
 

 

 

 

 

 

 

 

 

Copyright © 1996, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



XDISTRIBUTE: A PROCESS DISTRIBUTION

SYSTEM

by

Karl Petty and Nick McKeown

Memorandum No. UCB/ERL M96/67

13 November 1996



XDISTRIBUTE: A PROCESS DISTRIBUTION

SYSTEM

by

Karl Petty and Nick McKeown

Memorandum No. UCB/ERL M96/67

13 November 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



xdistribute : a process distribution
System

Karl Petty
Department of Electrical Engineering andComputer Science

University of California, Berkeley
Berkeley, CA 94720

Email: pettyk@eecs.berkeley.edu

Nick McKeown
Departments of Electrical Engineering andComputer Science

Stanford University
Stanford, CA 94305-9030

Email: nickm@ee.stanford.edu

Abstract - Powerful, single-user workstations - now common in the workplace - spend most of their
time sitting idle. In an attempt to find low-cost computational power researchers have attempted to
take advantage of these idle machines. Many systems have been designed, ranging from simple
process distribution likeCondor[1], to completely new operating systems likeSprite [2] and Amoeba
[3]. Although very powerful, these systems are outof reach of the typical user - they require special
privileges, andrequire specialized installation, set-up andmaintenance. We propose a simpler way to
utilize these idle machines using a remote execution environment We have written an application,
xdistribute, that is extremely portable, simple to use, requires nochanges to anysource code, leaves no
residual dependencies on the local machine, and can be used by any user without modification to the
operating system or installation of any network daemons.

1 Introduction

With the development of powerful yet inexpensive workstations it is common for universities
and companies to have a large number of single user workstations available to users. It is well
known that in such an environment many workstations are idle at any one instant [5] [6]. There are
several good systems that have been developed to take advantage of this situation, but we feel that
there isa significant group of users that have been overlooked by the traditional process distribu
tion community. This is the group ofusers who don't have the administrative support to setup and
install a full-fledged process distribution system, yet need more computational power than one
workstation can provide. With this group ofusers in mind, we have designed a new application,
xdistribute, with the following characteristics:

1. No special privileges are required, xdistribute does not require the installation ofany
daemons on any machines, nor does it require any modifications to the kernel. The pack
age can run with only a modicumof setup.

2. Xdistribute works in a heterogeneous environment xdistribute is written in the
machine independent, and commonly available, languages ofTcl/Tk and perl. Therefore
xdistribute runs on a multitude of platforms.

3. No residual dependencies are left on local machine, xdistribute can distribute and
manage 100's ofprocesses at a time. Therefore it isvery important that the process distri-

*This work was supported bytheNational Science Foundation. California MICRO (442427-41679) and Pacific Bell.



button system not exceed the limit on the number ofprocesses oropen file descriptors for
individual users on the local machine.

4. There are no file systemassumptions. Ifa uniform file system is available then the
user can takeadvantage of it with features provided byxdistribute. Otherwise, xdistribute
doesn't make any assumptions about the current file system, and doesn'tassume identical
userlDs across platforms.

Xdistribute is designed for users who want aprocess distribution system yet don't have special
privileges or want to maintain system software. However, since xdistribute uses no network dae
mons it has no idle resource detection mechanism. Therefore jobs cannot be placed in an optimal
manner. The implication of these assumptions on the type ofjobs that can be run will bediscussed
in Section 3.

Because of its portability we feel that xdistribute fills a significant gap that until now has not
been addressed. We believe that this program helps harness the power of idle workstations for the
average user. In several case studies in heterogeneous environments we have found xdistribute
extremely easy to use.

In this paper we are not arguing against transparent process migration. Quite the contrary: if it
were widely available across multiple platforms we would use it. Instead, we argue that for a com
mon class ofprocesses, a simpler process distribution system will often suffice. Xdistribute gives
an average user - with no special privileges and nodesire to maintain an operating system - the
ability to take advantage ofidle processors in a network ofcomputers. Xdistribute is extremely
portable: it was written in Tcl/Tk and perl and hence will run on a wide variety ofplatforms. There
is no privileged setup or installation required.

2 Process Distribution

Previous techniques to take advantage of idle processor cycles fall into two categories: solu
tions requiring a new operating system, and solutions requiring only network daemons. We present
a brief overview of these two techniques and cite several implementations. We refer the reader to
[8] for a discussion of the features of distributed operating systems, and to [9] forthe details of
process distribution systems.

