
 

 

 

 

 

 

 

 

 

Copyright © 1996, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



TRACE DRIVEN LOGIC SYNTHESIS-

APPLICATION TO POWER MINIMIZATION

by

Luca P. Carloni, Patrick C. McGeer, Alexander Saldanha,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/62

21 October 1996



TRACE DRIVEN LOGIC SYNTHESIS-

APPLICATION TO POWER MINIMIZATION

by

Luca P. Carloni, Patrick C. McGeer, Alexander Saldanha,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M96/62

21 October 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Trace Driven Logic Synthesis -
Application to Power Minimization

Luca P. Carloni Patrick C. McGeer*

Alexander SaldanhaT Alberto L. Sangiovanni-Vincentelli

Department of EECS
University of California at Berkeley

Cory Hall, Berkeley, CA 94720
l Cadence Berkeley Laboratories,

1919 Addison Street, Ste. 303
Berkeley CA 94704-1144

Abstract

A trace driven methodology for logic synthesis and optimization is
proposed in this paper. Given a logic description of a digital circuit C
and an expected trace of input vectors T, an implementation of C that
optimizes a cost function under application of T is derived. This approach
is effective in capturing and utilizing the correlations that exist between
input signals on an application specific design. Algorithms are devised
to perform trace driven two-level and multi-level logic optimization to
minimize switching power. We demonstrate the advantages this approach
provides over traditional logic synthesis by showing large reductions in
switching power on a set of benchmark circuits.

1 Introduction

Logic synthesis toolshave traditionally been applied to problems where the cost
function used in optimization depends only on the Boolean function representing
the circuit to be implemented. This approach, of course, is completely appropri
ate for minimizingthe area or longest path delayof a circuit. However, there are
certain cost criteria which cannot be measured just by analysis of the Boolean
function denoting the circuit. One such example is switching power minimiza
tion where it is well known that the correlations between signals have a profound



impact on the switching activity of a circuit. Another example is event driven
logic simulation where the speed of simulation is directly proportional to the
event activity within the circuit which is determined to a large extent by the
switching activity of the input stimulus. An even more compelling example is
the approach used by computer architects in designing a modern microproces
sor. Given the goal of improving the SPECmark performance of a processor,
all architectures are tuned to perform optimally for the given instruction traces
generated from the benchmark suites.

In this paper we propose a trace driven methodology for logicsynthesis and
optimization of Boolean circuits. Given an initial logic description of a digital
circuit C and an expected trace of input vectors 7", an implementation of C
that optimizes a cost function with respect to T is derived. This approach is
effective in capturing and utilizing the correlations that exist between input
signals and is most appropriate when applied to designs that are specific to a
chosen application. This paper is devoted to the case where the cost function
is to minimize the switching activity of the circuit under the sequence. The
approach is novel since it is the first to propose synthesis and optimization at
the micro-architecture (logic) level tuned to an application specific stimulus.
This paper focuses on the development of two-level and multi-level algorithms
for combinational logic synthesis to minimize the switching activity under a user
provided trace set. The approach is applied to sequential circuits by performing
the optimizations on the combinational logic between the latches.

The motivation and application of the proposed methodology to power min
imization at the logic level is justified in two steps: (1) Why trace driven logic
optimization is essential to obtain useful power reductions in logic circuits, and,
(2) How trace driven synthesis is used in logic synthesis and what modifica
tions of existing algorithms and design flows are required to accommodate the
proposed methodology. Each of these issues are illustrated in the next two
sub-sections.

1.1 Trace driven logic optimization for low power

Consider the simple example of a Boolean function / with on-set:

CW(/) = {xiX2X3,XiX2Xz,XiX2X3iX\X2X3)'XiX2X3]

The minimum area implementation is f = X\ + gi with g\ = X2 • X3. A second
implementation of / is / = X\ + gi with gi = x\ •X2 •X3.

Consider the two traces 71 and T2 shown in Table 1. Assume momentarily
that only the number of gate switches is of concern, and the absolute power due
to capacitance loading are being ignored. The first implementation generates
41 switches while the second yields 37 switches under trace 71- On the trace T2
the first circuit generates 30 switches while the second yields 35. Thus, neither
implementation is always preferred over the other with respect to switching



Trace T\ Values Trace Ti Values

vector X1X2X3 Si 92 X\XlXz 31 92

v\ 1 1 1 1 0 1 1 0 0 0

V2 1 0 0 0 0 10 1 0 0

VZ 1 1 1 1 0 1 1 0 0 0

V4 0 0 0 0 0 0 0 1 0 0

VS 1 1 1 1 0 1 1 0 0 0

V6 0 0 0 0 0 0 0 1 0 0

V7 1 1 1 1 0 1 1 0 0 0

V8 1 0 0 0 0 1 0 1 0 0

V9 1 1 1 1 0 1 1 0 0 0

V\0 0 0 0 0 0 0 0 1 0 0

VI1 0 1 1 1 1 0 10 0 0

Table 1: Example illustrating trace driven synthesis. Note that <7i = X2 -xz and
92 — xT • X2 • X3

3>

*3-D^

>

*» LS

Figure 1: The two implementations of / = xi -f x2 • X3.



activity, and the desirable implementation can only be differentiated using trace
driven synthesis.

Note that the previous approaches described by Najm [6] or Iman and Pe-
dram [4] using signal and/or transition probabilities calculated for each of the
given traces 71 and 72 always causes the first implementation to be preferred
over the second.

It is a widely accepted fact that the only effective approach to accurate power
estimation is to perform logic simulation to obtain the switching activity from
which the switching power can be estimated. The main reason forcing this con
clusion is the variation in the estimated power using probabilistic or statistical
techniques from the power dissipated under the actual vectors applied to the
circuit. Specifically the spatial correlations between the values on input signals
within a vector as well as the spatio-temporal correlations between signals across
vectors cannot be captured by existing probilistic and statistical methods. Our
approach extends the use of the actual vectors employed in power estimation
to logic synthesis and optimization as well, thus narrowing the discrepancy in
estimated power between analysis and synthesis tools while providing substan
tially more room for significant reduction in the power dissipation due to trace
driven optimization algorithms.

1.2 Trace driven methodology

Having demonstrated the potential improvement available from trace driven
logic synthesis, the next major question to address is the generation of the
input trace sets to use during logic synthesis and optimization.

