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Abstract

We present a Monte Carlo based statistical approach to power estimation at the transistor level. While transis-
tor level power estimation can be very accurate, for practical usage, it suffers from two disadvantages: large
runtimes, and pattern dependency. We propose a two-point approach to overcome these problems: A Monte
Carlo based technique is used to obtain pattern-independent, statistically meaningful estimate. A partitioning
for estimation strategy is proposed to speed-up the estimation by exploiting the multi-rate power dissipation
behavior of circuits and to improve modelling accuracy for circuits which are stiff from a power perspective.
The main contributions of this work are extension of transition density for 0-1 signals to a similar notion for
nodal waveforms, a divide-and-conquer approach to power estimation and a statistical modelling technique
for propagating information between partitions of a circuit.



1 Introduction

Power minimization is becoming very important for a number of reasons ranging from an increasing
demand for portable computing and telecommunication equipment and the problem of “hot chips” due to
increasing clock frequencies and device counts of ICs. Minimizing power dissipation of chips has an
impact not only on energy savings, but also helps create more reliable chips.

Power estimation is essential to systematically guiding the design process to meet its power goals. In
the initial stages of the design, power estimation is required to obtain feedback about design decisions,
while in the later stages power estimation can be used to help identify potential hot spots in the design
before it is fabricated. The existing work on power estimation can be classified under three broad classes of
techniques: empirical techniques, probabilistic techniques and simulation based methods. Each of these
class of methods offers a different speed-accuracy trade-offs.

The main advantages of the empirical and probabilistic techniques is their short runtimes and input-
independence. The big drawback of these methods however is their lack of accuracy. The probabilistic
techniques use a stochastic model of logic signals of a circuit and propagate the probabilities of logic val-
ues through the combinational logic modules in order to compute the average switching rate of the circuit.
These methods trade-off accuracy for speed by ignoring spatio-temporal correlations between internal
node values. Methods which attempt to model these effects suffer from blow-ups in time and memory
requirements. Empirical techniques generally use various statistical measures of the circuit to calculate the
power dissipation of the circuit based on simple models. Although these methods can be very fast, since
very little of the implementation details are accounted for, the errors can be unacceptably high.

Characterizing a design for power requires very accurate estimation tools which can model all physical
effects in the device models (particularly so for submicron technology) and identify main sinks of power in
the design. Thus, while empirical and probabilistic techniques are useful in obtaining rough estimates of
power dissipation at early stages of the design, due to above disadvantages they are not suitable for very
accurate estimation.

The most direct approach of obtaining the power dissipation of a circuit is to use circuit simulators such
as HSPICE[6] to simulate the design [1][7]. While offering good accuracy, this approach suffers from the
drawback of large runtimes. Furthermore, this approach is strongly pattern-dependent since it requires
user-specified input stimuli for simulation. It is often impossible to obtain a large enough input pattern set
such that the power estimate is statistically meaningful. Even in cases where such inputs are available, it is
not easy to determine the size of the vector set required to obtain a meaningful estimate of the design
power dissipation in a typical operating environment. A digital design with » inputs can have 2" possible
combinations at the primary inputs. For an analog design or when considering temporal correlations
between input values in different cycles in the digital case, the size of the possible input vector set would
increase exponentially. Clearly, it would be infeasible to perform exhaustive simulation of all possible
input combination to obtain a power estimate of the design. Thus we need a method for fast estimation



with a formal technique to limit the number of required input patterns.

In this work, we propose an approach to handle these problems that allows us to take advantage of the
high accuracy of circuit simulation based methods without compromising on runtimes or pattern indepen-
dence. A Monte Carlo based approach is used to determine the required input vector set and a divide-and-
conquer estimation approach is combined with a fast simulation technique to reduce runtimes.

We develop a stochastic model for power dissipation at the transistor level and apply this to setup a
Monte Carlo based power estimation process. The Monte Carlo approach consists of applying random
inputs to the system and monitoring its output. This is continued until a value of power is obtained with a
desired accuracy, at a specified confidence level. Any standard circuit simulator can be used to simulate
power dissipation within the Monte Carlo framework. We propose the use of the stepwise equivalent con-
ductance [10] based approach to best speed-up the power simulation without sacrificing any accuracy or
adding computational overhead/circuit modification [1].

