

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ADAPTIVE AND PREDICTIVE MODELING FOR

REAL-TIME STATISTICAL PROCESS CONTROL

by

Herbert Wiley Huang

Memorandum No. UCB/ERL M96/71

18 November 1996

ADAPTIVE AND PREDICTIVE MODELING FOR

REAL-TIME STATISTICAL PROCESS CONTROL

Copyright © 1996

by

Herbert Wiley Huang

Memorandum No. UCB/ERL M96/71

18 November 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Adaptive and Predictive Modeling for Real-Time Statistical Process Control

by
Herbert Wiley Huang

Electrical Engineering and Computer Sciences
University ofCalifornia atBerkeley

Professor Costas J. Spanos, Advisor

In today's competitive semiconductor industry, manufacturing equipment must be
vigilantly monitored so that equipment problems are detected as quickly as possible. Pre
vious work demonstrated a statistical process control (SPC) scheme based on multivariate

analysis techniques applied toreal-time sensor signals that is effective forthedetection of
equipment malfunctions.

However, the SPC scheme has several key weaknesses that prevent its use from
being more widespread. In particular, the scheme requires training before it can be used.

The training can be costly and time-consuming, and must be redone whenever changes
occur in the equipment or the process. Moreover, the manufacturer has no easy way of
knowing when re-training is necessary.

In this thesis, the SPC scheme's weaknesses will be addressed by introducing some
new techniques for modeling signals. Apredictive model incorporates changes in the
machine settings into the scheme; an adaptive model tracks the dynamics of the process*
real-time behavior. Together, these methods make training unnecessary for the SPC
scheme. The methods are illustrated with examples using actual sensor data, and asoftware
implementation of the techniques is described.

H.W.Huang Table ofCoDtents

Table of Contents

1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 2

1.2.1 Wafer-Wafer Predictive Stage 2
1.2.2Real-Time Adaptive Stage 3

1.3 Thesis Organization 3

2 Background 5
2.1 Introduction 5
2.2 Previous Work 5

2.2.1 Real-Time Tool Data 6
2.2.2 Real-Time Statistical Process Control 6

2.2.2.1 Time-Series Models 7
2.2.2.2 T2Statistic 8

2.2.3 Hierarchical Models (Multiple Time ScaleDecomposition) 10
2.2.4 Automatic Model Generation 12

2.3 Real-Time Data Collection 12
2.3.1 Hardware 12
2.3.2 Signal Selection 13
2.3.3 Pre-processing 13

3 Predictive Modeling 15
3.1 Introduction 15

3.1.1 Motivation 15
3.1.2 Modeling 16
3.1.3 Overview 17

3.2 Background 17
3.2.1 Generalized Model 17
3.2.2 Simplified Model 18
3.2.3 Least Squares Estimation 18
3.2.4 Prediction Model 19

3.3 Example 19
3.3.1 Experiment 19
3.3.2 Procedure 23
3.3.3 Results 24

4 Adaptive Modeling '. 27
4.1 Introduction 27

4.1.1 Motivation 27

4.1.2 Adaptive and Predictive Modeling 28
4.1.3 Chapter Overview 28

iv

Table ofContents H. W. Huang

4.2 Background 29
4.2.1 Wiener Filters 30

4.2.1.1 Modeling Assumptions 30
4.2.1.2 Problem Formulation 31
4.2.1.3 Matrix Form 32
4.2.1.4 Optimum Filter Solution 34
4.2.1.5 Canonical Form of the Error Performance Surface 35

4.2.2 Method of Steepest Descent 36
4.2.2.1 Stability and Convergence of Steepest Descent 38
4.2.2.2 Least Mean Square (LMS) Algorithm 39

4.2.3 Method of Least Squares 41
4.2.3.1 Recursive Least Squares (RLS) Algorithm 42
4.2.3.2 Stability and Convergence 44

4.2.4 Summary 44
4.3 Adaptive Algorithms 45

4.3.1 Recursive Least Squares (RLS) 46
4.3.2 Normalized LMS 47
4.3.3 Adaptive IIR Filtering 48
4.3.4 Numerical Stability 49

4.4 Implementation 50
4.4.1 Algorithm parameters 50

4.4.1.1 Exponential Weighting Factor inRLS 50
4.4.1.2 Step Size in LMS 51
4.4.1.3 Model order 51

4.4.2 Combining Adaptive Algorithms 53
4.4.3 Multivariate Modeling 53

4.5 Example 53
4.5.1 Experiment 53
4.5.2 Procedure 54
4.5.3 Results 54

5 Experimental Analysis 57
5.1 Introduction 57
5.2 Adaptive Calculation ofthe T2 Statistic 57

5.2.1 Estimation of the Error Covariance Matrix 57
5.2.2 Normalized T2 Statistic 58
5.2.3 Implementation 59

5.3 Experiment 1: Wafer-Wafer Data 59
5.3.1 Procedure 60
5.3.2 Results 61

5.4 Experiment 2: Real-TimeData 63
5.4.1 Procedure 63
5.4.2 Results 65
5.4.3 Discussion 68

H.W. Huang _., ^
6 Tableof Contents

6 Software --
6.1 Introduction -,
6.2 Overview -j

6.2.1 Model Building *" 73
6.2.2 Equipment Monitoring 73
6.2.3 Statistical Analysis 75

6.3 Features 7c
6.4 Organization 7^

7 Conclusion 70
7.1 Summary " 79
7.2 Future Extensions 79

References gj

A Listof Symbols g$

B How to Get the RTSPC Software 89

C Software Code for "tracker" 90

VI

List ofFigures H. W.Huang

List of Figures

Figure 1.1. Diagram ofthe two stage model for aplasma etch process 3

Figure 2.1. Diagram ofthe real-time SPC scheme [29][18] 8
Figure 2.2. Signal decomposition for the impedance signal H

Figure 3.1. R2 values for various wafer-wafer signal prediction models 25
Figure 3.2. Predicted wafer means and actual real-time signal for

"RF_matchJH_tuning_position" 26

Figure 4.1. Block diagram ofthe linear filtering problem 32
Figure 4.2. Visualization ofan error performance surface 34
Figure 4.3. Example ofasteepest descent path 37
Figure 4.4. Example ofa"direct" path 41
Figure 4.5. The RLS algorithm [11] 47
Figure 4.6. The normalized LMS algorithm [11] *7
Figure 4.7. Predicted and actual signal for 44RF_match_#lJoad_coil_position" 55
Figure 4.8. Residuals for "RF_match_#l_load_coH_position" 56

Figure 5.1. Normalized T2 values 62
Figure 5.2. Real-time signals in Experiment 2 64
Figure 5.3. Static models: residuals and control limits 66
Figure 5.4. Adaptive models: residuals and control limits 67
Figure 5.5. Tap coefficients for 4TCP_MatchJTune_CapJ>osition" 68
Figure 5.6. Normalized T2 (adaptively estimated) 69

Figure 6.1. The main window ofRTSPC 72
Figure 6.2. Diagram ofthe model building procedure 74
Figure 6.3. Diagram ofthe SPC procedure 74
Figure 6.4. Organization of software modules in RTSPC 76

Vll

H. W.Huang list ofTables

List of Tables

Table 3.1. Centerpoint etchrecipe 20
Table 3.2. Design of experiment 21

Table 5.1. Recipe 44 59
Table 5.2. Summary of Experiment 1 60
Table 5.3. Recipes used for each wafer of Lot 1111 60
Table 5.4. Signals usedin the analysis of Experiment 1 61
Table 5.5. Signals used in the analysis of Experiment 2 63

VUl

list ofTables H.W. Huang

IX

Acknowledgments

Most of all, I would like to thank myresearch advisor, Professor Costas J. Spanos,

for his support ofmy research and studies. Alsodeserving thanks is Professor Seth Sanders

for serving on my project report committee.

A warm thanks goes out to the members of the Berkeley Computer-Aided Manu

facturing (BCAM) group who helped make the experience worthwhile: Roawen Chen,

Mark Hatzilambrou, AnnaIson, Nickhil Jakatdar, David Mudie, Xinhui Niu, Manolis Ter-

rovitis, and Crid Yu.

This work was supported by the Semiconductor Research Corporation (SRC), the

state ofCalifornia Micro program, and participating companies (Advanced Micro Devices,

Applied Materials, Atmel Corporation, Lam Research, National Semiconductor, Silicon

Valley Group, Texas Instruments). Dataand consultation with Texas Instruments research

ers working on the TT/Sematech J88 project are also acknowledged.

H.W. Huang Chapter 1

Chapter 1 Introduction

1.1. Motivation

In today's competitive semiconductor industry, companies are constantly trying to

increase their wafer yields and throughput. To achieve these goals, manufacturing equip

ment must be vigilantly monitored to ensure proper processing at each of the thousands of

processing steps required to turn a wafer into marketable product This thesis deals with a

statistical process control (SPC) scheme that detects equipment malfunctions. The earlier

that malfunctions are detected, the less time and money is wasted processing defective

wafers. Furthermore, because of the high cost of modern semiconductor equipment, if a

scheme can quickly detect malfunctions, this results in a considerable savings due to higher

equipment utilization.

The SPC scheme to be discussed in Chapter 2 has been shown to be effective in the

detection of equipment malfunctions (or equipmentfaults). One key to its effectiveness is

its use of real-time sensor signals. These are signals collected automatically and non-inva-

sively during the processing of a wafer, in a way that monitoring is accomplished with little

extra cost to the process.

Although the SPC scheme has the potential to reduce the overall cost of ownership

of semiconductor equipment by increasingboth the wafer yield and throughput of product

wafers, several key weaknessesin the schemeprevent its use from being more widespread.

In particular, the scheme requires baseline training before it can be used. The training

allows the scheme to "learn" the behavior of a machine's sensor signals when the machine

is operating in a normal state, i.e., its baseline behavior. Later, when the machine is being

Chapter 1 H. W.Huang

monitored, any behavior that deviates from the baseline behavior is flagged as amalfunc

tion.

This training isnotcompletely unwieldy, but can limit the SPC scheme's effective

ness in an actual factory for several reasons. First of all, abaseline training experiment can

be costly and time-consuming. This would not be aproblem if amanufacturer could per

form asingle training experiment for all time and never need todo it again. However, once

changes occur in the equipment or the process, these changes will affect the real-time

sensor signals, and the training must be redone. The changes mat occur could beuninten

tional (due to natural aging of the equipment, for example), or they could beintentional

(such as achange inthe machine settings toprocess adifferent type of product). Moreover,

the manufacturer has no easy way ofknowing when anew training experiment should be

performed. This fact, along with the expense ofnmning atraining experiment, has limited

the scope ofthe SPC scheme to small, specialized projects that can be carefully controlled

and monitored.

The purpose ofthis thesis is to address the weaknesses inthe scheme, as described

in the above paragraph. To this end, some new techniques for modeling signals will be

introduced into the scheme.The thesis will also illustrate these methods with examples and

applications using sensor data collected from plasma etching equipment.

1.2. Thesis Overview

A two stage model is proposed to model sensor measurements obtained from the

processing ofsilicon wafers (in this thesis, the concentration is on aplasma etching pro

cess): a wafer-waferpredictive stage incorporates changes inthe machine settings into the

model; a real-time adaptive stage uacks the real-time behavior of the process (see

Figure 1.1).

1.2.1. Wafer-Wafer Predictive Stage

A multivariate regression model predicts the wafer average of the output signals

based on the machine's input settings (recipe). Previous work did notinclude the machine's

recipe settings as part of the modeling. This meant that separate models had tobe created

H.W.Huang

«

wafer-wafer
predictive stage

real-time
adaptive stage

reape
Lam

etcher
»<?)

•M

0| 1-— Y 1
-•; model • * L

1 1

-U; model • J L
1 1

1. This document was processed with the ErameMaker® document publishing software [33].

3

Chapter 1

residual

Figure 1.1.
Diagram ofthe two stage model fora plasma etch process.

for each new recipe. The predictive stage is useful when new products orwafer patterns
require recipes to be changed often.

1.2.2. Real-Time Adaptive Stage

An adaptive univariate ormultivariate time series algorithm tracks thedynamics of

the real-time behavior. Previous work employed static time-series models and needed

extensive baseline data. Theadaptive stage can adjust to a drifting process, and the sensi

tivity can be tuned asdesired. A baseline experiment is notnecessary.

1.3. Thesis Organization

Chapter 2 gives a summary of the previous work upon which this thesis is based;

for example, the real-time statistical process control (SPC) methodology that will be

referred to throughout this paper is explained there. Chapter 3 describes predictive models

whose purpose is to predicthow recipechangeswill affect real-timesensor measurements.

Chapter 4, the main chapter ofthis thesis, shows how adaptive models work and how they

can be used in the context ofSPC; these models allow one tomodel signals without having

todesign a separate training experiment Chapter 5 presents some examples that apply the

abovetechniques to actual sensordata. Chapter 6 describes the softwarethat is available to

implement the SPC methodology. Chapter 7concludes the thesis with asummary and sug

gestions for future exploration.1

Chapter 1 H. W.Huang

H.W.Huang Chapter 2

Chapter 2 Background

2.1. Introduction

Since much of this thesis builds upon a wealth of research by previous authors, a

briefreview ofpastwork will result ina greater understanding ofthiswork. Hereis anover

view of the background concepts to be presented:

Themain application of this work is for real-time statistical process control (SPC)

ofsemiconductor manufacturing equipment Section 2.2contains importantprevious work,

including an overview of SPC. Theusefulness ofreal-time equipment sensor dataformon

itoring thestate ofa machine is summarized in Section 2.2.1. Theconcepts of SPC and the

methodology used to apply SPC to real-time tool data are summarized in Section 2.2.2. In

Section 2.2.3, theuse ofhierarchical models will beshown togreatly improve theaccuracy

of the signalmodels. Section 2.2.4discusses the automatic generation of time-series mod

els. Finally, the general logistics of collecting real-time signal data are described in

Section 2.3.

2.2. Previous Work

Statistical process control (SPC) is aquality control technique employed ona man

ufacturing line todetect equipment orprocess problems. Manufacturers want todetect any

failures ormalfunctions inthe process as quickly aspossible. Early detection ofequipment

malfunctions ina production line results inless waste being produced and greater up time

ofcritical process equipment This inturn equates tohigher profitability oftheoverall pro

cess.

Traditional SPC techniques make use of various types of control charts to track

important process parameters. Control charts graphically plot parameters as they are col-

5

Chapter 2 H. W.Huang

lected and use statistical tests to determine when a parameter has significantly departed

from what would beconsidered itsusual behavior. The departure occurs—and an alarm is

signaled—when aparameter's value falls outside some pre-determined control limits.

Standard practice inindustry isto plot control charts based on data measured from

occasional "monitor" wafers. The monitor wafers are run perhaps atthe start ofeach work

ing shift or when a process engineer wishes to check the state of the machine. Unfortu
nately, machine problems which occur between monitor wafers go undetected; moreover,

asignificant delay can exist between amachine fault and the actual signalling ofan alarm.

2.2.1. Real-Time Tool Data

Many researchers have been investigating signals that are more accurate than the

machine's input settings in describing wafer states of interest With the aid of automated
sensors and computers, the fault detection delay can be considerably reduced by monitoring
real-time data collected non-invasively from equipment, while wafers are still being pro

cessed. The usefulness of real-time equipment sensor data for monitoring the state of a

machine has been reported in [17][29][19]. The real-time data used in this thesis are a

plasma etcher's internal sensor readings, for example electrical signals such as the radio
frequency (RF) impedance and D.C. bias, and mechanical signals such as those tracking the
coil and throttle positions. These are readily obtained over standard communication ports.

Section 2.3 contains more information on how real-time data are collected.

These internal readings should (intuitively) reflect the true state ofthe equipment

much better than the machine's input settings. Because they are closely coupled with the

actual state of the chamber, the internal sensors may be able to account for drifts in the

machine due to natural aging. Furthermore, equipment malfunctions should manifest them

selves first in the values ofthese internal parameters and much later in off-line wafer mea

surements, resulting in moretimely detection offaults.

2.2.2. Real-Time Statistical Process Control

The nature of the real-time sensor data prevents one from directly applying tradi

tional SPC techniques. This is because traditional techniques assume that each new data
sample is independent ofall previous samples. This assumption isclearly violated in real-

6

H.W.Huang 0^2
time sensor data. Data collected sequentially from amachine at ahigh sampling rate (on
the order ofone sample per second or so) will likely be correlated from sample to sample
(auto-correlation); some of the real-time signals may also benon-stationary. Furthermore,

different sensor signals measured from the same equipment will very likely experience cor
relation between signals (cross-correlation).

The correlated behavior of the real-time data requires modifications to the tradi

tional techniques. A novelscheme was introduced in [9][29] thatallows oneto usethe real

time equipment sensor signals for statistical process control (SPC). The schememodels

each real-time signal with a time-series model based on a "baseline" (calibration) set of

data. These baseline models characterize what is considered to be the "in-control" behavior

of the machine.

Once an equipment's baseline behavior has been established, production wafers can

be run through themachine. The baseline time-series models are then usedto filter the sig

nals obtained during the subsequent equipmentoperation into residuals. The residuals (i.e.,

the differences between the actual and forecast values) from multiple sensor signals are

summarized into asingle score, known as the Hotelling's T2 statistic, which can then be

graphically displayed using a single-sided control chart Wheneverthe signals deviate sig

nificantly from theirbaseline behavior, thiswill resultin largeresiduals andcauseanalarm

to be triggered.

This methodology has been implemented in a commercially available software

package, known as RTSPC. See Figure 2.1 for a diagram of the real-time SPC data flow.

