

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FORMAL ANALYSIS OF SYNCHRONOUS CIRCUITS

by

Thomas Robert Shiple

Memorandum No. UCB/ERL M96/76

4 December 1996

FORMAL ANALYSIS OF SYNCHRONOUS CIRCUITS

Copyright © 1996

by

Thomas Robert Shiple

Memorandum No. UCB/ERL M96/76

4 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Formal Analysis of Synchronous Circuits

by

Thomas Robert Shiple

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

This dissertation addresses three separate, but related problems concerning the formal anal

ysis of synchronous circuits and their associated finite state machines. The first problem is

the logical analysis of synchronous circuits containing combinational cycles. The presence

of such cycles can cause unstable behavior at the outputs of a circuit, but this is not neces

sarily always the case. This work determines when cycles are harmless, and when they are

not. In particular, three classes of circuits are defined that tradeoff time to decide the class,

with the permissiveness of the class. For each class, the complexity of the corresponding

decision problem is proven and a procedure to decide the class is given. In addition, if a

circuit is determined to be within a given class, then a new circuit can be generated with

the same input/output behavior, but without combinational cycles. This is an important

utility, as many CAD tools do not accept circuits with combinational cycles.

The second problem that is addressed is the CTL model checking of interacting

FSMs. A state equivalence is presented that is defined with respect to a given CTL formula.

Since it does not attempt to preserve all CTL formulas, like bisimulation does, we can

expect to compute coarser equivalences. This equivalence is used to manage the size of

the transition relations encountered when model checking a system of interacting FSMs.

Specifically, the equivalence is used to reduce the size of each component FSM, so that

their product will be smaller. We show how to apply the method, whether an explicit

representation is used for the FSMs, or BDDs are used. Also, we show that in some cases

this approach can detect if a formula passes or fails, without composing all the component

machines. The method is exact and completely automatic, and handles full CTL.

These two problems are PSPACE-hard (in the number of flip-flops) to decide;

approximate methods may be useful to find a solution in affordable CPU time. To demon

strate the use of approximate methods in logical analysis, we address the state reachability

problem in FSMs, which is the problem of determining if one set of states can reach an

other. State reachability hasbroad applications in formal verification, synthesis, and testing

of synchronous circuits. This work attacks this problem by making a series of under- and

over-approximations to the state transition graph, using the over-approximations to guide

the search in the under-approximations for a potential path from one state set to the other.

Central to this method is an algorithm to approximate a Boolean function by another

function having a smaller BDD.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair

Ill

.to Suzanne

IV

Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Terminology 4
1.1.1 Synchronous circuits 4
1.1.2 Finite state machines 4

1.1.3 Binary decision diagrams 7

2 Logical Analysis of Combinational Cycles In Synchronous Circuits 10
2.1 Introduction 10
2.2 Related work 17

2.2.1 Motivation 17

2.2.2 Circuit analysis 18
2.2.3 Circuit classification 19
2.2.4 FSM extraction 20

2.3 Background 23
2.3.1 Circuits and networks 24

2.3.2 GMW analysis 30
2.3.3 Ternary simulation 33

2.4 Combinational output-stability 36
2.4.1 Definition and properties of combinational output-stability 37
2.4.2 Malik's algorithm for deciding combinational output-stability 42
2.4.3 Proposed refinement to Malik's algorithm 47

2.5 Sequential output-stability 49
2.5.1 Circuit model and mode of operation 50
2.5.2 Transition graph of a network 54
2.5.3 Definition and properties of sequential output-stability 58
2.5.4 Bisimulation and the quotient Mealy machine 63
2.5.5 Algorithm for deciding sequential output-stability 68
2.5.6 Extracting an equivalent acyclic implementation 73
2.5.7 Generating an error trace 74

2.5.8 Sequential output-stability in the presence of an environment 77
2.6 Constructivity 79

2.6.1 Circuit model, mode of operation, and transition graph 82
2.6.2 Definition and properties of constructivity 83
2.6.3 Algorithm for deciding constructivity 86
2.6.4 Extracting an equivalent acyclic implementation 92
2.6.5 Generating an error trace 92
2.6.6 Constructivity in the presence of an environment 92

