

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

DETERMINISTIC SIMULATION OF RANDOMIZED

PROTOCOLS OVER ARBITRARY NETWORKS OF

NOISY CHANNELS

by

S. Venkatesan and V. Anantharam

Memorandum No. UCB/ERL M96/65

30 August 1996

DETERMINISTIC SIMULATION OF RANDOMIZED

PROTOCOLS OVER ARBITRARY NETWORKS OF

NOISY CHANNELS

by

S. Venkatesan and V. Anantharam

Memorandum No. UCB/ERL M96/65

30 August 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Deterministic simulation of randomized protocols
over arbitrary networks of noisy channels*

S. Venkatesan* V. Anantharam*5

Abstract

Suppose the input to a function is split between several processors
connected by a network of binary channels, and the processors know
an interactive protocol by which they can compute the function in N
steps of communication, provided the channels are all noiseless. Since
all practical channels are noisy, it is important, to study the effect of
channel noise on the complexity and reliability of the protocol. In
this direction, Rajagopalan and Schulman recently proved that any
Ar-step noiseless-network protocol can be simulated over a network of
identical and independent binary symmetric channels (with the same
topology) in O ((N/C) logrf) steps, while incurring a simulation failure
probability of 2~n(N), Here, d is the maximum in-degree of any pro
cessor in the network, and C is the capacity of each channel. We show
that this result can be strengthened in the following way: any Af-step
private-coin randomized protocol that computes a function correctly
with probability at least 1 —e (in the noiseless case) can be determin-

istically simulated over the noisy network in Ofyr^J + Of—^-J
steps, while incurring an error probability in computing the function
of at most e + 2~nf>NK Here, m is the number of channels in the
network.

•Research supported by NSF IRI 9005849, IRl 9310670, NCR 9422513, and the AT&T
Foundation.

1Cornell University and U.C Berkeley.
*Univ. of California, Berkeley.
sAddress all correspondence to the second author: 570 Cory Hall, Dept. of EECS,

U.C. Berkeley, Berkeley, CA 94720.

1 Introduction

Consider the following general model for distributed computation: the in
put to a function is split between several processors connected by a network
of binary channels, and all the processors must compute the function by
exchanging information over the network, according to a synchronous inter
active protocol. This protocol allows them to perform the computation on
any input with a certain number of steps of communication, provided the
channels in the network are all noiseless.

In this model, it is important to study the effect of channel noise on
the complexity (number of steps of communication) and reliability (error
probability in computing the function) of the protocol, since all practical
channels are noisy. This problem was first addressed by L. Schulman in [2]
for the special case of two processors connected to each other by independent
binary symmetric channels (BSCs) with the same crossover probability of
6 (0 < 6 < 1/2). He proved that any A/-step noiseless-channel interactive
protocol could be simulated over the BSCs in O (N/C) steps (C = 1 +
6 log 6+ (1 - <5) log(l - 6) is the capacity of each channel), while incurring a
simulation failure probability of2~n(A). (Here, a simulation failure issaid to
occur if at least one of the processors does not arrive at the same computed
value of the function in the simulation as in the original protocol.)

This result is analogous to Shannon'scoding theorem for (one-way) data
transmission across a noisy channel, in that it establishes the possibility
of simulating long enough protocols over noisy channels with a constant
factor overhead in the number of transmissions, while incurring an arbitrarily
small failure probability. Note, however, that Shannon's theorem cannot be
directly applied here because of the interactive nature of the communication;
in general, neither processor knows all its transmissions ahead of time, and
therefore cannot code large blocks of data as in the data transmission case.
The key idea in [2] is the use of tree codes as a mechanism for recovering
from errors caused by channel noise.

Subsequently, in [1], Rajagopalan and Schulman extended this result to
the case of an arbitrary network of processors, in which each channel is
an independent BSC with crossover probability 8 (0 < 6 < 1/2). They
proved that any A/-step noiseless-network protocol could be simulated over
the noisy network in 0{{N/C)\ogd) steps, while incurring a simulation
failure probability of 2~^N\ Here, d is the maximum in-degree of any
processor in the network.

In both results, if the original protocol happens to be an TV-step private-

2

coin randomized protocol which computes a function correctly on any input
with probability at least 1 —€, then a) the simulation requires the same
randomness resources at each processor as the original protocol does, and
b) the probability that at least one of the processors fails to compute the
function correctly in the simulation is upper bounded by €+ 2~^N\

However, this result can be strengthened in the following sense: the
processors can actually turn the channel noise to their advantage by using
it to generate all the randomness they need in the protocol, so that, in the
simulation, all external sources of randomness can be done away with. This
is the subject of the present paper. The price to be paid for the deterministic
simulation is an increase in the number of steps and in the error probability.
We prove that any TV-step private-coin randomized protocol that computes
a function correctly with probability at least 1 —e can be deterministically
simulated over the noisy network in

~fNm\ „{N\ogd\

steps, while incurring an error probability in computing the function of at
most e+ 2~n(NK Here, m is the number of channels in the network, d is the
maximum in-degree of any processor, and h{8) = —8 log 6—(1—8) log(l —8).
This extends a similar result proved in [3] for the two-processor case.

The problem and result are stated more precisely in the following section,
after some preliminary definitions.

