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Abstract

We presenta Monte Carlobasedstatistical approach to power estimation at the transistorlevel. While transis
tor level power estimation can be very accurate, for practical usage, it suffers from two disadvantages: large
runtimes, and pattern dependency. We proposea two-point approach to overcome these problems: A Monte

Carlobased technique is used to obtain pattern-independent, statistically meaningful estimate. A partitioning
for estimation strategy is proposed to speed-up the estimation by exploiting the multi-rate power dissipation

behavior of circuits and to improve modelling accuracy for circuits which are stiff from a power perspective.

The main contributions of this work are extension of transition density for 0-1 signals to a similar notion for

nodal waveforms, a divide-and-conquer approach to power estimation and a statistical modelling technique

for propagating information between partitions of a circuit.



1 Introduction

Power minimization is becoming very important for a number of reasons ranging from an increasing

demand for portable computingand telecommunication equipmentandthe problem of "hot chips" due to

increasing clock frequencies and device counts of ICs. Minimizing power dissipation of chips has an

impact not only on energy savings, but also helps createmore reliablechips.

Power estimation is essential to systematically guiding the design process to meet its power goals. In

the initial stages of the design, power estimation is required to obtain feedback about design decisions,

while in the later stages power estimation can be used to help identify potential hot spots in the design

beforeit is fabricated. The existing work on powerestimationcanbe classifiedunder threebroadclassesof

techniques: empirical techniques, probabilistic techniques and simulation based methods. Each of these

class of methods offers a different speed-accuracy trade-offs.

The main advantages of the empirical and probabilistic techniques is their short runtimes and input-

independence. The big drawback of these methods however is their lack of accuracy. The probabilistic

techniques use a stochastic model of logic signals of a circuit and propagatethe probabilitiesof logic val

ues through the combinationallogic modules in orderto compute the averageswitching rateof the circuit.

These methods trade-off accuracy for speed by ignoring spatio-temporal correlations between internal

node values. Methods which attempt to model these effects suffer from blow-ups in time and memory

requirements. Empirical techniques generallyuse variousstatistical measures of the circuit to calculatethe

power dissipation of the circuit based on simple models. Although these methods can be very fast, since

very little of the implementation details areaccounted for, the errors can be unacceptably high.

Characterizing a design for power requiresvery accurate estimation tools which can model all physical

effects in the device models (particularly so for submicron technology) and identify main sinks of power in

the design. Thus, while empirical and probabilistic techniques are useful in obtaining rough estimates of

power dissipation at early stages of the design, due to above disadvantages they are not suitable for very

accurate estimation.

The most direct approachofobtaining the power dissipation of a circuit is to use circuit simulators such

as HSPICE[6] to simulate the design [1][7]. While offering good accuracy, this approach suffers from the

drawback of large runtimes. Furthermore, this approach is strongly pattern-dependent since it requires

user-specified input stimuli for simulation. It is often impossible to obtain a large enough input pattern set

such that the power estimate is statisticallymeaningful. Even in cases where such inputs areavailable, it is

not easy to determine the size of the vector set required to obtain a meaningful estimate of the design

power dissipation in a typical operating environment. A digital design with n inputs canhave 2" possible

combinations at the primary inputs. For an analog design or when considering temporal correlations

between input values in different cycles in the digital case, the size of the possible input vector set would

increase exponentially. Clearly, it would be infeasible to perform exhaustive simulation of all possible

input combination to obtain a power estimate of the design. Thus we need a method for fast estimation



with a formal technique to limit the number of required input patterns.

In this work, we propose an approachto handle these problems that allows us to take advantage of the

high accuracyof circuit simulation based methods without compromising on runtimes or pattern indepen

dence. A Monte Carlobased approach is used to determinethe required input vector set and a divide-and-

conquer estimation approach is combined with a fast simulation technique to reduce runtimes.

We develop a stochastic model for power dissipation at the transistor level and apply this to set up a

Monte Carlo based power estimation process. The Monte Carlo approach consists of applying random

inputs to the system and monitoring its output. This is continued until a value of power is obtained with a

desired accuracy, at a specified confidence level. Any standard circuit simulator can be used to simulate

power dissipation within the Monte Carlo framework. We proposethe use of the stepwise equivalent con

ductance [10] based approach to best speed-up the power simulation without sacrificing any accuracy or

adding computational overhead/circuit modification [1].

