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1 Introduction

This users guide describes the use of Explorer Version 1.0, which is the implementation of the
floorplanner for integrated circuits (ICs) presented in [4, 5].

Explorer is based on the genetic algorithm (GA) and simultaneously optimizes layout area,
aspect ratio, routing congestion and maximum path delay. It is designed for design space explo
ration: In a single execution, a set of alternative floorplan solutions are generated, representing
alternative tradeoffs of the four cost dimensions.

A unique feature of Explorer is that neither weights nor traditional bounds are used in the
problem formulation. The competing optimization criteria are never combined into a scalar-
valued cost function. Instead, the search is driven by a vector-valued cost function and a partial
ordering on the cost space, which is defined by the user. Furthermore, Explorer supports an
interactive search process. As knowledge of obtainable tradeoffs is gained, the user can interac
tively re-define the notion of a "good" or a "bad" tradeoff, thereby focusing the search on the
region of interest in the cost space.

An input floorplanning problem is specified by the following:

1. A set of blocks, each of which have one or more possible implementations. Each implemen
tation is either fixed (hard macro) or flexible (soft macro).

2. A set of IO-pins/pads.

3. A set of nets and a set of paths to be considered when minimizing the maximum path delay.
Associated timing information, such as capacitances of sink pins and driver resistances of
source pins, is also needed.

4. Technology information, e.g., the number of routing layers available on blocksand between
blocks.

For each output solution, Explorer computes the following:

1. A selected implementation for each block.

2. An aspect ratio for each selected flexible implementation.

3. An approximate pin assignment for each pin of selected flexible implementations.

4. An absolute position for each block.

5. An orientation and reflection for each each block.

6. An absolute position for each IO-pin/pad.

While Explorer is a floorplanner, the provided mechanisms for GA-based, interactive, multi-
objective optimization are of a general nature. Consequently, Explorer is believed to be well
suited for more general studies of this type of optimization process, and in this context, the



floorplanning problem can be seen as a non-trivial, example application. Interactive, multi-
objective optimization poses some very interesting and open research problems [7]. For example,
the issue of comparing solution sets as needed to evaluate the performance of different set-
generating heuristic approaches is not yet solved satisfactory [3, 8]. Another research topic
is whether the performance of the multi-objective GA-based search can be improved by using
external controllers based on e.g. fuzzy logic, as studied in [9].

Familiarity with [4] is assumed throughout this users guide and a copy of [4] is therefore
included in Appendix F. Issues not discussed in [4], such as e.g. IO-pin handling, are covered
in this guide as needed. For example, IO-pin handling is described in Sections 5.2 and 5.4
as an integrated part of the relevant file format descriptions. Throughout this document, the
typewriter font is used for keywords in files and for commands, while italics are used for menu
selections on the interactive interface.

2 Required software and installation

The main part of Explorer is implemented in C and is compiled, while the interactive interface
is implemented in Matlab and is interpreted. The source code consists of about 10,000 Unes of
C and about 1,000 lines of Matlab code. To install and use Explorer, the following additional
software is required/recommended:

Software Needed for Importance

C compiler
Matlab

Latex, viewer

compilation of source code
use of interactive features

and some output files
viewing floorplan results

Required
Strongly recommended

Recommended

Table 1: Required and recommended software.

Since it is possible to execute Explorer non-interactively, Matlab is not strictly needed. How
ever, it is strongly recommended since the interactive interface constitutes some of the most
interesting features of Explorer. Furthermore, the floorplan results obtained by interactive ex
ecutions are generally much better than those obtained by non-interactive executions. If Latex
and a method ofviewing compiled Latex files (dvi-files) is available, plots of floorplan results can
be displayed by compiling one of the output files generated by Explorer.

Explorer 1.0 is distributed as a single compressed tar-file named Explorer.tar.Z. When in
stalling the software as described below, all files will be placed in the same directory, i.e., no new
directories or subdirectories are created at any step of the process. Installation is done in four
steps:

1. In the target directory, unpack the files by typing
uncompress Explorer.tar.Z
tar xvf Explorer.tar

The result is a total of 57 files, as listed in Table 2.



2. If Latex is not available:

(a) In makefile, remove latex.o from OBJFILES
(b) In line 27 of database.h, redefine the constant Latex to false

3. If Matlab is available:

(a) In makefile, redefine MLIB and MINCLUDE as the locations ofthe Matlab library libmat.a
and the Matlab include files, respectively.

Otherwise, if Matlab is not available:

b In makefile, remove matlab.o from OBJFILES

c In makefile, delete the path of MLIB such that the line reads MLIB =

d In line 28 of database.h, redefine the constant Matlab to false

4. Compile the C code by typing make

File Name(s) No. files Contents

•.c *.h 24 C source code

makefile 1 makefile

•Script.m 21 Matlab code

•xir 10 sample floorplanning problems
test.par 1 sample parameter file

Table 2: Overview of the files of the Explorer distribution.

Explorer was developed and tested on a DEC 5000/125 workstation under Unix Ultrix V4.2A,
using gcc, Matlab 4.2c and TeX 3.1415. The use of two machine-dependent functions in the C
source code may require slight modifications:

• In database.c and statistics.c, the date and elapsed time is obtained using the functions
time(), difftimeO, ctimeO and asctime().

• Random number sequences are generated using lrand48() in database.h and srand48()
for initialization in database.c

In case one or both of these functions are unavailable, they should be easy to replace, since
they are only used at the specified locations.

The sample floorplanning problems include most of those used in [4]. They consist of pairs
of the form <name>.cir and <name>F.cir. In <name>.cir, all blocks are fixed, while in
<name>F.cir, all blocks are flexible. This is the only difference between the two examples
in each pair, i.e., all block areas as well as the specifications of nets and paths are identical.
The largest example in terms of number of blocks is ami49.cir/ami49F.cir. When optimizing
this circuit and using the default parameter settings, cf. Section 5.1 and Appendix A, Explorer
requires about 8 MB of memory on the DEC 5000/125.



3 Execution and input /output files

Explorer is a stand-alone tool. Table 3 gives an overviewof the required input files and generated
output files.

File Name I/O Contents Section

<name>.par I Parameter file containing all control parameters 5.1

<circuit>.cir I Specification of a floorplanning problem 5.2

<name>.log 0 Logfile of the execution 5.3

<name><no>.pla 0 A set of files, each containing one floorplan result 5.4

<name>Plot.tex 0 Plots of all floorplan results
To be compiled using Latex

5.5

<name>Result .m 0 Information on the cost tradeoffs of the floorplan results
To be displayed using Matlab

5.6

<name>Stat.m 0 Information on the optimization process
To be displayed using Matlab

5.7

Table 3: Overview of input (I) and output (O) files read/written by Explorer. Each file is described
in more detail in the Sections listed in the rightmost column. Depending on the installation
procedure followed, Matlab and/or Latex-related output files may not be generated.

The output floorplan results corresponds to the output set denoted $o in [4] (line 13 of Fig. 2).
All files are ASCII text files. In addition to these output files, various information on the progress
of the optimization process is written to stdout during execution.

Explorer is executed by the command
Explorer <name>

where <name>.par is the name of a parameter file. In addition to the control parameters,
the parameter file also contains the name of the circuit specification to read, i.e., <circuit>.cir.
After installing Explorer as described in Section 2, a test execution can be performed using the
included sample files: The command

Explorer test
should generate the files test.log, testO.pla, testl.pla, ..., test<n>.pla1, testPlot.tex if Latex

is available, and testResult.m and testStat.m, if Matlab is available. This execution will require
60 seconds, elapsed time, and is non-interactive, i.e., does not use Matlab.

1Since the termination criterion of Explorer is specified in terms of absolute, elapsed time, the number of
generations performed using a specific .par file is machine dependent, and consequently, the number of .pla files
generated is machine dependent.



4 The interactive interface

An execution of Explorer will be interactive if Interactive = yes in the parameter file (see
Section 5.1). When executed interactively, Explorer consists of two separate processes: a) The
main process, corresponding to the main algorithm and the C source code, and b) a Matlab pro
cess, corresponding to the Matlab code, which handles interpretation of the interactive interface
only. Initially, the Matlab process is started by the main process, and communication between
the two processes is performed using a library of communication routines provided by Matlab
and written in C [15].

The remaining of this Section describes how to use the interactive interface. Section 4.1
presents general information about the interface while Section 4.2 describes how to select the
information displayed via the interface. Section 4.3 then describes how to adjust control pa
rameters, including the goal and feasibility vectors, and use of the hillclimber is explained in
Section 4.4.

4.1 Interface overview

The interface consists of three different windows. Two windows are opened by Explorer, and
are entitled "Explorer Control Window" and "Explorer Display Window" and the third is the
window from which Explorer was started. In the following, these windows are referred to as the
control window, the display window and the output window, respectively. The control window
is used to control the optimization process and contains a number of buttons, menus and input
fields. The display window is used for displaying graphs of the cost tradeoffs found so far, while
textual information on the progress of the optimization process is providedin the output window,
cf. Figure 1. The control window accepts user-input, while the display and output windows are
used for output only.
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Figure 1: Sample output in the output window. Each line listing costvalues indicates that the best
solution set $o has been updated by insertion of a solution with these cost values. In addition,
the size of two important subsets are printed every 100 generations. The notation used here will
be described in the following Sections.

