

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

LEARNING CONTROLLERS FOR COMPLEX

BEHAVIORAL SYSTEMS

by

Lara S. Crawford and S. Shankar Sastry

Memorandum No. UCB/ERL M96/73

3 December 1996

LEARNING CONTROLLERS FOR COMPLEX

BEHAVIORAL SYSTEMS

by

Lara S. Crawford and S. Shankar Sastry

Memorandum No. UCB/ERL M96/73

3 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Learning Controllers for Complex Behavioral Systems5

Lara S. Crawford

Graduate Group in Biophysics
and

S. Shankar Sastry
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

Abstract

Biological controlsystems routinely guide complex dynamical systemsthrough com
plicated tasks such as running or diving. Conventional control techniques, however,
stumble with these problems, which have complex dynamics, many degrees of freedom,
and a task which is often only partially specified (e.g., "moveforward fast," or "execute
a one-and-one-half-somersault dive"). To address problems like these, we are using a
biologically-inspired, hierarchical control structure, in which controllers composed of
radial basis function networks learn the controls required at each level of the hierar
chy. Through learning and proper encoding of behaviors and controls, some of these
difficulties in controlling complex systems can be overcome.

'This research was supported in part by ARO under grants DAAL03-91-G0171, DAAH04-94-G0211.
DAAH04-95-05888, and MURI DAAH04-96-1-0341.

1 Introduction

Biological control systems do amazing things. In particular, biological organisms can coor
dinate the motions ofmany degrees offreedom to accomplish a complex task with apparent
ease and can readily learn new patterns of coordination. The inherent complexity of the
dynamics ofa system such as a humanoid performing a typical behavior, as well as the high
dimensionality, are prohibitive for conventional engineering control schemes. These methods
generally rely on having a detailed model ofthe system, which is an inconvenient assumption
in complex systems like a humanoid. Also, traditional methods generally assume an a priori
desired trajectory, which then raises the issue of path planning. The goal of our work is to
develop new control approaches for complex systems like humanoids to produce a desired
behavior. The desired behavior is specified as a natural verbal criterion such as "move for
ward without falling over" for walking, or "execute a full twisting one-and-a-half somersault
dive," for platform diving. As the equations of motion for these systems are prohibitively
long and complex, we have used the SD/FAST software package (Symbolic Dynamics, Inc.
[19]), which uses Kane's formulation, for our simulations.

Our approach for dealing with the complexity of the control problem is inspired by
biological systems. First, our controller design has a hierarchical structure which simplifies
the control task at each level. The control structure is hybrid in nature; the controllers at
each level of the hierarchy compute continuous functions, but their output is decoded into
discrete control actions, which then act on the continuous dynamical system. As typically
studied, hybrid systems generally have one discrete part and one continuous part, whereas
here we have continuous controllers producing discretized controls which act on continuous
systems. Finally, the controllers themselves are not preconstructed, but rather learn which
controls should be applied to produce the desired actions.

Currently, our control system is open-loop. The system can, through experience and rep
etition, build up an internal model relating the desired movements to the appropriate control
signals. The learning controller can take on many forms; here, we have chosen radial basis
function networks. The lower hierarchical levels can be trained by a modified supervised
learningalgorithm, while the complexity of the task facing the higher levels will require a re
inforcement learning approach. Fora more robust (and more realistic from a biological point
of view) system, though, feedback will be required. In biological systems learning complex
new tasks, a progression from a tightly-regulated, closed-loop form of control to open-loop
control is often seen as the feed-forward controller becomes more accurate. Understanding
control systems of this type is part of an ongoing project; currently, our aim is to understand
the feed-forward portions of the controls and how they can be learned.

This paper is organized as follows. In Section 2, we present the diving problem as
an example of the type of problem discussed above. We describe our controller design in
Section 3, and present our learning algorithms and some preliminary results in Section 4.

2 The Diving Problem

The problem on which we are testing our control designs is that of a human platform diver.
The control problem for the diver is as follows: given fixed initial conditions (after leav
ing the board), execute a certain maneuver (a full twisting one-and-a-half somersault, for
example), and then enter the water in a fully extended, vertical position (see [2]). There
is no particular desired trajectory specified. This problem has several interesting features.
After the diver has left the board, he is subject to angular momentum conservation, which
creates a nonholonomic constraint. The diver leaves the board with some initial (non-zero)
angular momentum, however, so the system has drift. The drift velocity depends on the
configuration of the diver. Since the diver is falling while executing the maneuver, there is a
predetermined length of time in which the controls can act. Since the diver generally starts
with his momentum totally in the somersault direction, he needs to execute a "throwing"
maneuver with his arms to initiate twisting (see [9]). We are currently simulating a diver
with ten degrees of freedom in the joints: three in each shoulder, one at each elbow, and one
at each hip.