For a more complete description, see [18][29]. More detailed background on time-series

models is given in Section 2.2.2.1 and on the T2 statistic in Section 2.2.2.2.

2.2.2.1. Time-Series Models

Time-series models are used to characterize the real-time sensor data collected from

an equipment that is operating under baseline conditions. A time-series modelcaptures the

auto-correlation structure among sequential samples. Once a variable is modeled with a

univariate time-series model, future values of thevariable can be predicted based on past

Chapter 2

Multiple
non-stationary

raw data

Auto- & cross-

correlated

H. W. Huang

Figure 2.1.
Diagram of the real-time SPC scheme [29][18].

observations. A ume-series is concisely described by an ARIMA(P, D, Q) model, where

P is the auto-regressive order, D is the integration order, and Q is the moving average

order. The general form of the model is:

MB)wt = 8(B)a,
P Q

+(*).- 1-2**** 9(B) « 1-XM* „n

wt = VDzt,D>0

Vzr = Zr-2r_! £*Zr = Zt_k

where z, are the original data, wt are the differenced data, and at are the prediction errors.

For more information on ume-series models, see the abundant literature: [5][25][34],

2.2.2.2. T2 Statistic

The reason for using the T2 statistic is to summarize multiple parameters into a

single statistic that can be monitored on a single control chart. This has the advantage of

needing to monitor only one control chart and also of reducing the false alarms associated

with multiple control charts that are monitoring correlated signals. Before a set of signals

can be combined together into a T2 statistic, they must be filtered with the corresponding

baseline models in order to remove any time-series patterns. The formulas for the T sta

tistic and for the upper control limit (UCL) to beused on a control chart are given below;

they assume that the signals have already been filtered.

•"'»* 7 Chapter
The goal of the T2 control chart is to detect ashift in the operating point of the

machine. To do this, atest statistic is calculated based on aset of sequential samples called
agroup; the number ofsamples in the group is known as the group size n.Each monitored
signal is averaged over the n samples ofthe group and combined into asingle vector. The
averaging helps to assure that the signals are approximately Gaussian (by the central limit
theorem). If£ is the (column) vector ofaveraged samples for each signal, then the test sta-
ustic is calculated as

T1 = n{%-l)TSr\%-l) (2.2)
where x is the vector of baseline signal averages, and § is their estimated covariance

matrix [23]. In (2.2), subtraction by 1 serves to demean the signals, and multiplication by
* i

S" serves to scale the signals to unity variance. Multiplication by the scalar n compen
sates for the reduction in variance due to the group averaging. The vector I and matrix §

are estimates from aprior setof baseline data. Letthenumber of baseline observations used

in the calculation ofx and S be called N. Note that the matrix S should be symmetric and
positive-definite, so that the T2 statistic is always positive.

After the test statistic is calculated, it is compared to the UCL; if the statistic is

greater than the UCL, an alarm is triggered. The theoretical UCL for the T2 statistic is

related tothe F-distribution and depends on the desired Type Ierror a, thenumber ofmon

itored variables M, and the number of baselineobservations N:

UCLa,M,N =[^yfeo.*.*-*• (2.3)
As N approaches infinity, then x and § should approach their "true" values. In this case,
the calculated T2 statistic should have the same distribution as the sum of squares of M
independent standard Gaussian random variables—in other words, a%2-distribution with
M degrees of freedom. Therefore, if AT is relatively large (greater than 20 or 25) then the
F-distribution is well-approximated by the %2-distribution [23], so that the UCL can be
more easily expressed as .

UCLo,m =xIm- (2.4)

Chapter 2 H. W.Huang

2.2.3. Hierarchical Models (Multiple Time Scale Decomposition)

Although seasonal ARIMA (SARIMA [5]) models were used in the original real

time SPC methodology[29], they are not ideal for modeling semiconductor equipment

sensor signals. The reason is that the data isinfluenced by multiple physical processes that

operate on different time scales and have drastically different variances. The different time

scales can roughly beseparated into three levels: 1)real-time, 2)wafer-wafer, and 3) lot-

lot (a"lot" is usually a wafer cassette containing roughly 24wafers). Signals at the real

time level capture short-term fluctuations during the processing ofasingle wafer, while the

signals atthe wafer-wafer level exhibit longer term behavior characteristic ofwafers within

asingle lot. Similarly, atthe lot-lot level, one may see even longer term patterns that reflect

changes intiie machine's state, for example abuild-up offilm inthe chamber due tonatural

aging.

Hierarchical models arecreated bydecomposing thesensor dataintomultiple com

ponents based on different time scales, where each of the components areanalyzed sepa

rately. This decomposition results in more accurate signal modeling. The better signal

models means that SPC will be more accurate, as shown by fewer false alarms. Moreover,

the different levels of the hierarchical models supply valuable diagnostic information

through the level of the hierarchy that caused a certain alarm. Forinstance, a slow drift in

RF power at the lot-lot level might beinterpreted as natural aging ofthe machine, butadrift

at the real-time level might signify a problem with thecurrent wafer. Without the decom

position, the time scale level thatexhibited thegreatest variance would dominate all other

levels, and the useful information that could have been extracted from the other levels

would be lost.

SeeFigure2.2 for an example of a signal decomposition. The wafer-wafer compo

nent is first extracted simply by averaging the signal overeach wafer. The real-time com

ponent is thenproduced bysubtracting thewafer-wafercomponent from the original signal.

A lot-lotcomponent couldsimilarly beproduced byfirstaveraging thesignalovereachlot,

before extracting the wafer-wafer and real-time components. The greater variation of the

wafer-wafer component compared tothereal-time component is apparent in theFigure 2.2.

10

H. W. Huang

-400

t
-350

i

t
-50

T

Wafer-Wafer Component

+
Real-lime Component

Figure 2.2.
Signal decomposition for the impedancesignal.

11

Chapter2

Chapter 2 H. W.Huang

2.2.4. Automatic Model Generation

The identification of time-series models and estimation of the model parameters

have been implemented intoan automatic model generation program by [20]. Thiswas an

important contribution because manually building time-series models can be a tedious,

labor-intensive, and time-consuming endeavor. An automated time-series modelgenerator

makes SPC more practical in a manufacturing environment

A rough description ofthemodel generating procedure is asfollows. Note thatthis

procedure relies on known heuristics and experience with the selected signals [20][14].

First the differencing order is determined to ensure thatthedataseries is stationary. Then

the autoregressive order is identified and thecoefficients areestimated based onsolving the

modified Yule-Walker equations. Finally, the moving average order and coefficients arecal

culated using a non-linear optimization program. Once the models are identified and the

model coefficients are estimated for each signal, the covariance matrix of the signal resid

uals is calculated. Together, themodels and thecovariance matrix characterize thebaseline

behavior of the system.

2.3. Real-Time Data Collection

This section will describe the general procedure and logistics for collecting real

time data from a piece of equipment. The physical hardware used for the datacollection

will bedescribed, as well as other practical issues, such assignal selection andpre-filtering

of the data.

2.3.1. Hardware

The examples in this thesis use real-time data taken from two different types of

state-of-the-art plasma etchers: a parallel-plate Lam 4400polysilicon etcherand a trans

former coupled plasma (TCP) Lam 9600 metal etcher. Data are available from three

sources: software that obtains measurements via a standard SECS-II (SEMI Equipment

Communication Standard II) port,the Comdel RealPowerMonitor (RPM-1), whichreads

signals through its ownRS232interface, and the Chromex Imaging Spectrograph (optical

emission spectroscopy data).

12

H.W.Huang Chapter 2
The signals are collected by software running on a PC located next to the etcher.

Data is saved to the local hard disk asit arrives. The hard disk is mounted on a local area

network (LAN) sothat thedata are easily available to any hostwith access to thenetwork.

Most of the analysis done for this thesis was run on workstations using UNIX file systems.

23.2. Signal Selection

An important part of data collection is the selection of sensor signals: often a

machine has hundreds of signals available, but only some ofthese will beuseful for the pur

poses of SPC. The signals most sensitive tothe equipment state are desired, and those sig

nals that are insensitive orhave noimpact ontheequipment state are tobeignored. Usually

the desired signals can bechosen with intuition, butone could run a designed experiment

to objectively test the significance of individual signals.

This thesis is mostly based on data from the SECS-II signals. These data arecol

lected at a sampling frequency ofabout 1Hz. Someof theimportant signals monitored are:

RF load coil position, RF tune vane position, peak-to-peak voltage, load impedance, RF

phase error, DC bias, and endpoint. These signals were chosen because they are sensitive

to changesin the state of the etch chamber, which directly impacts the wafer. Becausethese

measurements are related electrically or mechanically, some signals are highly correlated

with each other.

2.3.3. Pre-processing

As stated in Section 2.3.2, signals that reflect the state of the machine chamber are

mostuseful for SPC. Furthermore, certain intervals of the signal may be moreuseful than

others. In plasma etching, for example, the processing of asingle wafer may typically con

sist of a dozen steps,including steps for stabilization of machinesettings and initialization

steps, likepurging of theetch chamber. Inthis work, the steps of interest are usually steps

in which actual etching of thewafer occurs: themain etch step and the over-etch step. Of

course, a more in-depth analysis would attempt to include all the steps.

In addition to certain steps being more useful than others, certain portions of the

signal within a stepmaybemore useful. As an example, a few seconds may berequired for

the power to stabilize at the beginning of each step. The sensor measurements collected

13

Chapter 2 H. W.Huang

during this timecan bequite erratic, casting doubt onwhether ornottheycontain any infor

mation about the state of the machine. Consequently, this transient effect is usually

removed tosimplify theanalysis. For each wafer, the data tobekeptfor analysis are all con

catenated together to form asingle stream; this isrepeated for each signal that is tobemon

itored. For further simplification, sometimes the number of samples to be analyzed is

constrained to be the same for each wafer, although this is not necessary.

14

H.W. Huang Chapter 3

Chapter 3 Predictive Modeling

3.1. Introduction

3.1.1. Motivation

One of the limitations ofthe real-time SPC methodology described in Chapter 2 and

reported in [18] is that training is required to establish the machine's baseline(in-control)

behavior. Although the methodology has been shown to be sensitive to such equipment

faults as miscalibrated machine settings, improper wafers, and changes in chamber pres

sure, the sensitivityof the SPCalgorithm is derived from its need to be trained on a specific

machine running a specific set of input settings. While this may not be a problem for high

volume manufacturers who only produce asmallnumberof products, it canbe asignificant

hindrance to manufacturerswho may need to change process or equipment settings often.

The goal of this chapter is to enable manufacturers to change equipment settings

(also known as recipes) at will without degrading the effectiveness of their real-time SPC.

A methodology is proposed to accommodate these users; this is achieved by creating

models that predict the effect of new recipes on the sensorreadings. Since recipes areonly

changed once before the processingof a wafer, the models only predict shifts of the sensor

readings at the wafer-wafer level; the real-timelevel is assumed to be unaffected by a recipe

switch.

Although only recipe changesareaddressed here, ratherthan equipment or process

changes, the methodology could actually be extended to include any kind of alteration to

the processing of a wafer. For example, a change of equipment, a change in the amount of

exposed surface areaon the wafer, or even a change in the mask pattern used in a previous

lithography step, could affect the readings of the internal sensors. Any of these could also

15

Chapter 3 H. W.Huang

bemodeled (together with therecipes), provided that thecondition can beprecisely identi

fied, and provided that enough observations are available tobuild areasonable model. For

this work wesimplify matters bymodeling only theequipment settings (i.e., therecipes) of

a plasma etcher, such as power settings, gas flows, pressure, and gap spacing.

Furthermore, although only predictive models created atthewafer-wafer level are

addressed here, similarmodels could be built at the lot-lot level. If changes in the equip

ment or process are made on a lot-lot basis, one might wish to create a predictive lot-lot

model to predict their effects on the lot-lot signals. Therefore, throughout this chapter,

when a predictive wafer-wafer model is built based on wafer-wafer recipe changes, the

reader should remember that a similar procedure could be applied to a predictive lot-lot

model based on lot-lot changes.

3.1.2. Modeling

In thischapter, thesimplicity of themodels is justas important as is their accuracy.

Simplicity means that themodels can becreated and used for prediction withtheleast pos

sible effort; this is desired sincemanufacturers may haveto buildthesemodels quite often

and may have little time for verification or refinements. In addition, the amount of data

available to produce a modelmaybe limited, which again shows thatsimple model struc

tures are preferred. The different recipes or processes of interest will cover avast range of

operating points, so thelinear models created here to predict changes in thesensor signals

can only be approximations.

Moreover, since changes in recipes and equipment are expectedto occur atthe lot-

lot time scale, these models will need to survive through drifts (perhaps due to natural

aging) or otherintentional orunintentional changes in the state of the equipment; in other

words they willneed to be adequate for relatively longperiods of time—longerthancanbe

justified by thespanof observations used to create themodels. Inconclusion, simplelinear

models that are easy to generate will be used, since more sophisticated models would not

necessarily be more accurate overa long period of time. ^~

16

H. W.Huang Chapter 3
3.1.3. Overview

Background on the modeling techniques is given inSection 3.2, and an example of
predictive modeling using actual production data is presented in Section 3.3.

3.2. Background

3.2.1. Generalized Model

Here background is presented on modeling theeffect of recipe changes on sensor

readings. As mentioned previously, recipes are only changed once before theprocessing of

a wafer, so the models of this chapter are for predicting the sensor signals at the wafer-

wafer level; the real-time component is captured with the already described time-series

models. The combinedwafer-wafer and real-time model canbe generalized in an ARIMAX

model, which is anextension of an ARIMA model. The 'X' stands for"exogenous", which

means the model now contains additional explanatory variables; the additional variables

are the recipe settings.

An ARIMAX model, also known as a transfer function model, contains two addi

tive parts. The overall ARIMAXmodel for astationary process, yt, based onthestationary

processes, x{ t, has the following form:

where at are the forecast errors (assumed to be independently and normally distributed

with zero mean and variance o2), (M- 1) is thenumber ofexplanatory variables included

in the model, and p, are constants. The polynomials in B (©,(£),8,(5), 8(B), and ty(B))

are polynomial backshift operators asdefined in (2.1). See [5] [34] foramorethorough dis

cussion.

In this chapter, only the first square-bracketed term on the right hand side of the

ARIMAX model (3.1) is of concern. This first term accounts for the wafer-wafer level

effects of the changing machine settings, xt t, onacertain signal, yt, where i indexes one

of the (M - 1) recipe parameters being modeled. After the first term of the model has been

built, and the wafer-wafer level effects have been subtracted out, the second term of the

17

Chapter 3 H. W.Huang

model can be built. The second square-bracketed term represents the ARIMAmodel for the

real-time component of the signal as described previously (Section 2.2.2.1).

3.2.2. Simplified Model

Note that the first term isquite general and models not only the influence ofthe cur

rent recipe on the signal, but also the influence of past recipes. However, due to reasons

stated in Section 3.1.2, the model will be simplified to only include the current recipe; the

influence of past recipes is notmodeled. The simplified form is:

The first term (the wafer-wafer term) becomes just alinear combination oftherecipe vari

ables (a linear regression). The coefficients P,- for i = 0,..., M-1 need to be estimated.

More sophisticated multivariate techniques such as principal component regression

(PCR) or partial least squares (PLS) [22][10] regression could beused, but these more com

plicated methods are difficult to justify due to the increased effort required to use them and

due to the limited amount of data available (see Section 3.1.2).

3.2.3. Least Squares Estimation

Classical least squares techniques are used toestimate the coefficients of the linear

models. This theory is well known [4][6], but will be repeated here for reference. Our

wafer-wafer level prediction model is:

y = P0+XP*> <33>
i = i

where the subscript t has been dropped for clarity. Again, the xt are recipe variables, and

the y represents one ofthe sensor signals. The least squares criterion chooses the p,- values

that minimize the sum of squared residuals:

18

H.W. Huang Chapter3
where ; indexes one of the Nobservations ofthe variables and response. Note that scaling
each variable xt to unit variance is usually needed in order to avoid numerical precision
problems.

The equations can beexpressed much more compactly inmatrix form. Let X bethe

N by Mdata matrix whose each column contains the observations for one recipe variable,
except the first column, which contains all Vs. Let y bethe M by 1column of observed

responses. Let p be the M by 1column ofestimated coefficients, the first element being
the intercept. Then any ft satisfying the normal equations:

(X*X)ft = XTy (3.5)
gives aleast squares fit. See [6] for adiscussion of computational methods for solving this

set ofequations. Note that the estimates ofthe coefficients ft are poor if the columns of X
are highly correlated.

3.2.4. Prediction Model

Letting L denote the number ofmodeled response signals, once ft has been calcu
lated for each signal, an M by L matrix H can beassembled that contains thecorrespond-

ing coefficients column P for each of the signals. Now the full prediction model can be

written as:

9 = Hrx, (3.6)

where y is the L by 1column of predicted responses, and x is the M by 1column of new

recipe settings.

3.3. Example

3.3.1. Experiment

Data for this example are taken from an experiment conducted by Texas Instru

ments (TI) in Dallas for the Sematech J-88-E project The experiment (#26) was part of a

larger smdy of various sensors and analysis techniques. The test structure used in this

experiment was a multi-layer structure with TiN, Al, TiN, and oxide on silicon, which

mimics the via and contact processes TI is developing.