In the following, the term 'button' is used to refer to buttons, menus and input fields alike.
Similarly, the terms 'clicking on' or 'selecting' can refer to any operation the user can do in



the control window, including e.g. selecting another item of a menu or changing the value in a
numerical field.
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Figure 2: The Explorer Control Window.

The control window is shown in Figure 2. Every button is either green or red. It is important
to always remember the following basic rule for operating the interface:

At any time, it is legal to click on a button if and only if it is green

When clicking on a green button, some red buttons may turn green and some green buttons
may turn red, thereby indicating the next set of legal operations. Clicking on a red button is
possible, but the effect is undefined. This is a consequence of a simple synchronization scheme
used between the main process and the interactive interface.

The control window can be in one of four different states: initial, update, optimize and ter
minate, as illustrated in Figure 3. Each state represents a set of legal operations and have
corresponding sets of green and red buttons. Each directed arc in Figure 3 represents a possible
state transition and its label indicate the name of the button to click to perform that transition.
When starting Explorer, the control window will be in the initial state. In this state, only three
buttons are green: Update, Optimize and Terminate. Clicking one of these will cause a state
transistion to the state of the corresponding name, cf. Figure 3. The update state allow the user
to alter the displayed graphs, as described in Section 4.2 or to adjust the control parameters, as
described in Section 4.3. The optimize state allows execution of the hillclimber, as described in
Section 4.4. A transition from the initial state to the update state will cause the label of the
Update button to change to Continue and at the same time, the color >f the button will change
to red. Therefore, to return from the update state to the initial state, the same button should be
clicked, cf. Figure 3, when it has turned green again. This will happen when Explorer is ready,
that is, when the main process is synchronized with the interface process. A message in the out
put window will then also indicate that Continue can be selected. The very same scheme is used
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Figure 3: The four different states of the control window and the possible state transitions.

for transitions to and from the optimize state, except that herethe label of the transition button
alternates between Optimize and Execute. The optimization process continues until Terminate
is selected, after which all buttons will turn red. It may take a few seconds before termination
is detected and completed.

4.2 Defining the displayed graphs

The current state of the optimization process is continously visualized in the display window in
the form of one, two, three or four graphs, each of which are either 2- or 3-dimensional. Each
graph displays aset of points inthecost space, with each point corresponding to aspecific solution
in the current solution set. The user selects which subset is being displayed in each graph, and
which cost-dimension correspond to which axis. The axis are labeled according to the current
selection and the title of each graph indicates which subset is currently being displayed in the
graph as well as the current size of that subset.

The graphs in the display window are defined by five buttons in the rightmost column of
the control window, which are accessible when the control window is in the update state. The
buttons are Graph, Set, x, y and z. Each of these is a menu with a pre-defined set of choices, and
the current selection is displayed on the button itself. The Graph button determines which graph
is currently being (re-)defined. The Set button determines which subset is being displayed in
the graph, and the x, y and z buttons determines which cost dimensions correspond to the first,
second and third axis, respectively. Since each graph has its separate definition, the settings of
the Set, x, y and z buttons displayed at any given timeonly applies to the graph selected by the
Graph button at that time. So to alter the definition of, for example, the 3rd graph, first select
GraphtS on the Graph button. The current definitions for the 3rd graph is then displayed on the
four other buttons and can be altered. Table 4 lists the five possible choices for the Set button
together with the corresponding notation used in [4].

The possible choices for each of the x, y and z buttons are listed in Table 5. In addition to
the choices listed in Table 5, the z button also has the selection None, which means that no cost



Set [4] notation Meaning

All

A

S

Front

None N/A

All existing solutions
The subset of solutions satisfying the feasibility bounds
The subset of solutions satisfying the goals
The best solutions, relative to the goals and feasibility bounds
No set - the graph will not be displayed

Table 4: Notation for sets.

dimension is mapped to the third axis. Hence, if None is selected, the graph is 2-dimensional
and otherwise, it is 3-dimensional.

Explorer will display graph 1, graph 2, etc, according to their definitions, until it meets the
first graph definition for which the selected set is None. Therefore, if k graphs are wanted,
k = 1,2,3,4, they have to be defined as graphs 1 through k. The default graph definition used
when starting Explorer is a single, 2-dimensional graph, showing the delay versus area tradeoffs
of all solutions. If more than one graph is displayed, it is advisable to resize the display window.

Selection

Delay
Area

Ratio

Cong

Meaning

Maximum path delay in ns
Layout area in mm2
Aspect ratio deviation, i.e., distance to the target aspect ratio
Maximum routing congestion

Table 5: Notation for optimization criteria, selectable on the x, y and z buttons.

Since Explorer optimizes four cost dimensions simultaneously, and only 2- and 3-dimensional
graphs can be displayed, it may be difficult to obtain all four cost values of a specific solution
by inspecting the graphs only. The Print feature (rightmost row, second button from the top)
aims at reducing this problem. The button has five selections: All, A, S, and Front, which are
sets denned as in Table 4, and Off. If a set is selected, the current cost values (4-tuples) of all
solutions in that set are listed in the output window whenever the graphs are updated. If Offis
selected, this feature is not used.

The graphs in the display window are updated every time the main process synchronizes with
the interface process. The frequency of synchronization is defined by the Freq button, located
in the top right hand corner of the control window. The numerical value is the number of
generations between synchronizations. Asmaller value will cause more frequent updates of the
graphs and, if Print is used, more frequent listings of cost values. In addition, the worst-case
waiting time for a transition from the update or optimize states back to the initial state will be
reduced. However, the drawback ofa smaller Freq value is that the main process will be wasting
more time synchronizing with the interface and waiting for user input instead of performing
optimization.



4.3 Adjusting control parameters

The control parameters adjustable by the user are the goal and feasibility vectors, described
in [4], the population size, the mutation rate and a parameter concerning selection pressure. As
the graph definition parameters described in Section 4.2, the control parameters are adjustable
when the control window is in the update state, cf. Section 4.1.

Eight buttons in the lower left corner of the control window corresponds to the goal and
feasibility vector pair (g,f) defined in [4]. These buttons are labelled pairwise as <criterion>G
and <criterion>.F, where <criterion> is one of Delay, Area, Ratio and Cong. The criteria
correspond to the four cost criteria optimized, as listed in Table 4, and the G or F suffix used
on eachbutton indicate the goal or the feasibihty value, respectively. For example, AreaG is the
goal value for the area criterion, and CongF is the feasibihty value for routing congestion. Since
the range of all goal and feasibihty values is [0,oo], cf. [4], any non-negative real value as well as
the character string infinity can be entered.

The PopSize button (third column, fourth button from the top) is the population size. It can
be changed to any integral value greater than or equal to 2. When increasing the population
size, new randomly generated solutions will be added. If the population sizeis reduced, solutions
are deleted in decreasing order of rank.

The MutRate button (third column, second button from the bottom) specifies the mutation
rate. It is defined as the probability that a possible mutation is actually performed. Since the
number of possible mutations vary with the given floorplan problem, this definition is to some
extent problem-independent. Any real value in [0,1] is allowed.

The last control parameter is the Bias button (bottom of third column). This parameter
controls the selection pressure, following the scheme introduced in [6, 11]: Let /? be the value of
the Bias parameter, and assume that the current population $ = {<t>o, <t>\> •••»<t>N-\) is sorted in
ascending order according to rank, i.e., r(<t>0) < r(<j>i) < ... < r(<f>N_i), where r(</>) = r($,</>) is
therank of </> in $. When selecting a parent <t> for crossover, the probability that r(<£) equals r(<£fc),
written P[r(</>) = r(<j>k)], decreases linearly with k, and P[r(<t>) = r(</>0)] = PP[r(<t>) = r(</>N/2)].
Furthermore, all solutions having the same rank have the same probability of being selected.
Hence, as 0 is increased, more solutions are selected among the best existing solutions. The Bias
value (/?) can be any real value in ]1,2].

The initial values of all control parameters discussed in this Section are read by Explorer from
the parameter file <name>.par Whenever a control parameter has been changed interactively, it
will take some time, i.e., some number of generations, for the effect of the change to propagate
and visibly effect the optimization process. Therefore, control parameters should generally not
be altered too frequently.

4.4 Applying the hillclimber

As described in [4], the hillclimber attempts a sequence of mutations on a specified solution.
Each attempted mutation yielding <f>' from <f> is executed if and only if -*{4> -< <f>'). Hence, the
hillclimber may improve, and will never deteriorate, the optimized solution in the sense defined
by the preference relation -<.

10



The hillclimber is applied as follows:

1. Click Optimize to bring the control window to the optimize state, from which the hillclimber
is accessible.

2. Select the solution to optimize, and write its identity (index in the population) in the
ApplyTo button. A list of identities and corresponding cost values to choose from will
appear in the output window next time the main program and the interface synchronizes.
The listed set is the one currently selected on the Print button. If Print is Off, the Front
set, i.e., $o» is listed.

3. Write the number of mutations to attempt in the NoMoves button. The initial value of
this parameter is defined in the parameter file.