Although much work has been done recently on the control and steering of nonholonomic
systems, most of it has been for drift-free systems (for a survey, see [23]). Some specific
cases with drift have been addressed ([6]; [24]; [10], e.g.), but very little work exists con
cerning general systems with drift. Other control approaches to problems like this include
that of Hodgins and Raibert [18] and Wooten and Hodgins [32], who divide complicated
movements into states of a finite state machine; within each state, motions are regulated by
PD controllers. There are some learningapproaches to problemsof this type in the literature
as well: Gorinevsky, Kapitanovsky, and Goldenberg [13] use radial basis functions to learn
the controls for steering a space platform with an arm, and Bertsekas and Tsitsiklis [3] use
neurodynamic programming to learn to control discrete systems.

We have tested some conventional techniques on a planar, two-joint simplification of
the diver model, but these proved unsatisfactory even for the simplified system. A simple
learning algorithm applied to the planar diver was more promising (see [8]), and led to our
continued work on learning controllers described here. We are also involved in an effort to
develop new path-planning methods for nonholonomic systems with drift [11].

3 Learning Controller Architecture

Indesigning a controller, we have taken some inspiration from biological systems, theoriginal
learning controllers. For example, biological systems deal with dynamic complexity through
hierarchical organization, with different parts of the motor control system performing dif
ferent functions (see Figure 1). Our learning controller, shown schematically in Figure 2,
is also hierarchical in design. The coordinating controller and the single-degree-of-freedom
(single-DOF) controllers all operate in the discrete-time domain, while the plant, a mechan
ical system, operates in continuous time. The links between the regimes are provided by
the decoders, which convert the joint control signals into torques, and the encoder, which

RP

R
m

Rn

RP

Sensorimotor
Cortex

Cerebellum, Brain
Stem, etc.

Spinal Cord

Muscle Dynamics

Slow, voluntary responses;
plan selection

Coordination, optimization,
guidance

Regulation, reflexes,
pattern generation

Force production

Figure 1: Hierarchy in vertebrate motor control.

state

information
desired

movement

parametrization

current

joint
information

coordinating
controller

start times,
tuning parameters

single-DOF
• • • controllers

joint control torque
parametrizations

• • • decoders

joint
torques

movement

parametrization

Figure 2: Schematic of a general hierarchical learning controller.

tuning inputs vd:
AOd,A0d,Td

single-
DOF

controller

sensory input \s:

controls u:

pulse widths,
heights

PWM: pw,, pw2, ph

PHM: ph,,ph2,pw

decoder

•Tr joint
torque

Figure 3: Closeup of a single-DOF controller.

converts the resulting motion into a movement parametrization. In general, this movement
representation could include parameters such as the total distance moved forward, total num
ber of rotations about some axis, or total movement time; the representation will depend on
the important features of the type of movement being controlled. The controllers together
with the decoder, the plant, and the encoder form a hybrid system.

3.1 Single-DOF Controllers

The single-DOF controllers take as input a vector in Rm from the higher-level coordinating
controller, together with some current joint sensor information, and produce an output vec
tor in R" defining the joint torque profile. To design the joint control torque parametrization,
we again turn to biology for direction. In a behavioral task such as diving, controls which
produce a desired behavior are often nonunique, so some restriction of the allowed controls is
needed. At low levels of the control hierarchy, biological systems accomplish this restriction
through pattern generators. These relatively simple neural networks produce stereotypical
bursting patterns which can be tuned by descending commands (i.e., signals from higher
hierarchical levels). It has been known for some time that rhythmic movements like walk
ing, swimming, breathing, and chewing are controlled in many animals by periodic pattern
generators (for a review, see [15]). More recently, several investigators have found evidence
for the existence of low-level controllers in fast, goal-directed, single-joint movements (see,
for example, [14]). In the model proposed by Gottlieb, Corcos, and Agarwal in [14], the
low-level controller is a pulse generator which produces square activation pulses as inputs to
the motoneuron pool. Such a controller would produce the stereotypical patterns often seen
in fast, single-joint movements, which are identifiable by their torque, velocity, and double-

or triple-burst EMG profiles. Thus, higher levels in the biological control hierarchy can
choose, via tuning, only among the family ofcontrols put out by the pattern generator. The
parametrization of possible controls also provides a compact representation of the controls,
which allows efficient storage and communication between hierarchical levels.

