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Abstract

We present a new matrix formulation of the face hypercube embedding problem that motivates the
design of an efficient search strategy to find an encoding that satisfies all faces of minimum length.
Increasing dimensions of the Boolean space are explored; for a given dimension constraints are. satisfied
onc at a time. The following features help to reduce the nodes of the solution space that must be explored:
candidate cubes instead than candidate codes are generated, cubes yielding symmetric solutions are not
gencrated, a smaller sufficient set of solutions (producing basic sections) is explored, necessary conditions
help discard unsuitable candidate cubes, early detection that a partial solution cannot be extended to be
a global solution prunes infeasible portions of the search tree.

We have implemented a prototype package MINSK basced on the previous ideas and run experiments
to evaluate it. The experiments show that MINSK is faster and solves more problems than any available
algorithm. Moreover, MINSK is a robust algorithm, while most of the proposed alternatives are not.
Besides most problems of the complete MCNC benchmark suite, other solved examples include an
important set of decoder PLAs coming from the design ol microprocessor instruction sets.

1 Introduction

Consider a set of symbols S and an encoding function e : 5 — B*, for a given k, that assigns to each
symbol s € S acode e(s), i.e., a binary vector of length k. Usually the only requirement is that e is injective,
i.e., that different symbols are mapped to different binary vectors. In various applications it is important to
satisfy other encoding constraints, in order to obtain a code that is correct or desireable to meet a certain
objective. The encoding length k£ may be part of the problem instance or it may be an unknown to be found
(usually minimized) by the procedure that satisfies the given encoding constraints [15].

Given a set of symbols S, a face constraint c; is a subset S’ C S specifying that the symbols in S’ are
to be assigned to one face (or subcube) of a binary k-dimensional cube, without any other symbol sharing
the same face. Face constraints are generated by multiple-valued (input) literals in two-level and multi-level
multi-valued minimization [15]. As an exampe, given symbols a, b, ¢, d, e, an input constraint involving
symbols a, b, ¢ is denoted by (a,b,c). An encoding satisfying (a, b, c) is given by a = 111, b = 01],



¢ = 001, d = 000 and ¢ = 100 and the face spanned by (a, b, ¢) is — — 1. Notice that the vertex 101 is not
and should not be assigned to any other symbol.

Given a set of face constraints Cy, it is always possible to find an encoding that satisfies it, as long as
one is free to choose a suitable code length. It is a well-known fact that for k = | S | any set C; is satisfied
by choosing as e the I-hot encoding function (which assigns to a state s; the binary vector that is always O
except for a position to 1, the latter denoting state s;). It is an important combinatorial optimization problem,
sometimes called [16] face hypercube embedding, to find the minimum k and arelated e : S — B* such
that C; is satisfied. The decision version of this problem is NP-complete [11].

An exact solution based on a branch-and-bound strategy to search the partially ordered set of faces
of hypercubes was described first in [16], but it is not computationally practical. An exact solution by
reduction to the problem of satisfaciion of encoding dichotomies ! was proposed in [17]. It uses a reduction
by J. Tracey [14] of the exact satisfaction of encoding dichotomies to a unate covering problem. This
approach was made more efficient in [11], by improving the step of generating maximal compatibles of
encoding dichiotomics. Recently the problem of satisfaction of encoding dichotomies has been revisited
in [3], adapting techniques to find primes and solving unate covering with binary decision diagrams that
have been so successful in two level logic minimization [2]. From the experimental point-of-view none of
the previous algorithms has performed up to expectations, being unable to solve exactly various instances of
moderale size and practical interest. Moreover, algorithms reducing encoding dichotomies to unate covering
have a dismal behavior when the problem instance consists mostly of uniqueness e¢ncoding dichotomies
(i.e., encoding dichotomies with only one state in each block), because they generate most of the encoding
columns, which are 2% for k = | S |.

Heuristic solutions to the face embedding problem have been reported in many papers [10, 4, 12, 5,
17, 13]. A heuristic solution satisfies all face constraints, but does not guarantee that the code-length is
minimum. A related problem, that is not of interest in this paper, is the one of fixing the code-length and
maximizing a gain function of the constraints that can be satisfied in the given code-length. We refer to [15]
for background material on satisfaction of encoding constraints and their sources in logic synthesis.

In this paper we present a new matrix formulation of the face hypercube embedding problem that
inspires the design of an cfficicnt exact scarch strategy. This algorithm satisfies the constraints one by onc
by assigning to them intersecting cubes in the encoding Boolean space. The problem of finding a set of
cubes with a minimum number of coordinates satisfying a given intersection matrix was first formulated
in [18] without any relation to encoding problems. No algorithm to solve the problem was described. The
relation between the tace embedding problem and the construction of intersecting cubes was employed in
an heuristic algorithm described in {12, 5]. The first formulation of a simple criterion of when a set of
cubes satisfics a set of constraints was given in [6]. We use some theoretical notions, e.g., basic and primc
sections, introduced first in [7, 8]. The following features speed up the search of our algorithm: candidate
cubes instead than candidate codes are generated, symmetric cubes are not generated, a smaller sufficient set
of solutions (producing basic sections) is explored, necessary conditions help discard unsuitable candidatc
cubes, early detection that a partial solution cannot be extended to be a global solution prunes infeasible
portions of the search tree. The experiments with a protype implementationin a package called MINSK show
that our algorithm is faster, solves more problems than any available alternative and is robust. All problems
of the MCNC benchmark suite were solved successfully, except four of them unsolved or untried by any
other tool. Other collections of examples were solved or reported for the first time, including an important
set of decoder PLAs coming from the design of microprocessor instruction sets.

In Section 2 we present a theoretical formulation based on matrix notation. The generation of basic
sections is discussed in Section 3. How to avoid the generation of symmetrical solutions is explained in
Section 4. In Section 5 we describe a new algorithm to satisfy face constraints and we show a complete

! An encoding dichotomy on S is a bipartition (5}, S2) such that S, U S> C S.



example of search in Section 6. Experimental results are provided in Section 7. Section 8 concludes the
paper with remarks on what has been achieved and future work.

2 Matrix Formulation of the Face Embedding Problem

Given a matrix M, denote by Row(M) its rows and Col(M) its columns. M;. denotes the i-th row of M
and M ; denotes the j-th column of M. The multiplicity of a column C ; of M, mult(j) is the number
of times that C'; occurs in M. We use the term vector to indicate a one dimensional matrix, when there is
no need to specify whether it is regarded as a row or a column. Vectors are called binary or two-valued if
their entries are 0 or 1 and 3-valued if their entries are 0 or 1 or —. A singleton vector has a unique 1.

Given two 2-valued vectors v; and v of the same length, their disjunction v, U v; is the vector v whose
i-th entry is the disjunction of the i-th entries of v and v,. Similar definition holds for the conjunction of
vy and 2. A vector v; covers a vector v; if, whenever the i-th entry of vy is 1, the /-thentryof vy is 1. A
vector v; intersects a vector v; if for at least an index i, the :-th entry of vy and vz is 1.

2.1 Constraint and Solution Matrices

Given a set of symbols S and a set of face constraints (; on S, the constraint matrix is a matrix with as
many rows as constraints and columns as symbols. Entry (i, j) is 1 iff the é-th constraint contains symbol j,
otherwise it is 0. For don’t care face constraints, the don’t care states have a — in the corresponding position
of the constraint matrix.

Consider the set of constraints C; = {(s3545¢50), (5355), (515457), (525356), (5788), (s11512) }. Then the
related constraint matrix is:

Example 2.1
0 011010010007
001010000000
C,=1001001000()0
011001000000
000000110000
| 00000 00O0O0T1T1 0O

In the sequel we will refer usually to a set of face constraints C by its encoding matrix C' and we will not
distinguish the two. Notice that there is no need to add singleton constraints, becausc we guarantec that
different codes are assigned to different states, including the states whose columns in Cy are equal.

Given an encoding c that satisfies a constraint matrix C, e defines a face for each constraint of C,ic,
the minimum subcube that contains the codes of the states in the constraint.

For a given constraint matrix C and integer n, consider a face matrix S with Row(C) rows (faces or
cubes) and n columns (sections), whose entries may be O or 1 or —. Each row may be regarded as a subcube
in the n-dimensional Boolean space. If there exists an encoding e such that, for each ¢ € Row(S), the i-th
row of S is the face that e defines for the i-constraint of C, then we say that S is a solution face matrix of
C or that S satisfies C and that the -th row of S is a solution cube of the i-th constraint.