4. Optionally, any of the goal and feasibihty values can be changed before executing the
hillclimber, thereby constraining the direction of the hillclimbing in the cost space, cf. [4].
If goal and/or feasibihty values are changed, the new values will be in effect until changed
again, in a subsequent Update or Optimize operation. In other words, to apply specific goal
and feasibility values to the hillclimbing process only, it has to be followed by an Update
operation, in which the original goal and feasibihty values are restored.

5. Click Execute to execute the hillclimber. When completed, the obtained improvement will
be described in the output window. Explorer will then switch to the initial state and the
optimization process will resume.

5 File descriptions

In this Section the files read and written by Explorer are described. The usage of each file is
explained and informal descriptions of syntax and semantics are given. A sample file of most file
types can be found in the Appendices.

5.1 File <name>.par

A sample input parameter file is shown in Appendix A. The parameters have the following
meaning:

InputFileName it the name of the floorplan specification file <circuit>.cir to read. It should
be given without the extension.

RatioTarget is the target aspect ratio of the output floorplan(s), denoted by rtarget in [4]. The
aspect ratio is defined as height divided by width.

Interactive can be either yes or no. The execution will be interactive, using a Matlab
process, if and only if yes is specified. If Matlab is not available, Interactive has to be no.

The eight parameters <criterion>G and <criterion>F, where <criterion> is either Delay, Area,
Ratio or Cong, corresponds to the goal and feasibility vectors (g, f) in [4] and are as described
in Section 4.3. If executing Explorer interactively, these parameters can be adjusted during
execution and the values specified in the parameter file are used as initial values. The units are
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given in Table 5. Specifically, RatioG and RatioF specifies absolute distances to RatioTarget.
As in Section 4.3, the range of each parameter is [0,oo], i.e., any non-negative real value can be
entered and oo is specified by the character string infinity.

TimeLimit is only used if Interactive is no. It then specifies the maximum elapsed time of
the execution, in seconds. Explorer will terminate before reaching the specified limit if and only
if a solution has been found, which satisfies all goals.

UseTimeAsSeed, which can be either yes or no, and RandSeed, which can be any positive
integer, controls the random number generation. If UseTimeAsSeed is no, the valueof RandSeed
willbe used to initializethe random numbergenerator, and the executionwillbe reproducable by
simply re-using the same parameter file. If UseTimeAsSeed is yes, the random number generator
is seeded using the system clock and the value of RandSeed is not used. However, the actual seed
valueused will be recorded in the logfile, described in Section 5.3, thereby allowing the execution
to be reproduced by setting UseTimeAsSeed to yes and RandSeed to the value read from the
logfile.

PopSize, MutRate, Bias and NoMoves are as described in Section 4.3. If Explorer is exe
cuted interactively, these parameters can be changed during the execution, and the values in the
parameter file are used as initial values.

HillclimbFreq is only used if Interactive is no. It then specifies the frequency by which the
hillclimber will be executed. Whenever no improvement have occurred for HillclimbFreq con-
sequtive generations, that is, $o has not changed in this period, the hillclimber will be executed
on every solution in $o> using NoMoves mutations per solution.

The parameter values specified in the sample parameter file in Appendix A can in most cases be
used as reasonable defaults, with one exception: A reasonable value of AreaFis 1.5 times the total
instance area of the circuit in question and should therefore be changed when InputFileName
is changed. The total instance area of a circuit is recorded in the logfile, i.e., it can quickly be
obtained by executing Explorer non-interactively, using 0 as the TimeLimit.

Ifexecuting Explorer interactively, one can always use zero for all goal values and infinity for
all feasibihty values as the initial setting. As information on the obtainable tradeoffs is gained,
the goal and feasibility values can then be adjusted appropriately. However, for non-interactive
executions, this default setting is generally not advisable. The more aggressive a goal is defined,
the harder will it be to obtain satisfactory values in the other cost dimensions. Therefore, goal
values should not be specified beyond what is actually satisfactory.

5.2 File <circuit>.cir

An informal description of the syntax and semantics of the <circuit>.cir file is given below.
Keywords are written using capital letters and the typewriter font. <n>, <x>, <y>, <val>,
<min>, <max> and <t> are all integers. <c>, <r>, <d>, <area>, <low> and <high> are
real values and the remaining terminal symbols are text strings. The keywords are described in
the order in which they appear in the <circuit>.cir file. Ten sample .cir-files are included in the
Explorer distribution, cf. Section 2.

A <circuit>.cir file is initiated by the following specification of technology related information:

12



TYPE

ONBLOCKS <n>

BETWEENBLOCKS <n>

WIREPITCH <n>

CAPACITANCE <c>

RESISTANCE <r>

SPACING <n>

Specifies the type of the circuit as either IC or MCM. Each block in an
IC can be oriented/reflected in eight distinct ways. In contrast, only
four distint orientations/reflections exist for a blockin an MCM, since
MCM blocks are chips and their pins have to face the MCM surface.
Number of metal layers available for routing on top of blocks. This
number is assumed constant for all blocks.
Number of metal layers available for routing at locations where there
are no blocks.
The wirepitch for interconnect routing in /im, assumed constant for all
routing layers. When estimating routing congestion it is assumed that
all nets are routed using this wirepitch.
Capacitance of interconnect in pF/jrni, assumed constant for all rout
ing layers.
Resistance of interconnect in kfi//im, assumed constant for all routing
layers.
The minimum required distance between any pair of blocks or a block
and an IO-pin, in jim.

The following statements of the <circuit>.cir file specifies constraints on relative IO-pin po
sitions. This is done using a two-dimensional array AaXt as illustrated in Fig. 4. Each 10 pin
can be assigned to an entry of A and the physical location corresponding to entry (i,j) will be
(ix/(s —l)ijy/(t —1)), where x and y are the horizontal and vertical dimensions of the layout,
respectively2. An IO-pin assigned to A by the user is called a fixed IO-pin, while the remaining
IO-pins are flexible. Each flexible IO-pin will be assigned by Explorer to a vacant entry of A not
specified as blocked. Since any subset of the entries of A can be specified as blocked, pins can
be restricted to placement along the periphery of the layout, they can be uniformly distributed
over the entire layout, etc.

layout area

orientation/

reflection

o o
o

o ()—o o
o

«H-<>—O

o <•—<>
O «»—1>
I—I 1 1 1 1—<•—o

10 pin array

Figure 4: Specification of constraints on placement of IO-pins. Here A has dimensions 8 x 10
and 11 fixed IO-pins (white circles) are assigned to specific entries of A while 14 entries (black
circles) are blocked. The remaining entries are available for flexible IO-pins. A will be oriented
and/or reflected and subsequently scaled so that it exactly covers the layout area of the floorplan.

2Relative to the building-blocks, the entire set of IO-pins can be oriented and/or reflected in eight distinct
ways, while still satisfying the constraints on relative positions specified by A. The given absolute position of
entry (i,j) assumes that the 10 pin set is positioned on top of the blocks without changing neither the orientation
nor the reflection relative to the blocks.
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IOARRAY <x> <y>

IOMINSPACE <x>

IOBLOCKINGS

<IndexRange>

IOPINS

<fixedIOpin>

<flexibleIOpin>

<IOpinType>

The x and y dimensions of the IO-pin array A described above (corre
sponding to s and t). Required whether or not any IO-pins exist.
The minimum distance between any pair of IO-pins, in /xm. Required
whether or not any IO-pins exist.
Specification of blocked positions in the IO-pin array A. Required
whether or not any IO-pins exist. The keyword is followed by zero
or more pairs of <IndexRange> specifications. Each consecutive pair
specifies a set of entries in A as blocked, i.e., not usable for assignment
of flexible IO-pins. The first <IndexRange> in each pair specifies a
range for the x-dimension while the second <IndexRange> specifies
the y-dimension.
Has one of two forms:

<val>

<min> - <max>

Indexing in A starts from 0. For example, the <IndexRange> pair
2-58 specifies that A[i][S] is blocked for i = 2,...,8. Spaces are
required on both sides of the hyphen.
Description of zero or more IO-pins. The keyword is required whether
IO-pins exist or not. Each pin description has one of two forms:
<fixedIOpin> or <flexibleIOpin>.
Has the form <pinName> <x> <y> <IOpinType>. <x> and <y>
specifies the fixed relative position of the pin as indices in A.
Has the form <pinName> <IOpinType>. This pin is flexible, i.e.,has
no constraints on its position.
Has one of four forms :

I <c>

0 <r>

B <c> <r>

I is an input pin (sink) and <c> its input capacitance. 0 is an output
pin (source) and <r> its output driver resitance. Bis a bidirectional
pin (i.e., has both capacitance and resistance). 0 is a pin for which no
type or electrical specification is available. <c> values are in pF and
<r> values in kQ.

The IO-pin specification above is followed by a specification of the available implementations
of the blocks. At least one implementation has to be specified and each specification has one of
the forms <fixedBlock> or <flexibleBlock>. The implementation specifications are followed by
at least one instantiation of the form <instance>.