2 Preliminaries

We will assume that the network of processors is represented by a directed
graph G = {V,E). Here, V is the (finite) set of processors, and E CV xV
describes their interconnections. (</, r) € E means there is a binary channel
from q to r. For each q € V, let Vin(q) = {p : {p.q) € E}, din{q) = \Vin{q)\,
Vom{q) = {r : (q,r) € E}, and dovt{q) = |l'ou*(g)|.

Without much loss of generality, we may assume that the inputs of all
the processors are drawn from a common finite set X. Let x represent the
vector of all their inputs, and let /(x) be the common function that they
wish to compute. Let y be the finite set in which / takes values.

As mentioned before, the processors are assumed to know a private-
coin randomized protocol that helps them compute / with a certain error
probability, provided the network is noiseless. We will now describe this
protocol (call it n) more carefully.

n runs in N steps, indexed n = 1,2,..., N. In step n, processor q does
the following in sequence and in synchronism with all other processors:

• It randomly chooses the rfout(^)-tuple of bits to transmit on its out-
links in step 71, with a distribution that depends only on its own input
and the d,„((7)-tuple of bits that it received on its in-links in each of
the previous n —1 steps.

• It then transmits these bits on its out-links.

• Finally, it receives the bits sent on its in-links in step n.

At the end of step N, q randomly chooses an element of y, with a distri
bution depending only on its own input and the bits that it received on its
in-links in the N steps, and takes the chosen element to be the value of /(x).
It should be mentioned here that all the random experiments performed by
a processor are independent of each other and of the random experiments
performed by all other processors.

The protocol guarantees that, for any input vector x, the probability
that all the processors compute /(x) correctly is at least 1 —e (for some
0 < € < 1). € is called the error probability of n.

Our objective is to simulate n determmistically over a network described
by the same graph G, in which each link is a binary symmetric channel of
crossover probability 8 (0 < 8 < 1/2), and the channels operate indepen
dently.

If the simulation is to be deterministic, the randomness required by
the processors must be generated by a deterministic procedure from the
noise in the network (which is the only source of randomness). Now, as
such, the distributions with which the processors make their random choices
in n are arbitrary. It will therefore be convenient to first modify n to a
new randomized protocol n' which also runs in N steps, but in which each
processor initially draws an element from a set of size K with a uniform
distribution, and thereafter makes all its choices as deterministic functions
of its input and random element (the processors draw their random elements
independently). The price to be paid for this "uniformization" is a possible
increase in the error probability, which depends on how large K is. In
Section 3, we show that this increase can be made smaller than (|V| /K) •
2NW.

We will actually simulate n', and not n, over the noisy network. The
uniform distributions required in n' can be generated deterministically from

channel noise in t steps of communication, but for a failure probability that
depends on how large t is. In Section 4, weshowthat this failure probability
is at most

|V| • min \tl< •2~th^ +2•2-tD^ . (1)
1 ' 0<s<8 l J

Now, if t > (1 + P)N \E\/h(8) for some fi > 0, then we can choose K so
that

2*1*1. El + min ItK •2~th^ +2•2~tDi<s^\ <2-"<W)+°(") (2)
A* 0<s<5 L >

for some c(/3,£) > 0. It follows that by increasing the number of steps in the
simulation by {1 + P)N \E\ /h{8) and tolerating an increase of |V| .2~Nc^^
in the error probability with which / is computed, we can do away with the
randomness resources required in n.

The actual simulation of n' on the noisy network is described in Sec
tion 5. This is more or less identical to the simulation outlined in [1]. How
ever, there is an error in [1] in the definition of what constitutes a successful
simulation. Setting this right requires some modifications to the original
simulation, which are described here. The result is the same as in [1], viz.,
that once the random variables have been successfully generated, n' can be
simulated on the noisy network in 2kN steps, for any k> L_^U> j log(d-fl),
while incurring a simulation failure probability of at most

|y| . 2-A*2(frC-/vi log[d+l))Nt /3x

Here, d = maxgey d{n(q) and A'i and K2 are universal constants.

3 Uniformization of II

Theorem 3.1 For any integer K > 1, U can be modified to another N-step
randomized protocolW, in which each processoronly requires an independent
random variable that is uniformly distributed over a set of size K. The error
probability of W is at most e+ (\V\ /A") •2Ar'El.

Proof: The idea of the proof is to approximate all relevant probabilities
in n by rational numbers with denominator K. In order to do this, it will
be convenient to take the unit interval [0,1) with uniform measure as the
sample space on which all the independent random experiments performed
by each processor in n are defined. We will now describe this construction

from the perspective of processor q. Let x € X denote a possible input at
q. In all that follows, the term interval will always mean a set of the form
[a,/?), where 0 < a < ft < 1. If a = /3, the interval will be assumed to be
empty.

To begin with, divide [0,1) into 2dout^ disjoint intervals,

{/(ai|*):aie{0,l}dou<(9)},

with the length of I(ai\x) being proportional to the probability that, on
input a:, q transmits a\ in step 1 of n.

