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Multi-access Fading Channels:
Part I: Polymatroidal Structure, Optimal

Resource Allocation and Throughput
Capacities *

David N. Tse 'and Stephen V. Hanly *

Abstract

In multi-access wireless systems, dynamic allocation of resources such as transmit
power, bandwidths and rates is an important means to deal with the time-varying
nature of the environment. In this two-part paper, we consider the problem of
optimal resource allocation from an information theoretic point of view. We focus
on the multi-access fading channel with Gaussian noise, and define two notions
of capacity depending on whether the traffic is delay-sensitive or not. In part I,
we characterize the throughput capacity region which characterizes the long-term
achievable rates through the time-varying channel. We show that each point on
the boundary ofthe region can be achieved by successive decoding. Moreover, the
optimal rate and power allocations in each fading state can be explicitly obtained
in a greedy manner. The solution can be viewed as a multi-user generalization of
the water-pouring construction for single user channels, and exploits the underlying
polymatroidal structure of the capacity region. In part II, we characterize a delay-
limited capacity region and obtained analogous results.

1 Introduction

The mobile wireless environment provides several unique challenges to reliable commu
nication not found in wired networks. One of the most important of these is the time-
varying nature of the channel. Due to effects such as multipath fading, shadowing and
path losses, the strength of the channel can fluctuate in the order of tens of dBs. The
problem is particularly acute for real-time traffic such as video, since they have astringent
delay requirement. Ageneral strategy to combat these detrimental effects is through the

'Part of this work was done when both authors were with A.T. &T. Bell Laboratories. This paper
has been submitted to the IEEE Transactions on Information Theory.

fDept. of EECS, U.C. Berkeley, dtse@eecs.berkeley.edu
*Dept. of Electrical Eng., University of Melbourne, s.hanly@ee.mu.oz.au



dynamic allocation of resources based on the states of the channels of the users. Such
resources may include transmitter power, allocated bandwidth and bit-rates. For exam
ple, in the IS-95 CDMA (code-division multiple access) standard, the transmitter powers
of the mobiles are controlled such that the received powers at the base-station are the
same for all mobiles. Thus, a user has to be dynamically allocated more power when its
reception at the base-station is weak. This is to combat the so-called near-far problem.
Another example is the dynamic channel allocation strategy which aims to adaptively
find the best frequencies to transmit at.

Most of the existing work on dynamic resource allocation has been done with re
spect to specific multiple access schemes, such as CDMA, TDMA (time-division) and
FDMA (frequency-division). In this paper, we address the problem at a more fundamen
tal level: what are the information theoretically optimal resource allocation schemes and
their achievable performance for multiple access? We focus on the single cell uplink sce
nario where a set ofmobiles communicate to the base-station with a single receiver. Our
answers are in terms of capacity regions of the multi-access fading channel with Gaussian
noise, when both the receiver and the transmitters can track the time-varying channel.
To this end, we consider two notions of capacity for the fading channel.

The first is the classic notion ofShannon capacity directly applied to the fading chan
nel. In this definition, the channel statistics are assumed to be fixed, and the codeword
length can be chosen arbitrarily long to average over the fading of the channel. Thus, to
achieve these rates, users will experience delay which depends on how fast the channel
varies. We call this the throughput capacity as it measures long term rates, averaged over
the fading process.

In contrast, we also define anotion of delay-limited capacity for fading channels: these
are the rates achievable using codeword lengths which are independent of how fast the
channel varies. The former notion of capacity is relevant for situations when the delay
requirement of the users is much longer than the time-scale of the channel fading; it is
particularly appropriate for data applications in which delay is not an issue, although it
can also be relevant for delay sensitive traffic if the fading in the channel is sufficiently fast
to give tolerable delays. On the other hand, delay limited capacity is relevant when the
delay requirement is shorter than the time-scale of channel variations so that one cannot
average over the fades and has to maintain the desired rate at all fading states.

We have obtained complete characterizations of these two capacity regions as well
as the optimal resource allocation schemes which attain the points on the boundary of
these regions. We compute the boundaries of the capacity regions, and show that every
point on the boundary is achievable by successive decoding, which means that a series
of single-user decodings is sufficient to achieve capacity. More precisely, first one user
is decoded, treating all other users as noise, then its decoded signal is subtracted from
the sum signal, then the next user is decoded and subtracted, and so forth. Thus, our
solution characterizes the optimal multiple access schemes, as well as the optimal power
allocation. Given the state ofthe channels, the optimal power allocation can be computed
very efficiently and explicitly using greedy algorithms.



The optimal power allocations we obtain are solutions to various optimization prob
lems over the multi-access Gaussian capacity region. Since the number of constraints
defining the capacity region is exponential in the number of users, to obtain efficient
solutions we need to exploit the special polymatroidal structure of the capacity region.
Polymatroidal structure has been used successfully in many resource allocation problems
to obtain greedy optimization algorithms (see for example [4].) In this paper, we will
show that the multi-access Gaussian capacity region in fact belongs to a special class
of generalized symmetric polymatroids , and we derive new greedy solutions to various
optimization problems for this class of polymatroids.

Goldsmith [7] addressed the problem of computing the throughput capacity of single
user fading channels when both the transmitter and the receiver can track the channel.
The optimal power allocation is obtained via water-filling over the fading states. Knopp
and Humblet [13] have solved the multi-user version of that problem for the special case
of symmetric users with equal rate requirements. Our results on computing the entire
throughput capacity region of the multi-access fading channel and the associated optimal
power allocation can be viewed as generalization of the classic water-filling solution to
the multi-user setting. In arelated work, Cheng and Verdu [2] obtained an explicit char
acterization of the capacity region of the two-user time-invariant multi-access Gaussian
channel with inter-symbol interference. We will see that this channel is essentially the
"frequency-dual" of the multi-access flat fading channel and our techniques for the latter
can be readily applied and provide a general solution to the multi-access ISI channel for
an arbitrary number of users. Moreover, our results extend to the frequency-selective
fading case in a straightforward manner.

The notion of delay-limited capacity was introduced in [11] which obtained results
in the symmetric case. The delay-limited power allocation schemes are similar in flavor
to those considered in the CDMA power control literature (see for example [10], [18]),
where the goal is to maintain adesired signal-to-noise ratio at all fading states. However!
those works consider only decoding schemes where auser is decoded treating other users
as interference, which is sub-optimal from an information-theoretic point of view. Our
optimal schemes shed some light on the possible improvement by using more complex
decoding techniques.

Early work on power control in the Shannon-theoretic context [8], [9] established
structural results about the multi-user Gaussian capacity region arising directly from its
polymatroidal structure. These results provided additional motivation for the present
paper.

In Part I of this paper, we will characterize the throughput capacity region and the
optimal resource allocation schemes, while we will relegate the analysis of delay-limited
capacities to Part II. Part I is organized as follows. In Section 2we introduce the Gaussian,
multi-access, flat fading model and present acoding theorem for the throughput capacity
region when transmitters and receiver can track the channel. This theorem implies that
the extra benefit gained from the transmitters tracking the channel is fully realized in
the ability to allocate transmitter power based on the channel state. In Section 3, we



use Lagrangian techniques to show that the optimal power allocation can be obtained by
solving a family of optimization problems over a set of parallel time-invariant multi-access
Gaussian channels, one for each fading state. Given the Lagrange multipliers ("power
prices") for the average power constraints, the problem is that of finding the optimal
"rate" and "power" allocations as a function of each fading state. Here, we exploit
the polymatroid structure of the optimization problem to obtain an explicit solution via
a greedy algorithm. In Section 4 we provide a simple iterative algorithm to compute
the power prices for given average power constraints. Together with the greedy power
allocation, this yields an efficient algorithm for dynamic resource allocation; moreover,
it lends itself naturally to an adaptive implementation when the fading statistics are
not known. In Section 5, we show how the usual economic interpretation of Lagrange
multipliers has useful application in radio resource allocation. In particular, we exploit
the symmetry between rate and power to define a power minimization problem, dual to
that ofmaximizing Shannon capacity. In Section 6, we will present greedy power allocation
algorithms when additional power constraints are imposed. These results exploit further
properties of polymatroids. Finally, in Section 7, we extend our flat fading model to the
case of frequency selective fading.

2 The Multi-access Fading Channel

2.1 Preliminaries

We focus on the uplink scenario where aset of Musers communicate to asingle receiver.
Consider the discrete-time multiple-access Gaussian channel:

M

y(n) =f;yJJMn)Xi(n) +Z(n) (1)
i=i

where M is the number of users, X,(n) and Hi(n) are the transmitted waveform and
the fading process of the ith user respectively, and Z(n) is Gaussian noise with variance
<72. We assume that the fading processes for all users are jointly stationary and ergodic.
and the stationary distribution has continuous density and is bounded. User i is also
subject to an average transmitter power constraint of Pt. Note that in this basic model,
we consider fading effects which are frequency non-selective. Frequency-selective fading
will be considered in Section 7.

Suppose each source *codes over a block length of T symbols, where T is the delay,
using a codebook d of size 2RiT (i.e. at rate fy bits per channel use). Each codeword
x of the z'th user satisfies \\x\\l < TP{. Fix a decoding scheme and assume the messages
are chosen with equal probability. Let pe(T) be the probability of the event that any
user is decoded incorrectly. The capacity region characterizes the fundamental limits of
communication in the multi-access scenario:



Definition 2.1 The rate-tuple R = (Ru. ..,RM) lies inside the capacity region C iff
for every positive e, there exists a delay T, a codebook ofblock length T, and a decoding
scheme such that the probability of error pe(T) is less than e.

Consider first the simple situation where the users' locations are fixed and the signal
ofuser i is attenuated by a factor of h{ when received at the base-station, i.e. Hi(t) = hi
for all time t. The characterization of the capacity region of the multi-access memo-
ryless channel with probability transitions p(y\xu.. .,xM) is well-known (Ahlswede [1],
Liao [12]); it is the set of all rate vectors R satisfying:

R(5) < I\Y; (Xi)ies\(Xi)i€s] VS c {1,..., M}

for some independent input distribution p(xi)p(x2).. -p(xM). (In this paper, for any
vector x we use the notation x(S) to denote E,€5x(5). ) Note that S is any subset of
users in {1,2,..., M}. The right-hand side ofeach ofthe above inequalities is the mutual
information between the output and the inputs ofusers in S, conditional on the inputs
of users not in S. In the case of the Gaussian multi-access channel, this capacity region
reduces to:

C,(h,P) =|r:R(5) <Jlog (l +Ei€SJ'Pi) for every 5C{1,...,M}} (2)
where h = (hu...,hM) and P = (Pi,...,PM) Note that this region is characterized
by 2M - 1constraints, each corresponding to a non-empty subset of users. The right
hand side of each constraint is the joint mutual information per unit time between the
subset of the users and the receiver conditional on knowing the transmitted symbols of
the other users, under (optimal) independent Gaussian distributed inputs. It can also
be interpreted as the maximum sum rate achievable for the given subset of users, with
the other users' messages already known at the receiver. Moreover, it is known that the
capacity region has precisely n\ vertices in the positive quadrant, each achievable by a
successive decoding using one of the n! possible orderings.

We now turn to the case of interest where the channels are time-varying due to the
motion of the users. When the receiver can perfectly track the channel but the transmit
ters have no such information, the codewords cannot be chosen as a function of the state
of the channel but the decoding can make use of such information. For this scenario, the
capacity region is known (Gallager [6], Shamai and Wyner [16]) and is given by:

{(i?1,...,JRM):R(5)<EH[ilog(l +4E^)],V5c{l,...,M}} (3)
*' *s

where H = (HU...,HM) is a random vector having the stationary distribution of the
joint fading process. An intuitive understanding of this result can be obtained by viewing
capacities in terms of time averages of mutual information (Gallager [6]), the rate of flow
of which can be viewed as arandom process depending on the fading levels of the users.
Specifically, at time t, the instantaneous rate of flow ofjoint mutual information between



a subset S of users and the receiver, conditional on theother users' messages being known,
can be thought of as:

Ilog(l +̂ £ Hi(t))
a its

(This assumes that the transmitted waveforms are independent Gaussian processes with
power P. ). Thus the amount of mutual information averaged over a time interval [0, T]
is

^EJmi +^E#,("))
1 n=il °l ,es

As T -)• oo, this quantity converges to the right-hand side of the constraint in (3)
corresponding to the subset 5. This is because of the ergodicity and stationarity of the
fading processes.

The multi-access fading system above is reminiscent of a queuing system with time-
varying service rates, corresponding to the instantaneous rates of flow of joint mutual
information. In this interpretation, the capacity can be viewed as the throughput of such
a queuing system, being the long term maximum average arrival rates (of mutual infor
mation ) sustainable by the system. Hence, we will also call this capacity the throughput
capacity of a fading channel. We will use the terms capacity and throughput capacity
interchangeably in this paper, using the latter when we want to emphasize the distinction
from other notions of capacity that will be defined in Part II.

2.2 The Capacity Region under Dynamic Resource Allocation

We shall now focus onthe scenario of interest in this paper, where all the transmitters and
thereceiver know the current state ofthechannels ofevery user. Thus, the codewords and
the decoding scheme can both depend on the current state of the channels. In practice,
this knowledge is obtained from the receiver measuring the channels and feeding back the
information to the transmitters. Implicit in this model is theassumption that the channel
varies much slower than the data rate, so that the tracking of the channel variations can
be done accurately and the amount of bits required for feedback is negligible compared
to that required for transmitting information. Whereas the transmitters send at constant
transmitter power when they do not know thecurrent state ofthechannel, dynamic power
control can be done in response to the changing channels when the transmitters can track
the channels. We are interested in characterizing the capacity region in this scenario.

A power control policy V : $lM -> UM is a mapping such that given a joint fading
state h = (hi,.. .hM) for the users, Pt(h) can be interpreted as the transmitter power
allocated to user i. For agiven power control policy V, consider the set ofrates given by:

Cj(V) ={R: R(5) <lfe[±log(l +̂ ]£ W>,-(H))],V5 C{1,..., A/}}
2 u~ i£S

(4)



Comparing this with the capacity region (3), one can heuristically think of C/(V) as
the set of achievable rates when powers are dynamically allocated according to policy V.
The following coding theorem substantiates such an interpretation.

Theorem 2.2 The throughput capacity region for the multi-access fading Gaussian chan
nel when all the transmitters as well as the receiver know the current state ofthe channel
is given by:

C(P) = U Cf(V) (5)

where T is the set ofall feasible power control policies satisfying the average power con
straint:

^={^:EH[^(H)]<Pt- Vi}.

Proof. See appendix A. D

The above theorem essentially says that the improvement incapacity due to the trans
mitters having knowledge of the channel state comes solely from the ability to allocate
powers according to the channel state. Also, note that since the capacity region is convex,
the above characterization implies that time-sharing is not required to achieve any point
in the capacity region. An example of a two-user capacity region is shown in Fig. 1.

R2

C2

Figure 1: Figure shows a two-user throughput capacity region as a union of capacity
regions, each corresponding to a feasible power control V. Note that each of these regions
is a pentagon (shown in dashed lines). The boundary surface is the curved part.

It isworth pointing out that as a result ofpower control, codewords are random: since
thepower control depends on therandom fading process, so do thecodewords themselves.
However, consider the multi-user, Gaussian channel with a unit power constraint on each



user, and in which the fading level for user i is HiVi(H). This channel has capacity
region C/(V). Consider then any rate R in the interior of Cj{V). Given any positive e,
we can choose a code length and a codebook (nonrandom) such that the probability of
error is less than e. But, as in the proof of Theorem 2.2, we can use this codebook to
construct the random codebook for the original fading channel, with the same probability
of error. Thus, in the original channel, we can use this nonrandom codebook, and scale
each symbol by the appropriate power control (dependent on the realization of the fading)
to get the random codeword that is transmitted. The receiver can decode since it knows
the realization of the fading, and the nonrandom codebooks of the users.

3 Explicit characterization of the capacity region

In this section, we will obtain an explicit characterization of the throughput capacity
region (5) as well as the optimal power and rate control policies, and also show that
successive decoding is always optimal to get all points on the boundary. We do this by
exploiting a special combinatorial structure of the regions Cg and Cj.

3.1 Polymatroidal Structure

We begin with a few definitions. As before, for a vector x € 9^, we shall use the
short-hand notation x(5) to denote £t€S #,-.

Definition 3.1 Let E = {1,..., M} and f :2E -> &+ be a set function. The polyhedron

B{f) = {{x1,...,xM):x(S)<f(S) VSCE, x{ > 0 V*} (6)

is a polymatroid if the set function f satisfies:

V /(0) = 0 (normalized).

2) f(S) < f(T) ifScT (nondecreasing).

3) f(S) + f(T) > f(S UT) + f{S n T) (sub modular)
The polyhedron

Q(f) = {(xu •••,xM): x(S) > f(S) WS C E]

is a contra-polymatroid if f satisfies:

*) /(0) = 0 (normalized).

2) f(S) < f(T) ifScT (nondecreasing).

3) f{S) + f(T) < f(S UT) + f(S fl T) (supermodular)
If f satisfies the three properties, f is called a rank function.



Polymatroids were introduced by Edmonds [3] where he proved the following key
properties. If tt is a permutation on the set £, define the vector v(tt) £ $ftM by v^i)(tt) =
/(tt(1)) and vAi)(7r) = /({tt(1),..., ir(i)}) - /({tt(1), ..., n(i - 1)}) for i = 2,..., M.