The single-DOF controllers and decoders we have chosen (see Figure 3) play the role of
the pattern generators. They receive the desired change in joint angle and velocity and the
desired movement time ((A0d, A9d,Td) = vd) as tuning parameters from the coordinating
controller. The low-level controllers are required to compensate for some of the initial con
ditions on the joint, so the single-DOF controller takes as parameters the initial velocity
of the DOF and the initial effective external torque acting on that DOF, (0o,t) = vs. We
can then consider each single-DOF controller to be an element ofa two-dimensional space of
controllers indexed by v8. For each movement, the appropriate controllerfrom this controller
space is selected based on the sensory input. These sensory signals would be provided by
information from joint sensors analogous to the stretch receptors and Golgi tendon organs
of biological systems.

As thereare three free inputs, the control family should have threespecifiable parameters,
to allow sufficient movement richness while maintaininguniqueness of the controls. Basedon
the model above, we have chosen torque profiles consisting of two square pulses, as indicated
in Figure 3. As these torque profiles have four obvious parameters, namely the pulse heights
and widths for the two pulses, we use another idea from [14] to restrict the control family.
There, it is hypothesized that the motor control system uses two different control schemes in
different conditions, pulse height modulation (PHM) and pulse width modulation (PWM).
In our controller design, therefore, the PWM strategy, which we have chosen to apply for
movement timeslargerthan some critical timeTcriu requires the pulses' heights to be ofequal
magnitude and opposite direction, while in PHM (Td < Tcrit), the pulses' widths are equal.
Thus there are three control parameters to be specified in either control strategy, one pulse
height and two pulse widths in the PWM case, and one pulse width and two heights in the
PHM case. Thus for PWM, u = (pwl5 pw2, ph) (where the sign of the pulse widths indicates
the pulse direction), and for PHM, u = (phl5ph2,pw). We have currently implemented
two separate controllers for each single-DOF controller, one for the PHM regime and one
for the PWM regime, for ease of learning. A switch based on the value of Td determines
which controller is active. The decoder interface converts the output vector of the controller
into the two-pulse pattern, which is reminiscent of both bang-bang control and the EMG
profile mentioned above. In the future, we may apply a filter to these torques, in analogy to
the filtering action of the motoneuron pool, which would produce more biologically realistic
torque profiles. The output of a single DOF in the plant is represented by a single-joint
encoder as a vector in Rm, vp = (A0,A0,T). In between feed-forward movements, a PD
controller is switched on to keep the joints from drifting. Joint limits are also enforced by
stiffPD controllers which become active at the boundaries of the joint's angle range.

desired

movement

parametrization yd:

<fcd,4>t«i,k«i,eii,E«»

coordinating

controller

state y :

synergy inputs v.
s,A9d,A&d,Td,a, ts

behavioral synergies

single-DOF controller

Minimi Xflzr"v
Figure 4: Closeup of the coordinating controller. Dotted arrow signifies sampled updating.

3.2 Coordinating Controller

The design of our proposed coordinating controller was also inspired by biology. Various
researchers have shown that the most important piece of information for humans learning
new, complex tasks is the relative timing between the different movement segments or the
phasing between continuous movements (see, e.g., [31]; [28]; [21], Ch. 1). Thus, complex
skills can be learned by combining more basic movement building blocks in an appropriate
way. It is also the impression of athletes learning complex skills, like dives, that once they
learn the basic building blocks, such as how to start dive rotation and how to pull out of a
dive, they can learn different new skills by simply learning how to put the pieces together.