Then, for each h € {0, l}di^\ subdivide each I{ai\x) into 2dout^ dis
joint intervals,

{/(a1,a2|x,61):a2€{0,l},'-^}l
with the length of 7(ai,a2|a:,&i) being proportional to the probability that,
on input x, q transmits a2 in step 2 of n if it received &i in step 1.

In general, suppose 1 < n < A/, and 7(a |̂.T, 6"—J) has been defined for
all a? € ({0,l}dout(^)n, and all 6?-1 € ({0, l}*^))""1. Then, for each
bn 6 {0, l}rf«'n(«), subdivide each /(aj|ar,6y_1) into 2dou'M disjoint intervals,

{/(ar+1|x,6D:an+1€{0,l}d-'̂ },

with the length of J(ay+1|ar,6y) being proportional to the probability that,
on input x, q transmits an+i in step n+1 of n if it received 6" in the previous
n steps.

Finally, for each bN € {0, l}*"fo>, subdivide each 7(a^|x,6f-1) into |3>|
disjoint intervals,

{/(af,y|i,^'):y€y},
with the length of /(a^, y|x,6f) being proportional to the probability that,
after step A/, q chooses y as the value of the function /, given that its own
input is x and it received b± in the N steps.

From this description, it should be obvious how q can make its random
decisions in each step of n with the correct probabilities, if it initially knows
a random point drawn uniformly from [0,1). Forexample, in step 1, qchecks
which interval of the form I{a\\x) contains its random point, and transmits
the corresponding a\. Suppose it receives b\ in step 1. Then in step 2, it
checks which interval of the form I{ai,a2\x,b{) contains its random point,
and transmits the corresponding a2, etc. Suppose q transmitted a^ and

received 6* in the N steps. Then, after step A", it checks which interval of the
form I(a^,y\x,b^) contains its random point, and takes the corresponding
y to be the value of /.

Now, for each interval / = [a,/?) occuring above, approximate a and
(3 by the nearest rational number of the form m/A', m = 0,1,..., A', and
denote the interval thus obtained by I'. Clearly, the length of V is of the
form m/A', and differs from the length of / by no more than 1/A'. Note
that if the length of I is smaller than 1/A* then /' is empty.

Suppose now that q initially knows a random element drawn uniformly
from {0,1/A', 2/A',..., (A' - 1)/A*}. Then, in the protocol n', q proceeds as
described above, except that it now checks the "primed" intervals in each
step. Thus, in step 1, q transmits the a\ such that I'(ai\x) contains its
random element, etc. The protocol n' is now well-defined. It remains to
bound its error probability.

Let x = {xq)q€V be any input vector. Let b\ € {0,1}*»(») be the din(q)-
tuple of bits that processor q receives in step n (1 < n < N), during the
execution of n or n' on this input vector (these are of course random,
and their distributions depend on which protocol is being executed). Let
b* = {b\,...,bgN), and b = (b9)7GV. b can take on 2NW values. Clearly,
if b is known, we can figure out the transmissions of each processor in each

step. Let gg{b) € [{0,l}dou^qn be the sequence of g's transmissions in
the N steps.

Now, let /(x) = y. Let A(x) (resp. A'(x)) be the probability in n (resp.
n') that all the processors compute /(x) correctly. Then,

aw = Eni7^(b)^i^b9)i'
b g€V

A'M = Eni7'(^(b)^K'b9)|.
b qev

Here, |/| denotes the length of the interval /. Therefore,

|A'(x)-A(x)|. < £ II \I'(gq(h).y\xq^)\- J] |/(flr,(b),y|*g,b«)|

< EE \l'(9q(*>)-y\Xq,W)\-\n9q(b),y\Xq,bg)\
b qev

i EEv
b qev

Thus,

- oN|E| M
" ' K '

l-A'(x) < l-A(x) +2NlEl.!p
< €+2"i*i. m.

A

This completes the proof. E

4 Generating randomness from channel noise

The idea for generating randomness from channel noise is the following:
suppose each processor transmits O's on all its out-links for t steps. Then,
processor q receives an i.i.d. 0-1 sequence of length tdin(q), in which each
bit is 1 with probability 8. Moreover, these sequences are independent from
processor to processor. We may assume that d{n(q) > 1 for all q, so that
each processor has at least t i.i.d. bits. Such a sequence of length t can be
processed deterministically to generate a random variable that is uniformly
distributed over a set of size A', except for a certain failure probability. This
probability approaches zero exponentially as t increases, provided the "rate"
(logK)/t is maintained at some fixed level below h(8).

Theorem 4.1 Let Z\, Z2,..., Z* be i.i.d. 0-1 valued random variables, each
of which is 1 with probability 8 (0 < 8 < 1/2). Then, there exist pairwise
disjoint subsets G\, G2,..., Gk of {0,1}' such that

Pr{(Z1,Z2l...fZf)€C7fc} =i^1 for all ke {1,2,..., A}.
Here, r = Pr {(Zi, Z2,.. .,Zt) £ U/t^'a} w the probability of failure to gen
erate randomness, and is at most

min ItK •2~th^ + 2•2~tD^^} . (4)

Thus, in t steps, all the processors can generate independent random vari
ables uniformly distributed over a set of size K, but for an event of probability
at most \V\ times the expression in (4).