One verifies that S is a solution face matrix of C, by constructing another matrix 7's whose rows are the
cubes of S and whose columns are the minterms of B™, where entry (3, 7) is 1 iff minterm j is in cube :.
Then S satisfies C' if for any column C j, the matrix T's contains no less than mult(C.;) columns equal to
C ;. In other words, we require that each minterm (code of a state) belongs only to those faces to which it is
restricted by the constraints; moreover, if there are equal columns in the constraint matrix, for each of them



there must be a different minterm. In this way, there is at least one injective function o7, that associates
to each column of C one column of Ts.

Given a matrix S satisfying C', an encoding es that satisfies C can be extracted with the following rule:
select an injective function fc_, 1, whose existence is guaranteed because S satisfies C, then encode state :
(i.e., column i of C) with the minterm of the column f¢_,(;) in T's. Such an encoding satisfies C' because
each code lies only in the faces corresponding to the constraints to which the state belongs.

Example 2.2 Given the previous C and n = 4, consider

0 1 -1
1 0 - 0
1 - -1
S=
- - 10
-1 0 1
| 0 - 0 O |
S satisfies C' as it is shown by building the matrix
[ 1001 0110 1010 1011 1000 0010 1101 0101 0011 0100 0000 0111 0001 1100 1111 1110
0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Ts= 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

An encoding ¢s thai saiisfies C can be extracted frorm S, with the following injection from columns of C' to
columns of Ts: e(s1) = 1001, e(s2) = 0110, e(s3) = 1010, e(s4) = 1011, €(s5) = 1000, e(s¢) = 0010,
¢(s7) = 1101, e(sg) = 0101, e(s9) = 0011, e(sy0) = 0100, e(s13) = 0000, ¢(sy2) = 0111

Notice that any permutation of the following subsets of codes yields another encoding es that satisfies
C': {0100,0000}, {0111,0001. 1100}, {1001, 1111} and {0110, 1110}, as indicated by the existence of
more than one column of Ts that is equal to a certain column of C.

2.2 Basic Sections

Given a constraint matrix C' and an encoding e, the set of the minimal cubes such that each of them contains
the codes of the symbols in a corresponding constraint of C defines the rows of a face matrix S. If e satisfies
C then S is a solution face matrix of C.

Example 2.3 Consider

11000
01100
C_OOIIO
00011

The encoding e(s1) = 000, e(s2) = 100, e(s3) = 110, e(s4) = 111, e(ss5) = 010 does not satisfy C. The
minimal cubes containing the codes assigned by e to the symbols in each constraint of C are:

0 0
- 0
1 -

—

S=




The encoding e(s;) = 000, e(sz) = 100, e(s3) = 110, e(ss) = 111, e(ss) = 101 satisfies C. The
minimal cubes containing the codes assigned by e to the symbols in each constraint of C define a face matrix
S:

- 00
1 - 0
S-ll—
1 -1

which satisfies C' as seen by building the intersection matrix

| 000 001 010 011 100 101 110 111

-0 1 0 0 0 1 0 0 O
Ts=|1-0/0 0 0 0 1 0 1 0
1m-{0 o0 o0 0 O O 1 1
1-1{0 0 0 0 O 1 0 1

The operation of a finding the minimal cube that contains the codes of the states that appear in a given
constraint is captured exactly by the notion of basic section that we are going to define next. Informally,
given a constraint matrix C, the columns of a face matrix S such that there is an encoding e (that may or
may not satisty C') for which the rows of S are the minimal cubes containing the codes of the constraints of
C are basic sections.

Consider a vector d (whose elements are 0 or 1) with |C'ol(C)| entries. We can regard d as an encoding
column, i.e., an assignment of 0 or 1 to each symbol. An encoding functione : S — B defines a set of k
encoding columns ey, - - -, e (i.e., the columns of €), where the i-th entry of e; is 1 (is 0) if and only if the
J-thcoordinate of e(s;) is 1 (is 0).

Let us compare the set of columns that have a 1 in C;, (i-th row of C) with the set of columns that have
a 1in d. There are the following cases:

1. d covers C; , i.e., all columns that have a 1 in C;, have a 1 in d. In other words, all the states in the
i-th constraint arc sct to bit 1 in thc cncoding column d. Say that thc comparison returns a 1.

2. d does not intersect C; , i.e., no column that has a 1 in C;_has a 1 in d. In other words, all the states
in the /-th constraint are set to bit 0 in the encoding column d. Say that the comparison returns a 0.

3. d intersects but does not cover C;,, i.e., a proper subset of the columns that have a 1in C; havea 1in
d. In other words, some states in the constraint are set to 1 and others to 0 in the encoding column d.
Say that the comparison returns a —.

So given a d, let us denote by bs(d) a column vector with | Row(C')| entries of value 1, O, or -, where the
i-thentry is 1, 0 or —, according to whether the previous comparison of d and C; returns a 1, 0 or —. When
convenient, we may represent bs(d) in positional notation, i.e., as a matrix with two columns, obtained by
representing 1 as 01,0 as 10 and — as 11.

Definition 2.1 A 3-valued column B is called a basic section for C if there is avector d such that B = bs(d).

Example 2.4 In Example 2.3, the encoding columns of the first encoding (i.e., e(s1) = 000, e(s2) = 100,
e(s3) = 110, e(ss) = 111, e(ss) = 010 which does not satisfy C) are e; = 01110, e; = 00111, e3 = 00010,
and they yield the basic sections bs(e]) = —11—, bs(ez) = 0— 11, bs(e3) = 00 — —. The rows of the matrix
of the basic sections are the minimal cubes spanned by the codes of the states in the constraints of C.



Corollary 2.1 Given a constraint matrix C and an encoding e with encoding columnsey, . . ., ek, the basic
sections bs(ey), . . ., bs(ex) define the set of minimal cubes such that each of them contains the codes of the
symbols in a corresponding constraint of C' (even if e does not satisfy C'). Moreover, if e satisfies C the
basic sections bs(ey), . . ., bs(ey) define a face matrix that satisfies C.

Theorem 2.1 Given d and C, the positional representation of bs(d) can be obtained by ORing the columns
of C as follows: the first (respectively, second) column of bs(d) is obtained by ORing all columns C.; such
that d; = O (respectively, d; = 1).

Proof. Consider row C;. and the subsets of entries {C;; | j s.t. d; = 1} and {C;; | j s.t. d; = 0}. Then
by ORing the entries in {C;; | j s.t. d; = 1} (respectively, {C;; | j s.t. d; = 0}) one gets a 1 in the first
(respectively, second) position iff bs(d); = O or bs(d); = — (respectively, bs(d); = 1 or bs(d); = —). O

An equivalent definition of basic section follows from Theorem 2.1: any matrix of 2 columns and | Row(C)|
rows, whose first column is obtained by ORing a subset of columns of C' and whose second column is
obtained by ORing the remaining columns of C, is a basic section.

Example 2.5 Considerd = 101110100000, which is the first column of the encoding exhibited in Example2.2.

F1 17 [
01 1
Then we have bs(d) = (1) i , that is written in 3-valued notation as bs(d) = 1 . If we repeat the
11 -
[ 1 0 [ 0 ]

same operation for the other columns d of the encoding of Example 2.2, the matrix whose columns are the
vectors bs(d) (in 3-valued notation) is exactly the matrix S of Example 2.2, i.e., the matrix whose rows are
the faces spanned by the codes of the given encoding.

2.3 Sufficiency of Basic Sections

Basic sections are candidate columns to construct S matrices that are solutions of a given C'. They are an
appealing notion because a set of basic sections may represent “implicitly” more than one encoding. As seen
in Example 2.2, there are many encodings that generate the same set of faces and differ only in permutations
of codes within a face that are inconsequential in order to satisfy the face constraints. Contrary to the casc
of handling directly encoding columns, by manipulating basic sections, one is likely to explore a smaller set
of combinatorial objects to build an optimal solution.

Example 2.6 Consider d' = 111110100000, which is the first column of the encoding exhibited in
Example2.2, except for the exchange of the codes 0110 and 1110. Then we obtain the same basic sec-

1
tionbs(d) = | _ |, showing that different encoding columns may map into the same basic section.

0

It is worthwhile to clarify that a matrix S that satisfies a constraint matrix C does not consist necessarily
(only) of basic sections. A trivial case comes from "redundant” solutions, obtained by adding to a solution
matrix S an arbitrary column (so not necessarily a basic section). A more interesting case comes from a
solution matrix S whose faces are not minimal subcubes yielded by a corresponding encoding e. This latter

6



case arises when a face matrix S satisfies C' and there is an encoding e extracted from S such that the face

corresponding cubes of S*). We will argue that we can avoid the consideration of S and still guarantee that
for any encoding e satisfying C' there is a face matrix 5’, from which ¢ can be extracted, that satisfies C.

