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Abstract

We present anew matrix formulation of the face hypercube embedding problem that motivates the
design of an efficient search strategy to find an encoding that satisfies all faces of minimum length.
Increasing dimensions of the Boolean space are explored; for agiven dimension constraints are satisfied
oneatatime. The following features help toreduce the nodes of thesolution space that mustbeexplored:
candidate cubesinstead than candidate codesare generated, cubesyieldingsymmetric solutions are not
generated, asmaller sufficient setofsolutions (producing basic sections) isexplored, necessary conditions
help discard unsuitable candidate cubes, early detection that apartial solution cannot beextended tobe
aglobal solution prunes infeasible portions of the search tree.

We have implemented a prototype package Minsk based on the previous ideas and run experiments
toevaluate it. The experiments show that MINSK is faster and solves more problems than any available
algorithm. Moreover, MINSK is a robust algorithm, while most of the proposed alternatives are not.
Besides most problems of the complete MCNC benchmark suite, other solved examples include an
important set of decoder PLAs coming from the design of microprocessor instruction sets.

1 Introduction

Consider a set of symbols 5 and an encoding function e : S -+ Bk, for a given k, that assigns to each
symbol s € S acode e(s), i.e., abinary vector oflength k. Usually the only requirement isthat eisinjective,
i.e., that different symbols are mapped todifferent binary vectors. Invarious applications it is important to
satisfy other encoding constraints, inorder to obtain acode that is correct or desireable to meet acertain
objective. The encoding length kmay be part ofthe problem instance or itmay be an unknown to be found
(usually minimized) by the procedure that satisfies the given encoding constraints [15].

Given aset ofsymbols 5, aface constraint cf isasubset S' C S specifying that the symbols in5' are
tobe assigned toone face (or subcube) of abinary fc-dimensional cube, without any other symbol sharing
thesame face. Face constraints are generated by multiple-valued (input) literals in two-level and multi-level
multi-valued minimization [15]. As an exampe, given symbols a, 6, c,d,e, an input constraint involving
symbols a,6,c is denoted by (a,6, c). An encoding satisfying (a, 6, c) is given by a = 111, 6 = 011,



c = 001,d = 000ande = 100 and theface spanned by (a,6, c)is - - 1. Notice that the vertex 101 is not
and should not be assigned to any other symbol.

Given a set of face constraints C/, it is always possible tofind an encoding that satisfies it, as long as
one is free to choose a suitable code length. It is a well-known fact that for k = | S | any setC/ is satisfied
by choosing as e the 1-hot encoding function (which assigns to a state s, the binary vector that isalways 0
except for aposition to1, the latter denoting state «,-). Itisan importantcombinatorial optimizationproblem,
sometimes called [16] face hypercube embedding, to find the minimum fc and arelated e : S -> Bk such
that Cj is satisfied. The decision version ofthis problem isNP-complete [11].

An exact solution based on a branch-and-bound strategy to search the partially ordered set of faces
of hypercubes was described first in [16], but it is not computationally practical. An exact solution by
reduction tothe problem ofsatisfaction ofencoding dichotomies! was proposed in[17]. Ituses a reduction
by J. Tracey [14] of the exact satisfaction of encoding dichotomies to a unate covering problem. This
approach was made more efficient in [11], by improving the stepof generating maximal compatibles of
encoding diciiotomics. Recently the problem of satisfaction of encoding dichotomies has been revisited
in 13], adapting techniques to find primes and solving unate covering withbinary decision diagrams that
have been so successful in two level logic minimization [2]. Fromthe experimental point-of-view noneof
the previous algorithms hasperformed up toexpectations, being unable to solveexactly various instances of
moderatesize and practical interest. Moreover, algorithms reducing encodingdichotomiesto unate covering
have a dismal behavior when the problem instance consists mostly of uniqueness encoding dichotomies
(i.e.,encoding dichotomies withonly one statein eachblock), because they generate mostof the encoding
columns, which are 2k for k = | S |.

Heuristic solutionsto the face embedding problem have been reported in many papers [10, 4, 12, 5,
17, 131. A heuristic solution satisfies all face constraints, but does not guarantee that the code-length is
minimum. A related problem, that is not of interest in this paper, is the one of fixing the code-length and
maximizing a gain functionof the constraintsthat can be satisfied in the given code-length. Werefer to [15]
lor backgroundmaterial on satisfactionof encodingconstraintsand their sources in logic synthesis.

In this paper we present a new matrix formulation of the face hypercube embedding problem that
inspires the design of an efficient exact search strategy. This algorithm satisfies the constraints one by one
by assigning to them intersecting cubes in the encoding Boolean space. The problem of finding a set of
cubes with a minimum number of coordinates satisfying a given intersection matrix was first formulated
in [18] without any relation to encoding problems. No algorithm to solve the problem was described. The
relation between the face embedding problem and the construction of intersecting cubes was employed in
an heuristic algorithm described in [12, 5]. The first formulation of a simple criterion of when a set of
cubes satisfies a set of constraints was given in [6]. We use some theoretical notions, e.g., basic and prime
sections, introduced first in [7, 8]. The following features speed up the search of our algorithm: candidate
cubes instead than candidate codes are generated, symmetric cubes are not generated, a smaller sufficient set
of solutions (producing basic sections) is explored, necessary conditions help discard unsuitable candidate
cubes, early detection that a partial solution cannot be extended to be a global solution prunes infeasible
portions of the search tree. The experiments with a protype implementationin a package called Minsk show
that our algorithm is faster, solves more problems than any available alternative and is robust. All problems
of the MCNC benchmark suite were solved successfully, except four of them unsolved or untried by any
other tool. Other collections of examples were solved or reported for the first time, including an important
set of decoder PLAs coming from the design of microprocessor instruction sets.

In Section 2 we present a theoretical formulation based on matrix notation. The generation of basic
sections is discussed in Section 3. How to avoid the generation of symmetrical solutions is explained in
Section 4. In Section 5 we describe a new algorithm to satisfy face constraints and we show a complete

'An encoding dichotomy onS is a bipartition (S\, Si) such that S\ US2 C 5.



example of search in Section 6. Experimental results are provided in Section 7. Section 8 concludes the
paper with remarks on what has been achieved and future work.

2 Matrix Formulation of the Face Embedding Problem

Given a matrix M, denote by Row(M) its rows and Col(M) its columns. Mi. denotes the i-th row of M
and M.j denotes the j-th column of M. Themultiplicity of a column C.j of M, mult(j) is the number
of times that C.j occurs in M. Weuse the term vector to indicate a one dimensional matrix, when there is
no need to specify whether it is regarded as a row or a column. Vectors are called binary or two-valued if
their entries are 0 or 1 and 3-valued if their entries are 0 or 1 or -. A singleton vector has a unique 1.

Given two 2-valued vectors v\ and i>2 of the same length, their disjunction vi U vz is the vector v whose
i-th entry is the disjunction of the i-th entriesof t»j and t>2. Similardefinition holds for the conjunction of
i'i and i'2. A vector v\ covers a vector V2 if, whenever the i-th entry of V2 is 1, the /-in entry of t'i is 1. A
vector v\ intersects a vector V2 if for at least an index i, the i-th entry of v\ and vi is 1.

2.1 Constraint and Solution Matrices

Given a set of symbols 5' and a set of face constraints Cj on 5, the constraint matrix is a matrix with as
many rows asconstraints and columns as symbols. Entry (i, j) is 1iffthe i-thconstraint contains symbol j,
otherwise it is 0. For don't care face constraints, the don't care states have a - in the corresponding position

of the constraint matrix.

Consider the set ofconstraints Cj = {(S3S4S6S9), [sis5), (S1S457), (S2S3S6), (s7«8), (sn«i2)}- Then the
related constraint matrix is:

Example 2.1

rooi 101001000

001010000000

100100100000

01 1001000000

0000001 10000

0000000001 10

c =

In the sequel we will refer usually to a setof face constraints Cj byitsencoding matrix C and wewill not
distinguish the two. Notice that there is no need to add singleton constraints, because we guarantee that
different codes are assigned to different states, including thestates whose columns inCfareequal.

Given an encoding c that satisfies a constraint matrix C\e defines a face for each constraint ofC, i.e.,
the minimum subcube that contains the codes of the states in the constraint.

For a given constraint matrix C and integer n, consider a face matrix S with Row{C) rows (faces or
cubes) and ncolumns (sections), whose entries may be0or 1or-. Each row may beregarded asasubcube
in the n-dimensional Boolean space. If there exists an encoding e such that, for each i € Row(S), the i-th
rowof S is the facethat e defines for the /-constraint of C, then we say that 5 is a solution face matrix of
C or that S satisfies C and that the i-th row of S is a solution cube of the i-th constraint.