If the intended design is to be used to perform a specific task as part of a
larger system the trace set is composed of the sequence ofvalues that appear on
the input signals of the design. This sequence is obtained by performing logic
simulation of the part within the expected environment of application. This
casecovers most application specific integrated circuits (ASIC's). An interesting
sub-class of these designs are controllers which are implemented as finite state
machines (FSM's). Assume that the sequence of values that appear on the
primary inputs of the FSM is hard to characterize. In such cases, a relevant
and useful trace set may be obtained by performing logic simulation on the
FSM using random values on the primary inputs. Thesequence ofvalues of the
state registers will convey the important correlations between thestatevariables
of the controller. In fact, our experimental results for FSM's are obtained by
generating characteristic sequences using this technique.

As discussed later in the sequel, there is no a priori restrictionon the length
of the trace set that is used in the proposed methodology. Although it is conceiv
able that the trace sets generated using the naive simulation based procedure
outlined above may be represented by a smaller trace set without much im
pact on the information essential for logic optimization, our approach is only
marginally impacted by large trace sets for two reasons: (1) a trace set is rep-



resented as a set of vector pairs with a frequency count indicating the number
of occurrence of each pair in the trace set; thus recurring vector pairs and se
quences are automatically compacted, (2) the size of the trace set only impacts
the running time used in simulations during the logic optimization algorithms.
Most of these simulations are performed in a pre-processing step and the running
time can be improved by employing state-of-the-art logic simulation techniques.

1.3 Related work

We provide a brief summary of previous work in low power synthesis to compare
and contrast the contributions of this paper.

The early approaches to power estimation were based on propagating switch
ing probabilities from inputs through a combinational logic netlist. Given the
inaccuracy due to logic re-convergence, the technique has been modified to use
pairwise correlations, spatial correlations and temporal correlations approxi
mated by time-homogeneous Markov chains. Although the authors have claimed
that these approximate techniques yield only small losses in accuracy, none of
these approaches have been feasibly applied in logic synthesis procedures. Power
estimation for sequential logic circuits have been mostly based on calculation of
the steady state transition probabilities using the Chapman-Kolmogorov equa
tions, and the majority of approaches are unable to handle circuits with larger
than a handful of memory elements. Similar to the combinational logic case,
none of the techniques have as yet been feasibly adapted in sequential logic
synthesis procedures.

In the logic synthesis domain greedy heuristic techniques for simplification
using don't cares, decomposition and factorization have been proposed. None
of these techniques presumably provide a guarantee of realistic power reduction
since the techniques are usually based on naive assumptions about the switching
activity of individual nodes. The authors report reductions in the 5%-15% range
on benchmark circuits assuming completely random traces. No technique until
now have been presented to address the trace driven logicsynthesis. We proceed
to the formulation of this problem in the next section.

2 Trace driven logic optimization problem

The problem of trace driven logic optimization for minimum switching activity
may be stated as follows: given a logic circuit represented as a set of Boolean
functions and a sequence of input vectors, synthesize a circuit which dissipates
minimum power due to switching activity under the application of the given
sequence.

There are several significant aspects to note in the statement of the problem.
The focus of our work is on reduction of the switching power. We assume that
the application of proper physical design techniques will minimize the power



dissipated due to short-circuit and leakage currents. The switching power is
estimated using a zero-delay model during logic optimization. While the princi
pal reasons guiding this decision are the speed of the zero delay logic simulation
versus timing simulation and the lack of availability of good delay models at
the technology independent stage of logic synthesis, any other model that ac
counts for glitch occurrence may be utilized. We use an accurate capacitance
model during the estimation of power dissipated due to switching activity. In
particular at the technology independent level we account for the fanout ofeach
gate as well as the size of the gate by using a decomposition into two-input
gates. The accuracy of the model is verified by reporting results for the power
dissipationobtained by running timingsimulation usingdelays and capacitance
loads obtained after technology mapping of the synthesize circuits.

Some basic notation and definitions are introduced to facilitate the presen
tation of trace driven logic synthesis.

Bn is the set of all vertices (or vectors) in the n-dimensionalBoolean space.
A trace T = {v\, V2,..., vl] ofdimension n is an ordered sequence of vectors in
Bn. Note that every input either has value 0 or 1 in each vector in a trace.

The switching activity of a Boolean function / for a given trace T can be
computed by simply determining the value of / under each vector in 7". A
switch occurs when the value of / changes from 0 to 1 or 1 to 0. The switching
activity of / under T may also be deduced by considering pairs of vectors. Let
Vr denote the set of pairs of adjacent vectors of T, i.e.,

VT = {(vi,vj) | vt € T, Vj e T, i = 1,.... L- 1,j = i + 1}

Associated with each element (v,-, Vj) € Vt is the frequency of occurrence of t/,-
and Vj as successive vectors in 7", denoted JV(vi> vj)-

As an example, consider the three traces shown in Table 2. We have:

vector X1X2X3X4

r2
X1X2X3X4

7i
X1X2X3X4

v\

V2

1/3

v4

V6

V7

V8

V9

v\o

0 0 0 0

0 0 0 1

0 0 10

0 0 11

0 10 0

0 10 1

0 110

0 111

10 0 0

10 0 1

0 111

10 0 1

0 111

10 0 1

0 111

10 0 1

0 111

10 0 1

0 111

10 0 1

1111

0 0 0 0

1111

0 0 0 0

1111

0 0 0 0

1111

0 0 0 0

1111

0 0 0 0

Table 2: Example traces

VTl = {(0000,0001), (0001,0010), (0010,0011), (0011,0100), (0100,0101),



(0101,0110), (0110,0111), (0111,1000), (1000,1010)}

VT7 = {(0111,1001), (1001,0111)}

vTi = {(oooo, mi), (1111,0000)}

Suppose we wish to calculate the switching activity of a gate g = X2 •x$ on
each of the traces. Define

'Prig) = {{vi,vj) | {vi,vj) € VT Affa) # g{vj)}

and

?T ~ s(f..fi)6PT(s) ^r(wt.t>i)
For the example, we have Tj = 2, Tj —9, and Tj —9, each of which denotes
exactly the switching activity of g under the respective trace set.

The switching activity of an input variable x is obtained by setting g = x in
the above formulae.

The key transformation performed by the formulae above is the representa
tion of all the information of a trace needed for calculating the switching power
by a set of vectors pairs, each associated with a count of the frequency of occur
rence of the vector pair in the trace. This representation of a trace by a set of
vector pairs is critical in the formulation and implementation of the algorithms
for exact and heuristic two-level logic minimization and heuristics for multi
level logic optimization algorithms for decomposition and factorization that are
described in the sequel.

3 Trace driven two-level minimization

In this section we address the problem of synthesis of a two-level logic circuit for
a Boolean function with minimum power dissipation for a given trace. We first
provide an exact formulation of the two-level covering problem for minimum
power dissipation and then describe a heuristic procedure to allow the solution
of larger problems.