Example 2.7 We noticed already that the face matrix S built in Example 2.3 is made of basic sections. Now
suppose to change in S the face 11— into the face —1— obtaining

- 00

' _ 1"‘ 0
S'=1_ | -
1 - 1

then also S’ satisfies C as seen by building the corresponding modified intersection matrix

| 000 001 010 011 100 101 110 111

-00 | 1 0 0 0 1 0 0 0
Te=11-0] O 0 0 0 1 0 1 0
-1-1 0 0 1 1 0 0 1 1
1-1] O 0 0 0 0 1 0 1
Notice that the first section of S’
si=|

—

is not basic 2.

The following theorem states that it is sufficient to consider basic sections to find a minimum solution
to face hypercube embedding.

Theorem 2.2 Given a solution fuce matrix S' of the constraint matrix C' there is always a solution face
matrix S of C' with the same number of columns that consists only of basic sections.

Proof. Suppose that S has n columns. For a given solution face matrix S’ there is at least an encod-
ing ¢ that satisfies C'. This defines n encoding dichotomies dj, . . ., dn, each of which is a coordinate of
the codes assigned by e. Now by applying to each such d the operation bs we obtain the basic sections
bs(d,), ..., bs(dn). The matrix S whose columns are the basic sections bs(dy), . . ., bs(dy) is a solution face
matrix of C, because by definition of the bs operation the rows of S are exactly the minimal faces spanned
by the codes of the symbols in each constraint of C. O

Example 2.8 Continuing Example 2.7 suppose that we are given S', whose first column is not a basic
section, and that we want to produce the matrix S as in Theorem 2.2. The encoding dichotomies defined
by e are d, = 01111, d = 00110, d3 = 00011. Applying the bs operation, we get the basic sections
bs(d}) = =111, bs(dy) = 0— 1—, bs(d3) = 00 — 1, which are exactly the columns of the original matrix S.

*The simplest way to see that S’, is not basic is to apply Theorem 3.1. Then Pi(D) = 01111 and for any vector K it is true that
K U Py(D) intersects and covers Ds.



2.4 Prime Sections

It is possible to characterize a subset of basic sections, called prime sections, as sufficient to find a minimum
solution. We are going to define them and show an example. We will not prove their sufficiency, because
the proof is intricate and we will not use them in our algorithm. A proof for the case of constraint matrices
with no repeated columns can be found in [8] and it can be generalized to the general case. A reason to
mention them here is that they establish a connection with the approach to solve face embedding based
on generating prime encoding dichotomies [17, 11). It is a fact that prime sections are fewer than prime
encoding dichotomies and so they may inspire a potentially more efficient exact algorithm.

An encoding dichotomy (or, more simply, dichotomy) is a 2-block partition of a subset of the symbols
to be encoded. The symbols in the left block are associated with the bit 0 while those in the right block
are associated with the bit /. If an dichotomy is used in generating an encoding, then one code bit of the
symbols in the left block is assigned 0 while the same code bit is assigned / for the symbols in the ri ght
block. For example, (sos1; s253) is a dichotomy in which sp and s; are associated with the bit 0 and s> and
s3 with the bit 1. A dichotomy is complete if each symbol appears exactly once in either block. A complete
dichotomy is an encoding column.

Two dichotomies ¢; and d> are compatible if the left block of d; is disjoint from the right block of >
and the right block of d; is disjoint from the left block of d. Otherwise, d; and d; are incompatible. The
union of two compatible dichotomies, d; and d», is the dichotomy whose left and right blocks are the union
of the left and right blocks of d) and d; respectively. The union operation is not defined for incompatible
dichotomies. A dichotomy d, covers a dichotomy d;, if the left and right blocks of d; are subsets respectively
either of the left and right blocks, or of the right and left blocks of d. For example, (so; s152) is covered by
(s053; 815254) and (s15253; So), but not by (sosy; s2). A prime dichotomy of a given set of dichotomies is
one that is incompatible with all dichotomies not covered by it.

Definition 2.2 A basic section P is a prime section if there is a prime encoding column d such that

Definition 2.3 Section P! covers section P; if there are encoding columns d' and d such that P! = ps(d’),
P; = ps(d) and d’ covers d.

As anticipated, it can be shown that given a sct of basic scctions {Py,.... P,} satisfying (", if I isnot a
prime section then there is a prime section P/ that covers P; such that { Py, ..., P,} — {P;} U {F;} satisfies
C.

Example 2.9 Given the matrix of constraints

100100
011010
C=|000101
001001
111100

the sets of prime dichotomies d and corresponding prime sections P are:



dy= | 100000 | P,= | -000-

dy= 100100 | P, = | 10-0-
ds= | 110100 | Ps= | 1--0-
dy= (111100 Py= | 1---1
ds= [ 000010 | Ps= | 0-000
de= |010010 | FPg= | 0-00-
dy= 110010 | b= | --00-

dg= 011010 | Pg= | 010--
do= 111010 | Py =
dio=1100110| Ps= | 1--0-
dyy=1110110 { 3=

dipo= 111110 | Pp= | 11--1

There are 12 prime dichotomies and 10 prime sections, because the prime dichotomies d3, dyo and dy,
generate the same prime section P;.

3 Generation of Basic Sections

Given a constraint matrix C', consider a 3-valued column D of | Row(C') | components. Denote by Fo(D)
the disjunction of the rows of the set Do = {C}. | D; = 0} and by P, (D) the disjunction of the rows of the
set D = {C;. | D; = 1}. Wehave also D_ = {C;. | D; = -}.

We want to characterize when D is a basic section of C'. For D to be such there must be an encoding
vector d for which D = bs(d). As we will see in Theorem 3.1, a minimum requirement on D is that Py(D)
does not intersect P, (D), to take care of the entries of D that are O or 1.

The entries that are — require the introduction of a slightly more complex condition, based on the
following notions. Consider the set K of boolean vectors of | C'ol(C') | such that A’ € A if and only if when
the /-thentry of I\ is 1 then the i-th entries of both Py(D) and Py (D) are 0. In othcr words, K may have 1s
only where both Py(D) and P;(D) have 0s. So given Py(D) and P;(D) the cardinality of K is the power
set of the positions where both Py(D) and Py(D) have 0s.

F 0
Example 3.1 Consider D = , for the matrix C of Example 2.1.

| -

Py(D)=1001111001000
P(D)={000000110000
K= xx0000000x*%x
Then we have| K, = 110000000111 |whereaxin K stands for entries that may be either 0 or
K= 110000000100
K3 = 110000000101
K4 = 000000000000

1. The set K contains 32 vectors (one for each combination of Os and 1s in the 5 positions indicated by a *,
of which we report four as K, K3, K3, Ka.

A vector v intersects correctly a set of vectors V' if v intersects every vector of V', but does not cover
any vector of V.



Theorem 3.1 D is a basic section for C' if and only if the following conditions hold:

1. Py(D) does not intersect P\(D).
2. There is avector K € K such that K U Py(D) intersects correctly the rows of D .

Proof. If part. Suppose that the two conditions are true. Then define d = K U Pi(D). We show that
D = ps(d). Indeed d covers only rows from the set D; = {C;. | D; = 1} and does not intersect any row from
the set Do = {C;. | D; = 0} by the first condition. Moreover, d intersects correctly D_ = {C;. | D; = -},
by the second condition. So the operation bs when applied to d constructs exactly the 3-valued vector D.

Only if part. We prove by contradiction that if either condition is false then D cannot be basic.

Suppose that the first condition is not true, i.e., that Po(D) intersects Py (D). Then there are two 1ows
and r, that have a 1 in a column ¢; such that D,, = 1 and D,, = 0. So there is no d such that D = ps(d),
because such a d should contain r; without intersecting r in order to define correctly ps(d),, = 1 and
ps(d)r, = 1, but this cannot happen because any vector that contains r; must intersect 2 in column c;.
Therefore D cannot be basic.

Suppose that the first condition is true, but the second one is false, i.c., that there is no vector i’ € A
such that K U P, (D) intersects correctly the rows of D_. So there is no d such that D = ps(d), because such
a d should intersect, without covering it, every row of C' that is in D_ and should also cover P;(D) without
intersecting Po(D), therefore there should be a vector K € A such that K U Py (D) intersects correctly the
rows of D_, against the hypothesis. Therefore D cannot be basic. O

Example 3.2 Continuing Example 3.1, we see that K2 U P(D) and K3 U Pi(D) intersect correctly the
rows of D, while %'y U Py(D) und K4 U Pi(D) do not. So D is a busic section and both

d> = K2U Py(1) = 110000110100

and
ds = K3 U P|(D) = 110000110101

generate it (and there may be other vectors d that generate D).

Given a candidate basic section D, it is easy to check the first condition of Theorem 3.1, whilc (o test
the second condition in the worst case one must try all 2™ vectors K, where m is the number of positions
where Py(D) and P;(D) are both 0. Instead of checking the second condition, we can use the following
simpler criterion to detect candidate sections D that are not basic.