One verifies that S is a solutionface matrixof C, by constructing anothermatrix Ts whose rows are the
cubes of S and whosecolumnsare the minterms of J5n, whereentry (i, j) is 1 iff mintermj is in cube i.
Then S satisfies C if for any column C.j, the matrix Ts contains no less than mult (C.j) columns equal to
C.j. In other words, we require that each minterm (code ofastate) belongs only to those faces towhich itis
restricted bytheconstraints; moreover, if there areequal columns in theconstraint matrix, foreach of them



there must be a different minterm. Inthis way, there is at least oneinjective function fc->Ts matassociates
to each column of C one column of Ts.

Given a matrix S satisfying C, anencoding es that satisfies C canbeextracted with thefollowing rule:
select an injective function fc->Ts> whose existence isguaranteed because S satisfies C,then encode state i
(i.e., column i ofC)with the minterm ofthe column fC->Ts(i)in Ts- Such an encoding satisfies Cbecause
eachcode lies only in the faces corresponding to theconstraints to whichthe statebelongs.

Example 22 Given theprevious C andn = 4, consider

S^

— 0 1 -

1 0 — 0

1 — — 1

- — 1 0

— 1 0 1

0 — 0 0

S satisfies C as it is shown by buildingthematrix

Ts =

' 1001 0110 1010 1011 1000 0010 1101 0101 0011 0100 0000 0111 0001 1100 mi 1110 "

0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

An encoding a.s ikuisatisfies C can beextracted from S, with thefollowing injectionfrom columns ofC to
columnsofTs: <?(*i) = 1001, e(*2) •= 0110, e(.s3) = 1010, e(s4) = 1011, e(.s5) ^ 1000, e{s6) = 0010,
t(6-7)= 1101, e(*8) = 0101, e(.?c>) -=0011,e(s,o) = 0100, e{su) = 0000, e[sl2) = 0111.

Notice that anypermutation of thefollowing subsetsofcodes yields anotherencoding es thatsatisfies
C: {0100,0000}, {0111,0001.1100}, {1001,1111} and {0110,1110}, as indicated by the existence of
more than one columnofTs that is equal to a certain column ofC.

2.2 Basic Sections

Given a constraint matrix C and an encoding e, the set of the minimal cubes such that each ofthem contains
the codes of the symbols in a corresponding constraint of C defines the rows of a face matrix 5. If e satisfies
C then 5 is a solution face matrix of C.

Example 23 Consider

C =

110 0 0

0 110 0

0 0 110

0 0 0 11

The encoding e(si) = 000, e(s2) = 100, e(s3) = 110, e(s4) = 111, e(s5) = 010 does not satisfy C. The
minimalcubes containingthecodes assigned by e to thesymbols in each constraint ofC are:

S =

-00

1 - 0

1 1 -

- 1 -



Tl\e encoding e(s{) = 000, e(s2) = 100, e(s3) = 110, e(s4) = 111, e{s5) = 101 satisfies C. The
minimal cubescontaining thecodes assignedby e to thesymbolsineachconstraint ofC define aface matrix
S:

"-00
1 - 0

1 1 -

1 - 1

S =

which satisfiesC as seen by building the intersectionmatrix

TS

•

000 001 010 on 100 101 110 111 •

-00 1 0 0 0 1 0 0 0

1-0 0 0 0 0 1 0 1 0

11- 0 0 0 0 0 0 1 1

1-1 0 0 0 0 0 1 0 1 .

The operation of a finding the minimal cube that contains the codes of the states that appear in a given
constraint is captured exactly by the notion of basic section that we are going to define next. Informally,
given a constraint matrix C, the columns of a face matrix 5 such that there is an encoding e (that may or
may not satisfyC) for which the rows of S are the minimalcubes containing the codes of the constraints of
C are basic sections.

Considera vectord (whose elements are 0 or 1) with \Col(C) | entries. Wecan regard d as an encoding
column, i.e., an assignment of0or 1to each symbol. An encoding function e : S -> Bk defines a set of k
encodingcolumns e\, • ••, ejt (i.e., the columns of e), where the i-th entry of ej is 1 (is 0) if and only if the
j-th coordinate of e(s,) is 1 (is 0).

Let us compare the set of columns that have a 1 in C',-. (i-th row of C) with the set of columns that have
a 1 in d. There are the following cases:

1. d covers C',., i.e., all columns that have a 1 in C,. have a 1 in d. In other words, all the states in the
i-th constraint arc set to bit 1 in the encoding column d. Say that the comparison returns a 1.

2. d does not intersect C,., i.e., no column that has a 1 in Ct. has a 1 in d. In other words, all the states
in the i-thconstraint are set to bit 0 in the encodingcolumn d. Say thai the comparison returns a 0.

3. d intersects but does not cover C,., i.e., a proper subsetof the columns that have a 1 in Ct. have a 1 in
d. In other words, some states in the constraint are set to 1 and others to 0 in the encoding column d.
Say that the comparison returns a -.

So given a d, let us denote by bs(d) a column vector with \Row(C)\ entries of value 1, 0, or -, where the
i-th entry is 1,0 or -, according to whether the previous comparison of d and C,-. returns a 1,0 or -. When
convenient, we may represent bs(d) in positionalnotation, i.e., as a matrix with two columns, obtained by
representing 1 as 01,0 as 10 and - as 11.

Definition2.1 A3-valuedcolumn B iscalleda basicsection/or C ifthere isa vectord such thatB = bs(d).

Example 2.4 In Example 2.3, the encoding columns of the first encoding (i.e., e(si) = 000, efa) = 100,
e(53) = 110, e(s4) = 111, e{s5) = 0\0 which doesnotsatisfyC) areex = OHIO, e2 = 00111, e3 = 00010,
andtheyyield thebasicsectionsbs(e\) = -11-, bs(e2) =0-11,6s(e3) =00 . The rowsofthematrix
of thebasic sectionsare theminimalcubes spannedby thecodes of the states in the constraintsofC.



Corollary 2.1 Given a constraint matrix C and an encoding e with encoding columns ei,..., e&, the basic
sections bs(e\),..., bs(ek) define the set ofminimal cubes such that each ofthem contains the codes ofthe
symbols in a corresponding constraint ofC (even ife does not satisfy C). Moreover, ife satisfies C the
basicsections bs(e\),..., bs(ek) define aface matrix that satisfies C.

Theorem 2.1 Given dandC, the positional representation ofbs(d) can beobtained by ORing the columns
ofCasfollows: thefirst (respectively, second) column ofbs(d) isobtained by ORing allcolumns C.j such
thatdj = 0 (respectively, dj = \).

Proof. Consider row C,\ and the subsets ofentries {Cij | j s.t. dj = 1} and {dj | j s.t. dj = 0}. Then
by ORing the entries in {dj | j s.t. dj = 1} (respectively, {dj \ j s.t. dj = 0}) one gets a 1in the first
(respectively, second) position iffbs(d)j = Oor bs(d)j = - (respectively, bs{d)j = 1orbs(d)j = -). n

An equivalent definition ofbasic section follows from Theorem 2.1: any matrix of2columns and |Row (C) |
rows, whose first column is obtained by ORing a subset of columns of C and whose second column is
obtained by ORing the remainingcolumns of C, is a basic section.

Example 2.5 Considerd= 101110100000, which isthefirstcolumn ofthe encoding exhibited in Example2.2.

Then we have bs(d) = thatis written in 3-valued notation as bs(d) = If we repeat the

0

• 1 1 •

0 1

0 1

1 1

1 1

. 1 0.
same operationfor the other columns dofthe encoding ofExample 2.2, the matrix whose columns are the
vectors bs{d) (in 3-valued notation) is exactly the matrix S ofExample 2.2, i.e., the matrix whose rows are
thefaces spanned bythe codesofthe given encoding.

2.3 Sufficiency of Basic Sections

Basic sections are candidate columns to construct 5 matrices that are solutions of a given C. They are an
appealing notion because aset ofbasic sections may represent "implicitly" more than one encoding. As seen
inExample 2.2, there are many encodings that generate thesame setoffaces and differ only inpermutations
of codeswithina face that are inconsequential in orderto satisfy the face constraints. Contrary to the case
ofhandling directly encoding columns, bymanipulating basic sections, one islikely toexplore a smaller set
of combinatorial objects to build an optimal solution.

Example 2.6 Consider d' = 111110100000, which is the first column of the encoding exhibited in
Example2.2, except for the exchange ofthe codes 0110 and 1110. Then we obtain the same basic sec

tion bs(d) = , showing that different encoding columns may map into the same basic section.

0

Itis worthwhile toclarify thata matrix 5 thatsatisfies aconstraint matrix C does notconsist necessarily
(only) ofbasic sections. Atrivial case comes from "redundant" solutions, obtained byadding to a solution
matrix 5 an arbitrary column (so not necessarily a basic section). A more interesting case comes from a
solution matrix S whose faces are not minimal subcubesyieldedby a corresponding encodinge. This latter



case arises when a face matrix S satisfies C and thereis an encoding e extracted from S such that the face
matrix S' specified by bs(e\),.... b{ek) is not equal to 5 (more precisely, some cubes of S contain the
corresponding cubes of ,5"). We will argue that we can avoid the consideration of5 and still guarantee that
for any encoding e satisfying C there isa face matrix 5", from which e can be extracted, that satisfies C.