Lemma 3.2 Let B(f) be a polymatroid. Then v(tt) is a vertex ofB(f) for every permu
tation tt. Also, any vertex ofB(f) strictly inside the positive orthant must be v(tt) for
some tt. Moreover, if Xis a given vector in 3^, then the solution of the optimization
problem

maxA•x subject to x € B(f) (7)

is attained at the point v(tt*) where the permutation tt* is given by \„*(i) > ... > A^a/j.
Conversely, suppose f is a set function and B(f) is the polyhedron defined in (6). Then
ifv(ir) £ B(f) for every permutation tt, then B{f) is a polymatroid.

Note that B(f) is a polyhedron characterized by an exponentially large number of
constraints (in M). The above lemma says that the polymatroid structure ofB(f) allows
the linear program (7) to be solved efficiently, in fact in time 0(M log M). One can in
fact re-interpret the solution of the linear program as that obtained from the following
greedy algorithm:

• Initialization: Set Xi = 0 for all i. Set k = 1.

• Step k: Increase the value of x^^k) until a constraint becomes tight. Goto Step k+1
• After M steps, optimal solution is reached.

It can be shown, by the properties of /, that at step k, the constraint that becomes
tight is the one that corresponds to the subset {7r(l),...,7r(fc)}. Thus, this algorithm
yields the solution in Lemma 3.2. It is said to be greedy since it is always moving in
the direction ofsteepest ascent ofthe objective function while staying inside the feasible
region. Also, after increasing a component of the vector, the algorithm never re-visits
it again. Thus, only M steps are required. We will see that the solutions to all the
optimization problems in this paper have this greedy character.

There is an analogous lemma for contra-polymatroids.

Lemma 3.3 Let Q(f) be a contra-polymatroid. Then the points v(tt) where tt is a per
mutation on E are precisely the vertices ofQ(f). Moreover, ifXis agiven vector in SRj.',
then the solution of the optimization problem

minA •x subject to x € Q(f) (8)

is attained at the point v(tt*) where the permutation tt* is given by A*.^) > ... > A^.(A/).
Conversely, iff is a set function and v(w) € Q(f) for every permutation tt, then Q(f) is
a contra-polymatroid.

Now consider a discrete memoryless multi-access channel with transition matrix
P(y\xu •••»xM). Asimilar version of this result was obtained in [9].



Lemma 3.4 For any independent distribution p(x\).. .p(xm) on the inputs, the polyhe
dron

{R € Rjf : R(5) < I[Y; X(5)|X(5C)] VS C E} (9)
is a polymatroid.

Proof. Let tt be a permutation on E and consider the rate vector R(tt) defined by

ftr(0(7r) = /[K;Xir(0|X({7r(i + l),...,7r(Af)})] i = l,...,M-l

These are the capacities achieved by successive decoding in the order given by 7r, and
hence the rate vector R(7r) lies in the region (9). Since this is true for every 7r, by Lemma
3.2, the polyhedron (9) is a polymatroid. •

Corollary 3.5 The capacity region C5(h,P) ofa memoryless Gaussian multi-access chan
nel is a polymatroid.

Lemma 3.6 Let V be any power control policy. Then Cj(V) defined in (4) is a polyma
troid.

Proof. By direct verification.

•

The following structural result shows that the region C/(V) can be written as a
weighted sum ofthe capacity regions of parallel time-invariant Gaussian channels Cg(h, V(h)).

Definition 3.7 A rate allocation policy %is a mapping from the set ofjoint fading states
to U^; for each fading state h, 7£t(h) can be interpreted as the rate allocated to user i
while the users are in state h.

Lemma 3.8 For any power control policy V,

Cf(V) = {EH[71(H)] :11 is a rate allocation policy s.t. Vh 71(h) € Cg(h,V{h))} (10)

Furthermore, for any permutation tt on E,

v(tt) = Eh[vh(tt)] (11)

where v(tt) is the vertex ofCj(V) corresponding to the permutation tt, and for each state
h, i>h(*") is the vertex ofCg(h, V(h)) corresponding to permutation tt.

10



Proof. Define

S = {EH[ft(H)] : %is a rate allocation policy s.t. 7£(h) GCg(h,V(h))}

By definition, we have that S C Cj(V). But by Lemma 3.6, C/(P) is a polymatroid,
and hence is the convex hull of successive decoding points R(7r), where tt ranges over all
permutations of £, and

± R., =EH [1 log(l +E '̂ g^(°))], „=i,2,...,M
.=,

But for any 7r, R(7r) € £, and hence every extreme point of Cj(V) lies in £. By the
convexity of £, it follows that £ = Cf(V). This also establishes the second part of the
lemma.

3.2 A Lagrangian characterization of the capacity region

We shall now make use of the polymatroid structure of C5(h, P) and Cf(V) to explicitly
characterize the throughput capacity region C(P) of the multi-access fading channel and
the optimal power control policies, under an average power constraint P.

We focus on characterizing the boundary of the region C(P), as given in the following
definition.

Definition 3.9 The boundary surface ofC(P) is the set of those rates such that we cannot
increase one component, and remain in C(P) without decreasing another.

For example, the boundary surface of the Gaussian capacity region without fading is
simply the points where the constraint for the entire set of users is tight. The points on
the boundary surface are in some sense the optimal operating points because any other
point in the capacity region is dominated component-wise by some point on the boundary
surface. In the two-user example in Fig. 1, the boundary surface is the curved part.

The following lemma shows that the computation of the boundary of the region C(P)
and the associated optimal power control policy can be reduced to solving a family of
optimization problems over a set of parallel multi-access Gaussian channels.

Lemma 3.10 A rate vector R* lies on the boundary surface ofC(P) if and only if there
exists a nonnegative fie9lM such that R* is a solution to the optimization problem:

max/z •R subject to Re C(P). (12)

11



For a given nonnegative fi, R* is a solution to the above problem if and only if there exists
a nonnegative Xe UM, rate allocation policy 11(h) and power control policy V(h) such
that for every joint fading state h, (71(h), V(h)) is a solution to the optimization problem:

max fi •R- A•P subject to Re Cg(h,P) (13)

and

EH [tt.-(H)J = R!, EH [P.-(H)] = /> i = 1,..., M

where P{ is the constraint on the average power of user i.

Proof. The first statement follows from the convexity of the capacity region.
Now consider the set

5 = {(R,P):R€^,R€C(P)}

By the concavity of the log function, it can readily be verified that 5 is a convex set. Thus,
there exist Lagrange multipliers A€ 9^ such that R* is a solution to the optimization
problem:

max n •R - A•P subject to Re C/(V) (14)
(R,P)

Let tt be the permutation corresponding to the ordering of the components of the
vector fi. By the polymatroid structure of Cf(V), for any given power control V, fi •R is
maximized at

*,<:> = ^log(l +g*(1)yH))]
**) = «H[^log(l+ ^)(H) ), fc =2,...,M (15)

Hence, the optimization problem (14) is equivalent to

* " *=2 L CT +2^;=i •H*(i)/-V(,)(H)

and this is in turn equivalent to

^ikBd +̂ illW)+£wIlog(1 +,, .feiyy (h)) +A•WO
for every fading state h. But this latter problem is also equivalent to

maxn •R- A•P subject to Re C5(h,P)

because of the fact that Cg is a polymatroid.

12



This completes the proof. D

One can interpret // as a vector of rate rewards, prioritizing the users. The R* on the
boundary for a given ^ is a rate vector which maximizes \x •R over the capacity region
C(P). As fi varies, we get all points on the boundary ofthe convex capacity region. The
vector Acan be interpreted as a set of power prices; for a given //, Ais chosen such that
the average power constraints are satisfied.

It follows immediately from (15) that the optimal solution will be a successive decoding
solution. Lemma 3.8 then shows that the optimal solution (R*(H),V*(H)) will be such
that R*(h) is a corner point of Cg(h,V*(h)) for every h, with the same ordering tt for
each h.

3.3 Optimal Power and Rate Allocation

We now consider the problem of determining (R*(h),V*(h)) for each fading state h.
Note that Lemma 3.10 can be viewed as a multi-access generalization of the Lagrangian
formulation for the problem of allocating powers over a set of parallel single-user Gaussian
channels ([5]). The solution to the optimization problem in the single user setting is given
by the classic water-filling construction. Here we will provide a solution in the multi
access setting. Again we make use of the polymatroid structure and the solution will have
a greedy flavor.

To make further progress, we now identify further structure in the time-invariant
multi-access Gaussian capacity region Cfl(h,P).

Definition 3.11 (see [4])

The rank function f ofa polymatroid B(f) is generalized symmetric if there exists a
vector y e U+ and a non-decreasing concave function g such that f(S) = g{y{S)) for
every S C E.

It can be readily verified that / satisfies the three properties ofa rank function. We state
the following easily proven result.

Lemma 3.12 Let g be a non-decreasing concave function and for each y, define gen
eralized symmetric rank function fy(S) = g{y(S)). Fixed a vector x € 3^. The set
{y : x e B(fy)} is a contra-polymatroid.

Applying this to the capacity region C5(h, P), we get the following "dual" polymatroid
structure:

Corollary 3.13 For a given average transmitter power constraint P and fixed h, the
capacity region C5(h,P) is a polymatroid with generalized symmetric rank function. On
the other hand, for agiven rate vector R, the set of received powers that can support R.

Q(h,R) = {Q : BPs.t.Qi = M>-,R e Cg(h,P)}
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is a contra-polymatroid.

We wish to solve (13), and note that by Corollary 3.13, it is sufficient to consider the
more general problem stated in Theorem 3.14, in terms of a polymatroid with generalized
symmetric rank function.

Theorem 3.14 Consider the problem:

maxfi'X-X-y subject to x(S) < g(y(S)) VS C E

where g is a non-decreasing concave function. Define the utility functions

Ui(z) = mg'(z)-Xi, z= l,...,M
u*(z) = [maxut(z)]+

(Here, x+ = max(a;,0),).

Then the solution to the above problem is given by /0°° u*(z)dz and the optimizing point
(x*,y*) to achieve this can be found by a greedy algorithm.

Proof. Let J* be the optimal value for the above problem. For any fixed y, the set of
feasible x forms a polymatroid, by Lemma 3.2, the value J* must be attained at a point
satisfying

*ir(i) = 9(y*(i))
k k-1

**(*) = 0(£yir(i))-0GCy*(o)
i=i t=i

for some permutation tt. Hence,

M k k-1

k-2 t=l ,=1

/_ un{i)(z)dz
* A=i JL,i<k-i y*M

< f°°u*(z)dz
Jo

We now show that this upper bound can actually be attained. First, note that by the
concavity of g, the function u* is monotonically decreasing. If u*(0) = 0, then J* = 0
and attained at x = y = 0. If u*(0) > 0, then let 0 = z0 < Zl < ... < zK where zK is
the smallest z for which u*(z) = 0 (if there is no such point, zK = oo), and such that in
the interval [zklzk+1], u*(z) = uik(z) for some ik, k= 0,...K-l. Hence, at zk, uik_x
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intersects tt,-fc. Now, since g' is monotone, two curves wt- and Uj can intersect at most once.
Thus, the zVs are distinct. Pick the point

y*k = zk+i -zk k = 0,... K - 1
2/^ = 0 else

xlk = 9(zk+i) - g(zk) k = Qy...K-l
x* = 0 else

It can be directly verified that

//•x*-A-y*=/ u*(z)dz
Jo

and that x* is a vertex of the polymatroid with rank function /(•) = g(y*(-)). Thus, the
upper bound is attained at (x*,y*).

D

Observe that the solution can be obtained via a greedy algorithm. Starting with
x = y = 0, the component that gets selected to be increased is the one which leads
to the steepest ascent of the objective function. When none of the components leads
to an increase in the objective function, the optimal solution is reached. Moreover, the
algorithm never revisits a component after finishing increasing it.

Specializing this result to the case of the time-invariant Gaussian channel gives a
solution to the optimization problem (13). The function g is taken to be

In terms of the received powers Q = (hxPu..., HmPm), the optimization problem can be
rewritten as:

maxY,ViRi - £ irQi subject to R(S) < g(Q(S)) VS c E
i i ni

The optimal solution is achieved by successive decoding. Any such solution can be
represented by a permutation tt and set of intervals [*,-, z1+1], i = 1,..., M ofthe real line
such that zi = 0, zi+l - z{ is the received power of user 7r(z), and users are decoded in the
order given by tt(M), tt(M - 1),..., tt(1). The value z{ is the total received power of the
interfering users when user n(i) is decoded. Thus, user n(i) is decoded at a total noise
level of o2 + z^ One can also think of a solution as the choice of which (if any) user to
transmit at every interference level a2 + 2, z e [0,00). See Fig. 3.3 for an example.

The optimal choice is determined by the functions

%K ] 2(<r> +z) hi
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marginal

utility of users

*2 + Ql
<T* + Z

°2 + Q\ + Q\

Figure 2: A 3-user example illustrating the greedy power allocation. The x-axis repre
sents the received interference level and t/-axis the marginal utility of each user at the
interference levels. At each interference level, the user who is selected to transmit is the
one with the highest marginal utility. Here, user 1 gets decoded after user 2, and user 3
gets no power at all. The optimal received powers for user 1 and user 2 are Q* and Q*2
respectively.
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where Ui(z) •SQ can be interpreted as the marginal increase in the value of the objective
function due to an amount SQ of power received from user i at noise level a2 + z. Thus,
the optimal solution is obtained in a greedy fashion by choosing at each noise level z, to
transmit the user which will leads to the largest positive marginal increase in the objective
function. If no such user can be found, then no user is transmitted at that interference
level. Note that in the optimal solution, some users may be allocated zero powers ( and
hence zero rates), although the priority order (the reverse of the decoding order) of the
transmitting users is always in increasing order of the rate rewards ^t's. In the case when
the ^j-'s are all distinct (which happens with probability 1), the optimal power and rate
allocation is explicitly given by:

where

A = {ze [0,00) : Ui(z) > Uj(z) Vj ^ t and u{(z) > 0}

The proof ofTheorem 3.14 illustrates the fact that the optimal point will be a corner
point for every fading state, although this also follows directly from Lemmas 3.8 and 3.10.
Note that the same ordering tt is used in every fading state, although users may end up
using zero power and zero rate in any given fading state.

3.4 Boundary of the Capacity Region

We now combine the Lagrangian formulation given in Lemma 3.10 and the optimal power
and rate allocation solution to give a characterization of the capacity region C(P), pa
rameterized by the rate rewards ft. First, we present the following lemma, which allows
us to have a well-defined parameterization of the boundary of the capacity region by the
rate rewards //.

Lemma 3.15 Let fi be agiven positive rate reward vector. Then there is a unique R" on
the boundary which maximizes fi •R, and there is a unique Lagrangian power price Xsuch
that the optimal power allocation solving (13) satisfies the average power constraints.

Proof. See appendix B. D

It should be noted that the uniqueness result above only holds for positive /z. If some
of the rewards /z.-'s equal 0, the R* which maximizes // •R may not be unique. However,
it is clear that one can get arbitrarily close to these points (the extreme points of the
boundary surface) by letting some of the rewards go to zero. Thus, it suffices to focus on
the strictly positive reward vectors // for a parameterization of the boundary surface. We
will give a more explicit interpretation of these extreme points in Section 3.5.

For any such positive //, the above lemma implies that we can define aparameterization
R*(/z) which is the unique rate vector on the boundary which maximizes // •R. Its value
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can be obtained using the greedy rate and power allocation solution, with Achosen such
that the average power constraints are satisfied. In the common case when the fading
processes oftheusers are independent ofeach other, R*(/x) has a particularly simple form.

For given //and A, let ft*(h,^,A) and P*(h,/z,A) be the optimal solution to the
problem (13). Since thestationary distributions ofthe fading processes have a continuous
density, Pr(#t = Hj) = 0 for all i ^ j. We observe that due to the greedy allocation
procedure, which user to transmit at each interference level z only depends on the values
of the marginal utility functions of the user at z. Thus the average rate and power of
each user can be computed first at each interference level z and then integrated over all
z. Thus,

Eh[^(H^,A)] = I *« [g'(z)I{uM>Ui{x) VjandMz)>0)]dz
= I g'(z) Pr(u,(z) >Uj(z) Vj and u,(z) >0)dz

JO

=Jo 2(PT7) {/^gft (i^JTz) +J'-„,)fc) fi{h)dh) dz
too r 1 -ieh[p;(h^,a)] = I *« [-WnjW v. md ojW>0}] dz

=f {&** in ft [nJTztltt*»)mdh} <*> (17)
where F, and /,- are the cdf and pdf of the stationary distribution of the fading process
for user * respectively.

Combining this with lemmas 3.10_and 3.15 , we have the following characterization
of the throughput capacity region C(P). Note that since 11* and V* are invariant under
scalings of the vectors /z and A, we can normalize such that £t/z,- = 1.

Theorem 3.16 Assume that the fading processes ofusers are independent ofeach other.
The boundary ofC(P) is the closure of the parametrically defined surface

{R%,):/z€^,5>t- = l},

where for i = 1,..., M,

™=f^{a*,nftUjx:Zit,)h)^dh}d> <is>
where the vector Xis the unique solution of the equations:

f {JZe*Igft{^tltt^h)^dh} d° =* <19>
i = 1,..., M. Moreover, every point can be attained by successive decoding.
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Note that due to the special structure of the optimal power control policy, the various
expectation terms have been reduced from Af-dimensional integrals to 2-dimensional in
tegrals. For a given //, it should therefore be possible to compute Anumerically with low
complexity. We shall present an algorithm to do this in Section 4, but first let us examine
several special cases of Theorem 3.16.