Proof: Choose s to attain the minimum in (4). For w € {0,1,...,£},
let Tw be the set of 0-1 sequences of length t which have exactly w Vs.
Obviously, \TW\ = Q. For each wsatisfying h(w/t) > h(s), let Gf,.. .,Gft
be pairwise disjoint subsets ofTw, each ofsize exactly IO/A'l (the subsets
are otherwise arbitrary). Let

Gk= (J °t* A:=1,2,...,A'.
h{w/t)>h{s)

Clearly, Pr {{Z\,Z2,..., Z*) € Gk] is then the same for all A;, since all the
Gfc's have the same number of sequences of any given type. It only remains
to upper bound r = Pr {(Zi,Z2, ..., Z,) £ \Jk Gk}. Note that

r = £ [\Tw\modK]6w(l-6)1-w+ £ \TW\8™(1 - 8)l~w
h(w/t)>h{s) h{w/t)<h(s)

< £ K-Sw(l-6)t-u'+ E (tj8w{l-8)t-w. (5)

The first term in (5) equals

V] A'. 2-f[A(«-/0+£»(u./*||tf)]
j<w/f<l-s

s<u-//<l-a

< tK-2-th(sK

By the Chernoff bound for the tails of a binomial distribution, the second
term in (5) is at most 2"f£>(s|'5) + 2~iD(1~s^S) which, in turn, is no greater
than 2 • 2~tD(sH5) since 0 < s < 8 < 1/2. The desired bound on r now
follows. The final statement in the theorem is just a consequence of the
union bound. E

5 The noisy-network simulation protocol

Once the random inputs required in W have been generated, we essentially
have a deterministic protocol, which can then be simulated on the noisy
network as in [1]. We will now describe this simulation. For convenience,
we will use n to refer to the modified protocol W. Since we will have no

occasion to refer to the original protocol n any more, this cannot result in
any confusion.

For the purposes of the simulation, it will be necessary to artificially
extend n up to 2N steps. This can be done, e.g., by requiring each processor
to transmit 0 on all its out-links in steps N + 1,..., 2N.

The simulation protocol will be called S. E proceeds in T rounds, in
dexed t = 1,2,.. .,T. Here, T = 2N. In each round, each processor decides
either to simulate a step of n, or to back up and cancel the last simulated
step because of perceived errors in the progress of the simulation (how this
decision is made will be explained later). In the former case, it transmits a
bit (0 or 1) on each of its out-links, while in the latter case it transmits a
special "back up" symbol * on all its out-links.

Thus, in E, the processors communicate with each other using three
symbols, viz., 0, 1, and *. Of course, these symbols must ultimately be
encoded as bitstrings for transmission on the BSCs. Correspondingly, a
decoding procedure for getting back the symbols from the bitstrings must
be specified. One of the important ideas in [1] is to introduce memory into
the encoding and decoding processes as a mechanism for recovering from
errors caused by channel noise. The memory is introduced using a tree code,
which we describe next.

5.1 The tree code

Consider a rooted complete ternary tree of depth T. The three edges out of
each internal node will be understood to correspond to 0, 1, and *. A node
at level t in this tree will be referred to by the sequence of t symbols (0, 1,
or *) corresponding to the t edges leading to the node from the root. (The
root itself will be referred to by the empty string A.)

Suppose each edge in the tree is labelled with a letter from a finite
alphabet C, and this labelling satisfies the "relative Hamming distance >
1/2" condition, i.e., the Hamming distance between the sequences of labels
along any two paths of length / > 1 that originate from a common node in
the tree is at least 1/2. Such a labelling constitutes a ternary tree code of
depth T. The letters of C will be called tree code characters.

The surprising fact is that the size of the alphabet C required for such
a labelling to exist does not depend on T. In fact, it can be shown (by a
probabilistic existence argument) that an alphabet of size 1296 suffices to
label the edges of a 3-ary tree of arbitrary depth T, so as to satisfy the above
condition.

10

The processors agree upon such a ternary tree code of depth T before
the simulation begins. Denote this code by 7". If S(t—1) G {0, l,*}*-1,
a{t) € {0,1, *}, and S(t) = S(t—l)cr(t) (concatenation), then let

T(a{t)\S(t-l))eC
be the tree code character labelling the edge between the nodes S(t— 1) and
S(t). Let T{S(t)) GC* be the sequence of tree code characters labelling the
t edges from the root to the node S{t).

5.2 The block code

The processors also agree upon a block code of a suitably large blocklength
k for the tree code characters, i.e., an encoding map \e : C -^ {0,1}* and
an associated decoding map \d : {0,1}* —• C. It will turn out that k should
exceed K\ • log(rf+ 1)/C, for some universal constant A*i. For purposes of
analysis, we may assume that (xe»Xrf) 's the best block code of blocklength
k and size |C| for a BSC of crossover probability 8, i.e., of all such codes, it
has the least worst-case probability of error (over all codewords).

5.3 Encoding procedure

We will now describe how processor q encodes the symbols 0, 1, and * for
transmission on the BSCs. Let a^q,r\t) be the symbol that q decides to
transmit on the out-link (q, r) in round /, and let

5('-r,(0=('̂'r,(l),...,ff(,'r)(0).
Let 5(9'r)(0) be the empty string A. Then, q first encodes a{q^{t) by the
tree code character

C{q'r){t) =T(a{q'r){t) S(9'r)(*-1)) ,

and then transmits Xe \G^q,r\t)j, the fc-bit codeword for C^q,r^(t), on the
link {q,r).