19

Chapter 3 H. W.Huang

The experiment consisted of38 8-inch wafers processed on aLam TCP 9600 metal
etcher; the etchant gases are BC13 and Cl2. The first 21 wafers were run in the first lot, and
therest were run inthesecond lot A total of seven centerpoints and three checkpoints were

run. A centerpoint is a"center" ofthe experimental design; Le., awafer run with the nom

inal recipe from which other experimental runs deviate from. The centerpoint settings are

shown inTable 3.1. On the other hand, the checkpoints are wafers run with recipes differ

ent from any ofthe experimental runs. These wafers were not used byTI for modeling, but

were used to verify models builtusing theother wafers in theexperiment

top power
(Watt)

bot power
(Watt)

pressure

(mTorr)

CB+BC13

(seem)
02/BCD

350.0 130.0 13.5 150.0 1.000

Table 3.1.

Centerpointetch recipe.

The designed recipe parameters were: top power (Watt), bottom power (Watt),

chamber pressure (milliTorr), total gas flow rate (Cl2 flow +BC13 flow), and gas flow ratio

(Cl2 flow / BC13 flow); gas flow rates are measured in units ofseem, standard cubic centi

meters per minute. Note that total gas flow and gas flow ratio are varied inthe experiment

rather than the individual gas flows, since these have more physical significance. See

Table 3.2 for the complete design of experiment (DOE).

20

H. W. Huang

wafer

#

run# top
power

bot

power

press.

(mT)
C12

(seem)
BC13

(seem)
C12+

BC13

C12/

BC13

1 Ctrl 350.0 130.0 13.5 75.0 75.0 150.0 1.000

2 5 392.7 121.5 16.3 68.4 73.1 141.5 0.936

3 5 392.7 121.5 16.3 68.4 73.1 141.5 0.936

4 18 307.3 138.5 16.3 81.7 76.8 158.5 1.064

5 10 307.3 138.5 10.7 72.9 68.5 141.5 1.064

6 8 307.3 121.5 16.3 72.9 68.5 141.5 1.064

7 7 392.7 138.5 10.7 68.4 73.1 141.5 0.936

8 6 307.3 138.5 16.3 68.4 73.1 141.5 0.936

9 17 392.7 121.5 16.3 81.7 76.8 158.5 1.064

10 15 392.7 138.5 16.3 76.6 81.9 158.5 0.936

11 ctr 2 350.0 130.0 13.5 75.0 75.0 150.0 1.000

12 13 392.7 121.5 10.7 76.6 81.9 158.5 0.936

13 14 307.3 138.5 10.7 76.6 81.9 158.5 0.936

14a 9 392.7 121.5 10.7 72.9 68.5 141.5 1.064

15 19 392.7 138.5 10.7 81.7 76.8 158.5 1.064

16 4 307.3 121.5 10.7 68.4 73.1 141.5 0.936

17 11 392.7 138.5 16.3 72.9 68.5 141.5 1.064

18 chkl 350.0 132.0 10.0 75.0 75.0 150.0 1.000

Chapter3

Table 3.2. (Sheet 1 of 2).
Design of experiment. In the "run #" column, "ctr" denotes a centerpoint,

and "chk" denotes a checkpoint.

21

Chapter 3 H. W.Huang

wafer

#

nm# top
power

bot

power

press.

(mT)
C12

(seem)
BC13

(seem)
C12+

BC13

C12/

BCD

19 12 3073 121.5 16.3 76.6 81.9 1583 0.936

20 16 3073 1213 10.7 81.7 76.8 158.5 1.064

21 ctr 3 350.0 130.0 13.5 75.0 75.0 150.0 1.000

22 ctr 4 350.0 130.0 13.5 75.0 75.0 150.0 1.000

23 24 450.0 130.0 13.5 75.0 75.0 150.0 1.000

24 29 350.0 130.0 13.5 65.0 65.0 130.0 1.000

25 chk2 325.0 140.0 12.0 71.0 69.0 140.0 1.029

26 28 350.0 130.0 13.5 80.2 69.8 150.0 1.150

27b 31 350.0 130.0 7.0 75.0 75.0 150.0 1.000

28 ctr 5 350.0 130.0 13.5 75.0 75.0 150.0 1.000

29 ctr 6 350.0 130.0 13.5 75.0 75.0 150.0 1.000

30 30 350.0 130.0 13.5 85.0 85.0 170.0 1.000

31 23 250.0 130.0 13.5 75.0 75.0 150.0 1.000

32 26 350.0 150.0 13.5 75.0 75.0 150.0 1.000

33 27 350.0 125.0 13.5 68.9 81.1 150.0 0.850

34 chk3 425.0 135.0 18.0 78.0 82.0 160.0 0.951

35 32 350.0 130.0 20.0 75.0 75.0 150.0 1.000

36 25 350.0 110.0 13.5 75.0 75.0 150.0 1.000

37 ctr 7 350.0 130.0 13.5 75.0 75.0 150.0 1.000

38c 31 350.0 130.0 7.0 75.0 75.0 150.0 1.000

Table 3.2. (Sheet 2 of 2).
Design of experiment. In the "run #" column, "ctr" denotes a centerpoint,

and "chk" denotes a checkpoint.

a. The SECS-II data for this wafer were cut short for some reason.

b. The pressure setting of 7.0 mTorrwas lower than allowedby the equip
ment causing a malfunction alarm.

c. The pressure setting of 7.0 mTorrwas lower than allowed by the equip
ment, causing a malfunction alarm.

The main etch step is the fourth step of the etching process, in which the RF power

is applied to begin the etch cycle. During the main etch step, the intensity of a particular

wavelength oflight emitted by the plasma ismonitored1. Anabrupt change in this monitor

1. The wavelength used is 261.8 nm. This line correspondsto the species AlCl, a byproduct of Al etching.

22

H.W.Huang 0^3
signal, known as the endpoint signal, indicates that the underlying substrate has begun to
beexposed, and therefore that the step has completed [21].

At this point, although much of the film has been etched away, some material still

remains due tothe process non-uniformity. Toallow for this, etching iscontinued inafifth

step, the over-etch step. In practice, this step lasts for an amount oftime equal to apercent

age of the main etch step's duration. In this case, the over-etch was run for 100% of the

main etch time. Data from the SECS-II interface2 were collected at asampling rate ofabout
1Hz during the second through sixth steps.

3.3.2. Procedure

The SECS-II software collects a large number of real-time signals, only some of

which are useful for SPC. Thus the first step was to pickasubset of the signals to analyze.

Thecriteria for selecting signals was somewhat subjective: signals should bestationary, or

be able to be madestationary viadifferencing. Signals should be continuous and"smooth"

(not flat, spiky, orcontaining steps). Signals that are flat (constant) obviously do not con

tain any useful information, and signals that have spikes Garge, abrupt jumps) will trigger

many false alarms. The signals chosen for this example are listed in the results found in

Section 3.3.3.

Nexteach real-time signal was averaged over theduration of each wafer to produce

wafer-wafer level signals (the first few seconds of data are ignored in order to remove any

transient effects; see Section 2.3.3). A prediction model for each wafer-wafer signal was

built by regressing the data from all wafers onto the designed recipe parameters3 (models

for the main etch step and over-etch step are created separately). Apparently, the following

three wafers had either processing ordata collection problems and could not beusedin the

analysis: wafers #14,27, and 38.

2. TI used acustom collection software designed torunon a workstation.

3. The statistical software package S-PLUS was used tobuild theregression models [3}.

23

Chapter 3 H.W.Huang

3.3.3. Results

The results of the regressions are given in Figure 3.1 (the results in the figure are

only given for the main etch models, but the results for the over-etch models are similar).
The figure displays the R2 value for each signal's wafer-wafer prediction model . Each
residual estimate has 29 degrees of freedom, since 35 observations (wafers) were available

for analysis, and each model has six parameters (5 recipe parameters and an intercept). For

simplicity, no elimination of insignificant model parameters was performed .

As can be seen by the R2 values, many of the wafer-wafer level signals correlate

very well with the machine settings, while other signals correlate very poorly. Note that a

few ofthe sensor signals are almost perfectly correlated to certain machine controls. For

instance, the "Chamber_pressure" sensor is almost perfectly correlated to the chamber

pressure input setting, as is the "RF_Gen_#3_TCP_FWD_PWR" sensor to the top power

setting. To see the prediction models in use, an example plotting the actual real-time signal
for uRF_match_#l_tuning_position" alongside the predicted wafer-wafer values (for the

main etch step) is shown in Figure 3.2.6 Ofcourse the predictions are never perfect; the

actual wafer-wafer values (real-time signals averaged over each wafer) will differ from the

predictions. The difference between them are the wafer-wafer residuals; these will be

passed to the SPC algorithm.

4. The R2 statistic isapercentage value telling the amount oftotal variance that isexplained bythe model;
a value of unity is the best [26].

5. However, closer examination reveals thatoutof the six modelparameters, the top power, bottom power,
chamber pressure, and intercept were significant for almost all signals, while the total gas flow and gas flow
ratiowere only significant for a few of the signals.
6. Only 35 wafers are shown in the figure, rather than 38, since wafers #14,27, and 38 were removed from
the analysis.

24

H.W.Huang

e
K>

Time

e o

Recipe_Step_#

PLLJ*ressure

EttJpoi»uteectar_a

Bnapointjdetector_b

€bamber_pres$ure

Iff^enJHJfcrwaiti.jN3wer

JRFjnatcb_#l_dc„bia$

RF-jnau^#l_tuiimg_position

RF_match_#lJload.jcoil4)osition

RF_matcb_#l_phase_error

RF._power_#l

I^JtoeJmpedarice__#l

WLnmcb^ljjealUEtfLvoltage

TCPJMatchJTunejCap Position

TCP_Match_Phase_Err_Out

TCP_MatchJJne_Impedance

TCX_MatcbJ-6ad-.CapJ»osition

Gas_#6_flow

Gas_#7_flow

WJteMS&JFW&jpWit

p

3

Figure 3.1.
R2 values for various wafer-wafer signal prediction models.

25

Chapter 3

Chapter 3

wafer #

Figure 3.2.
Predicted wafer means and acmal real-time signal for

"RF_matchJfl_tuning_position".

26

H. W.Huang

H.W. Huang Chapter 4

Chapter 4 Adaptive Modeling

4.1. Introduction

4.1.1. Motivation

As discussed in Section 3.1.1, the real-time SPC methodology described in

Chapter 2 requires training in order to establish an equipment's baseline behavior. The

need for a training experiment places a considerable prerequisite on those who wish to use

the methodology, possibly costing much time and effort The work in Chapter 3 alleviates

this requirement somewhat, by avoiding the methodology's need to be trained on a specific

machine running a specific set of input settings; although this accommodates users who

change machine or process settings often, it still does not obviate the necessity for training.

In this chapter, adaptive modeling techniques are introduced with the goal of elim

inating the need for baseline training experiments. Adaptive models that can adjust to the

statistics of a signal and also track its statistical variations offer greater flexibility in the

model building process. Not only do they remove the need for baseline training, but they

are also the answer to the problem of machine drift —i.e., slow changes in the state of the

equipment, perhaps due to natural aging. Adaptive models are able to detect these changes

and update themselves in real-time; the updates are automatic, without any need for inter

vention by the user.

Before extolling the potentialmerits of adaptive models too far, note that practical

matters will unavoidably temper their success. Issues such as estimation noise and the

amount of data available will impose inevitable tradeoffs. Note that adaptive models can

only track variationsin the datathat changeslowly relative to the model's speed of conver

gence. Abrupt changes that areintentional,like recipe changes, will still require predictive

27

Chapter 4 H.W.Huang

models in order to anticipate their effects onthesensor readings; abrupt changes thatare

unintentional will be interpreted as equipmentmalfunctions.

4.1.2. Adaptive and Predictive Modeling

As a further motivation, the techniques of this chapter can be combined with the

predictive modeling of Chapter 3 and the hierarchical modeling ideas of Section 2.2.3 to

model signals that are non-stationary and, in addition, are affected by abrupt recipe,

machine, orprocess changes. For example, for an SPC scheme that detects faults in real

time, in addition to an adaptive model that operates atthe real-time level totrack statistical

variations, apredictive model is also needed atthewafer-wafer level toanticipate theeffect

ofrecipe changes. More specifically, the predictivemodels usetheprocessing recipe topre

dict themeanvalues for each ofthesensor signals; these mean values areusedto center the

data for the adaptive algorithm at the real-time level.

Another possibility is touse both predictive modeling and adaptive modeling at the

wafer-wafer level in order to dynamically correct a prediction model. Suppose a wafer-

wafer prediction model is built that predicts the effect ofrecipe changes on themean value

of each signal. In order to keep this model up-to-date, it should be adjusted whenever new

data is available. Thus, the prediction model itself can bemade adaptive by simply using

therecipe settings asinputs toanadaptive filter, and starting the initial filter with theorig

inal prediction model that was built.

4.1.3. Chapter Overview

Extensive background onadaptive filters is given in Section 4.2,beginning with an

introduction tooptimum static filters. Then the section continues towards a development of

adaptive filters, and ends with a summary, which outlines some important issues, including

stability and convergence rate. Section 4.3 details how the actual adaptive algorithms are

implemented in a computer. A discussion of several important implementation issues is

found in Section 4.4, including tradeoffs thatneed to be considered when using adaptive

algorithms, andhow to useadaptive modeling to implement real-time SPC. Anexample of

how adaptive modeling canbeused onactual production datais presented in Section 4.5.

28

H.W.Huang Chapter 4
4.2. Background

The term filter is used todescribe atool that is applied toobservations of a signal

in order to extract certain information about the signal. The design of an optimum filter is

based on some apriori assumptions about the statistics ofthe signal. However, if the signal

isunknown, difficult tocharacterize, oristime-varying, theuseofan adaptive filter isoften

advantageous. An adaptive filter starts from a predetermined set of initial conditions and,

based on some recursive algorithm, tries to converge to the optimum solution. In a time-

varying environment, the adaptive filter offers theability to track variations in thestatistics

of theinput data, provided that thevariations are sufficiently slow.

Adaptive filters have been successfully used in avastvariety of applications. Some

of these applications include: adaptive equalization for digital communication channels,

system identification, speech compression, signal detection, and echo cancellation.

Although these applications are quite diverse, they each use adaptive filters in a similar

way: the input signal is usedto estimateadesiredresponse, andthe estimationerror is used

to adjust the filter.

However, theessential difference among thevarious applications of adaptive filter

ingarises in themanner in which thedesired response is extracted. For example, in asystem

identification application, the desired response is the actual output of theunknown system

being modeled, whereas in an echo cancellation application, the desired response is the

input signal with echoes removed.

In this paper, adaptive filtering will used as a modeling technique. The technique

works by assuming thatthe observed signal is produced asthe output of a white (uncorre-

lated) noise process fed through alinear transfer function. With this assumption, thesignal

can be input into an adaptive filter thatattempts to find the inverse of the transferfunction.

The filter's goal is to predict thenext value of thesignal, based on past values. Therefore,

the desired response is theactual nextvalue of thesignal. The filter works by continually

adjusting and correcting itself, until it reproduces theoriginal white noise process; thus, it

is a whitening filter (also knownas aprediction-errorfilter).

29

Chapter 4 H. W.Huang

If theadaptive filter is successful, it willhavefound amodel forthe observed signal

(oranapproximation to it). Any observed deviations from themodelcanbe easilydetected

and flagged as equipment malfunctions. Inparticular, adaptive models can replace the time

series models neededin the SPCmethodology of Section 2.2.2.

This section is relatively lengthy, butis necessary for a good understanding of the

subject matter. For further references, the reader is encouraged to consult[11][12][37][7].

The section is divided into a number of sub-sections. Section4.2.1 begins by introducing

non-adaptive linear filters andsolvingthe optimum linear filtering problem. Section4.2.2

extends this theory by showing aniterative solution to the problem basedon the method of

steepest descent; the iterative solution forms the basis for a simple adaptive filtering algo

rithm. This algorithm is a simplified version of another adaptive algorithm based on the

method of least squares, discussed in Section 4.2.3. In both of the above two sections, the

important issues of stability and convergence are addressed. This discussion concludes

with a summary in Section 4.2.4.

4.2.1. Wiener Filters

The theory of Wiener filtering is concerned with extracting information about a

signal given some observations ofthat signal. Moreprecisely, aWiener filter seeks to make

an optimum estimate of some desired response based on a linear function of the observa

tions. Filtering is also a kind of modeling, since the optimum filter will representthe cor

relation structure of the input signal. The optimalitycriterion used here is to minimize the

mean square error of the filter estimates.

4.2.1.1. Modeling Assumptions

The theory behind the solution of an optimum Wiener filter necessarily assumes

certain model structures for boththe input signal and the filter. For the problem presented

here, the input signal is modeled as a real, discrete-time, and wide-sense (second-order)

stationary stochastic process. A wide-sense stationary process, {x{t)}, is characterized by

its first and second moments:1

1. Usually processes will beassumed tohave zero mean, but not necessarily unit variance. If aprocess does
not have zero mean, it can beeasily centered by subtracting the mean from each value of the process.

30

H. W.Huang Chapter 4
1. The mean value of the process, m, is constantfor all times t:

msE[x(t)] = constant (4.1)

2. The autocorrelation junction of theprocess, defined by
rx(ti,t2)*E[x(tx)x(t2)]t (4.2)

depends only on the difference between the observation times fj and t2, as shown by
rx{tvh)^rs(t^tx). (4.3)

This way of characterizing a stochastic process is practical since it lends itselfto measure

ments and is well suited for linear analysis. Note that a Gaussian process is completely

characterized by its first and second moments: if it is wide-sense stationary, thenit is also

strictly stationary (i.e., its statistical properties are invariant to ashift in time origin).

In this analysis, thefilter is assumed tobeahnzar,finite-duration impulse response

(FIR) filter. An FIR filter contains only forward paths and no feedback loops, thus making

it inherently stable and, in addition, mathematically tractable. Onthe other hand, an infi

nite-duration impulse response (IIR) filter contains both feedforward and feedback paths.

