Copyright © 1996, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ADAPTIVE AND PREDICTIVE MODELING FOR
REAL-TIME STATISTICAL PROCESS CONTROL

by

Herbert Wiley Huang

Memorandum No. UCB/ERL M96/71

18 November 1996

ADAPTIVE AND PREDICTIVE MODELING FOR
REAL-TIME STATISTICAL PROCESS CONTROL

Copyright © 1996
by

Herbert Wiley Huang

Memorandum No. UCB/ERL M96/71

18 November 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Adaptive and Predictive Modeling for Real-Time Statistical Process Control

by
Herbert Wiley Huang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Costas J. Spanos, Advisor

In today’s competitive semiconductor industry, manufacturing equipment must be
vigilantly monitored so that equipment problems are detected as quickly as possible. Pre-
vious work demonstrated a statistical process control (SPC) scheme based on multivariate
analysis techniques applied to real-time sensor signals that is effective for the detection of

equipment malfunctions.

However, the SPC scheme has several key weaknesses that prevent its use from
being more widespread. In particular, the scheme requires training before it can be used.
The training can be costly and time-consuming, and must be redone whenever changes
occur in the equipment or the process. Moreover, the manufacturer has no easy way of

knowing when re-training is necessary.

In this thesis, the SPC scheme’s weaknesses will be addressed by introducing some
new techniques for modeling signals. A predictive model incorporates changes in the
machine settings into the scheme; an adaptive model tracks the dynamics of the process’
real-time behavior. Together, these methods make training unnecessary for the SPC
scheme. The methods are illustrated with examples using actual sensor data, and a software
implementation of the techniques is described.

H. W. Huang

Table of Contents
Table of Contents
1 Introduction...........cooeeeeeees csssecrcssssescsscacas cessercccccns 1
0 (0 10 W 1
12 Thesis OVervIEWottt ittt ettt et eeeeeenannnnneeenns 2
1.2.1 Wafer-Wafer Predictive Stage.ooviineiiiiinninnnnnn... 2
1.2.2 Real-Time Adaptive Stage.oovvinrvneeennrennnennneennennns 3
1.3 Thesis Organizationcuiiiieininrnnneennnennneenneeennnns 3
2 Background............c000nne. tevesesccscsesscsscsstsccse cesseesessd
P2 BB i ¢ Ta 1Tl o) A 5
B (G (a1 T e 4 5
22.1Real-Time Tool Data.covtiiiiiiiiiieenreeennenaannnnnns 6
2.2.2 Real-Time Statistical ProcessControl.ccovvievenennnnnnn... 6
2.2.2. 1 Time-Series MOdels. oviiiii ittt iieeeiannannnns 7
2.2.2.2 T2 SHASHC . .« o v vt e et e e e et e e e e e 8
2.2.3 Hierarchical Models (Multiple Time Scale Decomposition). 10
2.2.4 Automatic Model Generationcovveverenrnneneocnnennenns 12
2.3Real-Time Data Collection.ovvveintiiieieretiereeeeneenannnnns 12
2 3 L HardwWare . ..ot e e e e e ettt 12
2.3.2Signal Selection.cuininri ittt it e 13
2.3 3 P PrOCeSSINE . .ottt i ettt et et 13
3 Predictive Modelingci00viivicnnnns teesceccesesnsesesesasas 15
20 I 11 o Ta 1 Tod T) o 15
I I (0747 1 1o o 15
312 Modeling ..o e i et e e 16
T IR I T o 1P 17
3.2Background. e et 17
3.2.1Generalized Model. ...ttt e e e e 17
322 Simplified Model.o e i 18
3.2.3Least Squares Estimation.ooiveinetiinieiiiernnnnnnnns 18
324 Predicion Modelttt i i e i e et 19
K =5 111 o) [19
TGI8 5,417 o111 1| 19
O TR 0728 o (o 1o | (A 23
T8 0 B0 2 LT3) 73 24
N
4 AdaptiveModelingccoiiiiinrneeerieneneccencens ceesenene -1
T 114 (T 11T T)« 27
T O U % (0141 1o + P 27
4.1.2 Adaptive and Predictive Modelingcooo.... 28
4.1.3Chapter OVerviewcoiiiiiiiiiiiiiiiiii e, 28
iv

Table of Contents H. W. Huang

42 Background.c.oceetteetniitiietataaaaasat ittt aanaaaanseens 29
421 Wiener Filters. . ..o ovvvrneeietiiiiineennnascsncacennconasanns 30
4.2.1.1 Modeling ASSUMPHODSvvvveenaenocsaccsroaoasaacnns 30

4.2.1.2 Problem Formulation..........oovveruiieiiienennennenen 31

421 3MatriXx FOm. ...coiieieiiiiiiiiiieae et eaaaees 32

4.2.1.4 Optimum Filter Solutioncotiiiiiieeeecneeens 34

4.2.1.5 Canonical Form of the Error Performance Surface............. 35

4.2.2 Method of SteepestDescent.c.ovveiieeeeiieectnannananenes 36
4.2.2.1 Stability and Convergence of Steepest Descent. 38

4.2.2.2 Least Mean Square (LMS) Algorithm..........coo0eeeeneenn 39

423 Method of Least SQuarescocoveneeeerensscsocccesooanascs 41
4.2.3.1 Recursive Least Squares (RLS) Algorithmn. 42

4.2.3.2 Stability and Convergence.oovveereecsceceanocccns 4

424 SUMMATIYuiteunneeeonnseaacecasnsssannssescosssancsnnans 44
4.3 Adaptive Algorithms.ooviiiiiiiiiiiiii i ieetetennannns 45
4.3.1 Recursive Least Squares (RLS)........ccoviiiiiiiiiieniiennnnnn 46
432Nomalized LMS it it e e 47
433 AdaptiveIIRFilteringoovniiiiii it iiie e 48
434 Numerical Stabilitycciiiiii ittt ittt 49
4.4 Implementation. . .. couvr et eteerurnssannnaneasssssacnsoennnnaoenns 50
4.4.1 Algorithm parameterscoeeeeeeerreennnneesccranneonnnnns 50
4.4.1.1 Exponential Weighting FactorinRLS.cootn 50
441281tepSizein LMS 51
44.13Modelorder.....ccoviiiiiiiiii ittt e 51

4.4.2 Combining Adaptive Algorithms.cooiiiiieniieeiennn 53
443 Multivariate Modeling.covvvetiiiii ittt iien e 53

B 25 &1 101 o) [53
4.5.1 EXPEHMENL. vvttiiiiiiiannieeeeannarnsosssonnssesenanns 53
T A o (oo 1V (P 54
4.5, 3 ReSUIS . .ttt e ettt et 54

5 Experimental Analysiscceuieieetiiiiiiiiittiitiictscosctncsnnns 57
R0 118 {0 1312 o) W PO 57
5.2 Adaptive Calculation of the T2 SIAtSHC . . o voeveeeereeneeananaenens 57
5.2.1 Estimation of the Error Covariance Matrix................oooiian.. 57
5.2.2 Normalized T2 STUSHC « + v v vveeeeeeeeennnneeennnnreemunneennn 58
5.2.3Implementationcevurrnuiatintiieeraretiiaaaaaaoaaanes 59

5.3 Experiment 1: Wafer-WaferData..........cooiiiiiiiiiiennennannns 59
5.3 1 PrOCeAUIEottt it it ettt ettt e 60
5.3 2 RESUIS . .ottt e it i et ittt a e 61
5.4 Experiment 2: Real-TimeData. ...ttt 63
54, 1 ProcedUIE . . .ottt it it i bt 63
5.4 2 RESUNS . .ot i e it e i it e 65

5.4.3 Discussion

H. W. Huang Teble of Contents

6 soﬁware o0 0 0000 ® 6000000000000 00c0e e o e e vooe 0000000000 71
6.1 Introduction. 71
6.2 0VeIVIEW.t 71

6.2.1 Model Buildingooiiinneeinnie i 73
6.2.2 Equipment MOBItORng. tee e 73
6.2.3 Statistical ADalysis. e 75
6.3Features. ... i 75
6.4 Orgamizationuuiiini ittt 76

7 ConcluSion.....oovevneneeennnnnn. ceccecscncns cececcecns ceceee ceeesT9
71 8Summary. 79
7.2 Future EXteNSIONSo eveuenn et eeeeseeee e 79
Referencescoo0eeeenen. ceececsccnnss ceevecens cecenne cecescccns 81

A Listof Symbols cecnes cesececessscescennns tessacens ..85

B Howto Getthe RTSPC Softwareo0veeneeennnnnnn. cecenenne ... 89

C Software Code for “tracker”oeeeeveeeennnns sseceseceesconnaces 90

List of Figures H. W, Huang

List of Figures

Figure 1.1. Diagram of the two stage model for a plasma etch process.. 3
Figure 2.1. Diagram of the real-time SPC scheme [29][18].ccccvvuvnnnes 8
Figure 2.2. Signal decomposition for the impedance signal.cccoevvens 11
Figure 3.1.R? values for various wafer-wafer signal prediction models.............. 25
Figure 3.2. Predicted wafer means and actual real-time signal for

“RF_match_#1_tuning position”.ccoeeiieerennnnneenns 26
Figure 4.1. Block diagram of the linear filtering problem.oonvnnnnnnnn 32
Figure 4.2. Visualization of an error performance surface.............c.ooeeevennn 34
Figure 4.3. Example of a steepestdescentpath.oooiiiinnieneennnn 37
Figure 4.4. Example of a “direct” path..cceiiiiiiieiiiiiieenneneenn. 41
Figure 4.5. The RLS algorithm [11]..o iiiiiiiiiiiiiiiiiieeennn 47
Figure 4.6. The normalized LMS algorithm [11]...........coiiiiiiiineneennn. 47
Figure 4.7. Predicted and actual signal for “RF_match_#1_load_coil_position”. 55
Figure 4.8. Residuals for “RF_match_#1_load_coil_position”..............c...on. 56
Figure 5.1. Normalized T2 WAUES. v vevteneeet i e e 62
Figure 5.2. Real-time signalsin Experiment 2............ccoiiiiiaanneeeenen 64
Figure 5.3. Static models: residuals and control limits.ooevenneennn 66
Figure 5.4. Adaptive models: residuals and control imits..coeneeneenn 67
Figure 5.5. Tap coefficients for “TCP_Match_Tune_Cap_Position”. 68
Figure 5.6. Normalized T2 (adaptively estimated)..oovnenerrnanneencnennn 69
Figure 6.1. The main window of RTSPC.ooiiiiiiiiiin 72
Figure 6.2. Diagram of the model building procedure................oooiniennnn 74
Figure 6.3. Diagram of the SPCprocedure.ooiiiiiiiiiiinnennne 74
Figure 6.4. Organization of software modulesin RTSPC.....................ohen 76

vii

H. W. Huang List of Tables

List of Tables
Table 3.1. Centerpoint etch reCIPe.vuvvieeenierenniieeinieeannnnnens 20
Table 3.2. Design of eXperiment..ooueeeinnreeeiiiiiiieeeeeneenns 21
Table 5.1. Recipedd. ittt ittt enaaaeeeeeaenens 59
Table 5.2. Summary of Experiment 1.oiiiinnneereeninnnnnnnnnnnns 60
Table 5.3. Recipes used for each waferof Lot 1111..............ccvvnnnnn... 60
Table 5.4. Signals used in the analysis of Experiment 1.......................... 61
Table 5.5. Signals used in the analysis of Experiment2...................c....... 63
.

.List of Tables 1 | ; | H.W.Huang

Acknowledgments

Most of all, I would like to thank my research advisor, Professor Costas J. Spanos,
for his support of my research and studies. Also deserving thanks is Professor Seth Sanders

for serving on my project report committee.

A warm thanks goes out to the members of the Berkeley Computer-Aided Manu-
facturing (BCAM) group who helped make the experience worthwhile: Roawen Chen,
Mark Hatzilambrou, Anna Ison, Nickhil Jakatdar, David Mudie, Xinhui Niu, Manolis Ter-

rovitis, and Crid Yu.

This work was supported by the Semiconductor Research Corporation (SRC), the
state of California Micro program, and participating companies (Advanced Micro Devices,
Applied Materials, Atmel Corporation, Lam Research, National Semiconductor, Silicon
Valley Group, Texas Instruments). Data and consultation with Texas Instruments research-
ers working on the TI/Sematech J88 project are also acknowledged.

H. W. Huang Chapter 1

Chapter 1 Introduction

1.1. Motivation

In today’s competitive semiconductor industry, companies are constantly trying to
increase their wafer yields and throughput. To achieve these goals, manufacturing equip-
ment must be vigilantly monitored to ensure proper processing at each of the thousands of
processing steps required to turn a wafer into marketable product. This thesis deals with a
statistical process control (SPC) scheme that detects equipment malfunctions. The earlier
that malfunctions are detected, the less time and money is wasted processing defective
wafers. Furthermore, because of the high cost of modern semiconductor equipment, if a
scheme can quickly detect malfunctions, this results in a considerable savings due to higher

equipment utilization.

The SPC scheme to be discussed in Chapter 2 has been shown to be effective in the
detection of equipment malfunctions (or equipment faults). One key to its effectiveness is
its use of real-time sensor signals. These are signals collected automatically and non-inva-
sively during the processing of a wafer, in a way that monitoring is accomplished with little

extra cost to the process.

Although the SPC scheme has the potential to reduce the overall cost of ownership
of semiconductor equipment by increasing both the wafer yield and throughput of product
wafers, several key weaknesses in the scheme prevent its use from being more widespread.
In particular, the scheme requires baseline training before it can be used. The training
allows the scheme to “learn” the behavior of a machine’s sensor signals when the machine

is operating in a normal state, i.e., its baseline behavior. Later, when the machine is being

Chapter 1 H. W. Huang
monitored, any behavior that deviates from the baseline behavior is flagged as a malfunc-
tion.

This training is not completely unwieldy, but can limit the SPC scheme’s effective-
ness in an actual factory for several reasons. First of all, a baseline training experiment can
be costly and time-consuming. This would not be a problem if a manufacturer could per-
form a single training experiment for all time and never need to do it again. However, once
changes occur in the equipment or the process, these changes will affect the real-time
sensor signals, and the training must be redone. The changes that occur could be uninten-
tional (due to natural aging of the equipment, for example), or they could be intentional
(such as a change in the machine settings to process a different type of product). Moreover,
the manufacturer has no easy way of knowing when a new training experiment should be
performed. This fact, along with the expense of running a training experiment, has limited
the scope of the SPC scheme to small, specialized projects that can be carefully controlled

and monitored.

The purpose of this thesis is to address the weaknesses in the scheme, as described
in the above paragraph. To this end, some new techniques for modeling signals will be
introduced into the scheme. The thesis will also illustrate these methods with examples and

applications using sensor data collected from plasma etching equipment.

1.2. Thesis Overview

A two stage model is proposed to model sensor measurements obtained from the
processing of silicon wafers (in this thesis, the concentration is on a plasma etching pro-
cess): a wafer-wafer predictive stage incorporates changes in the machine settings into the
model; a real-time adaptive stage tracks the real-time behavior of the process (see
Figure 1.1).

1.2.1. Wafer-Wafer Predictive Stage
A multivariate regression model predicts the wafer average of the output signals
based on the machine’s input settings (recipe). Previous work did not include the machine’s

recipe settings as part of the modeling. This meant that separate models had to be created

H. W. Huang Chapter 1

wafer-wafer real-time
predictive stage adaptive stage
recipe Lam
—E — -
‘ etcher i | r*=:*s"
! model * model
.. J beeeea.. J residual
Figure 1.1.

Diagram of the two stage model for a plasma etch process.

for each new recipe. The predictive stage is useful when new products or wafer patterns
require recipes to be changed often.

1.2.2. Real-Time Adaptive Stage

An adaptive univariate or multivariate time series algorithm tracks the dynamics of
the real-time behavior. Previous work employed static time-series models and needed
extensive baseline data. The adaptive stage can adjust to a drifting process, and the sensi-

tivity can be tuned as desired. A baseline experiment is not necessary.

1.3. Thesis Organization

Chapter 2 gives a summary of the previous work upon which this thesis is based;
for example, the real-time statistical process control (SPC) methodology that will be
referred to throughout this paper is explained there. Chapter 3 describes predictive models
whose purpose is to predict how recipe changes will affect real-time sensor measurements.
Chapter 4, the main chapter of this thesis, shows how adaptive models work and how they
can be used in the context of SPC; these models allow one to model signals without having
to design a separate training experiment. Chapter 5 presents some examples that apply the
above techniques to actual sensor data. Chapter 6 describes the software that is available to
implement the SPC methodology. Chapter 7 concludes the thesis with a summary and sug-

gestions for future exploration. !

1. This document was processed with the FrameMaker® document publishing software [33].

3

* Chapter1 ' | B H. W, Huang

H. W. Huang Chapter 2

Chapter 2 Background

2.1. Introduction

Since much of this thesis builds upon a wealth of research by previous authors, a
brief review of past work will result in a greater understanding of this work. Here is an over-
view of the background concepts to be presented:

The main application of this work is for real-time statistical process control (SPC)
of semiconductor manufacturing equipment. Section 2.2 contains important previous work,
including an overview of SPC. The usefulness of real-time equipment sensor data for mon-
itoring the state of a machine is summarized in Section 2.2.1. The concepts of SPC and the
methodology used to apply SPC to real-time tool data are summarized in Section 2.2.2. In
Section 2.2.3, the use of hierarchical models will be shown to greatly improve the accuracy
of the signal models. Section 2.2.4 discusses the automatic generation of time-series mod-
els. Finally, the general logistics of collecting real-time signal data are described in
Section 2.3.

2.2, Previous Work

Statistical process control (SPC) is a quality control technique employed on a man-
ufacturing line to detect equipment or process problems. Manufacturers want to detect any
failures or malfunctions in the process as quickly as possible. Early detection of equipment
malfunctions in a production line results in less waste being produced and greater up time
of critical process equipment. This in turn equates }3 higher profitability of the overall pro-

Ccess.