To further speed-up the estimation process, we proposea divide-and-conquer approach to break down

the problem in sizes that become practically feasible for transistor-level simulation. Each sub-problem can

still be further partitionedto gain speed-ups in the circuit simulation process itself as in [11][ 12].The main

advantageof partitioning for estimation is that we can exploit the multi-rate behavior and stiffness of a cir

cuit from the power perspective. Depending upon the switching frequency at internalnodes, different parts

of the circuit may require different number of vectors to yield a statistically significant estimate of the

powerdissipation. Partitioning the circuit allowsus to use different input vector sets of appropriate size for

different partsof the circuit. This not only speeds-upthe estimation processby reducing computation, but

also improves the accuracyof the stopping criteria of the Monte Carlo estimation in case of circuits where

a single power dissipation model does not fit well.

We propose a statisticalmodel to propagate informationbetween partitions of a circuit This model can

also be used to bias the vector generation at the primary inputs when any user provided information about

external inputs is available.

This paperis organized as follows: In Section 2 we review the circuit simulationbackgroundrelevantto

the transistor level power estimation problem. In Section 3, we extend the concept of transition density to

obtaina similarmeasure for switching activity in analog waveforms. Section 4 presents some experimental

results and Section 5 concludes with a summary of this work.



2 Background

The process of powersimulation involves solving nonlinear, time-varying system of circuit equations.

In the following we briefly describe the simulation engine used in this estimation framework. This

approach speeds-up simulation by using the stepwise equivalent conductance model to approximate the

conductance of a nonlinear device by a constant equivalent conductance duringeachtime-step of the tran

sient simulation. This allows us to transform the nonlinear, time-varying system of circuit equations to a

linear, time-invariant systematevery time-point in transient simulation. This transformation eliminates the

time consuming Newton-Raphson iterations for implicit integration. Further speed-up is obtained by using

the piecewise linear approximation for voltage waveforms.

From the power simulation standpoint, the advantage of this approach is that the powercan be mea

sured directly (without introducing any additional powermeter circuitry [10]) by monitoring the conduc

tance and thevoltagewaveformduring eachtime-step. Using the constant equivalent conductance foreach

non-linear device and the piecewise linearity of the voltage waveforms, the power dissipation in a device

in one time-step hn, from tn to tn+\ is given by

pd =T-\ vmm))a =1 J §•Am =f- J[vcg+1•Jt \ 1dt (1)
n n n 0 •- "-'

where V(t) is the voltage across a device, !F(V(t)) is the time-varying current through a nonlinear

device, and Q is the constantstepwise equivalentconductance of the device duringthe time-step.

Nonlinear capacitors and inductors can be handled similarly. The power dissipation of the circuit is

obtainedby summing the average power dissipated for the simulation period over all nodes.



3 Proposed Approach

The Monte Carlo method is a technique based on performing sampling experiments on the model of a

system. It can be used not only for solution of stochastic problems, but also for solution of deterministic

problems which have the same formal expression as some stochastic process. In Section 3.1, we show how

the transistor-level power estimation problem exhibits this characteristic. Section 3.2 describes the set-up

of the resulting Monte Carlo problem and its stopping criteria. Section 3.3 presents a divide-and-conquer

estimation strategy, and Section 3.4 proposes a statistical modeling technique for propagating information

between each partitions in the divide-and-conquer approach.

3.1 A Measure of Switching Activity for Analog Waveforms

In general, the instantaneous power dissipationp(t)'m a MOS device can be represented as a polynomial

function/(f) of the analog voltage waveform at the drain-source nodes.

p{t)=KVds{t),Vgs{t)) (2)

We denote the total average power dissipated in the circuit during time interval (-772, T/2] as
1 fT/OPj = - _T/2p(t)dt. The average power dissipation Pavg is then given by

T/2 T/2

^avgW =Jim PT =Jim k f P^dt =£m I \ W (3)
-T/2 -T/2

In the following, we show how the power estimation problem can be reduced to a mean estimation

problem. We construct a companion stochastic process to/(f) and prove that this process is strict-sense sta

tionary (SSS) and mean-ergodic. The transformation to mean estimation will follow as a result.