2.7 Proofs 92

2.7.1 Proof of Theorem 2.24 92

2.7.2 Proof of Proposition 2.27 95
2.7.3 Proof of Proposition 2.29 96
2.7.4 Proof of Theorem 2.45 97

2.8 Summary and future work 100

Formula-Dependent Equivalence for Formal Verification 102
3.1 Introduction 102

3.2 Related work 104

3.3 Preliminaries 105

3.3.1 Finite states machines 105

3.3.2 Computation tree logic 106
3.4 Formula-dependent equivalence 107

3.4.1 Overview 107

3.4.2 PASS* and FAIL* 109
3.4.3 Equivalence relation E* 112
3.4.4 Properties of E* 113

3.5 Application of E* to model checking 115
3.5.1 Compositional model checking 115
3.5.2 Early pass/fail detection 117
3.5.3 Processing subformulas 118

3.6 Proofs 119

3.6.1 Preliminaries 119

3.6.2 PASS* and FAIL* 119
3.6.3 Formula-dependent equivalence relation 124

3.7 Summary and future work 150

Deciding State Reachability for Large FSMs 152
4.1 Introduction 152

4.2 The state reachability problem 154
4.3 Related work 155

4.3.1 Image computation 156
4.3.2 Exact state reachability 157
4.3.3 Approximate state reachability 158

4.4 Algorithm to decide state reachability 159
4.4.1 Example 162

VI

4.5 Approximating Boolean functions 167
4.5.1 Statement of the problem 170
4.5.2 The subsetting problem of Ravi and Somenzi 174
4.5.3 Heuristic for the BDD under-approximation problem 175
4.5.4 Application to binary Boolean operations 183

4.6 Approximating sets of edges 183
4.6.1 Initial over-approximation of G 183
4.6.2 Initial under-approximation of G 186
4.6.3 ApProxIMaTion of edges from / in V 186

4.7 Summary and future work 189

5 Summary 190

A VIS: Verification Interacting with Synthesis 191
A.l Introduction 191
A.2 VIS 191
A.3 VIS-F: Front End 193
A.4 VIS-V: Verification 194
A.5 VIS-S: Synthesis 196
A.6 Possible Improvements 196

Bibliography 197

Vll

List of Figures

1.1 A circuit with two inputs and one output 4
1.2 Example of FSM composition: p is the output of Mi, q is the output of M2,

and a is an external input, aq is shorthand for the input assignment 10. The
union of aq, aq and aq is denoted by a+</. The tautology is denoted by T. 6

1.3 A BDD: the function represented by each node is shown. The lo child is
indicated by a 0 edge, and the hi child by a 1 edge 8

2.1 Well-behaved, even though y oscillates when x = 0 (Figure 4b from [1]). . . 11
2.2 Not well-behaved when x = 0 (Figure 6b from [1]) 12
2.3 Sharing of resources leads to a false combinational cycle (Figure 2 from [1]). 13
2.4 Three classes of well-behaved circuits 14
2.5 RS-latch 15

2.6 An environment for the RS-latch. States B, C and D are initial, as indicated
by the incident wedges 16

2.7 Minimized Mealy FSM for the RS-latch composed with an environment. . . 16
2.8 Acyclic circuit with the functionality of an RS-latch 16
2.9 Datapath with combinational cycle shown in bold (Figure 2 from [2]). . . . 18
2.10 Gate circuit. (Figure 4.5 from [3] .) 25
2.11 Circuit graph corresponding to the gate circuit in Figure 2.10 (Figure 4.6

from [3] .) 25
2.12 Delay element. (Figure 3.3 from [3] .) 26
2.13 Up-bounded inertial delay waveforms 27
2.14 A UINi-history; Dx = 1, D2 = 3 and D3 = 2 29
2.15 Possible state sequences over gz, for the RS-latch with input rs = 01 31
2.16 A general multiple winner relation 32
2.17 Ternary extension for the NOT, AND, OR, and XOR functions 34
2.18 Algorithms A and B in operation on the RS-latch, over states rs-qz 35
2.19 Different placement of delay elements affects combinational output-stability. 38
2.20 GMW relation over 1/12/2 for network N2 38
2.21 Kautz's circuit with a combinational cycle 39
2.22 z is not combinationally output-stable if and only if / is satisfiable 42
2.23 Number of gate evaluations depends on evaluation order 48
2.24 A directed graph 49