2.1 The Operating System Approach

In distributed operating systems an entire process is moved to a remote processor and
restarted. Moving a process requires that both its code and data be migrated to the new processor.
In the best case, process migration will be transparent to the process; the process should not know
that while it was executing itwas moved from one processor to another. The problem with moving
a process is that some of its state isstored in kernel data structures. When a process migrates, how
should the kernel data structures be updated? How is an open file descriptor moved? When is the
code and data moved to the new processor: immediately, or upon reference?

To solve these problems, developers ofdistributed operating systems have created transparent
process migration systems. To do this, they have either 1) modified, or built on top of, existing
operating systems, or 2) implemented completely new operating systems. This approach has sev
eral advantages: the file system seen by each machine can be uniform; processes can freely move



from machine to machine (to balance load or to evict processes when a machine's owner returns),
and process signals can be propagated to migrated processes.

A few examples of completely distributed operating systems are Accent [10], Amoeba [3],
Charlotte [11], Linda [12], Sprite [2], and the V-System [13]. GLUnix [14] is a compromise
between a distributed operating system and a process distribution facility. Written as a layer of
software that runs on top of an existing operating system,* GLUnix can make a network of com
puters look likea global operating system by catching system calls. Although GLUnix was written
entirely at the user level, it supports transparent process migration.

Fully distributed operating systems offer the ultimate in harnessing idle computational power:
everything is transparent to the process. The problem with these operating systems, however, is
that just like any novel operating system, they need to be installed and maintained. This currently
places them out of the reach of most users.

2.2 The Network Daemon Approach

For some processes, the complexity of designing and implementing a new operating system
outweighs the benefits of sharing the computational load. Therefore systems have been imple
mented that allow users todistribute processes over workstations with generic orunmodified oper
ating systems. These systems typically require the installation of a network daemon on each
machine that assists in the distribution scheme.

Several systems have been implemented that use network daemons. Some systems are able to
move processes from machine to machine using a "wrapper" around each process. At the time of
process migration, the wrapper saves pertinent information about the process: open file descrip
tors, data segment, stack contents, etc. This allows the process to be restarted at a later time, possi
bly on adifferent machine. Some systems do not support process migration, but instead provide a
remote execution environment. The user submits commands to the process distribution system and
the system will execute thecommand onan idle machine inthe network. The process is not moved
to theother machine by the process distribution scheme; these systems typically require auniform
file system so that all programs are accessible by all machines in the network. Prototype process
distribution systems of this type include Condor [1], Butler [5], Utopia [9], and the Portable Batch
System [16]. Commercial systems include TaskBroker by Hewlett Packard [18] and Jobware by
Ockham Technology [19].

While these systems and less complex than the operating system approach, they do require the
installation of network daemons on each machine participating in the process migration scheme.
The network daemons assist in thedistribution scheme in providing the remote execution environ
ment, maintaining communication links between the user process and the user, translating file sys
tem calls, and transferring process signals. They also typically assist in detecting idle machines
and hence in the process scheduling.

While network daemons help the distribution scheme get around the operating system prob
lems, they have drawbacks as well. The first problem is that network daemons, by nature, need to
be installed and run with special privileges. If auser does not have special privileges (or abilities)
on the machines then they can't install them. If the machines are not in the same administrative
domain then coordination of daemon installation becomes difficult.1 The second problem is that

* The developers of GLUnix referto it asa virtual operating system layer.



when not being used, these daemons take up resources. In order to perform scheduling decisions
based on idle resource detection, all machines need to have these network daemons running and
periodically report their loads to acentral server*. While typically small, this still places an unnec
essary load on the machines and the network. The final problem is that network daemons can intro
duce security holes. Since the network daemons accept connections via the network it is crucial
that they authenticate the sender. Failure to do so would result in an unauthorized person being
able to run arbitrary commands on the machine.

2.3 The xdistribute Approach

Xdistribute is simple. It requires nochanges to the operating system and uses nonetwork dae
mons. As aresult, xdistribute is easy to install, easy to configure and easy to use. It requires no
special support, no special administration and no special privileges. Altogether, these attributes
make process distribution available to amuch wider population ofusers, and on awider variety of
platforms.

But the simplicity ofxdistribute comes at aprice - some processes will not run on our system.
In particular, xdistribute cannot distribute processes that communicate with each other. Xdistribute
does not offer support for process migration, process checkpointing, inter-process signals, or trans
parent file systems. Xdistribute is designed to run monolithic, independent jobs that require no
coordination.

Xdistribute operates as follows. Given alist of processes and machines, it executes the pro
cesses on the machines until all the processes are complete. It performs remote execution using
standard remote shells and hence does not rely on any installed daemons on either the local or
remote machine. Xdistribute ensures that all processes complete - if onemachine dies, orbecomes
unavailable, processes are restarted on adifferent machine. Xdistribute iscareful to use only those
remote machines that are idle, evicting its processes if the machine becomes busy. Xdistribute
determines which input files topass to the remote machine, and returns output files tothe server on
completion.