As already indicated by the example in Table 1, the minimum power cover
may contain non-prime implicants. The cost of an implicant is computed ac
cording to the following definition:

Definition 3.1 Given trace T = {v\, t>2,..., vi) and an implicant q = x\ •X2 •
... •xk of f, the power cost of q underT, denoted M/V(9)> w

Wr(q)=XSAT(q)-rOSAT(q) (1)

with:

OSAT(q) = 0.5 -Cio-d-va-^i (2)
'**€gfJ-5 •CXk •Vdd •TTkxXSAT{q) = E,fc€90.5 CXk Vl-Tr* (3)



The term OSAt{q) represent the power dissipation due to the output switching
activity of a gate gq implementingq. Qoad is the output load capacitance of
gq and Vdd is the supply voltage. Since there is an output transition only if
gq(vi) ^ gq{vi+i), OSAt(q) sums the output power dissipation due to the
entire trace 7". Similarly, the term XSAt{<i) 1s the sum of the contributions to
the total power dissipation due to the switching activity on each input Xk with
capacitance CXk •

Notice that XSAt(<i) can De computed by simply observing the input trace
and using the inputs that appear in q regardless of the specific function /.

Given the trace 7", the power cost of a cover Q of /, is given by

Wr(Q) = £WV(<?)

Thus we have the typical logic minimization problem: Given a Boolean function
/ and a trace T, find the cover Qt of / which has the minimum power cost
Wt{Q). A minimum cover is denoted QT.

Following [1, 9], a minimum-weightunate coveringproblem (UCP) is solved
using WT{q) as the cost of each implicant q. In the case of trace driven two-level
power minimization a minimum cover may contain an implicant which is not a
prime. In fact, the assumption 1 "an implicant costs no more than any implicant
which it contains" is not satisfied and there is no guarantee that there exists
a minimum cover consisting only of prime implicants. Since it is practically
infeasible to solve the problem considering the set Xof all the implicants 2, one
wishes to identify a set If C I of implicantssufficient to find a minimum cover.
X\ is termed the set of candidate implicants.

The following definitions identify which implicants are elements of Xj. An
implicant q is dominated by an implicant q if for every minimum cover which
contains q there is another minimum cover which contains q. From Definition 3.1
it follows that an implicant q is dominated by another implicant q if q C q
and WT(q) > Wr(?) Given a function / and an input trace T, a candidate
implicant is an implicant of / that is not dominated by another implicant.

3.1 Generation of candidate implicants

An exact algorithm to generate X\ is presented in this section. The algorithm
proceeds by generating implicants by reduction of larger candidate implicants
thus eliminating implicants that are not candidate implicants as soon as possible.

Recall that an implicant q of / is a cube which has empty intersection with
the vertices of the off-set of /, while a prime implicant p is an implicant which is
not contained by any implicant. A prime implicant p is essential if it contains
at least one minterm which is not contained in any other prime. Given / :

'See [9], assumption 2.3.1 at page 14.
2Foran n-input Boolean function /, 111= 0(22 ).



BN -¥ B, an implicant q —x\ •X2 •.. • xk of / that is not a minterm is said
to be reducible. The set y of literals of the N —K variables on which q does
not depend is called the external variable set of q. A reduced implicant
of q is an implicant q •yi •2/2 •• •• •Vh obtained by lowering q using one or more
literals in y.

If q is a reducible implicant and qy is the reduced implicant obtained by
lowering q using literal y, the following result holds for each possible trace T:
X$AT{qy) = XSAT(q) +XSAT(y).

Theorem 3.1 Let q be a reducible candidate implicant and let qy be a reduced
implicant ofq obtained by lowering q using the literal y. qy is dominated by q if

<M</,y)>0 (4)

where

*t(q,y) = OSAT(qy) - OSAT(g) +XSAr(y) (5)

Theorem 3.1 provides a basic rule for the generation of the set of candidate
implicantsX*. Starting from the set of primesof/, which are considered a priori
candidate implicants, equation (4) is applied to decide if a reduced implicant
obtained by lowering a prime with a single literal is a candidate implicant. The
same equation is applied recursively to each newcandidate implicant. However,
Theorem 3.1 does not apply to implicants that can be generated by reduction
from implicants not inserted in X*. Note that qycould still be part of If even
if q is not. The following theorem applies to this case.

Theorem 3.2 Let q be a reducible candidate implicant and let qn = qyh be a
reduced implicant ofq such that ^r(</.yh) > 0. Consider qh+\ = qhVh+i, which
is another reduced implicant of q obtained by lowering qn with a literal yh+i
different from y/,. 9/»+i is dominated by q if

$T{q,yh) + $T{<ih,yh+i)>0 (6)

Recursive application of Theorems 3.1 and 3.2 yields all the implicants in If.
Note that memorizingdominated implicantsensures that a dominated implicant
is not inserted later into If.

We conclude this sub-section presenting a simple example of trace driven
two level minimization.

Let / : B5 -*• B be the completely-specified Boolean function illustrated
in Figure 2: the on-set of / is {mi,m3,m5,7717,m9,mi3,mi7,17124,"125} The
set of prime implicants is VX(f) = {pi,P2,P3,P4}- We perform two-level logic
optimizations for minimum switchingpower with respect to the input trace 7".
Table 3 reports the input vectors for this trace, showing the correspondences
with the vertices of the Boolean space B5 as they are defined in Figure 2. Table 4
reports all the implicants of the function / and their power costs which can be



"« S*tL*\'
-14 "IS

4
' / \ " / '/

"11

?

"31

/
/

"»

"4

"3

1 | -11/ "U

*5

"0

»1«

/
"is

/

// J 1
-vy "» / "V

"23

"2l/

/

"28

"30

m2t

*l>/ f4 "24. <—"A<
>i \

U *4

Figure 2: The function / = X1X4X5 -f X1X2X5 + X1X2X3 + X2X3X4X5

Input Tfcace T
vector XJX2X3X4X5 vertex

VI 10 10 0 m5

t/2 0 110 0 J716

V3 0 0 10 0 TO 4

v4 1110 0 my

vs 110 0 0 TTI3

v6 10 0 10 nig

v? 10 0 0 0 mi

V8 0 0 0 0 0 mo

t>9 10 0 0 0 mi

Vio 0 1110 mi4

Vll 1110 0 7T17

V12 0 110 0 ni6

V13 10 0 0 0 mi

Vl 4 0 0 0 0 0 mo

VI5 0 0 10 0 7714

V16 10 0 0 0 mi

V17 0 0 0 0 0 mo

via 110 10 mil

V19 0 1110 mi4

V20 10 0 0 0 mi

V21 10 0 10 mg

V22 0 0 0 0 0 mo

Table 3: Input trace T.