In our design, the coordinating controller takes as input the desired movement parametriza
tion, a vector in Rp, as well as some state information, and and is required to output the
tuning inputs for each single-DOF controller (see Figure 4). To simplify the task of the
controller, we define multi-DOF synergies, or behaviors, appropriate to the desired class of
movements, such as "pike" or "throw" (the arm motion that initiates twisting) for the diving
problem. The controller need only specify the synergy s to activate, the tuning parameters
for one single-DOF controller in the synergetic group, coupling parameters a determining
the relative amplitudes of motion of the other DOFs in the synergy, and the time to wait
before executing the synergy ts. To simplify learning (see Section 4), the controller must
activate only one synergy at a time, and thus essentially acts like a state machine, with the
states corresponding to the behaviors being executed. We have also assumed, for simplicity,
that 6d will always equal zerofor all degrees of freedom. This couplingreduces the number of
degrees of freedom the coordinator needs to controldirectly. Biological systems show similar
synergetic coupling. In pointing movements involving both the elbow and the shoulder, for

example, the velocity profiles are identical for movements in which the two jointsare required
to rotate in the same or opposite directions; only the signs and relative amplitudes change.
In the future, the coordinating controller may also have some control over the diver's initial
conditions.

We have initially chosen a movement representation (encoder) which specifies the total
angle of rotation in the somersault and twist directions (these are unambiguous since we
can assume that rotation in the "cartwheel" direction will be small), how tight a pike the
diver executed, the squared error of the joint angles from the desired final entry position,
and an estimate of the total energy expended in the dive (yp = ((f>s,<j)uk,e,E)). Other
variations on this type of parametrization are possible, of course (c.f. [7]). In the future,
we may be required to add more parameters for stylistic considerations or to reduce the
number of possible solutions. The state information supplied to the controllerconsists of the
current somersault angle, somersault velocity, twist angle, twist velocity, time, and all ten
joint angles (ys = (<f)s,<t>s,<l)t,<t>ut,0)). (To reduce the state space, we have assumed that 0
is always near zero at the end of the movement, corresponding with our assumption 9d = 0
above.) The state information is updated only at the completion of a synergetic motion.
The infrequent update of state information is roughly similar to a diver's ability to "spot,"
or take his positional bearings by sighting the water or the board; the diver can only receive
this information at most once per rotation.

Thecontrollers described here have certain similarities to Brockett's (u,k,T) hybrid motor
control system [5], but here all dynamics are encapsulated in the lower level pattern gener
ators, so the controls are simply vectors rather than time trajectories. Also, the controllers
are feed-forward (except for the limited use ofPD controllers mentioned above) at this time,
though we plan to add feedback in the future. Our control system design hasseveral features
similar to Pil and Asada's recursive structure redesign algorithm [25] as well.

4 Learning Algorithms

In biological systems, when the structure of the system is not known a priori, an internal
model canbebuiltup through learning. The learned model will allow the system to generalize
from known tasks to new tasks. Similarly, in our control scheme, the controllers learn
the required controls in the absence of a predefined model. In the behavioral literature,
controllers like these might be viewed as schemas. The original definition of a schema is
simply a learned relationship between the input and required output vectors of the controller
[27]. Here, this would correspond toa learned model of the inverse relationship governing the
lower levels of the system. Thus the single-DOF controller, for example, is a learned function
g~l : Rm —> Rn approximating the inverse of the lumped system of the the decoders, the
plant, and the single-DOF encoder, g : R" —> Rm. The single-DOF controllers were trained
with only one degree of freedom in the plant free, and all others fixed.

4.1 Single-DOF Controllers

The implementation of the learning controllers can be done in several ways. Our current im
plementation uses networks of radial basis functions for both the single-DOF controllers and
the coordinating controller (see [16] for an introduction). The output vector u = /(vd, vs)
of a single-DOF controller, for example, is given by

Ui =/,(vd,v.) =f:Wij(vs)<»(l|Vd~Vjl1) =•T(vd)w,(v.),

where Vj is the center ofthe jth basis function, Oj defines the spread of the jth basis function,
<f> is the standard basis function itself, and the Wij(v8)s are weights. For our system, we have
chosen 0(s) = e~ 2. As discussed above, vs defines a two-dimensional space of controllers,
which appears here as the two-dimensional weight functions u/y(vs). Our current approach is
to train the controller for fixed values of vs lying on a grid, and use functional interpolation
to obtain controllers for vs between the grid points. We are currently using radial basis
functions with constant spread arranged in a dense, grid-centered sphere packing, so this
interpolation is straightforward. Before being input to the plant, the controls are passed
through a squashing function h(ui) = 1+eLgM|. so the controls are always within allowed
ranges. With a radial basis function architecture, only one layer is required to approximate
any function, whereas with a conventional neural network architecture, two are needed if
the function is discontinuous (see [17] for a brief summary). Thus, if the centers and the
functions themselves are fixed, a linear algorithm such as recursive least squares can be
applied to the weights.