Theorem 3.2 If D; = — and the row C;. is covered by either Po(D) or P\(D), then D is not basic.

Proof. Indeed in one case suppose that C;. is covered by Po(D), then no vector d intersects C;. without
intersecting Py (D), so (for some row index) bs(d) cannot be O where D is 0. In the other case suppose that
C:. is covered by P; (D), then no vector d intersects C;. without covering it, because d must cover P(D) in
order that bs(d) be 1 where D is 1, therefore bs(d); cannot be —. O

Fig. 1 shows an algorithm to generate all the basic sections for a given constraint matrix C'. The inputs of
the algorithm are the vectors Py(D) and P (D) and a partially constructed section D. The components of D
take values in the range {0, 1, —, *}. The values 0, 1, — have the usual meaning, whereas D; = * means that
the i-th value has not been decided yet. To generate all the basic sections the procedure generate_sections
is invoked with D having all components set to *.
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generate_sections(Py(D), P(D), D,C) {
if section_inconsistent(Py(D), Pi(D), D, C)
return §
/* find a contraint C;_such that D; = * */
t = find_unprocessed_constraint(D,C')
if ¢ = —1 /* there is no unprocessed constraint */
return { D}

/* D' is obtained from D by setting D; = i */
D® = assign_component(D, i,0)

D! = assign_component(D, i,1)

D~ = assign_component(D, i, -)

5% = generate_sections(Py(D) U C;, Pi(D). D% C)
S = generate_sections(Po(D), P(D)UC;, D', C)
S~ = generate_sections(Py(D), P(D)UC;.,,D~,C')

return SCUS'U S-

Figure 1: Algorithm to generate basic sections.

Initially it is checked whether D is consistent, i.e., whether the two conditions of Theorem 3.1 hold,
by invoking the procedure section_inconsistent. It is a fact that if at least one of these conditions does not
hold then this is true for any section obtained by assigning one of three values (). 1, — to components which
are not spceified yet. So the recursion stops here and the algorithm returns the empty set. If 1) passes the
correctness test and all components of 1D have been specified, 1D is a basic scction and the algorithm returns
it. Otherwise, a constraint C;, such that D; = * is chosen and recursively one considers the three cases,
where D; is assigned either 0 or 1 or —, and the vectors Py(D) and P;(D) are recomputed. The union of
the results of the three recursive branches is accumulated in the final result.

Fig. 2 shows the flow of the procedure section_inconsistent that tests whether a given D passes the
conditions of Theorem 3.1. It also applies the criterion of Theorem 3.2 to detect as early as possible that
D is not a basic section. The check of the second condition of Theorem 3.1 is done by the procedure
correct_intersect given in Figure 3. The latter procedure tries to construct a vector K such that K U P;(D)
intersects all the rows from the set {C;. | D; = —}, without covering any of them. It keeps in the vector
mark the rows from set C;. | Di = — which intersect Py (D). The set free_columns contains the columns
that are neither in Py(D) nor in Py (D) and so are candidates to be added to K. The procedure calls itself
recursively, exploring the two cases that the vector K includes or not a given column j from free.columns.

Example 3.3 The set of all basic sections for the constraint matrix C of Example 2.9 is:

11



section_inconsistent(Po(D), P\(D), D,C){
if Py(D) intersects Py(D)
return 1
fori € | Row(C) |
if D; = — and C; is covered by either Py(D) or Py(D)
return 1
/* mark; = 1iff D; = — and C;. intersects Py (D) */
mark = mark_covered_rows(P,(D), D,C)
/* free_columns; = 1iff Py(D); =0 and Py(D); =0*
frec_columns = 1\ (Po(D) U Py(D))
if correct _intcrsect(Py (D), D,C, mark, free columns)
return 0 /* section is consistent */
else
return 1 /* section is inconsistent */

Figure 2: Algorithm to check inconsistency of a section.

By = | 00000 | Bo= | 00--0
Bs= | 010-- | B4= | 01-1-
Bs= | 0-0066 | Bg= | 0-00-
By;= | 0-0-- | Bg= | 0--1-
Byg= | 0---0 | Byg=| 0----
By =| -000- | Bjp=| -01--
By3=]| -0-0-| Big=1| -0---
Bis=1|--00- | Big=| --0--
By7=]|---0-|Big=| -----

As a comparison for the same problem there are (2% = 2)/2 = 31 encoding columns (we subtract 2 to
eliminate those with all Os or all Is; we divide by 2, because we do not distinguish those obtained by
complementation, as we do not distinguish basic sections obtained by complementation of each other). So
many encoding columns generate the same basic section.

It is worthy to stress that in the approaches based on computing encoding dichotomies [11, 3] the more
“trivial” is an instance of face embedding problem, the larger is the number of prime dichotomies that it
generates. In the worst case, for no face constraint and n symbols one must generate 2" — 2 /2 prime
dichotomies (even if there are no face constraints, one must add uniqueness constraints, that separate pairs
of states not distinguished by face constraints). Instead the number of sections is "proportional” to the
difficulty of the problem instance, e.g., for no face constraint and encoding dimension k, we need to add a
unique constraint consisting of all 1s to which corresponds only one basic section, i.e., —, and a satisfying
cube made of — repeated k times. As another illustration, consider the following matrix with only one face
constraint

C=[11100000]

There are only three basic sections: 0, 1 and —. We can form faces that satisfy the unique constraint by
repeating some basic sections. Notice that C' has 121 prime encoding dichotomies. An example, with n = 4,
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correct_intersect( Py (D), D,C,mark, freecolumns) {
if each {C';. | D(i) = —} intersects correctly Py (D)
return 1
else
return 0

/* remove from free_columns, add to P;(D) and mark the columns
intersecting singleton rows in {C;. | D(¢) = — and mark; = 0} */

process.singletons(Py(D), D,C, mark, free_columns)

/* choose a column for branching */

J = select_column( free_columns)

/* mark rows that are 1 in the j-th column */

markl = mark_covered_rows(mark, j)

free_columns = free_columns\ {j}

/* left branch explores correct intersections including column j */
if correct_intersect(Py (D) U {j}. D.C,mark]1, freecolumns)
return 1
/* right branch explores correct intersections not including column j */
if correct_intersect(Py (D), D,C. mark, free_columns)
return 1
return 0 /* neither branch contains a correct intersection */

Figure 3: Algorithm to check correct intersection.
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of a valid solution face matrix is
s=[- - 00]

S satisfies C as demonstrated by building the matrix

T [1001 0110 1010 1011 1000 0010 1101 0101 0011 0100 0000 O111 0001 1100 1111 1110
ST170 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0

An encoding es that satisfies C' can be extracted from S, with the following injection from columns of C to
columns of Ts: e(s)) = 0000, e(s2) = 1000 s(s3) = 0010, e(ss) = 1011, e(ss) = 1001, e(ss) = 1111,
e(s7) = 1101, e(sg) = 0101, e(sg) = 0011, e(s10) = 0100, e(s1;) = 0001, e(sy2) = O111.

4 Characterization of Symmetric Solutions

A crucial featurc of an efficient algorithm to solve face embedding constraints is the ability to avoid the
consideration of symmetric solutions, i.e., solutions that differ only by permutations and inversions of
variables of the encoding space. We will refer to permutations and inversions of variables as symmetric
transforinations or symmetries.

In Section 5 we will present a procedure search_boolean_space that finds a solution face matrix 5 in
an n-dimensional boolean space, if such a solution exists. Let us write Sj; ;; for a solution face matrix
satisfying the matrix C[; ;;, which stands for the matrix C restricted to the rows from i to j. Denote by 5(; ;)
the set of all solution face matrices satisfying the matrix Cf; ; and by S the set of all solutions of C. Call
$ the set of all solutions of C, without any symmetric pair S and S’; similarly for j; ;. The procedure
builds incrementally a matrix S by finding first a solution S| ;) for the first constraint, then augmenting
it 10 a solution .Sy, 3 for the first two constraints and so on, unti! all constraints are considered. More
precisely, when handling the /-th constraint the set of all cubes satisfying it, i.e., S; i), is generated and a
cube Sj; 1 € S[;,i is chosen. Then one verifies whether .S, ;) formed by appending row Sii,i) 10 S[1,i-1)
satisfies C{; ;). If not, another cube of Sj; ;) is tried and, if none works, one backtracks further to a different
choice of a cube Sj;_.i-1) € S[i—1.i—1) such that Cy ;_y) is satisfied by Sy ;2] augmented by Sfi-1,i-1)-

Given a matrix S, it is a fact that S is a solution of C' if and only if a matrix S’ obtained from S by
permutations and (bit-wise)inversions of columns is a solution of C. So for a solution S with n columns
there are n! 2" (n! for permutations and 2" for inversions) different matrices obtained by symmetries of
S, whose generation is uscless in ordcr to find a solution, because they all behave like S 3, So they are an
equivalence class of which it suffices to consider a representative to solve the problem. Now we show how
to obtain S.