Thus, the bitstring into which the symbol to be transmitted on a given
link is encoded depends on the symbols transmitted on that link in all the
previous rounds.

11

5.4 Decoding procedure

In each round, q receives possibly corrupted versions of the bitstrings of
length k that were transmitted on its in-links. qfirst decodes these bitstrings
into tree code characters, by applying the decoding map Xd of the block code.
Let C^p,q\t) be the treecode character that qdecodes on the in-link (p, q) in
round t. Then, qtries to reconstruct S^p,q\t) (thesequence ofsymbols psent
on the link (p, q) in thefirst t rounds) based solely on &p«\l),. ..,C^q\t).
Let 5(p,9)(0 G{0,1, *Y denote this estimate.

The decoding rule is the following: q chooses S^p,q^{t) to minimize the
Hamming distance between T(5(p'9>(0) and (C<P'9>(1),.. .,(^(0)- Ties
are resolved arbitrarily.

Thus, the decoding decision on a given link depends on the receptions
on that link in all the previous rounds also. However, note that S^p,q^(t)
need not be an extension ofS^p,q^{t- 1); in fact, they could be very different
from each other.

Two types of decoding errors can occur in round t on the link (p,q): a
block code error is said to occur if C{p'q){t) ^ C(p'9)(0> while a tree code
error is said to occur if S(p,9>(0 ¥" .S(p'9)(0- Note that the occurence of
one of these errors does not imply the occurence of the other: even if
C(p.9)(/) ^ C(p'q){t), S<™)(f) can end up being equal to $("•»>(*) if not
too many of C^p'^(l),. ..,C(p,q\t - 1) were wrong. Conversely, even if
CM{t) = C^q\t), S{p^[t) may not be equal to S^p^(t) if too many
of C(p'9>(l),...,C{p^{t-l) were wrong.

5.5 Transcripts and path estimates

Recall that in each round q either sends a bit (0 or 1) on each out-link,
or sends * on all its out-links (the first case corresponds to q simulating a
step of n, and the second to q cancelling the last simulated step); further,
S(9.0(f) £ {o,1,*}* is the sequence ofsymbols sent by q in the first t rounds
on the out-link (q, r).

Define Tr(S(9,r)(i)) to be the bitstring obtained from S^r\t) by the
following rule: each *, goingfrom left to right, erases the rightmost preceding
un-erased 0 or 1. This rule reflects the fact that each * represents a back up
that cancels the last simulated step.

Tr(S^q,r\t)) will be called g's out-transcript for the link (q, r) after round
t. If B(q,t) is the number of times in the first t rounds that q backed up,
then the length of Tr{S^q^{t)) is obviously t - 2B{q, t) for each r GVout(q).

12

This is the number of steps of n that q thinks have been simulated at the
end of round t. For this reason, t —2B{q, t) will be called the apparent time
at q after t rounds, and denoted by AT(q,t). Let AT(q, 0) = 0. In round
t, if q decides to simulate a step, that step would be AT(q,t —1) + 1; if it
decides to cancel a step, it would be step AT(q, t - 1).

Next, recall that S^Piq\t) is </'s estimate ofthe sequence ofsymbols (0, 1,
or *) that were transmitted on the in-link (p,q) in the first t rounds. Define
7>(S(p.?)(f)) to be the bitstring obtained from S^q)(t) by the same rule as
above. (If a tree code error occurs on the link (p, q) in round t, there may
be a * in S^p,qXt) for which there is no preceding un-erased 0 or 1. In that
case, simply define Tr{S{p>q){t)) to be the empty string A.) Tr(S{p'q){t))
will be called g's in-transcript for the link (p, q) after t rounds. Note that
the length of Tr(S^q\t)) need not be the same for all p GVin(g).

Now, the objective of processor q in the simulation is to learn the N
bits it would have received on each of its in-links in n, under the current
assignment of input and random variable values. To this end, it maintains
an estimate of some prefix of the N bits it would have received on each
in-link. These will be called path estimates. Let W^p,q^(t) denote <y's path
estimate for the in-link (p, q) at the end of round /.

In each round, q updates its path estimates either by extending each by
one bit, or by erasing the last bit in each. Consequently, for any t, the length
of Wlp,q)(t) is the same for all p G Vj„(</). Denote this common length by
L(q,t). Define W^p^{0) to be the empty string Afor all p GVin{q), so that
L(q,0) = 0.

5.6 Outline of the simulation protocol

At this point, it will be useful to outline the simulation protocol from the
perspective of processor q. In round t, q does the following in sequence and
in synchronism with the other processors:

• First, it decides whether to simulate step AT(q, t —1) +1 or to back up
and cancel step AT{q, *-l), and computes o~(q,r)(t) for each r GVout(g)
accordingly. This will be explained in Section 5.8.

• It encodes each ^q,r^(t) as a fc-bit string, as described in Section 5.3,
and transmits the bitstrings on the corresponding out-links.

• It decodes the Ar-bit string received on each in-link, as described in
Section 5.4, to get S{p'q){t) for each p GVin(q).