In our implementation, the situation is a bit more complicated. To use recursive least
squares, one needs to obtain an error measure on the u produced by the controller. Here,
all we have available is the error on the plant output. To get around this problem for the
single-DOF controllers, we have adopted the scheme shown in Figure 5, with vs fixed. The
algorithm can be summarized as follows:

1. A random vd within the controller's effective range is generated and passed to the
controller.

2. The controller produces output u in response to its input, and this control is passed
through the squashing function.

3. The decoder produces a torque profile corresponding to u, and a single DOF of the
plant (all others held fixed) is simulated with that control.

4. The single-DOF encoder converts the plant output into a vector inRn, vp = (A0, A0, T).
(vp, u) is a valid training pair for the network.

5. vp is fed back into the controller as a new input, vd. If vd is outside the range of the
controller, the trial is aborted.

\
^

\

u\ single
DOF

controller

decoder
plant

(single
DOF)

m
encoder

(single DOF)

vp

. 1

\ ui_y .

Figure 5: On-line training for the single-DOF controller.

6. The controller produces another output, u', in response to the new input.

7. The error between u' and u is used with a recursive least squares algorithm to adjust
the weights in the radial basis function network.

The recursive least squares update we are using, for each control Ui, is:

c(n + l)

k(n + l)

Wi(n+1)

P(n + 1)

Ui(n) —ttj(n) = Ui(n) —$T(n)wi(n)
P(n)$(n)

1 + <F(n)P(n)$(n)
Wi(n) + k(n + l)e(n + l)
P(n)-k(n-rl)$r(n)P(n)

P(0) is set to the identity plus small random perturbations along the diagonal.
The recursive least squares algorithm acts to minimize ||u —u'||, which implies, by defi

nition, ||/(vd, vs) - /(vd, v8)|| is also minimized. The structure of the radial basis function
net certainly would permit /(vd,vs) —> /(vd,vs) without vd —> vd, but since the func
tion we are trying to learn is injective, we can try to get the controller to converge to the
desired fixed point by setting the initial weights using least squares on an initial dataset.
We generate this dataset by simulating randomly generated controls (within the restricted
control ranges) on the single-DOF plant, and then pruning to remove trials in which the
outcomes were far outside the desired velocity range or had come up against the joint limits.
The effective range of the controller is estimated by the spread of the vps produced in this
dataset. The larger the initial dataset, the more representative this estimate will be of the
true range of outcomes achievable with the allowed controls. If the joint runs up against the
joint limits during on-line learning, a virtual error estimating the overshoot prevented by the
joint limit is added to the position error, to facilitate the learning.

Our simulations use the SD/FAST software package [19] with a three-dimensional diver
model generously shared with us by Jessica Hodgins (see [32]). Preliminary simulations
on the single-DOF controllers are promising. Figure 6 shows the squared errors in the
controls u and the plant output vp for online training of a PHM controller for shoulder

10

abduction/adduction with v8 = (0,0). The network has 739 basis functions with o = .06.
The basis functions are arranged in a grid-centered sphere packing so that the closest distance
between basis function centers is \/2<7, or 2a along the grid axes. The network was initialized
with a dataset containing 1439 elements after pruning. Figure 7 shows a typical movement
produced by this controller.

As can be seen in Figure 6, the errors converge, but a rather large error in the final
velocity remains. This error is smaller with larger networks on finer grids, but this brings us
up against the curse of dimensionality common with locally-acting approximators: to double
the number of basis functions along each dimension, we must increase the total number of
basis functions in the controller by a factor of eight. We can also expect convergence to
be slower with larger networks. The situation is still worse because of the two dimensions
added by requiring a different set of weights for each vs. The computation and storage
required for this scheme can quickly become huge. Global approximation methods such as
neural networks do not suffer from the curse of dimensionality to such an extent as this,
but they are generally trained with local gradient methods, which cannot guarantee a global
solution. Techniques such as covariance reset, which revitalize the recursive least squares
training algorithm, may improve the convergence, however, and possibly allow us to use
smaller networks. It is clear that much remains to be done in terms of exploring systems
such as these and investigating new controller designs.