<fixedBlock> Describes a fixed block and has the form

BLOCK <name> <x> <y>

followed by zero or more descriptions of pins, each of which has the
form <fixedBlockPin>. <name> is the name of the implementation
and <x> and <y> its horizontal and vertical dimensions, respectively,
in /mi.
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<fixedBlockPin>

<blockPinType>

<flexibleBlock>

<flexibleBlockPin>

<instance>

has the form

<name> <x> <y> <blockPinType>.
<x> and <y> specifies the position of the pin as the distance from
the lower left corner of the block, in /zm.
Has one of four forms :

I <c>

0 <r> <d>

B <c> <r> <d>

I is an input pin (sink) and <c> its input capacitance. 0 is an output
pin (source), <r> its output driver resitance and <d> its internal block
delay. B is a bidirectional pin (i.e., has both capacitance, resistance
and internal block delay). 0 is a pin for which no type or electrical
specification is available. <c> values are in pF, <r> values in kft and
<d> values in ns.
Describes a flexible block and has the form

FLEXBLOCK <name> <area> <low> <high>
followed by zero or more descriptions of pins, each of which has the
form <flexibleBlockPin>. <name> is the name of the implementation
and <area> is its fixed area in /xm2. <low> and <high> specifies the
lower and upper bound on the aspect ratio of the implementation,
respectively.
has the form <name> <blockPinType>.
Instance specification of the form
INSTANCE <instName> <cellNameList>

where <instName> is the instance name and <cellNameList> is a

list of one or more names of alternative implementations separated by
spaces. Each listed name refers to a previously defined implementation,
which can be used to implement the instance. A flexible implementa
tion can only be instantiated once.

The instantiations are followed by a specification of zero or more nets, and then zero or more
paths. A path connects either two registers of distinct blocks or an IO-pin and a register, i.e.,
it is an alternating sequence of wires passing through blocks and net segments. For a sink
pin p, let rn(p) denote the block to which p belongs3 and let s(p) denote the source pin of the
net to which p belongs. Each path P is then uniquely specified by an ordered set of sink pins
P = {po,pi,...,pi-i} of distinct nets, such that m(p,) = m(s(pi+i)),i = 0,1,...,/ —2. s(p0)
or p/_i may be an 10 pin. Each net specification has the form <net> and each path specification
has the form <path>. The last path specification is followed by the keyword END, which is the
last word in <circuit>.cir.

3Ifp is an IO pin, m(p) is p itself.
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<net> A net specification of the form
NET <netName>

followed by an unordered list of two or more pin specifications of the
form <pinRef>. Each net has exactly one pin of type 0, which is the
unique source pin.

<pinRef> has one of two forms :
<instName> <pinName>
10 <pinName>
The first form specifies an instance and a pin in that instance. A pin
with name <pinName> has to exist in every implementation listed for
the instance <instName> when declaring it. The second form specifies
an IO-pin, i.e., a pin fisted in the IOPINS section.

<path> A path specification of the form
PATH <pathName>
followed by an ordered list of one or more pins of the form <pinRef>.
This specification follows the path definition above, i.e., each pin is a
sink pin of a distinct net, and the nets connects a sequence of blocks.
An IO-pin can only be the first or the last pin of a path. If a net
contains a pin of type @it can not be part of any path, sinceit is then
not possible to compute the path delay.

5.3 File <name>.log

A sample output logfile is shown in Appendix B. It contains the following information:

• Date and time of the start and end of the execution.

• An exact copy of the used parameter file <name>.par, thereby allowing the execution to be
reproduced. If the systemclock was used for initialization of the random number generator,
the actual seed value can also be found in the logfile, cf. Section 5.1.

• Main characteristics of the input floorplan problem <circuit>.cir, including number of
(flexible) cells, instances, pins, IO-pins, total instance area, etc. Information on net and
path sizes is also given.

• Total number of generations, cost evaluations and elapsed time.

• A Hst of the generations in which hillchmbing was performed, if the execution was non-
interactive.

If Explorer terminated normally, i.e., no error occurred, the last two fines of the logfile are

Explorer terminated normally <DateAndTime>
End of logfile
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5.4 Files <name><no>.pla

The generated <name><no>.pla files are intended to be read by a global router and the .pla-
file format is intentionally very similar to the input .cir-file. Therefore, the .pla-file format is
described in the following by describing all differences from the .cir-file format presented in
Section 5.2.

Is absent in the .pla files since Explorer has placed all blocks and IO-
pins such that this space requirement is satisfied.
Also absent sincethis specificationof relative IO-pin positions has been
replaced by absolute positions.
Since absolute pin positions are computed for all IO-pins, every pin
description has the form <fixedIOpin>, i.e., <flexibleIOpin> is never
used. Furthermore, in <fixedIOpin>, <x> and <y> are now absolute
positions in the layout, as opposed to relative positions.
Now has the form

FLEXBLOCK <name> <x> <y>

followed by descriptions of all pins, each of which has the form
<flexibleBlockPin> or <fixedBlockPin>. <x> and <y> is the hor
izontal and vertical dimensions of the block in fim, as computed by
Explorer. Each connected pin will have the form <fixedBlockPin>,
in which <x> and <y> is the position assigned to the pin by Ex
plorer. This position is an approximation only. Each pin is placed as
close as possible to the mass center of the net. Consequently, many
pins tend to be assigned to corners of blocks and multiple pins may
be assigned to the same location or may be too close. If a pin is not
connected, it will have the form <flexibleBlockPin>, i.e., its position
is still undetermined.
Now has the form

INSTANCE <instName> <cellName> <x> <y> <t>
<cellName> is the implementation of <instName> selected by Ex
plorer. Only implementations, which are selected for at least one in
stantiation, will appear in the .pla file. <x> and <y> is the absolute
position of the lower left corner of the instance after transformation of
the instance, as defined by <t>. The transformation <t> is an integer
in the interval from 0 to 7, as follows :
0 : no transformation

mirror in x and y axis
turn 90 degrees clockwise
turn 90 degrees clockwise, mirror in x and y axis
turn 90 degrees clockwise, mirror in y axis
turn 90 degrees clockwise, mirror in x axis
mirror in x axis

SPACING

lOARRAY, lOMINSPACE,

IOBLOCKINGS

IOPINS

<flexibleBlock>

<instance>

<net>

1

2

3

4

5

6

7 : mirror in y axis
Is as in xir file, except that each pin description now has the form
<netPin>.
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<netPin> Has one of four forms :

<instName> <pinName>
<instName> <pinName> CRITICAL
10 <pinName>
10 <pinName> CRITICAL
Each pin appears as in the input .cir file, except that the keyword
CRITICAL has been added to exactly one sink pin for each net. The
keyword indicates that the marked sink was used by Explorer as the
critical sink when routing the net using the SERT.C algorithm [1,4].
This information may be of use to a global router. For nets with only
one sink pin, the keyword CRITICAL is omitted.

5.5 File <name>Plot.tex

The output file <name>Plot.tex contains plots of the generated floorplan results. It is only
generated by Explorer if Explorer was installed following the procedure for systems having Latex
available, cf. Section 2. <name>Plot.tex isto be compiled using Latex and it can then beviewed
using e.g. xdvi. Each floorplan result in <name>Plot.tex appears asa Latex figure on a separate
page. The figure on page n corresponds to the floorplan result stored in file <name><n-l>.pla.
A sample figure from a <namoPlot.tex file is shown in Appendix C. Each cell on the figure is
labelled by the instance name followed by the cell name in brackets. Filled circles are IO-pins,
which are also labelled by their names. If routing congestion is optimized it is visualized on the
figure as follows: An open circle indicates the location of a routing graph edge, for which the
routing capacity was exceeded by more than the goal value. Hence, if no open circles are shown
on a figure (as in Appendix C), the routing congestion goal is satisfied everywhere, while an area
with many open circles indicates an unresolved congestion problem at that location in thecircuit.
The figure caption contains a name of the form <name>G<no>P<id>, where <name> is the
same name as used in the file name <name>Plot.tex, <no> is the number of generations of the
generating execution and <id> is the identity of this solution in the population. In addition,
the caption hsts the cost value for each optimized criterion. If applicable, the percentage of the
maximum path delay, which was caused by interconnect, is also given.

5.6 File <name>Result.m

The output file <name>Result.m is only generated if Explorer was installed following the proce
dure for systems having Matlab available, cf. Section 2. The file contains information on the final
cost tradeoffs obtained, stored in a form to be used within Matlab. In particular, the information
can be visualized using Matlabs facilities for plotting graphs.

A sample <name>Result.m file is shown in Appendix D. It contains eight Matlab vectors,
named <name><set><criterion>, where <set> is eitherAll or Front and <criterion> is either
Area, Ratio, Delay or Cong. The meaning of <set> and <criterion> are as in Table 4 and
Table 5, respectively. The i'th entry in vector <name><set><criterion> is the cost value for
<criterion> of the i'th solution in <set> in the final generation of the optimization process.
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The vectors are read into Matlab by simply typing the name <name>Result at the Matlab
command hne, and the tradeoffs of any pair or triple of cost criteria can then be visualized as
graphs. For example, if <name> is exp, a two-dimensional graph showing area versus delay
tradeoffs of all existing solutions after the final generation is obtained by the command

plot (expAHArea, expAHDelay,' o')
Similarly, the command

plot3(expFrontDelay, expFrontRatio, expFrontArea,»o»)
generates a three-dimensional graph showing the tradeoffs of delay versusaspect ratiodeviation

and area represented by the best ($o) solutions after the final generation. This subset of solutions
alsocorresponds to the solution set saved in the <name><no>.pla files and the <name>Plot.tex
file. For further use of the vectors within Matlab, the reader is referred to [14].

