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Abstract

Due to the strong experimental evidence that the traffic to be offered to future
broadband networks will display long - range dependence, it is important to examine
in more detail the possible implications that these new traffic sources may have on the
design and performance of networks. In particular, one important question is whether
the offered traffic preserves its long - range dependent nature after passing through the
policing mechanism at the interface of the network. One of the proposed solutions for
flow control in the context of the emerging ATM standard is the so-called leaky bucket
scheme. In this note we consider a leaky bucket system with long - range dependent
input traffic. We examine the departure process of the system and show that it, too,
is long - range dependent for any token buffer size and any finite cell buffer size.

1 Introduction - Problem Formulation

Recent experimental studies of traffic to be carried by broadband networks have pointed
out the possible importance of analyzing the performance of communication networks using
traffic models with long - range dependence. Long - range dependence in network traffic has
been reported, for instance, in [4], where statistical analysis of measurements of Ethernet
traffic at Bellcore demonstrated its self - similar nature; in [2] long - range dependence has
been established in variable bit rate video traffic generated by a number of different codecs;
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and in [6] the presence of long - range dependence in TELNET and other wide area network
traffic was concluded.

Dueto the strong experimental evidence that the traffic to be offered to future broadband
networks will display long- range dependence, it is important to examine in more detail the
possible implications that these new traffic models may haveon the design and performance
of networks. In particular, one important question is whether the offered traffic preserves its
long - range dependent nature after passing through the policing mechanism at the interface
of the network. One of the proposed solutions for flow control in the context of the emerging
ATM standard is the so-called leaky bucket scheme which is shown schematically in Figure
1. Fixed - size cells arrive in a buffer of size B < oo. The departure of cells from the
buffer is controlled by tokens that are stored in a buffer of fixed size C. An arriving cell can
be transmitted only if it finds a token in the token buffer, in which case it is transmitted
instantaneously by consuming a token. If the token buffer is empty, the cellhas to wait for the
generationof a new token. Time is assumed to be discrete and exactly one token is generated
at the beginning of each unit of time. A stored cell is transmitted immediately upon the
generation of a new token. Moreover, the outgoing capacity of the link is assumed to be at

cell arrivals

token arrivals

t
token buffer

\

~~

cell departures

cell buffer

Figure 1: The leaky bucket scheme.

least C, so that it imposes no limitations on the number of cells that can be transmitted
instantaneously.

We assume that the cell arrival process belongs to a class of discrete - time long - range
dependent traffic models which includes as a special case the one proposed in [5]. In an
arrival model of this class a number of sessions are initiated at the beginning of each unit of
time, which is a Poisson random variable with parameter A. Each of those sessions consists
of a random number r of cells which has finite mean, infinite variance and a regularly varying
tail, i.e. P(t > k) ~ k~aL(k), where 1 < a < 2 and L(-) is a slowly varying function. Once
a session is initiated, it generates one cell at the beginning of each unit of time until its



termination.

In [7] it was shown that the departure process of a leaky bucket system with long - range
dependent input traffic is long - range dependent in the case of infinite cell buffer size B.
However, since it is sometimes argued that in real communication networks the finite size of
the buffers will drastically reduce the importance of the long - range dependent behaviour
of the sources, it is important to investigate the case of finite cell buffer size as well. Thus,
in this note we consider a leaky bucket system with finite cell and token buffer size B and C
respectively, fed by an arrival process having a long - range dependent behaviour as discussed
above. We examine the departure process of the system and show that it, too, is long - range
dependent.

2 Statement of Results

We first examine the departure process in the case C = 1 for any B > 0. In this case the
leaky bucket system is equivalent to a single - server queue that is served at a constant rate
equal to one cell per unit time. We prove the following:

Lemma 1. The departure process of the leaky bucket system in the case C = 1 is long -
range dependent for any cell buffer size B.

Proof

We recall that a necessary and sufficient condition for a stationary second-order stochastic
process to be long - range dependent is that the sum of the absolute values of its covariances
be infinite, i.e.