To further speed-up the estimation process, we propose a divide-and-conquer approach to break down
the problem in sizes that become practically feasible for transistor-level simulation. Each sub-problem can
still be further partitioned to gain speed-ups in the circuit simulation process itself as in [11][12]. The main
advantage of partitioning for estimation is that we can exploit the multi-rate behavior and stiffness of a cir-
cuit from the power perspective. Depending upon the switching frequency at intemal nodes, different parts
of the circuit may require different number of vectors to yield a statistically significant estimate of the
power dissipation. Partitioning the circuit allows us to use different input vector sets of appropriate size for
different parts of the circuit. This not only speeds-up the estimation process by reducing computation, but
also improves the accuracy of the stopping criteria of the Monte Carlo estimation in case of circuits where
a single power dissipation model does not fit well.

We propose a statistical model to propagate information between partitions of a circuit. This model can
also be used to bias the vector generation at the primary inputs when any user provided information about
external inputs is available.

This paper is organized as follows: In Section 2 we review the circuit simulation background relevant to
the transistor level power estimation problem. In Section 3, we extend the concept of transition density to
obtain a similar measure for switching activity in analog waveforms. Section 4 presents some experimental
results and Section S concludes with a summary of this work.



2 Background

The process of power simulation involves solving nonlinear, time-varying system of circuit equations.
In the following we briefly describe the simulation engine used in this estimation framework. This
approach speeds-up simulation by using the stepwise equivalent conductance model to approximate the
conductance of a nonlinear device by a constant equivalent conductance during each time-step of the tran-
sient simulation. This allows us to transform the nonlinear, time-varying system of circuit equations to a
linear, time-invariant system at every time-point in transient simulation. This transformation eliminates the
time consuming Newton-Raphson iterations for implicit integration. Further speed-up is obtained by using
the piecewise linear approximation for voltage waveforms. "

From the power simulation standpoint, the advantage of this approach is that the power can be mea-
sured directly (without introducing any additional powermeter circuitry [10]) by monitoring the conduc-
tance and the voltage waveform during each time-step. Using the constant equivalent conductance for each
non-linear device and the piecewise linearity of the voltage waveforms, the power dissipation in a device
in one time-step A,,, from ¢, to ¢, is given by

A tu+l hn 2
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where V(2) is the voltage across a device, F(V(7)) is the time-varying current through a nonlinear
device, and G is the constant stepwise equivalent conductance of the device during the time-step.

Nonlinear capacitors and inductors can be handled similarly. The power dissipation of the circuit is
obtained by summing the average power dissipated for the simulation period over all nodes.



3 Proposed Approach

The Monte Carlo method is a technique based on performing sampling experiments on the model of a
system. It can be used not only for solution of stochastic problems, but also for solution of deterministic
problems which have the same formal expression as some stochastic process. In Section 3.1, we show how
the transistor-level power estimation problem exhibits this characteristic. Section 3.2 describes the set-up
of the resulting Monte Carlo problem and its stopping criteria. Section 3.3 presents a divide-and-conquer
estimation strategy, and Section 3.4 proposes a statistical modeling technique for propagating information
between each partitions in the divide-and-conquer approach.

3.1 A Measure of Switching Activity for Analog Waveforms

In general, the instantaneous power dissipation p(7)in a MOS device can be represented as a polynomial
function f{z) of the analog voltage waveform at the drain-source nodes.

p(t) = AV 4(1), Vo (1)) )

We 1c:lf:note the total average power dissipated in the circuit during time interval (-7/2, T/2] as
Pp = TJ‘T%Z p(t)dt. The average power dissipation P, is then given by
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In the following, we show how the power estimation problem can be reduced to a mean estimation
problem. We construct a companion stochastic process to f(#) and prove that this process is strict-sense sta-
tionary (SSS) and mean-ergodic. The transformation to mean estimation will follow as a result.