5.7 File <name>Stat.m

The output file <name>Stat.m is generated if and only if <name>Result.m is generated, and
as <name>Result.m, it contains Matlab vectors to be used within Matlab as described in Sec
tion 5.6. The information in <name>Stat.m captures main characteristics of the optimization
process itself. It can be used to generate two-dimensional graphs showing the development of
key quantities as functions of time, as described in the following.

<name>Stat.m contains a total of 14 Matlab vectors. Two of the vectors, <name>GenNo
and <name>ElapsedTime, can be used as the time axis in a graph. <name>GenNo[i] is the
i'th generation for which information is stored. The frequency of storing information is 100
generations. However, the first entry in <name>GenNo is always 0, corresponding to the point in
time immediately after generation of the initial population, and the last entry is always the last
performed generation, that is, it corresponds to the point in time immediately before termination
of the algorithm. <name>ElapsedTime[i] is the actual elapsed time in seconds spent up to
and including generation number <name>GenNo[i].

Each of the remaining 12 vectors described below specifies a quantity, which can be plotted as
a function of time. The i'th entry of each of these vectors specifies the value of that quantity at
time <name>GenNo[i], or equivalently, at time <name>ElapsedTime[i].

<name>FrontSize is the size of the subset Front, or $0, i-e., the number of solutions having
zero rank. Similarly, <name>ASize is the size of the subset A, or $ n Aj, i.e., the number of
feasible solutions. The vectors <name>AvgRank and <name>MaxRankspecifies the average and
maximum rank of solutions in the population, respectively.

Finally, eight vectors are named <name><criterion><Stat>, where <criterion> is either
Area, Ratio, Delay or Congand <Stat> is either Avg or St. <criterion> specifies an optimization
criterion as in Table 5, while the suffix Avg refers to average value and St refers to standard
deviation. Each vector specify either the average or the standard deviation of some cost criteria,
calculated over the complete population, i.e., the set All, or $. For example, <name>AreaSt [i]
is the standard deviation of area in the complete population at generation <name>GenNo[i].

Assume that <name> equals exp. As an example on how the file expStat.m can be used to
generate informative graphs in Matlab, the commands
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plot(expGenNo,expAvgRank)
hold

plot(expGenNo,expMaxRank)

will produce a graph showing the average as well as the maximum rank of the population as
functions of the generation number. Similarly, the command

plot(expElapsedTime,expDelayAvg)
will produce a graph of the average delay of solutions in the population as a function of actual

elapsed time.
In addition to graph generation as described in this and the preceding Section, the files

<name>Result.m and <name>Stat.m can be used in numerous other ways within Matlab to
further analyze both floorplan results and optimization processes, by utilizing other Matlab
capabilities. For example, sets of floorplan results from different executions of Explorer can be
compared, as well as different optimization processes, by using multiple <name>Result.m and/or
<name>Stat.m files simultaneously.

6 Organization of the C source code

This Section outlines the organization of the C source code. The purpose is to provide a basic
overview, which could be useful if one wishes to modify the implementation. Each source file is
listed below together with comments on its contents.

database.h Declarations of types and global variables used throughout the program.
databasex Definitions of global variables and routines used throughout the program,
main.c The main routine, outlining the top-level algorithm.

The following files constitute the GA-part of the code:

initPop.c Generation of the initial, random population
reproduce.c Performs one steady-state generation, i.e., selection for crossover, calls of

crossover and mutation and insertion of the result(s) into the population,
rank.c Maintains the rank of all solutions, corresponding to r($,<j>) in [4]. The

routine preferable() implements the preference relation denoted -< in [4].
orderCrossover.c Contains a generic routine for crossover on permutations of integers. This

is an implementation of the edge recombination operator presented in [12].
crossover.c All other crossover operators, including operators introduced in [2].
mutation.c All mutation operators,
optimize.c The hillclimber.
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The following files implements the decoder, i.e., the cost computation of asolution, as described
in Section 3.2 of [4].

routing.h

evalDelay.c

evalAreax

compact.c

pinPosition.c
steiner.c

congestions

Declarations of data structures used in evalDelay.c, pinPosition.c, steiner.c
and congestion.c
Contains the top-level decoder routine, Decode, and routines for computing
maximum path delay.
Computation of aspect ratios for flexible blocks and initial absolute place
ment of all blocks from a given slicing structure (Pohsh expression). Includes
Stockmeyers algorithm [10].
Compaction of the initial placement to obtain the final placement. Imple
ments a simplified version of the 1-dimensional compactor presented in [13].
Determines the absolute positions of all pins for a given placement.
Computes an Elmore-optimized Steiner tree for each net, embedded in the
global routing graph. The main algorithm is an implementation of the
SERT-C algorithm introduced in [1].
Contains routines to determine the maximum routing congestion by exam
ining the global routing graph. This graph is not explicitly constructed
in the implementation, but is implicitly represented by the data structure
netSegments.

I/O and communication with the Matlab process is implemented by the following group of files:

matlab.c

parFileParser.c
placeFileParser.c

latex,c

output.c

statistics.c

checks.c

Contains all C interface routines handling communication with the indepen
dent Matlab process.
Parser for the parameter file <name>.par
Parser for the input circuit file <circuit>.cir. Also constructs many data
structures.
Generation of the output file <name>Plot.tex
Generation of the output files <name><no>.pla
Collects statistics of the optimization process and generates the files
<name>.log, <name>Result.m and <name>Stat.m.
These routines are used for debugging only. They perform various inter
nal consistency checks of datastructures, and are activated by setting the
constant debugFlag in the file database.h to the value true.
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7 Questions and Comments

This software is made available AS IS with no obhgation of providing technical support. Neither
the Electronics Research Laboratory nor the University of California make any warranty about
the software, its performance or its conformity to any specification.

However, questions, comments, improvements and bug-reports are very welcome, and can be
sent to software@eecs.berkeley.edu or directly to

Henrik Esbensen

Avant! Corporation
1208 East Arques Avenue
Sunnyvale, CA 94086, USA
Email: HenrikJEsbensen@avanticorp.com
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A Sample <name>.par file

Explorer Parameter File

InputFileName = ami33F
RatioTarget =1.0

Interactive = no

DelayG = 0
AreaG • 0

RatioG » 0.2

CongG = 50

DelayF = infinity
AreaF =1.734

RatioF =0.5

CongF =400

TimeLimit = 3600

UseTimeAsSeed = no

RandSeed = 21420

PopSize = 40
MutRate = 0.0005

Bias =2.0

NoMoves = 10000

HillclimbFreq = 100000
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B Sample <name>.log file

Explorer Logfile

Explorer started Sun Dec 1 02:53:10 1996

Copy of the parameter file used:

Explorer Parameter File

InputFileName = ami33F
RatioTarget =1.0

Interactive = no

DelayG = 0

AreaG = 0

RatioG =0.2

CongG = 50

DelayF = infinity
AreaF = 1.734

RatioF =0.5

CongF =400

TimeLimit = 3600

UseTimeAsSeed = no

RandSeed = 21420

PopSize = 40

MutRate = 0.0005

Bias =2.0

NoMoves = 10000

HillclimbFreq = 100000

Problem characteristics:

Total no. of cells = 33

No. of flexible cells = 33

No. of instances = 33

No. of instantiations of flex, cells = 33
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Minimum total instance area = 1.156449 sq. mm

Pins :

IO-pins with fixed positions = 42
IO-pins placed automatically = 0
IO-pins, total = 42
Instance pins, total = 480

Connected pins, total = 522

Size of 10-array = 192 ( 16 x 12)
Blocked positions = 0
Occupied positions = 42 (fixed pins)
Available positions = 150 (for free pins)

No. of nets = 123

No. of nets with auto-placed IO-pins = 0

Net characteristics:

104 nets with 2 pins

10 nets with 3 pins
2 nets with 4 pins

1 nets with 9 pins

2 nets with 35 pins
1 nets with 44 pins

1 nets with 47 pins

1 nets with 50 pins

1 nets with 56 pins

No. of paths3 = 233

Path characteristics;:

133 paths with 1 segments

67 paths with 2 segments

14 paths with 3 segments

17 paths with 4 segments

1 paths with 6 segments

1 paths with 10 segments

Total number of generations = 34454
Total number of cost evaluations = 43259

Total elapsed time = 3616.0 seconds
Reason for termination: time limit exceeded

Hillclimbing was never performed

Explorer terminated normally Sun Dec 1 03:53:26 1996
End of logfile
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C Sample page of compiled <name>Plot.tex file

I
♦ iolO •iuOl •jo3( «iu3G •iolD tiulfl • iolOj •leH

Cl9(bk««(bkt?18(bkl7bq3(bk9|)

Oio21
CIO (bk5a)

C26 (bkl3)

C13 (bk21)