Vlll

2.25 The variables of a circuit 51

2.26 A simple network containing a flip-flop and an XOR gate 53
2.27 The GMW relation over states ux>y for the network of Figure 2.26 56
2.28 The transition graph over states ux-y for the flip-flop with XOR gate. ... 56
2.29 The GMW relation over states rs>qz for the RS-latch 57
2.30 The transition graph over states rs-qz for the RS-latch 58
2.31 Network N', used in the PSPACE-hard proof. 60
2.32 Nontransient cycle on variables S2S3S4 61
2.33 A network of a flip-flop with an OR gate. This network is sequentially output-

stable, but not combinationally output-stable 62
2.34 Transition graph over states ux-wz of the network in Figure 2.33 63
2.35 Quotient Mealy FSM for the network of the flip-flop and XOR gate 65
2.36 Quotient Mealy FSM for the network of the flip-flop and OR gate 66
2.37 Quotient Mealy FSM for the RS-latch 66
2.38 The existence of transition (p,p') implies the existence of transition (q,q'). . 67
2.39 The sequential output-stability algorithm 68
2.40 Network with external initial state 00 is not sequentially output-stable, even

though z is a function of flip-flop outputs 73
2.41 Runs of network in Figure 2.40 , on sequential input 1, 0, 1, 1, 1 73
2.42 Generating an error trace to demonstrate that a network is not sequentially

output-stable 76
2.43 Product of edges of quotient machine and environment 78
2.44 Extracted Mealy FSM for the RS-latch composed with an environment. . . 80
2.45 Transition graph over states ux-wz of the network in Figure 2.33 , under the

constructive mode 84

2.46 Constructive, but not combinationally output-stable 85
2.47 Transition graph over states x\X2'y\y2 for the network of Figure 2.46 86
2.48 Algorithm for deciding constructivity 87
2.49 Reduced transition graph Tjv, over states yiy2, for the network of Figure 2.46 . 88
2.50 Reduced transition graph Tn, overstates u, of Figure 2.45 89
2.51 a) Runs with ASMP. b) Runs without ASMP 98

3.1 Finite state machine M with inputs 0 and 1 and outputs REQ, ACK, IDLE
and EOT. The symbol T means "true", the union of all input assignments. 103

3.2 Infinite computation trees of states x and y. "P" indicates a PASS* state,
and "F" indicates a FAIL* state 109

3.3 Illustrating PASS* and FAIL*, andthe fact that E* iscoarser than bisimulation.110
3.4 Component machineused to show that computing FAIL* exactly is EXPTIME-

hard 112

3.5 Equivalence on subformulas is required. Only the states reachablefrom (1,1')
and (4,1') are shown in Mi x M2 113

3.6 E* equivalence is incomplete. The input to Mi is q, and the output is p.
States 1 and 3 can be safely merged with respect to the formula <f> = 3Gq. . 114

3.7 Outline of procedure for compositional model checking: minimize and form
product incrementally 116

IX

4.1 Algorithm to decide state reachability 160
4.2 Graph G of a 21-state FSM. The initial state is 3 and the final state is 13. . 162
4.3 Initial over-approximation Vi. The sets / and F are indicated by the dotted

region. False edges are indicated by a dot 163
4.4 Initial under-approximation U\ 164
4.5 Over-approximation V{, formed by restricting V\ to edges on paths from /

to F. Edges contained within / or within F are not drawn 164
4.6 Over-approximation V2, formed by removing edge 3->4 from V{ 166
4.7 Under-approximation (72, formed by adding edges 12-»9 and 2->-l to U\. . 166
4.8 Over-approximation V2\ formed by restricting V2 to edges on paths from /

to F 167
4.9 Over-approximation V3, formed by removing edges 10->13, 21-^11 and 5-»9

from V2' 168
4.10 Under-approximation f/3, formed by adding edge 5-»7 to f/2 168
4.11 Over-approximation V3, formed by restricting V3 to edges on paths from /