Traditional SPC techniques make use of various types of control charts to track
important process parameters. Control charts graphically plot parameters as they are col-

5

Chapter 2 H. W. Huang
lected and use statistical tests to determine when a parameter has significantly departed
from what would be considered its usual behavior. The departure occurs—and an alarm is

signaled—when a parameter’s value falls outside some pre-determined control limits.

Standard practice in industry is to plot control charts based on data measured from
occasional “monitor” wafers. The monitor wafers are run perhaps at the start of each work-
ing shift or when a process engineer wishes to check the state of the machine. Unfortu-
nately, machine problems which occur between monitor wafers go undetected; moreover,

a significant delay can exist between a machine fault and the actual signalling of an alarm.

2.2.1. Real-Time Tool Data

Many researchers have been investigating signals that are more accurate than the
machine’s input settings in describing wafer states of interest. With the aid of automated
sensors and computers, the fault detection delay can be considerably reduced by monitoring
real-time data collected non-invasively from equipment, while wafers are still being pro-
cessed. The usefulness of real-time equipment sensor data for monitoring the state of a
machine has been reported in [17][29](19]. The real-time data used in this thesis are a
plasma etcher’s internal sensor readings, for example electrical signals such as the radio
frequency (RF) impedance and D.C. bias, and mechanical signals such as those tracking the
coil and throttle positions. These are readily obtained over standard communication ports.

Section 2.3 contains more information on how real-time data are collected.

These internal readings should (intuitively) reflect the true state of the equipment
much better than the machine’s input settings. Because they are closely coupled with the
actual state of the chamber, the internal sensors may be able to account for drifts in the
machine due to natural aging. Furthermore, equipment malfunctions should manifest them-
selves first in the values of these internal parameters and much later in off-line wafer mea-

surements, resulting in more timely detection of faults.

2.2.2. Real-Time Statistical Process Control
The nature of the real-time sensor data prevents one from directly applying tradi-
tional SPC techniques. This is because traditional techniques assume that each new data
sample is independent of all previous samples. This assumption is clearly violated in real-
6

H. W. Huang Chapter 2
time sensor data. Data collected sequentially from a machine at a high sampling rate (on

the order of one sample per second or so) will likely be correlated from sample to sample
(auto-correlation); some of the real-time signals may also be non-stationary. Furthermore,
different sensor signals measured from the same equipment will very likely experience cor-
relation between signals (cross-correlation).

The correlated behavior of the real-time data requires modifications to the tradi-
tional techniques. A novel scheme was introduced in [9][29] that allows one to use the real-
time equipment sensor signals for statistical process control (SPC). The scheme models
each real-time signal with a time-series model based on a “baseline” (calibration) set of
data. These baseline models characterize what is considered to be the “in-control” behavior

of the machine.

Once an equipment’s baseline behavior has been established, production wafers can
be run through the machine. The baseline time-series models are then used to filter the sig-
nals obtained during the subsequent equipment operation into residuals. The residuals (i.e.,
the differences between the actual and forecast values) from multiple sensor signals are
summarized into a single score, known as the Hotelling’s T? statistic, which can then be
graphically displayed using a single-sided control chart. Whenever the signals deviate sig-
nificantly from their baseline behavior, this will result in large residuals and cause an alarm

to be triggered.

This methodology has been implemented in a commercially available software
package, known as RTSPC. See Figure 2.1 for a diagram of the real-time SPC data flow.
For a more complete description, see [18][29]. More detailed background on time-series

models is given in Section 2.2.2.1 and on the T2 statistic in Section 2.2.2.2.

2.2.2.1. Time-Series Models

Time-series models are used to characterize the real-time sensor data collected from
an equipment that is operating under baseline conditions. A time-series model captures the
auto-correlation structure among sequential samples. Once a variable is modeled with a

univariate time-series model, future values of the variable can be predicted based on past

Chapter 2 H. W. Huang

Multiple
Multiple \ IIND

non-stationary . residuals i
raw data Time -. Single
Series Alarm
Auto- & cross- | Filter Signal
correlated

/ correlated

Figure 2.1.
Diagram of the real-time SPC scheme [29][18].

observations. A time-series is concisely described by an ARIMA(P, D, Q) model, where
P is the auto-regressive order, D is the integration order, and Q is the moving average

order. The general form of the model is:

o(B)w, = 0(B)aq,

P o
0(B) =1- ¢,B5 6(B) = 1-) 6B
k=1 k=1 @.1)
w, = VPz,D20
Vz, = z-z,_,4 Bkz, =2k

where z, are the original data, w, are the differenced data, and a, are the prediction errors.

For more information on time-series models, see the abundant literature: [5][25][34].

2.2.2.2. T Statistic

The reason for using the T2 statistic is to summarize multiple parameters into a
single statistic that can be monitored on a single control chart. This has the advantage of
needing to monitor only one control chart and also of reducing the false alarms associated
with multiple control charts that are monitoring correlated signals. Before a set of signals
can be combined together into a T? statistic, they must be filtered with the corresponding
baseline models in order to remove any time-series patterns. The formulas for the T2 sta-
tistic and for the upper control limit (UCL) to be used on a control chart are given below;

they assume that the signals have already been filtered.

H. W. Huang Chapter 2
The goal of the T2 control chart is to detect a shift in the operating point of the

machine. To do this, a test statistic is calculated based on a set of sequential samples called
a group; the number of samples in the group is known as the group size n. Each monitored
signal is averaged over the n samples of the group and combined into a single vector. The
averaging helps to assure that the signals are approximately Gaussian (by the central limit
theorem). If X is the (column) vector of averaged samples for each signal, then the test sta-
ustic is calculated as

T? = n(x-5)78§(x-R) 2.2)
where X is the vector of baseline signal averages, and § is their estimated covariance
matrix [23]. In (2.2), subtraction by X serves to demean the signals, and multiplication by
§~! serves to scale the signals to unity variance. Multiplication by the scalar n compen-
sates for the reduction in variance due to the group averaging. The vector X and matrix §
are estimates from a prior set of baseline data. Let the number of baseline observations used
in the calculation of % and § be called N. Note that the matrix S should be symmetric and
positive-definite, so that the T? statistic is always positive.

After the test statistic is calculated, it is compared to the UCL; if the statistic is
greater than the UCL, an alarm is triggered. The theoretical UCL for the T2 statistic is
related to the F-distribution and depends on the desired Type I error o, the number of mon-

itored variables M, and the number of baseline observations N:

M(N -1
UCLo v = [sg | Fason-u- @3)

As N approaches infinity, then X and § should approach their “true” values. In this case,
the calculated T? statistic should have the same distribution as the sum of squares of M
independent standard Gaussian random variables—in other words, a %2 -distribution with
M degrees of freedom. Therefore, if N is relatively large (greater than 20 or 25) then the
F-distribution is well-approximated by the 2 -distribution [23], so that the UCL can be

more easily expressed as ~

UCLy y=%2 - 2.4)

Chapter 2 H. W. Huang
2.2.3. Hierarchical Models (Multiple Time Scale Decomposition)

Although seasonal ARIMA (SARIMA [5]) models were used in the original real-
time SPC methodology[29], they are not ideal for modeling semiconductor equipment
sensor signals. The reason is that the data is influenced by multiple physical processes that
operate on different time scales and have drastically different variances. The different time
scales can roughly be separated into three levels: 1) real-time, 2) wafer-wafer, and 3) lot-
lot (a “lot” is usually a wafer cassette containing roughly 24 wafers). Signals at the real-
time level capture short-term fluctuations during the processing of a single wafer, while the
signals at the wafer-wafer level exhibit longer term behavior characteristic of wafers within
a single lot. Similarly, at the lot-lot level, one may see even longer term patterns that reflect
changes in the machine’s state, for example a build-up of film in the chamber due to natural
aging.

Hierarchical models are created by decomposing the sensor data into multiple com-
ponents based on different time scales, where each of the components are analyzed sepa-
rately. This decomposition results in more accurate signal modeling. The better signal
models means that SPC will be more accurate, as shown by fewer false alarms. Moreover,
the different levels of the hierarchical models supply valuable diagnostic information
through the level of the hierarchy that caused a certain alarm. For instance, a slow drift in
RF power at the lot-lot level might be interpreted as natural aging of the machine, but a drift
at the real-time level might signify a problem with the current wafer. Without the decom-
position, the time scale level that exhibited the greatest variance would dominate all other
levels, and the useful information that could have been extracted from the other levels

would be lost.

See Figure 2.2 for an example of a signal decomposition. The wafer-wafer compo-
nent is first extracted simply by averaging the signal over each wafer. The real-time com-
ponent is then produced by subtracting the wafer-wafer component from the original signal.
A lot-lot component could similarly be produced by first averaging the signal over each lot,
before extracting the wafer-wafer and real-time components. The greater variation of the

wafer-wafer component compared to the real-time component is apparent in the Figure 2.2.

10

H. W. Huang Chapter 2
A ———
g | Original Signal ,N“
8 \
g
oy
vV &
0 100 200 800 400
index
e
) Wafer-Wafer Component
~350
1 _l-—

\/
T Real-Time Component
~10

Figure 2.2.
Signal decomposition for the impedance signal.

11

Chapter 2 H. W. Huang
2.2.4. Automatic Model Generation

The identification of time-series models and estimation of the model parameters
have been implemented into an automatic model generation program by [20]. This was an
important contribution because manually building time-series models can be a tedious,
labor-intensive, and time-consuming endeavor. An automated time-series model generator

makes SPC more practical in a manufacturing environment.

A rough description of the mode] generating procedure is as follows. Note that this
procedure relies on known heuristics and experience with the selected signals [20](14].
First the differencing order is determined to ensure that the data series is stationary. Then
the autoregressive order is identified and the coefficients are estimated based on solving the
modified Yule-Walker equations. Finally, the moving average order and coefficients are cal-
culated using a non-linear optimization program. Once the models are identified and the
model coefficients are estimated for each signal, the covariance matrix of the signal resid-
uals is calculated. Together, the models and the covariance matrix characterize the baseline

behavior of the system.

2.3. Real-Time Data Collection

This section will describe the general procedure and logistics for collecting real-
time data from a piece of equipment. The physical hardware used for the data collection
will be described, as well as other practical issues, such as signal selection and pre-filtering
of the data.

2.3.1. Hardware

The examples in this thesis use real-time data taken from two different types of
state-of-the-art plasma etchers: a parallel-plate Lam 4400 polysilicon etcher and a trans-
former coupled plasma (TCP) Lam 9600 metal etcher. Data are available from three
sources: software that obtains measurements via a standard SECS-II (SEMI Equipment
Communication Standard II) port, the Comdel Real Power L@nitor (RPM-1), which reads
signals through its own RS232 interface, and the Chromex Imaging Spectrograph (optical

emission spectroscopy data).

12

H. W. Huang Chapter 2
The signals are collected by software running on-a PC located next to the etcher.

Data is saved to the local hard disk as it arrives. The hard disk is mounted on a local area
network (LAN) so that the data are easily available to any host with access to the network.
Most of the analysis done for this thesis was run on workstations using UNIX file systems.

2.3.2. Signal Selection

An important part of data collection is the selection of sensor signals: often a
machine has hundreds of signals available, but only some of these will be useful for the pur-
poses of SPC. The signals most sensitive to the equipment state are desired, and those sig-
nals that are insensitive or have no impact on the equipment state are to be ignored. Usually
the desired signals can be chosen with intuition, but one could run a designed experiment

to objectively test the significance of individual signals.

This thesis is mostly based on data from the SECS-II signals. These data are col-
lected at a sampling frequency of about 1 Hz. Some of the important signals monitored are:
RF load coil position, RF tune vane position, peak-to-peak voltage, load impedance, RF
phase error, DC bias, and endpoint. These signals were chosen because they are sensitive
to changes in the state of the etch chamber, which directly impacts the wafer. Because these
measurements are related electrically or mechanically, some signals are highly correlated

with each other.

2.3.3. Pre-processing

As stated in Section 2.3.2, signals that reflect the state of the machine chamber are
most useful for SPC. Furthermore, certain intervals of the signal may be more useful than
others. In plasma etching, for example, the processing of a single wafer may typically con-
sist of a dozen steps, including steps for stabilization of machine settings and initialization
steps, like purging of the etch chamber. In this work, the steps of interest are usually steps
in which actual etching of the wafer occurs: the main etch step and the over-etch step. Of

course, a more in-depth analysis would attempt to include all the steps.

In addition to certain steps being more useful than others, certain portions of the
signal within a step may be more useful. As an example, a few seconds may be required for

the power to stabilize at the beginning of each step. The sensor measurements collected

13

Chapter 2 H. W, Huang
during this time can be quite erratic, casting doubt on whether or not they contain any infor-

mation about the state of the machine. Consequently, this transient effect is usually
removed to simplify the analysis. For each wafer, the data to be kept for analysis are all con-
catenated together to form a single stream,; this is repeated for each signal that is to be mon-
itored. For further simplification, sometimes the number of samples to be analyzed is
constrained to be the same for each wafer, although this is not necessary.

14

H. W. Huang Chapter 3

Chapter 3 Predictive Modeling

3.1. Introduction

3.1.1. Motivation

One of the limitations of the real-time SPC methodology described in Chapter 2 and
reported in [18] is that training is required to establish the machine’s baseline (in-control)
behavior. Although the methodology has been shown to be sensitive to such equipment
faults as miscalibrated machine settings, improper wafers, and changes in chamber pres-
sure, the sensitivity of the SPC algorithm is derived from its need to be trained on a specific
machine running a specific set of input settings. While this may not be a problem for high
volume manufacturers who only produce a small number of products, it can be a significant

hindrance to manufacturers who may need to change process or equipment settings often.

The goal of this chapter is to enable manufacturers to change equipment settings
(also known as recipes) at will without degrading the effectiveness of their real-time SPC.
A methodology is proposed to accommodate these users; this is achieved by creating
models that predict the effect of new recipes on the sensor readings. Since recipes are only
changed once before the processing of a wafer, the models only predict shifts of the sensor
readings at the wafer-wafer level; the real-time level is assumed to be unaffected by a recipe

switch.

Although only recipe changes are addressed here, rather than equipment or process
changes, the methodology could actually be extended to include any kind of alteration to
the processing of a wafer. For example, a change of equipment, a change in the amount of
exposed surface area on the wafer, or even a change in the mask pattern used in a previous

lithography step, could affect the readings of the internal sensors. Any of these could also

15

Chapter 3 H. W. Huang
be modeled (together with the recipes), provided that the condition can be precisely identi-
fied, and provided that enough observations are available to build a reasonable model. For
this work we simplify matters by modeling only the equipment settings (i.e., the recipes) of

a plasma etcher, such as power settings, gas flows, pressure, and gap spacing.

Furthermore, although only predictive models created at the wafer-wafer level are
addressed here, similar models could be built at the lot-lot level. If changes in the equip-
ment or process are made on a lot-lot basis, one might wish to create a predictive lot-lot -
model to predict their effects on the lot-lot signals. Therefore, throughout this chapter,
when a predictive wafer-wafer model is built based on wafer-wafer recipe changes, the
reader should remember that a similar procedure could be applied to a predictive lot-lot

model based on lot-lot changes.

3.1.2. Modeling

In this chapter, the simplicity of the models is just as important as is their accuracy.
Simplicity means that the models can be created and used for prediction with the least pos-
sible effort; this is desired since manufacturers may have to build these models quite often
and may have little time for verification or refinements. In addition, the amount of data
available to produce a model may be limited, which again shows that simple model struc-
tures are preferred. The different recipes or processes of interest will cover a vast range of
operating points, so the linear models created here to predict changes in the sensor signals

can only be approximations.

Moreover, since changes in recipes and equipment are expected to occur at the lot-
lot time scale, these models will need to survive through drifts (perhaps due to natural
aging) or other intentional or unintentional changes in the state of the equipment; in other
words they will need to be adequate for relatively long periods of time—Ilonger than can be
justified by the span of observations used to create the models. In conclusion, simple linear
models that are easy to generate will be used, since more sophisticated models would not

necessarily be more accurate over a long period of time.

16

H. W. Huang Chapter 3
3.1.3. Overview

Background on the modeling techniques is given in Section 3.2, and an example of
predictive modeling using actual production data is presented in Section 3.3.

3.2. Background
3.2.1. Generalized Model

Here background is presented on modeling the effect of recipe changes on sensor
readings. As mentioned previously, recipes are only changed once before the processing of
a wafer, so the models of this chapter are for predicting the sensor signals at the wafer-
wafer level; the real-time component is captured with the already described time-series
models. The combined wafer-wafer and real-time model can be generalized in an ARIMAX
model, which is an extension of an ARIMA model. The “X” stands for “exogenous”, which
means the model now contains additional explanatory variables; the additional variables

are the recipe settings.

An ARIMAX model, also known as a transfer function model, contains two addi-
tive parts. The overall ARIMAX model for a stationary process, y,, based on the stationary

processes, x; ,, has the following form:

M-1
o;(B) (B)

[PR "]"‘[2(8) o). G
where a, are the forecast errors (assumed to be independently and normally distributed
with zero mean and variance 62), (M - 1) is the number of explanatory variables included
in the model, and B; are constants. The polynomials in B (w;(B), §,(B), 8(B), and ¢(B))

are polynomial backshift operators as defined in (2.1). See [5][34] for a more thorough dis-

cussion.

In this chapter, only the first square-bracketed term on the right hand side of the
ARIMAX model (3.1) is of concern. This first term accounts for the wafer-wafer level
effects of the changing machine settings, x; ,, on a?e'rtain signal, y,, where i indexes one
of the (M - 1) recipe parameters being modeled. After the first term of the model has been

built, and the wafer-wafer level effects have been subtracted out, the second term of the

17

Chapter 3 H. W. Huang
model can be built. The second square-bracketed term represents the ARIMA model for the

real-time component of the signal as described previously (Section 2.2.2.1).