Consequently, unless it is properly controlled, feedback can cause an IIR filter to become

unstable. Although the stability problem is manageable for static filters, it complicates the

situation for adaptive filters. Therefore, in most applications for which adaptivity is

required, the use ofFIR filters is preferred, even though an IIR filter can sometimes provide

better performance (seeSection 4.3.3 for moreon adaptive IIR filtering).

4.2.1.2. Problem Formulation

Consider theblock diagram of Figure 4.1. The filter inputis x(t), arealization of a

discrete-time wide-sense stationary stochastic process, ormore simply, a time series. The

filter output is y(t), a linear function of theinput

M-l

v(')s J]W-«. (4.4)
* = o

where [h0, hl,...,hM_1] is the impulse response of the filter (the filter coefficients or

filter taps), and M is the order ofthe filter (the number ofdegrees of freedom). The output

y(t) attempts toestimate thedesired response, denoted by d(t). Theestimation error is the

difference between the desired response andthe filter estimate:

31

Chapter 4 H. W. Huang

e(t)*d(t)-y(t). (4.5)

Recall that in this paper adaptive filters are used asprediction-error (whitening) fil

ters. Consequently, the filter output y(t) is a prediction of the next value of the signal

x(t+l) beforeit is known, and the desired signal d(t) is the actual value x(t+l). This

notation mightbe slightly confusing at first, butis preferred overalways using x(t +1) or

jc(r). In addition, it keeps the derivation applicable to the general case.

The optimality criterion for the Wiener filter is to minimize the mean square error

of the estimation error,denoted by

MSEsE[e2(t)]- (4.6)

Substituting (4.5) into (4.6) we have

MSE =E[(d(t)-y(t))2] (4?)
= E[dHt)]-2E[d(t)y(t))+E[yHt)]

x(t) Linear

FIR Filter:

h

m.(T\.m^&+-
eft)

Figure 4.1.
Block diagram of the linear filtering problem.

4.2.1.3. Matrix Form

To solve for the optimum filter, the next step would be to substitute (4.4) into (4.7)

and then set up a system of M equations by differentiating the resulting expression with

respectto each of the filtercoefficients. However,amoreelegantsolutionis gained by first

expressing (4.7) in matrix form. Therefore, an M-by-1 column vector of the current and

(M - 1) previous observations is defined as

*=[x(t)x(t-\) ... jc(f-M+li)r» <4-8)
and an M-by-1 vector of the filter taps is defined as

**[h0h1...hM_y. (4.9)

32

H. W.Huang

Now (4.4) can be written (dropping the indices)

and (4.5) can be written

y = hrx = xrh,

e = </-hrx,

Chapter 4

(4.10)

(4.11)

(4.12)

(4.13)

and (4.7) can be written

USE = E[d2)-2E[dxT]h + hTE[xxT]h.

Further define the M-by-M correlation matrix of the input signal x(t) as

Rxs£[xxr] .

The fact that the input signal is a real, wide-sense stationary process means that Rx is a

symmetric, Toeplitz,positive semi-definite matrix. It is related to the input signal's autocor

relation function rx(k) as follows:

R* =

rx(0) rx(l) ... rx(M-l)

rxd) rx(0)

rx(D
rx(M-l) ... rx(\) rx(0) ^

Since the matrix Rx is positivesemi-definite, then

xrRxx2>0forallx*0. (4.15)

The equality only occurs when Rx is singular2; however, in practice Rx is almost always
nonsingular, in which case it is positivedefinite so that all its eigenvalues are positive [2].

The desired signal and the input signal are assumed to bejointlywide-sense station

ary, both with zero mean. Let the M-by-l cross-correlation vector between the desired

signal and the input signal be

Pst(0)p(l) ... p(M-\^T (4.16)
p(k)=E[d(t)x(t-k)], (4.17)

so that

p =£[<&]. (4.18)

(4.14)

2. Sucha situation arises essentially only when theprocess consists of the sum of K sinusoids with
K<M.

33

Chapter 4 H. W.Huang

Since the desired signal is assumed to be wide-sense stationaryand of zero mean, its vari

ance can be defined as

ajmEld1} = rrf(0).

Now (4.12) can be re-written in matrix form as

MSE = o^-^h+h7**11-

(4.19)

(4.20)

4.2.1.4. Optimum Filter Solution

The cost function, MSE, is a quadratic (second-order) function of the unknown

filter taps h. This function can be visualizedas a bowl-shaped (M +1) -dimensional sur

face (a paraboloid) with M degrees of freedomrepresentedby the elements of h. This sur

face is referred to as the error performance surface of the filter. The importance of this

particular surface is that it is characterized by a unique minimum (as long as Rx is non-

singular). Figure 4.2 depicts the error performance surface for a 2-tap filter.

Figure 4.2.
Visualization of an error performance surface.

At the lowest point of the error performance surface, the cost function MSE attains

its minimum value, denoted by MSE*. This point corresponds to the optimum filter tap

vector. At this point, the gradientvector must be identically zero; in other words,

34

H.W.Huang Chapter 4

dh(k)V*MSEs7fi?nAMSE =0f<>r* =0,1,...,M-1, (4.21)
or in vector form:

VMSE = 0. (4.22)
The gradient vector can be calculated to be

VMSE = - 2p +2Rxh, (4.23)

so that putting together (4.22) and (4.23), the system of M equations can be solved in
matrix form:

-2p + 2Rxh* = 0

R,h* = P (4.24)

h* = Rj!p

The solution shows the optimum filter taps denoted by h*.This vector of filter taps is opti
mum in the mean square sense; no other M-order linear filter can be designed that has a

smaUer mean square error. The minimum value ofthe MSE function can be found using
(4.20) and (4.24) as

MSE* = MSE\h =h. = <s\ - prRjip. (4.25)

Equations (4.21) are known as the Wiener-Hopf equations and also as thenormal

equations. The term "normal equations" refers to the geometric development ofthe opti

mum filtering problem, commonly known as theprinciple oforthogonality. Geometrically,
the minimum point ofaquadratic error function occurs when the error signal isorthogonal
(normal) to the hyperplane spanned by the space ofthe M filter inputs. The geometric
development of the solution can be shown to be equivalent to the minimum mean square
error method.

4.2.1.5. Canonical Form of the Error Performance Surface

An alternate form for (4.20), the formula for the error performance surface, will be

useful both theoretically and concepmally in subsequent sections. By using (4.24) in both
(4.20) and (4.25) to remove the presence of p, then subtracting the former by the latter, one
arrives at the expression

35

CbaPler4 H. W.Huang

MSE = MSE* + (h -h*)rRx(h -h*). (4.26)

This equation shows explicitly the unique optimality ofthe minimizing filter tap vector h*.
Recall that Rx is positive semi-definite, so that MSE can neverbe less than MSE*.

The quadratic form on the right side of(4.26) isquite informative; however, the for

mula can be further simplified by achange ofbasis. Let Q be an M-by-M matrix:

«s[<hq2...qM]> (4-27)
where each qk is aunit-length eigenvector ofRx with corresponding eigenvalue Xk. Also
define the M-by-M diagonal matrix ofeigenvalues as

A s diag(kv X2 XM). (4.28)

With these definitions, the matrix Rx can be expressed in terms of its eigenvalues and

eigenvectors with asimilarity transformation, where Q is aunitary matrix [2]:

R, = QAQ^
(4.29)

QrQ = I

After using (4.29) in (4.26) and defining the transformed version of (h -h*) as

vsQ^h-h*), (4.30)

the formula (4.26) can beexpressed inits canonical form as

MSE = MSE*+ ytA\

=MSE*+ £ Xkvf (431)
* = i

This formulation uses ititprincipal axes of the error performance surface as itsnew basis

so that all cross-product terms disappear. The usefulness ofthis result will become apparent
in later sections.

4.2.2. Method of Steepest Descent

Now that the optimum filter solution has been established for astationary environ

ment, this section proceeds to develop an adaptive solution^A straightforward approach is

to develop an iterative procedure for solving the optimum filter problem. An iterative pro
cedure begins with an initial "guess" for the filter taps, which is located some distance away
from the minimum point ofthe error performance surface. After each iteration, an appro-

36

H.W.Huang Chapter 4
priate correction is applied to the filter in such awaythatit movescloser to theminimum

point. Thus, starting from an arbitrary point on the error performance surface, the filter

adapts in astep-by-step fashion, always moving closer to theoptimum solution. Of course,

inatime-varying environment, theoptimum point is constantly changing, sothe filter never

exactly reaches it

An old optimization technique, the method of steepest descent, suggests a simple

way of iterating towards theoptimum solution: start withan initial guess for the filter taps

(the guess could be arbitrary, orcould bebased onsome prior knowledge), then compute

the gradient vector and update the filter taps in the negative direction of the gradient (i.e.,

in the direction of steepest descent). The iteration update is as follows:

h(n +1) =h(n) +i\L[-VMSE(n)] (4.32)

where the indices denote the iteration number, \i is a positive real-valued constant called

the step size, and the factor 1/2is added to simplify notation later. Figure 4.3 exhibits an

example of the ideal path travelled by a filter tap vectoras it moves towards the optimum

point (the plot is a two-dimensional contour plot of an error performance surface). Notice

that each point of the steepestdescent path is always perpendicular to the contour curves,

even if the contours are elliptical.

Figure 4.3.
Example of a steepest descent path.

37

[0

Chapter 4 H.W.Huang

4.2.2.1. Stability and Convergence ofSteepest Descent

Substituting (4.23) into (4.32) results in the recursion relation

h(n+l) = hW + filp-R^W]
(4.33)

= (I-liRx)h(n) + lip

The presence offeedback in (4.33) means that the algorithm must becarefully designed for

stability. Its stability depends on the input correlation matrix Rx and the step size \i; of

these two, the step size is under the designer's control.

For a more complete stability analysis, the transformation of Section 4.2.1.5 will

prove useful. First subtract h* from both sides of (4.33) and use(4.24) to eliminate p:

[h(* + l)-h*] = (I-uR^hM + uR^-h*

= (I - ^Rx)h(») - (I - uRx)h*. (4.34)

= (l-\LRx)[h(n)-h*]

Then using thesimilarity relation of (4.29) and the transformation of (4.30), thefollowing

is obtained:

v(n + l) = (I-uA)v(n). (4.35)

The transformation allows for thedecoupling of (4.35) into M scalar-valued first-

order difference equations (recall that Xk is an eigenvalue of Rx):

vk(n + \) = (l-\l\k)vk(n)fork = 1,2 M. (4.36)

Each of these equations corresponds to a different mode of the algorithm. Thesolution to

each is a simple geometric series:

vk(n) = (\-\i\k)nvk(0), (4.37)

where vk{0) is the initial value for the Jfc-th mode. Atime constant for the convergence of

the k-th mode can be approximated (for small \l) as

TjkS-r-. (4-38)

This reflects the fact that a small step size \i will resultin a large time constant (slowcon

vergence), and a large stepsizewill result in a small timeconstant (fastconvergence).

Although a timeconstant for the convergence ofeach mode has been presented in

(4.38), relating these back to theoverall time constant ih for theconvergence of thefilter
38

H.W. Huang Chapter 4

tap vector h is not straightforward. However, a worst-case (upper bound) for Th can be

given as

Clearly, a large step size is desired for fast convergence.Furthermore, the slowest mode of

convergence is determined bytheminimum eigenvalue Xmin of Rx.

The desire for a large step size, however, conflicts with the limits that must be main

tained for stability. To ensure the stabilityof the steepestdescent algorithm,irrespective of

initial conditions, the geometric series corresponding to each mode of the algorithm must

converge. For the sum of a geometric series to converge, its geometric ratio must have

absolute value less than one. Therefore, the stability condition is

|1 - \iXk\ <1 for k = 1,2,..., M. (4.40)

Or, since the step size |i and theeigenvalues Xk are real andpositive, (4.40) simplifies to

0<u<r^-. (4.41)
**max

The stability condition places an upper limit on the step size \i, where the limit is deter

mined by the maximum eigenvalue Xmax of Rx.

Looking at (4.39) and (4.41), one sees immediately that a large eigenvaluespread

hampers the performance of steepest descent algorithms. In other words, the worst-case

convergence rate of the algorithm is poor if the eigenvalue ratio A,wax/^min (also known

as the conditionnumber of Rx) is large.

4.2.2.2. Least Mean Square (LMS) Algorithm

The steepest descent algorithm discussed in Section 4.2.2.1 is obviously an ideali

zation, because in reality onedoes notknowthe exact correlation matrix Rx northe cross-

correlation vector p. Consequently, the gradient vector must be estimated from the avail

able data. Estimates based on data will be noisy, so that even in steady-state, the filter taps

will continue to fluctuate around the optimum point. Steepest descent methods of this sort

belong to the family of stochastic gradient algorithms.

39

Chapter 4 H.W.Huang

The Least Mean Square (LMS) algorithm is awidely usedalgorithm because of its

simplicity; it does not require matrixinversions norother expensiveoperations. The LMS

algorithm uses simple, instantaneous estimates for Rx and p. (Compare these with (4.13)

and (4.18), respectively):

Rx = xxT (4.42)

p = dx. (4.43)

Replacing the acmal variables in (4.23) with their estimates, the instantaneous estimate of

the gradient vector is

t/MSE = -2Jx +2xxrh

= -2x[<z-xrh] (4.44)
= -lex

where e represents the estimation error. Using this gradient estimate in (4.32) gives

h(« +1) = fi(*) +\L[e(n)x(n)]. (4.45)

As discussed in Section 4.2.2.1, the choice of step size \i requires particular atten

tion. The condition given by (4.41) ensures meanconvergence of the filter taps. However,

in practice a more conservative condition is necessary [7]. This condition ensures mean-

squaredconvergence of the error signal and is simplerto use since it does not require cal

culation of X.
'max

o<u.<JL
M*l (4.46)

olmEljfl] =r,(0)

Note that applying the analysis of Section 4.2.2.1 to the LMS algorithm is not com

pletely correct without a number of assumptions. In particular, consecutive input vectors

x (n) must constitute asequenceof statistically independentvectors, andboth x(n) andthe

desired response d{n) at time n must be independentofallprevioussamplesof d(n). Fur

thermore, x(n) andd(n) must consist of jointly Gaussian distributed random variables for

all n. Clearly, these assumptions are often far from true; nevertheless, experience with the

LMS algorithm has shown that the results of the analysis areusually found to be in agree

ment with experiments and computer simulations. Even if the results are not exactly cor

rect, they serve as reliable filter design guidelines [11].

40

H.W.Huang Chapter 4
4.2.3. Method of Least Squares

Themethod of leastsquares is a classical method that seeks to fit a model—linear,

in ourcase—to some observed databyminimizing thesum ofsquare differences between

the model predictions and the acmal data. This theory is fundamentally different than the

Wiener filtering theory presented previously, because the least squares theory does notpre

suppose a probabilistic framework—for instance, time averages areused, instead ofexpec

tations. Nevertheless, many analogous ideas exist between the two frameworks, like the

principle oforthogonality and thenormal equations. This section will trytopresent anintu

itive understanding of the concepts, rather than divulge rigorous proofs, byextending the

ideas from the previous section.

The discussion of Section 4.2.2.1 showed that the method of steepestdescent can

suffer from poor performance if itscorrelation matrix is ill-conditioned. Visually, thiscor

responds to a highly elliptical error performance surface whose majoraxis is significantiy

longer than its minor axis. This causes the algorithm to follow a highly indirect path

towards the optimum point. An algorithm that leads an arbitrary initialcondition directly

to the optimum pointwould be ideal (compare Figure4.4 withFigure4.3).

MSE*

Figure 4.4.
Example of a "direct" path.

The update formula for the method ofsteepest descent (4.32) can beslightly mod

ified to result in an improved algorithm. To see this, first multiply (4.23) on the left by R"1
and use the result of (4.24) to obtain

41

Chapter 4 H. W. Huang

h* =h+l*?l-VMSEl, (4.47)

whichimmediately suggests thatthe following algorithmic update wouldbe ideal:

h(n +1) =h(n) +±\iR?l-VMSE(n)]. (4.48)

The formula now has the same form as (4.32) except for the presence of Rj1. This algo

rithm is sometimes known as the orthogonalizedsteepest descent algorithm, since the Rj

term transforms an elliptical error performance surface into acircular one by orthogonaliz-

ing its axes. If the instantaneous gradient estimate of (4.44) were used in (4.48), theresult

would be an algorithm analogous to (4.45):

fi(n +1) = n(n)+\iR?[e(n)x(n)]. (4.49)

The update of (4.48) isidealized since itrequires knowledge of R"1, as well as the

gradient vector VMSE. Furthermore, no clues are given as tohow the step size p. should

bechosen. Next adifferent approach will bepursued that will lead to apractical algorithm

similar in form to (4.48).

4.2.3.1. Recursive Least Squares (RLS) Algorithm

In order todevelop arealistic algorithm using the method of least squares, thetime-

averaged estimates for the correlation matrix R, and the cross-correlation vector p are

necessary. For operation in non-stationary environments, an exponential weighting factor

(or forgetting factor) Xis also introduced so that recent data ismore heavily weighted than

past data. The estimates are:

n

ftx(n) = X X*x<n " *)x7(n " *> (4'50)

n

#00 = ^Xkd(n-k)x(n-k) (4.51)
Jk = 0

The positive constant X should be close to, but less than (or equal to) one. The quantity

1/(1 - X) is arough measure ofthe memory ofthe algorithm. Thespecial case X = 1 cor

responds to infinite memory, i.e., the entire history of data is utilized.