£ IKm) |= oo, (1)
m=l

where r(77i) the covariance function of the process.
Ifwe denote the departure process by {dP,B\k)}, then it isobvious that SlfB\k) £ {0,1}, Vk.
Let Prob(d^B\k) = 1) = Pbusy < 1 and Prob(d^B\k) = 0) = pidle in stationarity. It is
obvious then that E[d^1,B\k)] = pbuay in the stationary regime. The covariance of the de
parture process is:

r^B\m) = E[(d^-B\k) - p^^S^k + m) - pbusy))
= Pl.yP(^BKk + m) = 0, <*<"•*>(*) = 0)

-P*„(l -P^,)P(^B\k + m) = 0,^-B\k) = 1)
-PW(1 - p^)P^\k + m) = l,d<l'B>(fc) = 0)
+(1 - PU„)2P(^B)(k + m) = 1, d<'-B»(fc) = !)•

If we define PE = P(<f(1,B)(fc + m) = i\ d<1,B'(fc) = j), we get from the above relation:

r<I'B)(m) = pl,y{l - P6„s|,)PoTo " PLvU " P^y)PS\i



~Pbusy0- —Pbusy) P?\o +Pbusy(1 ~ Pbusy) Pyfi
= Pbusy(1 —Pbusy)(Po\Q - PS\l) (2)
= PbusyO- - Pbusy)(Pi\i - Pt\o) (3)

In the above we used the fact that P$Q + Ptf0 = P0?i + A?i = L From equation (2) &is
obvious that r<1,B)(m) is positive, since 0 < pbusy < 1 and JJjj, > Pfi^ which can be easily
seen from the definition of J^jJ.

We will henceforth refer to cellsbelongingto sessions that have been initiated at or before
time k as cells of type 1, while cells belonging to sessions that arrived after time k will be
referred to as cells of type 2. Assume that beginning at time k + 1 priority is given to cells
of type 2 over cells of type 1 in the case that SltB\k) = 1 (obviously if d^1,B\k) = 0, then
there are no cells of type 1 after time k). If at some point there are no cells of type 2 in the
system, then the service of any remaining cells of type 1 may be resumed. Since the arrival
process after time k + 1 is independent of the past, we may assume that it is pathwise the
same for both the initially active systemwith &ltB)(k) = 1 and the initially idle system with
d(1,B)(k) = 0. Then it follows easily that we get the following relation:

1|1 ~ M|0 —

P{diltB)(k + m) = 1 and the cell departing at k-rmis of type 1 | d{1'B)(k) = 1}
(4)

Thus, according to the above discussion in order to show that the departure process is long
- range dependent, it suffices to show that

oo

53 P{d^1,B\k +m) = l and the cell departing at k+ m is of type 1 | d^1,B\k) = 1} = oo
m=l

(5)
Let Sk denote the set of sessions present in the system at time k and let X{, i € ,S*

denote the number of cells belonging to session i that arrive in the system after time k. We

define X = maxl€5le{X1}. Also let A\ti denote the event that the cell departing at time / is
of type 1. Then using the above definitions we may write:

f; Pi^^k+m) =1and AlMm |dW(k) =1}
171=1

OO OO

= E £^{<*(1'B)(* +m) = 1and A1Mm \ X = l,dP*\k) = 1} •P{X = / | S^B\k) = 1}
m=l /=0

=£ P{X =/1 d^B\k) =l}E[Nltk |X=/, d^B\k) =1] (6)
1=0

where iVi^ denotes the number of cells of type 1 that get released after time k. We now
use the following coupling argument: Consider a second identical leaky bucket system with
token buffer size C = 1 and cell buffer size i?, that is driven by an arrival process that is



independent of and identically distributed to the arrival process of the original system up
to and including time k. Starting at k + 1 the part of the arrival process that consists of
sessions that are generated at or after time k + 1 is assumed to be pathwise the same for
both systems. Of course, since the arrival processes in the two systems were independent for
times prior to fc + 1, it is obvious that the part of the arrival process that consists of cells
belonging to sessions which were generated before time k + 1 will in general be different. In
what follows we will refer to the cells which belong to sessions that were generated before or
at time k in the second system as cells of type 3. Note that the cells of type 2 - as defined
above - are common in both systems. It should also be pointed out that, by its definition,
the second system is in stationarity at all times. Finally, we assume that after time k we
have the service discipline described above, i.e. cells of type 2 are given priority over cells of
type 1 and 3 in the first (original) and second system respectively. Thus, at any time instant
fc + h i > 0 we may have only one of the following cases:
- There is no departure in any of the systems (case 0).
- A cell of type 1 departs in the original system and there is no departure in the second
system (case 1).
- There is no departure in the original system and a cell of type 3 departs in the second
system (case 2).
- A cell of type 1 departs in the original system and a cell of type 3 departs in the second
system (case 3).
- A cell of type 2 departs in both systems (case 4).
We denote the events corresponding to the cases 0, 1, 2, 3 and 4 as 000), 10(^), 030), 130)
and 22(j) respectively. Using those results we may write:

E[Nltk |X=l^B\k) =1] =£[£(1(1000) +l(13(i))) |X=l,Sl*\k) =1]
3=1

> £[£(1(100)) +l(13(i))) IX = l,dP*\k) = 1]
i=i

>E[J2l(10(j))\X =l,dW(k) =l]
i=l

= E[l - E(l(03(i)) +1(130)) +l(22(i))) IX = l,Sl>B\k) = 1] (7)

where in the above 1(A) is the indicator function of the event A. In the last equation we
used the fact that given X = /, there is always a departure in the original system between k
and k + /. Since the second system is in stationarity despite the conditioning, we have that

£[£(1(030)) +1(130")) +1(220))) |X = /, d^B\k) = 1] = pb^yl (8)

where we used the fact that the union of the events in the summation is the event that at



some time instant there is a departure in the second system. Thus we get:

E{Nu, IX = /, d(1'B)(*) = 1] > ft*/ (9)

From (6) using this result we obtain:

f; P{dP-B\k +m) =1and A1Mm |Sl'B\k) =1} > pule f) /•P{* =/|*»•»>(*) =1}
m=l /=0

= **ltP{X>l\#'B>(k) =l}
/=1

> Puuf^P{X>t} (10)
/=i

Let x*(m) denote the number of sessions starting at time k that are active during slot
k + m, m > 1. Since the number of sessions generated at any time instant is Poisson with
parameter A and the durations of sessions are independent of each other, we get that X*(m)
is a Poisson random variable with parameter Agm+i, with qj = Prob{r > i}, where r is the
generic random variable that denotes the duration of a session. If we define ujk(m) to be the
total work brought in during slot k + m, m > 1 by sessions that started at or prior to fc, we
have that

k oo

wjk(m) = £ Xn{k + m-n)= £ XM-m-n(n) (11)
n=—oo n=m

Since the variables x*(m) are independent for different values of A:, we get that u*(m) is
a Poisson random variable with parameter A53!J=m+i 9n- We now note that P{X > 1} =
P{uk(l) > 1} so that we get

P{X >1} =1- exp(-A f) fc) (12)
n=/+l

We recallthat qn ~ n~°Z/(n), where 1 < a < 2 and L(-) is a slowly varying function. Further,
since Et < oo, we have that EJJLi+i <7n —> 0 as / —* oo, so that A]££l/+i qn < 1 for all / > L,
for some X < oo. Note also that 1 —ex > § for 0 < x < 1. Hence:

fm>'} > E[l-exp(-A £ «„)]
/=1 /=L n=/+l

1 CO CO

zf=Ln=/+l

= 5 E (n - L)qn (13)
Z n=/+l

Since gn ~ n"aL(n)i we have that (n —L)qn ~ n~a+1L(n). From [3], Proposition 1.3.6, part
(v), page 16, we have that for any e > 0, ncL(n) —• oo as n —*• oo. Choosing e > 0 such that



1 - a - e > -1, we see that (n - L)qn ~ n~a+1L(n) = n~a^l~cntL(n) > n"1 for all large
enough n, so that

EP{X>1} = 00 (14)
/=1

from which we conclude that the departure process is long-range dependent. •

We will now consider the general case of C > 1. In accordance with the notation used
above we denote by {d^c,B\k)} the departure process ofthe leaky bucket system in the case
that the token buffer size is C and the cell buffer size is B. We will first prove the following:

Lemma 2. For every sample path of the arrivalprocess the following inequalities hold:

,*«*A>(jb) + d<*A>(* + 1) + ... + a<c^\k + m)
< dSc*>B*\k) + dV»B*\k + 1) + ... + df&M(k -r m) + (C2 - Ci), (15)

<J<Ci A)(]fc) + d<c» A>(* + X) + _ + jCdA)^ + m)
> <f<c»B>>(A:) + d<c»B2>(A: + 1) + ... + dV»B>\k + m) - (C2 - Ci), (16)

/or Ci + Bi = B2 + C2 and C\ < C2 andfor any selection of k and m > 0.