Example 2.7 We noticedalready that theface matrixS built in Example 2.3 ismade ofbasic sections. Now
suppose tochange in S theface 11- into theface -1- obtaining

S' =

-00

1 - 0

- 1 -

1 - 1

then also Sf satisfies C as seen bybuilding the corresponding modified intersection matrix

TS> =

'

000 001 010 011 100 101 110 111"

-00 1 0 0 0 1 0 0 0

1-0 0 0 0 0 1 0 1 0

-1- 0 0 1 1 0 0 1 1

1-1 0 0 0 0 0 1 0 1

Notice that thefirst section ofS'

S',=

is not basic

Thefollowing theorem states that it is sufficient to consider basic sections to find a minimum solution
to face hypercube embedding.

Theorem 2.2 Given a solution face matrix S' of the constraint matrix C there is always a solution face
matrix S ofC with the same number of columns that consists only of basic sections.

Proof. Suppose that S has n columns. For a given solution face matrix S' there is at least an encod
ing c that satisfies C. This defines n encoding dichotomies dh..., dnt each of which is a coordinate of
the codes assigned by e. Now by applying to each such d the operation bs we obtain the basic sections
bs[d\),..., bs(dn). The matrix S whose columns are the basic sections bs(d[),..., bs(dn) isasolution face
matrix of C, because by definition of the 6s operation the rows of 5 areexactly the minimal faces spanned
by the codesof the symbols in each constraint of C. •

Example 2.8 Continuing Example 2.7 suppose that we are given S', whose first column is not a basic
section, and that we want toproduce the matrix S as in Theorem 2.2. The encoding dichotomies defined
by e are d\ = 01111, d2 = 00110, d3 = 00011. Applying the bs operation, we get the basic sections
bs(di) = -111, bs{d2) = 0-1-, bs{d3) =00-1, which are exactly the columns ofthe original matrix S.

2Tbe simplest way tosee that S'A isnotbasic is toapply Theorem 3.1. Then P\(D) = 01111 and for any vector K it istrue that
A' U P\(D) intersectsandcovers £>3-



2.4 Prime Sections

Itispossible tocharacterize a subset ofbasic sections, called prime sections, assufficient to find a minimum
solution. We aregoing to define them and show anexample. We will notprove their sufficiency, because
the proof is intricate and we will not use them inouralgorithm. Aproof for thecase of constraint matrices
with no repeated columns can be found in [8] and it can be generalized to the general case. A reason to
mention them here is that they establish a connection with the approach to solve face embedding based
on generating prime encoding dichotomies [17,11]. It is a fact that prime sections are fewer than prime
encoding dichotomies and so they may inspire a potentially more efficient exact algorithm.

An encoding dichotomy (or, more simply, dichotomy) is a 2-block partition ofa subset ofthe symbols
to beencoded. The symbols in theleft block are associated with thebit 0 while those in the right block
are associated with the bit 1. If an dichotomy is used in generating an encoding, then onecode bit of the
symbols in the left block is assigned 0 while the same code bit is assigned 1 for the symbols in the right
block. For example, (so«i ;s2«3) is adichotomy inwhich so and si are associated with the bit0 and s2 and
s3 with thebit7. Adichotomy is complete if each symbol appears exactly oncein either block. Acomplete
dichotomy is an encoding column.

Two dichotomies d\ and d2 are compatible if the left block ofd: is disjoint from the right block of d2
and the right block of d\ is disjoint from the left block of d2. Otherwise, d\ and d2 are incompatible. The
union oftwo compatible dichotomies, d\ and d2i is thedichotomy whose leftand right blocks are theunion
ofthe left and right blocks of d\ and d2 respectively. The union operation is not defined for incompatible
dichotomies. Adichotomy d\ covers adichotomy d2 if theleftand right blocks ofd2 aresubsets respectively
either ofthe left and right blocks, orofthe right and left blocks ofd\. For example, (s0; sx s2) iscovered by
{s0S3; sis2s4) and (sis2s3; s0), but not by (s0si; s2). A prime dichotomy ofa given set ofdichotomies is
one that is incompatiblewith all dichotomiesnot covered by it.

Definition 2.2 A basic section P is a prime section if there is a prime encoding column d such that
P = bs(tf).

Definition 23 Section P[ covers section P, ifthere are encoding columns d' and dsuch that P[ = ps(d'),
Pi = ps{d) andd' covers d.

As anticipated, itcan be shown that given aset ofbasic sections {Pi..... Pn] satisfying C\ ifP, isnot a
prime section then there isaprime section P[ that covers Pi such that {Pi,..., P„} - {Pi} U{P-} satisfies
C.

Example 2.9 Given thematrix ofconstraints

C =

1 0 0 1 0 0

0 1 1 0 1 0

0 0 0 1 0 1

0 0 1 0 0 1

1 1 1 1 0 0

the setsofprime dichotomies dand corresponding prime sections P are:



<*! = 100000 Pl = -000-

<*2 = 100100 p2 = 10-0-

<*3 = 110100 p3 = 1 — 0-

^4 = 111100 p4 = 1—1

d5 = 000010 P5 = 0-000

4 = 010010 p6 = 0-00-

<*7 = 110010 P7 = —00-

<*8 = 011010 p8 = 010—

C?9 = 111010 F9 = -10 —

rfio = 100110 p3 = 1—0-

c/n = 110110 p3 = 1—0-

c/12 = 111110 Pio = 11--1

There are 12 prime dichotomies and 10 prime sections, because the prime dichotomies d3, d\Q and d\\
generate the same prime section P3.

3 Generation of Basic Sections

Givena constraintmatrixC, considera 3-valued columnD of | Row{C) | components. Denote by Po(D)
the disjunction ofthe rowsofthe set Do = {d. | D, = 0} and by Pi (D) the disjunction ofthe rows ofthe
set Dj = {d. I Di = 1}. We have alsoD_ = {d. \ D{ = -}.

We want to characterize when D is a basic section of C. For D to be such there must be an encoding
vector d for which D = bs(d). Aswewill seein Theorem 3.1, a minimum requirement on D is that Po(D)
does not intersect Pi (D), to take care of the entries of D that are 0 or 1.

The entries that are - require the introduction of a slightly more complex condition, based on the
following notions. Consider the set K, of boolean vectorsof | Col (C) \ such that A" £ IC if and only if when
the /-th entry of A is 1then the i-th entries of both Po(D) and Pi (D) are 0. In other words, A* may have Is
only where both Po(D) and Pi (D) have0s. So given Po(D) and Pi (D) the cardinalityof AT is the power
set of the positions where both Po(D) and Pi (D) have 0s.

0

0

Example 3.1 Consider D = , for the matrix C ofExample 2.1.

Then we have wherea*inlC standsfor entries thatmay be either 0 or

Po(D) =
Pi(D) =

001111001000

000000110000

/C =

A'i =

A'2 =
A'3 =
A4 =

**0000000** *

110000000111

110000000100

110000000101

000000000000

1. The set K, contains32 vectors (onefor each combination ofOs and Is in the5 positions indicatedbya *,
ofwhich we reportfour as K\, A'2,A'3,A'4.

A vector v intersects correctly a set of vectors V if v intersects every vector of V, but does not cover
any vector of V.



Theorem 3.1 D is a basicsection for C if andonlyif the following conditions hold:

1. Po(D) does not intersect P\ (D).

2. Tliere is a vector K e K, such that A U Pi (D) intersects correctly the rows ofD-.

Proof. If part. Suppose that the two conditions are true. Then define d = A* U Pi(D). We show that
D = ps(d). Indeed dcovers only rows from thesetDi = {d | D, = 1} and does notintersect any row from
the set Do = {Cj. | Dt- = 0} by the first condition. Moreover, dintersects correctly D_ = {Cj. | Dj = -},
bythesecond condition. Sotheoperation 6swhen applied to dconstructs exactly the3-valued vector D.

Onlyif part. We prove by contradiction that ifeithercondition is false thenD cannot be basic.
Suppose thatthefirst condition is nottrue, i.e., thatPo(D) intersects Pi (D). Then there are tworows n

and r2 that have a 1ina column cj such that Dr, = 1and Dr2 = 0. So there is no dsuch that D = ps{d),
because such a d should contain n without intersecting r2 in order to define correctly ps(d)ri = 1 and
ps{d)r2 - 1, but this cannot happen because any vector that contains n must intersect r2 in column cj.
Therefore D cannot be basic.