We will denote the probability of an event A by Prob[A] and, if x is a random variable, we denote its

mean byE[x] and its distribution function by Fx(a) = T{x <a] . We assume that the values of the analog
waveforms are bounded by some arbitrary constantKv This is not a restrictiveconstraint for any real cir

cuit, and in any case, the power estimation problem is not well-defined in presence of unbounded node

voltages.

A stochastic process/(f) is said to be SSS if its statistical properties are invariant to a shift of the time

origin [15].This essentially means that the meanE\f(t)] of such a process is a constant and independentof

time (we will denote it by £[/]). By definition, a constant-mean stochastic process is said to be mean-

ergodic [15] if its time average tends to its constant-mean as T —» °°.

T/2

limj J f{t)dt =xE[f\ (4)
-T/2

where =\ is used denote convergence everywhere with probability 1.



Let xe (—*», oo) be arandom variable with the probability function Fx(t) = 1/2 for any finite f, Fx(-<»)
= 0, and FJ<*>) - 1. If FMf) is the uniform distribution over [-T/2, T/2], then lim FxT = Fx.Thus, one
might say that xisuniformly distributed over the whole real line f& We now use xto build from/(f), a sto
chasticprocess/(f), definedas follows:

Definition: Given a polynomial function/(f) of an analog signal, and a random variable x, uniformly
distributed over %, define a stochastic process/(f) called the companion process of fit) given by:

/M *#+*).

Proposition 1:Let/(f) be a polynomial function of an analog signal. If/(f) is the companion process
of/(f), then the following "convergence everywhere" results are true:

Til Til

lim I f j{t)dt = lim i f f{t)dt (5)
-T/2 -T/2

Proof: To prove (4), we need toshow that for any give finite Xj e 91, the difference

T/2 T/2

Km\ J/l'+V'-i J /to* (6)
-T/2 -T/2

tends to zero as T -»«». This can be written as

T/2+Xj 772 T/2+Xj -T/2+xx

Aa=^ J /W*"4 J/W*=^ J /W*-4 J >W# (7)
-T/2+Tj -T/2 T/2 -T/2

lXllSince /(f) <Kv, then IA I<Kv-=± must go to0 as T->«>. Since this is true for any xl e SR, then the
convergence is everywhere, in the sense that every value of x will lead to convergence.

Proposition 2: The companion process/(f) of a polynomial function/(f) of an analog signal is SSS

and mean-ergodic with

E\f\ = lim i f At)dt (8)
-T/l

Proof: At f = 0, we have E\f(0)] = E\f(x)]. An interesting property of x is that if a is a constant than

a+x has the same distribution as x. Indeed, if Fa+/l(t) is the distribution function of a+x, then Fa+T(t) =

(P{a + x < t} = T\x < t-a} = 1/2 = F^t). Therefore, since f+x and x are identically distributed, we

have E[/(f+x)] = £[/(x)], which means that /(f) is a constant-mean process with Zs[/(0)] = E\f(t)] =

£|/(x)] for any time f.

To prove mean-ergodicity, consider the random variable



i\T=f J f{t)dt (9)
-T/2

from (4), we have

T/2 T/2

lim n = lim I J flt)dt = lim I f #)«* (10)
-T/2 -T/2

where this convergence is everywhere. Therefore,

T/2

lim£[Ti ] = lim i f #)<& (11)
T->«» l T->ooT J

-T/l

By linearity of the expected value operator, this can be rewritten as

T/i th

lim i f E\f{t))dt = lim i f f{t)dt (12)
T-+00T J T-^ool J

-Tfl -Til

But E\f(t)] is a constant.Therefore, the left-handside of (11) is simplyE\f\, and mean-ergodicity fol

lows, with E\f\ given by (7).

Thus, using (3),

Pmt =E\f\ (13)

and the problem ofestimating Pmg isreduced to the task ofcomputing E\f\.

3.2 A Monte Carlo Approach to Transistor Level Power Estimation

The meanestimation problem corresponding to the powerestimation problem can be efficiently solved

by a Monte Carlo based approach involving monitoring simulation results overa length of time. Inorderto

estimate the expected value ofthe mean E\f\(= P^p, we observe Nsamples ofthe power dissipation pro
cess anduse theiraverage \i^as a pointestimate ofE\f\

h,-ji^*' (14)
In order to guarantee an error bound on this estimate |% with a certain confidence level, we need to

obtain aninterval estimate of1%. This requires determining the distribution u#.Ingeneral, this is a difficult
problem involving multiple convolutions, lb simplify it, weshall assume u# is normal. This is true if/is

normal.