We will denote the probability of an event A by Prob{A} and, if x is a random variable, we denote its
mean by E[x] and its distribution function by F (a) = P{x <a} . We assume that the values of the analog
waveforms are bounded by some arbitrary constant K. This is not a restrictive constraint for any real cir-
cuit, and in any case, the power estimation problem is not well-defined in presence of unbounded node
voltages.

A stochastic process f(¢) is said to be SSS if its statistical properties are invariant to a shift of the time
origin [15]. This essentially means that the mean E[f(#)] of such a process is a constant and independent of
time (we will denote it by E[f]). By definition, a constant-mean stochastic process is said to be mean-
ergodic [15] if its time average tends to its constant-mean as T — oo,
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where =; is used denote convergence everywhere with probability 1.



Let Te (—eo, o) be arandom variable with the probability function Fe(f) = 1/2 for any finite ¢, F, (—)
=0, and F (o) = 1. If F(t) is the uniform distribution over [-T/2, T/2], then Tli_‘)““F‘:T = F,. Thus, one
might say that < is uniformly distributed over the whole real line X We now use t to build from f(¢), a sto-
chastic process f(t), defined as follows:

Definition: Given a polynomial function f(¢) of an analog signal, and a random variable t, uniformly
distributed over &, define a stochastic process f(#) called the companion process of f{(r) given by:
) =ft+1).

Proposition 1: Let f(¢) be a polynomial function of an analog signal. If f{¢) is the companion process
of f(?), then the following “convergence everywhere” results are true: '
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Proof: To prove (4), we need to show that for any give finite T, € R, the difference
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tends to zero as T — <=. This can be written as
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Since f{r) <K, then |A | <K, — l I must go to 0 as T — . Since this is true for any T, € R, then the
convergence is everywhere, in the sense that every value of © will lead to convergence.

Proposition 2: The companion process f{(z) of a polynomial function f{¢) of an analog signal is SSS
and mean-ergodic with

T2
Elf] = lim 1 J' Ay 8)
Proof: At ¢t = 0, we have E[f{0)] = E[f(tr)]. An interesting property of 1 is that if ¢ is a constant than
a+t has the same distribution as 1. Indeed, if F,(t) is the distribution function of a+1, then F,(t) =
P{a+1t<t}= P{t<t-a} = 1/2 = F(t). Therefore, since #+1 and 1 are identically distributed, we
have E[f(t++t)] = E[f(t)], which means that f{f) is a constant-mean process with E[f0)] = E[f(?)] =
E[f(z)] for any time ¢.

To prove mean-ergodicity, consider the random variable
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where this convergence is everywhere. Therefore,
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By linearity of the expected value operator, this can be rewritten as
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But E[f(1)] is a constant. Therefore, the lefi-hand side of (11) is simply E[f], and mean-ergodicity fol-
lows, with E[f] given by (7).

Thus, using (3),
Pm,8 = E[f] 13)

and the problem of estimating P, is reduced to the task of computing E[f].

3.2 A Monte Carlo Approach to Transistor Level Power Estimation

The mean estimation problem corresponding to the power estimation problem can be efficiently solved
by a Monte Carlo based approach involving monitoring simulation results over a length of time. In order to
estimate the expected value of the mean E[f](= P,;), we observe N samples of the power dissipation pro-
cess and use their average (y as a point estimate of E[f]

1 v
Ly = NX;(:, T, (14)

In order to guarantee an error bound on this estimate py with a certain confidence level, we need to
obtain an interval estimate of py. This requires determining the distribution py. In general, this is a difficult
problem involving multiple convolutions. To simplify it, we shall assume py is normal. This is true if fis
normal.

Theorem 1 (Central Limit Theorem): Let X, X,...., X,, be a random sample of size » from a popula-
tion whose distribution has finite mean and variance p and o? respectively, and let X be the sample



mean. The random variable Z = JITI(Y - w/o has as its limiting distribution as n — oo, the standard
normal distribution.