3.2.2. Simplified Model

Note that the first term is quite general and models not only the influence of the cur-
rent recipe on the signal, but also the influence of past recipes. However, due to reasons
stated in Section 3.1.2, the model will be simplified to only include the current recipe; the
influence of past recipes is not modeled. The simplified form is:

M-1
Y = [ﬂo+ 2 ﬂ,-x,-.,]+[2§—g;a,] . (3,2)
i=1

The first term (the wafer-wafer term) becomes just a linear combination of the recipe vari-

ables (a linear regression). The coefficients B; for i = 0, ..., M — 1 need to be estimated.

More sophisticated multivariate techniques such as principal component regression
(PCR) or partial least squares (PLS) [22][10] regression could be used, but these more com-
plicated methods are difficult to justify due to the increased effort required to use them and

due to the limited amount of data available (see Section 3.1.2).

3.2.3. Least Squares Estimation

Classical least squares techniques are used to estimate the coefficients of the linear
models. This theory is well known [4][6], but will be repeated here for reference. Our
wafer-wafer level prediction model is:

M-1

y = Bo+ X, Bixi, (33)
i=1

where the subscript ¢ has been dropped for clarity. Again, the x; are recipe variables, and
the y represents one of the sensor signals. The least squares criterion chooses the B; values

that minimize the sum of squared residuals:

N M-1 2
)) {}’j"[ﬁo"' Y, B, J]} , 3.4
i=1

j=1

18

H. W. Huang Chapter 3
where j indexes one of the N observations of the variables and response. Note that scaling

each variable x; to unit variance is usually needed in order to avoid numerical precision

problems.

The equations can be expressed much more compactly in matrix form. Let X be the
N by M data matrix whose each column contains the observations for one recipe variable,
except the first column, which contains all 1’s. Let y be the M by 1 column of observed
responses. Let ﬁ be the M by 1 column of estimated coefficients, the first element being
the intercept. Then any B satisfying the normal equations:

(XTX)B = XTy (3.5)
gives a least squares fit. See [6] for a discussion of computational methods for solving this
set of equations. Note that the estimates of the coefficients f are poor if the columns of X
are highly correlated.

3.2.4. Prediction Model
Letting L denote the number of modeled response signals, once ﬁ has been calcu-
lated for each signal, an M by L matrix H can be assembled that contains the correspond-
ing coefficients column fi for each of the signals. Now the full prediction model can be
written as:
§ = HTx, (3.6)
where § is the L by 1 column of predicted responses, and x is the M by 1 column of new

recipe settings.

3.3. Example

3.3.1. Experiment

Data for this example are taken from an experiment conducted by Texas Instru-
ments (TI) in Dallas for the Sematech J-88-E project. The experiment (#26) was part of a
larger study of various sensors and analysis techniques. The test structure used in this
experiment was a multi-layer structure with TiN, Al, TiN, and oxide on silicon, which

mimics the via and contact processes TI is developing.

19

Chapter 3 H. W. Huang

The experiment consisted of 38 8-inch wafers processed on a Lam TCP 9600 metal
etcher; the etchant gases are BCl, and Cl,. The first 21 wafers were run in the first lot, and
the rest were run in the second lot. A total of seven centerpoints and three checkpoints were
run. A centerpoint is a “center” of the experimental design; i.., a wafer run with the nom-
inal recipe from which other experimental runs deviate from. The centerpoint settings are
shown in Table 3.1. On the other hand, the checkpoints are wafers run with recipes differ-
ent from any of the experimental runs. These wafers were not used by TI for modeling, but

were used to verify models built using the other wafers in the experiment.

top power | bot power | pressure | CR+BCI3 | Ci2/BCI3

(scem)

Table 3.1.
Centerpoint etch recipe.

The designed recipe parameters were: top power (Watt), bottom power (Watt),
chamber pressure (milliTorr), total gas flow rate (Cl, flow + BCl; flow), and gas flow ratio
(Cl, flow / BCl; flow); gas flow rates are measured in units of sccm, standard cubic centi-
meters per minute. Note that total gas flow and gas flow ratio are varied in the experiment
rather than the individual gas flows, since these have more physical significance. See

Table 3.2 for the complete design of experiment (DOE).

20

H. W. Huang

Design of experiment. In the “run #’ column, “ctr” denotes a centerpoint,

and “chk” denotes a checkpoint.

21

afer
#
1 350.0 | 130.0 | 13.5 75.0 | 150.0
2 5 3927 11215 163 | 684 | 73.1 | 1415 | 0.936
3 5 3927 j 1215 | 163 | 684 | 73.1 | 1415 | 0936
4 18 130731385] 163 | 81.7 | 768 | 158.5 | 1.064
5 10 3073]|1385] 107 | 729 | 68.5 | 1415 | 1.064
6 8 3073 11215 163 | 729 | 68.5 | 1415 | 1.064
7 3927 | 1385 | 107 | 684 | 73.1 | 1415 | 0936
8 307.3 |1 1385 | 163 | 684 | 73.1 | 1415 | 0936
9 17 3927 1 1215 | 163 | 81.7 | 76.8 | 158.5 | 1.064
10 15 3927 | 1385 | 163 | 76.6 | 81.9 | 1585 | 0.936
11 cr2 | 350011300 135 | 750 | 750 | 1500 | 1.000
12 13 3927 11215] 107 | 766 | 819 | 1585 | 0.936
13 14 3073 | 1385 10.7 | 766 | 81.9 | 158.5 | 0.936
142 9 3927 {1215 10.7 | 729 | 68.5 | 1415 | 1.064
15 19 392.7 1 1385 | 10.7 81.7 | 76.8 | 158.5 | 1.064
16 4 3073|1215 107 | 684 | 73.1 | 14151 0936
17 11 392711385 163 | 729 | 68.5 | 1415 | 1.064
8 chk1 } 3500 | 1320 | 100 | 750 | 75.0 | 150.0 | 1.000
Table 3.2. (Sheet 1 of 2).

Chapter 3

Chapter 3

H. W. Huang

19 3073 1215 | 163 | 76.6 | 819 | 1585

20 16 | 3073|1215 107 | 817 | 76.8 | 158.5 | 1.064
21 cr3 | 3500 | 1300 | 13.5 | 750 | 75.0 | 1500 | 1.000
22 crd | 3500 | 1300 | 13.5 | 750 | 75.0 | 1500 | 1.000
23 24 | 4500 | 1300 | 135 | 75.0 | 75.0 | 150.0 | 1.000
24 29 | 3500|1300 | 135 | 650 | 65.0 | 130.0 | 1.000
25 Jchk2 | 3250 | 1400 | 120 | 71.0 | 69.0 | 140.0 | 1.029
26 28 | 3500 1300} 135 | 80.2 | 69.8 | 150.0 | 1.150
27° 31 }3500 (130} 70 | 750 | 75.0 | 1500 | 1.000
28 cr5 | 3500 | 1300 | 135 | 75.0 | 75.0 | 150.0 | 1.000
29 ctr6 | 350.0 | 1300 | 13.5 | 75.0 | 75.0 | 150.0 | 1.000
30 30 | 3500|1300 | 135 | 8.0 | 85.0 | 170.0 | 1.000
31 23 | 2500 | 1300 | 135 | 750 | 75.0 | 150.0 | 1.000
32 26 | 3500 | 1500 { 13.5 | 75.0 | 75.0 | 150.0 | 1.000
33 27 | 3500} 1250 | 135 | 689 | 81.1 | 150.0 | 0.850
34 | cbk3 | 4250|1350 | 180 | 78.0 | 82.0 | 160.0 | 0.951
35 32 | 3500|1300 200 | 750 | 75.0 | 150.0 | 1.000
36 25 | 3500 | 1100 | 135 | 75.0 | 75.0 | 150.0 | 1.000
37 cr7 | 3500 | 1300 | 135 | 750 | 75.0 | 150.0 | 1.000
38° 31 |3500)]1300)] 70 | 750 | 75.0 | 150.0 | 1.000

Table 3.2. (Sheet 2 of 2).

Design of experiment. In the “run #’ column, “ctr” denotes a centerpoint,
and “chk” denotes a checkpoint.

a. The SECS-II data for this wafer were cut short for some reason.
b. The pressure setting of 7.0 mTorr was lower than allowed by the equip-

ment. causing a malfunction alarm.

c. The pressure setting of 7.0 mTorr was lower than allowed by the equip-

ment, causing a malfunction alarm.

The main etch step is the fourth step of the etching process, in which the RF power

is applied to begin the etch cycle. During the main etch step, the intensity of a particular
wavelength of light emitted by the plasma is monitored!. An abrupt change in this monitor

1. The wavelength used is 261.8 nm. This line corresponds to the species AlCl, a byproduct of Al etching.

22

H. W. Huang Chapter 3
signal, known as the endpoint signal, indicates that the underlying substrate has begun to

be exposed, and therefore that the step has completed [21).

At this point, although much of the film has been etched away, some material still
remains due to the process non-uniformity. To allow for this, etching is continued in a fifth
step, the over-etch step. In practice, this step lasts for an amount of time equal to a percent-
age of the main etch step’s duration. In this case, the over-etch was run for 100% of the
main etch time. Data from the SECS-II interface? were collected at a sampling rate of about
1 Hz during the second through sixth steps.

3.3.2. Procedure

The SECS-II software collects a large number of real-time signals, only some of
which are useful for SPC. Thus the first step was to pick a subset of the signals to analyze.
The criteria for selecting signals was somewhat subjective: signals should be stationary, or
be able 10 be made stationary via differencing. Signals should be continuous and “smooth”
(not flat, spiky, or containing steps). Signals that are flat (constant) obviously do not con-
tain any useful information, and signals that have spikes (large, abrupt jumps) will trigger
many false alarms. The signals chosen for this example are listed in the results found in
Section 3.3.3.

Next each real-time signal was averaged over the duration of each wafer to produce
wafer-wafer level signals (the first few seconds of data are ignored in order to remove any
transient effects; see Section 2.3.3). A prediction model for each wafer-wafer signal was
built by regressing the data from all wafers onto the designed recipe parameters> (models
for the main etch step and over-etch step are created separately). Apparently, the following
three wafers had either processing or data collection problems and could not be used in the
analysis: wafers #14, 27, and 38.

2. Tl used a custom collection software designed to run on a workstation.
3. The statistical software package S-PLUS was used to build the regression models [3].

23

Chapter 3 H. W. Huang
3.3.3. Results

The results of the regressions are given in Figure 3.1 (the results in the figure are
only given for the main etch models, but the results for the over-etch models are similar).
The figure displays the R? value for each signal’s wafer-wafer prediction model*. Each
residual estimate has 29 degrees of freedom, since 35 observations (wafers) were available
for analysis, and each model has six parameters (5 recipe parameters and an intercept). For

simplicity, no elimination of insignificant model parameters was performeds.

As can be seen by the R? values, many of the wafer-wafer level signals correlate
very well with the machine settings, while other signals correlate very poorly. Note thata
few of the sensor signals are almost perfectly correlated to certain machine controls. For
instance, the “Chamber_pressure” sensor is almost perfectly correlated to the chamber
pressure input setting, as is the “RF_Gen_#3_TCP_FWD_PWR” sensor to the top power
setting. To see the prediction models in use, an example plotting the actual real-time signal
for “RF_match_#1_tuning_position” alongside the predicted wafer-wafer values (for the
main etch step) is shown in Figure 3.2.5 Of course the predictions are never perfect; the
actual wafer-wafer values (real-time signals averaged over each wafer) will differ from the
predictions. The difference between them are the wafer-wafer residuals; these will be
passed to the SPC algorithm.

4. The R? statistic is a percentage value telling the amount of total variance that is explained by the model;
a value of unity is the best [26).

5. However. closer examination reveals that out of the six model parameters, the top power, bottom power,
chamber pressure. and intercept were significant for almost all signals, while the total gas flow and gas flow
ratio were only significant for a few of the signals.

6. Only 35 wafers are shown in the figure, rather than 38, since wafers #14, 27, and 38 were removed from
the analysis.

24

H. W. Huang

-] 80
I

Time

Recipe_Step_#

PLL_Pressure

RF_line_impedance_#1 ']

TP Mk T CapPostien

TCP_Match_Phase_Err_Out

:| TCP_Match_Line_Impedance

- TCL_Match_Load_Cap_Position -

{ Gas_#6_flow

Gas_#7_flow

A — I]

Figure 3.1.

R? values for various wafer-wafer signal prediction models.

25

Chapter 3

Chapter 3 H. W. Huang

2o

actual —
predicted o=

wafer# 5 10 15 20 25 30 35

Figure 3.2.
Predicted wafer means and actual real-time signal for

“RF_match_#1_tuning_position”.

26

H. W. Huang Chapter 4

Chapter 4 Adaptive Modeling

4.1. Introduction

4.1.1. Motivation

As discussed in Section 3.1.1, the real-time SPC methodology described in
Chapter 2 requires training in order to establish an equipment’s baseline behavior. The
need for a training experiment places a considerable prerequisite on those who wish to use
the methodology, possibly costing much time and effort. The work in Chapter 3 alleviates
this requirement somewhat, by avoiding the methodology’s need to be trained on a specific
machine running a specific set of input settings; although this accommodates users who

change machine or process settings often, it still does not obviate the necessity for training.

In this chapter, adaptive modeling techniques are introduced with the goal of elim-
inating the need for baseline training experiments. Adaptive models that can adjust to the
statistics of a signal and also track its statistical variations offer greater flexibility in the
model building process. Not only do they remove the need for baseline training, but they
are also the answer to the problem of machine drift —i.e., slow changes in the state of the
equipment, perhaps due to natural aging. Adaptive models are able to detect these changes
and update themselves in real-time; the updates are automatic, without any need for inter-

vention by the user.

Before extolling the potential merits of adaptive models too far, note that practical
matters will unavoidably temper their success. Issues such as estimation noise and the
amount of data available will impose inevitable tradeoffs. Note that adaptive models can
only track variations in the data that change slowly relative to the model’s speed of conver-
gence. Abrupt changes that are intentional, like recipe changes, will still require predictive

27

Chapter 4 H. W. Huang
models in order to anticipate their effects on the sensor readings; abrupt changes that are
unintentional will be interpreted as equipment malfunctions.

4.1.2. Adaptive and Predictive Modeling

As a further motivation, the techniques of this chapter can be combined with the
predictive modeling of Chapter 3 and the hierarchical modeling ideas of Section 2.2.3 to
model signals that are noﬁ-staﬁonary and, in addition, are affected by abrupt recipe,
machine, or process changes. For example, for an SPC scheme that detects faults in real- '
time, in addition to an adaptive model that operates at the real-time level to track statistical
variations, a predictive model is also needed at the wafer-wafer level to anticipate the effect
of recipe changes. More specifically, the predictive models use the processing recipe to pre-
dict the mean values for each of the sensor signals; these mean values are used to center the

data for the adaptive algorithm at the real-time level.

Another possibility is to use both predictive modeling and adaptive modeling at the
wafer-wafer level in order to dynamically correct a prediction model. Suppose a wafer-
wafer prediction model is built that predicts the effect of recipe changes on the mean value
of each signal. In order to keep this model up-to-date, it should be adjusted whenever new
data is available. Thus, the prediction model itself can be made adaptive by simply using
the recipe settings as inputs to an adaptive filter, and starting the initial filter with the orig-
inal prediction model that was built.

4.1.3. Chapter Overview

Extensive background on adaptive filters is given in Section 4.2, beginning with an
introduction to optimum static filters. Then the section continues towards a development of
adaptive filters, and ends with a summary, which outlines some important issues, including
stability and convergence rate. Section 4.3 details how the actual adaptive algorithms are
implemented in a computer. A discussion of several important implementation issues is
found in Section 4.4, including tradeoffs that need to be considered when using adaptive
algorithms, and how to use adaptive modeling to implemen\t\réal-time SPC. An example of

how adaptive modeling can be used on actual production data is presented in Section 4.5.

28

H. W. Huang Chapter 4
4.2. Background

The term filter is used to describe a tool that is applied to observations of a signal
in order to extract certain information about the signal. The design of an optimum filter is
based on some a priori assumptions about the statistics of the signal. However, if the signal
is unknown, difficult to characterize, or is time-varying, the use of an adaptive filter is often
advantageous. An adaptive filter starts from a predetermined set of initial conditions and,
based on some recursive algorithm, tries to converge to the optimum solution. In a time-
varying environment, the adaptive filter offers the ability to track variations in the statistics
of the input data, provided that the variations are sufficiently slow.

Adaptive filters have been successfully used in a vast variety of applications. Some
of these applications include: adaptive equalization for digital communication channels,
system identification, speech compression, signal detection, and echo cancellation.
Although these applications are quite diverse, they each use adaptive filters in a similar
way: the input signal is used to estimate a desired response, and the estimation error is used

to adjust the filter.

However, the essential difference among the various applications of adaptive filter-
ing arises in the manner in which the desired response is extracted. For example, in a system
identification application, the desired response is the actual output of the unknown system
being modeled, whereas in an echo cancellation application, the desired response is the

input signal with echoes removed.

In this paper, adaptive filtering will used as a modeling technique. The technique
works by assuming that the observed signal is produced as the output of a white (uncorre-
lated) noise process fed through a linear transfer function. With this assumption, the signal
can be input into an adaptive filter that attempts to find the inverse of the transfer function.
The filter’s goal is to predict the next value of the signal, based on past values. Therefore,
the desired response is the actual next value of the signal. The filter works by continually
adjusting and correcting itself, until it reproduces the original white noise process; thus, it

is a whitening filter (also known as a prediction-error filter).

29

Chapter 4 H. W. Huang
If the adaptive filter is successful, it will have found a model for the observed signal

(or an approximation to it). Any observed deviations from the model can be easily detected
and flagged as equipment malfunctions. In particular, adaptive models can replace the time
series models needed in the SPC methodology of Section 2.2.2.