C32(bkl) <>io3
Oio2

io41

io40
iolO

iol7

<!fcl?bkl2

4io9

io8

low

C31 (bklOa) C15(bk?!l(bkl5p(bk3;>io23
C28(bkll)

C17 (bkl8)
<;30 (bklOb

oio6

>io5

io4

4io7

4io29

io22

io20
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mi (bkiei
L 29 (bklOft

C22 (bkl5a)

( 19 (bkl7j

C5 (bk8a)
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C14 (bk20)

C7 (bk6)
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io27

:4 (bk8b
io28
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Ke&r»io&0 •ioOl tie02 •

e7G34454Pl : Area
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Delay
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C8 (bk5c) Cll (bk4)
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ticjQ8 • ichIO • ie>37 • ie!M • io33

1.341 mm2
0.81

5.33 ns (interconnect: 16.3 %)
50.00 % excess

27



D Sample <name>Result.m file

e3AllArea = [ 1.344; 1.341; 1.306; 1.309; 1.368; 1.307; 1.314;
1.331; 1.315; 1.347; 1.308; 1.315; 1.335; 1.316;

]
e3AllRatio • [ 0.211; 0.192; 0.203; 0.201; 0.234; 0.202; 0.203;

0.190; 0.200; 0.220; 0.202; 0.202; 0.190; 0.205;

3
e3AllDeiay » [ 5.356; 5.325; 5.334; 5.334; 5.374; 5.331; 5.371;
5.331; 5.318; 5.322; 5.332; 5.353; 5.301; 5.368;

]
e3AllCong = [ 50.000; 50.000; 50.000; 50.000; 50.000; 50.000; 40.000;

50.000; 50.000; 50.000; 50.000; 50.000; 50.000; 60.000;

]
e3FrontArea = [ 1.344; 1.341; 1.306; 1.309; 1.368; 1.307; 1.314;

1.331; 1.315; 1.347; 1.308; 1.315; 1.335; 1.316;

]
e3FrontRatio • [ 0.211; 0.192; 0.203; 0.201; 0.234; 0.202; 0.203;

0.190; 0.200; 0.220; 0.202; 0.202; 0.190; 0.205;

]
e3FrontDelay = [ 5.356; 5.325; 5.334; 5.334; 5.374; 5.331; 5.371;
5.331; 5.318; 5.322; 5.332; 5.353; 5.301; 5^368;

]
e3FrontCong = [ 50.000; 50.000; 50.000; 50.000; 50.000; 50.000; 40.000;

50.000; 50.000; 50.000; 50.000; 50.000; 50.000; 60.000;

]

E Sample <name>Stat.m file

e6GenNo = [0; 100; 200; 300; 400; 500;]
e6ElapsedTime = [5.000; 16.000; 28.000; 39.000; 50.000; 61.000;]
e6FrontSize = [5; 12; 1; 1; 4; 1;]
e6AvgRank = [ 4.000; 1.925; 1.725; 2.525; 5.100; 6.375;]
e6MaxRank = [ 17; 5; 4; 4; 7; 9;]
e6ASize = [ 0; 0; 1; 1; 4; 6;]
e6AreaAvg = [ 2.932; 2.233; 2.041; 1.990; 1.900; 1.866;]
e6AreaSt = [ 0.504; 0.278; 0.238; 0.214; 0.145; 0.147;]
e6DelayAvg » [ 5.770; 5.649; 5.599; 5.578; 5.568; 5.557;]
e6DelaySt = [ 0.123; 0.086; 0.071; 0.068; 0.067; 0.066;]
e6RatioAvg = [ 0.466; 0.367; 0.338; 0.286; 0.300; 0.328;]
e6RatioSt = [ 0.419; 0.334; 0.282; 0.199; 0.231; 0.220;]
e6CongAvg = [ 57.583; 57.667; 45.750; 51.000; 44.750; 46.583;]
e6CongSt = [ 28.684; 32.670; 18.288; 22.782; 23.284; 23.752;]
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Abstract

An interactive floorplanner based on the genetic algo
rithm is presented. Layout area, aspect ratio, routing
congestion and maximum path delay are optimized si
multaneously. The design requirements are refined in
teractively as knowledge of the obtainable cost tradeoffs
is gained and a set of feasible solutions representing al
ternative, good tradeoffs is generated. Experimental re
sults illustrates the special features of the approach.

1 Introduction

When determining the floorplan of an integrated cir
cuit (IC) the objective is to find a solution which is
satisfactory with respect to a number of competing cri
teria. Most often specific constraints have to be met for
some criteria, while for others, a good tradeoff is wanted.
The approach taken by virtually all existing tools is to
minimize a weighted sum ofsome criteria subject to con
straints on others. I.e., if k criteria are considered, the
objective is to minimize the scalar-valued cost function

c= 2ZwiCi s. t. Vi = j + 1,...,&: Cj < Cf (1)

for some,;, 1 < j < k. Here c< is the cost of the solution
with respect to the i'th criterion and the u*'s and C,-'s
are user-defined weights and bounds, respectively.
However, at the floorplanning stage of the design pro
cess, the expected values of the cost criteria are based
on relatively rough estimations only. Furthermore, the
available information on obtainable tradeoffs, e.g. the
relationship between area and delay, is very limited or
non-existent. Since the notion of a "good" solution in
herently depends on which tradeoffs are actually obtain
able, the overall design objective is rarely clearly defin
able. Consequently, it may be very difficult to specify a
set of weight and bound values that makes a tool based
on the formulation (1) find a satisfactory solution.
Even when assuming a clear notion of the overall de
sign objective, the use of (1) causes serious difficulties :
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If the bounds are too loose, perhaps a better solution
could have been found, while if they are too tight, a so
lution may not be found at all. Furthermore, the mini
mum of a weighted sum can never correspond to a non-
convex point of the cost tradeoff surface, regardless of
the weights [5]. In other words, if the designers notion
of the "best'' solution corresponds to a non-dominated,
but non-convex point, it can never be found using (1).
Our work is motivated by the need to overcome these
fundamental problems. A floorplanning tool called Ex
plorer is presented, which performs explicit design space
exploration in the sense that 1) a set of alternative so
lutions rather than a single solution is generated and
2) solutions are characterized explicitly by a cost value
for each criterion instead of a single, aggregated cost
value. Explorer simultaneously minimizes layout area,
deviation from a target aspect ratio, routing congestion
and the maximum path delay. Guided interactively by
the user, Explorer searches for a set of alternative, good
solutions. The notion of a "good" solution is gradu
ally refined by the user as the optimization process pro
gresses and knowledge of obtainable tradeoffs is gained.
Consequently, no a priori knowledge of obtainable val
ues is required. From the output solution set, the user
ultimately chooses a specific solution representing the
preferred tradeoff. Since the use of (1) is abandoned
the above mentioned problems concerning weight and
bound specification are eliminated.

Explorer has three additional significant characteristics:
1) The maximum routing congestion is minimized,
thereby improving the likelihood that the generated
floorplans are routable without further modification.

2) The delay minimization is path based, while most
timing-driven floorplanning and placement approaches
are net-based and therefore may over-constrain the
problem [7].
3) Explorer is based on the genetic algorithm (GA),
since it is particularly wellsuited for (interactive) design
space exploration [6]. We are only aware of one previous
GA-based approach to floorplanning [2] which, however,
does not consider delay or routing congestion or explores
the design space.
The work presented in this paper is based on significant
extensions of the approach described in [3].



2 Problem Formulation

Section 2.1 presents our definition of the floorplanning
problem while Section 2.2 describes the specification of
a "good" solution.

2.1 The Floorplanning Problem

A floorplanning problem is specified by the following :

1) A set of blocks, each of which has k > 1 alternative
implementations. Each implementation is rectangular
and either fixed or flexible. For a fixed implementation,
the dimensions and exact pin locations are known. For a
flexible implementation, the area is given but the aspect
ratio and exact pin locations are unknown.

2) A specification of all nets and a set of paths. Capac
itances of sink pins, driver resistances of source pins,
internal block delays and capacity and resistance of the
interconnect is also needed to calculate path delays.

3) Technology information such as the number of rout
ing layers available on top of blocks and between blocks.

Each output solution is a specification of the following :

1) A selected implementation for each block.
2) For each selected flexible implementation t, its
dimensions «?,- and hi such that tu,A,- = A{ and
/,• < hi/wi < Ui,where A{ is the given area of implemen
tation i anH U and u< are given bounds on the aspect
ratio of t, which is assumed to be continuous.

3) An absolute position of each block so that no pair
of blocks are closer than a specified minimum distance.
Since multi-layer designs are considered, it is assumed
that a significant part of the routing is performed on
top of the blocks.

4) An orientation and reflection ofeach block. The term
orientation of a block refers to a possible 90 degree rota
tion, while reflection refers to the possibility of mirroring
the block around a horizontal and/or a vertical axis.

IO-pins/pads are also handled by Explorer, but for
brevity this aspect is not discussed.