Xdistribute's simplicity invites two obvious criticisms. First, since the typical user already has
the ability to run jobs on remote machines via a standard remote shell from the command line,
what does xdistribute have to offer? Second, how canxdistribute be useful when it restricts the
types of processes that can be run?

First, xdistribute should be viewed as an organizer of remote shell commands. But it does
more than that. It allows the user to effortlessly distribute jobs to 100's of machines. It will restart
jobs when machines fail; itallows users to view input and output files; and it evicts jobs (either by
pausing them, or by restarting them on adifferent machine) when machines become busy. While
xdistribute is running the user can add and delete machines from the pool of available machines.
Processes can also be dynamically added to the queue. In short xdistribute provides acomplete
user level process management system.

Second, xdistribute is suited for any independent, asynchronous jobs. Typical examples of this
type of job would be Monte Carlo simulations, Parallel branch-and-bound algorithms and most

t Also, it is possible (and has been witnessed by the authors) that network administrators think that process distribution
isabad idea. In situations like this the probability of good administrative support, and the installation ofnetwork dae
mons, is minimal.

* In the case ofadecentralized scheduler [9J these daemons respond tobroadcast queries.



custom built simulation routines. We feel that this is a large enough set of jobs to justify auser
level tool. Jobs that require synchronization can't use xdistribute, and typically need tightly cou
pled processors with message passing support.

There are many advantages and disadvantages to using xdistribute. Most ofthem stem from
the fundamental design philosophy. If one wants to solve the process migration problem com
pletely then one designs anew operating system. If one wants to take advantage of idle processor
cycles, do quick idle resource detection and be most considerate to other users, then one builds a
process distribution system with network daemons. If, on the other hand, one wants to build a tool
that any user can use without setup then one would build an application like xdistribute.

The fact that xdistribute is compatible with many different machine architectures is a conse
quence of the widespread support ofperl. If you can compile your program on the remote
machine and perl has been installed then you can distribute processes to that machine.

3 Typical xdistribute Usage

A typical usage of xdistribute is as follows. The user provides xdistribute with a list of
machines and a list of processes. Xdistribute assigns each process to a machine, and ensures that
every process is executed. If a machine fails orbecomes busy, or if a process dies, the process is
reassigned to a new machine.

Machines: The user provides xdistribute with a list ofmachines, and is required to have a regular
account on each machine.

Processes: Auser provides xdistribute with a list of independent, asynchronous jobs that they
would like to run. These processes fall into three categories: preamble, user and postamble pro
cesses. Preamble and postamble processes are performed exactly once on every machine. User
processes are executed exactly once on one machine. Preamble processes areexecuted before any
user process, and are generally used to install or compile any software needed on the remote
machines prior to execution. A typical preamble process will copy custom source code to a
machine and compile it on that platform. The postamble process (the counterpart to the preamble
process) is used to perform any cleaning up after the user processes have been executed. This
could be, for example, the removal of the executable code. The postamble process will typically
delete any software that was installed by the preamble process.

Xdistribute stores processes and machines in various queues depending on their state. These
queues are displayed graphically in the GUI ofFigure 1. The queues onthe left hold the processes;
those on the right hold the machines. Each queue corresponds to a different state. Processes can be
in one offour states: idle (they haven't started yet), active, in error ordone. The level ofthe queue
indicates the number of the processes or machines in that state. The processes are color coded to
represent the process-type: preamble processes are blue, user processes are red, and postambles
are green.

When the systemstarts up, all of the processes and machines are idle. When told to start,xdis
tribute distributes the processes one-by-one to idle machines. When a process is assigned to a
machine, both the machine and the process are moved from the idle queues to the active queues.
They remain there until the process completes ordies prematurely. If the process completes suc
cessfully then the process is placed in the done queue and the machine is placed back into the idle



General Machines Processes Ambles Server Monitor

Processes

ldte:10

Active: 8

Error 1

Dead:1

Done:8

Machines

Me: 0 Busy: 0

Active: a

FIGURE I Graphical user interface ofxdistribute. The buffers on the left represent the number of processes in each
state. The buffers on the right represent the machines. The different colors of processes reflect the different tVDes-
preamble, user, and postamble.

queue. When a process error occurs, the process is placed in the inerror queue and the machine is
placed back in the idle queue. Ifa machine fails, the machine is placed in the in error queue and
the process is placed back in the idle queue. The machine busy queue is for machines that are cur
rently being used by another user.