This section is relatively lengthy, but is necessary for a good understanding of the
subject matter. For further references, the reader is encouraged to consult [11]{12][37][7].
The section is divided into a number of sub-sections. Section 4.2.1 begins by introducing
non-adaptive linear filters and solving the optimum linear filtering problem. Section 4.2.2
extends this theory by showing an iterative solution to the problem based on the method of
steepest descent; the iterative solution forms the basis for a simple adaptive filtering algo-
rithm. This algorithm is a simplified version of another adaptive algorithm based on the
method of least squares, discussed in Section 4.2.3. In both of the above two sections, the
important issues of stability and convergence are addressed. This discussion concludes

with a summary in Section 4.2.4.

4.2.1. Wiener Filters

The theory of Wiener filtering is concerned with extracting information about a
signal given some observations of that signal. More precisely, a Wiener filter seeks to make
an optimum estimate of some desired response based on a linear function of the observa-
tions. Filtering is also a kind of modeling, since the optimum filter will represent the cor-
relation structure of the input signal. The optimality criterion used here is to minimize the

mean square error of the filter estimates.

4.2.1.1. Modeling Assumptions

The theory behind the solution of an optimum Wiener filter necessarily assumes
certain model structures for both the input signal and the filter. For the problem presented
here, the input signal is modeled as a real, discrete-time, and wide-sense (second-order)
stationary stochastic process. A wide-sense stationary process, {x(¢)}, is characterized by

its first and second moments:!

1. Usually processes will be assumed to have zero mean, but not necessarily unit variance. If a process does
not have zero mean, it can be easily centered by subtracting the mean from each value of the process.

30

H. W. Huang Chapter 4
1. The mean value of the process, m, is constant for all times ¢:

m= E[x(t)] = constant 4.1
2. The autocorrelation function of the process, defined by
ry(t, t) = E[x(2;)x(15)], 4.2)
depends only on the difference between the observation times ¢, and ¢, , as shown by
r,(1,8) = r(t,-1,). 4.3)

This way of characterizing a stochastic process is practical since it lends itself to measure-
ments and is well suited for linear analysis. Note that a Gaussian process is completely
characterized by its first and second moments: if it is wide-sense stationary, then it is also
strictly stationary (i.e., its statistical properties are invariant to a shift in time origin).

In this analysis, the filter is assumed to be a linear, finite-duration impulse response
(FIR) filter. An FIR filter contains only forward paths and no feedback loops, thus making
it inherently stable and, in addition, mathematically tractable. On the other hand, an infi-
nite-duration impulse response (IIR) filter contains both feedforward and feedback paths.
Consequently, unless it is properly controlled, feedback can cause an IIR filter to become
unstable. Although the stability problem is manageable for static filters, it complicates the
situation for adaptive filters. Therefore, in most applications for which adaptivity is
required, the use of FIR filters is preferred, even though an IIR filter can sometimes provide
better performance (see Section 4.3.3 for more on adaptive IR filtering).

4.2.1.2. Problem Formulation

Consider the block diagram of Figure 4.1. The filter input is x(¢), a realization of a
discrete-time wide-sense stationary stochastic process, or more simply, a time series. The
filter output is y(¢), a linear function of the input:

M-1

yine Y hx(t-k), (4.4)
k=0

where [hgy, hy, ..., hy,_,] is the impulse response \gf the filter (the filter coefficients or
filter taps), and M is the order of the filter (the number of degrees of freedom). The output
¥(1) attempts to estimate the desired response, denoted by d(t) . The estimation error is the
difference between the desired response and the filter estimate:

31

Chapter 4 H. W. Huang
e(t)=d(t)-y(1). 4.5)
Recall that in this paper adaptive filters are used as prediction-error (whitening) fil-
ters. Consequently, the filter output y(¢) is a prediction of the next value of the signal
x(t + 1) before it is known, and the desired signal d(¢) is the actual value x(z + 1). This
notation might be slightly confusing at first, but is preferred over always using x(¢+ 1) or
X(t) . In addition, it keeps the derivation applicable to the general case.
The optimality criterion for the Wiener filter is to minimize the mean square error
of the estimation error, denoted by

MSE = E[e2(2)]. (4.6)
Substituting (4.5) into (4.6) we have

MSE = E[(d(1) - (1))

. 4.7)
= E[d%(1)]-2E[d(1)y(1)] + E[y*(1)]

x(t) Linear y(t) d(t)
—1 FIR Filter:

T

e(t)

Figure 4.1.
Block diagram of the linear filtering problem.

4.2.1.3. Matrix Form

To solve for the optimum filter, the next step would be to substitute (4.4) into (4.7)
and then set up a system of M equations by differentiating the resulting expression with
respect to each of the filter coefficients. However, a more elegant solution is gained by first

expressing (4.7) in matrix form. Therefore, an M-by-1 column vector of the current and

(M - 1) previous observations is defined as

T
X2 [x(r) x(t-1) ... x(t-M+1)] (4.8)
and an M -by-1 vector of the filter taps is defined as
T
h=[hg by ... hy_y] - 4.9

32

H. W. Huang Chapter 4
Now (4.4) can be written (dropping the indices)
y = h7x = x7h, (4.10)
and (4.5) can be written
e =d-hTx, 4.11)
and (4.7) can be written

MSE = E[d?]-2E[dxT]h + hTE[xxT]h. 4.12)
Further define the M -by-M correlation matrix of the input signal x(z) as
R, =E[xxT]. (4.13)
The fact that the input signal is a real, wide-sense stationary process means that R is a

symmetric, Toeplitz, positive semi-definite matrix. It is related to the input signal’s autocor-

relation function r, (k) as follows:

r(0) (1) .. r(M-1)
R, = r,(1) r.(0) @.14)
r (1)

rM-1) .. 1 (1) r(0)

Since the matrix R, is positive semi-definite, then
xTR x 20 forall x#0. 4.15)

The equality only occurs when R, is singularz; however, in practice R, is almost always
nonsingular, in which case it is positive definite so that all its eigenvalues are positive [2].

The desired signal and the input signal are assumed to be jointly wide-sense station-
ary, both with zero mean. Let the M-by-1 cross-correlation vector between the desired

signal and the input signal be

p=[p(0) p(1) ... pM-1)" (4.16)
p(k) = E[d(D)x(t-K)], @.17)

so that
p = E[dx]. 4.18)

2. Such a situation arises essentially only when the process consists of the sum of K sinusoids with
K<M. ‘

33

Chapter 4 H. W, Huang
Since the desired signal is assumed to be wide-sense stationary and of zero mean, its vari-
ance can be defined as

o3=E[d?] = r (0). 4.19)
Now (4.12) can be re-written in matrix form as

MSE = 63-2pTh+h"R/h. (4.20)

4.2.1.4. Optimum Filter Solution

The cost function, MSE, is a quadratic (second-order) function of the unknown
filter taps h. This function can be visualized as a bowl-shaped (M + 1) -dimensional sur-
face (a paraboloid) with M degrees of freedom represented by the elements of h . This sur-
face is referred to as the error performance surface of the filter. The importance of this
particular surface is that it is characterized by a unique minimum (as long as R, is non-

singular). Figure 4.2 depicts the error performance surface for a 2-tap filter.

Figure 4.2.
Visualization of an error performance surface.

At the lowest point of the error performance surface, the cost function MSE attains
its minimum value, denoted by MSE*. This point corresponds to the optimum filter tap

vector. At this point, the gradient vector must be identically zero; in other words,

34

H. W. Huang Chapter 4

=9 = = -
VkMSE_T(k)MSE =0fork=0,1,..,M-1, 421)

or in vector form:

VMSE = 0. 4.22)
The gradient vector can be calculated to be
VMSE = -2p+2R.h, 4.23)

so that putting together (4.22) and (4.23), the system of M equations can be solved in
matrix form:

-2p+2Rh* =0
Rh*=p . (4.24)
h* = R;'p
The solution shows the optimum filter taps denoted by h* . This vector of filter taps is opti-
mum in the mean square sense; no other M -order linear filter can be designed that has a

smaller mean square error. The minimum value of the MSE function can be found using
(4.20) and (4.24) as

MSE* = MSE| . = c}-pTR;'p. (4.25)

Equations (4.21) are known as the Wiener-Hopf equations and also as the normal
equations. The term “normal equations” refers to the geometric development of the opti-
mum filtering problem, commonly known as the principle of orthogonality. Geometrically,
the minimum point of a quadratic error function occurs when the error signal is orthogonal
(normal) to the hyperplane spanned by the space of the M filter inputs. The geometric
development of the solution can be shown to be equivalent to the minimum mean square

error method.

4.2.1.5. Canonical Form of the Error Performance Surface

An alternate form for (4.20), the formula for the error performance surface, will be
useful both theoretically and conceptually in subsequent sections. By using (4.24) in both
(4.20) and (4.25) to remove the presence of p, then subtracting the former by the latter, one

arrives at the expression

35

Chapter 4 H. W. Huang
MSE = MSE* + (h-h*)TR (h-h*). (4.26)

This equation shows explicitly the unique optimality of the minimizing filter tap vector h* .

Recall that R, is positive semi-definite, so that MSE can never be less than MSE* .

The quadratic form on the right side of (4.26) is quite informative; however, the for-
mula can be further simplified by a change of basis. Let Q be an M -by-M matrix:

Q=[q, q, ... q,] @.27)
where each q, is a unit-length eigenvector of R, with corresponding eigenvalue A, . Also
define the M -by-M diagonal matrix of eigenvalues as

A=diag(h, Ay, ..., Ny). (4.28)
With these definitions, the matrix R, can be expressed in terms of its eigenvalues and

eigenvectors with a similarity transformation, where Q is a unitary matrix [2]:

R. = QAQT 4.29)
Q7Q =1
After using (4.29) in (4.26) and defining the transformed version of (h —h*) as
v=QT(h-h*), (4.30)
the formula (4.26) can be expressed in its canonical form as
MSE = MSE* + vT Av
= MSE* + f AvE @30
k=1

This formulation uses the principal axes of the error performance surface as its new basis
so that all cross-product terms disappear. The usefulness of this result will become apparent

in later sections.

4.2.2. Method of Steepest Descent

Now that the optimum filter solution has been established for a stationary environ-
ment, this section proceeds to develop an adaptive solution. A straightforward approach is
to develop an iterative procedure for solving the optimum filter problem. An iterative pro-
cedure begins with an initial “guess” for the filter taps, which is located some distance away

from the minimum point of the error performance surface. After each iteration, an appro-

36

H. W. Huang Chapter 4
priate correction is applied to the filter in such a way that it moves closer to the minimum

point. Thus, starting from an arbitrary point on the error performance surface, the filter
adapts in a step-by-step fashion, always moving closer to the optimum solution. Of course,
in a time-varying environment, the optimum point is constantly changing, so the filter never
exactly reaches it.

An old optimization technique, the method of steepest descent, suggests a simple
way of iterating towards the optimum solution: start with an initial guess for the filter taps
(the guess could be arbitrary, or could be based on some prior knowledge), then compute
the gradient vector and update the filter taps in the negative direction of the gradient (i.e.,
in the direction of steepest descent). The iteration update is as follows:

h(n+1) = h(n) + %u[—VMSE(n)] 4.32)

where the indices denote the iteration number, p is a positive real-valued constant called
the step size, and the factor 1/2 is added to simplify notation later. Figure 4.3 exhibits an
example of the ideal path travelled by a filter tap vector as it moves towards the optimum
point (the plot is a two-dimensional contour plot of an error performance surface). Notice
that each point of the steepest descent path is always perpendicular to the contour curves,

even if the contours are elliptical.

A hl MSE*

Figure 4.3.
Example of a steepest descent path.

37

Chapter 4 H. W. Huang
4.2.2.1. Stability and Convergence of Steepest Descent

Substituting (4.23) into (4.32) results in the recursion relation
h(n+1) = h(n) + u[p-R,h(n)]
= (I-pR)h(n) +pp
The presence of feedback in (4.33) means that the algorithm must be carefully designed for
stability. Its stability depends on the input correlation matrix R, and the step size p; of

(4.33)

these two, the step size is under the designer’s control.

For a more complete stability analysis, the transformation of Section 4.2.1.5 will
prove useful. First subtract h* from both sides of (4.33) and use (4.24) to eliminate p:
[h(n+1)-h*] = (I-uR)h(n) + puR h* -h*
= (I-uR,)h(n) - (I1-puR)h*. (4.34)
= (I-pR,)[(h(n)-h*]
Then using the similarity relation of (4.29) and the transformation of (4.30), the following
is obtained:
vin+1) = (I-pA)v(n). (4.35)
The transformation allows for the decoupling of (4.35) into M scalar-valued first-
order difference equations (recall that A, is an eigenvalue of R,):
vi(n+1) = (1-pA)v(n) fork = 1,2,.., M. (4.36)
Each of these equations corresponds to a different mode of the algorithm. The solution to
each is a simple geometric series:
vi(n) = (1=pA)"- v (0), (4.37)
where v,(0) is the initial value for the k-th mode. A time constant for the convergence of

the k-th mode can be approximated (for small p) as

1
Ay
This reflects the fact that a small step size p will result in a large time constant (slow con-

T, (4.38)

vergence), and a large step size will result in a small time constant (fast convergence).
Although a time constant for the convergence of each mode has been presented in

(4.38), relating these back to the overall time constant T, for the convergence of the filter
38

H. W, Huang Chapter 4
tap vector h is not straightforward. However, a worst-case (upper bound) for 1, can be

given as
1
T, < . (4.39)
HApin
Clearly, a large step size is desired for fast convergence. Furthermore, the slowest mode of

convergence is determined by the minimum eigenvalue A,,;,

of R,.

The desire for a large step size, however, conflicts with the limits that must be main-
tained for stability. To ensure the stability of the steepest descent algorithm, irrespective of
initial conditions, the geometric series corresponding to each mode of the algorithm must
converge. For the sum of a geometric series to converge, its geometric ratio must have

absolute value less than one. Therefore, the stability condition is
|l-u)~k|<1 fork =1,2,....M. (4.40)
Or, since the step size |1 and the eigenvalues A, are real and positive, (4.40) simplifies to

0<u<%. (4.41)

max
The stability condition places an upper limit on the step size p, where the limit is deter-

mined by the maximum eigenvalue A,,,, of R,.

max

Looking at (4.39) and (4.41), one sees immediately that a large eigenvalue spread
hampers the performance of steepest descent algorithms. In other words, the worst-case
convergence rate of the algorithm is poor if the eigenvalue ratio A,,,./A,,;, (also known

as the condition number of R,) is large.

4.2.2.2. Least Mean Square (LMS) Algorithm

The steepest descent algorithm discussed in Section 4.2.2.1 is obviously an ideali-
zation, because in reality one does not know the exact correlation matrix R nor the cross-
correlation vector p. Consequently, the gradient vector must be estimated from the avail-
able data. Estimates based on data will be noisy, so that even in steady-state, the filter taps
will continue to fluctuate around the optimum point. Steepest descent methods of this sort
belong to the family of stochastic gradient algorithms.

39

Chapter 4 H. W. Huang

The Least Mean Square (LMS) algorithm is a widely used algorithm because of its
simplicity; it does not require matrix inversions nor other expensive operations. The LMS
algorithm uses simple, instantaneous estimates for R, and p . (Compare these with (4.13)
and (4.18), respectively):

A~

R, = xx7 4.42)

p = dx. (4.43)
Replacing the actual variables in (4.23) with their estimates, the instantaneous estimate of
the gradient vector is

VMSE = - 2dx +2xxTh
= -2x[d -xTh] (4.44)
= -2ex

where e represents the estimation error. Using this gradient estimate in (4.32) gives

h(n+1) = h(n)+ple(n)x(n)]. (4.45)

As discussed in Section 4.2.2.1, the choice of step size P requires particular atten-

tion. The condition given by (4.41) ensures mean convergence of the filter taps. However,
in practice a more conservative condition is necessary [7]. This condition ensures mean-
squared convergence of the error signal and is simpler to use since it does not require cal-

culation of A, :

2
Mc? (4.46)
62=E[x?] = r (0)

O<pu<

Note that applying the analysis of Section 4.2.2.1 to the LMS algorithm is not com-
pletely correct without a number of assumptions. In particular, consecutive input vectors
x(n) must constitute a sequence of statistically independent vectors, and both x(n) and the
desired response d(n) at time n must be independent of all previous samples of d(n) . Fur-
thermore, x(n) and d(n) must consist of jointly Gaussian distributed random variables for
all n. Clearly, these assumptions are often far from true; nevertheless, experience with the
LMS algorithm has shown that the results of the analysis are usually found to be in agree-
ment with experiments and computer simulations. Even if the results are not exactly cor-

rect, they serve as reliable filter design guidelines [11].

40

H. W. Huang Chapter 4
4.2.3. Method of Least Squares

The method of least squares is a classical method that seeks to fit a model—linear,
in our case—to some observed data by minimizing the sum of square differences between
the model predictions and the actual data. This theory is fundamentally different than the
Wiener filtering theory presented previously, because the least squares theory does not pre-
suppose a probabilistic framework—for instance, time averages are used, instead of expec-
tations. Nevertheless, many analogous ideas exist between the two frameworks, like the
principle of orthogonality and the normal equations. This section will try to present an intu-
itive understanding of the concepts, rather thanvdivulgc rigorous proofs, by extending the

ideas from the previous section.

The discussion of Section 4.2.2.1 showed that the method of steepest descent can
suffer from poor performance if its correlation matrix is ill-conditioned. Visually, this cor-
responds to a highly elliptical error performance surface whose major axis is significantly
longer than its minor axis. This causes the algorithm to follow a highly indirect path
towards the optimum point. An algorithm that leads an arbitrary initial condition directly
to the optimum point would be ideal (compare Figure 4.4 with Figure 4.3).

A hl MSE*

hy

-

Figure 4 4.
Example of a “direct” path.