Since Py is the sum of power dissipations at the m devices in the circuit, under the above theorem, a
sufficient condition for normality of Py is that m be large, and power dissipation in each device be indepen-
dent. This is true under fairly general conditions irrespective of the individual distributions making up Pr
[7]. In the context of power dissipation, this assumption is reasonable for the following reason:

In CMOS circuits, there are two components that contribute to power dissipation [3]: static dissipation
(due to leakage current) and dynamic dissipation (due to switching transient current and charging and dis-
charging of load capacitance). Ideally, CMOS circuits dissipate no static power since in the steady state
there is no direct path from V44 to ground. In practice, since the MOS transistor is not a perfect switch,
there are always leakage currents and substrate injection currents, which give rise to a static component of
CMOS power dissipation. Since the substrate current reaches its maximum for gate voltages near 0.4Vyy
and since the gate voltages only reside in this range during the switching transients, the actual power con-
tribution of the substrate injection current is a function of the switching of gate-source voltage Vg of the
MOS device and is quite small [6]. Another source of static power dissipation is sub-threshold currents of
the transistors. Again, this contribution is dependent on Vg and is very small for current technologies.
Thus the static power dissipation for each MOS device in a static CMOS circuit is a strong function of the
corresponding V. The dynamic power dissipation of a circuit is proportional to the switching frequency
of its nodes. The power dissipation during one transition from low-high-low depends on the V4 and Ves
waveforms during the transition.

Thus, while power dissipation in each device in a circuit is a complex, non-linear function of many
parameters, it is primarily controlled by its terminal node voltage waveforms. Although node voltages may
be locally correlated, in a large circuits under random inputs, there is very little correlation among arbitrary
node voltage pairs. Thus the Central Limit theorem can be applied in the power estimation context. [2] dis-
cusses a similar proposition for logic level power estimation. Experimental justification for this assumption
and the validity of the stopping criterion when this assumption is violated are presented in Section 4.

Accordingly, suppose Pr is normally distributed with a mean y and variance ¢2. Let wy be the observed
mean and sy, be the observed standard deviation from N simulations of the circuit, each of length T. The
parameters p and o of the distribution of P7 are unknown, and are estimated by wy and sy. Since y is the
mean of N stochastically independent observations from a normally distributed population with parameters
(TR 02), ./IV (uy - w/o is nommally distributed with parameters (0, 1). Since ¢ is unknown, if we use the esti-
mate sy instead of o, then the variable J/N(uy - p)/sy has a t-distribution with N-1 degrees of freedom.

Thus, the hypothesis i = y can be tested by the #-test of significance. The critical region at the o level
of significance is now given by
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Thus for a specified percentage error € in power estimate, and a given confidence level (1-o), we must
simulate the circuit until (13) is satisfied.

ta,zsN
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The samples in a Monte Carlo method, as a rule, are independent. We set-up the power estimation prob-
lem as a Monte Carlo estimation problem by sampling the power dissipation of a circuit using a circuit
simulator. Random numbers are used at the primary inputs. These can be biased to refiect any additional
information provided by the user. Independent samples are taken by allowing a settling time between two
samples as in [2].

3.3 Partitioning for Estimation

In the context of power estimation via simulation, it is important to note that while we want the accu-
racy that can only be provided by circuit simulation, the final aim is to obtain a power estimate, a scalar
quantity, out of the given system. Thus, we do not need to preserve the waveform vectors at each intemnal
node of the circuit as long as we can extract statistically significant information about the switching behav-
jor. Motivated by this observation, we propose a partitioning for estimation approach to speed-up the esti-
mation process. This divide-and-conquer strategy is used to partition the estimation problem itself and is
independent of any circuit partitioning used to speed-up the simulation.