Suppose that the first condition is true, but the second one is false, i.e., that there is no vector K € A.*
suchthatA UPi (D) intersects correctly therows of D_. Sothere is nodsuchthatD = ps{d), because such
a dshould intersect, without covering it, every row of C thatis in D_ andshould alsocover P\{D) without
intersecting Po(D), therefore there should be a vector A € fC such thatA UPi (D) intersects correctly the
rows of D_, against the hypothesis. Therefore D cannot be basic. •

Example 3.2 Continuing Example 3.1, we see that K2 U Pi(D) and A"3 U Pi(D) intersect correctly the
rows ofD-, while !< \ U P\{D) and A4UPi (D) donot. So D is a basic section and both

d2 = A2 U Pi (7)) = 110000110100

and

</3 = 7v3UPi(D) = 110000110101

generate it (andthere may be othervectors d that generate D).

Given a candidate basic section D, it is easy to check the first condition of Theorem 3.1, while to test
the second condition in the worst case one must try all 2m vectors K, where m is the number of positions
where Po(D) and Pi (D) are both 0. Instead of checking the second condition, wecan use the following
simplercriterion to detect candidatesections D that are not basic.

Theorem 3.2 IfDt = - and the row d. is covered by either Po(D) or P\(D), then D is not basic.

Proof. Indeed in one case suppose that Ci. is covered by Po(D), then no vector d intersects Ct. without
intersecting Po(D), so(for some row index) bs(d) cannot be0 where D is0. Intheother case suppose that
Cj. iscovered by Pi(D), then no vector dintersects Cj. without covering it,because dmust cover Pi (D) in
orderthat bs(d) be 1 where D is 1,therefore bs(d) j cannot be -. •

Fig. 1shows analgorithm togenerate all thebasic sections for agiven constraint matrix C. The inputs of
the algorithm are the vectors Po(D) and Pi(D) and apartially constructed section D. The components ofD
take values intherange {0,1,-,*}. Thevalues 0,1,- have theusual meaning, whereas Di = *means that
the ?'-th valuehas not been decided yet. To generate all the basicsections the procedure generatesections
is invoked with D having all components set to *.
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generatesections(Po(D), Pi(D), D, C) {
if sectionJnconsistent(Po(D),Pi(D)iD,C)

return 0

/* find a contraint Cj. such that Di = * */
i = find-unprocessed.constraint(D,C)
if i = -1 /* there is no unprocessedconstraint*/

return {D}

/* Dl is obtained from D by setting D» = i *l
D° = assign.component(D, i,0)
D1 = assign.component(D,i, 1)
D~ = assignjcomponent\D, i, —)

5° = generate.sections{P0{D) UC;., Pi(D), D°, C)
S1 = 0eneraie_sec*ions(Po(D), Pi(D) Ud., Dl,C)
S~ = generate^sections(Po(D), P\{D) UCj., D~, C)

return S°U51 US-

Figure 1: Algorithm to generate basic sections.

Initially it is checked whether D is consistent, i.e., whether the two conditionsof Theorem 3.1 hold,
by invokingthe procedure sectionJnconsistent. It is a fact that if at leastone of these conditionsdoes not
hold then this is true for any section obtained by assigningone of three values 0.1, - to components wliich
are not specified yet. So the recursion slops here and the algorithm returns the empty set. If D passes the
correctness test andallcomponentsof D havebeen specified, D is abasic section andthe algorithm returns
it. Otherwise, a constraint d. such that Dj = * is chosen and recursively one considers the three cases,
where Di is assigned either 0 or 1or -, and the vectors Po(D) and Pi(D) are recomputed. The union of
the results of the three recursive branches is accumulated in the final result.

Fig. 2 shows the flow of the procedure sectionJnconsistent that tests whether a given D passes the
conditionsof Theorem 3.1. It also appliesthe criterion of Theorem 3.2 to detect as early as possible that
D is not a basic section. The check of the second condition of Theorem 3.1 is done by the procedure
correctJntersect given in Figure 3. The latter procedure tries to construct avector K such that K UPi(D)
intersects all the rows from the set {Ci. | Dj = -}, withoutcovering any of them. It keeps in the vector
mark the rows from set Cj. | Di = - which intersect Pi (D). The set free-columns contains the columns
that are neither in Po(D) nor in Pi(D) and so are candidates to be added to K. The procedure calls itself
recursively, exploring thetwocases that thevector K includes ornotagiven column j from free-columns.

Example 33 The set ofall basicsectionsfor the constraint matrix C ofExample 2.9 is:
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section-inconsistent(Po(D), Pi(D), D, C) {
if P0(D) intersects Pi(D)

return 1

for i e | Row(C) | ,
if Di = - and Cj. is covered by either P0(D) or Pi(D)
return 1

/* marki = 1iff Dj = - and d. intersects Pi (D) */
mark = mark-coveredjrows(P\(D),D,C)
I* free-columnsi = 1iff P0(D) j = 0 and P\{D){ = 0 */
free-columns = 1\ [P0{D) U Pi(D))
if correct .intersect(P\ (D), D,C, mark, freexolumns)

return 0 /* section is consistent */

else

return 1 /* section is inconsistent */

}

Figure 2: Algorithmto check inconsistency of a section.

Bi = 00000 B2 = 00--0

£3 = 010 — B4 = 01-1-

fl5 = 0-000 B6 = 0-00-

£7 = 0-0 — B8 = 0 — 1-

J39 = 0—0 •Bio = 0

£11 = -000- Bl2 = -01 —

#13 = -0-0- B14 = -0—

£,5 = —00- B\6 = — 0 —

Bl7 = —0- B\s =

As a comparison for the same problem there are (26 - 2)/2 = 31 encoding columns (we subtract 2 to
eliminate those with all Os or all Is; we divide by 2, because we do not distinguish those obtained by
complementation, aswe do not distinguish basic sections obtained by complementation ofeach other). So
manyencoding columns generate thesame basic section.

It isworthy tostress that in the approaches based on computing encoding dichotomies [11, 3] the more
"trivial" is an instance offace embedding problem, the larger is the number ofprime dichotomies that it
generates. In the worst case, for no face constraint and n symbols one must generate 2n - 2/2 prime
dichotomies (even ifthere are noface constraints, one must add uniqueness constraints, that separate pairs
of states not distinguished byface constraints). Instead the number of sections is "proportional" to the
difficulty ofthe problem instance, e.g., for no face constraint and encoding dimension k, we need toadd a
unique constraint consisting ofall Is towhich corresponds only one basic section, i.e., -, and a satisfying
cube made of- repeated k times. Asanother illustration, consider the following matrix with only one face
constraint

C= [1 1 1 00000]
Tfiere are only three basic sections: 0, 1and -. We can form faces that satisfy the unique constraint by
repeating some basic sections. Notice that C has 121 prime encoding dichotomies. An example, with n = 4,
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correct-intersect(P\ (D), D, C, mark, freexolumns) {
if each {C'i. \ D{i) = -} intersects correctly Pi(D)

return 1

else

return 0

/* remove from freexolumns, add to P\ (D) and mark the columns
intersecting singleton rows in {Ci. \ D(i) = - and marki = 0} */

processsingletons(Pi (D),D, C, mark, freexolumns)
/* choose a column for branching */
j = selectxolumn(freexolumns)
/* mark rows that are 1 in the j-th column */
mark\ = markxovered-rows(mark,j)
freexolumns = freexolumns \ {j}

/* left branch explores correct intersections including column j *l
if correct-intersect(P\ (D) U{j}. D. C, mark\, freexolumns)

return 1

/* right branchexplores correct intersections not including column j *l
if correctJntersect (Pi (D), D, C. mark, freexolumns)

return 1

return 0 /* neither branch contains a correct intersection */

}

Figure 3: Algorithm to check correct intersection.
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ofa valid solution face matrix is
5 = I - - 0 0

S satisfiesC as demonstrated by building the matrix

Ts =
' 1001 0110 1010 1011 1000 0010 1101 0101 0011 0100 0000 0111 0001 1100 mi 1110 "

0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0

An encoding es that satisfies C can beextractedfrom S, with the following injection from columns ofC to
columns ofTs: e(si) = 0000, e(s2) = 1000 s(s3) = 0010, e(s4) = 1011, e(s5) = 1001, e(s6) = 1111,
e(s7) = 1101, e(s8) = 0101, e(s9) = 0011, e(sio) = 0100, e(sn) = 0001, e(si2) = 0111.

4 Characterization of Symmetric Solutions

A crucial feature of an efficient algorithm to solve face embedding constraints is the ability to avoid the
consideration of symmetric solutions, i.e., solutions that differ only by permutations and inversions of
variables of the encoding space. We will refer to permutations and inversions of variables as symmetric
transformations or symmetries.