Solutions without symmetries for the first constraint.

Consider the first constraint C ) and a cube S[1,1] € Spu,1)- Suppose that the current encoding length is
n. To avoid the cubes obtained from Sj; ;) by permutation it is sufficient to consider only the cubes differing
in the numbers of Os and 1s. Indeed, if two different cubes have the same numbers of Os and 1s (and so
the same number of —s, since they have the same length ») it is always possible to find a permutation
transforming one cube into the other. However, if two cubes have different numbers of Os and 1s, but the
sum of the numbers of Os and 1s is the same we can still transform one cube into the other by inversion of
some columns. So to avoid symmetric solutions of Cj; ;) we need to consider only cubes with different sums
of the numbers of Os and 1s. Since a cube having n; 1s and ng Os is equivalent after inversions to a cube with
n1 + ng 1s, we need to consider only cubes having 1s and —s which differ in the number of 1s. So we need
to generate no more than n + 1 candidate solutions to Cj jj, and those of them that actually satisfy Cyy,1)

3For example for n = 6 (n = 7) n! 2™ is equal to 46080 (645120). Rigorously speaking n! 2™ is exact only whenin S there are
no columns that are equal or equal after inversion. In the latter cases the number of different symmetric matrices will be smaller.
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(cubes having enough minterms inside for the 1s in the constraint, and enough minterms outside for the Os
of the constraint) are the elements of S[m]. Each element of 3[1_1] is the representative of an equivalence
class of cubes, where two cubes are equivalent if and only if there is a symmetry that transforms one into
the other (it is an equivalence relation).

Example 4.1 Consider C given in Example 2.1 for n = 4. The candidate cubes to satisfy the first constraint
are 5: — — —— (O ones), 1 — —— (1 ones), 11 — — (2 ones), 111- (3 ones), 1111 (4 ones). None of them
can be obtained by a symmetric transformation of another.

Solutions without symmetries for the first : + 1 constraints, given the solutions without symmetries
for the first : constraints.

The idea is to avoid the generation of symmetric solutions of CT; ;4) which do not differ in the first i
cubes.

Given a matrix Sp; ;) we define an equivalence relation on its columns stating that two columns are
equivalent if and only if they are equal. There may be many equivalence classes (at most as many as there
are columns) and one of them may contain columns made only of —s. Say that Sy ;) has the following
equivalence classes C'lass(S[1,9)j, j = 1,. . ., . For coincision we may say that a class has at least a Oora
1 if the columns of the class have at least a 0 or a 1 and that a class has only —s if the columns of the class
have only —s.

Consider any solution to Cf; ;41) obtained by taking a solution matrix Sy ;) from S[I,q and appending
to it a cube S[;1,i41) fom Spit1,i41) Such that the resulting matrix S[1,i+1) satisfies Ch,i+1)- Iterating the
process for all such cubes Si;1,;41) We obtain the set Sy, ;) s . of all resulting matrices Si1,i+1) (Whose

submatrix restricted to the first : rows is a matrix of 3[1,,']) satisfying C7) ;41)- It is a fact that this set will
contain symmetric solutions, i.e., matrices Syy,;41) and 5['1.; +1) having the same first 7 rows (say, .5y,;)) and
differing in permutations of columns that are in an equivalence class whose columns have atleastaQora |
or in permutations and inversions of columns that are in an equivalence class whose columns have only —s.
Notice that there cannot be symmetric solutions differing in the first ¢ rows, because by construction there
are no symmetric cubes in Sy ).

Let us show how to obtain S[l' i+11,80.0° that is Spy ;4 ), S without symmetric elements. Let us start by

generating the solution matrices of 3[,. i+11,50.° for a given matrix Sy ; from 3[,,,-]. Suppose that a cube
Sti+1,i+1) is found such that the matrix S, whose submatrix restricted to the first ¢ rows is Sy ;) and whose
last row is S[;,i41), is a solution of Cl1.i+1)- Then we should avoid the generation of any cube Sfi +1i41]
that has the same numbers of Os and 1s in the columns of a class with at least a 0 or a 1 and the same sum
of the numbers of Os and 1s in the columns of a class of ~s. Indecd, we can obtain cube Sj; ., ;. from
S(i4+1,i+1) by permutation of columns from a class with at least a O or a 1 and by permutation and inversion
of columns from a class with only —s, neither of which change S[i,,-]. As before, instead of cubes having
the same sum of the numbers of Os and 1s in the columns of a class with only —s we may consider cubes
having different number of 1s in the columns of that class. Finally the set 3[1,,- +1,80.4 is the union of all the

sets 81,i41),5,, ;> Obtained as before for all solution matrices Sy, from S

Example 4.2 Consider C given in Example 2.1 for n = 4. Suppose that we have already chosen the cube
Spi,y) = 11 — — to satisfy the first constraint. The column equality relation of S(1,1) has the equivalence
classes Class) = (12) (the first two columns are all equal to 1) and Classy = (34) (the last two columns
are all equal to —). The candidate cubes that satisfy Cla 5), and together with S, satisfy C1 2, are among
those built - to avoid symmetric ones - by combining the 6 patterns —— (0 zeroes, 0 ones), 1— (0 zeroes, 1
ones), 0— (1 zeroes, 0 ones), 11 (0 zeroes, 2 ones), 00 (2 zeroes, 0 ones), 01 (1 zeroes, 1 ones) for columns
in Class; (all subcubes that have different numbers of Os and 1s) and the 3 patterns —— (0 ones) , 1- (1
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ones), 11 (2 ones) (all subcubes that have different numbers of 1s) for columns in Class;. All together we
obtain 6 x 3 = 18 combinations: — — ——, ——1—, — =11, 1= ==, 1=1-,1-11, 11 — -, 111-, 1111,
0---0-1-,0-11,01 - -, 011-, 0111, 00 — —, 001—, 0011.

Example 4.3 Consider C given in Example 2.1 for n = 4. Suppose that we have already built the partial

1 1 - -

solution S 3 = — 110 The column equality relation of Spa 3 has the equivalence classes

Classy = (12) (the first two columns are all equal to [ 1 ] and Class> = (34) (the last two columns are

all equal to [ 1 ] . The candidate cubes that satisfy C[3 3}, and together with S|2,2) satisfy Cp,3), are among

those built - to avoid symmetric ones - by combining the 6 patterns —— (0 zeroes, 0 ones), 1— (0 zeroes,
1 ones), 0— (I zeroes, 0 ones), 11 (0 zeroes, 2 ones), 00 (2 zeroes, 0 ones), 01 (I zeroes, 1 ones) both for
the columns in Class, and for those in Class;. The reason is that the columns in both classes contain an
entry equal to 1 and therefore we must generate all subcubes that have different numbers of Os and 1s. All
together we obtain 6 x 6 = 36 combinations: — — ——, ——1—-, = =11, - = 0—, — - 01,--00,1-——,
1-1-,1-11,1-0-,1-01,1-00, 11 — —, 111—, 1111, 110, 1101, 1100,0 - ——,0-1-,0- 1],
0-0-,0=010-00 01 = -, 011—, 0111, 010—, 0101, 0100, 00 — —, 001—, 0011, 000—, 0001, CUUO.

The previous approach is general and it can be applied whenever one needs to generate the set of all cubes

in a given Boolean space, such that no two cubes can be obtained by symmetric transformation one of the
other.

5 An Exact Algorithm to Find a Minimum Solution

In Fig. 4 we present the flow of an algorithm find_solution that finds a minimum solution of a constraint
matrix C. It starts with the minimum dimension (Ig of the number of constraints) and it increases it until
a solution is found. It is guaranteed to terminate because every constraint matrix can be satisfied by an
encoding of length k, if k is the number of symbols; more precisely by an 1-hot encoding. Usually a much
shorter encoding length suffices.

5.1 The Search Strategy

The key feature of the proposed algorithm is that it searches sets of cubes, instead than scts of codes. Since
a set of cubes may correspond to many sets of codes, the algorithm explores contemporarily many solutions.
Once a satisfactory set of cubes is found, it is straighforward to extract from it a satisfying encoding.

For a given dimension, the search of a satisfying encoding is carried through by the routine search_space,
that returns a solution face matrix S that satisfies C. Once S is known, it is easy, as shown in Example 2.2,
to find an encoding of the symbols that satisfies C. The main features of search_space are:

1. The constraints are ordered as mentioned in Section 5.5 and then processed in that order.
2. Each call of search_space processes a new constraint.