13

• Finally, it computes the updated path estimate W^p,q\t) for each p G
Vin(q). This will be explained in Section 5.7.

5.7 Updating path estimates

In round t, q updates its path estimates based on a comparison between
W<*«\t - 1) and Tr(Sb«\t)) for each p GVin{q).

. if jy(p.9)(* - 1) is a proper prefix ofTr(S^p'q\t)) for all p, qconcludes
that it is in agreement with all its in-neighbors about the first L(q, t—1)
steps of n. Therefore, it extends W^q\t - 1) by bit L(q, t - 1)+ 1 of
Tr{S^q\t)), to get W^q\t). In this case, L{q,t) = L(q,t- 1)+ 1.

. If w(p*)(t - 1) is not a proper prefix of Tr{S^q\t)) for some p, q
concludes that there is a disagreement with that in-neighbor about
the first L(q,t - 1) steps of n. Therefore, it erases the last bit (i.e.,
bit L(q, t - 1)) ofW^q\t - 1) to get W^q){t). In this case, L(q, t) =
L(q,t-1)-1.

There isa slight complication ifL{q, t-1) = 0 (i.e., W^p^ (t -1) = Afor
all p) and Tr(S^p'q\t)) = Afor some p. In this case, it will be convenient to
define W^q\t) to be a special "bitstring" A', obtained by erasing the "last
bit" of the empty string A. Correspondingly, L(q,t) will be defined to be -1.
(The purpose behind this convention is to ensure that L(q, t) = L(q, t—1)±1
for all t.)

With this convention, it becomes necessary to specify what q should do
in round t if L(q,t - 1) = -1. In this case, q takes W^q\t) to be Afor all
i, regardless of what the in-transcripts are; correspondingly, L(q,t) is 0.

5.8 Decision rule for simulating a step or backing up

To complete the description of the simulation, we must specify how q decides
in round t whether to simulate a step or to back up. The decision is based
on a comparison between AT(q,t-1) and L(q,t - 1), i.e., the lengths of its
out-transcripts and path estimates after the previous round.

• If AT{q,t - 1) = L(q,t - 1), then q simulates step AT(q,t - 1) + 1.
In this case, a^q,r\t) is the bit it would have transmitted on the link
(q, r) in step AT(q, t - 1)+1 of n, had it received the sequence of bits
jy(p.g)(f _ i) on the in-link (p, q) in the previous steps.

14

• If AT(q, t —1) ^ L(q,t-1), then q backs up-and cancels step AT(q,t —
1). In this case, o^r\t) is * for all r GVou<(g).

An easy induction on t proves that, for all 1 < t < T, L(q,t —1) equals either
AT(q, t-l)or AT(q, t - 1) - 2, and in either case AT(q, t) = L(q, t - 1) +1.
Also, for all 2 < t < T, AT{q,t) = AT{q,t - 1) + 1 iff L(q,t - 1) =
L(q, t —2) + 1. In other words, in round t, q simulates a step if it extended
its path estimates in round t - 1, and backs up if it shortened them in round
t-1.

5.9 Final decision

After round T of the simulation, q simply checks if L(q,T), the length of
each W^P^(T), is at least N. If so, it concludes that the simulation was
successful, and takes the first N bits of ir(p'9)(^) to be the bits it would
have received on the in-link (p, q) in n. Otherwise, it concludes that the
simulation failed. This completes the description of the simulation protocol
v

It remains to lower bound the probability that all the processors succeed
in computing the right bits at the end of the simulation.

6 Analysis

6.1 Remarks

We will first define the key measure of the progress made by the simulation
at processor qafter t rounds: RP{q, t), the real progress at qafter t rounds,
is the largest n < L(q,t) such that, for all p G Vjn(tf), the first n bits of
W(p^)(t) are "correct," i.e., they equal the bits that q would have received
on the in-link {p,q) in the first n steps of n (under the current assignment
of input and random variable values). If L{q,t) = 0 or - 1, then R{q,t) is
set equal to L{q,t). Note that RP{q,t), unlike AT{q,t) or L{q,t), cannot
be calculated by q during the simulation. From the definition, it is obvious
that:

Observation 6.1 The simulation is successful iff RP(q, T) > N for all
q€V.

It should be pointed out here that AT{q,t), L{q,t), and RP{q,t) can
exceed N, since n was artificially extended to 2A^ steps.

15

Define H{q,t), the history-cone at q after t rounds, to be the set of all
processor-time pairs (p, r) such that thereexists a directed path in G, from p
to q, of length at most t - r. Note that {q, t) GU(q, t), and if (p, t) GU{q, t)
then p = q. Intuitively, if (p, r) GU{q, t) and t <t, then a signal from p in
round r will reach q in round £- 1 or earlier, and will therefore affect </'s
actions in round t. (q,t) is included in U(q,t) for technical convenience.

A time-likesequence in Ti(q, t), of length m, is a sequence

(Pl»*l)>(P2,*2),---,(pm,<m),

where 1 < tx < t2 < ••• < tm < t, {pk,tk) G n{pk+i,tk+i) for 1 < fc < m,
and (pm,fm) G %{q,t).