In Section 5 we will present a procedure searchJbooleanspace that finds a solution face matrix S in
an 7?-dimensional boolean space, if such a solution exists. Let us write Spjj for a solution face matrix
satisfying the matrix C[itj], which stands for the matrix C restricted to the rows from i toj. Denote by S[ij]
the set ofall solution face matrices satisfying the matrix C^] and by S the set ofall solutions ofC. Call
5 the set ofall solutions ofC, without any symmetric pair S and S'; similarly for S^. The procedure
builds incrementally a matrix 5 by finding first a solution S[\,\] for the first constraint, then augmenting
it to a solution S[\m2] for the first two constraints and so on, until all constraints are considered. More
precisely, when handling the /'-th constraint the set of all cubes satisfying it, i.e., S[ifi], is generated and a
cube .9[/j] € £[,-,;] is chosen. Then one verifies whether S[Li] formed by appending row 5[j,j] to 5[i,,--ij
satisfies C[lit-j. If not, another cube of«S[j,j] is tried and, if none works, one backtracks further toa different
choice ofacube Sr/_itl-_rj € <%_i,/_i] such that C[i,j_i] issatisfied by S[i.j_2] augmented by 5[,-_i,/_ij.

Given a matrix 5, it is a fact that S is a solution of C if and only if a matrix 5" obtained from S by
permutations and (bit-wise)inversions of columns is a solution of C. So for a solution S with n columns
there are n! 2n (n! for permutations and 2" for inversions) different matrices obtained by symmetriesof
5, whose generation isuseless inorder to find a solution, because they all behave like S 3. So they are an
equivalenceclass of which it suffices to considera representative to solve the problem. Now we show how
to obtain S.

Solutions without symmetries for the first constraint.
Consider the first constraint C[i,i] and acube £[i,i] € 5[i,ij. Suppose that the current encoding length is

n. To avoid the cubes obtained from S^rj by permutation itissufficient to consider only the cubes differing
in the numbers of Os and Is. Indeed, if two different cubes have the same numbers of Os and Is (and so
the same number of -s, since they have the same length n) it is always possible to find a permutation
transforming one cube into the other. However, if two cubes have different numbers of 0s and Is, but the
sum of the numbers of 0s and Is is the same we can still transform one cube into the other by inversion of
some columns. Sotoavoid symmetric solutions ofC[i t\] we need toconsider only cubes with different sums
ofthe numbersof 0s and Is. Since a cube havingn\ Is andno0s is equivalentafter inversionsto a cube with
ni + no Is, we need to consider only cubes having Is and -s whichdiffer in the numberof Is. So we need
to generate no more than n + 1candidate solutions to C^i], and those of them that actually satisfy C^ij

3For example forn = 6 (n = 7) n! 2n is equalto46080 (645120). Rigorously speaking n! 2n isexactonlywhen in S there are
nocolumns thatareequalor equalafter inversion. In thelatter casesthenumber ofdifferent symmetric matrices willbe smaller.
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(cubes having enough minterms inside for the Is in the constraint, and enough minterms outside for the Os
of the constraint) are the elements of^[i,ij. Each element of<£[i,i] is the representative ofan equivalence
class of cubes, where two cubes are equivalent if and only if there is a symmetry that transforms one into
the other (it is an equivalence relation).

Example 4.1 ConsiderC giveninExample 2.lforn —4. Tiie candidate cubesto satisfythefirstconstraint
are 5: (0 ones), 1 (1 ones), 11 (2 ones), 111- (3 ones), 1111 (Vones). None ofthem
can be obtained by a symmetric transformation ofanother.

Solutions without symmetries for the first i +1 constraints, given the solutions without symmetries
for the first i constraints.

The idea is to avoid thegeneration of symmetric solutions of C[i,j+i] which do not differ in the first i
cubes.

Given a matrix 5[i,;] we define an equivalence relation on its columns stating that two columns are
equivalent if and only if they are equal. There may be many equivalence classes (at most as many as there
are columns) and one of them may contain columns made only of -s. Say that 5[i)j] has the following
equivalence classes Class(S[\ ,{\)j, j = 1,...,/. For coincision we may say that aclass has atleast a0ora
1 if the columns ofthe class have at least a 0 or a 1 and that a class has only -s if the columns ofthe class
have only -s.

Consider any solution to C^+y obtained by taking asolution matrix S[iti] from <£[1(j] and appending
to it a cube S[j+ifj+i] from <S[j+itj+i] such that the resulting matrix S[i,,+i] satisfies C[itj+i]. Iterating the
process for all such cubes S[j+i,j+i] we obtain the set S[Ifl-+1] a,0of a11 resulting matrices S[i,j+i] (whose
submatrix restricted to the first i rows is amatrix of «§[ltt-]) satisfying C[i|t-+i]. It is a fact that this set will
contain symmetric solutions, i.e., matrices .S[i,i+i] and S[1>f-+,j having the same first i rows (say, S^) and
differing inpermutations of columns thatare in anequivalence class whose columns have at leasta 0 or a 1
or in permutations andinversions of columns thatarein anequivalence classwhose columns haveonly -s.
Notice that there cannot be symmetricsolutionsdiffering in the first i rows, becauseby construction there
are no symmetric cubes in £[\,i\.

Let us show how to obtain S[{ i+1] s , that is S^ (l-+i]A, without symmetric elements. Let us start by
generating the solution matrices of «$[|,;+!],.?[, (], for agiven matrix S[Ui] from S[ifty Suppose that acube
•%+i.j+i] is found such that the matrix S, whose submatrix restricted to the first i rows isS'̂ j] and whose
last row is 5[i+ifl-+i], is a solution ofC[i,,-+ij. Then we should avoid the generation ofany cube 5[t+1 J+1j
that has the same numbers of Os and 1s in the columns of a class with at least a 0 or a 1 and the same sum
ofthe numbers ofOs and Is in the columns ofa class of-s. Indeed, we can obtain cube 5[i+1 i+1j from
S[i+i,i+i] by permutation ofcolumns from aclass with at least a0or a 1and by permutation and inversion
of columns from a class with only -s, neither of which change S^jj. As before, instead of cubes having
the same sum of the numbers of Os and Is in the columns of a class with only -s we may consider cubes
having different number of Is in the columns of that class. Finally the set «$[itj+1] a, .. is the union of all the
sets ^[i.j+ij.s,, -, obtained as before for all solution matrices S^j] from £[lti].

Example 4.2 Consider C given in Example 2.1 forn = 4. Suppose that we have already chosen the cube
S[i ?1] = 11 to satisfy the first constraint. The column equality relation o/S[i,i] has the equivalence
classes Class\ = (12) (thefirst two columns are allequal to 1) and Class2 = (34) (the last two columns
are allequal to -). The candidate cubes that satisfy C[2,2], and together with S[\tl] satisfy C[it2j, are among
those built - toavoidsymmetric ones - bycombining the 6patterns — (0 zeroes, 0 ones), I- (0 zeroes, 1
ones), 0- (1 zeroes, 0 ones), 11 (0 zeroes, 2 ones), 00 (2 zeroes, 0 ones), 01 (1 zeroes, 1 ones)for columns
in Class\ (all subcubes that havedifferent numbers ofOs and Is) andthe3 patterns — (0 ones), 1- (1
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ones), 11 (2 ones) (all subcubes that have different numbers ofIs) for columns in Class2. All together we
obtain6x3= 18combinations: , --1-, --11, 1 , 1-1- 1-H, H-- HI- mi,
0 , 0 - 1- 0 - 11, 01 - -, Oil- 0111, 00 - -, 001- 0011.

Example 4.3 Consider Cgiven in Example 2.1 for n= 4. Suppose that we have already built the partial

solution 5[i,2] =
11--

--11
, Vie column equality relation ofS[2,2] has the equivalence classes

Classi = (12) (thefirst two columns areall equal to , andClass2 = (34) (the last twocolumns are

all equal to .The candidate cubes that satisfy C[3>3], and together with Sp.2] satisfy C(1 >3], are among
those built - to avoid symmetric ones - by combining the 6patterns — (0 zeroes, 0 ones), 1- (0 zeroes,
1 ones), 0- (1 zeroes, 0 ones), 11 (0zeroes, 2 ones), 00 (2 zeroes, 0 ones), 01 (1 zeroes, 1 ones) both for
the columns in Class\ andfor those in Class2. The reason is that the columns in both classes contain an
entry equal to 1and therefore we must generate all subcubes that have different numbers ofOs and Is. All
together we obtain 6 x 6 = 36 combinations: , — 1-, — 11, — 0-, — 01, — 00, 1 ,
1-1-1-11,1-0-, 1-01, 1-00, 11--, 111- 1111,110- 1101, 1100,0 ,0-1-0-11,
0 _ o- 0 - 01, 0 - 00, 01 - -, 011- 0111, 010- 0101, 0100, 00 - - 001- 0011, 000- 0001, 0000.

The previous approach is general and it can beapplied whenever one needs togenerate the set ofall cubes
ina given Boolean space, such that no two cubes can beobtained by symmetric transformation one of the
other.

5 An Exact Algorithm to Find a Minimum Solution

In Fig. 4 we present the flow of an algorithm findsolution that finds a minimum solution of a constraint
matrix C. It starts withthe minimum dimension (lg of the number of constraints) and it increases it until
a solution is found. It is guaranteed to terminate because every constraint matrix can be satisfied by an
encoding oflength k, if k is the number ofsymbols; more precisely by an 1-hot encoding. Usually a much
shorter encoding length suffices.