1)Single-User Channel: When M= 1, the above result reduces to characterizing
the capacity of the power-controlled single user time-varying channel:

** =f'acTOJ {£$*'<*>*}*
= /o N' +̂ lr ?>*>'<*>*

by reversing the order of integration. Using (19), the constant ^ is shown to satisfy the
power constraint

This is just the classic water-filling solution to the problem ofpower allocation over a set
of parallel single-user channels, one for each fading level h. This result was obtained by
Goldsmith [7] in the context of the single-user time-varying fading channel. The strategy
has thecharacteristic that more power is used when the channel is good and little or even
no power when it is bad.

2) Maximum Sum-Rate Point: Ifwe set \ix = ... = fiM = 1, we get the point on
the boundary of the capacity region that maximizes the sum of the rates of the individual
users. For this case, the utility functions izt(z)'s are given by

Ui(z) =2(^T7)-hi
We note that for a given fading state h, the user with the maximum value of u{{z) does
not depend on z. This means that in the optimal strategy, at most one user is allowed to
transmit at any given fading state. The optimal power control strategy V* can be readily-
calculated to be:

P?(h, A) =( (^7 " £)+ if hi >t*i for a11 3
( 0 else

The optimal rates are given by

*=f i1*1+£<£ - t)+) n.ft<£*>/w*.
where the constants A,-'s satisfy:

r(^-^+gft(^)/(^=ft,

19

z' = l,...,M

2 = 1,...,M
kfr



This solution was recently obtained by Knopp and Humblet [13].
3) Multiple Classes of Users: While the above strategy maximizes the total

throughput of the system, it can be unfair if the fading processes of the users have very
different statistics. For example, some ofthe users may befar away from the base-station;
they will get lower rates through since their channel is worse that that ofthe nearby users
a lot ofthe time (there are ofcourse still other sources offluctuations ofthe channels, such
as fading at a faster time-scale due to multipaths.) One way ofremedying this situation
is to assign unequal rate rewards to users. Let us consider an example where there are
two classes of users. Users in the same class have the same fading statistics and power
constraints; the first class can represent users at the cell boundary, while the other class
consists of users close to the base station. To maintain equal rates for everyone, we can
assign rate rewards //i to all users in class 1, and \i2 to users in class 2, with fit > \i2. By
symmetry, the power prices of users in the same class are the same. We observe that at
any fading state, the marginal utility function of the user with the best channel within
each class dominates those of other users in the same class. Thus the optimal strategy
has the form that at each fading state, only the strongest user in each class transmits,
and the two users are decoded by successive cancellation, with the nearby user decoded
first. This gives an advantage to the user far away. Adjusting the rate rewards can be
thought of a way to maintain fairer allocation of resources to the users. We consider this
issue further in Section 5.

Note that in thefirst two examples, the optimal power control strategy has the special
characteristic that the power allocated at each fading state h depends only on h and the
Lagrange multipliers. For the general case, theallocated power depends on one additional
variable z representing the interference level.

3.5 Extreme points of the boundary surface

In the previous subsection, we parameterize the boundary of the capacity region by posi
tive reward vectors. By letting some of the rate rewards approach 0, one can get arbitrarily
close to the extreme points. We can also give an explicit characterization of the extreme
points as follows.

Suppose £ is a set ofsubsets of U= {1,2,..., M} with the property that all subsets
in C are nested. By this we mean that if FUF2 € C then Fi C F2 or F2 C Fx. Then
it is possible to insist that all users in a subset in C are decoded, and cancelled, before
any user in the complementary subset is decoded, for every fading state h. With positive
vectors \i and A, we can define the decoding order in each subset, just as before, except
that now there is absolute priority given to each subset of users in Cover its complement.
The extreme points of the boundary surface of C(P) are characterized in exactly this way:
by a positive {ji,X) pair, together with a set of nested subsets of users C.

For example, in the two-user case, as £f -» 0, the optimal power allocation and the
resulting rate for user 1approaches that for the single user fading channel with only user 1
present, i.e. a water-pouring solution. This is the point px in Fig. 1, with user 1achieving
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rate C\. User 2 is always decoded after user 1 in every fading state, and the optimal
power control for user 2 is also water-pouring, but regarding the sum of the interference
created by user 1 and the background noise as the time-varying noise power. Thus, we
get to an extreme point of the boundary.

4 An Iterative Algorithm for Resource Allocation

In Section 3.2, we provided aLagrangian characterization ofthe boundary surface ofC(P).
In particular, we we characterize a boundary point by a positive rate rewards vector //,
and that associated with this is a unique positive shadow power price vector A. We
now present a simple iterative algorithm to compute A, for a given ft and average power
constraints P. In the case when the fadings of the users are independent, this amounts
to solving the nonlinear equations (19) for Ain Theorem 3.16. Moreover, the iterative
algorithm has anatural adaptive implementation when the exact fading statistics are not
known.

Throughout this subsection, we assume a vector of rate reward \i and power con
straints P to be given and fixed. Let us define R(A) and P(A) to be the rate and average
powers under the optimal power control associated with the prices (/a, A). We first present
the following monotonicity lemma, which can be verified directly from the greedy power
allocation algorithm.

Lemma 4.1 For all i, if the ith component of Xis increased and the other components
are held fixed, P{(X) decreases while Pj(X) increases for j ^ i. More generally, for any
subset S, if we increase A,- for all i e S, and hold the remaining Xj fixed, then average
powers of users in Sc will increase.

Given average power P, let R* be the optimum rate corresponding to the rewards //,
and let A* be the shadow power prices. Algorithm 4.2 below generates a sequence X{n)
from any starting point A(0) that converges to A*.

Algorithm 4.2 Let A(0) be an initial arbitrary set of positive power prices. Given the
nth iterate X(n), the n+lth iterate X(n +1) is given by the following: for each i, A,{n +1)
is the unique power price for the ith user such that the average power of user i is P{ under
the optimal power control policy when the power prices of the other users remain fixed at
X(n). (The uniqueness follows from the monotonicity property above.)

In terms of the equations (19) for the case when the fading is independent, A,-(n +1)
is the unique root x of the equation

Jo

f°° 1 TTZ7 I 2Xk{n)h(<72 + z) \ I
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which can be solved by binary search ifthe statistics of the fading are known. Otherwise,
one can update the power prices by directly measuring the change in the average power
consumption.

Theorem 4.3 Given average power P, let R* be the optimum rate corresponding to the
rewards fi*f and let X* be the shadow prices at the point (P,R*). Then

X(n) -+ A*, n f oo

and hence R(A(n)) -+ R*, and P(A(n)) -)> P.

To prove this theorem, we first consider the following lemma:

Lemma 4.4 (%) For any positive A(0), there exists X< A(0) for which P(X) > P.
(ii) For any positive A(0), there exists X> A(0) for which P(X) < P.

Proof. See appendix C. •

Algorithm 4.2 defines a mapping

T:^ -> »Jf
X(n) H- A(n + 1)

The following properties of T are useful in the proof of Theorem 4.3. The first follows
directly from the uniqueness ofthe solution ofsystem (19) for given \i. Thesecond follows
from Lemma 4.1.

Lemma 4.5 (i) The vector ofshadow prices X* corresponding to the point (P,R") is the
unique fixed point ofT.

(ii) The mapping T is order preserving, i.e. A(1> < A(2) =» T(A(1)) < T(A(2)).

The following lemma is also useful.

Lemma 4.6 (i) If X(0) > T(A(0)) and we define

X(n) = Tn(A(0)) n = 0,1,2,...

then X(n) is a decreasing sequence.
(ii) IfX(0) < T(A(0)) then X(n) is an increasing sequence, and X(n) | A*.
(Hi) If A(0) > T(A(0)) then X{n) | A*.
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Proof. (i) follows from the order preserving property of T. (ii). The order pre
serving property of T implies that (X(n))%L0 is an increasing sequence. However, By
Lemma 4.4(H), there exists a point Afor which A(0) < Aand P(X) < P. By the order
preserving property, A(n) < Tn(X) Vn, but since P(A) < P, and part (i) holds, it also fol
lows that Tn(A) is a decreasing sequence. Hence (A(n))^j is bounded, and must converge
to the unique fixed point A* ofT. (iii). Analogous to (ii), but where we use Lemma 4.4(i)
to guarantee a lower bound to the decreasing sequence (A(n))^L1. D

Proof of Theorem 4.3 Lemma 4.4 guarantees the existence of points w(0) and z(0)
with the following properties:
(i) w(0) < A(0) < z(0)
(ii) P(w(0)) > P
(iii) P(z(0)) < P
Now define w(n) = Tn(w(0)) and z(n) = Tn(z(0)). It follows from property (ii) and
Lemma 4.6(H) that w(n) t A*. Similarly, it follows from property (Hi) and Lemma 4.6(iii)
that z(n) I X*. Finally, it follows from property (i) and the order preserving property of
T that w(n) < A(n) < z(n). We conclude that A(n) ->• A*. D

Algorithm 4.2 has all the users updating A(n) simultaneously. However, convergence
still occurs if users update one at a time, or even asynchronously under certain weak
conditions (Mitra [15]). An advantage of this is that then users do not need to know the
fading statistics. If A,- isbeing updated, for example, then binary search can beused to find
the new value that achieves Pt for user i. This iterative algorithm together with the greedy
power allocation algorithm described in the last section, yields the following dynamic
resource allocation scheme for maximizing the total rate revenue subject to average power
constraints: at each fading state, the greedy algorithm computes the optimal rate and
power allocation using the current power prices; at a slower time-scale, the power prices
are adjusted to meet the average power constraints.

The iterative algorithm has the same monotonicity property as other power control
algorithms in the literature (Hanly [10], Yates [18]). In the references quoted, users
directly control their access to the "available capacity" by updating their transmit powers.
Monotonicity arises from the fact that if a user increases power, this decreases the rates
of all other users, causing them to increase power. This occurs because interference from
other users is treated as pure noise in these papers. In multi-user decoding, increasing
power can benefit other users, so we do not get monotonicity in terms oftransmit power
alone. Instead, users control access to the "available capacity" through the power prices.
A. Nevertheless, monotonicity occurs in A-space, enabling very similar iterative procedures
to be applied.
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5 An Economic Framework for Resource Allocation

So far, we have formulated the problem of optimal resource allocation in terms of the
computation of the capacity region, i.e. given average power constraints, what are the
set of achievable rates? This is the standard information theoretic formulation. However,
another question ofinterest is: what are the average powers needed to support a given set
of target rates, and the associated optimal resource allocation schemes? It turns out that
there is a complete analogous solution to that problem, and it essentially follows from the
symmetry between rate and power.

First, let us define the set T>(R) and its boundary surface; it is the "power space
equivalent" of the capacity region C(P):

Definition 5.1 • D(R) = {P :R e C(P)}

• The boundary surface ofV(R) is the set ofthose powers such that we cannot decrease
one component, and remain in V(R) without increasing another.

Lemma 3.10 provides a Lagrangian characterization of theinterior points of the bound
ary surface of C(P). We take any n e B£ and the lemma shows that this specifies a
unique point on the boundary surface ofC(P). In addition, there is aunique A= A(P,^)
associated with this point. We now extend this characterization to the "dual" set V(R*):

Lemma 5.2 An average power vector P lies in the interior of the boundary surface of
V(R*) if and only if there exists a positive X€ $1+ such that P is a solution to the
optimization problem:

minA •P subject to P e V(R*) (20)

For a given positive X, P is a solution to the above problem if and only if there exists a
nonnegative fj, e &M, rate allocation policy 11(h) and power control policy V{h) such that
for every joint fading state h, (1Z{h),V(h)) is asolution to the optimization problem:

maxM-R-A-P subject to R€C5(h,P) (21)

and

EH [1li(H)} = R*, EhPMH)] = Pi i = 1,..., M.
Moreover, for a given Xand R*, P and \i are unique.

Proof. The proof of this lemma is almost identical to that of Lemma 3.10, as both
follows from the convexity of the set

S = {(R, P) :R e C(P)} = {(R, P) :P e V(R)}. (22)

Uniqueness can be proved in a similar manner as in Lemma 3.15. D
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Thus, each point on the boundary ofV(R*) is the obtained by minimizing a total cost
A• P while supporting the desired rates R*. The greedy algorithm defined in Theorem
3.14 can be used to compute the optimal power and rate allocation, for a given shadow
reward //. To compute \i for a given A and target rates R", one can use the following
iterative algorithm, entirely analogous to Algorithm4.2.

Algorithm 5.3 Let /z(0) be an initial arbitrary set ofpositive shadow rewards for rates.
Given the nth iterate fj,(n), the n+ \th iterate fi(n + 1) is given by the following: for each
i, fii(n -\-1) is the unique rate reward for the ith user such that the rate of user i is R*
under the optimal power control policy when the rate rewards of the other users remain
fixed at y(n).

Denote the rate by R(//(n)) and the average power by P(/j(n)) under the optimal
power control policy. The proof of the following theorem is entirely analogous to the
proof of Theorem 4.3.

Theorem 5.4 Given desired bit rate R*, let P be the optimum average power correspond
ing to the prices X, and let y,* be the appropriate shadow rewards. Then

H(n) ->• /u*, n t oo

and hence R(fj,(n)) -» R*, and P(fi(n)) -» P.

We have seen that given rate rewards \i and power constraints P, there exists aunique
R* which maximizes p•R and unique Lagrangian power prices A*. Similarly, given power
prices Aand target rates R*, there exists unique P which minimizes A•P and unique
Lagrangian rewards fi*. In fact, one can also show that given (R*, P) on the boundary of
S (defined in eqn. (22)), there exist unique /**, A* such that

(R*, P) = argmax(RfP)65 p* •R - A* •P

i.e. there is a unique supporting hyperplane at (R*,P) to 5. This fact allows us to give
two economic interpretations to \i and A.

Let us interpret fi* as the rate reward for user t. That is, user %earns ft*Ri if it sends
with rate Ri. The total reward earned in the channel is then \i* •R. Lemma 3.10 shows
that any point R* on the interior of the boundary surface of C(P) can be obtained as a
maximization of total reward. The lemma shows that at the optimal solution R*, a set
of shadow prices A* exist, in the sense that if we change the power constraint by AP,
then we change the reward earned by A* •AP. However, it is clear from Lemma 5.2, that
we can interpret A" directly as a set of "power prices". To see this, consider problem
(20), and interpret £i AtPt- as the total price of the power vector P. At any solution P.
there is an associated shadow reward \l on the rates. Now if we set A= A*, then by the
uniqueness of the supporting hyperplane to S at (R*,P) we must have that fi = fx\ It
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follows that the shadow prices in the rate maximization problem (12) are the power prices
in the "dual" problem, and the shadow rewards in (20) are the rate rewards in (12).

We therefore consider the following economic framework for resource allocation. We
are given a vector y,* ofbit rate rewards, and avector A* of power prices, and our aim is to
find the optimal operating point (R*,P) such that ft* R- A*P is maximized. Section 3.2
provides a greedy algorithm which attains this optimal operating point.

6 Auxiliary Constraints on Transmitted Power

The constraints on the transmitter powers we have considered so far are on their long-
term average value, and under power control, the transmitter power will vary depending
on the fading state. In practice, oneoften wants to have some shorter-term constraints on
the transmitter power as well. These constraints may be due to regulations, or as a way
of imposing a limit on how much interference a mobile can cause to adjacent cells. To
model such auxiliary constraints, we consider the following feasible set of power controls:

^P = iV:EH[Vi(H)]<Pi and V{(h) < P, Vt and h e ri]

where ri is the set of all possible joint fading states of the users. Thus, in addition to
the average power constraints, we also have a constraint />• on the transmitter power of
the zth user in every state. We will assume that for every i, P{ > P{. Otherwise the
average power constraint becomes innocuous. We shall now concentrate on the problem
of computing the optimal power control subject to these constraints.

We focus on the capacity region:

where CS(V) can be interpreted as the set ofachievable rates under power control V.
In parallel to the case when there are only average power constraints, we will char

acterize this region in terms of the solution to a family of optimization problems over
parallel Gaussian channels. The proof of the following lemma is analogous to that of
Lemma 3.10.

Lemma 6.1 Arate vector R* lies on the boundary ofCp(PyP) ifand only if there exist
//, Ae 9RM , rate allocation policy 11(h) and power control policy V(h) such that for every
joint fading state h, (1l(h),V(h)) is a solution to the optimization problem:

max^.R-A-P subject to R€C5(h,P) and P{ < Ptfi (23)
and

EH[ft(H)] = R% EH[P(H)] = P

where Pi is the constraint on the average power of user i. Moreover, V is apower control
policy which can achieve the rate vector R*.
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Consider the more general optimization problem over polymatroids with generalized
symmetric rank function g:

max/z-x-A-y subject to x(S) < g(y(S)) VS C £, 0 < y, < a, V* (24)

where at's are given constants. Although there are exponentially large number of con
straints, we will exploit the polymatroid structure and given an efficient greedy optimiza
tion algorithm.

Without loss of generality, let us assume that Vi > fi2 > ... > fiM- By Lemma 3.2,
for any vector y, the maximum value of y •x subject to the polymatroid constraints is
given by

M i t-l

E^WE^-^E^)]
t=i *=i jb=i

Hence the optimization problem (24) is equivalent to

M-l ,• m

myax E (**«• - M.-i)s(E w) +/^(E Vk) - A•y
*=1 *=1 k=l

subject to 0 < yi < ai

We will now demonstrate that the optimal solution can be obtained by a simple com
binatorial greedy algorithm with number of steps bounded by 2M.