The update formula for the method of steepest descent (4.32) can be slightly mod-
ified to result in an improved algorithm. To see this, first multiply (4.23) on the left by R;!
and use the result of (4.24) to obtain

4]

Chapter 4 H. W. Huang
h* = h+ JR;[-VMSE], 4.47)

which immediately suggests that the following algorithmic update would be ideal:
h(n+1) = h(n) + uR; [-VMSE(m)]. (4.48)

The formula now has the same form as (4.32) except for the presence of R;? . This algo-
rithm is sometimes known as the orthogonalized steepest descent algorithm, since the R;!
term transforms an elliptical error performance surface into a circular one by orthogonaliz-
ing its axes. If the instantaneous gradient estimate of (4.44) were used in (4.48), the result
would be an algorithm analogous to (4.45):

h(n+1) = h(n) +pR;[e(n)x(n)]. (4.49)
The update of (4.48) is idealized since it requires knowledge of R;!, as well as the
gradient vector VMSE . Furthermore, no clues are given as to how the step size p should

be chosen. Next a different approach will be pursued that will lead to a practical algorithm

similar in form to (4.48).

4.2.3.1. Recursive Least Squares (RLS) Algorithm

In order to develop a realistic algorithm using the method of least squares, the time-
averaged estimates for the correlation matrix R and the cross-correlation vector p are
necessary. For operation in non-stationary environments, an exponential weighting factor
(or forgetting factor) A is also introduced so that recent data is more heavily weighted than

past data. The estimates are:

Ri(n) = Y Mx(n-k)xT(n-k) (4.50)
k=0

p(n) = Y Ad(n-k)x(n-k) (4.51)
k=0

The positive constant A should be close to, but less than (or equal to) one. The quantity
1/(1 - A) is a rough measure of the memory of the algorithm. The special case A = 1 cor-
responds to infinite memory, i.e., the entire history of data is utilized.

42

H. W. Huang Chapter 4
One can show that the normal equations, derived in a manner similar to

Section 4.2.1.4, are given by

R:(m)h(n) = p(n). 4.52)
Note that the estimated correlation matrix li, cannot be assumed to be Toeplitz, although
itis still symmetric and positive semi-definite.

Calculating the estimates (4.50) and (4.51) for every iteration would be computa-

tionally expensive. The following simple recursions incur the least possible computation
for each update:

R:(n) = AMRx(n-1) + x(n)x7(n) (4.53)

p(n) = Ap(n-1) +d(n)x(n). 4.54)

The recursions (4.53) and (4.54) could be used, theoretically, as the basis for an adaptive

algorithm by using the estimates to solve f(n) in (4.52). However, solving (4.52) requires

the inversion of li,(n) and having to invert a matrix at each iteration would make the algo-

rithm computationally expensive since matrix inversion requires on the order of M3 oper-

ations, where M is the dimension of the matrix. This would make the algorithm practically
useless for real-time estimation.

Since actually R}l (n) is desired rather than ﬁx(n) , the matrix inversion lemma
(not proved here) is used. This result reduces computational complexity by providing a

recursive update for the inverse of lf,(n). For notational convenience, let

P(n)=R:\(n) . (4.55)
Applying the matrix inversion lemma to (4.53) results in the recursive update
P(n) = A1P(n-1) - A1u(n)P(n - 1)x(n)xT(n)P(n - 1) (4.56)
1

w(n) = 4.57)

A+xT(n)P(n-1)x(n) ~
Note that p(n) is a positive scalar and can be thought of as a variable step size. Note that

(4.56) contains no matrix inversions.

Using (4.56) and (4.54) with (4.52) to solve for ﬁ(n) , one can show that

43

Chapter 4 H. W, Huang
h(n) = h(n-1)+ u(n)P(n-1)[e(n)x(n)] (4.58)

e(n) = d(n)-hT(n-1)x(n) (4.59)
where e(n) is the prediction error based on the old filter estimate. Together, equations
(4.56), (4.57), (4.58), and (4.59) comprise the Recursive Least Squares (RLS) algorithm.
Notice that (4.58) is of the same form as (4.49), except that the step size is time-varying and
the derivation is exact, rather than using an instantaneous estimate of the gradient.

4.2.3.2. Stability and Convergence

The least squares estimate of the filter taps h(n) possesses some important proper-
ties that relate it back to the optimum Wiener filter of Section 4.2.1.4. Setting A = 1 for
the moment so that no data is “forgotten”, if the input signal x(n) and the desired response
d(n) are jointly stationary ergodic processes, then the least squares estimate h(n)
approaches the optimum Wiener filter h* as n goes to infinity. In other words, the estimate
is consistent. Furthermore, if the error signal e(n) has zero mean, then h(n) is an unbiased
estimate [12]. Loosely, a process being ergodic means that it is asymptotically uncorre-

lated, so that two samples taken at distant lags become more and more uncorrelated.

In a non-stationary environment, the factor A must be set to a value less than one
so that the importance of old data gradually diminishes. By doing so, the algorithm attains
the capability to track statistical variations in the environment in which it operates (as long
as the variations are slow with respect to the convergence time of the algorithm). However,
the use of A <1 changes the behavior of RLS drastically; the estimate of the filter taps
h(n) becomes no longer consistent because the memory of the algorithm becomes finite.

In general, a fast adaptation must be traded off for a more noisy adaptive process.

4.2.4. Summary
When evaluating a particular adaptive algorithm, various factors need to be taken

into account, for example: rate of convergence, accuracy, computational requirements, and

numerical stability. ~-

e The RLS algorithm takes a more direct path to the solution, since it uses an estimate of
R;!. This makes it independent of the eigenvalue spread.

44

H. W, Huang Chapter 4

* The number of iterations to convergence using the RLS algorithm is about an order of
magnitude less than for the LMS algorithm.

* The computational complexity of the RLS algorithm increases as the square of the filter
order, whereas for the LMS algorithm, the complexity increases linearly with the filter
order.

The major advantage of RLS over LMS lies in faster convergence and reduced sen-
sitivity to eigenvalue spread for stationary inputs. On the other hand, the RLS algorithm
retains less advantage over LMS in low eigenvalue spread situations, in cases where the

signal-to-noise-ratio (SNR) is low, and in tracking non-stationary data.

The RLS algorithm converges in a mean square sense in about 2M iterations,
where M is the number of taps. This means that the rate of convergence for RLS is typically
an order of magnitude faster than for LMS [11]. Also, the RLS algorithm, in theory, con-
verges to the exact optimum filter when operating in a stationary environment (with
A = 1), whereas the LMS algorithm necessary involves some residual noise power due to

its use of an instantaneous gradient estimate.

Some of the disadvantages of the RLS algorithm are its much higher computational
requirements and implementational complexity. Although “fast” RLS algorithms exist that
reduce the required computing power, the numerical sensitivity of these algorithms remains
problematic. In addition, the superiority of RLS over LMS is often lost with non-stationary
data. Even with exponential weighting for tracking, it is unclear how to choose the weight-
ing factor. Additionally, the exponential weighting tends to increase numerical problems in
the algorithm.

4.3. Adaptive Algorithms

In this section, details about the adaptive algorithms used in this paper are given.
For most of this work, the Recursive Least Squares (RLS) algorithm is preferred over the
Least Mean Square (LMS) algorithm due to its faster convergence rate and reduced sensi-
tivity to eigenvalue spread. However, the performance disparity between the two algo-
rithms is not always so great, and in some cases the LMS algorithm may be advantageous
(most notably in non-stationary environments). Although the computational requirements
of RLS is greater than that of LMS, this is not really a concern here, since the algorithm is

45

Chapter 4 H. W. Huang
not being implemented directly in hardware. The use of modern computers is assumed, so

that computation speed is plenty adequate. Moreover, the models that are used are usually
of fairly small order.

Section 4.3.1 and Section 4.3.2 outline the steps of the RLS and LMS algorithms,
respectively. The following two sections, Section 4.3.3 and Section 4.3.4, touch only
briefly on the issues of adaptive IIR filtering and numerical stability; these issues are
important, but an in-depth discussion of them would be beyond the scope of this work.

4.3.1. Recursive Least Squares (RLS)

The RLS algorithm (Section 4.2.3.1) requires initialization before the recursions
can begin. In particular, starting values for the filter tap vector h(n) and the inverse of the
correlation matrix P(n) are needed. For ﬁ(n) , unless a better starting point is known, set-
ting the initial filter taps to all zeroes is customary:

h(-1) = 0. (4.60)
For P(n), if some prior data were available, an estimate based on the data could be pre-
computed and used for the initial value P(-1). Otherwise, if no prior knowledge is avail-
able, the matrix can be initialized with

P(-1) = &1 (4.61)
where & is a small positive constant. The initialization procedure consisting of (4.60) and
(4.61) is referred to as soft-constrained initialization, with 8 being the only parameter. The
recommended choice of & is that it should be small compared to 0.0162, where 62 is the
variance of the input signal x(n) [11]. The effect of initializing with (4.61) is to introduce
a bias into the estimate of the filter taps h(n). However, as the number of iterations n
becomes large (the amount of observed data increases), the bias diminishes to zero, so that
the estimate of h(n) is asymptotically unbiased. Therefore, for long data lengths, the exact
value of & is unimportant.

After the algorithm has been initialized, the steps of the recursion can proceed as
shown in Figure 4.5.

46

H. W. Huang Chapter 4
For each iteration n = 0, 1, ..., compute

1. s(n) = xT(n)P(n-1)

2. k(n) = [P(n-1)x(n))/[A +s(n)x(n)]

3. e(n) = d(n)-hT(n- 1)x(n)

4. h(n) = h(n-1) +Kk(n)e(n)

5. P(n) = 2[P(n~ 1)~ k(n)s(n)]

Figure 4.5.
The RLS algorithm [11].

4.3.2. Normalized LMS
The LMS algorithm (Section 4.2.2.2) also requires initialization of its filter tap

vector h(n). Setting it to zero is convenient, unless some prior knowledge results in a better
initial guess:

h(-1) = 0. (4.62)

Figure 4.6 shows the steps in the normalized LMS algorithm, which is a variation

on the standard LMS algorithm. In the standard algorithm, a constant step size is used, but
in the normalized version, the step size p(n) is allowed to vary inversely with the squared
Euclidean norm of the input vector x(n). The normalized step size helps to dampen the
problem of gradient noise amplification, which can occur when noisy data causes the algo-

rithm’s estimate of the gradient to be especially bad.

For each iteration n = 0, 1, ..., compute
1. e(n) = d(n)-hT(n-1)x(n)
2. w(n) = /la+x(mi?
3. h(n) = h(n-1) + p(n)e(n)x(n)

Figure 4.6.
The normalized LMS algorithm [11].

For the algorithm to be convergent in a mean square sense, the dimensionless
parameter [l should satisfy the following inequality (compare to (4.46)):

O<p<2. (4.63)

47

Chapter 4 H. W. Huang
The positive parameter a is included to prevent division by a small value in the event x(n)
becomes close to zero. Setting a = 0 and fixing the step size p(n) (by skipping the second
step in Figure 4.6) reduces the algorithm to the standard LMS.

4.3.3. Adaptive IIR Filtering

An adaptive IIR filter can provide significantly better performance than an adaptive
FIR filter having the same number of filter taps; alternatively, for a given level of perfor-
mance, an IIR filter generally requires fewer taps than the corresponding FIR filter, making
it more computationally efficient. These advantages are due to the feedback paths in an IIR
filter which allows it to generate an infinite-duration impulse response with only a finite
number of coefficients. The actual benefit of using an IIR filter depends on the signal to be

modeled; for instance, if a signal is well-modeled by a few moving average terms, the ben-

efit can be large.

However, the potential gains to be realized by adaptive IIR filters are offset by aug-
mented problems with stability and convergence. Unlike FIR filters, IIR filters have the
possibility of becoming unstable, meaning that the filter coefficients could grow without
bound. Also unlike FIR filters, the error performance surface of an IIR filter is not guaran-
teed to have a unique minimum. Thus, even if the algorithm converges, the convergence

may be at a local rather than a global minimum.

The poles of an IIR filter’s transfer function can be located at positions other than
at the origin of the z-plane’; instability problems arise when one or more of these poles
migrate onto or outside the unit circle of the z-plane and remain there for a significant
length of time. This occurrence is not uncommon, especially if the application requires that
the poles be near the unit circle. Several ad hoc schemes exist for combatting this problem:
one possible course of action is to ignore updates that move the filter’s poles too close to
the unit circle, or to reduce the step size. Another possibility is to use an exponential

weighting factor to push unstable poles towards the origin [7].
-

3. When referring to the z-transform of the filter at a particular instant of time, the coefficients must be
assumed to be fixed.

48

H. W. Huang Chapter 4
One can see already that the properties of an adaptive IIR filter are considerably

more complex than those of an adaptive FIR filter. In fact, relatively few analytical results
are known regarding their behavior because of the inherent non-linearities. This paper will
not discuss the subject much further, although future work in this area is encouraged. For
an overview on adaptive IIR filtering, see [28] or [32).

As a final note, an adaptive filter can be made IIR simply by feeding back present
or past filter outputs (signal predictions) as extra inputs to the filter; this algorithm is often
referred to as pseudolinear regression and can be derived as a steepest descent method
using an approximate gradient [8][28). The resulting output of this filter is no longer linear,
so that the error performance surface is no longer quadratic and can have multiple local
minima. Moreover, the algorithm is not even guaranteed to converge to a local minimum;

depending on the input, it may approach a biased solution [13)[36).

However, despite these drawbacks, the algorithm has been shown to be useful in
‘practice [36][8]. On the positive side, stability monitoring is not required for this algorithm;
it has a self-stabilizing feature whereby unstable poles have a tendency to migrate back into
the stable region [28]. Also, the problem of the algorithm not converging to a minimum
(local or global) can sometimes be solved by differencing the signal [28].

4.3.4. Numerical Stability

In the digital implementation of an adaptive filtering algorithm, one must be aware
of numerical stability problems due to the finite precision of the system. Essentially two
sources of error exist: finite-precision arithmetic errors and quantization errors incurred
during analog-to-digital conversion. If these errors accumulate without bound, they can

lead to instability.

Any adaptive algorithm is vulnerable to numerical stability problems, but an impor-
tant one to be aware of is “explosive divergence” in the RLS algorithm. This problem
occurs when the P matrix (Section 4.2.3.1) loses its property of positive definiteness, caus-
ing filter taps to increase without bound. See [11] for a simple cure, and also for more
numerically robust ways of implementing RLS, including a procedure based on the QR

49

Chapter 4 H. W. Huang
decomposition based recursive least squares (QRD-RLS) algorithm and other procedures
based on alternative filter structures.

Any further discussion of the numerical properties of adaptive algorithms would be
straying from the scope of this paper. However, as in Section 4.3.3, future work in this area
is encouraged.

4.4. Implementation

In this section, a number of issues will be discussed regarding the implementation
of adaptive algorithms for the purpose of real-time SPC. The first sub-section explains how
to initialize and configure the adaptive algorithms described in Section 4.3; the most impor-
tant issue, discussed in Section 4.4.1, is the fundamental tradeoff between estimation noise
and tracking ability when choosing algorithm parameters. Section 4.4.2 describes a scheme
for combining adaptive algorithms. Section 4.4.3 introduces multivariate modeling and

how it can be used.
4.4.1. Algorithm parameters

4.4.1.1. Exponential Weighting Factor in RLS

The exponential weighting factor A allows the RLS algorithm to track slow (com-
pared to the algorithm’s convergence time) statistical variations in a non-stationary envi-
ronment by weighting recent data more heavily than past data (Section 4.2.3.1). The
influence of past data becomes less and less prominent until eventually its contribution to
the adaptive filter becomes insignificant. More precisely, the A factor applies a geometric

weighting to each input sample, so that the quantity

1
=% (4.64)

is a rough measure of the “memory” of the algorithm, i.e., the number of past samples that
the algorithm uses in its estimation of the filter taps.

If the adaptive filter is to be used in a stationary environment, the special case of
A = 1 should be applied, since this corresponds to infinite memory, i.e., the entire history
of data is utilized. Otherwise, the positive constant A should be less than one, so the algo-

50

H. W, Huang Chapter 4
rithm can react to changes quicker; however, the value should be kept above 0.95 to prevent

instability.

As noted in Section 4.2.3.2, with a A value less than one, the RLS algorithm’s esti-
mates are no longer consistent. In other words, its outputs become stochastic, and some
excess error variance will always exist. A smaller value of A enhances the RLS algorithm’s
ability to track non-stationary signals by increasing the speed at which young data is incor-
porated into the algorithm. However, it also causes more noise to appear in the filter taps
and output, thus increasing the steady-state mean square error (also known as misadjust-

ment).

The exact choice of A should depend on the time scale at which one wishes to apply
SPC. For example, to detect equipment faults at the real-time level, the memory of the algo-
rithm should be approximately set to the number of input samples available in a few wafers.
Assuming 50 samples are available per wafer, then using (4.64) as a rule of thumb, a value
for A of about 0.99 would be appropriate. Similarly, to detect faults at the wafer-wafer level
(using real-time data), the algorithm memory should be set to the number of input samples
in an entire lot; if one lot consists of about 20 wafers, then A should be around 0.999.

4.4.1.2. Step Size in LMS

A similar tradeoff between estimation noise and tracking ability also exists in the
choice of the step size p for the LMS algorithm. Recall that K contributes directly to the
time constant (4.38) for the convergence of each mode of the algorithm. A larger step size
accelerates the rate of adaptation, but at the expense of an increase in the average excess
mean squared error during steady-state. On the other hand, a smaller value of K results in
a slower adaptation, but decreases the excess mean squared error after adaptation. Typi-
cally, values of 1 on the order of a tenth of the upper bound given in (4.46) are used [37].

4.4.1.3. Model order

As mentioned in Section 4.2.4, the RLS algorithm converges (in a mean square
sense) in about 2M iterations, where M is the order of the model, i.e., the number of filter
taps. In a stationary environment with the weighting factor A set to 1.0, the algorithm will

51

Chapter 4 H. W. Huang
eventually converge to the optimum filter, regardless of M. However, in a non-stationary

environment, no such guarantee can be made; in fact increasing the model order will

increase estimation noise in the adaptation process.