to F 169

4.12 Under-approximation U4, formed by adding edges 10-^11 and 15-^10 to U3. 169
4.13 The BDD over-approximation problem 170
4.14 BDD used to illustrate the bddUnderApprox algorithm 177
4.15 The result of bddUnderApprox applied to the BDD of Figure 4.14 . E is

replaced by ZERO 182
4.16 Neither A nor B will be replaced by ZERO when considered individually, but

may be replaced by ZERO if considered simultaneously 182
4.17 Diagram showing over- and under-approximations to E(x,y) 188

A.l Components and packages of VIS. An edgefrom package A to B denotes that
A depends on B (edges implied by transitivity are not shown) 192

List of Tables

2.1 Transition graph for the RS-latch composed with the environment of Fig
ure 2.6 79

3.1 Equivalence classes for Mi of Figure 3.5 on 3F(pA3F(pA q)) 114
3.2 Equivalence classes for Mi of Figure 1.2 on (3G{pAq)) AQ 119

4.1 The bddUnderApprox algorithm applied to the BDD of Figure 4.14 178

XI

Acknowledgements

I have been privileged to work with Professors Alberto Sangiovanni-Vincentelli and Bob

Brayton. Their integrity, love of learning, quality of work, and breadth of knowledge have

inspired me, and will have a lasting influence on me.

I would like to express gratitude to my research collaborators. Without their

willingness to listen to and improve upon my ideas, I do not think I would have achieved as

much. The work on combinational cycles began at Digital's Paris Research Laboratory and

INRIA with Herve Touati and Gerard Berry, and later included Vigyan Singhal at Berkeley.

The research on formula-dependent equivalences for CTL, which stemmed from earlier work

with Macs Chiodo, was done jointly with Adnan Aziz ana Vigyan Singhal. The work on

reachability for large FSMs was undertaken with Rajeev Ranjan. I would like to give special

thanks to Adnan, Vigyan and Rajeev, for I have learned a lot from them. Finally, it has

been a special pleasure being part of the hardworking and synergistic VIS team: Adnan

Aziz, Szu-Tsung Cheng, Stephen Edwards, Sunil Khatri, Yuji Kukimoto, Abelardo Pardo,

Shaz Qadeer, Rajeev Ranjan, Shaker Sarwary, Gitanjali Swamy, and Tiziano Villa.

I want to thank the senior students who helped me to get started at Berkeley

and who exhibited qualities to emulate: Wendell Baker, Timothy Kam, Luciano Lavagno,

Sharad Malik, Rajeev Murgai, Alex Saldanha, Hamid Savoj, Ellen Sentovich, Narendra

Shenoy, K. J. Singh, Paul Stephan, Herve Touati, Tiziano Villa, and Huey-Yih Wang.

One of my most intense work periods at Berkeley was preparing for the Prelim

inary Examination. I would not have succeeded without the support of my fellow study

group members: Ramin Hojati, Sriram Krishnan and Henry Sheng. In particular, Ramin

impressed upon me the meaning and importance of rigorous mathematic proof.

The staff supporting the CAD group has been uniformly helpful and amiable.

Thanks go to Kia Cooper, Ruth Gjerde, Brad Krebs, Elise Mills and Flora Oviedo.

I would like to acknowledge the financial support of the Semiconductor Research

Corporation. Not only was most of thiswork conducted under the auspices ofSRC research

funding (DC-324), but I also had the honor of being an SRC Graduate Fellow for the last

four years. Special thanks to Ginny Poe at SRC headquarters for her friendly attitude and
for answers to all my questions.

Throughout my graduate career, I have enjoyed the love and support from not

only my own family, but also from Suzanne's family. I always felt that they were there

Xll

with me, and that they share in my academic degrees. Thanks also to Caleb, my son, for

giving his birth date as a fixed deadline by which to finish this dissertation. Finally, I owe

everything to my wife, Suzanne. Her advice, understanding and love have been the pillars

upon which I have drawn my strength. Thanks!

Chapter 1

Introduction

This dissertation addresses three separate, but related problems concerning the

formal analysis of synchronous circuits and their associated finite state machines (FSMs).