4.2 Coordinating Controller

For the coordinating controller, a similar learning scheme may also be possible. However, a
more fruitful approach may be that of reinforcement learning. Good surveys of reinforcement
learning can be found in [26] and [22]. In reinforcement learning, the output error ||yp-yd||
is minimized directly, and the learning can be distributed over sequences of actions. One
variant which does not require a system model is Q-learning. A function Q is defined for
each state y = (yd,ys) and each control action v as

Q(y,v) = JR(y) + maxQ(y',vO
v'

where y' is the successor state to y under v and R is the reward accrued in each state. For
the diver problem, no reward is accrued until the end of the dive, when the diver reaches the
water. Then the reward is based on the error between yp and yd. The radial basis function
network is required to learn an approximation to the Q function for the system, with the
error, or temporal difference,

d = R(y) + max Q(y', v') - Q(y, v)

being used at each transition for recursive least squares update of the network weights. Thus
the values of the final states are propagated backward to earlier states. Such an approach,
using dynamic programmingideas with a network approximation of the Q or value function,
has been called neuro-dynamic programming [3]. A separate action selector would select the

11

1000 2000

1000 2000

Error in Controls

•- -:-^.V-

3000 4000

trials

5000 6000

Error in Plant Output

7000 8000

3000 4000

trials
5000 6000 7000 8000

Figure 6: Squared errors averaged over groups of 100 trials for training a PHM controller for
shoulder abduction/adduction. The top plot shows the squared errors in u before squashing
(with P = .8). After squashing, each control is a scaled value in (0,1). The solid line
represents pw, the dashed line phl7 and the dash-dot line ph2. The bottom plot shows the
squared errors in vp; the solid line represents A0 (squared error multiplied by a factor of
ten for visibility), the dashed line A0, and the dash-dot line T (multiplied by 100). 0 is
measured in radians, 0 in radians per second, and T in seconds.

12

100

0.06 0.08
time

0.12 0.14

Figure 7: A movement produced by the trained PHM single-DOF controller. The input is
A0rf = -f,A0d = 0,rd = .15. 0O = 0, t = 0. The controls are pr^ = -61.365, ph2 = 60.211,
pw = .0697, and the plant output is A0 = -.687, A0 = -.132, T = .15.

next action taken by the controller based on a balance between maximizing the Q function
over all the possible control actions (an optimal policy) and exploring the action space.
Since the desired movement parametrization appears in the input to the controller, the same
network can be trained to produce several different dives. We are currently implementing
this reinforcement learning algorithm for training the coordinating controller.

For systems in which the state space is discrete, and the Qvalues can be stored in a table,
if the states contain sufficient information that the system is Markov, then the Q-learning
algorithm converges (see [1], [20], [29]). For asystem like the diver, however, where we require
a function approximator, convergence is more problematic. Boyan and Moore [4] give simple
examples in which substituting a function approximator for a lookup table results in loss
of convergence. These examples can be made to converge by changing slightly the methods
used, however; see [22] for a summary. Certain types offunction approximators have been
shown to guarantee convergence when combined with dynamic programming techniques; in
particular, neural network approximators may not converge, but certain linear interpolation
approimators will [12], as will some feature-based methods (including radial basis function
networks) satisfying certain properties, under a modified dynamic programming algorithm
[30]. It is our hope that these results can be extended for our radial basis function networks
with reinforcement learning algorithms similar to the Q-learning algorithm described above.

13

5 Conclusions

The hybrid, hierarchical, learning control structure biological motor control systems use
to deal with system complexity and unknown models can provide inspiration for tackling
difficult control problems. In designing a hybrid control structure, often the most critical
pieces are the decoder and encoder. Biological systems suggest pattern generators as models
for the decoder, and suggest using desired features of the movement (rather than a specific
desired trajectory) to create the encoder. We have designed a learning control structure
using these ideas and are testing it on the diving problem. The single-DOF controllers play
the role of pattern generators in the controller, restricting the allowed torque profiles to
a family of two-pulse controls. The coordinating controller provides the tuning inputs to
the single-DOF controllers based on the type of dive that is desired. For the lower-level
controllers, a modified form of supervised learning can be applied, but for the coordinating
controller, reinforcement learning is more appropriate. We believe that new approaches such
as the learning controller presented here will be essential to making headway on difficult
behavioral control problems; much work remains to be done in this area.

6 Acknowledgments

We would like to thank Jessica Hodgins for providing us with the physical human model
used in this work, and Stuart Russell and Ron Parr for their interest and helpful comments.

References

[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81-138, 1995.

[2] C. Batterman. The Techniques of Springboard Diving. MIT Press, Cambridge, MA,
1968.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview. In
Proceedings of the 34th Conference on Decision and Control, pages 560-564, 1995.