For the LMS algorithm, the upper bound in (4.46) for the step size M is inversely
proportional to the model order M . Thus, increasing the model order requires L to be made
smaller. Although the estimation noise normally decreases with the reduced step size, the
effect is cancelled out, since the noise also increases with M ; so in this case, the reduced

step size does not result in an attendant reduction in the overall estimation noise.

The actual choice of the model order will depend on the characteristics of the input
signal and the amount of data available. Suppose that the input signal is stationary and its
statistics are known. Recall that FIR filters perform best when the input is an auto-regres-
sive signal. Therefore, if the input signal were known to be well-characterized by a third
order auto-regressive model, then M should be set to three. Theoretically, larger values of
M would not result in any degradation of performance. However, if the amount of data
available to the adaptive filter is small, then one might wish to reduce the model order in

order to increase the rate of convergence.

Of course, usually the statistics of the input signal will not be known, or the signal
may not be stationary. Then the adaptive filter should be configured to track statistical vari-
ations in the signal; in other words, A should be decreased for the RLS algorithm, or the
step size Y should be increased for the LMS algorithm. Either of these actions increases

noise in the adaptation process, resulting in a higher steady-state error variance.

In the application of SPC, the amount of data available will most likely be relatively
limited and the statistics of the input signal will be unknown or the signal will be non-sta-
tionary. Both of these qualities suggest that smaller model orders will perform better. In
practice, different filter configurations can be tested by running computer simulations to
determine the best overall algorithm parameters. This author has found that model orders

less than five seem to achieve good results, at least when operating on real-time plasma

sensor measurements.

52

H. W. Huang Chapter 4
4.4.2. Combining Adaptive Algorithms

Thus far, the RLS and LMS algorithms have been compared and contrasted, but
another possibility is to use them together to filter a signal. For example, to take advantage
of the faster convergence rate of RLS and the good tracking abilities of LMS, one might
first employ the RLS algorithm and then switch over to the LMS algorithm. The way this
would work is as follows: in the “adapting” mode, the RLS algorithm is running with
A = 1 so as to converge rapidly to an approximate solution for the filter taps; then in the
“tracking” mode, the taps are transferred over to the LMS algorithm, which runs in place
of RLS. In this way, a feasible solution is found quickly, and then the good tracking ability
of LMS is applied to follow slow statistical variations. Another important attribute of this
scheme is that data collected during the “adapting” mode can be used to help choose a good
step size | for the “tracking” mode.

4.4.3. Multivariate Modeling
For improved modeling performance, correlations between different signals can be
modeled to produce a multivariate time-series model. The difference between a univariate
and multivariate time-series model is simply that multivariate models express a variable as
a function of past values of that variable, as well as past values of other variables. This has
the advantage of adding extra explanatory variables to a model, perhaps for the purpose of
adding redundancy. As an example, the following equation shows a multivariate model for
the variable u, where the next value of u is a linear function of past values of both u and v:
u(n+1) = ogu(n)+Bev(n) +o,u(n-1)+p,v(n-1)+... (4.65)
Note, however, that using a multivariate model quickly increases the model order.
For instance, if a variable is modeled by three past values of itself and two other explana-

tory variables, then the overall model order becomes nine. This has the effect of increasing

the convergence time and increasing estimation noise, as discussed in Section 4.4.1.3.

4.5. Example

4.5.1. Experiment

The data for this example was taken from the same experiment as in Section 3.3.1.
Refer there for details on the experimental design and data collection.

53

Chapter 4 H. W, Huang
4.5.2. Procedure

A software program was written in C++ [30][31] to implement the RLS and LMS
algorithms; see Appendix C for a code listing. The program is configured with the neces-
sary parameters: number of feedforward taps, number of feedback taps, A or i, number of
signals, number of data points per wafer, and initial P matrix. Also, the option to use mul-
tivariate modeling can be turned on or off, either the RLS or LMS algorithm can be used,
and different input data formats can be selected. Real-time data are read into the program
one wafer at a time and filtered through the RLS algorithm. Relevant output data are saved
to files (the user can specify the filenames), including the prediction errors (residuals), pre-
dicted outputs, filter tap values, and estimated variances.

If a wafer-wafer prediction model has been created (see Section 3.3.2 for the pro-
cedure), the predictions for all the wafers should be written to a file, with each line of the
file being the predicted signal means for one wafer. Before the software reads in the real-
time data for a wafer, it will first read in the wafer-wafer prediction values. These values
will be used to center the real-time data for that wafer. If no wafer-wafer predictions are
available, then the program centers the real-time signals for each wafer by simply subtract-
ing the average values over that wafer; in this case, the algorithm is not operating in real-
time, because the average values are not known until after each wafer has finished process-

ing.

4.5.3. Results

In this example, the RLS algorithm at the real-time level is combined with a predic-
tion model at the wafer-wafer level (see Section 4.1.2). A plot of the actual signal for
“RF_match_#1_load_coil_position” alongside the predictions of the combined wafer-
wafer and real-time model (for the main etch step) is shown in Figure 4.7.% The wafer-
wafer prediction model was described in Section 3.3. The real-time adaptive model used an
order of five and an exponential weighting factor of A = 0.99.

4. Only 35 wafers are shown in the figure, rather than 38, since wafers #14, 27, and 38 were removed from
the analysis due to processing or data collection problems.

54

H. W. Huang Chapter 4

9000

8900 ¢ 4

8800

8700

8600

8500

8400

8300

8200

wafer# § 10 15 20 25 30 35

Figure 4.7.
Predicted and actual signal for “RF_match_#1_load_coil_position”.

The residuals (actual minus predicted values) are displayed in Figure 4.8.5 These
can be passed to an SPC scheme for fault detection. The residuals look “in control” except
for those at wafer #1 and wafer #29. The large residuals at wafer #1 are due to transients in
the convergence of the adaptive algorithm; these always occur during the first few itera-
tions of the algorithm and can be ignored. The large residuals at wafer #29 are probably due
to an abnormally low power setting for that wafer.% Note that occasionally the residuals
show runs, i.e., consecutive values whose signs are identical. This is because prediction
errors from the wafer-wafer model cause the real-time signal to be centered incorrectly;
when the error is large, the real-time adaptive filter is not able to completely compensate.

5. Note that the vertical scale in this figure is smaller than in the previous figure.

6. See wafer #31 of Table 3.2. (The actual wafer number is 31, rather than 29, since wafers #14 and 27 are
not included in the figure.)

55

Chapter 4 H. W, Huang

o i ;,el;iwi ,' wliLl ITELAIN | AR

| !!:l' lkj[.l |

1‘ | YL LA RIS :‘lf I o Irlll:.l’ ST
R T Sk P g
-50 ' |

-100 l
-150
-200
wafer# 5 10 15 20 25 30 35
Figure 4.8.

Residuals for “RF_match_#1_load_coil_position”.

56

H. W. Huang Chapter 5

Chapter 5 Experimental Analysis

5.1. Introduction

In this chapter, the predictive modeling techniques of Chapter 3 and the adaptive
modeling techniques of Chapter 4 are applied to the statistical process control (SPC) meth-
odology described in Chapter 2. The analysis will use sensor data collected from experi-
ments conducted at Texas Instruments (TI) in Dallas for the Sematech J-88-E project.

5.2. Adaptive Calculation of the T? Statistic

This section shows how the T2 statistics can be calculated adaptively; this is
required to effectively apply adaptive models to the real-time SPC methodology described
in Section 2.2.2. In Section 5.2.1, the method for estimating the error covariance matrix is
presented. Section 5.2.2 uses the estimate to calculate T2 values that are normalized so that
any value greater than one denotes an equipment alarm. The implementation of these cal-

culations is described in Section 5.2.3.

5.2.1. Estimation of the Error Covariance Matrix

In order to calculate the T? statistic, an estimate of the error (residual) covariance
matrix S (see Section 2.2.2.2) is needed. In non-stationary environments, the estimate
should have a finite memory, so that signals can be tracked. A general methodology is to
use a moving window to collect the data, followed by an estimation of the covariance
matrix using the windowed data. For example, in a simple moving average, the window has

a length N and constant height 1/N. —

A computationally simpler way is to use an exponential weighting factor A, similar
to the factor used in the RLS algorithm (Section 4.2.3.1):

57

Chapter § H. W. Huang

k
S(k) = Y, Me(k-i)eT (k-i), (5.1)
i=0
where § is an intermediate matrix to be used in the calculation of §, and & is a (column)
vector of signal residuals averaged over a specified group size. The following recursive

update can be used in place of (5.1) in order to reduce the computational expense:

S(k) = AS(k—1) + &(k)eT (k). (5.2)

Note that (5.1) and (5.2) are analogous to (4.50) and (4.53), respectively. Since calculation

of the T2 statistic actually requires the inverse of §, rather than § itself, the recursive tech-

niques of Section 4.2.3.1 can be directly applied (see (4.56) and (4.57)). The recursion is
also initialized in a manner identical to what is done in Section 4.3.1.

The value of § is just S multiplied by a scale factor. For the case A = 1, the scale

factoris 1/(k + 1), where k is the iteration count; this case results in a consistent estimate

of the covariance matrix:

~ _ -1—.-

S(k) = P 1S(k). (5.3)
For the case A < 1, the scale factoris (1-A):

S(k) = (1-1)S(k). (5.4)

5.2.2. Normalized T2 Statistic

Once an estimate of the error covariance matrix is available, the T2 statistic can be

readily calculated with

T2 = ne’§7e, (5.5)
where n is the group size, and &€ is the (column) vector of signal residuals averaged over
the group. The control limits are determined by looking up the chi-squared distribution
value with number of degrees of freedom equal to the number of signals used in the statistic
(see Section 2.2.2.2). Each calculated T2 value is then divided by the control limit to pro-
duce a “normalized” T? statistic. The normalized values have the convenient property that

values greater than one are alarms, and values less than (or equal) to one are in-control.

58

H. W. Huang Chapter 5
5.2.3. Implementation

A computer program was written in C++ to implement the above algorithm. The
inputs to the program are the signal residuals, and the outputs are the normalized T2 values.
Parameters to the program, which can be set by the user, are the exponential weighting
factor A, the group size n, and also the value §, which is used to initialize the recursion
(see Section 4.3.1); the false alarm probability (Type I error) is set at 1%.

The covariance matrix estimate § can be quite poor when the algorithm is first
started. For A = 1, this can result in missed alarms for the first several iterations. For
A <1, this can result in false alarms for the first several iterations; a larger value of 8 can

help alleviate this problem.

The group size n can be increased to dampen the effect of noisy estimates. This is
often necessary when analyzing real-time data, especially if a predictive wafer-wafer
model is used with real-time data: the wafer-wafer predictions tend not to be very accurate,
causing false alarms at the points where recipe changes occur. For wafer-wafer or lot-lot

signals, good results can usually be produced with the group size set to one.

5.3. Experiment 1: Wafer-Wafer Data

In this experiment, the adaptive techniques for estimating the T2 statistic, as
detailed in Section 5.2, will be applied to some actual data. Data were collected from a
series of four lots of wafers that were all processed on a Lam TCP 9600 metal etcher (the
etchant gases are BCl; and Cl,) using TI's “Recipe 44", shown in Table 5.1. The lots con-

top power | bot power | pressure | Cl, (sccm)

12

Table 5.1.
Recipe 44.

sisted of a total of 62 wafers run on October 24, 25, and 26, 1995. Note that these wafers
were not necessarily processed as 62 consecutive wafers. An arbitrary number of wafers
could have been processed between any two of the lots in the experiment. See Table 5.2 for
a summary of the experiment.

59

Chapter 5 H. W. Huang

19:41 5660 23 Recipe 44°
1024 20:12 20:36 6215 6 241029 Recipe 44 |
10125 02:30 04:38 6076 23 301052 Recipe 44* |
10126 09:55 10:43 1111 10 5310 62 Recipe 44° |
Table 5.2.
Summary of Experiment 1.

a. The first half of Lot 6076 was run with different TiN film thicknesses than the second half
(unfortunately, experimental records do not indicate at which wafer in the lot the thicknesses
changed).

b. The first wafer of Lot 1111 was a dummy oxide wafer. The fifth, sixth, and seventh wafers
bave induced faults.

In the fourth (last) lot, the recipes were altered on three of the wafers in order to sim-
ulate actual machine faults. The recipes used for each wafer in Lot 1111 are described in
Table 5.3. Wafers 5, 6, and 7 are the wafers that contain induced faults. Note that wafer 1

was a dummy oxide wafer (the rest are production wafers).

Wafer ID Recipe
Recipe 44 (dummy oxide wafer)
Recipe 44
Recipe 44
Recipe 44
TCP power +10% = 385 W
BClj flow -10% = 67.5 sccm
Bottom RF power +20% = 158 W
Recipe 44
Recipe 44
Recipe 44

—

Ol 0] 9] |]] W]l L

—
o

Table 5.3.
Recipes used for each wafer of Lot 1111.

5.3.1. Procedure | ~
The real-time data for each wafer were averaged to produce wafer-wafer data for
the main etch step (step 4); averaging ignored the first ten samples of each wafer. All the

wafer-wafer data were concatenated into one file and adaptively filtered using the RLS
60

H. W. Huang Chapter 5
algorithm with an order of three and A = 0.99. The ten SECS-II signals listed in Table 5.4

were used in the analysis.

| LamStation Signals !
RF_gen_#1_forward_power
Endpoint_detector_a
Chamber_pressure
RF_match_#1_tuning_position
RF_match_#1_load_coil_position
RF_match_#1_peak_RF_voltage
TCP_Match_Tune_Cap_Position
RF_Gen_#3_TCP_FWD_PWR
TCP_Match_Load_Cap_Position
AC2_valve_angle

Table 5.4.
Signals used in the analysis of Experiment 1.

The residuals produced by the adaptive filtering were used to calculate a normalized
T2 statistic for each wafer by the methodology of Section 5.2. All ten signals were included
in the statistic. The exponential weighting factor was setto A = 1, and the group size was

setton = 1.

5.3.2. Results

Figure 5.1 shows the normalized T2 values for each wafer. The dotted line at the
vertical value of one is the control limit (recall that the T2 values have been divided by the
control limit, so that a value greater than one denotes an alarm). Note that the values for
about the first ten data points are not very accurate due to the small number of data on which

to base the estimates; the estimates improve as more data becomes available.

Alarms are evident at wafers #30, 42, and for most of wafers #53 to 62. Examina-
tion of Table 5.2 reveals that the first two lots were grf)cessed consecutively without inter-
vening wafers (since little time passed between wafers #23 and 24). On the other hand, a
gap of time (of about six hours) existed between wafer #29 (the last wafer of the second lot)
and wafer #30 (the first wafer of the third lot); this means that other wafers were processed

61

Chapter 5 H. W. Huang

3 v
#53 t0 62
Lot 1111 E—
| \ |
2
Lot 6076
15} !
\4’30 #42
Lot 5660 Lot 621 5
T —_ e e - - o o - - e e - — —— —— o — = ——— - Ll o] ded b= |
| ' ” |
il | Ll
Wafer# 10 30 40 50 60
Figure 5.1.
Normalized T? values.

between the second and third lots, probably with recipes different from Recipe 44. These
intervening wafers, or the gap in time, may have shifted the equipment’s operating point
slightly. This is the most likely reason for an alarm at wafer #30 (the first wafer of the third
lot), but none at wafer #24 (the first wafer of the second lot). This seems to suggest that
alarms occurring at the first wafer of a lot can be ignored, especially if a large span of time

exists between the processing of that wafer and the previous wafer.

As mentioned in the footnotes to Table 5.2, the film thicknesses on the wafers of
the third lot (Lot 6076) changed sometime in the middle of the lot. Unfortunately, the spe-
cific wafer number was not recorded in the experimental records. However, the alarm at
wafer #42 is good evidence that the film thickness changed on the thirteenth wafer of the
lot (wafer #30 is the first wafer of the lot).

A large gap of time (of over 29 hours) also existed between the third and fourth lots
of the experiment. This explains the large alarm at wafer #53 (in addition to the fact that

62

H. W. Huang Chapter 5
wafer #53 was a dummy oxide wafer). All three of the induced fault wafers (wafers #57,

58, and 59) exhibit alarms as well. However, wafers #54, 56, 60, and 62 apparently cause
false alarms. This may be an indication of “memory” in the equipment, whereby the pro-
cessing of one wafer can have some influence on the processing of the next wafer in the
batch.

S.4. Experiment 2: Real-Time Data

The purpose of this experiment is to demonstrate the advantages that adaptive
models have over static models. The experiment uses a set of data in which the statistics of
the signals vary over the length of the data. The results of the data analysis will show that
adaptive models are able to track the variations, whereas static models become useless once
the statistics of the signals have changed.

Data were collected from a single lot of wafers processed on a Lam TCP 9600 metal
etcher using TI's “Recipe 44", shown in Table 5.1. The lot consisted of 23 consecutive
wafers run on September 26 and 27, 1995. The three SECS-II signals listed in Table 5.5

were used in the analysis.

LamStation Signals Abbreviation
TCP_Match_Tune_Cap_Position tcpTune
RF_Gen_#3_TCP_FWD_PWR tcpPwr |
TCP_Match_Load_Cap_Position tcpLoad I
Table 5.5.

Signals used in the analysis of Experiment 2.

5.4.1. Procedure

The analysis used real-time data from the main etch step (step 4) of each wafer. The
first fifteen samples of the main etch step were skipped from each wafer in order to ignore
transient responses; the next 30 samples were kept for analysis. All the real-time data were
then demeaned within each wafer (by subtracting the wafer average) and concatenated into
a single stream. Figure 5.2 shows plots of each of the signals listed in Table 5.5. Notice the
time-varying nature of the signals; in particular, each signal’s variance exhibits fluctuations
over the length of the plot (even though the data are all from a single lot of wafers).

63

Chapter 5 H. W. Huang

TCP_Match_Tune_Cap_Position
26750 . .

