,

reached.final: region;

init.reg.loc := loc[steam.boiler] = sO
ft loc[pump.cont.l] = off
ft loc[pump_cont.2] = off
ft loc[valve] = closed

ft loc[steam] = idle

ft loc[controller] = idle

assumption := MIN<=param_l_prime ft param_l_prime<=param_l
ft param_K=N_l

ft N_2<=param_u_prime ft param_u_prime<=MAX;

— initially t = 5, so that a control decision is made immediately
init.reg := init_reg_loc
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ft param_l<= w ft w<=param_u_prime
ft assumption;

final.reg := w>=MAX
I w<=MIN

I loc[controller]=emergency_stop;

reached := reach forward from init.reg endreach;

reached.final := reached ft final.reg;

prints "Parametric constraints causing violation of MIN and MAX bounds";
print omit all locations

hide non.parameters in reached.final endhide;

A.8 Verification of the dual-pump fault-free steam-boiler system
with controller Cq and steam model ASB

— HyTech input file

— Steam boiler

— Steam model A"S.B. Verification of controller C_B

— time slot is 5 units long

define(P.rate,8) — pump rate for both pumps combined
define(Wl,0) — min steam rate

define(W,6) — max steam rate

define(Ul,2/5) — max gradient of steam rate
define(U2,2/5) — - min gradient of steam rate

define(delta,5)

define(delta_Ul,2)

define(delta_U2,2)

define(acc_loss,5) — delta*2/2.U2

define(acc_gain,5) — delta"2/2.Ul
define(two_round_acc_gain,20) — actually 4*acc_gain, i.e. gain over

— double time period

define(MIN,5)

define(param.l.prime,25)
define(init.l,70)
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define(N.l,100)

define(N.2,150)

define(init_u,170)

def ine(param.u.prime,200)
define(MAX,220)

var

w, — water level

pi, — pump volume from Pump 1 for a time slot

steam, — steam volume for a time slot

drain

: analog;

steam.rate

: discrete;

t, — controller's clock

tsteam, — clock for monitoring steam level is consistent
with steam acceleration rate

tl — pump controller l's clock

: clock;

automaton steam.boiler

synclabs: ;

initially sO;

loc sO: while True wait {dw = dpi - dsteam - ddrain}

end

automaton pump.cont.l

synclabs: p.l.on, p.l.off;

initially off ;

loc off: while True wait {dpl=0}
when True sync p.l.on do {tl'=0} goto going.on;

loc going.on: while tl<=5 wait {dpl=0}
when tl=5 do {tl'=tl'} goto on;

loc on: while True wait {dpl=P_rate}
when True sync p.l.off goto off;

end

68



automaton valve

synclabs: open.valve, close.valve;

initially closed;

loc closed: while True wait {ddrain=0}

when True sync open.valve goto open;

loc open: while True wait {ddrain=l}
when True sync close.valve goto closed;

end

automaton steam

— bounds on steam's double derivative loosely bounded by checking
last steam rate, and calculating loose lower and upper bounds

on next volume of steam.

— real relationships use quadratic formulae

If the steam volume is not consistent, then time stops.

— the model allows for more liberal steam during running, which will
result in incorrect global bounds on w. If necessary, this

can be corrected by measuring water levels only in the
checked.steam mode

synclabs: start;

initially idle ft steam=0 ft steam.rate=0;

loc idle: while True wait {dsteam=0}

when True sync start

do {tsteam'=0,steam'=0,steam.rate'=0}

goto running;

loc running: while tsteam<=delta ft steam_rate>=0 ft steam_rate<=W

wait { dsteam in [0,W] }

when tsteam=delta ft t=delta

— i.e. BEFORE the controller reads the values

ft steam>=delta steam.rate - acc.loss

ft steam<=delta steam.rate + acc.gain

goto checked.steam;

loc checked.steam: while tsteam=delta ft steam_rate>=0 ft steam_rate<=W

wait { dsteam=0 }
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when tsteam=delta — i.e. BEFORE the controller reads the values

do {

steam.rate'<=steam_rate + delta.U2,

steam.rate'>=steam_rate - delta.Ul,

delta steam.rate'<=steam + acc.gain,

delta steam.rate'>=steam - acc.loss,

steam'=0,

tsteam'=0

}

goto running;
end

automaton controller

— in normal mode, look at water level only, and decide what to do

synclabs:

steam.boiler.waiting,
steam.rate.zero,

start, — to turn on all systems, esp. the boiler

p.l.on, p.l.off,
open.valve, close.valve;

initially idle ft t=0;