5.1 The Search Strategy

The key feature ofthe proposed algorithm is that it searches sets ofcubes, instead than sets ofcodes. Since
a setofcubes may correspond tomany sets ofcodes, thealgorithm explores contemporarily many solutions.
Once a satisfactory setof cubes is found, it is straighforward toextract from it a satisfying encoding.

For agiven dimension, thesearch ofasatisfying encoding iscarried through bytheroutine search^pace,
that returnsa solution face matrix S that satisfies C. Once5 is known, it is easy,as shownin Example 2.2,
to find an encoding ofthe symbols that satisfies C. Themain features of search-space are:

1. The constraints are ordered as mentioned in Section 5.5 and then processed in that order.

2. Each call of search-space processes a new constraint.

3. It keeps a current partial solution CurrSol that satisfies all the constraints from the the first to the
last constraint that has been processed.
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4. It satisfies a constraint by generating a cube that encodes the constraint (a row of 5). A constraint
is satisfied if there is a cube such that, by adding it to the current solution, we satisfy the constraint
matrix restricted to the constraints from the first to the one currently processed.

5. Once the current constraint has been satisfied the current solution is updated and searchspace calls
itself recursively with a new constraint.

6. If the current solution cannot be extended to satisfy the current constraint, search-space backtracks
and tries a different cube for the last constraint that was satisfied by CurrSol and it continues to
backtrack until it finds a partial solution CurrSol which can be extended to satisfy the constraint
currently processed.

7. The procedurefoundsolution tests whether a face matrix is a solution of a set of constraints, by
constructing the intersection matrix Ts as shown in Section 2.1.

The following enhancements reduce the nodesofthe searchtree that searchspace has to explore to find
a minimum solution:

1. Candidate cubes are generated by a proceduregeneratexandxubes that does not produce any sym
metric pair of cubes,basedon the theory presented in Section 4. The equivalence relationon columns
is computed by recalculatexlasses.

2. A procedure generatexandxubes eliminates the cubes that would yield a matrix S with sections
which are not basic, as allowed by Theorem 2.2 and shownby example in Section 5.2.

3. Cubes that do not satisfy the necessaryconditionsof Section5.3 to be valid extensions of the current
solution are discarded by a procedure discardxandxubes.

4. When trying to extend thecurrent solution, theprocedure unsatxonstr checks first whether anyof the
constraints notyetprocessed isunsatisfiable byanextension ofthe currentsolution; if so,searchspace
backtracks to modify the current solution. See Section 5.4 for more discussion.

5.2 Restriction to Basic Sections

In Section 2 we highlighted the fact that not all solution face matrices S consistentirely of basic sections,
butweargued in Theorem 2.2thatbasic sections aresufficient to find a minimum solution. Therefore when
generating cubes that are candidate solutions of face constraints it is profitable to reject those that would
produce an S with some sections which are not basic.

Example 5.1 Let uscontinue Example 4.2 referring to C ofExample 2.1. The hypothesis is that we have
already chosen the cube 5[i,i] = 11 — to satisfy thefirst constraint. The column equality relation 0/S[i,i]
has the equivalence classes Class\ = (12) and Class2 = (34). The candidate cubes that satisfy C\2i2],
and together with 5[iti] satisfy C[i>2], are obtained by combining the 6patterns —, 1-, 0-, 11, 00, 01 for
columns in Classi andthe 3 patterns —, 1-, 11 for columns in Class2: , 1-, 11,
! 1 i_ i_ i_ii, 11-- ill-, 1111,0 , 0- 1-0-11, 01--, 011- 0111, 00--,

001-, 0011.

Notice that the last 9 cubes start by 0. But the column D =

%,2] when we add any ofthe last 9cubes to S[i,i], is not abasic section as can be seen by applying the test
ofTheorem 3.1, because Po{D) (thefirst constraint ofC) and Pi[D) (the second constraint ofC) intersect

that is a candidate first column of
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findsolution(C) {
/* order the constraints */

C = sort -constraints(C)
for {cubesize = lg[| C fl; TRUE \cubesize + +) {
curxonstr - 1 /* curxonstr is the index of the current constraint to satisfy */

Sol = searchJbooleanspace(C, cubesize, 0,curxonstr, {(1,..., cubesize))}
ifSo/ = 0

continue

else

return Sol

}
}

searchspace (C. cubesize. CurrSol. curxonstr.C'lasses) {
/* CurrSol satisfies all constraints */

if curxonst >\ C \
return CurrSol

/* earlydetectionof unsatisfiable constraints givenCurrSol *l
if unsatxonstr(C, CurrSol, curxonstr)

return©

/* generate candidate cubes CCubes without symmetries */
CCubes = generatexandxnbes(C. cubesize, curxonstr. Currsol. Classes)
/* eliminate candidate cubes yielding sections which arenot basic */
CCubes = restrictxandxubt$(C\ curxonstr,Currsol. Classes. CCubes)
/* sort candidate cubes in order of increasing size */
CCubes = sortxandxubes(CCubes)
I* eliminate candidate cubes that cannot satisfy constraints */
CCubes = discardxandxubes(C, curxonstr, Currsol, CCubes)
I* find a cube extending CurrSol to satisfy alsocurrent constraint */
for (curxube = 1; / <| CCubt s \ ;curxube + +) {

New-CurrSol = CurrSol U curxube

/* test if New.CurrSol satisfies constraints from 1 to cur_constr */

if not foundsolution(C. curxonstr, New-CurrSol)
continue /* not a solution: try another cube */

/* solution found: recomputeequivalence relation on columns */
New-Classes = recalculatexlasses(New.CurrSol, Classes)
/* try to extend current solutionto satisfy alsonext constraint */
Sol = searchspace(C, cubesize, New-CurrSol, curxonstr + 1,New-Classes)
if Sol 7^0

return Sol

}
return 0 /* current solution cannotbe extended to satisfy also currentconstraint */

}

Figure 4: Algorithm to find a minimum solution.
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(in other words, since the two constraints intersect the two cubes should intersect too, but they do not). So
we can discard allcandidate cubesforC\2t2] whose first component is0and restrict the search to: ,
- - 1- - - 11, 1 , 1 - 1-, 1 - 11, 11 - -, 111- 1111

The process shown in Example 5.1 can be made systematic as a procedure that filters the candidate
cubes to remove those that would yield sections that are not basic. We do not report here the details of such
a procedure.

5.3 Removal ofUnsuitable Cubes

Given a partial solution 5[i(t] and a set of candidate cubes «$[?.£j$+1] f°r C[i+i,i+i\ that do not contain
symmetric cubes norcubes leading tosections that are not basic, before checking ifS[\t,-j together with a cube

c

5[l+,,,+1] €Sfj«fi+l] is asolutionofqi.+i] SIM+1] = s []/]
conditions that S[,-+if,-+i] must satisfy to pass the test. Precisely we discard acube 5[f-+ltl-+i] € <S{/+5"-+1] it
at least one of three conditions hold:

, it is worthy to apply some necessary

1. Thenumberof lsinC[l+iiJ+i] isgreater than 2n where n is the number of -sin.S[;+i,;+i].

2. There is a k such that the cube S[t+i,l+i] covers the cube S[ktk]t but the vector C[t+1)t+1] does not
cover (dominate) the vector C[ktky In this case there isacolumn C.m ofC such that C(,+i)m = 0and
C'km = 1, that does not appear intheintersection matrix of S[i,,-+i]-

3. There is a ksuch that C[ktk] intersects C[1+i)l+i], but the number of Is intheir intersection isgreater
than the number of -s inthecube obtained by the intersection of5[l+1)t+1] and S[ktky

5.4 Early Detection of Unsatisfied Constraints

Constraints areprocessed one byone in a predefined order. Suppose thaton the path leading to the current
nodeof the searchtree we have alreadychosen4 cubessatisfying the first4 constraintsand that now we are
trying tosatisfy the5-th constraint. Suppose also thatall constraints from the5-thto the19-th aresatisfiable,
butthat the 20-this unsatisfiable, given thecurrent choice of the first 4 cubes. So checking the satisfiability
of one constraint at a time, we would discover that the 20-th constraint is unsatisfiable only after having
processed all constraints up to the 19-th one; then we would start backtracking to another cube satisfying
the 19-th constraint andwe would try again to satisfy the20-th one,andso on for all the cubesthat satisfy
the 19-th constraint. We would repeat thistime-consuming process for all constraints from to the 19-th to
the5-thone,before discovering thatwemustmodify thesolution to thefirst 4 constraints, in orderto extend
it to a solution that satisfies the constraints up to the 20-th one.