Theorem 1 (Central Limit Theorem): LetXltX2,..., Xn be a random sample of size n from a popula
tion whose distribution has finite mean and variance u, and o2 respectively, and let X be the sample



mean. The random variable Z = JH(X - u)/chas as its limiting distribution as n-» °°, the standard
normal distribution.

Since Pj is the sum of power dissipations at the m devices in the circuit, under the above theorem, a

sufficient condition fornormality ofPj is thatmbe large, and powerdissipation in eachdevicebe indepen

dent. This is true under fairly general conditions irrespective of the individual distributions making upPy

[7]. In the context of power dissipation, this assumption is reasonable for the following reason:

In CMOS circuits, there are two components that contribute to power dissipation [3]: static dissipation

(due to leakage current) and dynamic dissipation (due to switching transient current and charging and dis

charging of load capacitance). Ideally, CMOS circuits dissipate no static power since in the steady state

there is no direct path from Vdd to ground. In practice, since the MOS transistor is not a perfect switch,

there are always leakage currents and substrateinjection currents, which give rise to a static component of

CMOS power dissipation. Since the substrate current reaches its maximum for gate voltages near 0.4V^

and since the gate voltages only reside in this rangeduringthe switching transients, the actualpower con

tribution of the substrate injection current is a function of the switching of gate-source voltage VGS of the

MOS device and is quite small [6]. Another sourceof staticpowerdissipation is sub-threshold currents of

the transistors. Again, this contribution is dependent on Vqs and is very small for current technologies.

Thus the static powerdissipation for eachMOS device in a static CMOS circuit is a strong function of the

corresponding Vqs. The dynamic powerdissipation of a circuit is proportional to the switching frequency

of its nodes. The power dissipation during one transition from low-high-low depends on the V& and Vgs
waveforms during the transition.

Thus, while power dissipation in each device in a circuit is a complex, non-linear function of many

parameters, it is primarily controlled by its terminal nodevoltage waveforms. Although nodevoltages may

belocally correlated, in alarge circuits under random inputs, there is verylittle correlation among arbitrary

node voltage pairs. Thus the Central Limit theorem canbe applied in the powerestimation context [2] dis

cusses asimilar proposition forlogic level power estimation. Experimental justification for thisassumption
and the validityof the stopping criterion whenthis assumption is violated are presented in Section 4.

Accordingly, suppose PT is normally distributed with amean \iand variance o2. Let u^be the observed
mean and s^ be the observed standard deviation from N simulations of the circuit, each of length T. The

parameters u, and o of thedistribution of Pj are unknown, and are estimated by jivand s#. Since u# is the
mean of N stochastically independent observations from anormally distributed population withparameters

Qi, a2), jN(}iN -u)/o is normally distributed with parameters (0,1). Since ais unknown, ifwe use the esti
mate sN instead ofo, then the variable jN(nN - \i)/sN has af-distribution with AM degrees of freedom.

Thus, the hypothesis u, =u# can betested by the f-test of significance. The critical region at the a level
of significance is now given by



I^-M^ l^-Mwl *«n*N
SN m vN hnJn

Thus for a specified percentage errore in power estimate, and a given confidence level (1-a), we must

simulate the circuit until (13) is satisfied.

*a/25/V

vnJh
<e (16)

The samples in aMonte Carlo method, asarule, are independent. We set-up the power estimation prob

lem as a Monte Carlo estimation problem by sampling the power dissipation of a circuit using a circuit

simulator. Random numbers are used at the primary inputs. These can be biased to reflect any additional

information provided by theuser. Independent samples are taken by allowing a settling timebetween two

samples as in [2].

3.3 Partitioning for Estimation

In thecontext of power estimation via simulation, it is important to note that while we want theaccu
racy that can only be provided by circuit simulation, the final aim is to obtain a power estimate, a scalar
quantity, outof the given system. Thus, wedo not need to preserve the waveform vectors at each internal
node of thecircuit as long as wecan extract statistically significant information about theswitching behav
ior. Motivated by this observation, wepropose apartitioning for estimation approach to speed-up the esti
mation process. This divide-and-conquer strategy is used to partition the estimation problem itself and is
independent of anycircuit partitioning usedto speed-up the simulation.