— the initialization mode

loc idle: while True wait {}

when True sync steam.boiler.waiting do {t'=0} goto test;

loc test: while t=0 wait {}

when True sync steam.rate.zero goto init;

loc init: while t=0 wait {}

when w>=N_2 sync open.valve goto wait.till.drained;

when w<=N_l sync p.l.on goto wait.till.fill;
when N_K=w ft w<=N_2 sync start do {t'=delta} goto off;

loc wait.till.drained: while w>=N_2 wait {}
when w=N_2 sync close.valve goto wait.till.drained.b;

loc wait.till.drained.b: while True wait {}

when asap sync start do {t'=delta} goto off;

loc wait.till.fill: while w<=N_l wait {}

when w=N_l sync start do {t'=delta} goto on;

— the normal operating mode
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loc off: while t<=delta wait {}

when t=delta ft tsteam=0 ft w<param_l_prime goto emergency.stop;

when t=delta ft tsteam=0

ft param_l_prime<=w

ft w<=N_l

ft 10 steam.rate + two.round_acc.gain >=60
ft w<=60 + param.l.prime

do {t'=0} sync p.l.on
goto on;

when t=delta ft tsteam=0

ft param_l_prime<=w

ft w<=N_l

ft 10 steam.rate + two_round_acc_gain<=60
ft w<=param_l_prime + 10 steam.rate + two.round_acc.gain
do {t'=0} sync p.l.on
goto on;

when t=delta ft tsteam=0

ft param_l_prime<=w

ft w<=N_l

ft 10 steam.rate + two.round_acc.gain >=60

ft w>=param_l_prime + 60
do {t'=0}

goto off;

when t=delta ft tsteam=0

ft param_l_prime<=w

ft w<=N_l

ft 10 steam.rate + two.round_acc.gain <=60
ft w>=param_l_prime + 10 steam.rate + two.round_acc.gain
do {t'=0}

goto off;

when t=delta ft tsteam=0 ft N_K=w ft w<=N_2 do {t'=0} goto off;

when t=delta ft tsteam=0

ft N_2<=w

ft w<=param_u_prime
do {t'=0}

goto off;

when t=delta ft tsteam=0 ft w>param_u_prime goto emergency.stop;

loc on: while t<=delta wait {}

when t=delta ft tsteam=0 ft w<param_l_prime goto emergency.stop;

when t=delta ft tsteam=0

ft param_l_prime<=w

ft w<=N_l

do {t'=0}
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goto on;

when t=delta ft tsteam=0 ft N_K=w ft w<=N_2 do {t'=0} goto on;

when t=delta ft tsteam=0

ft N_2<=w

ft w<=param_u_prime

do {t'=0}

sync p_l_off

goto off;

when t=delta ft tsteam=0 ft w>param_u_prime goto emergency.stop;

— emergency stop mode

loc emergency.stop: while t<=delta wait {}
end

— analysis commands

var

init.reg, final.reg, reached, reached.final: region;

init.reg := loc[steam.boiler]=s0
ft init_K=w ft w<=init_u

ft loc[pump_cont_l]=off
ft loc[valve]=closed

ft loc[steam]=idle

ft steam=0

ft steam_rate=0

ft loc[controller]=idle

ft MIN<=param_l_prime

ft param_l_prime<=N_l

ft N_2<=param_u_prime
ft param_u_prime<=MAX;

final.reg := loc[controller]=emergency_stop I w<=MIN I w>=MAX;

reached := reach forward from init.reg endreach;

reached.final := reached ft final.reg;

if empty(reached.final)
then prints "Water level maintained between bounds MIN and MAX";
else prints "Water level NOT maintained between bounds MIN and MAX";

prints "Violating states";
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print reached.final;
print trace to final.reg using reached;

endif;
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