Synchronous circuits play a central role in the design of digital systems, because their

uniform clocking methodology allows circuits to be composed with predictable results. Here

we provide algorithms for solving three decision problems relating to synchronous circuits

and FSMs.

Chapter 2 deals with the formal analysis of combinational cycles in synchronous

circuits. Combinational cycles can lead to unstable and unpredictable behavior at the

outputs of a circuit, but this need not always be the case. In fact, some circuits are

purposely designed with combinational cycles to affect a more efficient implementation, to

create state-holding devices, or to provide a more lucid, symmetric description of a function.

In all these cases, the intention is that such cycles do not lead to unstable or unpredictable

behavior.

Our contribution is to provide algorithms to determine if the combinational cycles

of a circuit are harmful. Others have touched on this problem, but have not addressed it

with sufficient rigor. In particular, we define three formal classes of well-behaved circuits,

that tradeoff time to decide the class, with the permissiveness of the class. The definition

of these classes is grounded in the up-bounded inertial delay model, and the GMW analysis

of synchronous circuits of Brzozowski and Seger [3].

For each class, we prove the complexity of deciding the class, and give an algorithm

that provably decides the class exactly. If a circuit does not fall within a particular class,

then we give a method to generate an error trace demonstrating a sequence of inputs that

leads to unstable behavior at an output. This is useful to debug the operation of a circuit.

On the other hand, if a circuit falls within a class, then we can produce a new circuit

having the same input/output behavior, without combinational cycles. Given this, an FSM

(at the abstract level) can be easily derived. This is an important utility because many CAD

algorithms, including our own algorithms of Chapters 3 and 4, only accept inputs without

combinational cycles. Hence, the algorithms of Chapter 2 can serve as preprocessors.

Chapter 3 presentsa method for CTL modelchecking systems of interacting FSMs.

CTL (for computation tree logic) is a language for specifyingcorrectness properties of FSMs,

and model checking is the problem of determining if a given FSM satisfies a particular CTL

formula. CTL model checking has emerged as one of the main automatic methods for formal

verification, or property checking.

CTL model checking a system of interacting FSMs is PSPACE-complete in the

number of FSMs. Thus, heuristics are needed that always give the correct answer, but

which are as fast as possible. Our approach is to compute an equivalence relation with

respect to a given CTL formula, on the states of each component FSM. Because this relation

is computed with respect to a single formula, it is more coarse (meaning the equivalence

classes are larger), and hence more effective, than equivalences that preserve all of CTL,

such as bisimulation.

The formula-dependent equivalence is used to make each component machine

smaller before composing it with other components. If an explicit data representation

is used for FSMs, then the quotient machine, with respect to the equivalence, is used to

yield a smaller machine. If an implicit data representation is used, such as BDDs, then this

equivalence is used to define a range of permissible substitutes for the component, among

which we want to use the one with the smallest BDD.

After each component has been reduced, their product is formed to yield a single,

more tractable, FSM. Standard CTL model checking is applied to this machine to yield the

final answer. In some cases, our algorithm can determine the truth or falsity of a formula

without building the reduced product FSM. Our method can be applied to any formula of

CTL, and it is completely automatic.

The problems of state reachability and CTL modelchecking are PSPACE-hard (in

the number of flip-flops) to decide, and thus approximate methods to solve them would be

useful. To demonstrate the general idea of approximate methods, Chapter 4 addresses the

similar problem of state reachability, which is the problem of deciding whether a set of initial

states / can reach a set of final states F in an FSM M. This problem has applications in the

formal verification, synthesis, and testing of synchronous circuits, so an efficient solution

would benefit these areasof computer-aided design (CAD) of digital systems. One approach

to this problem is to calculate the set R of all states reachable from /, and then test if F

and R intersect. This may involve more work than is necessary to solve the more specific

question of state reachability. Our goal is to increase the size of FSMs that can be analyzed.

Our approach is to construct a series of under- and over-approximations of the

state transition graph G of M. If a path from I to F exists in an under-approximation,

then the path also exists in G. On the other hand, every path from / to F in G must

exist in an over-approximation. Our strategy is to use the set of paths from / to F in an

over-approximation to guide the search for such a path in an under-approximation.