A big advantage of our divide-and-conquer approach is that we can model power dissipation in each
subcircuit separately. This allows us to exploit the multi-rate behavior and stiffness of a circuit form the
power perspective. Depending upon the node switching activity, different parts of the circuit may need dif-
ferent number of node vectors to yield a statistically significant power estimate. In general, a very active
node provides more information in the sample of a given length than does a quiet node. If we sampled the
entire circuit together, we would be constrained to use the maximum length input vector set required
among all node. By partitioning the design, we can use vector sets of appropriate length for each partition,
thus gaining an over-all speed-up.

Another benefit of partitioning is the improved accuracy in estimating power dissipation in circuits
where the normal distribution assumption of the previous section is not a good fit. In [2], it was observed
that many circuits have a double normal distribution (a special case of bimodal distribution where each of
the two distribution is normal). This can be caused by circuits which have different parts with widely dif-
ferent power dissipation behavior or different functional modes with different power consumption. Our
approach can easily handle cases where different parts of the circuit have different behavior, since power
dissipation in a normal distribution can be fitted to each part separately.



We perform static circuit partitioning based on channel connected components to obtain a fine grain
partitioning of MOS circuits. (In the case of static CMOS circuits, this would correspond to partitioning the
circuit in simple logic gates). Since the granularity of this partitioning is very fine, we cluster together
many such components to obtain a few partitions covering the entire circuit. A Monte Carlo based
approach is used as before to perform statistical estimation of each cluster.

In theory, the number of simulations required to guarantee a confidence level is only weakly dependent
on the circuit size [2]. However, in practice, the simulation time will strongly depend on the granularity
and quality of partitioning. Since the statistical estimate for each subcircuit is obtained by multiple runs of
simulation, signal correlations and all physical affects inside the subcircuit are accounted for in the esti-
mate. However, signal correlations between partitions are only weakly accounted for (via input biasing).

3.4 Information Propagation Between Partitions

The fanouts of a subcircuit can be fanins to other subcircuits in the design. Thus, the inputs to each sub-
circuit are not independent random variables. This poses two problems: scheduling of partitions for Monte
Carlo estimation, and information propagation among partitions.

A cycle-free schedule is generated using a signal flow graph for the circuit with each partition repre-
sented by a node in the graph. Selective trace algorithm [11] is used to schedule the partitions for Monte
Carlo estimation. Note that local feedback is not a problem as all tightly coupled nodes are clustered in the
same component. Global feedback can cause the signal flow graph to be cyclic. We solve this problem by
clustering the components forming a global cycle into one big partition. This is not a major constraint since
the number of partitions does not have to be very large.

We also need to account for the fact that inputs to a partition may be fanouts of other partitions in the
design. One solution would be to simply propagate the output waveforms of one partition to all its fanout
partitions. However, this would constraint that all partitions use the same number of vectors, thus prohibit-
ing us from exploiting the multi-rate behavior and stiffness of the circuit. To solve this problem we con-
struct a statistical model to each output and use this model to generate samples of this signals as required
by the partitions it is fanning out to. We fit a normal distribution model to the analog signal waveforms at
the outputs. The mean is obtained by computing the area under the waveform and the variance is obtained
using this mean and the average waveform value during each clock cycle of the simulation. This model is
consistent with our initial conjecture that device (and consequently nodal) waveforms are distributed nor-
mally. These parameters of normal distribution are then used to bias the input vector generation of the
fanouts of the subcircuit.

Note that this approach does not account for spatiotemporal correlations between signals crossing sub-
circuit boundaries. This creates a trade-off between speed and accuracy. A very fine granularity partition-
ing speeds-up the simulation process but can be inaccurate since the error cause by neglecting the
spatiotemporal correlations can dominate over the accuracy advantage gained by partitioning above; while



in absence of ‘partitioning, the runtimes can be very high. Spatiotemporal correlations can be approxi-
mately accounted by using pairwise correlations between signals to bias the input patterns generations for
such signals.
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4 Experimental Results