In Figure 1there are 10 processes that are in the idle queue waiting to be assigned to
machines. There are 8processes that are actively running, 8processes that have completed, and 1
process that is in error. Ofthe 9 machines in the system, 8are currently running and 1is in error.

While xdistribute is running the user can manually move processes between queues. For
example, a process that crashed and ended up in the in error queue can be fixed and manually
moved into the idle queue to be run again. Or when acrashed machine comes back up the user can
manually move it from the dead queue to the idle queue. The user also has the option of killing a
process or a machine that is currently running.

4 Comparison Of Process Distribution Schemes

In this section we will compare the research systems that are similar in design to the xdistrib
ute program. These systems are the process distribution systems ofCondor [1], Utopia [9], and
Butler [5]. The key categories of features that we compare are ease of setup, distribution capabili
ties, and how considerate the systems are to other users. The comparisons are summarized in Table
1. As seen from the table, the key features ofxdistribute are that any user can set it up and use it,
and it can run on multiple platforms. The discussion below is a brief review ofthese systems.
Readers wanting more detailed descriptions are referred to the references given at the end of this
paper.



Category Item Xdistribute Condor Utopia Butler

Setup

Need new operating system? no no no no

Need special daemons installed? no yes yes yes

Need root access to install? no yes yes yes

Must re-compile or re-linkapplication?3 no yes yes no

Can serverrun on any platform? yes no sort of no

Can process run on any platform? yes no no no

Distribution j

Supports process distribution? yes yes yes yes

Performs process migration? no yes no no

Supports processcheckpointing? no yes no no

Has residual dependencies? no yes yes yes

Requires uniform file system? no no yes yes

Process sees uniform file system? no yes yes yes

Consideration

Can machine owners block processes? no yes yes yes

Starts processes only on idle machines? set-able yes yes yes

Evicts processes on non-idle machines? set-able yes yes yes

Automatically determines idle machines? no yes yes yes

TABLE 1. : Comparison of different process distribution schemes.
a.This only refers to homogeneous hosts. Everybody has to re-compile on differentarchitectures.

The Condor system provides for limited process migration and checkpointing. Condor is
unusual in that processes are forced to migrate by physically moving them to a remote machine
across the network. Other process distribution systems assume that the process is already on the
remote machine and accessible via a uniform file system. So when Condor moves a process, it
must enable the process to refer back to the file system on the original machine. This is achieved
by encapsulating each process witha layer of code that catches file-system calls, forwarding them
to the machine that the process started on. The advantage of this is that the user process never
knows that it's being moved to different machines; everything is hidden by theCondor wrapper.

As was mentioned earlier, the problem with process migration is that it is difficult to transfer
the entire stateof a process to a different machine. It's even more difficult to do so at the user level.
TheCondor wrapper achieves this by storing asubset of the process state: open file descriptors and



file positions. However, Condor is unable to keep track of inter-process communications, process
signals or file operations that read and write to the same file.

Butler was developed to work on top of the Andrew File System [17]. Since this system pro
vides each machine with a uniform view of the file system, Butler does not need to worry about
moving processes or files to the remote machine. When a process wants to access a file, it can do
so independently of which machine it is executing on. Therefore, unlike Condor, Butler does not
use process wrappers. In fact, Butler does not actually move processes around from machine to
machine - itonly executes commands on different machines. Toexecute auser process onaremote
machine Butler first finds an idle machine touse. This isachieved bya status monitor program that
runs on every machine in the workstation pool, and periodically reports its status.

Utopia is the system that is most like xdistribute. Utopia gives the usera remote execution
environment on avariety of hosts. Like Butler, the user submits acommand to be executed; Utopia
then finds an appropriate idle machine toexecute it on. Since there is no transfer of the process to
the machine, Utopia requires that all machines view an identical file system. The developers argue
that this is acceptable because most large computing environments are moving towards auniform
file system. In order to facilitate the Utopia process distribution system a network daemon that is
started on each host handles the remote execution. When a task is transferred to the remote host,
the remote execution server (RES) iscontacted. It is passed any information such as environment
variables that the application might require. Since the RES will also propagate signals from the
user to the application and back, there is a residual dependency in the form of a network connec
tion on the local machine. Utopia performs efficient load-balancing. This is achieved by requiring
the use to specify the resources that each task will need. The system matches these resources with
specific computers. The system also gathers statistics on every host in the system so that when a
task needs to be run the system will know what resources are available.