10



obtained applying equation (1). The column labeled with I* reports a • if
the implicant q is a candidate implicant, otherwise a candidate implicant which
dominates q is referred to. A set of candidate implicants which has cardinality
equal to 8 is obtained using Theorem 3.1 and 3.2.

X*= {P1,P2>P3)P4,P5,C2,C4,C6}

These implicants are the columns of the covering matrix, while the rows are the
elements of M{f). The solution of the unate covering problem is the minimum
cover Q* = {c2,P2,P4,P5} having power cost Wt{Q*) = 122. Notice that
the area minimum cover is Q = {pi,P2,P3»P4} which has power cost equal to
Wt{Q) = 135. Hence, we have obtained a 10% power saving.

implicant q lSAT(q) OSAr(g) WT(q) I*

Pi = X1X4X5 15 23 38 *

j>2 = X1X2X5 11 23 34 *

P3 = X1X2X3 10 30 40 *

Pa = X2X3X4X5 0

0

23

30

23

30

*

PS — X1X2X3X5

C\ = X1X2X4X5 11 31 44 P2

C2 = X1X2X4X5 4 31 35 *

C3 = X1X3X4X5 12 30 42 Pi

C4 = X1X3X4X5 5 30 35 *

c5 — X1X2X3X5 10 30 40 P2

c6 = XiX2~X3Xy 1 30 31 *

C7 = X1X2X4X5 4 31 35 P2

C& = X1X2X3X4 10 38 48 PZ

C9 = X1X2X3X4 4 38 42 PZ

mi = X1X2X3X4X5 10 38 48 P\

fH3 = X1X2X3X4X5 2

1

38

38

40

39

Pi

Pi7715 = X1X2X3X4X5

my = X1X2X3X4X5 4

4

38

38

42

44
P\

P2mg = X1X2X3X4X5

77I13 = X1X2X3X4X5 0 38 38 P2

77117 =s X1X2X3X4X5 0 38 38 PS

77124 = X1X2X3X4X5 0 38 38 PA

m25 = X1X2X3X4X5 0 38 38 PA

Table 4: Implicant Power Costs.

Although the approach of enumerating only candidate implicants and early
discarding of dominated implicants performs efficiently in practice, the final
step of finding a minimum cost unate covering problem is often a bottleneck.
Even extending the classical branch-and-bound based covering algorithm with
lower-bound computation techniques recently presented in [2] do not provide
much improvement. As an alternative, we have adapted the two-level heuristic
minimization program Espresso [1] to perform trace driven two-level minimiza-

11



tion. This new heuristic program, called Elp is described briefly in the next
sub-section.

3.2 Trace driven two-level heuristic minimization

Elp inherits two basic principles from Espresso: the use of the unate recursive
paradigm and the presence, at the core of the algorithm, of an optimization loop
which is performed until no improvement in cost function is seen. The main
difference is naturally the introduction of trace based weights for the implicants
of /. This implies an important fact which contradicts the original Espresso
philosophy: essential primes and primeimplicants are not necessarily the target
of the minimization procedure. Instead, the goal of Elp is to determine those
primes which are "essential" from a power minimization point of view and then
determine sub-covers for the remaining minterms which produce low switching
activity.

Let p be an essential prime of / and let €M{p) be the set of minterms of /
which are covered only by p. Consider all possible covers of £M(p) composedof
reduced implicants of p : let C£M be the cover which has the minimumpower
cost Wt(C£M). If Wt{C£m) > Wt{p) then p is in the minimum cover Q* of
/. To make this decision it is necessary to solve a local and usually small unate
covering problem. Once the essential primes from a power standpoint have
been extracted, Elp proceeds entering the typical Espresso loop: the first step
is reduce which attempts to move the current solution out of a local minimum.
This routine is not changed in Elp.

Elp differs significantly from Espresso in the next step, called expand. While
Espresso examineseach cube qof the current cover and replaces it with a prime
implicant d such that gCd, Elp looks for the largest cube d' (not necessarily
prime) which contains q has a smaller power cost. As before, this step is still
characterized by the fact that the cardinality of the cover does not increase.
While both algorithms attempt to maximally decrease the number of implicants
in the current cover, Elp leaves a non-prime implicant untouched if there is no
a prime with a smaller power cost that contains it.

The final step derives an irredundant coverusing a greedy covering problem.
Elpfollows the same strategy as Espresso usingthe powercosts of the implicants
as the weights in the covering problem.

As sample of experiments discussed in Section 5 show the effectiveness of
Elp in comparison with the exact algorithm.

4 Trace driven multi-level minimization

In this section we describe the algorithms developed for the three main tech
nology independent logic optimization procedures to achieve minimum power
dissipation for a given trace.

12



4.1 Trace driven node simplification

The node simplification strategy adopted for multi-level logic optimization is
based on performing a two-level logic minimization at each node. Note that
although this is an effective strategy for area minimization, since a local opti
mization at each node yields a local minimization of the area, it is less clear
how simplification should be used for power reduction. As already indicated
a two-level minimization is effective only in reducing the output switching ac
tivity (OSA) of the implicants of the function. This is achieved by changing
the fanout of the input variables. These effects have to be carefully managed
to avoid reaching a negative result at the end of the procedure. In this paper
wesimply adopt the logicsimplification strategy already existing for area mini
mization (of course modified to use the procedure described for heuristic power
minimization), and this remains an interesting problem for future work.

4.2 Trace driven decomposition

In multi-level logic optimization it is typical to decompose a gate with large
fanin into a tree of gates with bounded fanin; this is performed for example
during delay optimization or as a pre-process step of technology mapping. For
our purposes the decomposition of a complex gate is also used to guide the
estimation of the internal switching activity during the logic extraction step
(Section 4.3).

We assume that the two-level function at each node n of the network has been
simplified for minimum switching activity using the procedure of the previous
section. The decomposition starts with the creation of an AND gate for each
cube and the replacement of the original node n with an OR gate connected to
the AND gates. Generally this results in gates with large fanin. Consequently,
we want to find the decomposition of a large-fanin gate into 2-input gates that
minimizes the switching power for the given trace.

Murgai, et al. [5] analyze the problem of decomposing a large-fanin gate for
minimum switching activity using transition probabilities of the input variables
(assuming independence between the input signals) and demonstrate that it is
equivalent to the problem of finding a minimum weighted binary tree, where the
weight of each node is its 1-controllability. An elegant solution to this problem
was given by Huffman and can be exactly applied in the zero-delay case for
general circuits. A Huffman style algorithm is not exact for a trace-driven
decomposition. In fact, the trace driven setting allows us to achieve better
decompositions than that obtained by a vanilla implementation of Huffman's
algorithm.