The algorithms outlined in this paper were implemented in a power estimation program called agni.
There is no constraint on the choice of the internal circuit simulation engine for the Monte Carlo sam-
plings. In our implementation the SWEC circuit simulator was used since it provides good speed-ups at
demonstrated high accuracy [1][12]. For the purpose of this benchmarking, we used a suite of industrial
circuits described in Table 1. The netlists were extracted from the layout of real designs using industry
ASIC cell libraries. We compare the power estimation results from agni against two metrics: direct circuit
simulation results using very long random input vector sets and vector sets with maximum switching at the
primary inputs. The first comparison is intended to demonstrate the accuracy of the proposed Monte Carlo
approach while the second comparison demonstrates the inadequacy of direct simulation in the absence of

Circuit Name | #MOS Description
mux2b16 214 1 bit 2-to-1 mux
ripple4 442 16 bit comparator
clalé 1200 16 bit carry look ahead adder
mult8 2691 8 bit wallace tree multiplier
multl6 9778 16 bit wallace tree multiplier
multpl6 11314 16 bit pipelined multiplier
mlé 6323 processor block

Table 1: Benchmark circuit descriptions

Steady State Power Dissipation Monte Carlo Estimation

Circuit # runtime power # runtime power % error

Name vectors (mW) vectors (sec) (mW)
mux2b16 10000 5.86 hr 190.11 103 261.22 189.77 0.18
ripple4 10000 33.17hr 1587.28 468 2783.13 1665.31 491
clal6 10000 36.49 hr 795.46 80 1196.10 821.82 331
mult8 10000 26.06 hr 3951.45 48 1763.77 411840 422
mult16 2500° 46.46 hr 17888.04 38 6168.53 18404.70 281
multp16 5000° 7744hr | 13173.72 43 8028.01 | 1380530 4.79
m16 - - - 297 44.84 hr 751.04 -

Table 2: Benchmark results for industry circuits (*: less than 10000 vectors due to cpu time constraints)

11
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Figure 1: Normalized power dissipation of benchmark circuits
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a formal vector set selection process. The results were obtained on a DEC 5000 platform with a 24 Mbyte
main memory.

Table 2 contains the results of the statistical power estimator on the benchmark circuits. In the first three
columns, we present the runtime and power dissipation data for direct simulation of benchmark circuits
with 10000 vectors. This was used to represent the real power dissipation of the circuit since it is an aver-
age of power dissipation over an extremely long simulation sample. The next three columns contain the
runtime and power dissipation data from the Monte Carlo estimator. For these results, a 5% error tolerance
with a 90% confidence interval was used to determine the stopping criteria. The last column contains
actual error in the Monte Carlo approach when compared with the 10000 vector simulation with the above
stopping criteria. All errors were found to be within the required bounds. The results clearly indicate that
the stopping criteria predicts the error well, and indeed only a small set of vectors is required to obtain
power estimates with good accuracy. This can result in large runtime savings while meeting the error spec-
ifications of the user, and without compromising the confidence in the estimate.

Figures 1, 2, and 3 further illustrate the effectiveness of the Monte Carlo approach. Figure 1 plots the

12
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power dissipation waveforms for each circuit under test. All waveforms have been normalized with respect
to their final, steady state value tat the end of 10000 cycles. These waveform demonstrate that the power
dissipation asymptotically approaches its steady state value and number of vectors required for a desired
accuracy can be predicted if a reasonable bound were available. Figures 2 and 3 represent the predicted
error bound and the actual error relative to the steady state value. Clearly, the bound and stopping criteria
proposed in this work are conservative and valid.

One of the key assumptions in the derivation of the stopping criteria of the Monte Carlo estimator was
that P, the power dissipation in a clock cycle, is normally distributed. In Section 3 we indicated that while
this cannot be proved theoretically, under most general conditions this is a good approximation. Figures
4,5,6 and 7 examine this assertion in more detail on two cases among our test circuits which are the best
and the poorest fit for out normal distribution assumption used to derive the stopping criteria.