A big advantage of our divide-and-conquer approach is that we can model power dissipation in each
subcircuit separately. This allows usto exploit the multi-rate behavior and stiffness of acircuit form the
power perspective. Depending upon the node switching activity, different parts of the circuit may need dif
ferent number of node vectors to yield a statistically significant power estimate, hi general, avery active
node provides more information inthe sample ofagiven length than does aquiet node. Ifwe sampled the
entire circuit together, we would be constrained to use the maximum length input vector set required
among all node. By partitioning the design, we can use vector sets of appropriate length for each partition,
thus gaining an over-all speed-up.

Another benefit of partitioning is the improved accuracy in estimating power dissipation in circuits
where the normal distribution assumption of the previous section isnota good fit. In [2], it was observed
that many circuits have adouble normal distribution (a special case ofbimodal distribution where each of
the two distribution is normal). This can becaused by circuits which have different parts with widely dif
ferent power dissipation behavior or different functional modes with different power consumption. Our
approach can easily handle cases where different parts of the circuit have different behavior, since power
dissipation in anormal distribution can be fitted to each part separately.



We perform static circuit partitioning based on channel connected components to obtain a fine grain

partitioning of MOScircuits. (Inthecase of static CMOS circuits, thiswould correspond to partitioning the

circuit in simple logic gates). Since the granularity of this partitioning is very fine, we cluster together

many such components to obtain a few partitions covering the entire circuit. A Monte Carlo based

approach is used as before to perform statistical estimationof each cluster.

In theory, the numberof simulations required to guarantee a confidence level is only weakly dependent

on the circuit size [2]. However, in practice, the simulation time will strongly depend on the granularity

and quality of partitioning. Sincethe statistical estimate for each subcircuit is obtained by multipleruns of

simulation, signal correlations and all physical affects inside the subcircuit are accounted for in the esti

mate. However, signalcorrelations betweenpartitions are only weakly accounted for (via input biasing).

3.4 Information Propagation Between Partitions

The fanouts of a subcircuit can be fanins to other subcircuits in the design. Thus, the inputs to each sub-

circuit arenot independent random variables.This poses two problems: scheduling of partitions for Monte

Carlo estimation, and information propagation among partitions.

A cycle-free schedule is generated using a signal flow graph for the circuit with each partition repre

sented by a node in the graph. Selective trace algorithm [11] is used to schedule the partitions for Monte

Carlo estimation. Note that local feedback is not a problem as all tightly coupled nodes are clustered in the

same component. Global feedback can cause the signal flow graph to be cyclic. We solve this problem by

clustering the components forming a global cycle into one big partition. This is not a major constraint since

the number of partitions does not have to be very large.

We also need to account for the fact that inputs to a partition may be fanouts of other partitions in the

design. One solution would be to simply propagate the output waveforms of one partition to all its fanout

partitions. However, this would constraint that all partitions use the same number ofvectors, thus prohibit

ing us from exploiting the multi-rate behavior and stiffness of the circuit. To solve this problem we con

struct a statistical model to each output and use this model to generate samples of this signals as required

by the partitions it is fanning out to. We fit a normal distribution model to the analog signal waveforms at

the outputs. The mean is obtained by computing the area under the waveform and the variance is obtained

using this mean and the average waveform value during each clock cycle of the simulation. This model is

consistent with our initial conjecture that device (and consequently nodal) waveforms are distributed nor

mally. These parameters of normal distribution are then used to bias the input vector generation of the

fanouts of the subcircuit

Note that this approach does not account for spatiotemporal correlations between signals crossing sub-

circuit boundaries. This creates a trade-off between speed and accuracy. A very fine granularity partition

ing speeds-up the simulation process but can be inaccurate since the error cause by neglecting the

spatiotemporal correlations can dominate over the accuracy advantage gained by partitioning above; while



in absence of partitioning, the runtimes can be very high. Spatiotemporal correlations can be approxi

mately accounted by using pairwisecorrelations between signals to bias the input patterns generations for

such signals.
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4 Experimental Results

The algorithms outlined in this paper were implemented in a power estimation program called agni.