42

HW-Huang Chapter 4
One can show that the normal equations, derived in a manner similar to

Section 4.2.1.4, are given by

fc*00n00 =#00. (4.52)
Note that the estimated correlation matrix R, cannot be assumed to be Toeplitz, although
it is still symmetric and positive semi-definite.

Calculating the estimates (4.50) and (4.51) for every iteration would be computa
tionally expensive. The foUowing simple recursions incur the least possible computation
for each update:

Rx(n) = XRx(n -1) +x(n)xT(n) (4.53)

#(«) = X$(n -1) +d(n)x(n). (4.54)

The recursions (4.53) and (4.54) could be used, theoretically, as the basis for an adaptive
algorithm by using the estimates to solve fi(n) in (4.52). However, solving (4.52) requires
the inversion ofRx(n) and having to invert amatrix at each iteration would make the algo
rithm computationally expensive since matrix inversion requires on the order ofM3 oper
ations, where Mis the dimension ofthe matrix. This would make the algorithm practically
useless for real-time estimation.

Since actually Rf(n) is desired rather than Rx(n), the matrix inversion lemma
(not proved here) is used. This result reduces computational complexity by providing a
recursive update for the inverse of Rx(n). For notational convenience, let

POi)eRji(n). (4.55)

Applying the matrix inversion lemma to (4.53) results in the recursive update

P(n) = ^P(«- l)-^n(n)P(n- l)x(«)x^)P(«-1) (4.56)

^ =X+sr(w)p(»-I)*00 * (457)
Note that \i(n) is apositive scalar and can be thought ofas avariable step size. Note that
(4.56) contains no matrix inversions.

Using (4.56) and (4.54) with (4.52) tosolve for fi(/i), one can show that

43

Chapter 4 H.W. Huang

n(n) = fi(n-l) +u(n)P(n-l)[e(n)x(n)] (4.58)

e(n) = d(n)-fJ(n-\)x(n) (4.59)

where e(n) is the prediction error based on the old filter estimate. Together, equations

(4.56), (4.57), (4.58), and (4.59) comprise the Recursive Least Squares (RLS) algorithm.

Notice that(4.58) is of thesame form as (4.49), except that thestep sizeis time-varying and

the derivation is exact, rather than using aninstantaneous estimate of the gradient

4.2.3.2. Stability and Convergence

The least squares estimate ofthe filter taps fi(n) possesses some important proper

ties that relate it back to the optimum Wiener filter of Section 4.2.1.4. Setting X = 1 for

the moment so that no data is "forgotten", if theinputsignal x(n) and the desired response

d(n) are jointly stationary ergodic processes, then the least squares estimate h(n)

approaches theoptimum Wiener filter h* as n goes toinfinity. Inother words, theestimate

is consistent. Furthermore, if theerror signal e(n) has zero mean, then h(n) is an unbiased

estimate [12]. Loosely, a process being ergodic means that it is asymptotically uncorre-

lated, so that two samples taken atdistant lags become more and more uncorrelated.

In a non-stationary environment, the factor X must be set to a value less than one

so that the importance of olddata gradually dimimshes. By doing so,the algorithm attains

thecapability to track statistical variations in theenvironment in which it operates (as long

as the variations areslowwithrespect to theconvergence time of the algorithm). However,

the use of X< 1 changes the behavior of RLS drastically; the estimate of the filter taps

h(/?) becomes no longer consistent because thememory of the algorithm becomes finite.

In general, a fast adaptation must be traded off foramorenoisy adaptive process.

4.2.4. Summary

When evaluating a particular adaptive algorithm, various factors need to be taken

intoaccount, for example: rate of convergence, accuracy, computational requirements, and

numerical stability. ^"

• The RLS algorithm takes a moredirect path to the solution, sinceit uses anestimate of
Rj1. Thismakes it independent of theeigenvalue spread.

44

H. W.Huang Chapter 4
• Thenumber ofiterations to convergence using theRLS algorithm is about an order of

magnitude less than for theLMSalgorithm.

• The computational complexity ofthe RLS algorithm increases as the square ofthe filter
order, whereas for the LMS algorithm, the complexity increases linearly with the filter
order.

The major advantage ofRLS over LMS lies infaster convergence and reduced sen

sitivity to eigenvalue spread for stationary inputs. On the other hand, the RLS algorithm

retains less advantage over LMS in low eigenvalue spread situations, in cases where the

signal-to-noise-ratio (SNR) is low, and in tracking non-stationary data.

The RLS algorithm converges in a mean square sense in about 2M iterations,

where Misthe number oftaps. This means that the rate ofconvergence for RLSistypically

an order ofmagnitude faster than for LMS [11]. Also, theRLS algorithm, in theory, con

verges to the exact optimum filter when operating in a stationary environment (with

X = 1),whereas the LMS algorithm necessary involves some residual noise power due to
its use of an instantaneous gradient estimate.

Some ofthedisadvantages ofthe RLS algorithm areitsmuch higher computational

requirements and implementational complexity. Although "fast"RLS algorithms existthat

reduce therequired computing power, thenumerical sensitivity ofthese algorithms remains

problematic. Inaddition, the superiority ofRLS over LMS is often lost with non-stationary

data. Even with exponential weighting for tracking, it isunclear how tochoose theweight

ing factor. Additionally, the exponential weighting tends to increase numerical problems in
the algorithm.

4.3. Adaptive Algorithms

In this section, details about the adaptive algorithms used in this paper are given.

For most of this work, the Recursive Least Squares (RLS) algorithm is preferred over the

Least Mean Square (LMS) algorithm due toitsfaster convergence rate and reduced sensi

tivity to eigenvalue spread. However, the performance disparity between the two algo

rithms isnot always sogreat, and insome cases the LMS algorithm may beadvantageous

(most notably in non-stationary environments). Although the computational requirements

ofRLS is greater than that ofLMS, this isnot really a concern here, since the algorithm is

45

Chapter 4 H. W.Huang

not being implementeddirectlyin hardware. The use of moderncomputersis assumed, so

that computation speed is plenty adequate. Moreover, the models that are used are usually

of fairly small order.

Section 4.3.1 and Section 4.3.2 outline the steps of the RLS and LMS algorithms,

respectively. The following two sections, Section4.3.3 and Section 4.3.4, touch only

briefly on the issues of adaptive IIR filtering and numerical stability; these issues are

important, but an in-depth discussion of them wouldbe beyondthe scope of this work.

4.3.1. Recursive Least Squares (RLS)

The RLS algorithm (Section4.2.3.1) requires initialization before the recursions

can begin. In particular, starting values for the filter tap vector fi(n) and the inverse ofthe

correlation matrix P(n) are needed. For h(n), unless a better starting point is known, set

ting the initial filter taps to all zeroes is customary:

n(-l) = 0. (4.60)

For P(;?), if some prior data were available, an estimate based on the data could be pre-

computed and used for the initial value P(-l). Otherwise, if no prior knowledge is avail

able, the matrix can be initialized with

P(-l) = 8-*I (4.61)

where 8 is a small positive constant. The initialization procedure consisting of (4.60) and

(4.61) is referred to as soft-constrained initialization, with 8 beingthe only parameter. The

recommended choice of 8 is thatit should besmall compared to 0.01 c2, where G2 is the

variance of the input signal x(n) [11]. The effect of initializing with (4.61) is to introduce

a bias into the estimate of the filter taps fi(/i). However, as the number of iterations n

becomes large (the amount of observed data increases), the bias diminishes to zero, so that

the estimate of n (n) is asymptotically unbiased. Therefore,for long data lengths, the exact

value of 8 is unimportant.

After the algorithm has been initialized, the steps of the recursion can proceed as

shown in Figure 4.5.

46

H.W.Huang Chapter 4

For each iteration n = 0,1,..., compute

1. s(n) = xT(n)V(n-l)

2. k(n) = [P(n-l)x(n)]/[A, +s(n)x(n)]

3. e(n) = </(w)-nr(n-l)x(n)
4. fi(n) = t(n-l) +k(BM«)

5. P(n) =±[P(n-l)-k(n)s(n)]

Figure 4.5.
The RLS algorithm [11].

4.3.2. Normalized LMS

The LMS algorithm (Section 4.2.2.2) also requires initialization of its filter tap

vectorh(n). Setting it to zero is convenient, unless somepriorknowledgeresults in abetter

initial guess:

n(-l) = 0. (4.62)

Figure 4.6 shows the steps in the normalized LMS algorithm, which is a variation

on the standard LMS algorithm. In the standard algorithm, a constant step size is used, but

in the normalized version, the step size \i(n) is allowed to varyinverselywiththe squared

Euclidean norm of the input vector x(n). The normalized step size helps to dampen the

problem ofgradient noise amplification, whichcan occur whennoisy data causes the algo

rithm's estimate of the gradient to be especially bad.

For eachiteration n = 0,1,..., compute

1. e(n) = d(n)-fkT(n-l)x(n)

2. u(«) = fi/[fl +|x(n)B2]

3. fi(n) = fi(n-l) +\L(n)e(n)x(n)

Figure 4.6.
The normalized LMS algorithm [11].

For the algorithm to be convergent in a mean square sense, the dimensionless

parameter ft should satisfy the following inequality (compare to (4.46)):

0<(i<2. (4.63)

47

Chapter 4 H. W. Huang

The positive parameter a is includedto preventdivisionby a smallvalue in the event x(n)

becomes close to zero.Setting a = 0 and fixingthe stepsize |i(n) (by skippingthe second

step in Figure 4.6) reduces the algorithmto the standard LMS.

4.3.3. Adaptive BLR Filtering

An adaptive FIR filter canprovide significantiy better performance thananadaptive

FIR filter having the samenumberof filter taps; alternatively, for a givenlevel of perfor

mance, anIIR filter generally requires fewer taps than thecorresponding FIRfilter, making

it morecomputationally efficient These advantages are dueto the feedback paths in anIIR

filter which allows it to generate an infinite-duration impulse response with only a finite

number of coefficients. The actual benefit ofusing anIIR filter depends on the signal to be

modeled; for instance, if a signal is well-modeled by a few moving averageterms, the ben

efit can be large.

However, the potential gains to be realized by adaptive IIR filters areoffset by aug

mented problems with stability and convergence. Unlike FIR filters, IIR filters have the

possibility of becoming unstable, meaning that the filter coefficients could grow without

bound. Also unlike FIR filters, the errorperformance surface of an IIR filter is not guaran

teed to have a unique minimum. Thus, even if the algorithm converges, the convergence

may be at a local rather than a global minimum.

The poles of an IIR filter's transfer function can be located at positions other than

at the origin of the z-plane3; instability problems arise when one or more of these poles

migrate onto or outside the unit circle of the z-plane and remain there for a significant

length of time. This occurrence is not uncommon, especially if the applicationrequires that

the poles be near the unit circle. Several ad hoc schemes exist for combatting this problem:

one possible course of action is to ignore updates that move the filter's poles too close to

the unit circle, or to reduce the step size. Another possibility is to use an exponential

weighting factor to push unstable poles towards the origin [7].

3. When referring to the z-transform of the filter at a particular instantof time, the coefficientsmust be
assumed to be fixed.

48

H. W.Huang Chapter4
One can see already that the properties ofan adaptive IIR filter are considerably

more complex than those of an adaptive FIR filter. In fact, relatively few analytical results

are known regarding their behavior because ofthe inherent non-linearities. This paper will

not discuss the subject much further, although future work inthis area is encouraged. For
an overview on adaptive IIR filtering, see [28] or [32].

As a final note, an adaptive filter can bemade IIR simply by feeding back present

or past filter outputs (signal predictions) as extra inputs tothe filter; this algorithm is often

referred to as pseudolinear regression and can be derived as a steepest descent method

using an approximate gradient [8][28]. The resulting output ofthis filter isno longer linear,

so that the error performance surface is no longer quadratic and can have multiple local

minima. Moreover, the algorithm is noteven guaranteed to converge to alocal niinimum;

depending on the input, it may approach a biased solution [13][36].

However, despite these drawbacks, the algorithm has been shown to be useful in

practice [36][8]. On the positive side, stability monitoring isnotrequired for this algorithm;

it has aself-stabilizing feature whereby unstable poles have atendency tomigrate back into

the stable region [28]. Also, the problem of the algorithm not converging to a minimum

(local or global) can sometimes besolved by differencing thesignal [28].

4.3.4. Numerical Stability

In thedigital implementation of an adaptive filtering algorithm, onemustbe aware

of numerical stability problems due to the finite precision of the system. Essentially two

sources of error exist: finite-precision arithmetic errors and quantization errors incurred

during analog-to-digital conversion. If these errors accumulate without bound, they can
lead to instability.

Anyadaptive algorithm isvulnerable to numerical stability problems, but an impor

tant one to be aware of is "explosive divergence" in the RLS algorithm. This problem

occurs when the P matrix (Section 4.2.3.1) loses itsproperty of positive definiteness, caus

ing filter taps to increase without bound. See [11] for a simple cure, and also for more

numerically robust ways of implementing RLS, including a procedure based on the QR

49

Chapter4 H. W. Huang

decomposition based recursive least squares (QRD-RLS) algorithm and other procedures

based on alternative filter structures.

Any further discussion of the numerical properties of adaptive algorithms would be

straying from the scope of this paper. However,asin Section 4.3.3, futurework in this area

is encouraged.

4.4. Implementation

In this section, a number of issues will be discussed regarding the implementation

of adaptive algorithms for the purpose of real-time SPC. The first sub-section explainshow

to initializeandconfigure theadaptive algorithms described in Section 4.3;themostimpor

tant issue, discussed in Section 4.4.1, is the fundamental tradeoff between estimation noise

and tracking ability when choosing algorithmparameters. Section 4.4.2 describes a scheme

for combining adaptive algorithms. Section 4.4.3 introduces multivariate modeling and

how it can be used.

4.4.1. Algorithm parameters

4.4.1.1. Exponential Weighting Factor in RLS

The exponential weighting factor X allowsthe RLS algorithmto track slow (com

pared to the algorithm's convergence time) statistical variations in a non-stationary envi

ronment by weighting recent data more heavily than past data (Section 4.2.3.1). The

influence of past data becomes less and less prominent until eventually its contribution to

the adaptive filter becomes insignificant. More precisely,the X factor applies a geometric

weighting to each input sample, so that the quantity

is a rough measure of the "memory" of the algorithm, i.e., the number of past samples that

the algorithm uses in its estimation of the filter taps.

If the adaptive filter is to be used in a stationary environment, the special case of

X = 1 should be applied, sincethiscorresponds to infimte memory, i.e.,theentirehistory

of data is utilized. Otherwise, the positive constant X should be less than one, so the algo-

50

H.W.Huang Qmg4
nthm can react to changes quicker; however, the valueshould bekept above 0.95 to prevent
instability.

As noted in Section 4.2.3.2, with aXvalue less than one, the RLS algorithm's esti
mates are no longer consistent In other words, its outputs become stochastic, and some

excess error variance will always exist Asmallervalue of Xenhances the RLS algorithm's
ability to track non-stationary signals by increasing the speed at which young data is incor
porated into the algorithm. However, italso causes more noise to appear in the filter tops
and output, thus increasing the steady-state mean square error (also known as misadjust-
ment).

The exact choice of Xshould depend on the time scale at which one wishes to apply
SPC. For example, to detect equipment faults at the real-time level, the memory ofthe algo
rithm should be approximately set to the number ofinput samples available inafew wafers.

Assuming 50 samples are available per wafer, then using (4.64) as arule ofthumb, avalue

for Xofabout 0.99 would be appropriate. Similarly, to detect faults atthe wafer-wafer level

(using real-time data), the algorithm memory should be set to the number of input samples
in an entire lot; if one lotconsists ofabout 20wafers, then X should be around 0.999.

4.4.1.2. Step Size in LMS

Asimilar tradeoff between estimation noise and tracking ability also exists in the

choice of the step size \i for the LMS algorithm. Recall that \i contributes directly to the
time constant (4.38) for the convergence of each mode of the algorithm. Alarger step size
accelerates the rate of adaptation, but at the expense of an increase in the average excess
mean squared error during steady-state. On the other hand, a smaller value of \i results in
aslower adaptation, but decreases the excess mean squared error after adaptation. Typi
cally, values of n on the order of atenth of the upper bound given in (4.46) are used [37],

4.4.1.3. Model order

As mentioned in Section 4.2.4, the RLS algorithm converges (in a mean square
sense) in about 2M iterations, where Misthe order ofthe model, i.e., the number offilter

taps. In astationary environment with the weighting factor Xset to 1.0, the algorithm will

51

Chapter 4 H.W. Huang

evenmally converge to the optimum filter, regardless of M. However, in a non-stationary

environment, no such guarantee can be made; in fact increasing the model order will

increase estimation noise in the adaptation process.

For the LMS algorithm, the upperboundin (4.46) for the step size \i is inversely

proportional to themodel order M. Thus, increasing themodelorderrequires \i to bemade

smaller. Although the estimation noise normally decreases with the reduced step size, the

effect is cancelled out, since the noise also increases with M; so in this case, the reduced

step size does not result in an attendant reduction in the overall estimation noise.

The actual choice of the model orderwill depend on the characteristics of the input

signal and the amount of data available. Supposethat the input signalis stationary and its

statistics are known. Recall that FIR filters perform best when the input is an auto-regres

sive signal. Therefore, if the input signalwere known to be well-characterized by a third

order auto-regressive model, then M should be set to three. Theoretically, largervalues of

M would not result in any degradation of performance. However, if the amount of data

available to the adaptive filter is small, then one might wish to reduce the model order in

order to increase the rate of convergence.