We describe the decomposition for an AND gate, and the procedure can be
easily dualized for the case of an OR gate. First we build the decomposition
matrix A having K rows and K columns corresponding to the K input variables
of gate g. We use the rows to guarantee that all the variables x* are "covered"

13



and the columns to build the best AND gates. Each column j, 1 < j < K is
associated with a variable Xj. Foreach pair ofdistinct variables x,-, Xj the entry
aij is a pair of numbers (JV, Zt) for the gate </,j = x,- •Xj. The first number is
the output switching activity of gtj under the trace T. The second counts the
number of pairs of successive zero valueson the output of gtj under application
ofT.

The algorithm is presented in Figure 3 and the extensions with respect to
the original Huffman algorithm are illustrated on the example below.

Input Trace T Output Traces of relevant gates
vector X1X2X3X4X5 51 9\xz Sl*4 9ixs 92 92X4 32*5 9Z 9A

VI 11111 1 1 1 1 1 1 1 1 1

V2 0 10 0 0 0 0 0 0 0 0 0 0 0

«3 1110 1 1 1 0 1 1 0 1 0 0

VA 110 11 1 0 1 1 0 0 0 0 0

vs 0 0 110 0 0 0 0 0 0 0 0 0

V6 0 1111 0 0 0 0 0 0 0 0 0

V? 10 10 1 0 0 0 0 0 0 0 0 0

v& 10 110 0 0 0 0 0 0 0 0 0

v9 110 0 0 1 0 0 0 0 0 0 0 0

Table 5: The input trace 7" for decomposition example

Let / = xi •X2 •X3 •x4 •X5 be the Boolean function for which we must find
the best decomposition with respect to the trace T listed in Table 5.

The initial decomposition matrix is as follows:

Xi *2 *3 x4 x$

Xi " (~.o) (4,3) (5,2) (5,3) (5,2)
X2 (4,3) (oo,0) (5,3) (5,3) (5,2)
*3 (5,2) (5,3) (oo,0) (5,2) (5,2)
X4 (5,3) (5,3) (5,2) (oo,0) (5,3)
x$ . (5,2) (5,3) (5,2) (5,3) (oo,0)

Since the entry (4,3) for the variable pair (xi, X2) has the minimum value for
?T, we create the gate g\ = (xi, X2) while deleting the corresponding rows and
columns. After computing the output values for this gate under T, as illustrated
in Table 5, a new row and column are added to the matrix.

X3 x4 X5 9i

X3 • (00,0) (5,2) (5,2) (3,5)
x4 (5,2) (00,0) (5,3) (3,5)
*5 (5,2) (5,3) (oo,0) (3,4)

9\ L (3-5) (3,5) (3,4) (oo,0)

14



There are three choices which have the minimum Tr values, namely (x3,5i)
and (x4,5i) with entries (3,5) and (x5,5i) with entry (3,4).

A vanillaimplementation of Huffman using onlythe first field would consider
all three choices equal. However, in our procedure ties on the first field of an
entry are broken by choosing the entry with the largest value of Zt. The
intuition behind this is that for an AND gate a larger valueon the second field
implies that the gate output is 0 more often than with a smaller value. This
heuristic provides a better upper bound on the total number of switches that
may occur for the remainder of the decomposition. For the example, either
of the first two choices may be made. Assume we select 52 = (01 >£3)- The
decomposition matrix is updated as follows:

X4 x& 92

x4 • (oo,0) (5,3) 0,7) '
X5 (5,3) (oo.O) (3,5)
92 . (1,7) (3,5) (oo,0)

The last two choices are trivial and produce the final decomposition which
has 9 switches under 7". This decomposition happens to be the optimum de
composition for the given trace, but note that the algorithm is not exact in
general.

g1 = xi •x2 -> TT = 4

52 = 5i •X3 -* 7T - 3
53 = 52 •xA -* TT = 1

54 = 53 •x5 -• 7^ = 1

4.3 Trace driven extraction

The problem of logic extraction for low power has been addressed in the past
in a couple of different ways. In [8], a kernel extraction algorithm to generate
a network with lower power dissipation is presented. The algorithm performs
common sub-expression extraction guided by power values for nodes computed
on the given factored form expressions for the nodes. A potential weakness
of this approach is that the initial factored forms are not altered, leading to
sub-optimum extractions. In [3] an alternate approach is proposed to solve this
problem: the power values of the common sub-expressions are computed using
the power cost of a node represented using a sum-of-products representation.
Since this conforms to the underlying assumptions for traditional algebraic ex
traction and decomposition algorithms [9, 10], the authors can rely on these
algorithms to extract the set of all single cube intersections and kernel inter
sections among the network nodes in order to choose the sub-expression having

15



Decompose.Gate(g, T)
{

I* Prepare matrix A computingits elements a;j —{FJ*, Z^' ) */
A 4- BuildJ)ecomposition-Matrix(g,T)
while (A is not an empty matrix) {

/* Pick upelement (t, j) having lowest ??£* */
I* breakingties choosing the highest Zy**f
(i,j) 4- Choo8e-BestJ5lement(A)
/* Insert a new 2-AND gate gij with output g,j = x{ •xj */
qij 4- New-And.Gate(/f,i,j)
I* Delete rows t and j from A */
A 4- Delete-Row(A, i)
A 4- DeleteJlow(A, j)
/" Add to A a new row and a new column for to variable qi} '
A 4— AddJtow(A,qi}))
A 4- AddjColumn(A, qij)

}
return Af

}

Figure 3: The Decompose-A.ndJja.te algorithm.

the maximum power reduction. As pointed out by the authors, the shortcoming
of this approach is that after each extraction the switching activity of all the
affected internal nodes must be re-estimated by computing the global BDD and
the signal probabilities of each function. This operation is generally time con
suming and is sped-up by using an approximation for the signal probabilities
on the immediate fanin of a node.