3. It keeps a current partial solution Curr_Sol that satisfies all the constraints from the the first to the
last constraint that has been processed.
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4. It satisfies a constraint by generating a cube that encodes the constraint (a row of S). A constraint
is satisfied if there is a cube such that, by adding it to the current solution, we satisfy the constraint
matrix restricted to the constraints from the first to the one currently processed.

5. Once the current constraint has been satisfied the current solution is updated and search_space calls
itself recursively with a new constraint.

6. If the current solution cannot be extended to satisfy the current constraint, search_space backtracks
and tries a different cube for the last constraint that was satisfied by Curr_Sol and it continues to
backtrack until it finds a partial solution Curr_Sol which can be extended to satisfy the constraint
currently processed. '

7. The procedure found_solution tests whether a face matrix is a solution of a set of constraints, by
constructing the intersection matrix T's as shown in Section 2.1.

The following enhancements reduce the nodes of the search tree that search_space has 10 explore to find
a minimum solution:

1. Candidate cubes are generated by a procedure generate_cand_cubes that does not produce any sym-
mectric pair of cubes, based on the theory presented in Section 4. The equivalence relation on columns
is computed by recalculate_classes.

2. A procedure generate_cand-cubes eliminates the cubes that would yield a matrix S with sections
which are not basic, as allowed by Theorem 2.2 and shown by example in Section 5.2.

3. Cubes that do not satisfy the necessary conditions of Section 5.3 to be valid extensions of the current
solution are discarded by a procedure discard cand _cubes.

4, When trying to extend the current solution, the procedure unsat_constr checks first whether any of the
constraints not yet processed is unsatisfiable by an extension of the current solution; if so, search_space
backtracks to modify the current solution. See Section 5.4 for more discussion.

5.2 Restriction to Basic Sections

In Section 2 we highlighted the fact that not all solution face matrices S consist entirely of basic sections,
but we argued in Theorem 2.2 that basic sections are sufficient to find a minimum solution. Therefore when
generating cubes that arc candidate solutions of face constraints it is profitable to reject those that would
produce an .S with some sections which are not basic.

Example 5.1 Let us continue Example 4.2 referring to C of Example 2.1. The hypothesis is that we have
already chosen the cube Sjy 1) = 11 — — 1o satisfy the first constraint. The column equality relation of Sy )
has the equivalence classes Class, = (12) and Class; = (34). The candidate cubes that satisfy Ca 3},
and together with Sy 1) satisfy C|y 2}, are obtained by combining the 6 patterns ——, 1-, 0—, 11, 00, 01 for

columns in Class; and the 3 patterns ——, 1—, 11 for columns in Classy: — — ——, — — 1—, — =11,
l-—1-1-,1-11,11-—, 111-,111,0-~-,0-1-,0- 11,01 — -, 011, 0111, 00 — —,
001-, 0011.

Notice that the last 9 cubes start by 0. But the column D = (1) , that is a candidate first column of

Sja,2) when we add any of the last 9 cubes to S,y is not a basic section as can be seen by applying the test
of Theorem 3.1, because Py(D) (the first constraint of C') and Py (D) (the second constraint of C') intersect
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find_solution(C') {
/* order the constraints */
C = sort_constraints(C')
for (cube _size = 1g[| C |}; TRUE ; cube_size + +) {
cur_constr = 1 /* cur_constr is the index of the current constraint to satisfy */
Sol = search_boolean_space(C, cube_size, 0, cur constr, {(1, ..., cube_size))}
if Sol =
continue
else
return Sol

}

search_spacc(C'. cube size, C'urr_Sol. cur consir.('lasses) {
/* C'urr_Sol satisfies all constraints */
if cur_const >| C |
return C'urr_Sol
/* early detection of unsatisfiable constraints given Curr_Sol */
if unsat_constr(C,Curr_Sol, cur constr)
return
/* generate candidate cubes C'Cubes without symmetries */
CCubes = generate_cand_cubes(C. cubc sizc.cur_constr. Curr_sol. Classcs)
/* eliminatc candidate cubes yielding sections which are not basic */
CCubes = restrict _cand_cubes(C', cur constr,Curr_sol, C'lasses. CCubes)
/* sort candidate cubes in order of increasing size */
C'Cubes = sort_cand_cubes(C'Cubes)
/* eliminate candidate cubes that cannot satisfy constraints */
CCubes = discard_cand_cubes(C, cur constr,Curr_sol, CCubes)
/* find a cube extending C'urr_Sol to satisfy also current constraint */
for (cur_cube = 1; i <| C'C'ubcs | ;cur_cube + +) {
New Curr_Sol = Curr_Sol U cur_cube
/* test if New_Curr_Sol satisfies constraints from 1 to cur_constr */
if not found_solution(C. cur_constr, New Curr_Sol)
continue /* not a solution: try another cube */
/* solution found: recomputc equivalence relation on columns */
New_Classes = recalculate_classes(New Curr_Sol,Classes)
/* try to extend current solution to satisfy also next constraint */
Sol = search_space(C, cube_size, New Curr_Sol, cur constr + 1, New Classes)
ifSol £ 0
return Sol

return § /* current solution cannot be extended to satisfy also current constraint */

Figure 4: Algorithm to find a minimum solution.
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(in other words, since the two constraints intersect the two cubes should intersect too, but they do not). So
we can discard all candidate cubes for C' 2y whose first component is 0 and restrict the search to: — - ——,
--1l---1,1--=,1-1-,1-11,11 - -, 111, 1111

The process shown in Example 5.1 can be made systematic as a procedure that filters the candidate

cubes to remove those that would yield sections that are not basic. We do not report here the details of such
a procedure.

5.3 Removal of Unsuitable Cubes

Given a partial solution S(; ; and a set of candidate cubes Sfa144q for Clig,iqn) that do not contain

symmetric cubes nor cubes leading to sections that are not basic, before checking if Sy, ;j together with a cube

Si+1,i+1) € SEeT4 4y is asolutionof Cpy iy1) Spiv1) = [ [S["“] | } , it is worthy to apply some necessary
i+1,i+1

conditions that Sj;1,.41) Must satisfy to pass the test. Precisely we discard a cube 1441 € Sf5Te, ) it
at least one of three conditions hold:

1. The number of 1s in Cj;11 ;417 is greater than 2" where » is the number of —sin Sy ip1)-
[(+Li+1] 1S & [i+1,i41]

2. There is a k such that the cube Sj;;j 41y covers the cube S 4, but the vector Cli+1,i+1) does not
cover (dominate) the vector Cjy. 4. In this case there is a column C.m of C such that C;4 1), = Oand
Cim = 1, that does not appear in the intersection matrix of Sy ;11)-

3. There is a k such that Cy ) intersects C{;;1,41), but the number of 1s in their intersection is greater
than the number of —s in the cube obtained by the intersection of Sj; ;1 ;41) and Sy x}-

5.4 Early Detection of Unsatisfied Constraints

Constraints are processed one by one in a predefined order. Suppose that on the path leading to the current
node of the search tree we have already chosen 4 cubes satisfying the first 4 constraints and that now we are
trying to satisfy the 5-th constraint. Suppose also that all constraints from the 5-th to the 19-th are satisfiable,
but that the 20-th is unsatisfiable, given the current choice of the first 4 cubes. So checking the satisfiability
of one constraint at a time, we would discover that the 20-th constraint is unsatisfiable only after having
processed all constraints up to the 19-th one; then we would start backtracking to another cube satisfying
the 19-th constraint and we would try again to satisfy the 20-th one, and so on for all the cubes that satisfy
the 19-th constraint. We would repeat this time-consuming process for all constraints from to the 19-th to
the 5-th one, before discovering that we must modify the solution to the first 4 constraints, in order to extend
it to a solution that satisfies the constraints up to the 20-th one.

To prevent such unrobust behaviour and lessen the dependency on how the constraints are sorted
initially, we employ early detection of unsatisfied constraints. At each node of the search tree with ¢ satisfied
constraints, the algorithm checks first that any of the remaining unprocessed constraints is satisfiable, given
the current choice of cubes which satisfy the first ¢ constraints. Although this checks requires some extra
calculations at each node of the search tree, this is fully justified by the drastic reduction of the search tree
size.

5.5 Sorting of Constraints

Constraints are sorted with the goal to prune branches of the search tree at the earliest possible stages. We
have two sorting criteria. The first one selects as next constraint the one that intersects the highest number
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of already selected constraints. Ties are broken selecting the constraint with the highest number of 1s. The

second criterion selects by the highest number of 1s and breaks ties with the highest number of intersected
TOWS.