Let us define

M^1 k M
J(y) = E (/** - Vk-i)g( E Vm) +l*M9( E Vm) - A•y

*=1 m=l m=i

and let

dl M~l k m
/,(y) " &7(y) = E (^ - W-iV( E Vm) +HM9'( E Vm) - Xi

y% *=«' m=l m=i
. We first observe two facts:

Fact 1: Ii(y) is monotonically decreasing in y,-.
Fact 2: For j > i,

i-i k

*(y) " Ij(y) = 2>* - fik+i)g'( E Um) -r Xj - Xi
k=i m-i

so that the difference is independent of y, and decreases monotonically with v, (bv the
concavity of g). v

Consider now the following algorithm.

Algorithm 6.2 • Initialization: Se* y<°) = 0. Set k= 0.
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• Step k: Pick an ik such that Iik(yW) >0, yj*} < a{k and /,fc(y<*>) > J^yW) for all
» -* (k) -- -j such that yj < ak. Ifthere is no such ik, then stop. Ifthere is more than one such

ik, pick the largest one. For each j > ik, by Fact 2, we know that either there exists
a unique solution Vj > yj*} to the equation

(where Vj is in the ikth position) or there is no such solution, in which case we set
Vj = oo. Also, by Fact 1, let v0 be the unique solution to the equation

IiMk\.--,vo,...J$) = 0
if it exists, and let v0 = oo otherwise. We now set:

„(*+*) _ / mm{ai7U0,minJ>t- vj} i = ik
Vi — \ (k) . , .

Goto step k -r 1.

We note that at each step, we are always increasing the component which leads to the
largest rate of positive increase of the objective function and which has not reached the
peak constraint. Thus the algorithm is a greedy one.

Theorem 6.3 Algorithm 6.2 terminates at an optimal point for the problem (24), and
the number of steps needed is at most 2M.

Proof. See appendix D. •

The optimal power allocation problem with auxiliary constraints (23) can be expressed
in terms of the received powers Q = (hYPu..., hMPM):

max^^^-El1^ subject to R(S) <g(Q(S)) VS c E and Q{ <^Vi
i i Ri ~ hi

where

9(*) =^o%(\ +^)
Thus, Algorithm 6.2 can be used to solve this problem. It should also be noted that as
in the case without the auxiliary power constraints, successive decoding can be used to
achieve an optimizing rate vector.
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7 Frequency Selective Fading Channels

In the previous sections we have analyzed a flat fading model which is appropriate if the
Nyquist sampling period is large compared to the delay spread of the multipaths in the
received signal, so that the individual paths are not resolvable in the sampled system.
This is typically the case with narrowband transmission. For wideband applications the
multipaths can be resolved, and hence the channel has memory. The appropriate model is
the time-varying frequency selective fading channel. In this section, we will extend some
of our previous results to this model.

We start with a continuous-time model. Suppose M users share a total bandwidth
W centered around frequency /0, corrupted by white additive Gaussian noise of spectral
density ^. The average transmitter power of user i is constrained to be less than or
equal to Pt. At time t, the fcth path transmitted from the ith user is attenuated by aik(t)
and delayed by Tik(t) before being received at the basestation. These quantities are time-
varying due primarily to the motion of the transmitter but also to the motion of other
objects in the system. The baseband representation ofthe channel is given by :

M .

2/(0 =Ey *••(* - T)hi(T,t)dr +z(t)

where x{(>) is the transmitted signal of user i, z(-) and y(-) are the complex base
band noise and received signal respectively, i.e. the actual noise and received signal are
Re^Oexp^*] and Re[y(t) exp*2^*] respectively. The time-varying impulse responses
/i,'s represent the fading effects:

hi(r,t) = '£aik(t)S(T-Tik(t))
k

where aik(t) = aik(t) exp^^O. We assume that there is abound T0 on the largest
delay of any path, so that hfat) = 0 for r <0 and r > T0. The parameter T0 is the
multipath delay spread.

The fading of the channel stems from both the time-variation of the attenuation aik(t).
due to path loss and shadowing effects (slow fading), as well as the constructive and
destructive interference between the various paths (fast fading). The latter typically
occurs at a much faster time-scale than the former.

We now sample the system at a Nyquist rate T and get

M

Y(n) = T,H*(*.n)X(n - k) + Z(n)

where

y(») =*(£), *(») =.(£), g(M) =/^ff_;V;)f

29



Note that the Nyquist rate T is in general larger than Wbecause the the received signal
is spread out due to the time-varying channel.

To begin analyzing the capacity region of this channel, when both the transmitters
and the receiver can track the channel, let us first focus on the special case when the
channel is time-invariant. In this case, the channel is given by:

M

Yin) = E E Hi(k)X(n -k) + Z(n)
t=l k

This is the Gaussian multi-access channel with inter-symbol interference (ISI), and a
characterization of the capacity region has been obtained by Cheng and Verdu [2]. Let
Hi(f) be the Fourier transform of the channel. Let V be a power allocation policy such
that for user t and frequency /, V{(f) can be interpreted as the transmitter power that
user i allocates at frequency /. Let

?={?' _l Vi(f)df < Pi Vi}

be the set of all feasible power allocation policy. Then the capacity region of the channel
is

jjflt: R(S) <jZ. log(l +̂ ^nf)\Hi(f)\ ) V5c{1)_)M}} (25)
where <r2 = rf0W.

In [2], an explicit characterization of the region and the optimal power allocations are
obtained for the two-user case. We shall now give the solution in the general multi-user
case, which follows almost directly from the results in Section 3. The key observation is
that the structure of this capacity region is in fact identical to that of the capacity region
of the flat fading channel (Theorem 2.2), with the role of the fading state h now played by
frequency /. Using the results of Section 3, each point on the boundary of the capacity
region can be computed via an optimization problem over a set of parallel channels, one
for each frequency. In complete analogy to Theorem 3.16, we have the following result.

Theorem 7.1 Assume that for user i and any constant a, the level set {/ : |#,(/)| = a}
has Lebesgue measure 0. Then the boundary of the capacity region of the Gaussian multi
access channel with ISI is

t

where for i = 1,..., M,

f°° 1^Wo J^TT^M^Wz (26)
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where

I*(*.*)=</€[-?,?!: "' A'

{R :R(5) < E

max(-
2 2 a* +z |j,(/)|* " L*« V +^ |^(/)|2

anrf m(-) is J/ie Lebesgue measure of a set. The vector Xsatisfies the equations:

rL^Wfwdfdz=pi (27)
i = l,...,M.

The rate vector on the boundary corresponding to a specific (i can be achieved by
successive decoding, with the users decoded in increasing order of ^t's. The corresponding
power allocations to achieve that point are given by:

Vi(f) =Wbw 'm({zel0>°°):f€ Ai{z>A)})' fGl1?'T1' '=*•• ••'M
The interpretation of this power allocation is similar to that in the flat fading case.

The variable z represents the received interference caused by users' signals, beyond the
background Gaussian noise. At frequency / and received interference level a2 +z, user i
transmits ifit yields the maximum increase in the objective function a•R - A•p' which
is the case if / e A{(z,A). '

Next we analyze the general situation when the channel is time-varying. Even for the
case when only the receiver can track the channel, there is in general no clean charac
terization of the capacity region of time-varying frequency-selective fading channels [141
However if we make the assumptions that the channel varies very slowly relative to the
multipath delay spread and that the time variations are random and ergodic then the
capacity region for that case is given by [6]:

/>g(i +2-M^)rf/ V5c{l,...,M}}

where P{ is the average power constraint of user i. For each realization (time-slot) «,
HvaZ frequency response of user ,-. channel at fading state «. The intui ion
behind this result ,s that if the time-variation is slow relatively to the delay spread,
the overall channel can be thought of as aset of parallel time-invariant channels The
expectation is taken over all (joint) fading states.

How valid is this assumption in practice? We use here anumerical example in [61.
Consider atypical mobile scenario where the vehicle is moving at 60 km/h and the center
S °f the t~sion bandwidth is 1GHz. The time-constan( associated with
the fast fading effects due to constructive and destructive interference between paths is
of the order of the time taken for the mobile to travel one wavelength at the transmitted
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frequency^ In this example, it is 0.018s. Typical delay spread between paths range from
1U to 15 x10 s [17]. Hence, the time variation due to fast fading is significantly slower
than the delay spread. This is even more so when the users are moving at aslower speed,
inus, we see that the assumption is quite reasonable for typical wireless situations.

In analogy to Theorem 2.2, it can be shown that the capacity region for this channel
when all the transmitters and the receivers can track the channel is given by:

(J {R :R(S) < E

where

l0g(l +S.-6S?,-(/,H(/,u,))lg,.(/,q,)p „
0-2 / J

T = {V : E JJ,nfMf^))df < Pi Vi}

V5c{l,...,M}}

and H(/,u>) = (Hi(f,u>),...,HM(f,u;))
Using the techniques of Section 3, each point on the boundary of this capacity region

can again be computed via an optimization problem over a set of parallel channels, this
time one for each frequency / and fading state u>. This leads to the following generalization
of Theorem 3.16 to the frequency selective fading case.

Theorem 7.2 For each frequency f and transmitter i, let the random variable #,(/,•)
have continuous cdf F{(f,-) and density /,(/,-). Also assume that the fading processes
of users are independent of each other. The boundary of the region is the parametrically
defined surface

t

, where for i = 1,..., M,

R<{fl) =r 2(o^TT) )J1 JZ^l II ft Ua, , \,-Ut )/.(/, h)dhdf\ dz (28)
where the vector Xsatisfies the equations:

r \J^ JZ&* \BF« (/•srrisr) /'(/• vdhdf\ dz = Pi (29)

i = l,...,M.

8 Conclusions

In this paper, we have characterized the throughput capacity region of the multi-access
fading channel under optimal power allocation. Just as the solution to the corresponding
single-user channel has the water-filling interpretation, our solution can be viewed as a

32



generalization ofthe water-filling power allocation to the multi-user setting. The solution
consists of several steps. First, we use Lagrangian techniques to show that each point on
the boundary of the throughput capacity region can be obtained by solving a family of
optimization problems over a set of parallel Gaussian multi-access channels, one for each
fading state. Second, we exploit the polymatroidal structure of the multi-access Gaussian
capacity region to provide asimple greedy solution to each ofthose optimization problems,
despite the fact that there are an exponentially large number of constraints. Third,
we show that the Lagrange multipliers associated with the power constraints ("power
prices") can be computed by simple iterative procedures. Taken together, these results
provide effective algorithms for computing the throughput capacity region as well as a
characterization of the structure of the optimal resource allocation schemes to achieve the
points on the boundary of the region.

This problem formulation suffers from a drawback that delay is not considered; the
Shannon capacities are essentially long-term throughput in a time-varying system, and
the delay incurred depends on the rate of variations of the fading processes. In the sequel
to this paper, we will define anotion of delay-limited capacity for the fading channel; these
are the rates achievable with delay independent ofhow slow the fading processes are. We
will see that polymatroidal structure will again help us in characterizing the delay-limited
capacity region of the fading channel.
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Appendices

A Proof of Theorem 2.2

For any power control policy V, we can reinterpret the channel as a unit transmit power
channel with fading h{Vi(h) for user i. It follows from (3) that all rate vectors in C(V)
are achievable.

Conversely, suppose rate R is achievable. By this we mean that there exists a sequence
of codes, indexed by AT, with code CN of block length N, and with probability of error
eN -> 0. For code CN, we index the messages of user i by {1,2,..., 2R'N} and user i uses
the uniform distribution to select one of these messages, and transmits the corresponding
codeword. We denote the resulting random vector by Xi for i = 1,2,..., M. Note that
the codewords can be chosen as a function of the states of the channel.

Let /(h) be the equilibrium probability density of being in fading state h. Without
loss of generality, assume that the fading of all users is bounded by 1. For each k, let
h = {0, \, §,..., 1}M be a partition of the fading state space [0,1]M. For each cubic
element E of partition Ik, let S(E) be that random subset of [1,...,N] at which times
the fading state H lies in E. Let Q(N) be uniformly distributed on [1,..., N]. Define

Vf(E,N) =HXf(Q(N))\Q(N) e S(E)]

Let f(E) be the probability that a random H lies in E. For any message from user i,
there is a power constraint on the corresponding codeword. It follows that for each A':

Ey"(E,N)f(E)<Pi
E£lk

For all cubic elements E such that f(E) ^ 0, Vf{E,N) are bounded sequences in N.
Thus, we must have the existence of limiting Vf(E) such that there is convergence along
a subsequence as N ->• oo. Further,

£ V"(E)f(E) < Pi (30)
Eeh

We define h(E) to be the upper corner of E. Let H(n) be the fading at time nand define
anew value H(n) by H(n) =h(E) if H(n) e E. Define Y(n) =£^ «(n)*,-(n) +Z(n).

By Fano's inequality, we have for any S C{1,2,..., M}

R(S) <^/[(Xt),es; Y|(X,),€5c,H] +eN
where eN -> 0 as N -)• oo. But

JjI[(Xi)izs;Y\(Xi)i£Sc,H]

35



= /[(Ar,(Q(Ar))),€s;F(<3(N))|(^(Q(iV))),-65t,H((3(iV)),<5(iV)]
= £ /(£)'[(**«(mes;^(AO)|(*«W)W,H(0(iV)),

E€It

Q(N),Q(N) e S(E)\
< £ /(^)/[(^(Q(^)W;V'(Q(^))|(^((3(iV))),€S«,H(Q(iV)),

Q(AO,<WV)eS(£)]

< Em^i+^Msmm
2 ov <r» •)

Taking limits along the convergent subsequence, we obtain

R(5) <£ /(^)ilog(l +^shi(E)Vf(E)
Eeh l a

Let Tk be the set of all power controls which are piecewise constant on the cubic
elements of Ik and satisfy the average power constraint. Define

Cf{V) S{R:R(5) <J[oi]u Ilog (l +1g±r*W0»)) /(h)dh VS}
Hence, the above derivation implies that the capacity region C(P) is bounded by:

C(P)C U of\v)
V£Fk

Combining this with the achievability result, we have for every k the following inner and
outer bounds:

U C,(P) C (J C,(T>) CC(P) C U Cf\V)

As k-> 00, \JVerk Cj(V) -> U*€* <?/fc)(P). Hence,

c(p) = U W)

and the proof is complete.

B Proof of Lemma 3.15

We first claim that there is an almost surely unique rate and power allocation which
maximizes y, •Rsubject to the average power constraints. (Almost surely with respect to
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the fading distribution. ) Suppose not, and let (H^\V^) j = 1,2 be two such rate and
power allocations. Define (1t, V) by

11 = hllM +1lW)
Li

V = I(pd) +^(2))

Note that this also achieves a point on the boundary of the capacity region. By the
concavity of log, (11, V) is feasible:

V5,Vh, £^(h)<ilog(l +E^^(h)/t^ (32)
For any h, consider all subsets S for which there is equality in (32). If there is a

user i that is not in any such subset, then Ri(h) can be increased without violating any
constraint. But this contradicts the fact that this rate allocation achieves a boundary
point ofthe capacity region C(P). Therefore, every user must be almost surely in atight
constraint, and hence, by the strict concavity of log, V^(H) = V{2)(H) almost surely.

Now we consider the issue of uniqueness of rate allocation policy. By Lemma 3.10,
any rate allocation policy 11(h) and power allocation policy V(h) which maximizes // •R
must solve the optimization problem:

^^R-E^P (33)
for every fading state h, for some A. The only possibility for non-uniqueness of 11(h)
occurs if fii = fij for some i, j, for then we can reverse the decoding order of i and j
without affecting the objective function. However, £ > fr or vice versa, with probability
1, so with probability 1, V{(h) =0or ^(h) =0. Together with the fact that the power
allocation is unique, we can conclude that there is aalso aunique rate allocation.

Now we show that the Lagrangian power prices Afor maximizing // •R subject to
average power constraints must also be unique. Without loss of generality, assume that
Vi < V* < ... < fiM> Let V be the unique optimal power allocation policy; it can be
obtained by maximizing /i •R- A•P subject to R € Cg(h, P) for each fading state, for
some choice of A. We want to show that such a Amust also be unique. We show by
induction on A; that Xk must be uniquely specified. Let h be a fading state for which
Pi(h) >0; in this fading state, user 1must be decoded first (which means it is last in the
priority ordering). Then from the greedy power allocation algorithm, we see that in this
fading state, the total received power must be that value of z such that ux(z) = 0, i.e.

x Hihi
M= n . ^M

*2 + ZZi Vi(h)

Thus Ax is uniquely specified. Now assume that Xu..., Xk are uniquely specified. Let h
be a fading state where Vk+1(h) > 0. In this fading state, the total received power from
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users Ar + l,fc + 2,...,Af must be the value of z such that

uk+i(z) =maxui(z)
i<k v '

since only users 1,...,k can be decoded before user k. Hence Xk+1 must satisfy:

Vk+i Xk+1 _ ^ Xi
°2 +E,>*+i *j(h) ^+1 ^ *2 +Ei>*+i P;(h) " ^

By the induction hypothesis, Ax,..., Xk are uniquely specified and hence so is Xk+1. This
completes the proof of uniqueness of the power price vector A.