Our technique is similar to the previous approaches in that a value is associ
ated with each sub-expression to denote the power saving obtained if the logic
extraction is performed. On the other hand, it differs from the previous ap
proaches in three aspects. First, since the methodology proposed in this paper
is trace driven, signal probabilities are not employed. Instead, exact switching
activity for any node can be computed for the given traceby performing a local
logic simulation. Since the global function of any node does not change dur
ing extraction a complete simulation ofall the nodes on the trace is performed
once. Allsubsequent simulations on sub-expressions are obtained by evaluating
the function of the sub-expression on the known fanin values. Second, neither
a factored form nor a sum-of-products representation is used to estimate the
switching activity inside a node. Instead, each node is decomposed into gates
with fanin two on the fly using the procedure outlines in Section 4. This rep
resents a structure much closer to the final network after technology mapping.
Finally, our algorithm derives directly from the the algorithm of Rajski and
Vasudevamurthy [7] which is widely considered the most efficient method for

16



the factorization of Boolean expression.
The basic objects used in extraction are single-cube divisors having exactly

two literals, double cube divisors and their complements. The motivation for
using objects ofsize two is that they ensure that the operations have polynomial
running times, while they can be used to find single-cube divisors of arbitrary
sizeand multiple-cubedivisors. The complete definitions ofdouble-cubedivisor,
set and subset of double-cube divisors, base of a double-cube divisor, single-cube
divisor and its coincidence are found in [7]. Weillustrate someof the terms for
the benefit of the reader. Given four cubes q\ = xiX2,?2 = 21X3,53 = Z1X2X3
and g4 = X1X3X4, the set of two-literal single-cube divisors contains X1X2 which
has coincidence 2 and X1X3 which has coincidence 3. Given a Boolean expression
/ = X1X4X5 -f X1X6 -I- X2X3X4x5 + X2X3X6 the set of all its double cube divisors
is £>(/) = {x6 + x4X5,xi-r-X2X3,xix4X5 + X2X3X6,xiX6 + x2a:3X4X5}. This set
can be partitioned in subsets denoted by the symbol Dk,h,k+h where K is the
number of literals in the first cube and H the number of literals in the second

cube. Hence, X6 + £4X5 G £>i,2,3, x\ + X2X3 € D\t2,z,x\x^x^ + X2X3X6 € 1)3,3,6
and X1X6 + X2X3X4X5 € £2,4,6- Finally X6 -f x4xs has two bases, namely xi
and X2X3; xi + X2X3 has two bases, namely X6 and x4xs and the remaining two
double-cube divisors have empty base.

The greedy algorithm we propose is an extension of the Rajski and Vasude-
vamurthy extraction algorithm, based on the computation of values denoting
the power dissipation due to single-cube and double-cube divisors. These val
ues are computed for the given trace T and represent the power saving which
is obtained if the extraction of the divisor is performed. Recall that all the
information of a trace needed for calculating the switching power is compactly
represented as a set of vector pairs and that, for a given function x, TT denotes
its exact switching activity. Hence, if we consider a two literal single cube di
visor d = x\X2 with coincidence equal to K{d) 3, then the power value of d
under T is given by:

PVT{d) = {K{d)-l)-[FTl+?r>]-K{d)-Tr-rrXSAV (7)

To understand this equation, suppose that extraction of d has been performed
creating a new node nd within N. The first term of the equation accounts
for the power saving related to the variables xi,X2 which now feed just node
nd instead of K(d) nodes of N. The term K{d) •Tj represents the switching
activity of the output variable of n<* multiplied by its fanout. Finally the last
term FXSAV denotes "fanout internal switching activity difference" and is an
estimation of the balance of internal power dissipation for each fanout nj of n</
due to the extraction of the divisor. The efficient and accurate computation of
this term is deferred until later in this section.

Coincidence K means that if d is extracted to create a new node nj in the network the
fanout of this node will be A'.

17



Consider a double cube divisor d € Dk,h,k+h having the following charac
teristics:

• d = Xi • X2 xk + y\ • j/2 y/j;

• The node nd which can be extracted has fanout TO in .A/"; e.g. rf divides
TO expressions associated two the nodes n\, fi2 ... n^-o;

• d has 5 bases 61 = *i •*2 •••••*M6l,.. .&b = *i •*2 •••••*m63

Then, the power value of d under the trace T is given by:

PW(d) = (TO{d)-l)

- TO{d)-Tr +Y,

£(^r) +E(^fc)
/c=l &= 1

+

+ TXSAV + CG
»=i

(8)

As before, to understand this equation, suppose that the extraction ofdhas been
performed creating a new node nj within ftf. The first term of the equation
accounts for the power saving related to the input variables xi,...,xjc and
Vif'iVH which now feed just the node nj instead of TO nodes of M. The
term TO{d) •TT represents the switching activity of the output variable of
nd multiplied by its fanout. The third term is the power saving due to the
occurrence of each variable z\ in a base of d. Consider a fanout node ng before
the extraction of dand suppose that two cubes of its function 5 are respectively
(xi •x2 •••••xK) •bx and (yi •y2 •... •yn) •61, with 61 = ziz2. Obviously 61
is a base of d and, if d is chosen to be extracted, the previous function will be
replaced by d •61. As a consequence, the node ng will see the input switching
activity decreased by a quantity equal to TTl + TT3. The term CQ stands for
"complementary gain" and it is non-zero only if d€ #1,1,2, e.5. if d = xi -I- y\,
where xi and y\ are two distinct literals. In this case, the complement of d is a
single cube divisor and the power value ofd is added to PVr{d).

Finally, the term TXSAV is calculated as follows. Recall that each node n
in M is decomposed into two-input gates to estimate its switching power P£rig
as the sum of the switching activities ofall the two-input gates. When a divisor
d is evaluated, the same operation is repeated for eachfanout nj of the divisor,
under the assumption that the divisor has been extracted. Lets call Pniw the
new power estimation obtained for the node nj. ThetermTXSAV issimply the
sum of P"rjig - Pniw for each fanout nj of d. The key point to note here is that
the representation of traces by a set ofvector pairs permits thiscomputation to
be performed very efficiently since only a local evaluation ofthe node functions

18



Network Nj

ID

';>'
^ 3n

"L
^

^
,W

*7

Network N2

#<HV>

1 b*
ii>

15M ^\"l»

>
"17

3
*9 -^"M

J>
Figure 4: Two alternative extraction results

19



1nput Trace T Divisor Output Traces

vector X1X2X3X4X5X6X7X8X9 j£«-»»)j T** *T
vi 0 10 0 10 0 0 1 0 0 0 0 0

V2 110 0 10 0 0 1 0 1 0 0 0

v3 010010001 0 0 0 0 0

VA 110 0 10 0 0 1 0 1 0 0 0

vs 010010001 0 0 0 0 0

«6 110 10 0 110 0 1 0 0 0

V7 0 10 0 10 0 0 0 0 0 0 0 0

v& 11110 0 110 1 1 0 0 0

V9 0 10 0 10 0 0 0 0 0 0 0 0

Vj o 11110 0 10 1 1 1 0 0 0

vn 0 10 0 10 0 1 1 0 0 0 0 0

V12 11110 0 111 1 1 0 0 0

viz 0 10 0 10 0 0 1 0 0 0 0 0

VIA 110 10 0 111 0 1 0 0 0

V\S 0 10 0 10 0 1 1 0 0 0 0 0

V16 110 0 10 0 0 1 0 1 0 0 0

vn 0 10 0 10 0 0 1 0 0 0 0 0

«18 110010001 0 1 0 0 0

Vjg 0 10 0 10 0 0 1 0 0 0 0 0

V2Q 110 0 10 0 0 1 0 1 0 0 0

Table 6: Traces for extraction example

is involved. Hence it is very feasible to estimate Pniw for each fanout nj each
time a divisor is evaluated.