Proof

We will use the pathwise construction of the departure process of a leaky bucket system
presented in [1]. Let X^CfB\k)y (Y(°'B)(k)) denote the number of cells (tokens) in the cell
(token) buffer immediately after time k in the system with token buffer size C and cellbuffer
size B. By convention we assume that cells at time k arrive immediately after the arrival of a
token at timekand that X^c,B\k) and Y^c%B\k) aremeasured immediately after the arrival
of the cells. Obviously, 0 < X^B\k) < B and 0 < Y^B\k) < C. We may clearly assume
that X(CtB\k)Y(c'B\k) = 0 for all &, so that the system can be described by the parameter
Z&>B\k) = X(c>B)(k) - Y^B\k). If 0 < Z^B\k) < B there are Z&>B\k) cells and no
tokens, if -C < Z^B\k) < 0 there are -Z^B\k) tokens and no cells, and ifZ^B\k) = 0
then there are neither cells nor tokens. Let a(k) denote the number of cells arriving into the
leaky bucket at time k. Then it is easy to see that Z^c,B\k) is given by the recursion

Z^B\k + 1) = min{£, Z^B\k)+ a(k +1) - I{Z^B\k) > -C + 1}} (17)

If we now define the quantity W^B\k) = Z^B\k) + C = X^B\k) - Y^B)(k) + C, we
get the following recursion for W^c,B\k) from (17):

W(c>B\k + l) = min{C + B,W(c'B\k) + a(k + l)-I{W(c>B\k)>0}}
= min{C + B,(^C7'B)(A:)-l)++a(A: + l)} (18)



where in the above (x)+ = max{x,0}. Note that 0 < W^B\k) < C + £, Vfc. It is
important also to point out that the recursion for W^CtB) depends on the quantities C and
Bonly through the sum C-r B. Hence, if for two systems d +BY =C2 -r B2i then W^CuB^
and W^C2,B^ satisfy the same recursion. This means that if the two systems are assumed to
be driven by the same sample path, then the corresponding W-processes are also pathwise
the same.

It is easy to see that the departure process from the leaky bucket can be constructed
from a sample path of the W(C,B) process as shown in Figure 2. In order to determine the

w

C+B

^ H H h

oell departures

Figure 2: Construction of the departure process. The numbers on the axis labeled 'cell
departures' give the number of cells leaving the system at each time instant for the specific
realization of the process W^C,B\

number of cells &c,B)(k) that leave the system at time k we consider the following cases:
a) W^B\k-\) = 0: In that case thenumber ofdeparting cells is d^B\k) = mm{W^B\k)yC}.
b) 0 < W^B\k - 1) < C: In that case the number of departing cells is d^c'B\k) =
min{W<c'B>(ib), C} - W^B\k - 1) + 1.
c) C < W(c>B\k —1) < C + B: In that case there is exactly one departure at time k due to
the arriving token, i.e. d^CfB\k) = 1.
From the above we deduce that the departure processes for a whole range of systems, cor
responding to different values of C and B, can be read off directly from the sample path of
w(c>B\

Let 4CmB) = d^B\k) + ... +d^B\k +m) be the number of departing cells from the
system with token buffer of size C and cell buffer of size B during the interval [&, k + m],
m > 0. Also let Ad*,m = df^Bl) - df^Bi) be the difference in the number of departing
cells from two systems in the same interval, where C\ + B\ = C2-r B2. We are interested in
upper and lower bounds of the quantity Adk,m- Without loss of generality we may assume
that C\ < C2. Using the above results (a) - (c) we have the following cases, where we take



into account that the W-processes of the two systems are pathwise the same, as discussed
above, and therefore are represented simply by W(-):
- W(k - 1) < d and W(k + m) < Cn Then A«fc,m = 0.
- W(k - 1) < d and d + 1 < W(k + m) < C2: Then A4,m = d - W(Jb + m).
- W(Jfc - 1) < d and C2 + 1 < W(k + m) < d + Ba: Then A<fe,m = d - C2.
- d + 1 < W(Jb - 1) < d and W(k + m) < d: Then Adfc,m = W(fc - 1) - d-
- d + 1 < W(Jb-l) < d and d+1 < W(fc+m) < C2: Then A*,m = W(k-1)-W(*+m).
- d + 1 < W(*-l) < d and d + 1 < W(ifc + m) < d + Bi: Then A4,m = W(Jb-l)-d-
- d + 1 < W(k -l)<d+B! and W(k + m) < d: Then A<f*,m = d - d-
- d + 1 < W(ib-l) < d+Bi and d + 1 < W(k+m) < C2: Then Aa\m = d~ W(fc+m).
- d + 1 < W(k - 1) < d + Bi and d + 1 < W(Jfc + ™) < d + B^ Then AdktTn = 0.