Of course, usually the statistics of the input signalwill not be known, or the signal

may not be stationary. Then the adaptive filtershouldbe configuredto track statisticalvari

ations in the signal; in other words, X should be decreased for the RLS algorithm, or the

step size \i should be increased for the LMS algorithm. Either of these actions increases

noise in the adaptation process, resulting in a higher steady-state error variance.

In the application of SPC, the amount of dataavailablewill most likely be relatively

limited and the statistics of the input signal will be unknown or the signal will be non-sta

tionary. Both of these qualities suggest that smaller model orders will perform better. In

practice, different filter configurations can be tested by running computer simulations to

determine the best overall algorithm parameters. This authorhas found that model orders

less than five seem to achieve good results, at least when operating on real-time plasma

sensor measurements.

52

H.W.Huang Chapter 4

4.4.2. Combining Adaptive Algorithms

Thus far, the RLS and LMS algorithms have been compared and contrasted, but

anotherpossibility is to use them togetherto filter a signal. Forexample, to take advantage

of the faster convergence rate of RLS and the good tracking abilities of LMS, one might

first employ the RLS algorithm and then switch over to the LMS algorithm. The way this

would work is as follows: in the "adapting" mode, the RLS algorithm is running with

X = 1 so as to converge rapidly to an approximate solution forthe filter taps; then in the

"tracking" mode, the taps aretransferred over to the LMS algorithm, which runs in place

of RLS. In this way, a feasible solutionis found quickly, andthen the good tracking ability

of LMS is applied to follow slow statistical variations. Another important attribute of this

schemeis thatdata collected during the"adapting" mode canbe usedto help choosea good

step size |i for the "tracking" mode.

4.4.3. Multivariate Modeling

Forimproved modeling performance, correlations between different signals can be

modeled to produce a multivariate time-series model. The difference between a univariate

andmultivariate time-series model is simply thatmultivariate models express a variable as

a function of past values of that variable, as well as pastvalues of other variables. This has

the advantage of adding extra explanatory variables to a model, perhaps for the purpose of

adding redundancy. As anexample, the following equationshows amultivariate model for

thevariable u, where thenextvalue of u is alinear function of past values of both u and v :

w(/i + l) = a0M(«) +P0v(n) +a1M(/i-l) +P1v(n-l) +... (4.65)

Note, however, that using amultivariate model quickly increases the model order.

For instance, if avariable is modeled bythree past values of itself and two other explana

tory variables, then the overall model order becomes nine. This has the effectof increasing

the convergence time and increasing estimationnoise, as discussed in Section 4.4.1.3.

4.5. Example

4.5.1. Experiment

The data for this example was taken from the same experiment as in Section 3.3.1.

Referthere for details onthe experimental design and data collection.

53

ChaPler4 H. W.Huang
4.5.2. Procedure

A software program was written inC++ [30][31] toimplement the RLS and LMS

algorithms; see Appendix Cfor a code listing. The program isconfigured with the neces

sary parameters: number offeedforward taps, number offeedback taps, Xor \i, number of

signals, number ofdata points per wafer, and initial P matrix. Also, the option touse mul

tivariate modeling canbe turned onoroff, either the RLS orLMS algorithm canbeused,

and different inputdataformats canbe selected. Real-time dataareread into the program

one wafer at a timeand filtered through theRLS algorithm. Relevant output dataaresaved

to files (theusercanspecify thefilenames), including theprediction errors(residuals), pre

dicted outputs, filter tap values, and estimated variances.

If a wafer-wafer prediction model has been created (see Section 3.3.2 for the pro

cedure), the predictions for all the wafers should be written to a file, with each line of the

file being the predicted signal means for one wafer. Before the software reads in the real

time data for a wafer, it will first read in the wafer-wafer prediction values. These values

will be used to center the real-time data for that wafer. If no wafer-wafer predictions are

available, then the program centers the real-time signals for each wafer by simply subtract

ing the average values over that wafer; in this case, the algorithm is not operating in real

time, because the average values are not known until after each wafer has finished process

ing.

4.5.3. Results

In this example, the RLS algorithm at the real-time level is combined with a predic

tion model at the wafer-wafer level (see Section4.1.2). A plot of the actual signal for

"RF_match_#l_load_coil_position" alongside the predictions of the combined wafer-

wafer and real-time model (for the main etch step) is shown in Figure 4.1.4 The wafer-
wafer prediction model was described in Section 3.3.The real-timeadaptivemodel used an

orderof five and an exponential weighting factor of X = 0.99.

4. Only 35 wafersare shownin the figure, rather than38, sincewafers #14,27, and 38 wereremovedfrom
the analysis due to processing or data collectionproblems.

54

Chapter4

wafer #

Figure 4.7.
Predicted and acmal signal for "RF_match_#l_load_coil_position".

The residuals (actual minus predicted values) are displayed in Figure 4.8.5 These

can be passed to an SPC scheme for fault detection. The residuals look"in control" except

for those atwafer#1 and wafer#29.The large residuals atwafer#1 are due to transients in

the convergence of the adaptive algorithm; these always occur during the first few itera

tions of the algorithm and can beignored. The large residuals atwafer #29 are probably due

to an abnormally low power setting for that wafer.6 Note that occasionally the residuals

show runs, i.e., consecutive values whose signs are identical. This is because prediction

errors from the wafer-wafer model cause the real-time signal to be centered incorrectly;

when the error is large, the real-time adaptive filter is notable tocompletely compensate.

5. Note that the vertical scale in this figure is smaller than in theprevious figure.
6. See wafer #31 of Table 3.2.(The actual wafer number is 31,rather than 29, sincewafers #14 and27 are
not included in the figure.)

55

wafer # 5

Figure 4.8.
Residuals for "RF_match_#l_load_coil_position".

56

H. W. Huang

H.W.Huang Chapters

Chapter 5 Experimental Analysis

5.1. Introduction

In this chapter, the predictive modeling techniques of Chapter 3 and the adaptive

modeling techniques of Chapter 4 are applied to thestatistical process control (SPC) meth

odology described in Chapter 2. The analysis will use sensor data collected from experi

ments conducted atTexas Instruments (TI) in Dallas for the Sematech J-88-E project.

5.2. Adaptive Calculation of theT2 Statistic
This section shows how the T2 statistics can be calculated adaptively; this is

required to effectively apply adaptive models to the real-time SPC methodology described

in Section 2.2.2. In Section 5.2.1, the method for estimating the error covariance matrix is

presented. Section 5.2.2 uses the estimate to calculate T2 values that are normalized sothat

any value greater than one denotes an equipment alarm. The implementation of these cal

culations is described in Section 5.2.3.

5.2.1. Estimation of the Error Covariance Matrix

In order to calculate the T2 statistic, an estimate of the error (residual) covariance

matrix S (see Section 2.2.2.2) is needed. In non-stationary environments, the estimate

should have a finite memory, so that signals can be tracked. A general methodology is to

use a moving window to collect the data, followed by an estimation of the covariance

matrix using the windowed data. For example,in a simplemoving average, the window has

a length N and constant height 1/N.

A computationallysimplerway is to use anexponential weighting factor X, similar

to the factor used in the RLS algorithm (Section 4.2.3.1):

57

Chapter 5 H. W.Huang
ft

S(« = XV'e(*-,'>5r(*-,'>' (5,1)
i = 0

where S is an intermediate matrix to be used in the calculation of§, and e isa(column)
vector of signal residuals averaged over aspecified group size. The following recursive
update can be used in place of(5.1) in order to reduce the computational expense:

S(fc) = XS(k-\) +e(k)eT(k). (5.2)

Note that (5.1) and (5.2) are analogous to (4.50) and (4.53), respectively. Since calculation
of the T2 statistic actually requires the inverse of§, rather than § itself, the recursive tech
niques of Section 4.2.3.1 can be directly applied (see (4.56) and (4.57)). The recursion is
also initialized in a manner identical to what is done in Section 4.3.1.

The value ofS isjust S multiplied by ascale factor. For the case X = 1, the scale

factor is 1/{k + 1), where k is theiteration count; this case results ina consistent estimate

of the covariance matrix:

§(*) = rrrS(A). (53)
K+ 1

For the case X< 1, the scale factor is (1 - X):

S(*) = (l-X)S(k). (5.4)

5.2.2. Normalized T2 Statistic

Once an estimate ofthe error covariance matrix is available, the T2 statistic can be

readily calculated with

T2 = ntTS'lt, (5.5)

where n is the group size, and e is the (column) vector of signal residuals averaged over

the group. The control limits are determined by looking up the chi-squared distribution

value with number ofdegrees of freedom equal tothenumber of signals used inthestatistic

(see Section 2.2.2.2). Each calculated T2 value is then divided bythe control limit to pro

duce a "normalized" T2 statistic. The normalized values have theconvenient property that

values greater than oneare alarms, and values less than (or equal) to oneare in-control.

58

H. W.Huang ^
Chapter 5

5.2.3. Implementation

Acomputer program was written in C++ to implement the above algorithm. The
inputs to the program are the signal residuals, and the outputs are the normalized T2 values.
Parameters to the program, which can be set by the user, are the exponential weighting
factor X, the group size n, and also the value 8, which is used to initialize the recursion
(see Section 4.3.1); the false alarm probability (Type I error) isset at1%.

The covariance matrix estimate S can be quite poor when the algorithm is first
started. For X = 1, this can result in missed alarms for the first several iterations. For

X<1,this can result in false alarms for the first several iterations; alarger value of 8 can
help alleviate this problem.

The group size n can be increased to dampen the effect ofnoisy estimates. This is

often necessary when analyzing real-time data, especially if a predictive wafer-wafer
model is used with real-time data: the wafer-wafer predictions tend not to be very accurate,

causing false alarms at thepoints where recipe changes occur. For wafer-wafer or lot-lot

signals, good results can usually beproduced with the group size setto one.

5.3. Experiment 1: Wafer-Wafer Data

In this experiment, the adaptive techniques for estimating the T2 statistic, as

detailed in Section 5.2, will be applied to some actual data. Data were collected from a

series of four lots of wafers that were allprocessed ona Lam TCP 9600 metal etcher (the

etchant gases are BC13 and Cl2) using TTs"Recipe 44", shown in Table 5.1. Thelots con-

top power
(Watt)

bot power
(Watt)

pressure

(mTorr)
Clj (seem) BC13

(seem)

350 132 12 75 75

Table 5.1.

Recipe 44.

sisted of a total of 62 wafers run on October 24,25, and 26,1995. Note that these wafers

were not necessarily processed as 62 consecutive wafers. An arbitrary number of wafers

could have been processed between any two ofthe lots inthe experiment See Table 5.2 for

a summary of the experiment.

59

Chapter 5 H. W.Huang

Date

(1995)
Begin time End time Lot ID #of

wafers

Wafer #'s Notes

10/24 17:32 19:41 5660 23 lto23 Recipe 44*

10/24 20:12 20:36 6215 6 24 to 29 Recipe 44

10/25 02:30 04:38 6076 23 30 to 52 Recipe44*

10/26 09:55 10:43 1111 10 53 to 62 Recipe 44b

Table 5.2.

Summary of Experiment 1.
a. The first half ofLot 6076 was run with different UN film thicknesses than the second half
(unfortunately, experimental records do not indicate atwhichwaferin the lot the thicknesses
changed).

b.The first wafer of Lot 1111 wasadummy oxide wafer. The fifth, sixth, and seventh wafers
have induced faults.

Inthe fourth Qast) lot, therecipes were altered onthree of thewafers in order to sim

ulate actual machine faults. The recipes used for each wafer in Lot 1111 are described in

Table 5.3. Wafers 5, 6, and 7 are the wafers that contain induced faults. Note that wafer 1

was a dummy oxide wafer(therestare production wafers).

Wafer ID Recipe

1 Recipe44 (dummy oxidewafer)

2 Recipe 44

3 Recipe 44

4 Recipe 44

5 TCP power+10% = 385 W

6 BC13 flow -10%= 67.5 seem

7 BottomRF power+20%= 158W

8 Recipe 44

9 Recipe44

10 Recipe 44

Table 5.3.

Recipes used for each wafer of Lot 1111.

5.3.1. Procedure s

The real-time data for each wafer were averaged to produce wafer-wafer data for

the main etch step (step 4); averaging ignored the first ten samples ofeach wafer. Allthe

wafer-wafer data were concatenated into one file and adaptively filtered using the RLS
60

H.W. Huang Qmfm5
algorithm with an order ofthree and X= 0.99. The ten SECS-II signals listed inTable 5.4
were used in the analysis.

LamStatton Signals

RF-gen-#ljforward_power

Endpoint_detector_a

ChambeT_pressure

RF_match_#l-tuning_position

RFjnatch_#lJoad_coil_position

RF_match_#l_peakJUJ_voltage

TO>_>4atch_1une_CapJ>osition

RF_Gen_#3_TCPJWDJ»WR

TCP_MatchJLoad_CapJ>osition

AC2_valve_angle

Table 5.4.

Signals usedin the analysis of Experiment 1.

The residualsproducedby the adaptivefiltering were used to calculateanormalized

T2 statistic for each wafer by the methodology ofSection 5.2. All ten signals were included
in the statistic. The exponential weighting factor wasset to X = 1, and the group size was

set to n = 1.

5.3.2. Results

Figure 5.1 shows the normalized T2 values for each wafer. The dotted line at the

vertical value ofone is the control limit (recall that the T2 values have been divided by the

control limit, so that a value greater than one denotes an alarm). Note that the values for

about the first ten data points arenot very accuratedue to the small number ofdata on which

to base the estimates; the estimates improve as more data becomes available.

Alarms are evident at wafers #30,42, and for most of wafers #53 to 62. Examina

tion of Table 5.2 reveals thatthe first two lots wereprocessed consecutively without inter

vening wafers (since little time passed between wafers #23 and 24). On the other hand, a

gap of time (of about six hours)existed between wafer#29 (the last wafer of the second lot)

and wafer#30 (the first wafer of thethird lot); thismeans thatother wafers wereprocessed

61

Chapter 5 H. W.Huang

#53 to 62

Lotllll
2.5

Lot 6076

1.5

#30 #42

Lot 5660 Lot 6215

0.5

Wafer #

Figure 5.1.
Normalized T2 values.

between the second and third lots, probably with recipes different from Recipe 44. These

intervening wafers, or the gap in time, may have shifted the equipment's operating point

slightly. This is the most likely reason for an alarm atwafer #30 (the first waferof the third

lot), but none at wafer #24 (the first wafer of the second lot). This seems to suggest that

alarms occurring at the first wafer of alotcan be ignored, especially if alarge span of time

exists between the processing of that wafer and theprevious wafer.

As mentioned in the footnotes to Table 5.2, the film thicknesses on the wafers of

the third lot (Lot 6076) changed sometime inthe middle ofthe lot Unfortunately, the spe

cific wafer number was not recorded in the experimental records. However, the alarm at

wafer #42 is good evidence that the film thickness changed onthethirteenth wafer of the

lot (wafer #30 is the first waferof the lot).

A large gap of time (of over 29 hours)alsoexisted between the third and fourth lots

of the experiment. This explains the large alarm at wafer #53 (in addition to the fact that

62

HWHuan* Chapters
wafer #53 was adummy oxide wafer). All three of the induced fault wafers (wafers #57,
58, and 59) exhibit alarms as well. However, wafers #54,56,60, and 62 apparently cause
false alarms. This may be an indication of "memory" in the equipment, whereby the pro
cessing ofone wafer can have some influence on the processing ofthe next wafer in the
batch.

5.4. Experiment 2: Real-Time Data

The purpose of this experiment is to demonstrate the advantages that adaptive
models have over static models. Theexperiment uses asetof dau in which thestatistics of

the signals vary over the length ofthe data. The results of the data analysis will show that

adaptive models are ableto track thevariations, whereas static models becomeuselessonce

the statistics of the signals havechanged.

Data were collected from asingle lotof wafers processed onaLamTCP9600 metal

etcher using TTs "Recipe 44", shown in Table 5.1. The lot consisted of 23 consecutive

wafers run on September 26 and 27,1995. The three SECS-II signals listed in Table 5.5

were used in the analysis.

LamStation Signals Abbreviation

TCP_MaichJIune__Cap_Position tcplune

RFJ3en_#3_TCP_FWDJ>WR tcpPwr

TCP_Match_Load_Cap_Position tcpLoad

Table 5.5.

Signals used in the analysis of Experiment 2.

5.4.1. Procedure

The analysis usedreal-time data from themainetchstep(step 4) ofeachwafer. The

first fifteen samples of themain etch step were skipped from each wafer in order to ignore

transientresponses; the next 30 samples were kept for analysis. All the real-time datawere

then demeaned withineachwafer(by subtracting the wafer average) andconcatenated into

a single stream. Figure 5.2 showsplots of each of the signals listed in Table 5.5. Notice the

time-varying nature of the signals; in particular, each signal's variance exhibits fluctuations

overthe length of the plot(even though the data are all from a single lot of wafers).

63

Chapter 5

wafer#

354

wafer#

wafer#

TCP_Match_Tune_Cap_Position

10 15

RF Gen #3 TCP FWD PWR

5 10 15

TCP_Match_Load_Cap_Position

Figure 5.2.
Real-time signals in Experiment 2.

64

H. W.Huang

H.W.Huang Qap^s
Both static models and adaptive models will be applied to this set ofdata inorder

to form acomparison between the two. The procedure is as follows: first, suppose that one
wishes to create static models for this data in order to monitor the equipment with acontrol
chart A set ofbaseline wafers must be chosen for the modeling; suppose that the first half

of thedata set(containing data for half awafer lot) is chosen for thebaseline and that the

models created from this baseline are used tomonitor subsequent wafers. Next, the same

set ofdata are monitored using adaptivemodels. The adaptive models do notrequire abase

line model, although they do require some time for the models to converge to an approxi
mate solution.