Define X(q, t) to be the largest m for which there exists a time-like
sequence {pi,ti), {p2,t2),..., {pm,tm) in %{qj) such that, for each 1 < k <
m, a tree code error occured on some in-link at processor pk in round tk.
(If there is no such sequence, let X(q.t) = 0.) Note that all these tree-code
errors propagate to q by round t —1 or earlier, and will therefore affect its
actions in round t. Let A'(</,0) = 0.

The following simple results will be used freely without reference in the
sequel:

1. If p = q or p G Vin(q), then Tiip.1 - 1) C Tiiq, t) and, consequently,
X[q, t) > X(p, t - 1). Further, if q makes a tree code error in round t,
then X{q,t) > X{p,t-l) + l.

2. RP{q,t-l) and RP{q,t) can differ by at most 1. RP(q,t) = RP(q,t-
1) + 1 only if RP{q, t - 1) = L{q,t - 1) and L{q,t) = L{q, t - 1) + 1.
Similarly, RP(q, t) = RP{q, t - 1) - 1 only if RP(q, t - 1) = L(g, t - 1)
and L(?,f) = L(q,t-\)-\.

3. For any t, the first RP{q, /. —1) + 1 bits of each of g's out-transcripts
after f rounds are "correct" (i.e., they are the same as in n).

6.2 Outline of analysis

The following theorem is the main result of [1]:

Theorem 6.1 There exist universal constants K\,K2 > 0 (independent of
the protocol U and the network G) such that the failure probability of the
simulation under any assignment of inputs and random variable values is
bounded above by

\V\ •exp {-A2 (kC - Aj \og(d + 1)) N},

16

provided k, the blocklength of the block code used, exceeds (A'i/C)*log(rf+l).
Here, d is the maximum degree of any node in G, and C = 1 —h(8) is the
capacity of each link in the network.

There are two main lemmas, Lemma 6.1 and Lemma 6.2, in the proof
of Theorem 6.1. The first states that if RP(q,t) is small relative to t (i.e.,
q has not progressed very much after round t), then X(q, t) must be cor
respondingly large (i.e., there must have been many tree-code errors in the
first t rounds that affected the progress of q).

Lemma 6.1 If RP(q,t) = t-l, then X{qJ) > 1/2. Equivalently,

RP{q,t)>t-2X{q,t).

The second lemma upper bounds the probability that X(q, t) > t/A for
some q. It states that, if k (the blocklength of the block code used) is large
enough, the above probability will decay exponentially in t.

Lemma 6.2 There exist universal constants K\,K2 > 0 such that, if k >
(A*i/C) -log(d+ 1), the probability that X{q.t) > t/A for some q is bounded
above by

\V\ •exp{-A2 (kC - Iu \og(d+ l))t/2} .

By Observation 6.1, Lemma 6.1, and the fact that T = 2Ar, the prob
ability that the simulation fails is upper bounded by the probability that
X(q, T) > T/A for some q. Applying Lemma 6.2 now, with t —T, gives the
result of Theorem 6.1.

The proof of Lemma 6.2 is exactly as in [1] and will not be repeated
here. Lemma 6.1, however, is slightly different from its counterpart in [1],
and will therefore be proved fully. The proof is based on the same ideas as
in [1].

6.3 Proof of the first lemma

We will actually prove a stronger result, viz., for all 0 < t < T and all q G V,

2RP{q.t) + 2X(qJ) - L{q,t) > t. (6)

If (6) holds, then

RP(q,t)-t + 2X(q,t) > L(q,t) - RP(q,t)

> 0,

17

thus proving Lemma 6.1. The proofof (6) is by induction on t. It obviously
holds for t = 0. So, assume that t > 1, and that

2RP(q,t- l) + 2X{q,t- 1) - L{q,t - 1) > t - 1, (7)

for all q G V. The induction step requires considering six disjoint and
exhaustive events at processor q in round t. They are:

1. q makes a tree code error in round t.

(a) L(q,t) = L{q,t-l)-l.

(b) L(q,t) = L(q,t-l) + l.

2. q does not make a tree code error in round t.

(a) L(q,t) = L{q,t-l)-l.

i. RP(q,t) < RP{q,t- 1).

ii. RP{q,t) >RP{q,t-l).

(b) L(q,t) = L(q,t-l) + \.

i. RP(q,t)<RP(q,t-l).

ii. #P(9,J) > RP{q,t- 1).

6.3.1 Cases l.a, l.b, 2.a.ii, 2.b.ii

These four cases are easy to handle. In Case l.a, RP(q,t) > RP(q,t-l)-l,
X{q,t) > X{q,t-1) + 1, and L{q,t) = L{qJ-l)-l. In Case l.b, RP(q,t) >
RP{q,t-l), X(q,t) > X{q,t-1)+1, and L{q.t) = L{q,t-l)+l. In Case 2.a.ii,
RP(q,t) = RP(q,t-l), X(q,t) > X(q,t-1), and L(q,t) = L(q,t-l)-l.
Finally, in Case 2.b.ii, RP{q,t) = RP{q,t-l) + l, X(q,t) > X(q,t-\), and
L(q,t) —L(<y,f-1) + 1. Thus, in all these cases,

2RP{q,t) + 2X{q,t)- L{q.t)

> 2RP{q,t-l) + 2X{q,t-l)- L{q,t-l) + l

> t,

by the induction hypothesis at q. This proves (6).
The other two cases, viz. 2.a.i and 2.b.i, are more subtle; they require

an examination of events at the in-neighbors of q also.