2.2 What is a "Good" Tradeoff ?

Let H be the set of all floorplans and ft+ = [0,oo[.
The cost of a solution is defined by the vector-valued
function c:IIi-» $t\, c(x) = (c(x)i,c(x)2,c(x)3,c(x)4),
which will be described in Section 3.2. This Section
describes how to specify what a "good" cost tradeoff is,
and how to compare the cost of two solutions without
resorting to a scalar-valued cost measure.
Instead of weights and bounds, the user defines
a goal and feasibility vector pair (g. f) € G, where
G= {(gJ) € ^eo x RJ^ | Vi:9i < /.-}, *+oo = [0,oo].
For the i'th criterion, £»• is the maximum value wanted,
if obtainable, while /,• specifies a limit beyond which
solutions are of no interest. For example, the 3'rd cri
terion minimized by Explorer is path delay. g^ = b and
/3 = 18 states that a delay of 5 or less is wanted, if it
can be obtained, while a delay exceeding 18 is unaccept
able. A delay between 5 and 18 is acceptable, although
not as good as hoped for.

*6

infeasible solutions

Af: acceptable solutions

Sg: satisfactory
solutions

(0,0) criterion1 Z\ t\

Figure 1: The sets of satisfactory and acceptable solu
tions, illustrated in two dimensions.

For (gj) € G, let Sg = {x GII | Vi : c(x),- < gi] and
Aj = {x € II | Vi: c(x)i < /,} be the set of satisfac
tory and acceptable solutions, respectively, cf. Fig. 1.
Sg C Aj C II, i.e., a satisfactory solution is also accept
able. The values specified by (</,/) are merely used
to guide the search process and in contrast to tradi
tional, user-specified bounds, need not be obtainable.
Furthermore, as will be discussed in detail in Section 3.3,
(ffi/) are defined interactively at runtime. Therefore,
the specification of the (g, f) vectors do not cause any
of the practical problems caused by traditional weights
and bounds, cf. Section 1.

In order for the algorithm to compare solutions, a notion
of relative solution quality is needed, which takes the
goal and feasibility vectors into account. Let x, y € II.
Then x dominates y, written x <«* y, if and only if
(V i: c(x)i < c{y)i) A(3 i: c(x),- < c(y)i). For a given
\9»/) € G the relation x is preferable to y, written
x -< y, is then defined as follows, depending on how
c(x) compares to g : If x satisfy all goals, i.e., x € Sg,
then

x-<y & (x<dy)V(y<ZSg) (2)

If x satisfies none of the goals, i.e., Vi: c(x)i > gi then

x^y «* (x<dy)v[(xeAf)A{y&Aj)) (3)

Finally, x may satisfy some but not all goals. Assum
ing a convenient ordering of the optimization criteria,
3k: (Vi < Jb: c(x),- < gi) A(V i > k: c(x)t- > gi). Then
x -< y if and only if

[(V i > k : c(x)i < c(y)i) A{3i>k: c(x)t- < c(y)i)] (4)
V

[(xeAJ)A(y$AJ)] (5)
V

[(VJ>Jb:c(x),=c(y)i)A (6)
{((Vi<k:c(x)i<c(y)i)A (7)

(3t<fc:c(x)i<c(y),))
V

(3i<k:c(y)i>9i)}] (8)



This definition of -< assures that a satisfactory solution
is always preferable to a non-satisfactory solution and
an acceptable solution is always preferable to an unac
ceptable solution. Furthermore, from (4) it follows that
when two solutions satisfy the same subset of goals, they
are considered equal with respect to these goals, regard
less of their specific values in these dimensions. Hence,
when goals are satisfied, they are "factored out", focus
ing the search on the remaining, unsatisfactory dimen
sions.

The above definition of -< is introduced in [4] and ex
tends the definition first introduced in [6] by adding the
feasibility vector / and the concept of acceptable solu
tions.

Using -< the solutions of a given set 4> can be
ranked : r(0,$) = \{y £ $\f -< <t>}\ is the rank of
0 with respect to 3>, i.e., the number of solutions
in $ which are preferable to <j). Furthermore, let
$0 = {(f) £ <t>|r(0,4) = 0} C $, i.e., <E>o is the subset of
best solutions in <J> with respect to -<. Explorer outputs
a set of distinct rank zero solutions $o, i.e., the best
found cost tradeoffs. As a special case, if g = (0,0,0,0)
and / = (oo, oo, oo, oo) the algorithm searches for (a
sample of) the Pareto-optimal set.

3 Description of Explorer

An overview of the GA used in Explorer is given in
Section 3.1, while Section 3.2 focus on the key issue of
the algorithm : the representation of a floorplan and its
interpretation, as defined by the decoder. Section 3.3
describes how the user controls the optimization pro
cess interactively. For brevity, familiarity with GAs is
assumed. An introduction to GAs can be found in [8].

3.1 Overview of Algorithm

The specific GA used in Explorer is outlined in Fig. 2.
The population $ = {<£o, <£i, •• •» <f>N-i] is initially con
structed by routine generate (line 1) from random in
dividuals. One iteration of the repeat loop (lines 2-12)
corresponds to the simulation of one generation.

In each generation, two parent individuals <j!>i and fa are
selected for crossover (line 3). Each parent is selected at
random with a probability inversely proportional to its
rank, thereby enforcing the principle of survival-of-the-
fittest. The crossover operator generates the offspring ip
(line 4), which is then subjected to random changes by
routine mutate (line 5) and inserted into 4> by routine
insert (line 6), replacing a poor solution. The insertion
scheme ensures that a solution tfr can never replace (j> if
<f> -< t/>. Hence, in the sense inferred by -< the set of best
solutions $o is monotonically improving.

There are four types of interaction through the graph
ical user interface, gui (lines 7, 9, 11, 12). The update
and optimization operations (lines 7-8 and 9-10) as well
as the display function (line 11) are described in Sec
tion 3.3. The optimization process continues until the
user selects termination (line 12), at which time 4>o is
the output set of solutions (line 13).

01 generate (O);
02 repeat :
03 select <f>i,<f>2 € $;
04 crossover(<£i, fa, 4>);
05 mutate (i/>);
06 insert($, t/>);
07 if gui(update) :
08 adjust (flf,/);
09 if gui(optimize) :
10 hfflchmber(&M0'./'))?
11 gui(display);
12 until gui(terminate);
13 output $o;

Figure 2: Outline of the algorithm.

3.2 Representation and Decoder
The representation of a floorplan having 6 blocksconsist
of five components a) through e) :
a) A string of 6 integers specifying the selected imple
mentations of all blocks. The i'th integer identifies the
implementation selected for the i'th block.
b) A string of real values specifying aspect ratios of se
lected flexible implementations. The i'th value specifies
the aspect ratio of the i'th selected flexible implemen
tation.

c) An inverse Polish expression of length 26 —1 over
the alphabet {0,1,...,6- 1,+,*}. The operands
0,1,..., 6-1 denotes block identities and +, * are opera
tors. The expression uniquely specifies a slicing-tree for
the floorplan, as first introduced in [11], with + and *
denoting a horizontal and a vertical slice, respectively.
d) A bitstring oflength 26 representing the reflection of
all blocks. The reflection of the i'th block is specified
by bits 2i and 2i + 1.
e) A string of integers specifying a critical sink for each
net, used when routing the nets. The i'th integer iden
tifies the critical sink of the i'th net.

Given a representation of the above form, the de
coder computes the corresponding floorplan and its cost
C= (Carca, Cratio, Cdelay, Ccong) in eight Steps as follows !
1) The dimensions of each selected flexible block is com
puted from its aspect ratio and its fixed area. The di
mensions of all blocks are then known.

2) From the slicing-tree specified by the Polish expres
sion the orientation of each block is determined such
that layout area is minimized. An algorithm by Stock
meyer [10] is used, guaranteeing a minimum area layout
for the given slicing-structure.

3) Absolute coordinates are determined for all blocks by
a top-down traversal of the slicing-tree.

4) The layout is compacted, first vertically and then
horizontally. The area carea is computed as t\\e smallest



rectangle enclosing all blocks and the aspect ratio cost
is computed as Cratio =factual - rtarget\, where ractua,
is the actual aspect ratio of the layout and rtarget is a
user-defined target aspect ratio. Fig. 3 illustrates the
first four steps of the decoding process.
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Figure 3: Given 10 blocks and the Polish expression
12 + 6*90 + + 34 + +5*78 + *, the floorplan
on the left is the result of step 3. No blocks are moved
when attempting vertical compaction, but subsequent
horizontal compaction moves blocks 8,7,5,9 and 0 to
wards the left, so that blocks 2,6,7 now determine the
width of the layout. The floorplan to the right is the
result of compaction (step 4).

5) A global routing graph G = (V, E) is constructed,
forming a uniformly spaced lattice, covering the layout.
Each pin is then assigned to the closest vertex in V.
When computing this assignment, the exact pin loca
tions are used for pins of fixed implementations, while
pins of flexible implementations are assumed to be lo
cated at the center of the block.

6) The topology of each net is approximated by a Steiner
tree embedded in G. Each Steiner tree is computed inde
pendently by the SERT-C algorithm ("Steiner Elmore
Routing Tree with identified Critical sink") introduced
in [ll. For each net, SERT-C minimizes the Elmore de
lay from the source to the critical sink specified by the
representation.