5.4.2. Results

The software program RTSPC1 was used to generate ARIMA models2 for each of
the signals based onthefirst halfof the data set (the first 11 of the 23 wafers). Figure 5.3

shows the residuals ofthe models3, along with the "three-sigma" control limits ("three-
sigma" refers to threetimes the standard deviation of the residuals). For all three signals,

the variance of the residuals is significantly larger in the second halfofthe lot compared to

the first half.This results in manyalarms (points thatcrossthe control limits), even though

there is no record of any problems with the processor equipment At this point, one would

need to generate a new baselinemodelin order to continuemonitoringthe process.

The same set of data were then adaptivelyfiltered using the RLS algorithm with an

orderof threeand X = 0.99; thethree-sigma control limitswereadaptively estimated with

a forgetting factor whose value was also X = 0.99. The residuals and adaptive control

limits are shown in Figure 5.4. The difference between Figure5.3 and Figure5.4 is clear:

the adaptiveestimation ofthe control limits allows the chartto adjustto the changing vari

ances of the residuals. A new baseline model is not necessary in order to monitor subse

quent wafers.

1. See Chapter 6 and Appendix B far more information on this software utility.

2. The following are the modelsidentified by the RTSPC software. For "tcpTune": third-orderauto-regres
siveafter one levelof differencing; for "tcpPwr": third-order auto-regressive (no differencing); for "tcp-
Load": no model (only a mean value).

3. In Figure 5.3, the titles use the abbreviatednames for the signals, as shown in Table 5.5', also, the words
"short-term" in the titles are synonymous with "real-time".

65

Chapter 5

167

8.37

short-term residual: tcpTune

short-term residual: tcpPwr

Figure 5.3.
Static models: residuals and control limits.

66

H. W. Huang

H. W. Huang

wafer#

wafer#

wafer#

TCP31atchJIune_Cap_Position

10 15

RF_Gen_#3_TCP_FWD_PWR

5 10 15

TCP_Match„.Load_Cap.Position

Figure 5.4.
Adaptive models: residuals andcontrol limits.

67

Chapter 5

20

20

Chapter 5 H.W.Huang

Furthermore, the adaptive models can trackchanges in the auto-correlation struc

tureof the signals, although this is not apparent from Figure 5.4.The tracking of the auto

correlation structure is better seen in Figure 5.5, where the values of the filter tap coeffi

cients are plotted for the "tcpTune" signal. After the initial transients, die filter taps begin

to settledown (wafers #5 to 11).However, after wafer#11 the tapsbeginto fluctuate again

until around wafer #17, where they settiedown to anew set of values.

wafer#

Figure 5.5.
Tap coefficients for *TCP_Match_Tune_Cap.Position".

Using the methodology of Section 5.2, the normalized T2 values were calculated

with X = 0.99 and agroup size of n = 10; these are plotted inFigure 5.6. After the tran

sients in the first few wafers, noother alarms occur. Incontrast, theT2values for theresid

uals of the static models (not shown) would have many alarms throughout thesecond half
of the wafer lot.

5.4.3. Discussion

One might argue that the fact that no alarms are exhibited inFigure 5.6 isundesir

able. After all, the structure ofthe sensor signals changed dramatically; what if there really
68

H. W.Huang Chapter 5

3.5

2.5

2 -

1.5 .

1 *

0.5

il II
wafer# 10 15 20

Figure 5.6.
Normalized T2 (adaptively estimated).

was a problem with the equipment or process?The important point here is that the adaptive

methodology can be tuned to any desired sensitivity. Forexample, any of the forgetting fac

tors for the adaptive algorithm, for the control limit estimation, or for the T2 estimation

could be increased so that alarms are triggered more easily. Note that although no alarms

are seen in Figure 5.6, the individual control charts of Figure 5.4 do show some alarms; one

might wish to monitor signals individually, instead of using the multivariate T2 statistic.

The other important point is that regardless of whether or not alarm situations are

correctiy identified by the control chart, the adaptive methodologydoes not require one to

re-model the process, whereas static modelswill alwaysrequire anew baselineexperiment

once the statistics of the sensor signals change.

69

Chapter 5 H. W.Huang

70

H.W.Huang Chapter 6

Chapter 6 Software

6.1. Introduction

This chapterdescribes a software system knownas RTSPC, whichstandsfor Real-

Time Statistical Process Control. RTSPC is the platform used to implement all thetech

niques presented in this paper. As the product of numerous years of work, RTSPC has

undergone many changes by many people and is now in its third generation ofdevelop
ment. In this chapter, only thecurrent version oftheprogram will bediscussed; foranover

view of past work, see [18][29]. See Appendix B for information on how to obtain the

RTSPC software.

As its name suggests, the purpose of RTSPC is to implement real-time statistical

process control on a computer. The software system consists of a user interface, several

software modules, including those for numerical analysis and input/output functions, and a

database. In Section 6.2abriefoverview ofRTSPC ispresented inorder to give the reader
a general impression ofthe software, and also to familiarize the reader with its basic oper

ation (details can be found in the manuals included with the software distribution).

Section 6.3 outlines some ofthe essential features ofRTSPC, especially those that are in

contrast toprevious generations ofthe software. InSection 6.4 theorganization ofthesoft

ware modules is described, aswell assome oftheprogramming details.

6.2. Overview

RTSPC has three basic operations:

1. Build baseline time series models from a selected set of baseline wafer data

2. Monitor the residuals and T2 statistics of arriving wafer data (using aselected baseline
model)

71

Chapter 6 H.W. Huang

3. View the residuals and T2 statistics ofpre-recorded wafer data (using aselected base
line model)

The difference between the second and third items is that in the former case ("monitor"

mode) the program analyzes signals as they are received from an equipment that is cur

rently in operation, whereas in the latter case, analysis is done on wafer data that were col

lected sometime in the past.

Each of the three basic operations is described in the next three sub-sections.

Figure 6.1 shows the main window of RTSPC's user interface, which allows the user to

perform any of the operations: model building is selected by pressing the **Build Model"

button (Section 6.2.1), equipment monitoring is selected by pressing the "Start Monitor"

button (Section 6.2.2), and statistical analysis is selected by pressing the "View Wafers"

button (Section 6.2.3). Note that some operations require configuration procedures before

they can be used; for example,the "LoadModel" button mustbe selected to load a baseline

model before the user is permitted to select the "Start Monitor" or "View Wafers" buttons.

g] Statistical Process Control: taro4 m

BCm Beal Tin*. eal Process Control

.♦■Safcndev

Start Monitor

Setup •.v;:,:,::>t:*"T.^

Figure 6.1.
The main window of RTSPC.

72

H. W. Huang Chapter 6
6.2.1. Model Building

Pressing the "Build Model" button from the main window brings up the model

building window (notshown). Figure 6.2depicts a diagram of the model building proce

dure. First the sensor data to be modeled is chosen. Usually the data for each wafer are

stored in a separate file. The software allows the user to select a list of data files.

Thenextstep,as shown in thediagram, is to perform anypre-processing orformat

ting necessary. For example, if models are to be built for a certain subset of signals

(Section 2.3.2), then these should be filtered out from the rest of the data. Similarly, if

models are to be built for a certainstep of the process (Section 2.3.3), then only the data

from that step should be retained. Thepre-processing and formatting functions are imple

mentedwith datafilters. A data filteris simplya shortprogramor script that reads in data,

applies some sort of filtering function, and then writes out the transformed data. The basic

data filtering operations are the selectionof signals, the selection of steps, and the averag

ing of signals.However,moresophisticated datafilterscan also applied,for instance taking

a logarithm transformation of some data.

After wafer data has been selected and pre-processed, then RTSPC's automatic

model generation module (Section 2.2.4) proceeds to create time series models and a cova

riance matrix of the residuals. Models built from "baseline" wafer data are known as base

line models. The user will load these models into RTSPC before doing SPC or other

statistical analysis. Expert users can more preciselycontrol the model building process by

specifying algorithm parameters, like the maximum model order, the maximum differenc

ing order, or the significance threshold of model variables.

6.2.2. Equipment Monitoring

Pressing the "Start Monitor" button runs RTSPC in monitoring mode. Figure 6.3

depicts a diagram of the SPC (monitoring) procedure. One of two types of models can be

selected: static or adaptive. To use static models, the program requires baseline models for

all signals to be monitored and the covariancematrix of the residuals. If adaptive models

are selected, no time series models need to be selected; the covariance matrix will be esti

mated from the prediction errors of the adaptive algorithm.

73

Chapter 6

wafer data (sensor A)

wafer data (sensor B)

pre-processing

or formatting

models

[covariance]
matrix |

H. W.Huang

Figure 6.2.
Diagram of the model building procedure.

Once the program is ready, it will idle, waiting for wafer data to arrive. If a wafer-

wafer prediction model is available, it will alsoexpect to receive recipe data for each wafer.

Data filters for both the wafer data and the recipes can be specified. Each time RTSPC is

notified that new data has arrived, it processes the data with the data filters and sends the

transformed data to its SPC module. The SPC module applies the static or adaptive models

to the new data and plots the signal residuals and T2 statistics on a graphical display.

wafer data

[covariance]
matrix I

Figure 6.3.
Diagram of the SPC procedure.

74

H.W. Huang Chapter 6
6.2.3. Statistical Analysis

As mentioned earlier, the statistical analysis mode (started by pressing the "View

Wafers" button) in RTSPC is essentially thesameas theequipmentmonitoring mode. The

onlydifference is thatwaferdatais selected from existing diskfiles, rathermanhaving die

program wait for new data arriving from an equipment in operation. This mode is useful

for analyzing historical data, orfortheevaluation andtesting ofmodels. It canalso beused

for off-line (i.e., not real-time) SPC orfordiagnosis ofpastequipment faults.

6.3. Features

This section outlines important features in the current version of RTSPC and how

they differ from those in previous versions. Of course the actual software is continually

being modified, sofor the most up-to-date information one must read thenotes accompa

nying the current software release (seeAppendix B).

A fundamental shortcoming in older versions ofRTSPC was thatthey only imple

mented univariate time series (ARIMA) models. The new version has been extended to

admit predictive wafer-wafer models (Chapter 3) and adaptive multivariate time series

models (Chapter 4). Future releases ofthe software may permit even more types ofmodels.

Another shortcoming in the previous generation of RTSPC was that the types of

wafer data that could beaccepted for analysis was quite limited. In particular, theprogram

was hard-coded to read data formatted in a particular way: SECS-II data via LamStation

software. This constraint turned into a serious obstacle when new sensors became avail

able. In order for RTSPC to analyze data from the new sensors, the data had to be made to

resemble LamStation data.

The introduction of data filters in the current version of RTSPC eliminates reliance

ona particular wafer data format Inaddition, theuse ofdata filters offers a whole range of

new possibilities. Data ofarbitrary formats can beanalyzed and any type ofpre-processing

can be applied. An example of a commonly used pre-processing filter is a data filter that

performs some sortof normalization to a signal—ratioing the signal to a given reference

signal, perhaps.

75

Chapter 6 H. W.Huang

Data filters canalso be used to average real-time signals into wafer-wafer signals,

and toaverage wafer-wafer signals into lot-lot signals. This enables RTSPC toreadin real

time data, butdoanalysis atthewafer-wafer and lot-lot levels. Previously one would have

to pre-process the real-time data outside of RTSPC before importing them into the pro

gram, but now everything can beautomated byapplying the appropriate data filters. Basic

datafilters, such as the onefor generating wafer-wafer and lot-lot signals, areincluded in

the software distribution.

Other improvements to RTSPC include more robust input/output operations (better

handling of error conditions) and a more compact representation of models. Also, future

developers will benefitfrom the more consistent interactions between auxiliary functions

and the user interface, the moremeaningful command-line options, and the improved han

dling of dynamic memory.

6.4. Organization

This section describes the different software modules that make up RTSPC and

how they relate to one another. The overall architecmre is simple; see Figure 6.4 for the

organization of the software modules. The user interface is written in Tcl/Tk (Tel version

7.4, Tk version 4.0) [24], an interpreted programming language with good graphical user

interface support; the user interface is the main module, known as rtspc. The event-driven

rtspc module services user requests by either calling the proper auxiliary and library rou

tines, or by executing the proper processes.

rtspc

spewish arima tracker

I
hanpal

Figure 6.4.
Organization of software modules in RTSPC.

Auxiliary functions for equipmentmonitoring and statisticalanalysis are found in

a module called spewish; these functions arewritten in C++ and C [30][16] (and compiled

with thepublic-domain Gnu compiler version 2.7.0). Amatrix package is included forC++

76

H.W.Huang Chapter 6

matrix class support [31], and subroutines from a well-known numerical package areused

for solving linearalgebraic systems andinvertingmatrices [27].

The model building module arima is a separate processstartedby rtspc for identi

fying time series models andestimating their parameters. A second process calledhanpal

is anon-linear optimizerrunby arima to estimatethe moving average parameters ofa time

series model (see Section 2.2.4). The matrix package and numerical package used in

spewish are also shared with arima andhanpal.

Another process called by rtspc is tracker, the C++ program discussed in

Section 4.5.2 (and listed in Appendix C). This module reads in signal data and applies

adaptive filtering. The residuals (predictionerrors) produced by the module are returned to

rtspc for plotting and calculating T2 statistics.

Most of the data filters mentioned in Section 6.2 and Section 6.3 are written in perl

[35], a language ideal for text manipulations. However, any language can be used, for

instance csh [1], sh, or Tel. All of the above have the advantage of being simple to use,

modify, and read. On the other hand, if speed is one's highest priority, then the data filters

can be written in C++ or C.

As a final note, the RTSPC system also contains a few other peripheral modules.

A program retdata exists for notifying rtspc when new data is available from a particular

machine. A program rtspcdemo exists for running RTSPC in a demonstration. Finally, the

RTSPC system manages and maintains a database for the storage of sensor data and pre

viously built models.

77

H.W.Huang Chapter 7

Chapter 7 Conclusion

7.1. Summary

The main goal of this thesis is topresent modeling techniques that make real-time

SPC more effective. The thesis also explains how the techniques can beimplemented and

exhibits their use on actual sensor data. The first technique, predictive modeling, models

the effect ofabrupt changes, like changes inthe machine's wafer-wafer input settings. The

second technique, adaptive modeling, tracks statistical variations andslowdrifts, for exam

ple caused by natural aging of an equipment Butmost importantly, the adaptive models

eliminate the need for a baseline training experiment—probably theprimary impediment

to practical implementation of real-time SPC.

However, in order to apply the techniques effectively, a comprehension of their

strengths and weaknesses are required. The preceding chapters attempted to give thereader

the necessary information regarding what the models are capable ofand what they are not.

Many examples were offered todemonstrate the ideas and suggest possible applications. In

addition, afull description ofapublicly available software package that implements all the

techniques was included.

7.2. Future Extensions

The techniques presented herefor modeling signals obtained from semiconductor

manufacturing processes are general in the sense that they can be applied to many other

types ofprocesses orenvironments. The focus ofthisjhesis was on plasma etching equip

ment, but other equipment for which real-timedata are available could benefit as well, for

instance, chemical vapor deposition furnaces. Moreover, extending the modeling tech

niques to other types of sensors, such as spectroscopy, and learning how to integrate mul-

79

Chapter 7 H.W.Huang

tiple sensors into a combined model would enable one to take full advantage of the

abundant real-time data that is available.

Predictive and adaptive modeling techniques can also be used as simple building

blocks for large models. For example, projects like equipment diagnosis or closed-loop

control will require complex systems composed of many models working together. Under

standing the interaction between the models and the overall behavior of the system can

become quite difficult, but necessary if the projectis to succeed.

80

H. W.Huang References

[1

[2

[3

[4

[5

[6

[7

[8

[9

References

Gail Anderson, Paul Anderson, The UNIX™ C Shell FieldGuide, EnglewoodCliffs,
NJ: Prentice-Hall, 1986.

Howard Anton, Elementary LinearAlgebra,5th ed., NY: JohnWiley & Sons, 1987.

Richard A. Becker, John M. Chambers, Allan R. Wilks, The New S Language: A
Programming Environment for Data Analysis and Graphics, Pacific Grove, CA:
Wadsworth & Brooks/Cole Advanced Books & Software, 1988.

George E. P. Box, William G. Hunter, J. SmartHunter, Statistics for Experimenters,
NY: John Wiley & Sons, 1978.

George E. P. Box, G. M. Jenkins, G. C. Reinsel, Time SeriesAnalysis: Forecasting
and Control, 3rd ed., Englewood Cliffs, N.J.: Prentice Hall, 1994.

John M. Chambers, Trevor J. Hastie, eds., Statistical Models in S, NY: Chapman &
Hall, 1993.

Peter M. Clarkson, Optimal and Adaptive Signal Processing, Boca Raton, Florida:
CRC Press, 1993.

P. L. Feintuch, "An Adaptive Recursive LMS Filter," Proceedings ofthe IEEE, Nov
1976, pp. 1622-4.

Hai-Fang Guo, "Real Time Statistical Process Control for Plasma Etching,"
M.S. thesis, University of California, Berkeley, Memorandum No. UCB/ERL M91/
61,2 Jul 1991.

[10] David M. Haaland, Edward V. Thomas, "Partial Least-Squares Methods for Spectral
Analyses," Analytical Chemistry, Vol. 60, No. 11,1 Jun 1988, pp. 1193-.

[11] Simon Haykin, Adaptive Filter Theory, 2nd ed., Englewood Cliffs, NJ: Prentice Hall,
1991.