26700 .
26650
26600
26550
26500 b
26450 } ' - i
26400 } |
26350 } ' :
26300 }
26250 }
26200

wafer# 3 10 15 20

RF_Gen_#3_TCP_FWD_PWR
354

352 ¢

350 i |]
| i & - |

348m | |] | : I} iy
346 } ‘ : : ‘ i i| t: L

344

342 ¢

340 ¢

338 " " 2 5 E
wafer# 5 10 15 20

TCP_Match_Load_Cap_Position

10090

10080
10070 ¢
10060
10050 |

10040 | | A i |

10030

10020 . - b
wafer# 5 10 157 20

Figure 5.2.
Real-time signals in Experiment 2.

64

H. W. Huang Chapter §
Both static models and adaptive models will be applied to this set of data in order

to form a comparison between the two. The procedure is as follows: first, suppose that one
wishes to create static models for this data in order to monitor the equipment with a control
chart. A set of baseline wafers must be chosen for the modeling; suppose that the first half
of the data set (containing data for half a wafer lot) is chosen for the baseline and that the
models created from this baseline are used to monitor subsequent wafers. Next, the same
set of data are monitored using adaptive models. The adaptive models do not require a base-
line model, a]thoﬁgh they do require some time for the models to converge to an approxi-
mate solution.

5.4.2. Results

The software program RTSPC! was used to generate ARIMA models? for each of
the signals based on the first half of the data set (the first 11 of the 23 wafers). Figure 5.3
shows the residuals of the models?, along with the “three-sigma” control limits (“three-
sigma” refers to three times the standard deviation of the residuals). For all three signals,
the variance of the residuals is significantly larger in the second half of the lot compared to
the first half. This results in many alarms (points that cross the control limits), even though
there is no record of any problems with the process or equipment. At this point, one would

need to generate a new baseline model in order to continue monitoring the process.

The same set of data were then adaptively filtered using the RLS algorithm with an
order of three and A = 0.99 ; the three-sigma control limits were adaptively estimated with
a forgetting factor whose value was also A = 0.99. The residuals and adaptive control
limits are shown in Figure 5.4. The difference between Figure 5.3 and Figure 5.4 is clear:
the adaptive estimation of the control limits allows the chart to adjust to the changing vari-
ances of the residuals. A new baseline model is not necessary in order to monitor subse-

quent wafers.

1. See Chapter 6 and Appendix B for more information on this software utility.

2. The following are the models identified by the RTSPC software. For “tcpTune™: third-order auto-regres-
sive after one level of differencing; for “tcpPwr”: third-order auto-regressive (no differencing); for “tcp-
Load": no model (only a mean value).

3. In Figure 5.3, the titles use the abbreviated names for the signals, as shown in Table 5.5; also, the words
“short-term” in the titles are synonymous with “real-time”.

65

Chapter 5 H. W. Huang

167 short-term residual: tcpTune

100

334

-33.4

-100

1
8 12

-167

8.37 gshort-term residual: tcpPwr

5.02

1.67

-1.67

-5.02

-8.37

Bl
00

: 12 16 20
18.8 ghort-term residual: tcpLoad

11.3

3.75

=-3.75

=113

-18.8

Figure 5.3.
Static models: residuals and control limits.

66

H. W. Huang Chapter §

250 TCP_Match_Tune_Cap_Position

200 f e W e
150

R

\‘”"'wwm-

waler# 5 10 15 20
RF_Gen_#3_TCP_FWD_PWR

ranse.
s ne? A,

Rna W2 N,
.8 ! '\A‘.‘ﬂﬂ VA s g, A N s, o A d

wafer# 5 10 15 20
TCP_Match_Load_Cap_Position

wafer# 5 10 15 20

Figure 54.
Adaptive models: residuals and control limits.

67

Chapter 5 H. W. Huang

Furthermore, the adaptive models can track changes in the auto-correlation struc-
ture of the signals, although this is not apparent from Figure 5.4. The tracking of the auto-
correlation structure is better seen in Figure 5.5, where the values of the filter tap coeffi-
cients are plotted for the “tcpTune” signal. After the initial transients, the filter taps begin
to settle down (wafers #5 to 11). However, after wafer #11 the taps begin to fluctuate again
until around wafer #17, where they settle down to a new set of values.

n v -

1 T —
06
04

Figure 5.5.
Tap coefficients for “TCP_Match_Tune_Cap_Position”.

Using the methodology of Section 5.2, the normalized T? values were calculated
with A = 0.99 and a group size of n = 10; these are plotted in Figure 5.6. After the tran-
sients in the first few wafers, no other alarms occur. In contrast, the T2 values for the resid-

uals of the static models (not shown) would have many alarms throughout the second half
of the wafer lot.

5.4.3. Discussion

One might argue that the fact that no alarms are exhibited in Figure 5.6 is undesir-

able. After all, the structure of the sensor signals changed dramatically; what if there really
68

H. W. Huang Chapter 5

35}

25}

15}

05}

||\l.||l|l|||||||.|I|I||||||||n|||||’
15 20

5 !

Wl
E 1

Figure 5.6.
Normalized T2 (adaptively estimated).

0
wafer#

was a problem with the equipment or process? The important point here is that the adaptive
methodology can be tuned to any desired sensitivity. For example, any of the forgetting fac-
tors for the adaptive algorithm, for the control limit estimation, or for the T2 estimation
could be increased so that alarms are triggered more easily. Note that although no alarms
are seen in Figure 5.6, the individual control charts of Figure 5.4 do show some alarms; one

might wish to monitor signals individually, instead of using the multivariate T? statistic.

The other important point is that regardless of whether or not alarm situations are
correctly identified by the control chart, the adaptive methodology does not require one to
re-model the process, whereas static models will always require a new baseline experiment

once the statistics of the sensor signals change.

69

. Chapter 5 . -
. 3 | : . H. W.Huang

70

H. W. Huang Chapter 6

Chapter 6 Software

6.1. Introduction

This chapter describes a software system known as RTSPC, which stands for Real-
Time Statistical Process Control. RTSPC is the platform used to implement all the tech-
niques presented in this paper. As the product of numerous years of work, RTSPC has
undergone many changes by many people and is now in its third generation of develop-
ment. In this chapter, only the current version of the program will be discussed; for an over-
view of past work, see [18][29]. See Appendix B for information on how to obtain the
RTSPC software.

As its name suggests, the purpose of RTSPC is to implement real-time statistical
process control on a computer. The software system consists of a user interface, several
software modules, including those for numerical analysis and input/output functions, and a
database. In Section 6.2 a brief overview of RTSPC is presented in order to give the reader
a general impression of the software, and also to familiarize the reader with its basic oper-
ation (details can be found in the manuals included with the software distribution).
Section 6.3 outlines some of the essential features of RTSPC, especially those that are in
contrast to previous generations of the software. In Section 6.4 the organization of the soft-
ware modules is described, as well as some of the programming details.

6.2. Overview
RTSPC has three basic operations:
1. Build baseline time series models from a selected set of baseline wafer data
2. Monitor the residuals and T? statistics of arriving wafer data (using a selected baseline

model)

n

Chapter 6 H. W. Huang

3. View the residuals and T2 statistics of pre-recorded wafer data (using a selected base-
line model)

The difference between the second and third items is that in the former case (“monitor”
mode) the program analyzes signals as they are received from an equipment that is cur-
rently in operation, whereas in the latter case, analysis is done on wafer data that were col-

lected sometime in the past.

Each of the three basic operations is described in the next three sub-sections.
Figure 6.1 shows the main window of RTSPC'’s user interface, which allows the user to
perform any of the operations: model building is selected by pressing the “Build Model”
button (Section 6.2.1), equipment monitoring is selected by pressing the “Start Monitor”
button (Section 6.2.2), and statistical analysis is selected by pressing the “View Wafers”
button (Section 6.2.3). Note that some operations require configuration procedures before
they can be used; for example, the “Load Model” button must be selected to load a baseline

model before the user is permitted to select the “Start Monitor” or “View Wafers” buttons.

Figure 6.1.
The main window of RTSPC.

72

H. W. Huang Chapter 6
6.2.1. Model Building

Pressing the “Build Model” button from the main window brings up the model
building window (not shown). Figure 6.2 depicts a diagram of the model building proce-
dure. First the sensor data to be modeled is chosen. Usually the data for each wafer are
stored in a separate file. The software allows the user to select a list of data files.

The next step, as shown in the diagram, is to perform any pre-processing or format-
ting necessary. For example, if models are to be built for a certain subset of signals
(Section 2.3.2), then these should be filtered out from the rest of the data. Similarly, if
models are to be built for a certain step of the process (Section 2.3.3), then only the data
from that step should be retained. The pre-processing and formatting functions are imple-
mented with data filters. A data filter is simply a short program or script that reads in data,
applies some sort of filtering function, and then writes out the transformed data. The basic
data filtering operations are the selection of signals, the selection of steps, and the averag-
ing of signals. However, more sophisticated data filters can also applied, for instance taking

a logarithm transformation of some data.

After wafer data has been selected and pre-processed, then RTSPC’s automatic
model generation module (Section 2.2.4) proceeds to create time series models and a cova-
riance matrix of the residuals. Models built from “baseline” wafer data are known as base-
line models. The user will load these models into RTSPC before doing SPC or other
statistical analysis. Expert users can more precisely control the model building process by
specifying algorithm parameters, like the maximum model order, the maximum differenc-

ing order, or the significance threshold of model variables.

6.2.2. Equipment Monitoring

Pressing the “Start Monitor” button runs RTSPC in monitoring mode. Figure 6.3
depicts a diagram of the SPC (monitoring) procedure. One of two types of models can be
selected: static or adaptive. To use static models, the program requires baseline models for
all signals to be monitored and the covariance matrix of the residuals. If adaptive models
are selected, no time series models need to be selected; the covariance matrix will be esti-

mated from the prediction errors of the adaptive algorithm.

73

Chapter 6 H. W. Huang

pre-processing
or formatting

wafer data (sensor A)

wafer data (sensor B)

Figure 6.2.
Diagram of the model building procedure.

Once the program is ready, it will idle, waiting for wafer data to arrive. If a wafer-
wafer prediction model is available, it will also expect to receive recipe data for each wafer.
Data filters for both the wafer data and the recipes can be specified. Each time RTSPC is
notified that new data has arrived, it processes the data with the data filters and sends the
transformed data to its SPC module. The SPC module applies the static or adaptive models
to the new data and plots the signal residuals and T2 statistics on a graphical display.

models

|
covariance
matrix !

Figure 6.3.
Diagram of the SPC procedure.

H. W. Huang Chapter 6
6.2.3. Statistical Analysis

As mentioned earlier, the statistical analysis mode (started by pressing the “View
Wafers” button) in RTSPC is essentially the same as the equipment monitoring mode. The
only difference is that wafer data is selected from existing disk files, rather than having the
program wait for new data arriving from an equipment in operation. This mode is useful
for analyzing historical data, or for the evaluation and testing of models. It can also be used
for off-line (i.e., not real-time) SPC or for diagnosis of past equipment faults.

6.3. Features

This section outlines important features in the current version of RTSPC and how
they differ from those in previous versions. Of course the actual software is continually
being modified, so for the most up-to-date information one must read the notes accompa-

nying the current software release (see Appendix B).

A fundamental shortcoming in older versions of RTSPC was that they only imple-
mented univariate time series (ARIMA) models. The new version has been extended to
admit predictive wafer-wafer models (Chapter 3) and adaptive multivariate time series

models (Chapter 4). Future releases of the software may permit even more types of models.

Another shortcoming in the previous generation of RTSPC was that the types of
wafer data that could be accepted for analysis was quite limited. In particular, the program
was hard-coded to read data formatted in a particular way: SECS-II data via LamStation
software. This constraint turned into a serious obstacle when new sensors became avail-
able. In order for RTSPC to analyze data from the new sensors, the data had to be made to
resemble LamStation data.

The introduction of data filters in the current version of RTSPC eliminates reliance
on a particular wafer data format. In addition, the use of data filters offers a whole range of
new possibilities. Data of arbitrary formats can be analyzed and any type of pre-processing
can be applied. An example of a commonly used pre-processing filter is a data filter that
performs some sort of normalization to a signal—ratioing the signal to a given reference
signal, perhaps.

75

Chapter 6 H. W. Huang
Data filters can also be used to average real-time signals into wafer-wafer signals,

and to average wafer-wafer signals into lot-lot signals. This enables RTSPC to read in real-
time data, but do analysis at the wafer-wafer and lot-lot levels. Previously one would have
to pre-process the real-time data outside of RTSPC before importing them into the pro-
gram, but now everything can be automated by applying the appropriate data filters. Basic
data filters, such as the one for generating wafer-wafer and lot-lot signals, are included in
the software distribution.

Other improvements to RTSPC include more robust input/output operations (better
handling of error conditions) and a more compact representation of models. Also, future
developers will benefit from the more consistent interactions between auxiliary functions
and the user interface, the more meaningful command-line options, and the improved han-

dling of dynamic memory.

6.4. Organization

This section describes the different software modules that make up RTSPC and
how they relate to one another. The overall architecture is simple; see Figure 6.4 for the
organization of the software modules. The user interface is written in Tcl/Tk (Tcl version
7.4, Tk version 4.0) [24], an interpreted programming language with good graphical user
interface support; the user interface is the main module, known as rtspc. The event-driven
rtspc module services user requests by either calling the proper auxiliary and library rou-
tines, or by executing the proper processes.

rtspc
spcwish/arilma\tracker

hanpal

Figure 6.4.
Organization of software modules in RTSPC.

N
Auxiliary functions for equipment monitoring and statistical analysis are found in
a module called spcwish; these functions are written in C++ and C [30][16] (and compiled
with the public-domain Gnu compiler version 2.7.0). A matrix package is included for C++
76

H. W. Huang Chapter 6
matrix class support [31], and subroutines from a well-known numerical package are used

for solving linear algebraic systems and inverting matrices [27].

The model building module arima is a separate process started by rtspc for identi-
fying time series models and estimating their parameters. A second process called hanpal
is a non-linear optimizer run by arima to estimate the moving average parameters of a time
series model (see Section 2.2.4). The matrix package and numerical package used in

spcwish are also shared with arima and hanpal.

Another process called by rtspc is tracker, the C++ program discussed in
Section 4.5.2 (and listed in Appendix C). This module reads in signal data and applies
adaptive filtering. The residuals (prediction errors) produced by the module are returned to
rtspc for plotting and calculating T2 statistics.

Most of the data filters mentioned in Section 6.2 and Section 6.3 are written in perl
[35], a language ideal for text manipulations. However, any language can be used, for
instance csh [1], sh, or Tcl. All of the above have the advantage of being simple to use,
modify, and read. On the other hand, if speed is one’s highest priority, then the data filters

can be written in C++ or C.

As a final note, the RTSPC system also contains a few other peripheral modules.
A program retdata exists for notifying rtspc when new data is available from a particular
machine. A program rtspcdemo exists for running RTSPC in a demonstration. Finally, the
RTSPC system manages and maintains a database for the storage of sensor data and pre-

viously built models.

77

H. W. Huang Chapter 7

Chapter 7 Conclusion

7.1. Summary

The main goal of this thesis is to present modeling techniques that make real-time
SPC more effective. The thesis also explains how the techniques can be implemented and
exhibits their use on actual sensor data. The first technique, predictive modeling, models
the effect of abrupt changes, like changes in the machine’s wafer-wafer input settings. The
second technique, adaptive modeling, tracks statistical variations and slow drifts, for exam-
ple caused by natural aging of an equipment. But most importantly, the adaptive models
eliminate the need for a baseline training experiment—probably the primary impediment

10 practical implementation of real-time SPC.

However, in order to apply the techniques effectively, a comprehension of their
strengths and weaknesses are required. The preceding chapters attempted to give the reader
the necessary information regarding what the models are capable of and what they are not.
Many examples were offered to demonstrate the ideas and suggest possible applications. In
addition, a full description of a publicly available software package that implements all the

techniques was included.

7.2. Future Extensions

The techniques presented here for modeling signals obtained from semiconductor
manufacturing processes are general in the sense that they can be applied to many other
types of processes or environments. The focus of this thesis was on plasma etching equip-
ment, but other equipment for which real-time data are available could benefit as well, for
instance, chemical vapor deposition furnaces. Moreover, extending the modeling tech-

niques to other types of sensors, such as spectroscopy, and learning how to integrate mul-

79

Chapter 7 H. W. Huang
tiple sensors into a combined model would enable one to take full advantage of the
abundant real-time data that is available.

Predictive and adaptive modeling techniques can also be used as simple building
blocks for large models. For example, projects like equipment diagnosis or closed-loop
control will require complex systems composed of many models working together. Under-
standing the interaction between the models and the overall behavior of the system can
become quite difficult, but necessary if the project is to succeed.

80

H. W. Huang References

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Gail Anderson, Paul Anderson, The UNIX™ C Shell Field Guide, Englewood Cliffs,
NJ: Prentice-Hall, 1986.

Howard Anton, Elementary Linear Algebra, 5th ed., NY: John Wiley & Sons, 1987.
Richard A. Becker, John M. Chambers, Allan R. Wilks, The New S Language: A
Programming Environment for Data Analysis and Graphics, Pacific Grove, CA:
Wadsworth & Brooks/Cole Advanced Books & Software, 1988.

George E. P. Box, William G. Hunter, J. Smart Hunter, Statistics for Experimenters,
NY: John Wiley & Sons, 1978.

George E. P. Box, G. M. Jenkins, G. C. Reinsel, Time Series Analysis: Forecasting
and Control, 3rd ed., Englewood Cliffs, N.J.: Prentice Hall, 1994,

John M. Chambers, Trevor J. Hastie, eds., Statistical Models in S, NY: Chapman &
Hall, 1993.

Peter M. Clarkson, Optimal and Adaptive Signal Processing, Boca Raton, Florida:
CRC Press, 1993.