6 An Example of Search

Consider the matrix C of Example 2.9

Cuy|1 00100
Cppt0 11010
C= C[3 310 00101
C (4,4) 001001
Css|1 11100

The procedure find _solution calls first search_space with n = 3, but there is no solution there. So it calls
again search_space with n = 4. Let us follow the search in the latter space.

search_space is invoked with Curr_Sol = [ 0 ] and cur_constr = C[y.y). After generate_cand _cubes

CCubes = {— — ——, 1 = ——, 11 — —, 111—, 1111}. After restrict_cand_cubes C'C'ubes is the same as
before. After discard_cand.cubes CCubes = {1 — ——,11 - —,111-}. Set cur cube =1 — ——.
New Curr_Sol = [ 1 - - - ]satisﬁes Cy-

search_space is invoked with Curr_Sol = [ 1 - - - ], and cur_constr = Clp5). After gener-
ate_cand cubes CCubes = {— — ——, -1 — —, =11-, =111, 1 = ——, 11 = —, 111, 1111, 0 = ——,

01 — —, 011—, 0111}. After restrict_cand_cubes C'C'ubes is the same as before. After discard_cand_cubes
C'Cubes = {~1-—.01 - —}. Set cur_cubc = =1 - —.

New_Curr_Sol = I - - - ] satisfies C'[l'z].

-1 - =
search_space is invoked with ('urr_Sol = 1 I : : , and cur constr = ({3 3). Aftcr gener-
ate_cand cubes CCubes = {— — ——, — = 1—-, - - 11, -1 - —, -11-, =111, -0 - -, —=01—, 011,
l--=——, 1 —=1—,1-=11,11 = =, 111—, 1111, 10 = -, 101--, 1011,0 - ——,0~-1-,0- 11,01 — —,
011—, 0111, 00 — —, 001—, 0Q011}. Aficr restrictcand cubes CCubes = {— — ——, = = 1—, — = 1],
-1-—-,-11-,-111, -0~ -, -01-, =01, 1 = ——, 1 = 1—-, 1 =11, 11 = —, 111, 1111, 10 — —,
101—, 1011}. After discard_candcubes CCubes = {— — 11, -01-, —011}. Set cur_cube = — — 11.
1 — — —
New Curr Sol=| — 1 — - | satisfies C[y3).
- - 11
1 — — =
search_space is invoked with Curr.Sol = | — 1 — — |, and cur_consir = Cyq. After
- - 11
generate_cand cubes CCubes = {- - - -, - - 1-,--11,- -0-,--01,--00,-1 - —, -11—,
-111, -10-, -101, =100, -0 — —, —=01-, -011, -00—, —001, -000,1 - ——, 1 - 1—-,1-11,1-0-,

1-01,1-00,11 ——, 111—-, 1111, 110-, 1101, 1100, 10 - —, 101—, 1011, 100—, 1001, 1000,0 — ——,
0-1-,0-11,0-0-,0-01,0-00,01 - -, 011, 0111, 010, 0101, 0100, 00 — —, 001, 0011,
000-, 0001, 0000}. After restrict-cand_cubes CCubes = {— — ——, — — I-,--11,-1- -, -11-,

-111,1 ===, 1-1-,1-11,11 ==, 111—-,1111,0~ ——,0-1-,0- 11,01 - —,011—, 0111}. After
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discard_cand_cubes CCubes = {0 — 1-}. Set cur_cube = — — 11.

1 - — -
New Curr_Sol = : _1_ I ; satisfies C[) 4).
0 - 1 -
1 - - -
search_space is invoked with C'urr _Sol = | ~— 1 ; ; , and cur _constr = C(s5). unsat.constr
0 - 1 -

detects that Cis 5 is unsatisfiable, given Curr_Sol. Backirack to cur_constr = C|44) and, since there are
no other candidate cubes for the latter, backtrack again to cur_constr = Ci3 3). Set cur_cube = —01—.

1 - - =
NewCurrSol=| — 1 — — | satisfies Cy; 3.
- 0 1 -
1 - — —
search_space is invoked with C'urr.Sol = | — 1 -~ =~ |, and cur_constr = Cls4). After
- 0 1 -
generatecand_cubes CCubes = {—- - ——-, - - -1, - -1-,— -1, - -0-,--01,-1—-—, -1 -1,
-11-, -111, -10-, -101, -0 - -, -0 -1, -01—-, -011, -00—, -001,1 —= ==, 1 —= -1, 1 = 1—,
l1-11,1-0-,1-01,11 - -, 11 -1, 111—, 1111, 110-, 1101, 10 - —, 10 - 1, 101—, 1011, 100—,
1001,0- --,0--1,0-1-,0-11,0-0-,0-01,01 - -,01-1,011-, 0111, 010-, 0101, 00 — —,
00 - 1, 001—, 0011, 000—, 0001}. After restrict.cand_cubes CCubes = {— — ——, — — =1, — — 1—,
--11,1---,1--1,1-1-,1-11,0- --,0- -1,0 - 1—, 0 — 11}. After discard_cand_cubes
C'Cubes = {— - -1.—- = 11,0~ -1,0 - 1-,0 - 11}, Set cur_cube = — — —1.
1 - - -
New Curr_Sol = : (l) ; | satisfies Cyy 4).
- - -1
1 = — —
search_space is invoked with C'urr_Sol = : (1) I : , and cur_constr = Cis s}. unsat_constr
- - -1

detects that Cs s is unsatisfiable, given Curr_Sol. Backtrack to cur.constr = Cj44) and set cur_cube =
- —11
1

1 -
1

New.CurrSol = satisfics C q)-

|
| © = |
—

1 - -
-0 1 =
- - 11
detects that Cis s) is unsatisfiable, given Curr_Sol. Backtrack to cur_constr = C{44) and set cur_cube =
0--1

search_space is invoked with Curr_Sol = , and cur constr = C[s 5. unsarconstr
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New Curr_Sol = satisfies Cj) 4)-

o |
| © = |
|
-

1

1 —

0 - -1
detects that Cs s) is unsatisfiable, given Curr_Sol. Backtrack to cur_constr = Cla,4) and set cur_cube =
0-1-. :

search_space is invoked with C'urr_Sol = , and cur _constr = C[s 5). unsat_constr

o - |

1 - — —
New Curr Sol = | ~ (1) T | satisfies Cyy 4.
0o - 1 -
1 - - -—
search_space is invoked with C'urr_Sol = : (1) -l- : , and cur_constr = Cjss. After
0o - 1 -
generatecandcubes CCubes = {— - -—, - --1,-=-1-,—-11,- =0—-, - =01, -1 - -, -1-1,
-11-, -111, -10-, -101, -0 - -, =0 - 1, -01—-, 011, -00—, -001, 1 - ——, 1 = -1, 1 — 1,

1-11,1-0-,1-01,11 = -, 11 - 1, 111-, 1111, 110-, 1101, 10 - —, 10 - 1, 101—, 1011, 100,
1001,0 - ~-,0--1,0~-1-,0-11,0-0-,0- 01,01 - -, 01 - 1,011-, 0111, 010-, 0101, 00 - —,

00 — 1, 001—, 0011, 000—, 0001}. Afier restrict.candcubes CCubes = {— — ——, — — -1, - — 1-,
— — 11}. After discard cand_cubes C'C'ubes = {— — —1}. Sel cur_cube = — — —1.
1 _ - -
-1 - =
NewCurrSol=| - 0 1 - | satisfics (| 5).
-1 -

o

search_space is invoked with C'urr 5ol = | —
0

- - =1
are satisfied Curr_Sol is the final solution. Notice that search_space was called 11 times.

, and cur_constr = §. All constraints

|l © = |
—
|

7 Results

We implemented the algorithm described in Section 5 in a prototype package in C called MINSK (Minimum
INput Satisfaction Kernel) and we applied it to a set of benchmarks available in the literature. The
benchmarks are partitioned into three sets: FSMs from the MCNC collection, reported in Table 5; FSMs
collected from various other sources, reported in Table 7; decode PLAs of the VLSI-BAM project, provided
by Bruce Holmer [9], reported in Table 8. In all cases, face constraints were generated with ESPRESSO [1].
In the tables we report:

1. the name of the example,

2. the number of symbols to encode (“#states”),
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3. the logarithm of the number of symbols (“min. len.”) together with the minimum code length to
satisfy all input constraints known so far (“best kwown”),

the minimum code length to satisfy all input constraints found by MINSK (“min. sol.”),
the number of calls of the routine found_solution (“#checks”),

the number of recursive calls of the routine search_space (“#calls”),

N s

the CPU time for a 300 Mhz DEC ALPHA workstation.