Figure 4 compares the distribution of power dissipation data from a 106000 vector random simulation of
a 16-bit carry look ahead adder circuit with a normal distribution (with the mean and standard distribution
derived to fit the data). It can be seen that the normal distribution is indeed a good approximation to the
sampled data. To further test our proposition on this example case, we applied the x2 Goodness-of-Fit test
[71(16] to the simulation data. It was found that the null hypothesis that P is normally distributed satisfied
the x2 test with a type I error o of 0.05. For this circuit the predicted error bound and the actual error are

13



power (LW)
%};ﬁ::t Simulation for | Steady State | Monte Carlo
maximum Dissipation Estimation
switching at PI
count32 9.89 425 4.14
mux2b16 687.25 190.11 189.77
ripple4 2702.15 1587.28 1665.31
clalé 1619.02 79546 821.82
mult8 12154.30 395145 411840
multl6 54067.00 17888.04 18404.70
multpl6 4232530 13173.72 13805.30
m16 1871.33 - 751.04

Table 3: Comparison between direct simulation with worst case primary input
switching, and the statistical approach

plotted in Figure 6. Clearly, the error bound is a conservative, tight bound on the actual error.

In Figure 6, we compare the distribution of power dissipation data from a 10000 vector random simula-
tion of a 32-bit counter with a normal distribution (with the mean and standard distribution derived to fit
the data). This circuit has five distinct modes depending upon which bit of the counter is high and clearly,
the normal distribution is a very poor approximation to the actual power dissipation. Even in this case, we

found that the predicted error bound was a conservative bound on the actual error (although not as tight as
in the best fit case). '

In general. it is possible that Py is not normally distributed. [2] describes some such examples encoun-
tered in logic level power estimation, and their effect on overall accuracy. We expect that at the transistor
level this effect would be even less pronounced due to the number of variables (nodal power dissipation)
being higher than at the logic level, thus causing the total power dissipation to be better behaved from the
perspective of applying the Central Limit theorem as described in Section 3.

Table 3 compares the power estimates from the Monte Carlo approach and the 10000 vector direct sim-
ulation to a direct simulation using a small vector set with the worst case switching at the primary inputs.
The results demonstrate that if the inputs are not biased properly and/or the input vector set is not statisti-
cally large enough, a simulation based result can be off the actual power dissipation by as much as 300%.

14
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Figures 8 and 9 show the effect of varying the granularity of the partitioning for estimation on the accu-
racy and runtime of the program. The results demonstrate that partitioning does speed-up the estimation
process. As mentioned in Section 3.3, since the statistical model used for information propagation between
partitions does not account for the spatiotemporal correlations, accuracy considerations may constrain the
number of partitions employed in this approach.
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5 Conclusions

We have applied a statistical approach to power estimation at the transistor level. While transistor level
power estimation can be very accurate, for practical usage, it suffers from two disadvantages: large runt-
imes, and pattern dependency. We proposed a two-point approach to overcome these problems: we use a
Monte Carlo based method for estimation without requiring external input stimuli and a partitioning for
estimation approach to speed-up the estimation process.

In this work we have,

« extended the concept of transitional density [14] (used at the gate level power estimation [2]) to ana-
log waveforms. We have shown that a similar approach can be adopted for power estimation at the
transistor level. Specifically, we have proved that for each device voltage variable, a companion sto-
chastic process can be constructed which converges to the device power dissipation everywhere and is
strict-sense stationary and mean-ergodic.

« Developed a formal stopping criterion to guarantee a desired error bound with a specified confidence
level, under the normal strobilation assumption. We demonstrated the validity of this approach with
experimental results and analyzed the implications of its violation.

« proposed the use of partitioning for estimation to speed-up the power estimation problem. We showed
that this approach can be used to exploit the multi-rate behavior and stiffness of a circuit from a power
perspective to reduce the number of vectors required for the estimation. We showed that this can also
improve the accuracy of the power estimate in cases of stiff circuits (where a single normal distribu-
tion may not be an appropriate model for the power dissipation of the entire circuit).

e presented a statistical approach for propagating signals and associated switching probabilities
between partitions. We fit a statistical model to the output waveforms of a subcircuit and use this
model to generate input pattemns for all its fanout subcircuits.

Experimental results were presented on a set of CMOS ixidustry circuits.
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