[4] J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: safely ap
proximating the value function. In Advances in Neural Information Processing 7, pages
369-376, 1995.

[5] R. Brockett. On the computer control of movement. In Proceedings of the IEEE Con
ference on Robotics and Automation, 1988.

[6] R. W. Brockett. Systems theory on group manifolds and coset spaces. SIAM Journal
of Control, 10(2):265-284, 1972.

14

[7] R. W. Brockett. Analog and digital computing. In Future Tendencies in Computer
Science, Control and Applied Mathematics. International Conference on the Occasion
of the 25th Anniversary of INRIA, Proceedings, pages 279-289, 1992.

[8] L. S. Crawford and S. S. Sastry. Biological motor approaches for a planar diver. In
Proceedings of the 34th IEEE Conference on Decision and Control, pages 3881-3886,
December 1995.

[9] C. Frohlich. Do springboard divers violate angularmomentum conservation? American
Journal of Physics, 47(7):583-592, July 1979.

[10] P. Di Giamberardino, S. Monaco, and D. Normand-Cyrot. Digital control through
finite feedback discretizability. In Proceedings of the IEEE International Conference on
Robotics and Automation, volume 4, pages 3141-3146, 1996.

[11] J-M. Godhavn, A. Balluchi, L. S. Crawford, and S. S. Sastry. Path planning for non
holonomic systems with drift. Submitted to the 1997 American Control Conference..
1996.

[12] G. J. Gordon. Stable function approximation in dynamic programming. CMU-CS-95-
103, Carnegie Mellon University, 1995.

[13] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg. Radial basis function network
architecture for nonholonomic motion planning and control offree-flying manipulators.
IEEE Transactions on Robotics and Automation, 12(3), June 1996.

[14] G. L. Gottlieb, D. M. Corcos, and G. C. Agarwal. Strategies for the control of voluntary
movements with one mechanical degree of freedom. Behavioral and Brain Sciences,
12:189-210, 1989.

[15] S. Grillner. Locomotion in vertebrates: central mechanisms and reflex interaction.
Physiological Reviews, 55(2):247-304, April 1975.

[16] S. S. Haykin. Neural Networks: A Comprehensive Foundation. MacMillan, New York
1994.

[17] J. Hertz, Anders Krogh, and R. G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley Publishing Company, Redwood City, California, 1991.

[18] J. K. Hodgins and M. H. Raibert. Biped gymnastics. International Journal of Robotics
Research, 9(2):115-132, April 1990.

[19] M. G. Hollars, D. E. Rosenthal, and M. A. Sherman. SD/FAST user's manual. Mountain
View, CA, 1991.

[20] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6:1185-1201, 1994.

15

[21] M. Jeannerod. The Neural and Behavioral Organization of Goal-Directed Movements.
Clarendon Press, Oxford, 1988.

[22] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, 4:237-285, 1996.

[23] I. Kolmanovsky and N. H. McClamroch. Developments in nonholonomic control prob
lems. IEEE Control Systems, 15(6):20-36, December 1995.

[24] I. V. Kolmanovsky, N. H. McClamroch, and V. T. Coppola. Controllability of a class
of nonlinear systems with drift. In Proceedings of the 33rd Conference on Decision and
Control, pages 1254-1255, 1994.

[25] A. C. Pil and H. Asada. Recursive experimental structure re-design of a robot arm
using rapid prototyping. In Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, volume 2, pages 1094-1099, 1994.

[26] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[27] R. A. Schmidt. A schema theory ofdiscrete motor skill learning. Psychological Review,
82(4):225-260, 1975.

[28] Schoner and Kelso. A synergetic theory of environmentally-specified and learned pat
terns of movement coordination: I. relative phase dynamics. Biological Cybernetics,
58:71-80, 1988.

[29] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learn
ing, 16:185-202, 1994.

[30] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic pro
gramming. Machine Learning, 22:59-94, 1996.

[31] B. Vereijken, H. T. A. Whiting, and Beek. A dynamical systems approach to skill acqui
sition. Quarterly Journal of Experimental Psychology Section A - Human Experimental
Psychology, 45(2):323-344, August 1992.

[32] W. L. Wooten and J. K. Hodgins. Animation of human diving. Computer Graphics
Forum, 15(1):3-13, March 1996.

16

	Copyright notice 1996
	ERL-96-73