We did not report data on examples where the constraints were few and MINSK found a solution in no
time. We found an exact solution for all the examples, except the FSMs bk, 51488, 51494, 5298 none of
which has been solved before. For some examples, like donfile, scf, dk16 exact solutions were never found
automatically before; for others, like ex2 an exact solution was found automatically by NOVA [16] with the
oplion -e ie, but at the cost of an unreasonable CPU time (60172.6 s. on 60Mhz DEC RISC workstation) 4,

Up to now four exact algorithms have been tried to solve face hypercube embedding. The first is available
as an option in NOVA -e ie, the second is based on a reduction to satisfaction of encoding dichotomies by
means of unate covering [17, 11], the third is an implicit implementation with ZBDDs of the latter [3], and
the last is a simplification of the third, where instead of prime dichotomies one uses all possible encoding
dichotomies [3]. In Table 6 we compare the performance of MINSK with the last three previous algorithms,
based on the data recently reported in [3]. We are aware that the experiments presented in [3] were run
with a 75 Mhz SuperSparc workstation with 96 MB memory and a timeout of 2 hours. The purpose of
the comparison is to evaluate the behaviors of the various algorithms, not to discuss specific running times.
We included in Table 6 all the interesting examples, leaving out “easy” cases where all algorithms behaved
sitnilarly.

The experiments warrant the following practical conclusions:

e MINSK is a robust algorithm, that solves in no time problems with few constraints and requires more
time when the set of constraints is larger and more difficult. This apparently innocent feature lacks
in the other programs (with the exception of NOVA), pointing out that the reduction of face hypercube
embedding to encoding dichotomies is not an algorithmically robust strategy.

e MINSK is also superior in running times to the other programs in the more difficull cases, showing that
the key ingredients of its search strategy, such as generating cubes and not codes, avoiding symmetric
solutions and sections which are not basic, prune away large suboptimal portions of the search space.
The exact option of NOVA instead is hopelessly slow in the more difficult cases, because it enumerates
codes and not cubes and does not avoid the generation of symmetric encodings.

o The implicit algorithms of [3] rely on a very sophisticated unate covering package that represents the
table with ZBDDs. MINSK instead is a simple-minded implementation, whose strength lies only in the
underlying theory. The running times of MINSK can be improved a lot by making more efficient some
critical routines such as found_solution. This shows how important is to find the appropriate model
for a problem, even when powerful implicit techniques are available as an alternative.

4 An solution of 7 was erroneously reported as exact in [16] for dk16, whereas the minimum solution has 6 bits.
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Name

f#states

#cons. | min. len. / | min. sol. | #checks | #calls time

best known (secs)

bbsse 16 5 4/6 6 127 9 0.02
beecount 7 6 3/4 4 75 9 0.01
cse 16 9 4/5 5 219 11 0.03
dk14 7 9 3/4 4 137 16 0.02
dk1s 4 6 2/4 4 66 12 0.01
dk16 27 24 5/<8 6| 622653 | 8686 | 161.45
dk17 8 7 3/4 4 162 9 0.01
dk27 7 4 3/3 3 42 5 0.00
dk512 15 9 4/5 5 569 12 0.06
donfile 24 24 5/<6 6| 245476 | 1722 48.14
exl 20 8 5/17 7 1522 15 047
ex2 19 8 5/6 6 666 13 0.13
ex3 10 6 4/5 5 195 11 0.02
ex5 9 7 4/5 5 99 13 0.01
ex6 8 9 3/4 4 87 11 0.01
ex7 10 6 4/5 5 71 12 0.01
keyb 19 18 5117 7 3676 184 1.62
kirkman 16 6 4/<6 6 52 10 0.01
lion9 9 10 4/4 4 194 11 0.02
mark1 15 4 4/4 5 72 8 0.01
planet 48 10 6/6 6 2044 11 0.40
pma 24 13 5/na 7 37339 687 14.42
sl 20 5 5/5 5 334 6 0.03
$1488 48 24 6/na - - - | timeout
s1494 48 24 6/na - - - | timeout
$208 18 5 5/na 6 162 8 0.02
s27 6 6 3/na 4 80 9 0.01
s298 218 47 9/na timeout
$386 13 5 4/na 6 124 9 0.02
5420 18 5 5/na 6 162 8 0.02
s820 25 10 5/na 6 1832 13 0.38
s832 25 10 5/na 6 1848 13 0.35
sand 32 5 5/6 6 131 7 0.02
scf 121 14 7/<8 7 6239 17 2.82
sse 16 5 4/6 6 127 9 0.02
styr 30 16 5/6 6 973 18 0.29
tbk 32 73| 5/<18 - - - | timeout
tma 20 9 5/na 6 2086 71 043
trainll 11 11 4/5 5 8534 256 1.06

Figure 5: Experiments with FSMs from MCNC Benchmark Set.
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Name | ImpDicho | ZeDicho Dicho | MINSK

time(s.) | time(s.) | time(s.) | time(s.)
dk16 spaceout | timeout | spaceout | 161.45
dk512 timeout | timeout | 238.72 0.06
donfile timeout | timeout | spaceout 48.14
exl 433.85 128.63 | spaceout 047
ex2 timeout | timeout | spaceout 0.13
ex4 timeout | timeout | timeout 0.00
keyb timeout | = 14.43 125.2 1.62
planet spaceout | timeout | spaceout 0.40
sl timeout | timeout | timeout 0.03
sand spaccout | timeout | spaceout 0.02
scf spaceout | timeout | spaceout 2.82
styr spaceout | timeout | timeout 0.29
tbk spaccout | timeout | spaceout | timeout

Figure 6: Comparison with Other Approaches.

Name fistates | #cons. | min. len. | min. sol. #checks | #calls time
(secs)
apla 29 10 5 7 1267 14 0.45
lange 6 7 3 4 128 15 0.01
papa 7 9 3 4 162 19 0.02
scud 8 17 3 6 1102 77 0.28
tlc34stg 35 19 6 6 3635 20 1.22
viterbi 68 6 7 7 4510 7 1.07
vmecont 32 41 5 9 | 25958139 | 22354 | 95424.37
Figure 7: Experiments with FSMs from Other Sources.
Name | #states | #cons. | min. len. | min. sol. | #checks | #calls time
(secs)
irla 128 2 7 8 22 4 0.01
irlb 128 4 7 8 549 7 0.21
irlc 128 5 7 8 1224 7 0.62
irld 128 11 7 91 402694 | 2299 | 512.10
ir2 128 8 7 8 10374 35 6.00
ir2m 128 11 7 8 31468 13| 2043
ir3 128 11 7 8 18075 13| 13.89
irdm 128 5 7 8 733 7 0.32

Figure 8: Experiments with Decode PLAs of the VLSI-BAM.
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8 Conclusions

We have presented a new matrix formulation of the face hypercube embedding problem that motivates the
design of an efficient search strategy to find an encoding that satisfies all faces of minimumlength. Increasing
dimensions of the Boolean space are explored; for a given dimension constraints are satisfied one at a time.
The following features help to reduce the nodes of the solution space that must be explored: candidate
cubes instead than candidate codes are generated, symmetric cubes are not generated, a smaller sufficient set
of solutions (producing basic sections) is explored, necessary conditions help discard unsuitable candidate
cubes, early detection that a partial solution cannot be extended to be a global solution prunes infeasible
portions of the search tree. :

We have implemented a prototype package MINSK based on the previous ideas and run experiments
to evaluate it. The experiments show that MINSK is faster and solves more problems than any availablc
algorithm. Moreover, MINSK is a robust algorithm, while most of the proposed alternatives are not. All
problems of the MCNC benchmark suite were solved successfully, except four of them unsolved or untried
by any other tool. Other collections of examples were solved or reported for the first time, including an
important set of decoder PLAs coming fromn the design of microprocessor instruction scts.

We know that the current implementation of MINSK is simple-minded and leaves room for improvements
to speed-up more the program. For instance, the satisfaction check with the intersection matrix Ts is
expensive and currently not optimized. Other areas of improvement to cope with difficult examples lie in
the computation of a better lower bound than the current In states on the Boolean space dimension; andina
dynamic choice of the next cube and its size, based on a tighter analysis of the cube occupancy requirements
of the existing constraints.

Moreover, we want to generalize the existing theory and algorithm in the following directions:

1. Solving face constraints with don’t cares, that is an important practical problem.
2. Solving mixed problems that include constraints in the form of encoding dichotomies.

From some preliminary analysis, both extensions are ameneable to the current frame, with some appropriate
modifications to the test when a candidate matrix is a solution and the introduction of the equivalent of a
face for an encoding dichotomy.

Notice that the reduction of face hypercube embedding to satisfaction of encoding dichotomies [11. 3]
has shown experimentally that face hypercube embedding in a sense contains the hardest instances of the
problem to satisfy encoding dichotomies. This fact justifies our strategy to solve the former first and extend
it later to the latter.
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