C Proof of Lemma 4.4

(i). Without loss of generality, we assume Hi > fi2 > ... > nM so that the decoding
°mer 1(2)M'M(~)1,'"'h Let e>° be arbitrary. We define asequence of power prices
A( >, A( ',... A(M) and from these construct another vector of prices A. We shall show that
Asatisfies the conditions of the lemma. For m< M, we take A<m) to be power prices of
a fictitious channel in which only users l,2,...,m are present. Further, we extend the
definition of the channel to allow the price of the power of the user decoded last to be
zero, and the power allocated to that user to be infinite. With A*1) = 0, we consider a
single user channel with // =^i and A= 0; user 1occupies the channel alone. With this
reward and price, it is clear that Pi(X^) is infinite. With A<2> = (Cl,0), we have a two
user channel, with fi = (nUfi2) and A= (Cl,0). It is clear that here Pi(A<2)) < oo and
P2(A(2)) =oo. Note that by taking d small we can ensure that Pi(A<2>) >Px and tY < e.
This becomes the inductive hypothesis: suppose that with A(m> = (eu e2, •••,em_i, 0) we
have Pi(\W) > Pi, a <efor all i=1,2,... ,m-1. Then set A<m+1) =(€l, e2,..., em,0),
and note that for any em this gives a new channel with m+1users. Provided em > 0, we
must have that

Pi(XW) > p.(A<")) >^ i = 1,2,..., m- 1.

By choosing cm small we can ensure that Pm(A<m+1)) > Pm and em < t. Note that
Pm+i(A(m+1)) = oo. By .induction, we terminate with A<M> = (ei,e2,-. .,eM-i,0) for
which Pi(XM) > Pi and a < e, for all i =1,2,..., M-1, and PM(A<M>) =oo. Again, by
choosing tM small, and A= (euc2,... ,cM), we can ensure that both PM < PM(X) < oo
and Pm-i < Pm-i(X) < oo. This establishes part (i) of the lemma,
(ii) one can construct such a Ain amanner analogous to that in part (i).

D Proof of Theorem 6.3

We first show by induction on k the following claim:
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If ik is the component to be increased at step k, then for all i ^ ik: (1) if y\k) = a,-,
then /,(y(k>) > /tfc(y<k>); (2) if 0< yjfc) < a{, then /t(y<k>) = Iik(y^) and i < ifc; (3) if
</f° = 0, then /i(yW) < 7ifc(y<k>).

For A; = 0, only case (3) can occur so that the claim is true by definition of i0.
Assume the claim is true at step k = m. The imth component is updated to y-m+1),
and all the other components remain unchanged. For i ^ im, (1) if yjm+1) = a,-, then
by the inductive hypothesis, /,(ym) > 7tm(ym) and by Fact 1, /,m(ym) > 7,m(y(m+1)),
so that we have /,(y^+1)) > /,m(y<m+1)); (2) if 0< yjm+1) < a,-, then by the^nductive
hypothesis, J,-(ym) = Iim(ym) and i < im, so that together with Fact 2, this implies that
/.•(y(TO+1)) = /tm(y(m+1)); (3) if yjm+1) = 0, then by the inductive hypothesis and the
definition ofthe algorithm, 7,(y(m+1)) < /,m(y(m+1)).

Consider now the three possibilities in which the imth component can be updated:
0 Am(y(m+1)) = 0: in this case, the algorithm terminates since by above, all the other

components i either reach the peak constraint (case (1)) or satisfies 7,(y(m+1)) = 0 ( case
(2) and (3).)

ii) /,-(y<m+1>) = /im(y<m+1>) for some j > im. In this case, /,m+1(y(m+1)) = /,m(y(m+1))
for some »ro+1 such that y-™*1* = 0, and the claim holds for step m+ 1.

Jii) 2/!r+1) = aim: ^ there exists an i such that 0 < yjm+l) < a{, then im+1 will
satisfy /lm+1(y(m+1)) = 7,m(y(m+1>) and the claim now holds for step m+ 1. If no such
i exists but there is an i such that y}m+1) = 0, then im+1 will be chosen to satisfy
J.-m+i(y(m+1)) > /,(y(m+1)) for all i such that yjm+1) = 0, and the claim again holds for
step m-r 1. Otherwise the algorithm terminates. Thus, in all cases, either the algorithm
terminates or the claim holds for step m+ 1. This proves the claim.

We see from above that the algorithm terminates either via case i) or case iii). In case
iii), the final point y* satisfies

W) > 0 for y; = ai
Ii(y*) = 0 for0<y;<a,
Ii(y*) < 0 fory? = 0

In case iii), y* satisfies y? = a{ and 7,(y*) > 0for all i. Thus, in either case, y* satisfies
the Kuhn-Tucker conditions and is an optimal point.

We can also see from the above that ifa component has already been increased, the
only situation when the algorithm returns to that component is in case iii), when another
component has reached its peak value. This implies that the event of the algorithm
returning to some component that has already been increased can happen at most M
times, and hence the algorithm must terminate after at most 2M steps.
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Multi-access Fading Channels:
Part II: Delay-Limited Capacities

Stephen V. HanlyWd David N. Tse*

Abstract

In multi-access wireless systems,dynamic allocation of resources such astransmit
power, bandwidths and rates is an important means to deal with the time-varying
nature of the environment. In this two-part paper, we consider the problem of
optimal resource allocation from an information theoretic point of view. We focus
on the multi-access fading channel with Gaussian noise, and define two notions of
capacity depending on whether thetraffic is delay-sensitive or not. In part I, we have
analyzed the throughput capacity region which characterizes the long-term achievable
rates through the time-varying channel. However, the delay experienced depends on
how fast the channel varies. In the present paper, part II, we introduce a notion of
delay-limited capacity which is the maximum rate achievable with delay independent
of how slow the fading is. We characterize the delay-limited capacity region of the
multi-access fading channel and the associated optimal resource allocation schemes.
We show that successive decoding is optimal, and the optimal decoding order and
power allocation can be found explicitly as a function ofthe fading states; this is a
consequence of an underlying polymatroidal structure that we exploit.

1 Introduction

The mobile wireless.environment provides several unique challenges to reliable commu
nication not found in wired networks. One of the most important of these is the time-
varying nature of the channel. Due to effects such as multipath fading, shadowing and
path losses, the strength of the channel can fluctuate in the order of tens of dBs. The
problem is particularly acute for real-time traffic such as video, since they have astringent
delay requirement. Ageneral strategy to combat these detrimental effects is through the
dynamic allocation of resources based on the states of the channels of the users. Such
resources may include transmitter power, allocated bandwidth and bit-rates. In part I

'Part of this work was done when both authors were with A.T. k T. Bell Laboratories. This paper
has been submitted to the IEEE Transactions on Information Theory.

jDept. of Electrical Eng., University of Melbourne, s.hanly@ee.mu.oz.au
♦Dept. of EECS, U.C. Berkeley, dtse@eecs.berkeley.edu



of this paper, we studied the problem of optimal dynamic resource allocation from an
information theoretic point of view. We computed the Shannon capacity region of the
multi-access fading channel when the transmitters as well as the receiver have access to
the channel state, and also characterized the optimal resource allocation schemes.

The Shannon capacity of a channel provides the ultimate limits on the bit rates that
are achievable. The capacity itself is not dependent on any delay considerations, and
is achievable in an asymptotic sense as delay ("block length") tends to infinity. Thus
when we focused on the Shannon capacity of the multi-access fading channel in Part I,
we found the Shannon limit over the setof all possible codes. In Part II, we now consider
limitations imposed on the possible codes that can be used due to delay constraints.

One way to think about this in the single user case is to identify the Shannon capacity
with a "long-term average of mutual information between the user and the receiver" in
the channel. That is why we called the Shannon capacity of a fading channel its through
put capacity in Part I. On the other hand, there is a notion of "instantaneous mutual
information" and this can fluctuate as a function of the fading state. Essentially, in the
delay-limited case, we restrict the set ofavailable codes to those for which, through power
control, the instantaneous mutual information is kept constant at all times. Without such
arestriction the throughput ofthe channel can be increased but at the expense ofhaving
the "instantaneous mutual information" fluctuating with the fading process, leading to
delay at the time scale of the channel variations. The situation is more subtle in the
multi-user context, but similar ideas go through.

There are many "delay sensitive" applications such as voice and video, for which long
delays cannot be tolerated. Unless the fading is fast on the time-scale of tolerable delay,
the throughput capacity ofPart I is not relevant for these applications. Our delay limited
capacity is the appropriate limit for these applications.

The notion of "delay limitedness" is implicit in many works. For example, papers on
power control (see Gilhousen et. al. [6], Hanly [7], Yates [13]) assume that a desired C/I
must be met for every fading state, and this means that the user's mutual information
is kept constant in time. The formal notion of delay limited capacity for multi-access
channels was defined in Hanly and Tse [8], where we considered the symmetric case with
users having the same rate requirements. In the present paper, we focus on characterizing
theentire delay-limited capacity region and the associated optimal power control schemes.
As in Part I, we shall exploit the convex nature, and underlying polymatroidal structure
ofthis problem. Again, we find that the optimal solution is always successive decoding,
and that the optimal power control can be explicitly characterized and has a greedy
interpretation.

Part II is organized as follows. In Section 2 we introduce the Gaussian, multi-access,
flat fading model and present a coding theorem for the delay limited capacity region
when transmitters and receiver can track the channel. This theorem implies that the
extra benefit gained from the transmitters tracking the channel is fully realized in the
ability to allocate transmit power based on the channel state. In Section 3, we use
Lagrangian techniques to show that the optimal power allocation can be obtained by



solving a family of optimization problems over a set of parallel time-invariant multi
access Gaussian channels, one for each fading state. Given the Lagrange multipliers,
which can be interpreted as power prices, the problem is that of finding the optimal
"power" allocation as a function of each fading state so as to minimize the total power
cost. Here, we exploit the polymatroidal structure of the optimization problem to obtain
an explicit solution via agreedy algorithm. In Section 4, we turn to the problem of finding
an appropriate set of power prices so that a target delay-limited rate vector can be met
within given power constraints. We present an iterative algorithm which, if the target
rates are achievable, is guaranteed to converge to the right power prices. Moreover, it also
solves a call admissions problem by determining if a given set of target rates are indeed
achievable.

In the remainder of the paper, we will extend the basic results in several directions.
In Section 5, we will present greedy power allocation algorithms when additional power
constraints are imposed. These results exploit further properties of polymatroids. In
Section 6, we relax the delay limited requirement in two ways. First, we consider a
multiple time-scale model, with slow and fast fading, and compute the optimal power
control when we are delay limited with respect to the slow fading. Secondly, we consider
a frequency selective fading channel, in which rates can be allocated to the different
frequencies, but the sum rate over all frequencies must be constant for each fading state.
Finally, in Section 7, we explore the implications of these information theoretic results to
systems with sub-optimal coding and decoding.

In Hanly and Tse [8], the concept ofdelay limited capacity is extended to take advan
tage ofstatistical multiplexing: it is not always necessary for power control to be used to
ensure that "sufficient mutual information is available at every timeinstant"; this canalso
be a property ofthe averaging ofthe independent fading ofa large number ofusers, even
ifno power control, or only decentralized power control is employed. In the present paper,
however, we allow centralized power control and so do not consider statistical multiplexing
of fading.

Our results also provide a link between information theory and the theory ofnetwork
ing. Clearly, the power prices (and in Part I, bit rate rewards) have the potential to be
tuned by the network in order to provide control over the radio resources. This is indeed
our approach in Section 4, in which a call admission problem is solved by the adaptation
of power prices, using an algorithm reminiscent of max-min fair bandwidth allocation al
gorithms in data networks. In Part I, we employed similar iterative algorithms to control
real-time radio resource allocation (see Section 4 in Part I). More generally, there is an
economic flavor to our results, as touched on in Section 3, and more directly in Part I,
Section 3.4.



2 Delay limited Capacity

As in part I, we focus on the uplink scenario where a set of M users communicate to a
single receiver. Consider the discrete-time multiple-access Gaussian channel:

M

Y(») = £ y/Hdn)Xi(n) + Z(n) (1)
t=i

where M is the number of users, Xi(n) and #,(n) are the transmitted waveform and the
fading process of the ith user respectively, and Z(n) is Gaussian noise with variance a2. We
assume that the fading processes for all users are jointly stationary and ergodic, and the
stationary distribution has continuous density and is bounded. User i is also subject to an
average transmit power constraint of Pt. We shall call H(n) = (Hx(n), H2(n),..., HM(n))
the joint fading process.

Suppose each source %codes over a block length of T symbols, where T is the delay,
using a codebook d of size 2RiT (i.e. at rate Ri bits per channel use). Each codeword
x of the ith user satisfies ||x||| < TPi. Fix a decoding scheme and assume the messages
are chosen with equal probability. Let pe(T) be the probability of the event that any
user is decoded incorrectly. The following is the definition of the throughput capacity-
region when both the transmitters and the receiver have access to the channel states.
Characterizing this region was our focus in part I.

Definition 2.1 The rate-tuple R = (Ri,...,RM) lies in the interior of the throughput
capacity region C(P) if and only iffor every e > 0, there exists a delay T, codebooks and
a decoding scheme such that the probability oferror pe(T) is less than e. Moreover, the
codewords can be chosen as afunction ofthe realization ofthe fading processes.

The notion of throughput capacity defined above is a natural extension of that for
time-invariant Gaussian channels, where rates are achieved with arbitrarily long coding
delays. However, there is a subtle but important difference between time-varying and
time-invariant Gaussian channels. In the time-invariant Gaussian channel, the delay is
needed to average out the Gaussian noise to get small error probabilities, and this is
typically quite short. Thus the capacity is not only an upper bound to the achievable
performance; it is a useful upper bound in the sense that it is possible to achieve rates
close to capacity with acceptable delay, even for real-time traffic. In typical time-varying
wireless channels, on the other hand, the fading process is a complex superposition of
different effects some of which can be quite slow. Thus the delay required to average out
such fading effects may be much longer than the acceptable delay.

To this end, we define asecond notion of capacity region for time-varying multi-access
channels. Let ri be the set of all possible joint fading states of the users, Q be a given
distribution on ri, and A(Q) be the set of all stationary, ergodic fading processes with
stationary distribution Q. We observe from Theorem 2.2 in Part I that the throughput
capacity region of the multi-access fading channel depends only on the stationary distri
bution of the joint fading processes and not on the correlation structure. The following
definition of the delay-limited capacity region also has this characteristic.



Definition 2:2 A rate vector (Ri,..., RM) lies in the interior ofthe delay limited capac
ity region Cd(P), iffor every e> 0 there exists a coding delay T such that for every fading
process in A(Q) there exists codebooks and a decoding scheme with pe(T) < e. Moreover,
the codewords can be chosen as a function of the realization of the fading processes.

Contrast this with Defn. 2.1, where the coding delay can be chosen depending on the
specific fading process, the coding delay here has towork uniformly for all fading processes
with agiven stationary distribution. Hence, rates in the delay-limited capacity region can
be achieved with delays independent ofthe correlation structure of the fading. Thus the
rates in the delay-limited capacity region are essentially those that can be achieved by
coding that averages out the white noise but does not average over the fading process. It
is an appropriate limit on the performance for traffic with stringent delay requirements
and when the fading processes changes relatively slowly (due to users at walking speed
for example.) It should also be noted that the throughput capacity region contains the
delay-limited capacity region. The notion of delay-limited capacity for multi-access fading
channels was first introduced in [8].

In Definition 2.2, we only require that there be acodebook for every realization ofevery
fading process. However, the proof ofTheorem 2.3 below shows that we can provide a
single codebook of unit power that we scale by the power control policy identified in the
theorem. This codebook will work no matter what fading process is chosen (i.e. for any
correlation structure). By "power control policy", we mean the following:

A power control policy V : *RM -» *RM is a mapping such that given a joint fading
state h = (hi,.. .Iim) for the users, Vi(h) can be interpreted as the transmitter power
allocated to user i. Given power control policy V, EH[P,(H)] is the average power usage
for user i.

The following theorem provides acharacterization of the delay-limited capacity region
for the case when all the transmitters and the receiver know the current state of the
channel.

Theorem 2.3 Assume that the set of possible fading states ri is bounded. The delay-
limited capacity region Cd(P) is given by

c*(p)= u ncs(h,f(h)) (2)
re? hen

where T is the set of all feasible power control policies satisfying the average power con
straints, andCg(h,P) is the capacity region of the time-invariant Gaussian multi-access
channel, given by l:

C9(h,P) =JR :R(5) <ilog (l +̂SfiPi\ for every Sc{l,...,M}j (3)
^ere, as in Part I, for any vector xand any subset Swe use the notation x(5) to denote £,•

Xi.€5 *«



Proof. See appendix A. D

The intuitive content of the above theorem is that a rate vector (Ri,...,RM) is
achievable in the delay-limited sense if one can choose a feasible power control policy
to coordinate the powers of the users such that sufficient mutual information is main
tained between the transmitters and the receiver at all fading states. Note that this is
essentially the information-theoretic version of the objective of standard power control
algorithms in which power is allocated to satisfy the signal-to-interference requirements
of all the users. Contrast this with the characterization, in Theorem 2.2 of Part I, for
the throughput capacity region, where a rate vector (Ri,..., RM) is achievable as long
as there is a feasible power control policy to provide sufficient long-term average mutual
information, averaged over all fading states. The "instantaneous" mutual information at
each fading state, however, fluctuates.

3 Characterization of the Delay-Limited Capacity
Region

In this section, we will characterize the optimal power control to achieve points on the
boundary of the delay-limited capacity region C<f(P). We shall show that successive de
coding is always optimal and we shall provide greedy algorithms for obtaining theoptimal
power control. Using this characterization, we will also provide a necessary and sufficient
condition for R to be inside the capacity region.

3.1 Lagrangian Characterization and Optimal Power Alloca
tion

We first define the boundary surface of Cd(P), which is essentially the set of optimal
operating points on the capacity region.

Definition 3.1 The boundary surface of Cd(P) is the set of those rates such that we
cannot increase one component, and remain in Cd(P) without decreasing another.