Consider the Boolean Network N', which has 9 inputs and 2 outputs and 2
internal complex nodes f\ and /2.

/l = Xi •X4 •X5-f Xi •X6+ X2•X3•X4•X5+ X2 •X3•X6+ X7

/2 = Xi •X6+ X2'X3•X6+ X4 •X5•X8+ X9

Performing the extraction using the area minimal option as described in the
algorithm of Rajski and Vasudevamurthy [7] yields a network with a divisor d\
and the new network is:

d\ — X\ -f X2 • X3

/1 = d\ • x4 • X5 + d\ •xq + X7

/2 = d\ • Xq + x4 • X5 • X8+ X9

Decomposition of this network into 2-input AND and OR gates yields the
network M\ illustrated in Figure 4.

20



Now, suppose that we want to perform the best extraction for low power on
N with respect to the input trace T specified in Table 6. First, the power values
of all the two-literal single-cube divisors and two-cubes divisors are computed.
For the example, there are just two double-cube d\ = xi + X2 • X3 and ^2 =
X6 + x4 •X5 and one single divisor ck = x4 •X5 which have power value greater
than zero. Using the equations presented in this section and observing the traces
of Table 6, we compute:

PVT{di) = (3 - 1) • [19 + 0 + 6] - 3 •19+ [10 + 10] + 0 + 0 = 13

PVr{d2) = (2 - 1) • [0 + 10+ 10] - 2 •0 + [19 + 0 + 6] + 0 + 0 = 45
PVT{d3) = (2- 1) [10+ 10]- 2-0 + 0 = 20

d2 is extracted instead of d\ to obtain:

&2 = X6 + x4 • X5

/1 = ^2 • xq + ^2 • X2 • X3 + X7

/2 = X\ • X6 + X2 • X3 • X6 + X4 • X5 • Xs + Xg

Using the trace-driven decomposition algorithm yields the network A/2 illus
trated in Figure 4. While A/2 has 14 gates, M\ has 11.

In M\ all the internal nodes have zero switching activity under 7" except
713 which has 19 and n2 which has 6. In A/2 all the internal nodes have zero
switching activity T, except TI20 which has 2 transitions. The sum of the input
transition activity is 65, while the total transition activity for the two output
nodes /i,/2 is equal to 10. Accounting for the fanout of two for 713 in M\ and
xi and X3 in A/2 yields a 14% power reduction between the two networks.

T*f* = 65+10 + 19-2 + 6=119

Tp - 65+10 +19 +6+2=102

5 Experimental Results

This section describes a sample of experimental results to demonstrate the pro
posed methodology for trace driven low power logic synthesis. Three distinct
sets of results are presented. Each set develops and indicates a particular aspect
of the methodology that we believe is essential in understanding and appreciat
ing the contributions of this paper.

The first set of results shown in Table 7 compares the two-level heuristic and
exact minimization algorithm against espresso. As with all results presented

21



ratio: heuristic-elp / espresso ratio: exact-elp / espresso
PLA I/O ISAT 1 OSAT 1 W'T(Q) 1 cputime WT(Q) | cputime

alu4JF3 14/1 1.02 0.05 0.70 6.75 0.68 6.7

alu4_F4 14/1 1.02 0.14 0.86 150.8 0.85 150.8

apex4Jr16 9/1 1.04 0.13 0.88 0.21 0.87 0.25

apex4Jr17 9/1 1.01 0.13 0.89 0.07 0.87 0.08

apex4Jr18 9/1 1.10 0.13 0.90 0.05 0.86 0.05

apex4-Fl9 9/1 1.07 0.10 0.91 0.08 0.87 0.09

duke2.Fl 22/1 1.07 0.10 0.90 0.08 0.72 0.15

duke2-F2 22/1 1.01 0.64 0.92 0.68 0.89 0.17

duke2_F7 22/1 0.96 0.60 0.89 0.06 0.89 748.79

in3_F3 35/1 1.07 0.36 0.91 0.27 - -

in3J9 35/1 1.00 0.80 0.91 0.03 0.91 0.16

in3_Fll 35/1 1.01 0.80 0.91 0.03 0.91 0.17

in3_Fl3 35/1 0.98 0.39 0.86 1.75 - -

in3_Fl4 35/1 1.00 0.81 0.91 0.03 - -

in3_Fl5 35/1 0.77 0.74 0.63 0.74 - -

in3_F16 35/1 1.40 0.23 0.82 3.79 - -

in3_Fl9 35/1 1.31 0.01 0.83 0.12 - -

in3_F20 35/1 1.01 0.09 0.69 0.08 0.69 0.32

in3_F29 35/1 1.07 0.30 0.83 0.24 0.83 2.87

seq_Fl2 41/1 1.00 0.50 0.93 0.41 0.93 2.54

seqJP23 41/1 1.09 0.28 0.87 8.53 - -

seq_F24 41/1 1.10 0.11 0.84 57.1 - -

seq_F32 41/1 1.01 0.17 0.72 0.22 0.72 0.35

Table 7: Experimental results on MCNC two-level circuits

22



in this section, all area and power values are presented as ratios between the
new algorithms and the original versions. The traces for these examples were
generated as follows: Given a function / with p primes two successive vectors
were created for each pair of primes such that the first vector is contained in
the first prime and the second is contained in the second prime. Thus the
trace length is p2. The trace was intentionally created artificially and biased
towards obtaining poor results with espresso to determine what reductions may
be achieved by this step alone. For the two-level case we assume that the
output capacitance load on each implicant is equal to one unit, while the input
capacitance 1 unit for each literal. A more realistic model is not used here since
this model is used for multi-level logic simplification where the inputs of a node
are the outputs of other nodes. The following conclusions can be inferred:

1. Dramatic reductions can be achieved by selection of the appropriate impli
cants for minimal power switching compared to espresso (column marked
OSAT).

2. The overall reduction in power (column marked Wt{Q)) is limited by
the input switching activity (column marked XSAt) which is a function
only of the given trace. Two-level minimization cannot impact this signif
icantly, since the number of literals varies little between espresso and elp.
Further note that the reductions obtained in the table were obtained after

biasing the trace to expressly "confuse" espresso. Thus, two-level min
imization can provide only an incremental reduction in power
once the trace has been determined.