There is no constraint on the choice of the internal circuit simulation engine for the Monte Carlo sam

plings. In our implementation the SWEC circuit simulator was used since it provides good speed-ups at

demonstrated high accuracy [1][12], For the purpose of this benchmarking, we used a suite of industrial

circuits described in Table 1. The netlists were extracted from the layout of real designs using industry

ASIC cell libraries. We compare the power estimation results from agni against two metrics: direct circuit

simulation results using very long random input vector sets and vector sets with maximum switching at the

primary inputs. The first comparison is intended to demonstrate the accuracy of the proposed Monte Carlo

approachwhile the second comparison demonstrates the inadequacy of direct simulation in the absence of

Circuit Name #MOS Description

count32 174 32-bit counter

mux2bl6 214 1 bit2-to-l mux

ripple4 442 16 bit comparator

clal6 1200 16 bit carry look ahead adder

mult8 2691 8 bit Wallace tree multiplier

multl6 9778 16 bit Wallace tree multiplier

multpl6 11314 16 bit pipelined multiplier

ml6 6323 processor block

Table 1: Benchmark circuit descriptions

Circuit

Name

Steady State Power Dissipation Monte Carlo Estimation

% error#

vectors

runtime power

(mW)
#

vectors

runtime

(sec)
power

(mW)

count32 10000 19.20 hr 4.25 1857 12461.15 4.14 2.59

mux2bl6 10000 5.86 hr 190.11 103 261.22 189.77 0.18

ripple4 10000 33.17 hr 1587.28 468 2783.13 1665.31 4.91

clal6 10000 36.49 hr 795.46 80 1196.10 821.82 331

mult8 10000 26.06 hr 3951.45 48 1763.77 4118.40 4.22

multl6 2500* 46.46 hr 17888.04 38 6168.53 18404.70 2.81

multpl6 5000* 77.44 hr 13173.72 43 8028.01 13805.30 4.79

ml6
*

- - 297 44.84 hr 751.04 -

Table 2: Benchmark results for industry circuits (*: less than 10000 vectors due tocpu time constraints)
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Figure 3: Actual error forbenchmark circuits

a formal vector set selection process. The results were obtained on a DEC 5000 platform with a 24 Mbyte

main memory.

Table 2 contains the results of the statisticalpower estimator on the benchmark circuits. In the firstthree

columns, we present the runtime and power dissipation data for direct simulation of benchmark circuits

with 10000 vectors. This was used to represent the real power dissipation of the circuit since it is an aver

age of power dissipation over an extremely long simulation sample. The next three columns contain the

runtime and powerdissipation data from the Monte Carlo estimator. Forthese results, a5% error tolerance

with a 90% confidence interval was used to determine the stopping criteria. The last column contains

actualerrorin the Monte Carlo approachwhen comparedwith the 10000vector simulation with the above

stopping criteria. All errors were found to be within the required bounds. The results clearly indicate that

the stopping criteria predicts the error well, and indeed only a small set of vectors is required to obtain

power estimates with good accuracy. This can result in large runtime savings while meeting the errorspec

ifications of the user, and without compromising the confidence in the estimate.

Figures 1,2, and 3 further illustrate the effectiveness of the Monte Carlo approach. Figure 1 plots the

12
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Figure5: Predictedand actualerror for the 16-bit
carry look ahead adder

Figure 7: Predicted and actualerrorfor the 32 bit
counter

powerdissipationwaveforms for eachcircuitundertest All waveforms have been normalized with respect

to their final, steady state value tat the end of 10000 cycles. These waveform demonstrate that the power

dissipation asymptotically approaches its steady state value and numberof vectors required for a desired

accuracy can be predicted if a reasonable bound were available. Figures 2 and 3 represent the predicted

errorbound and the actual errorrelative to the steady state value. Clearly, the bound and stopping criteria

proposed in this work are conservative and valid.

One of the key assumptions in the derivation of the stoppingcriteria of the Monte Carlo estimatorwas

thatPf, the power dissipation in aclock cycle, is normally distributed. In Section 3 we indicated thatwhile

this cannot be proved theoretically, under most general conditions this is a good approximation. Figures

4,5,6 and 7 examine this assertion in more detail on two cases among our test circuits which are the best

andthe poorest fit for out normaldistribution assumption used to derive the stoppingcriteria.