The following lemma gives a Lagrangian characterization of the capacity region.

Lemma 3.2 1) A rate vector R* lies in Cd(P) if and only if there exists a nonnegative
Xe dtM and apower control policy V such that for every joint fading state h, V(h) is a
solution to the optimization problem:

minA•P subject to R* e Cg(h, P) (4)

and

EHp>i(H)]<Pt- z = l,...,M



where Pi is the constraint on the average power of useri. Moreover, V is a power control
policy which can achieve the rate vector R*.

2) A rate vector R* lies on the boundary surface if and only if there exist X as above
but with all the average power constraints holding with equality.

Analogous to Lemma 3.10 ofPart I, this lemma reduces the computation oftheoptimal
power control to a family of optimization problems over a set of parallel time-invariant
Gaussian channels. As in the analysis ofthe throughput capacity region, the vector Acan
be interpreted as a set of power prices reflecting the power constraints. The important
difference is that in this case, we require that the rate vector R* be in the Gaussian
capacity region Cg(h,V(h)) for all fading states h. This is consistent with the nature of
delay-limited capacities.

Proof. Since any rate vector inside the capacity region is dominated by some point on
the boundary surface, statement (2) would imply statement (1). Hence, we will focus on
proving statement (2).

First note that since the capacity region Cd(P) is convex, apoint R* is on the boundary
surface of the region ifand only ifit is a solution to the optimization problem:

max/z •R subject to R e Cd(P) (5)

for some nonnegative vector y,. Now consider the set

S = {(R,P):ReCd(P)}

By the concavity of the log function, it can readily be verified that S is a convex set.
Thus, R* solves (5) if and only if there exist nonnegative Lagrange multipliers Asuch
that (R*, P) is a solution to the problem:

max u-R — X-P
(R,P)esr

Hence, R* is on the boundary surface of Cd(P) if and only if P is asolution to the problem:

minA •P subject to R* e Cd(P)

i.e. if and only if there exists a power control policy V* which solves

rninA •EH[7>(H)] subject to R* e f)hCg(h,V(h))

and

EK[P*(H)] = P

We note that this last optimization problem is equivalent to solving (4) for every fading
state h. This completes the proof. D



The vector /i can beinterpreted as the rate rewards and Aas the power prices. Thus, a
point on the boundary of the capacity region is achieved by maximizing the total revenue
for a given rate reward vector \i. Appropriate power prices have to be chosen such that
the average power constraints are satisfied.

The computation oftheoptimal power control is now reduced to solving the optimiza
tion problem (4). This is a linear program but one with an exponentially large number
of constraints (in M). However, as in part I, we exploit the polymatroid structure of the
problem to provide a simple greedy solution to this problem. We first recall the following
definition of contra-polymatroids and a greedy optimization procedure.

Definition 3.3 Let E = {1,..., M} and f :2E -• &+ be a set function. The polyhedron

G(f) = {(xu...,xM): x(S) > f(S) VS C E}

is a contra-polymatroid if f is a rank function, i.e. satisfies:
1) /(0) = 0 (normalized).

2) f(S) < f(T) ifScT (nondecreasing).

8) f(S) + f(T) < f(S UT) + f(S HT) (supermodular)

For 7r a permutation on the set E, define the vector v(n) e 9RM by t^i)^) = /(7r(l))
and v^w) = f({ir(l),..., ir(i)}) - f({n(l),..., n(i - 1)}) for i = 2,..., M.

Lemma 3.4 Let Q(f) be a contra-polymatroid. Then the points v(tt) where n is a per
mutation on E are precisely the vertices ofQ(f). Moreover, if Xis agiven vector in h^,
then the solution of the optimization problem

minA •x subject to x e Q(f) (6)

is attained at the point v(n*) where the permutation tt* is given by X^^) > ...> Xn^M).

It is straightforward to verify (Corollary 3.13 of Part I) that for a given rate vector
R* and fading state h, the set of received powers that can support R*,

£(R*) = {Q : Qi = hiVi,R* e Cg(h,V)}

is a contra-polymatroid with rank function

f(S) = exp(2R*(S)) - 1

Applying Lemma 3.4, the optimization problem (4) can be readily solved:

p. =/ ^[exPWa,)" 1] if*' =l
*(° li4[exP(2EUflW-exp(2Er=,1i?;(t))] i=2,...,M (0



where the permutation 7r satisfy:

£gi>...>£att (8)
«7r(l) hir(M)

This optimal point corresponds to successive decoding in the order given by n, with
power allocated to the users such that the target delay-limited rate vector R* is achieved.
One can think ofthesuccessive decoding order nas a way togive priority to different users
in the scheduling ofresources; a user decoded later in the ordering is given higher priority
than a user decoded earlier. This is because users need less transmit power to support
their target rates when they are decoded later. The scheduling rule here depends on both
the power prices Aand the current fading state. In fact, this rule is analogous to the
classic c- fi rule in scheduling theory (see eg. [12]), as both arise from the polymatroidal
structure of the problem. The additional feature in our problem is that the scheduling
priority is a dynamic function of the fading state. Another interesting aspect of the
solution to the optimization problem (4) is that the solution depends on the power prices
Aonly via the decoding order. This will simplify our later analysis.

Note that when the power price vector Ais strictly positive, then with probability 1
the ordering is uniquely defined since the fading processes have a continuous stationary
distribution. Thus, with probability 1, the solution to the optimization problem (4) is
unique. Let us then define P(R*, A) to be the unique average power vector corresponding
to the almost surely unique power control policy which solves the optimization problem
(4).

In the common case when the fading processes of the users are independent of each
other, the average power vector P(R*, A) has a simple form:

Pi(R\X) =(«P(2i?M)j[00^n{^* >j;hi)-rP(hk <̂hi)exP(2R'k)}fi(hi)dht
(9)

This expression can be obtained by noting that the power allocated to user i depends
only on which users have values j£ greater than that of user i. Note that due to the special
structure of the optimal power control policy, the computation of the average power has
been reduced from a M-dimensional integral to a 1-dimensional integral.

Combining this with Lemma 3.2, we have the following characterization of the delay-
limited capacity region:

Theorem 3.5 Assume the fading processes of users are independent ofeach other. Then
the rate vector R lies in the delay-limited capacity region Cd(P) ifand only ifthere exists
Xe &% such that

(exp(2ft)-l) JQ°° Y{ g. j1 +*{j-^ (exp(2Rk) -1) jf{(hi)dhi <P{ i=l,...,M
(10)



The power allocation policy that achieves this rate R is given by eqn. (7). Moreover, R
lies on the boundary surface if and only if there exist Xsuch that (10) holds with equality.

We can also consider a set Vd(Rm): this is the set of average power vectors that can
support target delay-limited rates R*, i.e.

Vd(R*) = {P : R* e Cd(P)}

Note that T>d(R*) is thestructure in the power space thatplays the same role as thecapac
ity region C<*(P) in the rate space. The above results lead to an explicit characterization
of the boundary surface of I>d(R), parameterized by A.

Theorem 3.6 Assume the fading processes ofusers are independent of each other. Then
the following equation gives an explicit parameterization of the boundary surface of the
region Vd(R*) byXe^.

Pi(X) =(exp(2i*n-l) j~£nj1 +ft 07*.') («p(2J5) -1)} /,(/>,-)<*/>, i=1,...,M
(11)

The above results still leave open important questions: 1) how to check algorithmically
if a target rate vector R is achievable, i.e. in the capacity region C<*(P), and 2) how to
find the appropriate power prices Aif R is indeed in the region. We will return to these
questions in Section 4. But first, let us look at some special cases of Theorem 3.5.

3.2 Examples

l)Single-User Channel: When M= 1, the delay-limited capacity Cd(P) is given by:

We note that for some fading distribution, the delay-limited capacity may be zero.
For example, for Rayleigh fading,

/(/>) =I exp(-^)
a a

311(1 /o°° hdh ~ °°> so C* = 0. The problem is that the channel is spending a lot of time
close to zero. One approach to deal with this is to allow an event of outage when the
channel gets too weak. (This is the approach taken by Ozarow et al [10] and Cheng [2]
for situations where there is no power control.) Thus, even for these fading distributions,
it is meaningful to consider the notion of delay-limited capacity during the times when
the channel is reasonable, and declare an outage otherwise. For many other distributions,

10



such as the log-normal distribution for shadow fading, a non-zero delay-limited capacity
is obtained even without the need of allowing outage.

2)Symmetrical Case [8]: Consider the case when there are M users, the fading
of users are identical and independent, and their power constraints are the same. The
symmetric delay-limited capacity Cd is the maximum common rate that can be achieved,
and can be obtained by putting At- = 1 for all i in eqns.(lO). Simplifying, we find that the
capacity satisfies:

y [exp(2Cd) - 1] jT[l +F(h)(exp(2Cd) - l)]M-lf-^-dh =P
The optimal power control policy has an interesting form. Namely, users are decoded

in the order of decreasing channel strengths, with the strongest user decoded first and
the weakest user decoded last. Powers are allocated accordingly. If channel strength
is determined primarily by the distance to the base-station, then this optimal decoding
order results in the smallest possible transmit power for the furthest user to support the
desired rate, as he only has to compete with the background noise and not the interference
from any other user. This property is particularly appealing in terms of reducing inter-cell
interference, as the furthest user will likely cause the most interference inan adjacent cell.
Contrast this with the IS-95 CDMA scheme, in which the furthest user has to compete
with all other users so that his received power has to be the same as that of the closest
user.

3) Two-User Capacity Region: When M = 2, the boundary of the delay-limited
capacity region can be directly calculated by solving the equations (10). Let A= ^-.
Then the boundary is the following parametric curve as Aranges from 0 to oo:

RiW =

^ [ B2(A)A-B1(A)P2 +A1^2 +y(B2(A)P1-^i(A)P2 +A1A2)2 +4A1.42B2(A)A
2A1B2(X)

i B1{X)P2-B2{X)P1^A1A2 +y/{Bl(X)P2^B2(X)Pl +A1A2y +4A1A2Bl(X)P2
2^2Bi(A)

\ log

\ log
where

TOO 0-2
Am = -rfm(h)dh m = l,2

Jo fi

/•oo /j2B2(X) = j(o TF,(Xh)f2(h)dh

The parameter Acan be viewed as a prioritization between the two users. As A->• 0.
Bi(A) -> Al and B2(X) -> 0so R2(X) -> |log(l +£). This is the delay-limited capacity

11



of user 2 when it is given strict priority over user 1 in all fading states (i.e. decoded last),
and this is the best rate user 2 can get. Similarly, as A-+ oo, #i(A) ->• 0 and B2(A) -» ^42
so Ri(X) -» £log(l +^). This is the delay-limited capacity of user 1 when it is given
strict priority in all fading states, andthis is the best rateuser 1 can get. For Ain between
these two extremes, the decoding order of users 1 and 2 changes depending on the fading
state. See Fig. 1 for an illustration. Note that in this two-user case, we can parameterize
the boundary surface ofCd(P) by Ae &+. We will comment on whether this can be done
in the general M-user case in Appendix B.

Figure 1: A two-user delay-limited capacity region. The curved part is the boundary
surface. The points px and p2 are the two extreme points of the surface. The point px
corresponds to giving absolute priority to user 1, i.e. decoding user 1after user 2 at every
fading state. At this point, user 1gets rate C\ = \ log(l + £-). And vice versa for point
p2. Note that all other points in the capacity region but not on the curved boundary are
dominated by some point on the boundary.

3.3 Extreme points of boundary surface

We now extend the characterization of the interior points of the boundary surface of
Vd(R) to include the extreme points.

Suppose £ is a setof subsets of E = {1,2,..., M} with the property that all subsets in
C are nested. By this we mean that if Fu F2 e C then Fx C F2 or F2 C Fi. This nesting
property enables us to define a new decoding rule. Let us use successive decoding, with
the ordering determined by Aas before, except now all users in any set F e C are decoded
before users in Fc, for every fading state h. Thus if Fj C F2... C E, then (At)t€Fl is used
to determine the ordering of users in Fu and all these users provide interference to users
in F-f. Inductively, (A;)t-6Fn\Fn_, is used to determine the ordering of users in Fn\Fn_i,
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and all the users in F„ provide interference to the users in F£. It is not difficult to show
that all extreme points of the boundary surface of Dd(R*) are obtained in this way. For
the two-user example in Fig. 1, the extreme points are pi and p2.

Let us also extend the notion of Pt(R*,A) in the following way.

Definition 3.7 Given R, X e ftjf and £, a set of nested subsets of E, we denote the
power vector characterized by (R, X,C) by P(R,A,£).

Note that P(R, A) is not an extreme point of the boundary surface of Vd(R), but is
still representable in this notation:

P(R,A) = P(R,A,{£})

We shall have use for this extension in Section 4.

3.4 Further remarks concerning the coding theorem

We would like to remark on the decoding schemes to achieve points on the boundary of
the delay-limited capacity region. Consider a channel in which the fading state H is fixed
at level h for all time. It follows immediately from (7) that if users are allocated powers
in V(h) then R* is achievable by successive decoding. We conclude that if the fading is
sufficiently slow that it does not change during the block length then the optimal solution
is to do successive decoding with powers allocated as in (7). This separation of time-scales
assumption may be quite reasonable if H(n) is a slow fading process in relation to the
tolerable coding delay (e.g. shadow fading). If H(n) changes during the block length
then the optimal power control is still given by (7): it is as ifsuccessive decoding is being
employed as far as power control is concerned, and we shall say that the optimal solution
is of "successive decoding type". Ifwe try to do successive decoding, we face the problem
that the optimal ordering of the users may change during the blocklength, if the fading
changes. This situation does not arise in the non-delay limited case; successive decoding
is optimal as shown in Part I. It may be possible to extend successive decoding techniques
to deal with fading in the delay limited case (an open problem). In practice, it may be
sufficient to update the successive decoding order at the start of each code period, and
make an allowance for the fading that occurs within the block length. We would then
sacrifice optimality for ease of decoding.

4 An Iterative Algorithm for Resource Allocation

In theprevious section, we have characterized thestructure oftheoptimal power allocation
and used it for an implicit characterization ofthe delay-limited capacity region Cd(P). The
power prices A play a central role as a mechanism through which resource is allocated to
the different users. To achieve a target delay-limited rate vector R*, we have shown that
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a simple optimal power control can be obtained, for a given power price vector A. Since
the power prices reflect the power constraints on the users, a natural question then is how
an appropriate power price vector can be computed for given power constraints. More
specifically, we will be concerned with the following problem:

• Is a target delay-limited rate vector R* achievable under a given average power con
straint P? If so, what is an appropriate power price vector?

In the case of independent fading processes, this problem is equivalent to checking if
there exists A such that inequalities (10) can be satisfied. From a networking point of
view, a solution to this problem serves the dual purpose of call admissions and resource
allocation. It determines if a set of users with specified rate requirements is supportable
and if so it allocates an appropriate amount of resources via the selection of the power
prices.

An equivalent formulation is the optimization problem:

inf max = (13)A>01<«<M P{ K '

where P;(R*,A) is the average power of the ith user under the optimal power control
which minimizes the total power cost A•P while achieving rates R*. (In the case of
independent fading, Pi(R*, X) is given by the explicit expression (9).) By Lemma 3.2, the
target rate vector R* is achievable with power constraints P if and only if the solution to
(13) is no greater than 1. This optimization problem can also be interpreted as finding a
solution for fair power requirements for the users, weighted by the power constraints of
the users.

We will provide an iterative algorithm that solves the problem (13). If the infimum
in (13) is achieved at a positive A*, the algorithm will converge to it. If this is not the
case, then a solution satisfying (13) must be an extreme point of the boundary surface
of Vd(R*) (the set of average power vectors that can support R*.) More generally, we
can represent all points on the boundary surface of T>d(R*), including extreme points,
by P(Rm,X,£), where C is a set of nested subsets of users giving absolute priority rules
that hold irrespective of the fading state. This was discussed in Section 3.3. In general,
our algorithm provides the parameters A* and C*, and provably converges to the point
P* = P(R*, X*,Cm) such that P* is an optimal solution to (13).

Firstly, it is necessary to develop some notation. Since we assume that R" is fixed
throughout this section, we shall simplify notation and set

P(A) = P(R*,A)
P(A,£) = P(R*,A,£)

We call Pi(X) the average power of user i at power prices A, where it is understood that
this is the average power to achieve the rate vector R* and minimize the total power cost
A•P. Also without loss ofgenerality, we can assume that the average power constraint P,
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is 1 for all users, by appropriate re-scaling ofthe fading processes. Hence, our problem is

inf maxP,(A)

We propose the following iterative algorithm for solving this problem. The basic idea
is that at any iteration of the algorithm, we balance the required average powers of all
users as much as possible by increasing the power prices of the users with larger average
powers. This will result in lowering the required power of such users by giving them higher
priority in the decoding order in more of the fading states. However, perfect balancing is
not always possible since the required power of a user cannot be lowered beyond giving
him highest priority (i.e. last in the decoding order) at every fading state.