We see that the greatest value of AdktVn is achieved for any interval [£,k + m] with
d < W(Jfc-l) < d+Bi and W(Jfc+m) < d and for those intervals weget Adk,m = d-d-
Similarly, the smallest value is achieved for any interval [fc, k + m] with W(& —1) < d and
d < W(fc + m) < d + Bi and for those intervals we get Adk,m = —(d —d)« Hence,
-(d - d) < 4?mB,) " 4?mBa) < d - d, Vm > 0, ifc, if d + Bj = d + B2 with d < d
and the proof is complete. D

It should be noted here that due to the above lemma and the fact that the departure
process for any C and B is stationary and ergodic, the expected values of the departure
processes when the conditions d + B\ = C2 + B2, d < d hold are the same, since

lim ^-(ft-ca <£[d(Cl.Bl)] =lim e8^ <lim 4a*»+«*-<*>
m-*oo j7i m-»oo 772 m-*oo 772

^nd the first and third limits are the same and equal to E[d^C2,B2'] = limm—oo Ju^i—•
Now we can prove the following:

Theorem The departure process of the leaky bucket system is long - range dependent for
any token buffer size C and any cell buffer size B.

Proof

We have shown the result for C = 1. To prove the result in the case C > 1 we proceed as
follows: Both sides of (15) are nonnegative, so we may square both sides and the inequality
will still hold. We also assume that C\ = 1. If we also take expectations on both sides and
subtract the quantity E2 = E[d^Bl\k)]2 = E[d^°2'B2\k)]2 from each expectation term on
both sides we get the following relation:

(m + l)r<1A>(0) + 2£(m - i + l)r<1A>(t)
»=i

m

< (m + l)r<C2'B2)(0) + 2£(m - i + l)r<c"B2>(0 + 2(m + 1)C2E + C2 (19)
«=i



where in the above wetook into account that theoutput process is stationary. Let E0 2' 2 (I) =
EU|r<c"B2)(0| and X?'Bl)(l) =EL r^B^(i). Also let d=C2E and g=2C2E+C%. Since
r^^Ofojjr^^^O) > 0 we get from (19) after a few simple algebraic manipulations.

£}(£?A,(l) - d) <£) Ejf**>(0 +<7 (20)
/=i /=o

In order to show that {d^C2fB2\k)} is long - range dependent, it suffices to show that for
every M > 0 there exists some integer L, such that

jJj&M(l) >M, V/>X (21)

Note that since E^,C2,B^(/) is monotone increasing in /, then if (21) holds for some index L,
it will definitely hold for all indices I > L. To show (21) we may argue by contradiction.
Suppose that for some M0 there is no integer L, such that Eq 2' (L) > M0. But, since
lim/^oo Ei (/) = oo, this means that there exists some integer K, such that Ej ' 1\l)—d>
Mo > E0C2,B2\l), V7 > K. This obviously contradicts the inequality in (20) and therefore
we must have that (21) holds or equivalently that {d^c,B\k)} is long - range dependent for
any values of C and B. E

3 Concluding Remarks

We have studied the departure process of a leaky bucket system in an ATM network fed by
a class of proposed models for long - range dependent input traffic. We established the fact
that the departure process is long - range dependent for any cell and token buffer size.

References

[1] Anantharam, V. and Konstantopoulos, T. (1994). Burst Reduction Properties of the
Leaky Bucket Flow Control Scheme in ATM Networks. IEEE Transactions on Commu
nications, Vol. 42, No. 12, pp. 3085-3089.

[2] Beran, J., Sherman, R., Taqqu, M. S. and Willinger, W. (1995). Long - Range Depen
dence in Variable - Bit - Rate Video Traffic. IEEE Transactions on Communications,
Vol. 43, No. 2/3/4, pp. 1566-1579.

[3] Bingham N. H., Goldie, C. M. and Teugels J. L. (1987). Regular Variation, Cambridge
University Press, New York, 1987.

[4] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1994). On the Self -
Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on
Networking, Vol. 2, No. 1, pp. 1-15.

10



[5] Likhanov, N., Tsybakov, B. and Georganas, N. D. (1995). Analysis of an ATM Buffer
with Self - Similar ("Fractal") Input Traffic. Proceedings of the 14th Annual IEEE In-
focom, pp. 985-992.

[6] Paxson, V. and Floyd, S. (1995). Wide Area Traffic: The Failure of Poisson Modelling.
IEEE/ACM Transactions on Networking, Vol. 3, No. 3, pp. 226-244.

[7] Vamvakos, S. and Anantharam, V. (1996). On the Departure Process of a Leaky Bucket
System with Long - Range Dependent Input Traffic. Memorandum No. UCB/ERL
M96/51, University of California, Berkeley.

11


	Copyright notice 1996
	ERL-96-70