To prevent such unrobust behaviour and lessen the dependency on how the constraints are sorted
initially, weemploy early detection ofunsatisfied constraints. Ateach node ofthe search tree with i satisfied
constraints, the algorithm checks first thatanyof theremaining unprocessed constraints is satisfiable, given
the current choice of cubes which satisfy the first i constraints. Although this checks requires some extra
calculations at each node of the search tree, this is fully justified by the drastic reduction of the search tree
size.

5.5 Sorting of Constraints

Constraints are sorted withthe goal to prune branches of the search tree at the earliest possiblestages. We
have twosorting criteria. The first oneselects as next constraint the one that intersects the highestnumber
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of already selected constraints. Ties are broken selecting the constraint with the highest number of Is. The
second criterion selects by the highest number of Is and breaks ties with the highest number of intersected
rows.

6 An Example of Search

Consider the matrix C of Example 2.9

C =

C'(U1 1 0 0 1 0 0

C[2,2] 0 1 1 0 1 0

C'[3,31 0 0 0 1 0 1

CM 0 0 1 0 0 1

Cr<5.<51 1 1 1 1 0 0

The procedure findsolution calls first searchspace with n = 3, but there is no solution there. So it calls
again searchspace with n = 4. Let us follow the search in the latterspace.

searchspace is invoked with CurrSol = [ 01, and curxonstr =C[i.ij. After generatexandxubes
CCubes = { ,1 ,11 ,111-,1111}. After restrictxandxubes CCubes is the same as
before. Afterdiscardxandxubes CCubes ={1 ,11 ,111-}. Set curxube =1 .
New.CurrSol= [1 - - - 1satisfies C[i,ij.

searchspace is invoked with CurrSol = 1 - - - J, and curxonstr = C[2|2]- After gener
atexandxubes CCubes = { , -1--, -11-,-111, 1 , 11 --, 111-, 1111,0 ,
01 —, Oil—, 0111}. After restrictxandxubes CCubes is thesame as before. After discardxandxubes
CCubes = {-1 - -.01 - -}. Set curxube = -1 - -.

satisfies C[it2].NewJCurrSol =

New-CurrSol =

- 1 -

searchspace is invoked with CurrSol =

- 1 - -

--11

1 _ _ _

- 1 - -

atexandxubes CCubes = { , - - 1-, - - 11, -1 - -, -11-, -111, -0 - -, -01-, -011,
1 , i _ i_; j _ ii, ii _ _. in-, mi, 10- -, 101—, 1011,0 ,0- l-,0- 11,01 - -,

011-, 0111, 00 - -, 001-, 0011}. After restrictxandxubes CCubes = { , - - 1-, - - 11,
-l - -, -ii-, -in, -o- -, -oi-, -on, i , i -1- i - ii, n - -, in-, mi, io—,
101—, 1011}. Afterdiscardxandxubes CCubes= {- - 11, -01-, -011}. Set curxube = - - 11.

1 - - - ~
satisfies C[i,3j.

, and curxonstr —Cp^y After getter-

searchspace is invoked with CurrSol =
1 - - -

- 1 - -

- - 1 1

generatexandxubesCCubes = { , — 1-, 11, 0-, 01, 00,-1 , -11-
-111, -10-, -101,-100, -0- -, -01-, -011, -00-, -001, -000,1 , 1 - 1-, 1 - 11,1 -0-
1 -01,1 -00,11 - -, 111-, 1111,110-, 1101,1100,10- -, 101-, 1011,100-, 1001,1000,0
0 - 1-, o - 11, 0 - 0-, 0 - 01, 0 - 00, 01 - -, 011-, 0111, 010-, 0101, 0100,00 - -, 001- 0011
000-, 0001,0000}. After restrictxandxubes CCubes = { , - - 1-, - - 11, -1 - -, -11-
_111,1 , 1-1-, 1-11,11--, 111-, 1111,0 ,0-1-,0-11,01--,011-,0111}. After

, and curxonstr = C[4,4j. After
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discardxandxubes CCubes = {0 - 1-}. Set curxube = 11.
1 _ _ _

- 1 - -

- - 1 1

0 - 1 -

New-CurrSol = satisfies C\[Ml-

searchspace is invoked with CurrSol =

1 - - -

_ 1 _ _

- - 1 1

0 - 1 -

detects that Cpj] is unsatisfiable, given CurrSol. Backtrack to curxonstr = C[4,4] and, since there are
no other candidate cubes for thelatter, backtrack again to curxonstr = Cpf3]. Setcurxube = -01-.

1 - - -

satisfies C[i,3].

, and curxonstr = Cp^. unsatxonstr

New.CurrSol = - 1 - -

-01-

searchspace is invoked with CurrSol =
1 - - -

_ 1 _ _

- 0 1 -

generatexandxubes CCubes = { , 1, 1-, 11, 0-, 01,-1 , -1 - 1
-11-, -111, -10-, -101, -0 - -, -0 - 1, -01-, -011, -00-, -001, 1 , 1 - -1, 1 - 1-

1- 11, 1 -0-, 1 -01, 11 --, 11 - 1, 111-, 1111, 110—, 1101, 10- -, 10- 1, 101—, 1011, 100-

1001,0 ,0--1,0-1-,0-11,0-0-,0-01,01--,01-1,011-,0111,010-,0101,00--

00 - 1, 001-, 0011, 000-, 0001}. After restrictxandxubes CCubes = { , 1, - - 1-
- - 11,1 , 1 - -1, 1 - 1-, 1 - 11,0 ,0- -1,0- l-,0- 11}. After discardxandxubes
CCvhes-= { 1.- - 11,0- -1,0- l-,0- 11}. Setcurxube = 1.

1 - - -

New-CurrSol =
- 1 - -

-01-

- - - 1

satisfies C[i(4].

, and curxonstr = C^j. After

searchspace is invoked with CurrSol =

1 - - -

- 1 - -

- 0 1 -

- - - 1

detects that C[5^ is unsatisfiable, given CurrSol. Backtrack to curxonstr = C^j and setcurxube =
--11.

, and curxonstr = C^sj. unsatxonstr

New-CurrSol =
- 1 - -

-01-

--11

satisfies C\[Ml-

searchspace is invoked with CurrSol =

1 - - -

- 1 - -

- 0 1 -

- - 1 1

detects thatC[5,5] is unsatisfiable, given CurrSol. Backtrack to curxonstr = C^j andset curxube =
0--1.
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New-CurrSol =

1 - - -

- 1 - -

-01-

0 - - 1

satisfies C\ 1,41-

searchspace is invoked with CurrSol —

1 - - -

- 1 - -

- 0 1 -

_ 0 - - 1
detects that C[sts) isunsatisfiable, given CurrSol. Backtrack to curxonstr = C[4t4] and set cur .cube =
0-1-.

1 - - -

, and curxonstr = C[sts]. unsatxonstr

New-CurrSol =
- 1 - -

-01-

0 - 1 -

satisfies C[i ,4j.

searchspace is invoked with CurrSol =

1 - - -

- 1 - -

- 0 1 -

0 - 1 -

generatexandxubes CCubes = { , 1, 1-, 11, 0—, 01,-1 , -1 - 1
-11-, -111, -10-, -101, -0 - -, -0 - 1, -01-, -Oil, -00-, -001, 1 , 1 - -1, 1 - 1-
1_ 11, 1 _ 0-, 1- 01, 11 - -, 11 - 1, 111-, 1111, 110-, 1101, 10- -, 10 - 1, 101-, 1011, 100-
1001,0 ,0- -1,0- l-,0- 11,0-0-,0-01,01 --,01-1,Oil-,0111,010-,0101,00--
00 - 1, 001-, 0011, 000-, 0001}. After restrictxandxubes CCubes = { , 1, 1-

11}. After discardxandxubes CCubes = { 1}. Setcurxube = 1.
1 _ _ _

.\< w-CurrSol —

- 1 - -

-01-

0 - 1 -

sati sties C[ i.5

searchspace is invoked with CurrSol =

1 - - -

- 1 - -

- 0 1 -

0 - 1 -

- - - 1

are satisfied CurrSol is the final solution. Notice that searchspace was called 11 times.

, and curxonstr = 6(5,5]. After

, and curxonstr = 0. All constraints

7 Results

We implemented the algorithm described in Section 5in aprototype package in C called MINSK (Minimum
INput Satisfaction Kernel) and we applied it to a set of benchmarks available in the literature. The
benchmarks are partitioned into three sets: FSMs from the MCNC collection, reported in Table 5; FSMs
collected from various othersources, reported in Table 7; decode PLAs ofthe VLSI-BAM project, provided
by Bruce Holmer [9], reported in Table 8. Inall cases, face constraints were generated withespresso [1].
In the tables we report:

1. the name of the example,

2. the number of symbols to encode ("#states"),
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3. the logarithm of the number of symbols ("min. len.") together with the minimum code length to
satisfyall inputconstraints known so far ("best kwown"),

4. theminimum code length to satisfy all input constraints found by MINSK ("min. sol"),

5. the number of callsof the routinefoundsolution ("#checks"),

6. the number of recursive calls of the routine searchspace ("#calls"),

7. the CPU time for a 300 Mhz DEC ALPHA workstation.