Start with an arbitrary positive A<°>. Let D^ be the set of users with the largest
average powers Pt(A<°)) (at power prices A<°)) among all users and tf(°> be the set of the
other users. We now increase the power prices of all users in D by the same factor c> 1
and fix the power prices of users in U^°\ and call the resulting prices A(c). Let c* be the
smallest value of csuch that at power prices A(c), the average power Pi(X(c)) of some user
i in D^ equals Pj(X(c)) of some user j in Ui0). If no such cexists, set c* = oo. Consider
now two cases:

1) C* is finite: Then let D^ be the set of users with the largest P,(A(c)) among all
users and U™ be the rest. If U™ is empty, then the algorithm is terminated. Otherwise
repeat the iteration with X(c) in place of A<°), ZK1) in place of D{0\ and U{1) in place of
f/(o)

2) c* is infinite: In this case, the minimum of the average powers of users in Z)(0)
is greater than the maximum of the average powers of users in U{0) even when absolute
priority is given to users in D<°> over users in U^\ i.e. even when users in U{0) are decoded
after users in Z>(0) at every fading state. Thus, perfect power balancing is impossible. Then
let Lx = C/(°) and users in D^ from this step on will always be given absolute priority
over users in Lx. The power prices of each user i in Lx will be fixed at Aj0) and will not
be further adjusted in the algorithm. (They determine the power allocation among users
in Li.) The algorithm is now recursively applied to D&K For users in Di0), use the same
power prices as at the start of the previous iteration, (i.e. set A[j) = Aj0) for i e D{0))
and split the set Z><°) into a subset D^ of users with the largest average powers at price
AW (calculated now assuming users in Lx are not present since they are decoded earlier
at every fading state), and let U^ be the rest: D^ - Z)(1).

After a finite number of iterations of this algorithm, the users will be partitioned
into subsets LX,L2,...LK and H, where users in Li is given absolute priority over users
in Lj for i > j and users in H given the highest priority, and such that no further
partitioning of H will take place. Let C* = {Lu Lx UL2,...,U^L,-, E} be the absolute
priority nesting corresponding to this partitioning of the users. We have the following
convergence theorem.

Theorem 4.1 IfX^ is the vector of power prices at iteration n, then
/?=limP,(A<">,r)

n->oo
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exists for all i, and P" = max,- P* is the optimal value for the problem (13), i.e.

P* = infmaxPi(A)

Moreover, P* = P* for every user i in H.

Proof. First, we observe that for any j, the power allocation of the users in the subset
Lj do not change after the iteration when the subset Lj is created. To see that, fix a
subset Lj, and let (X*)i^Lj be the power prices of the users in Lj when Lj is created. Let
Hj = Lj+i U... ULk UH; this is the subset of users which are given higher priority than
users in Lj at all fading states. The rest of the users (in Lu..., Lj_i) will be given lower
priority than users in Lj at all fading states. The optimal power allocation to users in Lj
at fading state h is given by eqn (7):

a2
p*(i)(h) = I—

«ir(i)

t-1

keHj *=i J ( k€Hj k=1

for i = 1,..., \Lj\, where n is an ordering of users in the subset Lj satisfying:

The key point is that the power allocation to users in Lj only depends on the power
prices of users in Lj, which remain fixed after the iteration when Lj is created, but do not
depend on the power prices of the users of higher priority in Hj, which will be changed in
future iterations. Thus, the power allocation to users in Lj stay fixed once Lj is created.

Second, we note that for each j, the minimum of the average powers of users in Hj
(high priority users) must monotonically increase after the iteration when Lj is formed.
This is because as we scale up the power prices of the users with the largest average
powers in Hj, the average powers of all the remaining users must monotonically increase.
This is a consequence of the fact that the power prices affect the average powers of the
users only through the decoding order given by eqn. (8). Similarly, the average powers of
users in Hj must all monotonically decrease and so does the maximum.

It can also be seen that for each j, when the partitioning into Hj and Lj occurs,
the minimum of the average powers in Hj must be greater than the maximum of the
average powers in Lj. Combining this with the two observations above, we conclude at
any iteration after Lj is created, the average power of any user in Hj must be greater
than that of any user in Lu... Lj. Atypical situation is shown in Fig. 2.

In particular, at any iteration after all of Lu L2,..., LK are created, the average powers
of any user in Hmust be greater than the average power of any user in U^Lj. Also, the
difference between the maximum and the minimum of the average powers of users in H
is monotonically decreasing so it must converge to a limit. Since no further partitioning
of Hoccurs, this limit must be zero. Thus, we have proved that for every user i,

limPt-(A<»>,r) = /?n-foo
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Figure 2: The average powers of the users at the start of an iteration of the resource
allocation algorithm. Users are currently partitioned into subsets Li,L2 and H2. Users
in H2 have the largest average powers, and are decoded after users in L2, which are in
turn decoded after users in L\, at every fading state. The power prices of the users in H2
will be adjusted in future iterations to further balance their powers; the power prices and
average powers of users in L\ and L2 will stay fixed.

and

Pi = max Pk for every i e H
k£E

Also, for any power price vector A,

max P.-(A) > max P.".

Suppose not. Then there exists A and n such that

PiW < Pi(\in\Cm) for every i e H.

This is impossible since under C*, users in H are already given the highest priority over
other users at all fading states and hence P(X^n\Cm) achieves the minimum total average
power cost H,€# A)n'Pt- for users in H. This completes the proof.

D

For the reader who is familiar with flow control problems in virtual circuit networks,
this algorithm may be reminiscent of fair bandwidth allocation algorithms. Here, the
objective is to find a fair average power requirements for the users, weighted by their
power constraints. Users in the set H correspond to users whose routes pass through the
bottleneck node, and have the maximum (weighted) power requirement. In fact, it can
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be shown that by applying the algorithm recursively to balance the power requirements
of users in the subsets L\,...Lk defined above, one can in fact compute a min-max fair
solution (see [1] for a max-min fair algorithm for bandwidth allocation.)

5 Auxiliary Constraints on Transmit Power

The constraints on the transmit powers we considered so far are on their long-term average
value, and under power control, the transmit power will vary depending on the fading
state. In practice, one often wants to have some shorter-term constraints on the transmit
power as well. These constraints maybe due to regulations, or as a way of imposing more
stringent limit on how much interference a mobile can cause to adjacent cells. To model
such auxiliary constraints, we consider the following feasible set of power controls:

^P = {V:EH[Vi(H)]<Pi and V{(h) < P{ Vi and h e ri}

where ri is the set of all possible joint fading states of the users. Thus, in addition to the
average power constraints, we also have a constraint P{ on the transmit power of the ith.
user in every state. We shall now concentrate on the problem of computing the optimal
power control subject to these constraints.

We focus on the capacity region:

Lemma 5.1 Arate vector R* lies on the boundary ofCvd(P,P) ifand only ifthere exists
aXe ft and apower control policy Vsuch that for every joint fading state h, V(h) is
a solution to the optimization problem:

min A•P subject to R* e Cg(h, P) and Pi < Pt Vi (14)
and

Eh[^(H)] = P,- i = l,...,M
where Pi is the constraint on the average power of user i. Moreover, V is apower control
policy which can achieve the rate vector R\

The proof of this result is similar to that of Lemma 3.2, and is the analogue of Lemma
5.1 in Part I, and will not be given here.

To solve the optimization problem (14), we first prove a few results about contra-
polymatroids.

Definition 5.2 The rank function f of acontra-polymatroid is said to be strictly super-
modular iffor any subset S,T such that neither is asubset of the other 2,

f(S) + f(T) < f(S \JT)-r f(S n T)
2Clearly, ifone is a subset ofthe other, equality must hold
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The following lemma is motivated by a result of Hanly and Whiting [9], which was
proved in the context of multi-access capacity regions.

Lemma 5.3 Let V(f) be a contra-polymatroid with a strictly supermodular rank function
f. Consider any vector x e V(f), and let Sx,...,Sk be the subsets corresponding to the
constraints ofV(f) that are tight at x, i.e. these constraints hold with equality at x. Then
there exists an ordering n such that

£*(!) C . . . C Sn(K)

i.e. they are nested.

Proof. Take any two tight constraints corresponding to subsets 5t and Sj. Suppose
neither is a subset of the other. Then

x(SiUSj) = x(Si) + x(Sj)-x(Sir\Sj)
< f(Si) + f(Sj)-f(Sir\Sj)
< f(SiUSj),

a contradiction since x e V(f). Hence, the subsets corresponding to the tight constraints
must be nested.

Now let a.'s be positive constants, and consider the optimization problem

minA-x subject to x e V(f) and x{ < a, Vi (15)

where the vector A satisfies

Ai > ... > XM > 0

We will refer to the constraints x{ < a{ as peak constraints. To motivate the algorithm
for solving this problem, we first observe that the algorithm given in Lemma 3.4 (for the
same problem but without the peak constraints) can be viewed as a greedy algorithm:

• Initialization: Set xf] = 0 for all i. Set k= 1.
• Step k: Increase the value of xk until a constraint becomes tight. Goto Step k+ 1
• After M steps, optimal solution is reached.

With this interpretation, the following greedy algorithm for problem (15) can be viewed
as a natural generalization to the case when there are peak constraints:

Algorithm 5.4 • Initialization: Set x\0) = a, for all i. //x<°> £ V(f) then stop.
Else set k = 1.

• Step k: Decrease the kth component of x until a constraint becomes tight. Go to
Step k + 1
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• Stop after M steps.

Theorem 5.5 Ifx^ $ V(f), then the optimization problem (15) has an empty feasible
region. Otherwise the algorithm 5.4 terminates at an optimal solution to (15).

Proof.

The first statement follows from the easily verified fact that if x,y are two vectors
such that yt- < x, Vi and x £ V(f), then y £ V(f).

Now suppose x<°> e V(f) and the algorithm 5.4 terminates at the point x*. We first
show that x* is a vertex ofthe feasible region. At each step A: of the algorithm, either the
fcth component cannot be decreased, in which case the constraint xk < ak is tight, orit can
be decreased until a constraint ofV(f) corresponding to some subset S becomes tight. In
any case, at each stage of the algorithm, we are having an additional linearly independent
constraint becoming tight. Moreover, since we are always decreasing the components of
x, subset constraints that become tight will remain tight. Hence, at termination, there
are M linearly independent tight constraints, and x is a vertex ofthe feasible region.

Let Si,S2,...,Sk be the subset constraints that are tight at x*. By Lemma 5.3,
we can without loss of generality assume that S\ C ... C Sk- Let us now identify
the tight peak constraints. Consider the partition of the base set E into Si,S2 - Si,
S3 —S2,... Sk —Sk-I' Since the tight constraints are all linearly independent, it follows
that in each subset Sj - 5j_i, at most \Sj - 5j_i| - 1 elements can correspond to tight
peak constraints. But since there are M - K tight peak constraints, in fact exactly
\Sj —Sj-\\ —1 elements correspond to peak constraints.

Now, the optimization problem of interest is a linear programming problem. Thus,
to verify the optimality of x*, it suffices to show that that the objective function cannot
decrease along any of the M edges of the polyhedron that emanate from x". Each edge
is obtained by relaxing one of the tight constraints. We consider two cases:

1) Suppose we relax a tight constraint xk < ak, where k e Sj - Sj_i for some j. Let
m e Sj —Sj-x be such that the corresponding peak constraint is not tight. The edge can
be seen to be along the half line:

£jt + xm = x*k -{• x^,xk < x*k,Xi = x*, i^k,m

We first note that k > m. For the purpose of contradiction, suppose instead that
k < m. The point (xj,..., x% - t,..., x*m + e,..., x*M) is in the feasible region, which
means that in the fcth step of the algorithm, the fcth component can befurthered decreased
beyond xk. This is a contradiction. Hence, fc > m. Since the coefficients of the objective
function satisfy Xk < Xm, it follows that the objective function cannot decrease moving
along the edge.

2) Suppose we relax a subset constraint corresponding to Sj for some j. Ifj < K, let
k e Sj- Sj-i and m e Sj+i - Sj correspond to peak constraints that are not tight at x".
In this case, the edge can be seen to be along the half line:

xk-rxm = x*k + x*m,xk > xmk,Xi - x], i^k,m
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Since A* < Am, it follows that the objective function cannot decrease along this edge. On
the other hand, if j = K, let fc € Sk —Sk-i be the component corresponding to a peak
constraint that is not tight. The corresponding edge is along the half line:

*£Jk _ *£jfc» *^t = *Ej » I -fi K

Clearly, the objective function cannot decrease along this edge.
Hence we conclude that indeed x* is an optimal solution.
D

At each step fc, algorithm 5.4 has to check when a constraint becomes tight. This is
equivalent to the membership problem: given a point x, check if x is in V(f) or not. For
general contra-polymatroids, there is no known efficient combinatorial algorithm to solve
this problem (checking every constraint of V(f) requires complexity exponential in M.)
However, for the special case of contra-polymatroids with generalized symmetric rank
functions, a very simple test exists. This result is due to Federgruen and Groenevelt [4].

Lemma 5.6 [4]

Suppose f is generalized symmetric, i.e. /(•) = g(y(-)) for some convex increasing
function g and vector y. Given any x, let a be a permutation on E such that

gg(i) < < X*(M)
Vc(i) ~ '' ~ V<r(M)

Then x e V(f) if and only if

m m

]£«»(t) > g(%2y<,(i)) Vm = 1,..., M
t=i »=i

This lemma implies that one only needs to check M constraints to determine if x is a
member of V(f), instead of 2M - 1. Combining this lemma with Algorithm 5.4, we can
in fact compute explicitly the value to which the fcth component must be decreased to in
the fcth step of the algorithm. Thus, in the case when /(•) = g(y(>)), the algorithm now
becomes:

• Initialization: Set x\0) = a{ for all i. If x<°) $ V(f) then stop. Else set fc = 1.
• Step fc: Let <t<*> be a permutation on {1,...,fc - 1, fc + 1,..., M} such that

fg^li) ^ ... < X*{kHk-l) <gcrW(fc+l) c < gq(*)(M)
VaW(l) ~ ~~ Va(")(k-1) ~ 2/<r(*)(*+l) " '" " 2/a<*)(A/)

Then set

xt^ =| . *{*"1) M*k
maxj¥Jt[/(5i U{fc}) - x(5,-)] i = fc

where Sj = {a^(l),..., *W(j)} (noting that the element a^(k) does not exist.)
Go to step fc -f 1. '
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• Stop after M steps.

Lemma 5.6 implies that at step fc of the algorithm, the subset constraints that can
become tight are the ones corresponding to the subsets Sj U{fc}, for j = 1,2,... ,fc -
1, fc + 1,..., M. The value that the fcth component should be decreased to is determined
by the first of these constraints becoming tight. The complexity of this algorithm is
0(M2logM).

Byobserving that the set of feasible received powers Q that support agiven rate vector
R* isacontra-polymatroid with generalized symmetric rank function, we can immediately
apply the above simplified form of algorithm 5.4 to solve the optimization problem (14).
This gives an efficient way to compute the optimal power allocation at a fading state, for
given power prices A. Moreover, the polymatroid theory yields a result of independent
interest: an efficient membership test for the Gaussian capacity region. More concretely,
given rate vector R and power constraint P, to check the exponentially large number of
constraints:

R(S)<ilog(l +̂ ) SCE,
one needs only to sort j '̂s in ascending order, and check the Mnested constraints corre
sponding to that ordering.

It should be noted that unlike the optimal power control schemes for the previous
problems weconsidered in this paper (parts I and II), the optimal solution for this problem
cannot in general be achieved by by successive decoding of the M users. Due to the
auxiliary constraints, the optimal solution is not necessarily on a vertex of the capacity
region. However, Rimoldi and Urbanke [11] show that each user can be split into at most
2 "virtual users", such that the resulting point can be achieved by successive decoding of
at most 2M virtual users. Their procedure for calculating the power levels that define the
splitting is greedy, a fact that again arises from the generalized symmetric polymatroidal
structure of the Gaussian multi-access capacity region.

6 Multiple Time-Scale Fading and Frequency-Selective
Fading Channels

The notions of throughput capacity and delay-limited capacity for fading channels can be
viewed as two ends of a spectrum. If we look upon a fading channel as a set of parallel
channels, one for each fading state, then the throughput capacity is the maximum total
rate that one can achieve by arbitrary allocation of rates and powers over the parallel
channels, subject to power constraint. The delay-limited capacity, on the other hand, is
the maximum total rate subject to the constraint ofa common rate for each of the parallel
channels. Thus, one can consider other notions of capacities where the rate allocation
policy is not as stringent as in the delay-limited case, but not completely arbitrary as in
the throughput capacity. In this section, we will look at two applications of this idea:
fading with multiple time-scale dynamics, and frequency-selective fading.
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Consider first the situation when the fading processes have two components, one slow
and one fast. The slow fading might be due to shadowing, for example, and the fast due
to multipath. We assume that the fast fading is sufficiently fast to average out over the
tolerable delay, but that we are delay limited with respect to the slow fading. We define
a notion of capacity in this context.

For simplicity we take a simple jump Markov model for the slow fading. Let 5,
be the set of slow states for user i. Consider a Markov chain on Si, with transition
probabilities ^sj^sj2*) for any *|1),a{2) in <St. Consider also (p(si))SieSi such that for all
«i» P($i) € (0,1). We then define a Markov process by letting the fading for user i remain
in state s,1 for aGeometric^sj1*)) time, and then switching to another state s\2) with
transition probability ^(sj^sj2*). We assume each user suffers independent slow fading,
and so have a Markov process with independent components on the state space S, the
cross product ofthe individual slow state-spaces. Consider aparticular stationary, ergodic
process (S(n))£L1ofthis form, with stationary distribution Qon S. Let A(Q) be the set
of all such processes with stationary distribution Q.

We also define a set of "conditional fading processes"; for each j = 1,2,... and
each s e S, we define independent fading processes (Hk'>(s,n))£L0 such that for all j,s,
(HM(s,n))£L0 is astationary ergodic process on ri, where ri is the fading state space.
We assume that for all j, H^(s,n) has stationary distribution Qs on ri.