7) The maximum path delay Cdelay is determined by
computing all path delays. For each net segment of a
path, its Elmore delay is calculated in the correspond
ing Elmore-optimized Steiner tree and the appropriate
internal block delays are added to obtain the total path
delay. Since the Steiner trees are a very accurate estima
tion of the net topologies, Cdelay is an accurate estimate.

8) The maximum routing congestion is estimated as

-cong = 100 x max max

usage(e) —cap(e)
cap(e)

where cap(e) denotes the capacity of edge e (depending
on possibie blocks at that location) and usage(e) is the
number of nets using e. I.e., ccong is the maximum per
centage by w\v\c\\ an edge capacity has been exceeded.
The smallerccong is, the fewer nets needs to be rerouted
to obtain 100% global routing completion.

The crossover operator as well as the mutation operator
(lines 4 and 5 of Fig. 2) operates on each of the five
components of the representation independently. While
the Polish expressions are handled by highly specialized
operators introduced in [2], the remaining components
are handled by standard operators extensively studied
in the GA literature and described in e.g. [8].

A crucial property obtained by the representation, the
decoder and the genetic operators is that feasibility is
preserved. I.e., only feasible representations, which can
be interpreted by the decoder, are ever generated.

3.3 Interactive Control of the Search

Explorer provides the user with continuously updated
information on the current state of the optimization
(line 11 of Fig. 2). The information is visualized in
the form of graphs showing the cost tradeoffs of the so
lutions obtained so far. An example graph is shown in
Fig. 4. Based on this information the user can alter the
optimization process at any time as described in the
following.

100
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40

20J "«

D»lay(ns Area (mm2)

Figure 4: An example graph showing 3 dimensions of
a set of current best solutions. All solutions are non-
dominated in the ^-dimensional cost space.

As the optimization progresses and knowledge of ob
tainable cost tradeoffs is gained, the user can adjust
the values of (g, f) (lines 7 and 8 of Fig. 2), thereby
re-defining the notions of satisfactory and acceptable
solutions. When doing so, the ranking of all solutions
will be updated, which in turn affects the selection for
crossover, i.e., the sampling of the search space. Con
sequently, when re-defining (g, /), the focus of the ex
ploration process will change accordingly, allowing the
user to "zoom in" on the desired region of the space.

The user can also execute a hillclimber on a specified
individual 6 (lines 9 and 10 of Fig. 2). The hillclimber
simply tries a sequence of k mutations on </>. Each mu
tation yielding 4>' from (f) is performed if and only if
->(<p -< <£'). The hillclimber also takes a goal and feasi
bility vector pair (g', /') as argument, which defines the



preference relation -< to use when deciding which mu
tations to actually perform. This allows hillclimbing to
be direction-oriented in the cost space.

4 Experimental Results
It is inherently difficult to fairly compare our 4-dimen-
sional optimization approach generating a solution set
to existing 1-dimensional approaches generating a single
solution. However, comparisons to simulated annealing
and random search have been established.

4.1 Test Examples and Method

The characteristics of five of the circuits used for eval
uation are given in Table 1. xeroxF, hpF, ami33F and
ami49F are constructed from the CBL/NCSU building-
block benchmarks xerox, hp, ami33 and ami49, respec
tively, aiming at minimal alterations of the original spec
ifications. All blocks are defined as flexible and the re
quired timing information is added. spertF is an MCM
designed at the International Computer Science Insti
tute in Berkeley, California.

Circuit Type Blocks Pins Nets Paths

xeroxF IC 10 698 203 86

hpF IC 11 309 83 88

umi33F IC 33 522 123 230

ami49F IC 49 953 408 116

spertF MCM 20 1.168 248 574

Table 1: Main characteristics of test examples.

Explorer is implemented in C and executed on a DEC
5000/125 workstation. Performance is compared to that
of a simulated annealing algorithm, denoted SA, and a
random walk, denoted RW. Both algorithms uses the
same floorplan representation and decoder as Explorer.
The RW simply generates representations at random,
decodes them and stores the best solutions ever found
(in the -< sense). The SA generates moves using the
mutation operator of Explorer and the cooling schedule
is implemented following [9].
Since RW does not rely on cost comparisons, it can use
the same 4-dimensional cost function as Explorer, al
lowing the two approaches to be directly compared. In
contrast, the traditional SA algorithm relies on absolute
quantification of change of cost, which therefore has to
be a scalar. Using a SA cost function of the form (1), it
is far from clear now to fairly compare the single solu
tion output by the SA algorithm to the set of solutions
output by Explorer. Therefore, comparisons of Explorer
to SA is based on optimizing one criterion only, in which
case the output of Explorer reduces to a single solution.

4.2 One-Dimensional Optimization
One-dimensional optimization for area and delay was
performed, for which Explorer uses the goal vectors
g = (0, oo, oo, oo) and g = (oo, oo, 0, oo), respectively.
Explorer is executed non-interactively.

Fig. 5 illustrates the results. For each circuit and each
of the two criteria, the three algorithms was executed 10

1.00

0.95

CO

0.85

area delay area delay area delay area delay area delay

Figure 5: Comparison of the performance of Explorer,
SA and RW for one-dimensional optimization.

times each and the result indicated by a bar. The center
point of each bar indicates the average result obtained
in the 10 runs and the height of each bar is two times
the standard deviation. For each circuit and criterion,
the average result of RW is normalized to 1.00.

The SA was executed first, and the consumed average
CPU-time enforced on Explorer and RW as a CPU-time
limit. The exact same average time consumption is thus
obtained for all algorithms, at the cost of giving the SA
approach an advantage. Average CPU-time per run var
ied from 39 seconds for area optimization of xeroxF to
about 65 minutes for delay optimization of ami49F. As
expected, both Explorer and SA performs significantly
better than RW in all cases. Overall, the performance
of Explorer and SA is very similar, indicating that the
efficiency of the genetic algorithm used by Explorer is
comparable to that of SA.

4.3 Four-Dimensional Optimization

Optimizing all four criteria simultaneously, interactive
and non-interactive executions of Explorer are com
pared to RW. Explorer uses the target aspect ratio
''target — 1«0, the goal vector g = (0,0.2,0,50) and the
feasibility vector / = (1.5B, 0.5, oo, 400), where B is the
sum of the areas of all blocks of the circuit in ques
tion. For each circuit, RW is executed 10 times using
a 5 CPU-hour time limit. In non-interactive mode, Ex
plorer is also executed 10 times per circuit, but using a
1 CPU-hour limit. In interactive mode, a single execu
tion was performed for each circuit, defining the time
limit as 1 hour, wall-clock time, i.e., including the time
spent using the interface.

The results are shown in Table 2. The set quality values
are obtained using the set quality measure introduced
in [4], which accounts for the (g, f) values specified.
A smaller value means a higher quality. The output
sets obtained by Explorer in 1 hour are always signifi
cantly better than those obtained by RW in 5 hours.
But more interestingly, all of the five sample execu-



Circuit

Output set size Set quality
interact non-interact RW interact non-interact RW

xeroxF

hpF
ami33F

ami49F

spertF

40

40

21

21

10

39.5 (1.6)
39.6 (1.0)
34.0 (11.1)
36.2 (4.2)
39.7 (0.7)

49.3 (10.1)
59.1 (14.5)
9.7 (3.9)

11.4 (4.5)
57.2 (17.0)

0.572

0.605

0.690

0.641

0.096

0.741 (0.073)
0.638 (0.033)
0.759 (0.058)
0.676 (0.093)
1.886 (0.640)

0.888 (0.045)
0.822 (0.029)
1.152 (0.048)
1.197 (0.052)
2.178 (0.010)

Table
plorer
the value in brackets is the standard deviation. For Explorer, the output set size is limited to 40.

2: Performance comparison ofthe interactive ('interact*) and non-interactive ('non-interact') modes of Ex-
' and the RW. Each entry for RW and the non-tnteractive mode of Explorer is the average value obtained and

tions of Explorer in interactive mode yields better re
sults than the average non-interactive execution. Fur
thermore, the number of decodings performed in inter
active mode averages only about 78 % of that of the
non-interactive mode because of the idling processor
during user-interaction. Hence, using Explorer inter
actively significantly improves the search efficiency.
This performance gain is especially significant for the
spertF layout. Feasible solutions were obtained inter
actively by executing direction-oriented hillclimbing on
solutions outside but close to Aj. Only one of the sets
generated non-interactivelycontained feasible solutions.

5 Conclusions

An interactive floorplanner based on the genetic algo
rithm has been presented, which minimizes area, path
delay and routing congestion while attempting to meet
a target aspect ratio. The keyfeature is the explicit de
sign space exploration performed, which results in the
generation of a solution set representinggood, alterna
tive cost tradeoffs.

The inherent problem of existing approaches wrt. speci
fication ofsuitableweights and bounds issolved byelim
inating these quantities, and the need for iterations of
floorplanning and global routing is significantly reduced
by explicitly minimizingrouting congestion.
The experimental work includes results for a real-world
design. It is shown that the efficiency of the search pro
cess is comparable to that of simulated annealing and
the requiredruntime is very reasonable from a practical
point of view. Furthermore, the mechanisms provided
for user-interaction are observed to improve the search
efficiency significantly over non-interactive executions.
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