In the second experiment each circuit is optimized using the standard script,
called script.rugged in SIS. A version of the same script with the low-power
optimization algorithms for decomposition, simplification and extraction was
used to compare results. Both technology independent and technology mapped
results are reported; note that the technology mapped results serve to validate
the two-input simple gate model with consideration for fanout that is employed
for power estimation in the technology independent optimization algorithms.
The trace for this experiment was also artificially generated as follows: A 16-
bit counter is used to generate 10000 vectors in sequence. In case there are
more than 16 inputs, the pattern is repeated every 16 bits in the vector. This
experiment serves to mimic correlations among inputs that cannot be easily
modeled by probabilistic or statistical methods. The circuits are ordered by
size (number of two-input gates after optimization using script.rugged). The
most significant conclusion from these small examples is the validation of the
technology independent power model used in simplification, decomposition and
extraction. Of the 29 examples, 15 show a reduction in total power, while 7 show
no change and 7 show a small increase in total power using the new algorithms.

23



technology independent technology mapped
ratio : LP/rugged ratio: LP/rugged

Circuit I/O Opt. Gates Area Power Area | Power

bl 3/4 9 0.88 0.85 0.86 0.85

majority 5/1 11 0.82 0.68 0.85 0.72

cm138a 21/1 16 1.62 0.50 1.47 0.43

cm82a 5/3 17 1.0 1.17 1.29 1.15

cm42a 4/10 18 1.56 0.88 1.32 0.92

tcon 17/16 24 1.0 1.0 1.0 1.0

decod 5/16 26 1.58 1.14 1.72 1.10

cm152a 11/1 27 1.0 0.69 1.03 0.72

cml51a 12/2 28 1.07 0.57 1.22 0.73

cm163a 16/5 37 1.03 0.76 1.06 0.85

cm85a 11/3 40 1.05 0.89 1.08 1.02

x2 10/7 40 0.975 0.62 1.20 0.77

cc 21/20 43 1.40 1.11 1.33 1.11

cu 14/11 43 1.23 0.73 1.27 0.70

cm150a 21/1 44 1.29 1.42 1.29 1.45

parity 16/1 45 1.0 1.0 1.0 1.0

cmb 16/4 46 0.98 0.71 0.96 0.87

cm162a 14/5 49 0.81 0.61 0.85 0.69

mux 21/1 58 1.23 1.09 1.29 1.01

cordic 23/2 60 1.38 1.20 1.34 1.25

pcle 19/9 62 0.90 0.86 0.85 0.95

comp 32/3 85 1.45 1.20 1.33 1.17

lal 26/19 89 0.92 1.23 0.92 1.13

c8 28/18 118 1.25 1.07 1.35 1.07

cht 47/36 120 1.21 0.97 1.21 0.92

b9 41/21 124 1.28 0.69 1.22 0.88

count 35/16 128 1.60 0.98 137 1.02

apex7 49/37 192 1.17 0.88 1.20 0.97

ttt2 | 24/21 | 197 | 0.79 1.23 | 1.22 0.76

I/O: # inputs / # output
Opt. gates: # of gates in optimized circuit after script.rugged
Area: Ratio of area for power script versus script.rugged
Power: Ratio of power for power script versus script.rugged

Table 8: Experimental results on MCNC multi-level circuits

24



The final experiment is performed to validate the trace driven approach on
FSMs where the trace is not artificially biased. For these FSMs, given a reset
state, 10000 random primary input vectors were applied. The trace of the input
and latch values obtained by sequential logic simulation served as the trace for
power minimization. The results are shown in Table 9. Of the 11 examples
reported, 9 show a reduction in power with an average reduction of 13%.

technology independent mapped networks
ratio: LP/rugged ratio: LP/rugged

FSM I/O/L Opt. Gates Area Power Area Power

s27 4/1/3 9 1.13 0.90 0.97 0.92

s208 10/1/8 70 1.07 1.05 1.03 1.09

s298 3/6/14 11 0.87 0.63 0.92 0.68

s344 9/11/15 123 1.09 1.07 1.05 1.02

s349 9/11/15 122 1.06 1.03 1.02 0.97

s382 3/6/21 142 1.06 0.84 1.02 0.83

s386 7/7/6 108 1.43 0.97 1.27 0.97

s400 3/6/21 137 1.12 0.81 1.05 0.81

s444 3/6/21 136 1.18 0.75 1.08 0.75

s526 19/7/6 171 1.15 0.80 1.14 0.91

s526n 3/6/21 191 0.99 0.95 1.08 0.95

I/O/L: # inputs / # output / # latches
Opt. gates: # of gates in optimized circuit after script.rugged
Area: Ratio of area for power script versus script.rugged
Power: Ratio of power for power script versus script, rugged

Table 9: Experimental results on ISCAS89 benchmark suite FSMs

Acknowledgments

The authors would like to thank Alberto Ferrari and Tiziano Villa for their

support and useful discussions.

References

[1] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[2] O. Coudert. On Solving Covering Problems. In Proc. of the Design Au
tomation Conf., pages 197-202, June 1996.

25



[3] S. Iman and M. Pedram. Logic Extraction and Factorization for LowPower.
In Proceedings of the Design Automation Conference, pages 248-253, June
1995.

[4] S. Iman and M. Pedram. Two-Level Logic Minimization for Low Power.
In Proceedings of the International Conference on Computer-Aided Design,
pages 433-438, November 1995.

[5] R. Murgai, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Decompo
sition for Minimum Transition Activity. In Proceedings of the Low Power
Workshop - Napa Valley, April 1994.

[6] F. N. Najm. Feedback, Correlation, and Delay Concerns in the Power
Esttimation of VLSI Circuits. In Proceedings of the 32tA Design Automation
Conference, pages 612-617, June 1995.

[7] J. Rajski and J. Vasudevamurthy. The Testability-Preserving Concurrent
Decomposition and Factorization of Boolean Espression. IEEE Transac
tions on Computer-Aided Design, 11:778-793, 1992.

[8] K. Roy and S.C. Prasad. Circuit Activity Based Logic Synthesis for Low
Power Reliable Operations. IEEE Transactions on VLSI Systems, 1:503-
513, 1993.

[9] Richard L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, Uni
versity of California Berkeley, Electronics Research Laboratory, College
of Engineering, University of California, Berkeley, CA 94720, April 1989.
Memorandum No. UCB/ERL M89/49.

[10] A. Wang. Algorithms for Multi-Level Logic Optimization. PhD thesis,
University of California Berkeley, Electronics Research Laboratory, College
of Engineering, University of California, Berkeley, CA 94720, April 1989.

26


	Copyright notice 1996
	ERL-96-62