Given a slow process S(n) e A(Q), we define an associated fading process H(n) by
oo

H(n) = £/[7) < n< Tj+1]H^(S(n),n - Tj)
j=l

where (7))^ are the jump times of S(n). By construction, (H(n))~ xis stationary and
ergodic on ri and, conditional on S(n) = s, H(n) has conditional distribution Qs on ri.
Note that we can generate such a fading process by choosing any slow process in A(Q).

Definition 6.1 We have a class of fading channels, indexed by the slow processes in
A(Q). We denote the delay limited capacity region with respect to slow fading, and average
power constraint P by Cda(P). The vector R = (RuR2,...yRM) lies in the interior of
this region iffor every e> 0 there exists adelay Tand for for every slow process in A(Q)
there exists a codebook with 2RiT codewords for user i, and a decoding scheme, such that
the probability of decoding error is less than e. Each codebook for user i has average power
Pi (averaged over the fading).

From the point of view of a parallel channel decomposition of the fading channel,
this corresponds to partitioning the parallel channels into subsets each associated with
a slow fading state. In the above definition of delay-limited capacity for multiple time-
scale fading channel, one is allowed to do rate allocation among the channels within each
subset, but subject to the constraint that the total rate in each subset (slow state) is the
same.
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Consider the following associated channel: Let ^(s, h) be an arbitrary power control
policy, and let the channel have unit power constraints on the users, with the fading for
user i being Ft-(n)P,-(s,F(n)). We assume s is fixed, and F(n) has distribution Qs on
ri. We denote the throughput capacity region for this channel by Cds(s,V(s, •)). Now we
return to the channel with both slow and fast fading.

Theorem 6.2 Cds(P) = Upejr n8€$ Cd8(s,V(s, •)) where T is the set of power control
policies P(s,h) for which Es,h[P(S,H)] = P.

The proof of Theorem 6.2 is analogous to that of Theorem 2.3. In particular, it shows
that we can choose a single codebook of unit power, and obtain the appropriate codebook
for any realization of any slow process in A(Q) by scaling the elements in this codebook
by the appropriate Vi(s,h).

The dual set T>da(Rm) is defined as usual:

Vds(Rm) = {P : R* GCds(P)}

In this section, we shall limit ourselves to the characterization of the extreme points of
Vd8(R*).

As in Section 3, we characterize any point on the boundary of Pd5(R") by solving the
following problem, for every slow state s:

min £ ATEH|S=s [Pi(s, H)]s.t.
i

£*? < EH|S=s[^(l +E* '̂(2S'H)g')]
iec z G

Since the delay limited capacity region is convex, there exist Lagrange multipliers ^*(s)
for which (R*,V(s,-)) solves

M

max J>r(B)ft - A*Eh|s=s[^(s,H)])
""y t=i

*•«.£* < EH|S=s[^l°g(l +Ei6£:P,(2S'H)g')]
which is equivalent to solving

M

K(s,^s,h) EWW^(-.»')-W(-.h)) (16)

iec l °

for each s,h. The appropriate /i*(s) is determined by the condition

EH|S=s[ft,-(s,H)] = i*t* (17)
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A greedy algorithm for solving (16) was presented in Theorem 3.14 in Part I. Moreover,
an iterative procedure for computing fi*(s) was provided in Algorithm 4.7 of Part I : we
start with an arbitrary /i(s) and update it until (17) holds.

In this section, we have found the minimal cost power control policy to obtain a
consistent mutual information vector R* over every slow fading state. With this power
control, we can obtain any rate strictly below R* in a delay limited fashion with respect to
slow fading. A very important observation is that to obtain this solution we do not need
to know the statistics of the slow fading at all. This is because we have prescribed the
delay limited rates R* as a constraint, but not the long-term average power consumption.
The average power used is obtainable from the solution to the power control problem, but
we do not need to know it a priori. Moreover, the algorithm that we use to determine
ji(s) does not need to know explicitly the conditional distribution of the fading process
given the slow state, but rather it adapts to changes in these statistics.

Another important point is that the solution is of "successive decoding type". If we
assume a separation of time-scales to the effect that the code periods are fast relative
to the slow fading, then successive decoding is optimal. Given any slow state, we use
successive decoding to achieve R*, as in Section 3; in this case, the decoding order is a
function of the slow state s.

The characterization of the extreme points ofCd8(P) is slightly more complicated, and
we do not attempt it here. Clearly, the calculation ofthe capacity region requires explicit
knowledge of the statistics of the fading, including the slow fading.

Similar reasoning can be applied to the analysis of the delay-limited capacity of
frequency-selective fading channels, as defined in Section 6ofPart I. Under an assumption
that the product of the delay spread and the Doppler spread is small, one can look upon
the frequency-selective fading channel as a time-varying channel where at each fading
state, a frequency response is specified for each user, representing themultipath. Thus, it
can be viewed as a set of parallel channels, each one jointly specified by the fading state
and the frequency. In order to be delay-limited in this channel, each user can allocate
rates over the different frequencies but the total rate summed over the frequencies must
bethe same for each fading state. Thus, the resulting optimization problems are identical
to the one studied earlier for multiple time-scale fading processes, and hence the opti
mal power allocation for given delay-limited rates can be obtained from our theory. This
ability of being able to perform dynamic power allocation over different frequencies is an
advantage ofa wideband system over anarrowband system, especially for delay-sensitive
traffic.

7 Power Control for Sub-Optimal Systems

In the previous sections, we have focussed on optimal power control from an information
theoretic point of view. We will now demonstrate that the ideas can also be applied, in
a straightforward manner, to characterize optimal power control laws for situations when
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successive decoding is done but non-ideal single-user codes are used so that one is not
operating at information theoretic limits.

Consider the multi-access scenario with M users where the mth user has a desired
signal-to-interference ratio SIRofam. Here, the interference is thesum ofthebackground
noise (with power a2) and that caused by the users whose signals have not yet been
decoded. In general, the SIR requirement of a user depends on the coding scheme, the
data rate and the error probability requirement, but we assume that the SIR captures the
quality of service requirement of the user. We now ask what is theoptimal power control
law which maintains the SIR requirements of the users? Focus first on a time-invariant
multi-access Gaussian channel where user m has transmit power of Pm and path gain
hm. For a given successive decoding order w, let T(n,a,h) be the set of transmit power
vectors P = (Pl,..., PM) which can support the given SIR vector a = (au..., aM). It
is given by:

*(*, a,h) ={P : **-»P;*»> >am Vm}
Thus if successive decoding is used, the set oftransmit power vectors that can support a
given set of SIR requirements a is given by

\jT(7r,a,h) (18)
IT

Further, if we allow time-sharing between different successive decoding orders, then the
set of feasible power vectors is enlarged to the convex hull of (18). Call this polytope
T(h,a).

If we let Rm = |log(l + am), i.e. the single-user capacity that can be achieved with
a SIR of am, then we observe that the set P(h,a) is the same as

Q(h,R) = {P:ReCg(h,P)}

i.e. the set of transmit power vectors such that the rate vector R is in the multi-access
Gaussian capacity region. To see this, note that the only vertex of?(*, a,h) is the power
vector in which the SIR's of all users are satisfied with equality. This corresponds to the
vertex ofQ(h,R) where the successive decoding order is n. Thus, the polytopes F(h,a)
and Q(h, R) have the same set of vertices, and hence must be identical.

With this identification, we can now apply the machinery developed earlier to char
acterize the optimal power control law to maintain the SIR requirements at all times in
a fading channel, subject to transmit power constraints. We allow successive decoding at
each fading state, where both the order and the powers can vary with the fading states.
Using results in Section 3, we see that the optimal successive decoding order at fading
state h is in increasing £*, where Aare power prices independent of the fading state,
chosen to meet the average power constraints. (Ties can be broken arbitrarily.) For inde
pendent fading processes, the boundary of the set of feasible SIR's supportable by given
average power constraints iVs consists of vectors a satisfying:

<*< l°° Yi nj1 +ft (^) «*} fi(hi)dhi =Pi i=1,..., M
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for some power prices A. Finally, for a given set of SIR requirements and average transmit
power constraints, the algorithm given in Section 4 can be used to determine feasibility
and to compute a set of appropriate power prices if feasible.

8 Conclusions

In this paper we have shown that any point on the delay limited capacity region is achiev
able by solutions of "successive decoding type". Given a set of delay limited bit rates,
we have used a Lagrangian characterization of all the possible optimal power vectors to
get an explicit parameterization in terms of certain "power prices". Any such optimal
solution is obtained by choosing an appropriate set of power prices, and then solving a
family of power control problems over a set of parallel time-invariant Gaussian multiple-
access channels, one for each fading state. We have exploited the polymatroidal structure
of the multi-access Gaussian capacity region to provide a simple greedy solution to each
of these power control problems, despite the fact that there are an exponentially large
number of constraints. It is also shown that the Lagrange multipliers associated with
the power constraints (the power prices) can be computed by simple iterative procedures.
We have also addressed the issues of peak power constraints, and extensions of the delay
limited concept to multiple time scale fading processes, frequency selective fading and
sub-optimal coding schemes.

It is interesting to compare thestructure oftheoptimal schemes for achieving through
put capacities and those for achieving delay-limited capacities. While successive decoding
is optimal in both cases, the throughput-optimal schemes maintain the same decoding
order at all fading states. However, the rates of the users are dynamically adjusted de
pending on the state, and indeed it is possible that a user may be allocated no rate in
some states. For optimal delay-limited schemes, on the other hand, the rates are fixed at
all fading states, and the successive decoding order is adjusted to maintain those target
rates with the least power cost.
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Appendices

A Proof of Theorem 2.3

Let /(h) be the equilibrium probability density of being in fading state h. Without
loss of generality, assume that the fading of all users is bounded by 1. For each k, let
h ={0, £,§,..., 1}M be apartition of the fading state space [0,1]M.

First, suppose that R is in the interior of DhGnCg(h,V(h)) for some power control
policy V. Let user i generate a random codebook of 2RiT codewords of length T by
selecting each symbol at random from a AT(0,1) distribution. User i then transmits in
time n, the nth symbol of the appropriate codeword, scaled by y/Vi(H(n)). Such aset
of codewords then satisfies the power constraint P. Given this set of codebooks, let
p(T) be the conditional probability of decoding any user incorrectly, using maximum
likelihood decoding, under the assumption that the decoder is given the realization H =
(H(l), H(2),..., H(T)). For S a subset of {1,2,...,M}, let p(S, T) be the conditional
probability of decoding any user in 5 incorrectly, conditional on correctly decoding the
users in Sc. The union bound implies

p(T)<J2p(s,t)
s

As shown in Gallager [5],

P(S,T) < exp(PTR(S))Ylf(h)-
h

-ll+p

£ Qi(xi\h)p(y\x,h)1^^E £ Oi(xi|h)
y (shies' l(xi),ies

for any p > 0, where Q,(xt|h) is the conditional probability density of xt being the
codeword ofuser i, conditional on the fading being h. In our case, we obtain,

p(S,T) < 2/(h)-
h

T
exp \-p -rR^ +lEiogfi +^y""

2n=l V <72(1+P) ,

By assumption, 3c such that

VheH R(S)<log/\ +£'€5^(h)>)
Thus,

P(S, T) < exp(-pT(e - log(l + p))
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and hence

p(T) < exp(Mln2 - pT(e - log(l + p))) (19)

By taking p sufficiently small, we have e- log(l + p) > 0 and it follows that p(T) -> 0 as
T t oo. Moreover, we have in (19) a bound that decays in T at a rate independent of the
correlation structure of the fading process. It follows that R e Cd (P).

To prove the converse, suppose that R is an interior point of C<*(P). Recall that we
have partitioned the fading state space into cubes (Ej)f^. We consider a sequence of
Markov processes defined on ri of the following form. Consider a Markov chain on the
"coarse" states Ej with transition probabilities t(Ej,Ek). We use such a chain to define a
Markov process on ri: conditional on the chain being in coarse state E, we select a fading
state for the process by using the stationary distribution conditional on the fading being in
E. The process remains in this state for an exponential time r(E) = Exponential(A(E))
and then selects a new coarse state according to t. We assume that the Markov process
has the required stationary distribution on ri, by choosing appropriate (X(E))e^ih. By
scaling all X(Ej) by a constant, we can speed up or slow down the rate of fading whilst
retaining the required stationary distribution.

For each T = 1,2,..., let H(T) be such a fading process with the following properties.
We assume arandom variable H(0) on ri with the stationary distribution ofthe processes
we require. We assume all fading processes start with #(T)(0) = H(0), T =1,2,... The
initial sojourn time in state #(0) of fading H{T) is given by tt(H(0)), where tt(Ej) x
Exponential(rTA(£j)) and independent of H(0) for all j. The constant rT gives the

"rate of fading" for process H^T\ Let 8 be a fixed, positive constant. By choosing an
appropriate decreasing sequence (rr)f?=1, rT I 0, we can ensure that for all j,

P(VT,tt(Ej)>T)>1-5 (20)

Since R e Cd(P), we can choose for each T and each user i a code of size 2RiT which
we label X^T\n) n= 1,2,...,T for which the probability of error in channel H<r) goes
to zero with T. Let p(T) be the probability oferror for X<r> under fading H^T\ We note
that X(T> may be random; say, with dependence on H^T\ although we do not require this.
Let Q(E) be the subset ofthe sample space on which H(0) e E and VT, tt(E) > T. Let
Q be uniform on [0, T], and independent of all other variables. Define

V(E,T) = E[(X^)2(Q)\Q(E)]
W(E,T) = TE[(X{T))2(Q)\[H(0)eE]-n(E)}
Z(E,T) = V(E,T)P(VT,TT(E)>T\H(0)eE]

-rW(E,T)P(3T : tt(E) < T\H(0) e E)

Then the power constraint is that VT,

£/(£)Z(£,r)<P
E
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Byassumption(20),wehave

£/(£M£,T)<-i^ E

Takinglimitsalongaconvergentsubsequence,wehavethat

V(E,T)-*•V(E)asTtoo

Y,f(E)V(E)<P E1-S

NowletusdefineanewfadingprocessHby

H(n)=£/[H(0)e£]h(£)
E

whereh(E)istheuppercornerofthecubeE.NotethatconditionalonH(0),thefading
processisdeterministic.Letq(T\Sl(E))betheconditionalprobabilityoferrorforcode
JV(T)inthisnewfadingchannel,conditionalontheeventQ(E).Byconstruction,

P(T)>P(n(E))q(T\Q(E))

Byassumption,p(T)->0asTtoo,andhenceq(T\Q(E))-»0asTtoo.Butconditional
on£l(E),wehaveaaconstantfadingchannel,andasequenceofcodessatisfyingthepower
constraintV(E).ItfollowsthatforallEeh,ReCg(h(E),V(E)).

DefineTk,stobethosepowercontrolpoliciesthatsatisfythepowerconstraint737
andarepiecewiseconstantoneachcubicelementinIk.Set

Vk,s(h)=£V(E)I[heE]

andnotethatVk,s€Tk,&.ForanypowercontrolV,define

Cf\h,V(h))={R:R€Cg(Kk\V(h))}

whereh\k)=£[A:ht*|foralli=1,2,...,M.Wehaveshownthatforany8>0,

Vheft,ReCM(h,Vk,s(h))
Itfollowsthat

Reuv^knhenelk\h,v(h))(21)
whereTk=Tkfl.Nowbythefirstpartoftheproof,wehavethat

Ut>€^r)henCg(h,V(h))CUverC)henCg(h,V(h))CCd(P)
Wehaveshownin(21)that

^(P)cu^fcnh€Wcf(h,P(h))
Buttheselowerandupperboundsconvergeasktoo,andhence

Cd(P)=Uve^r\he7iCg(h,V(h))
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B Parameterization of Boundary of Capacity Re
gion

One unsatisfactory feature ofSection 3is that we are unable to provide an explicit param
eterization ofthe boundary surface ofCd(P). Theorem 3.5 suggests a parameterization of
the boundary surface by AG9£+ , and we discuss this further below.

The following lemma shows that for any Ae $% there is at least one R e $l¥ such
that (A,R) solves (10).

Lemma B.l Define zt- = exp(2Ri) - 1, and the transformation T by

Ti{x) =/<r xrMi+Fk(^)Xk)fi(h)dh
Then there exists a fixed point ofT

Proof. T is continuous, and

Pi0 < Ti(x) <
/o°° *Pdh

and hence Tis a mapping from n,[0, pfU)^] to itself. By the Brouwer fixed point
theorem, there exists a fixed point for T in this set. D

It follows that (10) has a solution in R for any positive A. Even if a closed-form
parameterization of Cd(P) is not possible, it would be useful to have a computational
procedure to find a solution to (10). Consider then the following algorithm, which we
might use to try and find such a solution:

x -> Tn(x). (22)

where x is the starting point of the algorithm, and Tn(x) is the nth iterate. It is easy to
show that T2 satisfies the monotonicity property of Section 4in Part I. Thus, ifThas a
unique fixed point then Tn(x) will converge to it from any starting point x. We leave the
problem of establishing the uniqueness of the fixed point of Topen. It is equivalent to
the following conjecture:

Conjecture 1 1. Given P, the mapping \i -> A(P,^) is invertible, implying that we
can parameterize the boundary surface ofCd(P) by Xe 9l¥.

2. Given Rm, the mapping X-» p.(R*,X) is invertible, implying that we can parameter
ize the boundary surface ofVd(Rm) by fie U1^.

We also conjecture that the analogous results hold in Part I; that is the maps A(P,//) and
p(Rm, A) are invertible in the throughput capacity case as well.
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