Figure 4 compares the distribution of powerdissipation data from a 10000 vector random simulationof

a 16-bitcarry look ahead adder circuitwith a normaldistribution (with the mean and standard distribution

derived to fit the data). It can be seen that the normal distribution is indeed a good approximation to the

sampled data, lb further test our proposition on this example case, we applied the x2 Goodness-of-Fit test
[7] [16] to the simulation data. It was found that the null hypothesis thatPTis normally distributed satisfied

the x2 test with atype I error a of0.05. For this circuit the predicted error bound and the actual error are

13



Circuit

Name

power (uW)

Simulation for

maximum

switching at PI

Steady State
Dissipation

Monte Carlo

Estimation

count32 9.89 4.25 4.14

mux2bl6 687.25 190.11 189.77

ripple4 2702.15 1587.28 1665.31

clal6 1619.02 795.46 821.82

mult8 12154.30 3951.45 4118.40

multl6 54067.00 17888.04 18404.70

multpl6 42325.30 13173.72 13805.30

ml6 1871.33 - 751.04

Table 3: Comparison between directsimulation with worst case primary input
switching, and the statisticalapproach

plotted in Figure6. Clearly, the errorbound is a conservative, tight bound on the actualerror.

In Figure 6, we compare the distribution of powerdissipation data from a 10000vectorrandom simula

tion of a 32-bit counter with a normal distribution (with the mean and standard distribution derived to fit

the data). This circuithas five distinct modes depending upon which bit of the counter is high and clearly,

the normal distribution is a very poor approximation to the actual power dissipation. Even in this case, we

found that the predictederrorbound was a conservativebound on the actualerror(althoughnot as tight as

in the best fit case).

In general, it is possible that Pj is not normally distributed. [2] describessome such examples encoun

tered in logic level power estimation, and their effect on overall accuracy. We expect that at the transistor

level this effect would be even less pronounced due to the number of variables (nodal power dissipation)

being higher than at the logic level, thus causingthe total power dissipationto be better behaved from the

perspective of applying the Central Limit theorem as described in Section 3.

Table 3 compares the powerestimates from the Monte Carlo approach and the 10000vector direct sim

ulation to a direct simulation using a small vector set with the worst case switching at the primary inputs.

The resultsdemonstrate that if the inputs are not biased properly and/or the input vector set is not statisti

cally large enough,a simulation basedresultcanbe off the actual powerdissipation by as much as 300%.
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Figure 8: Runtime vs. err or trade-off as a function
of number of partitions: 16-bit 2-to-l mux

9(tCC)

Figure9: Runtime vs. err or trade-off as a function of
number of partitions: 8 bit Wallace multiplier

Figures 8 and 9 show the effect of varying the granularityof the partitioning for estimation on the accu

racy and runtime of the program. The results demonstrate that partitioning does speed-up the estimation

process. As mentioned in Section 3.3, since the statistical model used for information propagation between

partitions does not account for the spatiotemporal correlations, accuracy considerations may constrain the

number of partitions employed in this approach.
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5 Conclusions

Wehave applied a statistical approach to power estimation at the transistor level. While transistor level
power estimation can be very accurate, for practical usage, it suffers from two disadvantages: large runt

imes, and pattern dependency. We proposed a two-point approach to overcome these problems: we use a

Monte Carlo based method for estimation without requiring external input stimuli and a partitioning for

estimation approach to speed-up the estimation process.

In this work we have,

• extended the conceptof transitional density [14] (used at the gatelevel powerestimation [2]) to ana

log waveforms. We have shownthat a similar approach canbe adopted for power estimation at the

transistor level. Specifically, we have provedthat foreachdevice voltage variable, a companion sto

chasticprocess canbe constructed whichconverges to the device powerdissipation everywhere andis

strict-sense stationary and mean-ergodic.

• Developed a formal stopping criterionto guarantee a desired errorbound with a specified confidence

level, under the normal strobilation assumption. We demonstrated the validity of this approach with

experimental results and analyzed the implications of its violation.

• proposed the use of partitioning for estimation to speed-up the power estimation problem. We showed

that this approach can be used to exploit the multi-rate behavior and stiffness of a circuit from a power

perspective to reduce the number of vectors required for the estimation. We showed that this can also

improve the accuracy of the power estimate in cases of stiffcircuits (where a single normal distribu

tion may not be an appropriate model for the power dissipation of the entire circuit).

•presented a statistical approach for propagating signals and associated switching probabilities

between partitions. We fit a statistical model to the output waveforms of a subcircuit and use this

model to generate input patterns for all its fanout subcircuits.

Experimental results were presented on a set of CMOS industry circuits.
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