18

6.3.2 Case 2.a.i

Here, RP{q,t) = RP(q,t - 1) - 1, X(q,t) > X(q,t - 1), and L(q,t) =
L(q, t —1) - 1. This is not enough to complete the induction step. However,
we claim that:

Claim 6.1 In Case 2.a.i, there exists a p G V{n(q) for which RP(p, t —1) <
RP(q,t).

Proof: If L{p,t —1) < L{q,t —1) for some p G Vin(q) then, in fact, L(p,t —
1) < L(q, t —1) —1, since L(p, t - 1) and L(q, t - 1) are either both odd or
both even. But RP(p, t - 1) < L(p, t - 1) and L{q, t-l)-l = RP(q, t), so
that we have RP{p,t - 1) < RP{q,t).

So, assume that L{p,t-\) > L{q,t-l)for allp G Vin{q). If RP(p,t-l) >
RP{q,t) for all p G Viniq), then the first RP{q,t) + 1 = RP(q,t - 1) bits
of Tr{Sip^{t)) would be "correct" for all p GViniq). But jTr(S(p'9>(0) =
j'r(5(p.9)(i))i since qdid not make any treecode errors in round t. Therefore,
for all p GViniq), (a) the length ofTr{S{p^{t)) would be AT(p,t) = L(p,t-
1)+ 1 > L{q,t-\) + \ by assumption, and (b) the first RP(q,t-l) = L{q,t-
1) bits of Tr{S(p<q){t)) would be "correct" and hence equal to W^p^{t - 1).
But, under these conditions, q would have extended its path estimates in
round t, and so we have a contradiction. This proves that there must exist
ape Viniq) for which RPip. t - 1) < RP{q, t). •

Now, the p G Viniq) provided by the above claim satisfies RPiq,t) >
RPip, t - 1) + 1, 2Xiq, t) > 2X(p, / - 1), and 0 > RPip, t-1)- Lip, t-1).
Further, we have RPiq,t) - Liq,t) = 0. Adding these four inequalities, we
get

2RPiq,t) + 2XiqJ)-LiqJ)

> 2RPipJ-\) + 2X {pj- 1)-LQM-1) + 1

> t,

by the induction hypothesis at p. This proves (6).

6.3.3 Case 2.b.i

Here, RPiq,t) = RPiq,t-l), Xiq,t) >Xiq,t- 1), and Liq,t) = Liq,t-
1) + 1. Again, this is not enough to complete the induction step. However,
we claim that:

Claim 6.2 In Case 2.b.i,

19

1. Lip,t- 1) > L(q,t - 1) for allp G Vin(q).

2. There exists ape Viniq) for which RPip,t- 1) < RP(q,t).

Proof: Consider any p G Vin(g). Since q extended its path estimates in
round t, W^q\t-l) must be a proper prefix ofTriS^q\t)). In particular,
L(q,t - 1) is smaller than the length of Tr(S{p«\t)). But Tr(5(p'9>(0) =
TV(S(p,9)(£)), since q did not make any tree code errors in round t, and so
the length ofTriS^q\t)) is ATfat) = Lfat- 1) + 1. Thus, L(q,t- 1) <
Lip, t - 1) + 1, proving the first assertion.

If RPip, t-l)> RPiq, t) for all p GV,„(tf), then the first RPiq, *) + l bits
of Tr(S<p-9>(t)) would be "correct" for all /> GV;„(9). Since 7Y(S<™)(t)) =
Tr(S(p'9>(0), and jy(p'9)(0 is a prefix of Tr{S{p>q\t)) of length L(q,t) >
RPiq, t) + l, this would imply that the first RPiq, t) +1 bits ofeach W(™) (i)
are "correct." But this contradicts the definition of RPiq,t). Thus, there
must exist a p G Kn(^) for which RPfat - 1) < RPiq,t). This proves the
second assertion. n

Now, for the p G Vin{q) provided by the second assertion of the last
claim, we have RPiq,t) > RPip,t - 1) + 1, X(q,t) > Xip,t - 1), and
Liq,t) < Lip,t- 1) + 1. Therefore,

2RPiq,t) + 2Xiq,t)-Liq,t)

> 2RPip,t-l)-\-2Xip,t-l)-Lip,t-l)-\-l

> t,

by the induction hypothesis at p. This proves (6).

20

References

[l] S. Rajagopalan and L.J. Schulman. A coding theorem for distributed
computation. Proc. of the 26th Annual ACM Symposium on the Theory
of Computing, 1994.

[2] L.J. Schulman. Deterministic coding for interactive communication.
Proc. of the 25th Annual ACM Symposium on the Theory of Computing,
1993.

[3] S. Venkatesan and V. Anantharam. Deterministic simulation of ran
domized protocols over noisy channels. Technical Report UCB/ERL
M94/102, Electronics Research Laboratory, Univ. of California, Berke
ley, December 1994.

21

	Copyright notice 1996
	ERL-96-65