We did not report data on examples where the constraints were few and MINSK found a solution in no
time. We found an exact solution for all the examples, except the FSMs tbk, s!488, s!494, s298 noneof
whichhasbeensolvedbefore. For someexamples, like donfile, scf, dkl6 exact solutions werenever found
automatically before; for others, like ex2 an exact solution was found automatically by nova [16] with the
option -e ie, but at the cost ofan unreasonable CPU time (60172.6 s. on 60Mhz DEC RISC workstation)4.

Upto now four exactalgorithms havebeentried to solve face hypercube embedding. The first is available
as an option in nova -e ie, the second is basedon a reduction to satisfactionof encoding dichotomies by
means of unate covering [17, 11], the thirdis an implicit implementationwith ZBDDs ofthe latter [3], and
the last is a simplification of the third, where insteadof prime dichotomies one uses all possible encoding
dichotomies [3]. In Table 6 we compare the performance of MINSK with the last three previous algorithms,
based on the data recently reported in [3]. We are aware that the experiments presented in [3] were run
with a 75 Mhz SuperSparc workstation with 96 MB memory and a timeout of 2 hours. The purpose of
the comparison is to evaluate the behaviors of the various algorithms, not to discuss specific running times.
We included in Table 6 all the interesting examples, leaving out "easy" cases where all algorithms behaved
similarly.

The experiments warrant the following practical conclusions:

• MINSK is a robust algorithm, that solves in no time problems with few constraints and requires more
time when the set of constraints is larger and more difficult. This apparently innocent feature lacks
in the other programs (with the exception of nova), pointing out that the reduction of face hypercube
embedding to encoding dichotomies is not an algorithmically robust strategy.

• MINSK is also superior in running times to the other programs in the more difficult cases, showing that
the key ingredients of its search strategy, such as generating cubes and not codes, avoiding symmetric
solutions and sections which are not basic, prune away large suboptimal portions ofthe search space.
The exact option of nova instead is hopelessly slow in the more difficult cases, because it enumerates
codes and not cubes and does not avoid the generation of symmetric encodings.

• The implicit algorithms of [3] rely on a very sophisticated unate covering package that represents the
table with ZBDDs. MINSK instead is a simple-minded implementation, whose strength lies only in the
underlying theory. The running times of MINSK can be improved a lot by making more efficient some
critical routines such as foundsolution. This shows how important is to find the appropriate model
for a problem, even when powerful implicit techniques are available as an alternative.

'An solution of 7 waserroneously reported as exact in [16] for dk!6, whereas theminimum solution has 6 bits.
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Name #states #cons. min. len. /

best known

min. sol. #checks #calls time

(sees)

bbsse 16 5 4/6 6 127 9 0.02

beecount 7 6 3/4 4 75 9 0.01

cse 16 9 4/5 5 219 11 0.03

dkl4 7 9 3/4 4 137 16 0.02

dkl5 4 6 2/4 4 66 12 0.01

dkl6 27 24 5/<8 6 622653 8686 161.45

dkl7 8 7 3/4 4 162 9 0.01

dk27 7 4 .3/3 3 42 5 0.00

dk512 15 9 4/5 5 569 12 0.06

donfile 24 24 5/<6 6 245476 1722 48.14

exl 20 8 5/7 7 1522 15 0.47

ex2 19 8 5/6 6 666 13 0.13

ex3 10 6 4/5 5 195 11 0.02

ex5 9 7 4/5 5 99 13 0.01

ex6 8 9 3/4 4 87 11 0.01

ex7 10 6 4/5 5 71 12 0.01

keyb 19 18 5/7 7 3676 184 1.62

kirkman 16 6 4/<6 6 52 10 0.01

lion9 9 10 4/4 4 194 11 0.02

markl 15 4 4/4 5 72 8 0.01

planet 48 10 6/6 6 2044 11 0.40

pma 24 13 5/na 7 37339 687 14.42

si 20 5 5/5 5 334 6 0.03

S1488 48 24 6/na -
- - timeout

S1494 48 24 6/na - - - timeout

s208 18 5 5/na 6 162 8 0.02

s27 6 6 3/na 4 80 9 0.01

s298 218 47 9/na timeout

s386 13 5 4/na 6 124 9 0.02

s420 18 5 5/na 6 162 8 0.02

s820 25 10 5/na 6 1832 13 0.38

s832 25 10 5/na 6 1848 13 0.35

sand 32 5 5/6 6 131 7 0.02

scf 121 14 7/<8 7 6239 17 2.82

sse 16 5 4/6 6 127 9 0.02

styr 30 16 5/6 6 973 18 0.29

tbk 32 73 5/< 18 - - - timeout

tma 20 9 5/na 6 2086 71 0.43

trainll 11 11 4/5 5 8534 256 1.06

Figure 5: Experiments with FSMs from MCNC Benchmark Set.
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Name ImpDicho ZeDicho Dicho MINSK

time(s.) time(s.) time(s.) time(s.)

dkl6 spaceout timeout spaceout 161.45

dk512 timeout timeout 238.72 0.06

donfile timeout timeout spaceout 48.14

exl 433.85 128.63 spaceout 0.47

ex2 timeout timeout spaceout 0.13

ex4 timeout timeout timeout 0.00

keyb timeout 14.43 125.2 1.62

planet spaceout timeout spaceout 0.40

si timeout timeout timeout 0.03

sand spaceout timeout spaceout 0.02

scf spaceout timeout spaceout 2.82

styr spaceout timeout timeout 0.29

tbk spaceout timeout spaceout timeout

Figure 6: Comparison with Other Approaches.

Name #states #cons. min. len. min. sol. #checks tolls time

(sees)

apla 29 10 5 7 1267 14 0.45

lange 6 7 3 4 128 15 0.01

papa 7 9 3 4 162 19 0.02

scud 8 17 3 6 1102 77 0.28

tlc34stg 35 19 6 6 3635 20 1.22

viterbi 68 6 7 7 4510 7 1.07

vmecont 32 41 5 9 25958139 22354 95424.37

Figure 7: Experiments with FSMs from Other Sources.

Name #states #cons. min. len. min. sol. #checks #calls time

(sees)

irla 128 2 7 8 22 4 0.01

irlb 128 4 7 8 549 7 0.21

irlc 128 5 7 8 1224 7 0.62

irld 128 11 7 9 402694 2299 512.10

ir2 128 8 7 8 10374 35 6.00

ir2m 128 11 7 8 31468 13 20.43

ir3 128 11 7 8 18075 13 13.89

ir4m 128 5 7 8 733 7 0.32

Figure 8: Experiments with Decode PLAs ofthe VLSI-BAM.
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8 Conclusions

We have presented a new matrix formulation of the face hypercube embedding problem that motivates the
design ofan efficient search strategy to find anencoding that satisfiesall facesofminimumlength. Increasing
dimensions of the Boolean space are explored; for a given dimension constraints are satisfied one at a time.
The following features help to reduce the nodes of the solution space that must be explored: candidate
cubes instead than candidatecodes aregenerated, symmetric cubes arenot generated, a smaller sufficient set
of solutions (producing basic sections) is explored, necessaryconditions help discard unsuitable candidate
cubes, early detection that a partial solution cannot be extended to be a global solution prunes infeasible
portions of the search tree.

We have implemented a prototype package MINSK based on the previous ideas and run experiments
to evaluate it. The experiments show that MINSK is faster and solves more problems than any available
algorithm. Moreover, MINSK is a robust algorithm, while most of the proposed alternatives are not. All
problems of the MCNC benchmark suite were solved successfully, except four of themunsolved oruntried
by any other tool. Other collections of examples were solved orreported tor the first time, including an
important setof decoder PLAs coming from thedesign of microprocessor instruction sets.

We knowthatthecurrent implementationof MINSK is simple-minded and leaves room for improvements
to speed-up more the program. For instance, the satisfaction check with the intersection matrix 7> is
expensive and currently notoptimized. Other areas of improvement to cope with difficult examples liein
the computation of abetter lower bound than the current In statesontheBoolean space dimension; and ina
dynamic choice of the next cube and itssize, based onatighter analysis of the cube occupancy requirements
ofthe existing constraints.

Moreover, we wantto generalize the existing theory and algorithm in the following directions:

1. Solving face constraints withdon't cares, that is an important practical problem.

2. Solving mixedproblems that include constraints in the form of encoding dichotomies.

From some preliminary analysis, both extensions are ameneable to the current frame, with some appropriate
modifications to the test when a candidate matrix is a solution and the introduction of the equivalent of a
face for an encoding dichotomy.

Notice that the reduction of face hypercube embedding to satisfaction of encoding dichotomies f11. 31
has shown experimentally that face hypercube embedding in asense contains the hardest instances of the
problem to satisfy encoding dichotomies. This fact justifies our strategy to solve the former first and extend
it later to the latter.
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