P. L. Feintuch, “An Adaptive Recursive LMS Filter,” Proceedings of the IEEE, Nov
1976, pp. 1622-4.

Hai-Fang Guo, “Real Time Statistical Process Control for Plasma Etching,”
M.S. thesis, University of California, Berkeley, Memorandum No. UCB/ERL M91/
61, 2 Jul 1991.

David M. Haaland, Edward V. Thomas, “Partial Least-Squares Methods for Spectral
Analyses,” Analytical Chemistry, Vol. 60, No. 11, 1 Jun 1988, pp. 1193-.

Simon Haykin, Adaptive Filter Theory, 2nd ed., Englewood Cliffs, NJ: Prentice Hall,
1991.

Simon Haykin, Introduction to Adaptive Filters, London: Macmillan Publishing
Company, 1984.

81

References H. W. Huang

[13] C. Richard Johnson, Jr., Michael G. Larimore, “Comments on and Additions to ‘An
Adaptive Recursive LMS Filter’,” Proceedings of the IEEE, Sep 1977, pp. 1399-
1402.

(14] Steven M. Kay, Modern Spectral Estimation, Englewood Cliffs, N.J.: Prentice Hall,
1988.

[15] Steven M. Kay, S. L. Marple, Jr., “Spectrum Analysis—-A Modemn Perépective,"
Proceedings of the IEEE, Nov 1981.

[16] Brian W. Kemighan, Dennis M. Ritchie, The C Programming Language, 2nd ed.,
Englewood Cliffs, NJ: Prentice Hall, 1988.

[17] Sherry F. Lee, “Semiconductor Equipment Analysis and Wafer State Prediction
System Using Real-Time Data,” Ph.D. thesis, University of California, Berkeley,
Memorandum No. UCB/ERL M94/104, 15 Dec 1994.

[18] SherryF. Lee, Eric D. Boskin, Hao C. Liu, Eddie H. Wen, Costas J. Spanos, “RTSPC:
A Software Utility for Real-Time SPC and Tool Data Analysis,” IEEE Transactions
on Semiconductor Manufacturing, Vol. 8, No. 1, Feb 1995, pp. 17-25.

[19] Sherry F. Lee, Costas J. Spanos, “Prediction of Wafer State After Plasma Processing
Using Real-Time Tool Data,” IEEE Transactions on Semiconductor Manufacturing,
Vol. 8, No. 3, Aug 1995, pp. 252-261.

[20] Hao-Cheng Liu, “Automatic Time-Series Model Generation for Real-Time Statistical
Process Control,” M.S. thesis, University of California, Berkeley, Memorandum No.
UCB/ERL M93/45, 8 Jun 1993.

[21] Dennis M. Manos, Daniel L. Flamm, eds., Plasma Etching: An Introduction, Boston:
Academic Press, 1989.

[22] H. Martens, T. Naes, Multivariate Calibration, Wiley, 1989.

[23] Douglas C. Montgomery, Introduction to Statistical Quality Control, 2nd. ed., NY:
John Wiley & Sons, 1985.

[24] John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[25] Alan Pankratz, Forecasting with Univariate Box-Jenkins Models: Concepts and

Cases, NY: John Wiley & Sons, 1983. —

[26] Robert S. Pindyck, Daniel L. Rubinfeld, Econometric Models and Economic
Forecasts, 2nd ed., NY: McGraw-Hill Publishing Company, 1981.

82

H. W. Huang References
[27] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery,

(28]

[29]

[30]

[31]

[32]

(33]

(34)

[35]

[36]

[37]

Numerical Recipes in C, 2nd ed., Cambridge University Press, 1992.

John J. Shynk, “Adaptive IR Filtering,” IEEE ASSP Magazine, April 1989, pp. 4-21.
Costas J. Spanos, Hai-Fang Guo, Alan Miller, Joanne Levine-Parrill, “Real-Time
Statistical Process Control Using Tool Data,” IEEE Transactions on Semiconductor
Manufacturing, Vol. 5, No. 4, Nov 1992, pp. 308-18.

Bjarne Stroustrup, The C++ Programming Language, 2nd ed., Addison-Wesley,
1991.

E. Robert Tisdale, C++ Matrix Class, ftp://ftp.cs.ucla.edu/pub/Matrix.tar.Z, March
31, 1994.

John R. Treichler, C. Richard Johnson, Jr., Michael G. Larimore, Theory and Design
of Adaptive Filters, NY: John Wiley & Sons, 1987.

Using Framemaker®, San Jose, CA: Frame Technology Corporation, 1995.

Walter Vandaele, Applied Time Series and Box-Jenkins Models, NY: Academic
Press, 1983.

Larry Wall, Randal L. Schwartz, Programming perl, Sebastopol, CA: O'Reilly &
Associates, 1991.

Bernard Widrow, John M. McCool, “Comments on ‘An Adaptive Recursive LMS
Filter’,” Proceedings of the IEEE, Sep 1977, pp. 1402-4.

Bernard Widrow, Samuel D. Stearns, Adaptive Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1985.

83

" Refefences ' H. W. Huang

H. W. Huang

Appendix A

Appendix A List of Symbols

I
k
L
m
M

MSE, MSE(n)

MSE*

n

forecast errors of a time series

backshift (delay) operator

time series data for desired response

integration order of an ARIMA model

prediction (estimation) error

vector of signal residuals, averaged over a specified group size
F-distribution value with M and N - M degrees of freedom and
Type I error o

filter tap

filter tap vector

estimate of filter tap vector

optimum filter tap vector

matrix whose each column is the regression coefficients for a single
variable

identity matrix

iteration index

number of modeled response signals

mean value of a wide-sense stationary process

number of explanatory variables minus one; model order
mean square estimation error

optimum (minimum) value of MSE

group size for calculating T? statistic; iteration index

85

Appendix A
N

p(k)
p, p(n)

b, p(n)

P

P,P(n)

q;

0

Q

r (k), r(t, 1)
R2

~ X

X lA{.l'(n)

wn

UCL

Vi, V()
v, v(n)
Xis Xi 1
x(1)

X, x(n)

»

>t

H. W. Huang
number of baseline observation; number of observations of a vari-
able
cross-correlation function between desired signal and input signal
cross-correlation vector between input vector x(n)' and desired
response d(t)
estimated cross-correlation vector
auto-regressive order of an ARIMA model
inverse of the estimated correlation matrix
unit-length eigenvector of R,
moving average order of an ARIMA model
unitary matrix consisting of columns of q;
autocorrelation function for signal x(r)
statistic indicating the percentage of total variance that is explained
by a model
correlation matrix
estimated correlation matrix
estimated residual covariance matrix, used to calculate T? statistic
an intermediate matrix used in the recursive calculation of §
time index
statistic used for multivariate statistical process control
upper control limit
element of the transformed filter tap vector v
transformed filter tap vector
differenced time series data
explanatory stationary processes
input time series data
vector of predictor data; vector of current and previous values of
x(1)
vector of averaged samples for each signal, used to calculate T2 sta-
tistic
vector of baseline signal averages, used to calculate T2 statistic

86

H. W. Huang

~.

o T ™

5,(B)

6(B)
A

)\k
A
A

max

min

Appendix A
data matrix whose each column contains the observations for one
variable

stationary process to be modeled

output time series data

vector of observed responses for estimating a regression model
vector of predicted responses

original time series data

Type I error (probability of false alarm)

regression coefficient

vector of estimated regression coefficients

small positive constant for initializing the RLS algorithm or the esti-
mation of the error covariance matrix $

moving average part of an ARIMAX model

moving average coefficient of an ARIMA model

moving average part of the transfer function of an ARIMA model
exponential weighting factor for the RLS algorithm or for the esti-
mation of the error covariance matrix S

eigenvalue corresponding to eigenvector q,

minimum eigenvalue

maximum eigenvalue

diagonal matrix of eigenvalues

auto-regressive coefficient of an ARIMA model

auto-regressive part of the transfer function of an ARIMA model
variance of desired response signal d(t)

variance of input signal x(?)

time constant for the convergence of the k-th mode of a steepest
descent algorithm

overall time constant for the convergence of the filter tap vector h
step size for LMS algorithm

variable step size for RLS algorithm

step size for normalized LMS algorithm

87

Appendix A H. W. Huang
auto-regressive part of an ARIMAX model

Xo, M Chi-squared distribution with M degrees of freedom and
Type I error o

88

H. W. Huang Appendix B

Appendix B How to Get the RTSPC Software

The RTSPC software is a part of the Berkeley Computer-Aided Manufacturing
(BCAM) software distribution. More information, including manuals and ordering instruc-
tions, can be found on the World Wide Web at

http://bcam.eecs.berkeley.edu

For questions or information on how to obtain RTSPC, contact:

Industrial Liaison Program

205 Cory Hall #1770

University of California at Berkeley
Berkeley, CA 94720-1770

Telephone: (510) 643-6687

Fax: (510) 643-6694

email: software @eecs.berkeley.edu
anonymous ftp: ilpsoft.eecs.berkeley.edu

89

Appendix C H. W. Huang

Appendix C Software Code for “tracker”

J A e ettt L T L ———— */
/* tracker */
/* by Herb Huang 1996 */

#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <unistd.h> //for getopt()

/* C++ Matrix Class by E. Robert Tisdale, 03-31-94. (ftp.cs.ucla.edu) */
#include “Matrix/double.Matrix.h”

const char* Means_filename="waferMeans.dat”;

const int cInitOrder=3;

const int cInitFbOrder=0;

const double cInitlambda=1, cInitMu=0.001;

const int cInitNumSignals=1l;

/* InitP should be large compared to 100/ (variance of data)
[Haykin 1991, p.484) */

double InitP=le2;

long DataSize=2000; //initial data size
const double ZERO=0;

const int RLSmode=1l; // set RLS mode
int Multivariate=0; // defaults to univariate mode

const int BUFF_SIZE=1024;
const char TOKEN_DELIM({}=", \t\n\r\f";
inline int STREQ(const char* a, const char* b) { return (!strcmp(a,b)};)

order = number of feedforward taps (coefficients)
fbOorder = number of feedback taps

U = data vector

H = filter taps (each row is the tap vector for one signal)
K = gain vector

e = prediction error

P = filter-error correlation matrix (except for scaling)

lambdainv = inverse of RLS forgetting factor ~
mu = ILMS step size
iter = iteration number
*/
int main(int argc, char* argvl])
(
long ReadData{doubleMatrix& Data, long numData, int numSignals);

90

H. W. Huang Appendix C
char filenameBuff [BUFF_SIZE);

int order=cInitOrder;

int fbOrder=cInitFboOrder;

double lambda=cInitLambda;

double lambdainv=(1l./cInitLambda);
double mu=cInitMu;

int numSignals=cInitNumSignals;
long numbata=-1;

extern char* optarg;

int c;

while ((c = getopt(argc, argv, “o:b:l:s:n:p:mh*)) != =1) {
switch(c) {

case ‘h':
case ‘'?':
default:

cerr << *Usage: * << argv[0)] << * < data.txt > e.out” << endl;
if (c == *h') exit(0);

exit(l);

break;

case ‘'0':
order = atoi (optarg);
break;

case ‘b':
fborder = atoi (optarg);
break;

case ‘1':
lambda = atof (optarg);
lambdainv = 1./lambda;
break;

case ‘'s’':
numSignals = atoi (optarg):
break;

case '‘n':
numData = atol (optarg);
break;

case '‘m’:
Multivariate = 1;
break;

case 'p’':
InitP = atof (optarg):
break;

int numTaps= (Multivariate ? (order+fbOrder)*numSignals : (order+fbOrder));

DataSize = (numData > 0 ? numData : DataSize);

doubleMatrix Data(numSignals, (int)DatasizeLL"

doubleMatrix H(numSignals, numTaps);

const int pdim=(Multivariate ? numTaps : numSignals*numTaps);
doubleMatrix P(pdim, numTaps);

doubleMatrix PP(numTaps, numTaps); // a temporary variable

FILE* meansFile=0;
if (*Means_filename) {

91

Appendix C H. W. Huang

sprintf (filenameBuff, “%s”, Means_filename);
meansFile=fopen(filenameBuff, “r”);
if (!meansFile) (
cerr << “Warning: can’‘t open wafer-mean file: ® << Means_filename <<endl;
}
)

const int udim=(Multivariate ? 1 : numSignals);
doubleMatrix U(udim, numTaps), K(udim, numTaps);
doubleMatrix PU(1, numTaps); // a temporary variable

doubleMatrix y (1, numSignals);

doubleMatrix e((fbOrder ? fbOrder : 1), numSignals);
doubleMatrix yhat((fbOrder ? fbOrder : 1), numSignals);
doubleMatrix mean(l, numSignals);

/* “soft-constrained initialization”® */

/* INITIALIZE H
H = ZERO;

0 */

/* INITIALIZE P
P = ZERO;
if (Multivariate) (
for (int i=0; i<numTaps; i++) P[i)[i] = InitPp;
) else {
for (int i=0; i<numSignals; i++) {
for (int j=0; j<numTaps; j++) (
Pli*numTaps + j)[j) = InitP;

diag(InitpP) */

/* locp over each wafer */
while (1) |

yhat = ZERO;
e = ZERD;
Data = ZERO;

/'*

ReadData(): read from stdin into Data.

read ‘numData’ lines.

return the number of lines read, or

return -1 if EOF is reached or an error occurs.
t*/

numbata = ReadData(Data, numData, numSignals);

if (numbata <= 0) break; // all done

(
/* CENTER data */
mean = ZERO;
if (meansFile) {
/* read a line from the *waferMeans.dat” file into mean(0])[] */
)

else (

92

H. W. Huang Appendix C

mean = Data.sum() / (double)numData;
)

for (int i=0; i<numsSignals; i+4)
double m=mean([0]) (1i];
for (int j=0; j<numData; J+4) |
Data[i] [j] -= m;

/* START iteration LOOP */
for (int iter=0; iter<pnumbata; iter++) {
/* £il1l y */
for (int sigNum=0; sigNum<numSignals; sigNum++) (
y[0] [sigNum] = Data[sigNum)[iter];
)

{
/* Fill U (with pre-windowed data) */
U = ZERO;
if (Multivariate) ¢
int cnt=0;
/* Feedforward */
for (int j=0; j<order; J++) (
for (int i=0; i<numSignals; i++4)
if (j <= iter-1) U{0)(ent] = Datal[i] [iter-1-3];
++cnt;
)
}
/* Feedback */
for (int j=0; j<fborder; J++) |
if (j > iter-1) break;
for (int i=0; i<numSignals; i++)
U0} [ent) = yhat[j)[i);
++Ccnt;
)
)
)
else {
/* Feedforward */
for (int j=0; j<order; j++) {
if (j > iter-1) break;
for (int i=0; i<numSignals; i+4)
U[i)[3) = Data[i)[iter-1-3];
}
)
/* Feedback */
for (int j=0; j<fbOrder; j++) {
if (j > iter-1) break;
for (int i=0; i<numSignals; i+4) {
Uli} [order + j] = yhat[j)(4i]; ~—.
)
)
)
)

/* shift yhat; shift e */
93

Appendix C H. W. Huang

for (int j=fbOrder-1; 9§>=0; j--) {

for (int sighum=0; sigNum<pumSignals; sigNum++) (

if (3 = 0) {
yhat [§] [sigNum]
e[j) [sigNum)

Yhat [j-1] [sigNum];
e[j-1) [sigNum];

n o

)
)

/* compute (a priori) prediction error, e */
if (Multivariate) (

yhat.s(0) = U & H; //yhat.s(i) is row i of yhat

} else (

yhat.s(0) = (U * H).sum(); //yhat.s(i) is row i of yhat

e.s(0) =y - vyhat.s(0);

/* compute gain vector, K[] */
if (RLSmode) (

if (Multivariate) (

/* Using (U % P.t()) here is more numerically robust than (U & P).
[Haykin 1991, p.485, 695) */

PU = (U &% P.t());

double denom = lambda + (double) (U & PU);

K= (U % P) / denom;

/* update filter-error correlation matrix */

P = lambdainv * (P - (K & PU));

)} else {

/* This is univariate mode, so calculate K and P individually for
each signal. */

for (int i=0; i<numSignals; i++) {
/* PP points to numTaps rows beginning with row i*numTaps */
FPF = P.s(i*numTaps,numTaps);

/* PP.t() not PP 1! */

PU = (U.s(i) % PP.t()); // U.s(i) is row i of U
double denom = lambda + (double) (U.s(i) & PU);
K.s{i) = (U.s(i) & PP) / denom;

/* update filter-error correlation matrix */
PP = lambdainv * (PP - (K.s(i) & PU));

P.s(i*numTaps,numTaps) = PP;
}
}

else { /* IMS (tracking mode) */

K=mu* U;

#ifdef NOTYET .

/* or use Normalized LMS [Haykin 1991, p.356):
a is a damping constant

*/

if (Multivariate) {

K=mu*U/ ((U* U).sum() + a);

) else {

K=mu * U/ (((U* U).sum()).t() + a);

94

H. W. Huang Appendix C

)
#endif NOTYET

)

/* update filter */
if (Multivariate) {(
H += @.8(0) & K;
)} else {
H += (e.s(0)).t() * K;
)

/* Stability checks (only for univariate mode) */
if (fbOrder == 1 && !Multivariate) {
int col=order;
for (int §=0; j<numSignals; j++) (
double al=H[j] [col);
if (fabsiai) »>= 1) {
cerr << °*Warning: al outside of stability region: *
H{ << § << *]["* << col << *] = * << H[j)[eol] << endl;
)
)
)
if (fbOrder == 2 && !Multivariate) {
int col=order;
for (int j=0; j<numSignals; Jj++) {
double al=H{j)[col];
double a2=H[j] [col+l]);

if (a2 <= -1 ||
a2 >= al +1 ||
a2z »= -al + 1) {
cerr << “Warning: (al,a2) outside of stability region: *
*Hi® -< j << *)][* << col << *) = * << H[j)[col] << *, *

*E{" << j << *][" << col+l << *} * << H[j) [col+l) << endl;

}
}
)
)
) //while (1) {

return O;

95

	Copyright notice 1996
	ERL-96-71