When comparing these four systems, it is important to note that Condor isthe only system that
moves processes around from machine to machine. The other three, Utopia, Butler, and xdistrib
ute, only execute commands remotely on other machines. Condor, Utopia and Butler all rely on
network daemons to facilitate the process distribution and leave residual dependencies on the local
machine. Xdistribute does not use network daemons nor leave any dependencies on either the local
or remote machine.

5 Conclusion

In this paper we have discussed the various approaches taken to harness idle processor cycles
in aheterogeneous workstation environment. We have argued that while the traditional approaches
of new operating system development and network daemons provide useful tools, they are out of
reach of most users. We feel that the research community needs atruly user level process distribu
tion system. In response to this need, we have designed atool that has auser-friendly graphical
interface, is run-able on many heterogeneous platforms without modification, requires no changes
to the source code, does not leave residual dependencies on the local machine, and can be set up by
any user without installation of network daemons. This tool is useful to individuals with access to
a large number of workstations and no administrative support.



References

[1] M. Litzkow, M. Livny, "Experience With the Condor Distributed Batch System," Proc. of
the IEEE Workshop on Experimental Distributed Systems, Huntsville, Al., October 1990.

12] F. Douglis, J. Ousterhout, "Transparent process migration: Design alternatives and the
Sprite implementation," Software - Practice and Experience, 21(8):757-785, August 1991.

131 S. Mullender, B. van Rossum, A. Tanenbaum, R. van Renesse, H. van Staveren, "Amoeba: A
distributed operating system for the 1990s," Computer, 23(5):44-53, May 1990.

(4] M. Nuttall, "Survey of Systems Providing Process or Object Migration," Technical Report
94/10, Department of Computing, Imperial College, London, England, U.K., May 1994.

[5] D. A. Nichols, "Using idle workstations in a shared computing environment," Proc. of the
11th ACM Symposium on Operating System Principles, pages 5-12, Austin, Tx., November
1987. The Association for Computing Machinery.

[6] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, D. A. Patterson, "The
Interaction of Parallel and Sequential Workloads on a Network of Workstations," Techni
cal Report CS-94-838, Department of Electrical Engineering and Computer Science, Uni
versity of California, Berkeley, 1994.

[7] M.M. Theimer, K. A. Lantz, "Finding Idle Machines in a Workstation-Based Distributed
System," IEEE Transactions on Software Engineering, 15(11): 1444-1457, November 1989.

18] F. Douglis, J. K. Ousterhout, M. F. Kaashoek, A. S. Tanenbaum, "A comparison of two dis
tributed systems; Amoeba and Sprite," Computing Systems, 4(4):353-385, Fall 1991.

[9] S. Zhou, J. Wang, X. Zheng, P. Delisle, "UTOPIA: a load sharing facility for large, heteroge
neous distributed computer systems," Software • Practice and Experience, 23(12): 1305-
1336, December 1993.

[10] E. R. Zayas, "Attacking the process migration bottleneck," Proc. of the 11th ACM Sympo
sium on Operating System Principles, pages 13-24, Austin, Tx., November 1987. The Asso
ciation for Computing Machinery.

[11] Y. Artsy, R. Finkel, "Designing a process migration facility: the Charlotte experience,"
Computer, 22(9):47-56, September 1989.

[12] N. Carriero, D. Gelernter, "The S/Net's Linda Kernel," ACM Transactions on Computer
Systems, 4(2):110-129, May 1986.

[13] M. M. Theimer, K. A. Lantz, D. R. Cheriton, "Preemptable remote execution facilities for
the V-system," Proceedings of the 10th Symposium on Operating System Principles, pages
2-12. The Association for Computing Machinery, December 1985.

[14] R. Wahbe, S. Lucco, T. Anderson, S. Graham, "Efficient software-based fault isolation,"
Proc. of the Fourteenth ACM Symposium on Operating System Principles, pages 203-216.
The Association for Computing Machinery, December 1993.

[15] P. Mehra, B. W. Wah, "Automated Learning ofWorkload Measures for Load Balancing on a
Distributed System," Proc. of the 1993 International Conference on Paralled Processing
pages 263-270, section III.

[16] R. L. Henderson, D. Tweten, "Portable batch system: Requirements specification," Techni
cal report, NAS Systems Division, NASA Ames Research Center, Moffett Field, CA, April
1995.

[17] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N. Side-
botham, M.J. West, "Scale and performance in a distributed file system," ACM Transac
tions on Computer Systems, 6(1):51-81, Feb 1988.

[18] "HP Task Broker for HP 9000 Servers and Workstations," HP Product Brief.
[19] Ockham Technology; "Jobware," http://www.ockham.be/jobware.htm


	Copyright notice 1996
	ERL-96-67