[12] Simon Haykin, Introduction to Adaptive Filters, London: Macmillan Publishing
Company, 1984.

81

References H. W. Huang

[13] C. Richard Johnson, Jr., Michael G. Larimore, "Comments on and Additions to 'An
Adaptive Recursive LMS Filter\" Proceedings of the IEEE, Sep 1977, pp. 1399-
1402.

[14] Steven M. Kay, Modern Spectral Estimation, Englewood Cliffs, N.J.: Prentice Hall,
1988.

[15] Steven M. Kay, S. L. Marple, Jr., "Spectrum Analysis--A Modern Perspective,"
Proceedings ofthe IEEE, Nov 1981.

[16] Brian W. Kernighan, Dennis M. Ritchie, The C Pwgrammmg Language, 2nd ed.,
Englewood Cliffs, NJ: Prentice Hall, 1988.

[17] Sherry F. Lee, "Semiconductor Equipment Analysis and Wafer State Prediction
System Using Real-Time Data," Ph.D. thesis, University of California, Berkeley,
Memorandum No. UCB/ERL M94/104,15 Dec 1994.

[18] SherryF. Lee, EricD. Boskin, HaoC. Liu, EddieH.Wen, CostasJ. Spanos,"RTSPC:
A Software Utility for Real-Time SPC andTool DataAnalysis," IEEE Transactions
on Semiconductor Manufacturing, Vol. 8, No. 1, Feb 1995, pp. 17-25.

[19] Sherry F. Lee, Costas J. Spanos, "Prediction of Wafer StateAfter Plasma Processing
Using Real-Time Tool Data," IEEETransactions on SemiconductorManufacturing,
Vol. 8, No. 3, Aug 1995, pp. 252-261.

[20] Hao-Cheng Liu, "Automatic Time-Series ModelGeneration forReal-Time Statistical
Process Control," M.S. thesis,University ofCalifornia, Berkeley, Memorandum No.
UCB/ERL M93/45, 8 Jun 1993.

[21] Dennis M. Manos, Daniel L. Flamm, eds., PlasmaEtching: An Introduction, Boston:
Academic Press, 1989.

[22] H. Martens, T. Naes, Multivariate Calibration, Wiley, 1989.

[23] Douglas C. Montgomery, Introduction to Statistical Quality Control, 2nd. ed., NY:
John Wiley & Sons, 1985.

[24] John K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley, 1994.

[25] Alan Pankratz, Forecasting with Univariate Box-Jenkins Models: Concepts and
Cases, NY: John Wiley & Sons, 1983.

[26] Robert S. Pindyck, Darnel L. Rubinfeld, Econometric Models and Economic
Forecasts, 2nd ed., NY: McGraw-Hill Publishing Company, 1981.

82

H. W. Huang References

[27] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Hannery,
NumericalRecipes in C, 2nd ed., Cambridge University Press, 1992.

[28] John J. Shynk, "Adaptive IIR Filtering,"IEEEASSPMagazine, April 1989, pp. 4-21.

[29] Costas J. Spanos, Hai-Fang Guo, Alan Miller, Joanne Levine-Parrill, "Real-Time
Statistical Process Control Using Tool Data,"IEEETransactions on Semiconductor
Manufacturing, Vol. 5, No. 4, Nov 1992,pp. 308-18.

[30] Bjarne Stroustrup, The C++ Programming Language, 2nd ed., Addison-Wesley,
1991.

[31] E. Robert Tisdale, C++ Matrix Class, ftp://fip.cs.ucla,edu/pub/Matrix.tar.Z, March
31,1994.

[32] John R. Treichler, C. Richard Johnson, Jr., Michael G. Larimore, Theory and Design
ofAdaptive Filters, NY: John Wiley & Sons, 1987.

[33] Using Framemaker®, San Jose, CA: FrameTechnology Corporation, 1995.

[34] Walter Vandaele, Applied Time Series and Box-Jenkins Models, NY: Academic
Press, 1983.

[35] Larry Wall, Randal L. Schwartz, Programming perl, Sebastopol, CA: O'Reilly &
Associates, 1991.

[36] Bernard Widrow, John M. McCool, "Comments on 'An Adaptive Recursive LMS
Filter'," Proceedings ofthe IEEE, Sep 1977, pp. 1402-4.

[37] Bernard Widrow, Samuel D. Steams, Adaptive SignalProcessing, Englewood Cliffs,
NJ: Prentice-Hall, 1985.

83

References H. W.Huang

84

H. W.Huang Appendix A

Appendix A List of Symbols

at forecast errors of a time series

B backshift (delay) operator

d, d(t) time series data fordesired response

D integration order of an ARIMA model

e, e (/) prediction (estimation) error

e vector of signal residuals, averaged over a specified group size

^"a.m.n-m F-distribution value with M and N-M degrees of freedom and

Type I error a

hk filter tap

h, h (n) filter tap vector

h, h (n) estimate of filter tap vector

h * optimum filter tap vector

H matrix whose each column is the regression coefficients for a single

variable

I identity matrix

k iteration index

L number of modeled response signals

m mean value of a wide-sense stationary process

M number of explanatory variables minus one; model order

MSE, MSE(n) mean square estimation error

MSE* optimum (minimum) value of MSE

n group size for calculating T2 statistic; iteration index

85

Appendix A H.W. Huang

N number of baseline observation; number of observations of a vari

able

p(k) cross-correlation function between desired signal and inputsignal

p, p(/i) cross-correlation vector between input vector x(n) and desired

response d(t)

p, p {n) estimated cross-correlation vector

P auto-regressive orderof an ARIMA model

P, P(a?) inverse of the estimated correlation matrix

qk unit-length eigenvector of R,

Q moving average order of an ARIMA model

Q unitarymatrix consisting of columns of qk

rx{k), rx(tvt2) autocorrelation function for signal x(t)

R2 statistic indicating the percentage of total variance that isexplained

by a model

Rj correlation matrix

RA, RA(77) estimated correlation matrix

S estimated residual covariance matrix, used to calculate T* statistic

S an intermediate matrix used in the recursive calculation of S

t time index

T2 statistic used for multivariate statistical process control

UCL upper control limit

vk, vk (n) element of the transformed filter tap vector v

v, v (n) transformed filter tap vector

w, differenced time series data

jc,, *,; explanatory stationary processes

x(t) input time series data

x, x(n) vector of predictor data; vector of current and previous values of

x(t)

x vector ofaveraged samples for each signal, used to calculate T2 sta

tistic

x vector ofbaseline signal averages, used to calculate T2 statistic

86

H. W. Huang Appendix A

data matrix whose each column contains the observations for one

variable

y, stationary process to be modeled

y, y(t) output time seriesdata

y vector of observedresponses for estimating a regression model

y vector of predicted responses

zt original time series data

a Type I error (probability of false alarm)

P,- regression coefficient

p vector of estimated regression coefficients

5 small positive constantfor initializingthe RLS algorithmorthe esti

mation of the error covariance matrix S

5,(£) moving average part of anARIMAX model

6A. moving average coefficient of an ARIMA model

6 (£) moving average part of the transfer function of an ARIMA model

X exponential weighting factor for the RLS algorithm or for the esti

mation of the error covariance matrix S

Xk eigenvalue corresponding to eigenvector q^

>v„„„ minimum eigenvalue

Xmax maximum eigenvalue

A diagonal matrix of eigenvalues

(J)A. auto-regressive coefficient of an ARIMA model

<}) (B) auto-regressive part of the transfer function of an ARIMA model

g] variance of desired response signal d(t)

G2 variance of input signal x(t)

ik time constant for the convergence of the fc-th mode of a steepest

descent algorithm

Th overall time constant for the convergenceof the filter tap vector h

[i step size for LMS algorithm

|i (n) variable step size for RLS algorithm

jj step size fornormalized LMS algorithm

87

Appendix A H. W. Huang

auto-regressive part of an ARIMAX model
2

Xo,m Chi-squared distribution with M degrees of freedom and

Type I error a

88

H.W. Huang Appendix B

Appendix B How to Get the RTSPC Software

The RTSPC software is a part of the Berkeley Computer-Aided Manufacturing

(BCAM) software distribution. More information, including manuals and ordering instruc
tions, can be found on the World Wide Web at

http://bcam.eecs.berkeley.edu

For questions or informationon how to obtain RTSPC, contact:

IndustrialLiaison Program
205 Cory Hall #1770
University of California at Berkeley
Berkeley, CA 94720-1770

Telephone: (510) 643-6687
Fax:(510)643-6694
email: software@eecs.berkeley.edu
anonymous ftp: ilpsoft.eecs.berkeley.edu

89

Appendix C H.W. Huang

Appendix C Software Code for "tracker"

/* '
/* tracker */

/* by Herb Huang 1996 */

#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <unistd.h> //for getopt{)
/* C++ Matrix Class by E. Robert Tisdale, 03-31-94. (ftp.cs.ucla.edu) */
#include "Matrix/double.Matrix.h"

const char* Means_filenanie="waferMeans.dat";

const int clnit0rder=3;

const int dnitFbOrder=0;

const double cInitLairibda=l, dnitMu=0.001;

const int dnitNumSignals=l;

/* InitP should be large compared to 100/(variance of data)
[Haykin 1991, p.484] */

double InitP=le2;

long DataSize=3000; //initial data size
const double ZERO=0;

const int RLSmode=l; // set RLS mode
int Multivariate^; // defaults to univariate mode

const int BUFF_SIZE=1024;

const char TOKEN_DELIM[] =", \t\n\r\f;
inline int STREQ(const char* a, const char* b) { return (!strcmp(a,b));)

/* — — - -— *'
/*

order = number of feedforward taps (coefficients)

fbOrder = number of feedback taps

U = data vector

H = filter taps (each row is the tap vector for one signal)
K = gain vector

e = prediction error
P = filter-error correlation matrix (except for scaling)
lambdainv = inverse of RLS forgetting factor v^_

mu = LMS step size

iter = iteration number

*/

int main(int argc, char* argv[])

(

long ReadData(doubleMatrix& Data, long numData, int numSignals);

90

H. W. Huang AppendixC

char filenameBuff[BUFF_SIZE];

int order=clnit0rder;

int fbOrder=dnitFbOrder;
double lambda=clnitLambda;

double lambdainvs(1./clnitLambda);

double mu=cInitMu;

int numSignals=cInitNumSignals;
long numData=-l;

extern char* optarg;
int c;

while ((c = getopt(argc, argv, *o:b:l:s:n:p:inh#)) !s -l) {
switch(c) (

case 'h':

case '?' :

default:

cerr « "Usage: * « argv[0] « • < data.txt > e.out* « endl;

if (c == »h') exit(O) ;

exit(l);

break;

case %o':

order = atoi(optarg);

break;

case 'b':

fborder = atoi(optarg);

break;

case '1' :

lambda = atof(optarg);

lambdainv = 1./lambda;

break;

case 's' :

numSignals = atoi(optarg);

break;

case 'n':

numData = atoi(optarg);

break;

case 'm':

Multivariate = 1;

break;

case *p':

InitP = atof(optarg);

break;

)

)

/* */

int numTapss (Multivariate ? (order*fbOrder)*numSignals : (order+fbOrder)) ;

DataSize = (numData > 0 ? numData : DataSize);

doubleMatrix Data(numSignals, (int)DataSize)^
doubleMatrix H(numSignals, numTaps);

const int pdim= (Multivariate ? numTaps : numSignals*numTaps) ;

doubleMatrix P(pdim, numTaps);

doubleMatrix PP(numTaps, numTaps); //a temporary variable

FILE* meansFile=0;

if (*Means_filename) (

91

Appendix C H.W.Huang

sprintf(filenameBuff, "%s*, Means_filename) ;
meansFile=fopen(filenameBuff, •r') ;
if (ImeansFile) {

cerr « "Warning: can't open wafer-mean file: • « Means_filename «endl;
)

)

const int udim=(Multivariate ? l : numSignals);
doubleMatrix U(udim, numTaps), K(udim, numTaps);
doubleMatrix PU(l, numTaps); //a temporary variable

doubleMatrix y(l, numSignals);
doubleMatrix e((fbOrder ? fbOrder : 1), numSignals);
doubleMatrix yhat((fborder ? fborder : 1), numSignals);
doubleMatrix mean(1, numSignals);

/*-- V
/* "soft-constrained initialization* */

/* INITIALIZE H = 0 */

H = ZERO;

/* INITIALIZE P = diag(InitP) */
P = ZERO;

if (Multivariate) {

for (int i=0; i<numTaps; i++) P[i][i] = InitP;
) else {

for (int i=0; i<numSignals; i++) {
for (int j=0; j<numTaps; j++) (
P[i*numTaps + j] [j] = InitP;

)

)

)

/* v

/* loop over each wafer */
while (1) (

yhat = ZERO;

e = ZERO;

Data = ZERO;

/**

ReadData(): read from stdin into Data.

read 'numData' lines.

return the number of lines read, or

return -1 if EOF is reached or an error occurs.

numData = ReadData(Data, numData, numSignals);
if (numData <= 0) break; // all done

(

/* CENTER data */

mean = ZERO;

if (meansFile) (

/* read a line from the "waferMeans.dat" file into mean[0] [] */
)

else (

92

H™ Huang AppendixC
mean e Data.sum() / (double)numData;

)

for (int i=0; i<numSignals; i++) {
double m=mean[0][i];
for (int j=0; j<numData; j++) (
Data[i] [j] -= m;

)

)

)

* /
/* START iteration LOOP */
for (int iter=0; iter<numData; iter++) {

/* fill y */

for (int sigNum=0; sigNum<numSignals; BigNum++) {
y[0][sigNum] = DatafsigNum][iter];

)

(

/* Fill U (with pre-windowed data) */
U = ZERO;

if (Multivariate) (
int cnt=0;

/* Feedforward */

for (int j=0; j<order; j++) (
for (int i=0; i<numSignals,- i++) {

if (j <= iter-l) U[0][cnt] = Data[i][iter-l-j];
++cnt;

)

)

/* Feedback */

for (int j=0; j<fbOrder; j++) (
if (j > iter-l) break;
for (int i=0; i<numSignals; i++) {
U[0] [cnt] = yhattj)[i];
++cnt;

)

)

)

else (

/* Feedforward */

for (int j=0; j<order; j++) {
if (j > iter-l) break;
for (int i=0; i<numSignals; i++) (
U[i] [j] = Data[i][iter-l-j];

)

)

/* Feedback */

for (int j=0; j<fbOrder; j++) {
if (j > iter-l) break;
for (int i=0; i<numSignals; i++) {
U[i] [order + j] = yhat[j][i]; ^.

)

)

)

)

/* shift yhat; shift e */

93

Appendix C H. W. Huang
for (int j=fbOrder-l; j>=0; j—) {
for (int sigNumsO; sigNum<numSignals; sigNum++) {
if (j != 0) {

yhat[j][sigNum] a yhat[j-1][sigNum];
e[j][sigNum] = e[j-l][sigNum];

)

)

)

/* compute (a priori) prediction error, e */
if (Multivariate) {

yhat.s(O) = U % H; //yhat.s(i) is row i of yhat
) else {

yhat.s(O) s (U * H).sum(); //yhat.s(i) is row i of yhat
)

e.s(0) s y - yhat.s(O);

/* compute gain vector, K[] */

if (RLSmode) {

if (Multivariate) {

/* Using (U % P.t()) here is more numerically robust than (U % P) .

[Haykin 1991, p.485, 695] */

PU - (U % P.t());

double denom = lambda + (double)(U % PU) ;
K = (U % P) / denom;

/* update filter-error correlation matrix */

P = lambdainv * (P - (K & PU));

) else {

/* This is univariate mode, so calculate K and P individually for
each signal. */

for (int i=0; i<numSignals; i++) {

/* PP points to numTaps rows beginning with row i*numTaps */
PP = P.s(i *numTaps,numTaps);

/* PP.t() not PP !!! */

PU = (U.s(i) % PP.tO); // U.s(i) is row i of U

double denom = lambda + (double)(U.s(i) % PU);

K.s(i) = (U.s(i) % PP) / denom;

/* update filter-error correlation matrix */

PP = lambdainv * (PP - (K.s(i) & PU));

P.s(i*numTaps,numTaps) = PP;

)

)

)

else (/* LMS (tracking mode) */
K = mu * U;

#ifdef NOTYET v—

/* or use Normalized LMS [Haykin 1991, p.356] :

a is a damping constant

*/

if (Multivariate) (

K = mu * U / ((U * U).sum() + a);

) else {

K = mu * U / (((U * U).sum()).t() + a);

94

H.W.Huang Appendix C

)

#endif NOTYET

)

/* update filter */

if (Multivariate) {

H += e.s(O) & K;

) else {

H += (e.s(0)).t() * K;

)

/* Stability checks (only for univariate mode) */
if (fbOrder == 1 && !Multivariate) {

int col=order;

for (int j=0; j<numSignals; j++) {
double al«H[j][col];

if (fabstai) >= 1) {

cerr « "Warning: al outside of stability region: *
*H[" « j « "][" « col « "] = " « H[j] [col] « endl;

)

)

)

if (fborder == 2 && multivariate) {

int col=order;

for (int j=0; j<numSignals; j++) {
double al=H[j][col];

double a2=H[j][col+1];

if (a2 <= -1 ||
a2 >= al + 1 ||
a2 >= -al + 1) (

cerr << "Warning: (al,a2) outside of stability region: "
-Hi" < j « "][" « col « •) = » « H[j][col] « ", "
"K[" << j « "][" « col+1 « *] = " « H[j][col+1] « endl;

)

)

)

)

) //while (1) {

return 0;

)

/ - — - -— " —- */

95

	Copyright notice 1996
	ERL-96-71