Following the lead of other researchers over the last decade, we use binary decision

diagrams (BDDs) to represent FSMs. However, we have defined a new optimization prob

lem, the BDD approximation problem, whose efficient solution is crucial to our algorithm for

state reachability. Given a Boolean function /, the goal is to find another function g, such

that g D f (i.e., the onset of g contains the onset of /) and g has a small BDD. The closer

g is to /, and the smaller the BDD for g, the better is the approximation. This problem

was independently formulated by Ravi and Somenzi [4]. We develop some theory related

to the problem, and present a heuristic solution.

Each of the main chapters of this dissertation can be read independently of the

others after first reviewing some common terminology in Section 1.1. Each chapter has its

own extensive introduction, discussion of related work, and summary. Where appropriate,

lengthy proofs have been relegated to a separate section within each chapter.

The appendix describes the architecture of the software system VIS (Verification

Interacting with Synthesis). This system, developed jointly at the University of California,

Berkeley, and the University of Colorado, Boulder, provides a framework for implementing

algorithms related to the verification and synthesis of synchronous circuits. In particular,

the algorithms described in this dissertation could be implemented within VIS.

Figure 1.1: A circuit with two inputs and one output.

1.1 Terminology

1.1.1 Synchronous circuits

We are interested in the study of circuits at the "gate" level. A logic gate is a

device with k binary-valued inputs and one binary-valued output, that computes a Boolean

function / : B* -» B (B denotes the set {0,1}). A logic gate has an associated delay; this
will be discussed further in Chapter 2. A flip-flop is a device with a binary data input, a

binary clock input, and a data output. On the rising edge of the clock, the data input value

is copied to the data output.

A circuitis an arbitrary interconnection of logic gates and flip-flops. A synchronous

circuit is a circuit whose flip-flops are enabled by the same clock, and whose inputs change,

and outputs are sampled, on the rising edge of the clock. The part of the circuit consisting

of just the logic gates is called the combinational part. A combinational cycle in a circuit is

a directed cycle of logic gates, when the circuit is viewed as a directed graph with vertices

corresponding to the logic gates and flip-flops.

Figure 1.1 shows a circuit with two inputs, a and p, one output q, and one flip-flop.

1.1.2 Finite state machines

A finite state machine (FSM) is an abstraction of a synchronous circuit. In Chap

ter 2, we use FSMs as a tool in deciding output-stability. In Chapters 3 and 4, we pose

the problems of CTL model checking and state reachability directly on FSMs. There are

various types of FSMs, and various notations to describe them. We cover the major aspects

here, and then customize the definitions as needed later.

An FSM consists of the following components.

• A finite set of states, S.

• A set of initial states, I C S.

• A finite input alphabet, £/.

• A finite output alphabet, Eo-

• An output relation, O. For Moore machines, O only depends on the state, O C 5xEo-

For Mealy machines, O also depends on the input, O C S x E/ x Eo- If O can be

expressed asa function (i.e., for Moore, O : S -> Eo, and for Mealy, O :S x E -» Eo),

then the output is deterministic, otherwise it is nondeterministic.

• A transition relation, T C S x E/ x 5. If (x, a, y) e T, this means that from state x on

input a, the machine can move to y. The notation x A y isshorthand for (x, a,y) GT.
If T can be written as a function, then the next state is deterministic, otherwise it is

nondeterministic. We require that T is complete, meaning that for each a € Ej and

x 6 S, there exists at least one y e S such that (x,a, y) € T. This guarantees that

progress is always possible, regardless of the input.

For a synchronous circuit C, an FSM is derived as follows.

• IfC has / flip-flops, S = B'.1 Flip-flop j has a present state variable Xj and a next
state variable yj.

• If each flip-flop j has initial value(s) Ij C B, then / is the Cartesian product, / =

xj=i^7-

• If C has a set X of n inputs, then £/ = Bn.

• If C has a set 0 of p outputs, then Eo = BP.

• Ifoutput j is driven by Cj -5xE/ -• B, then 0 = nj=i(*j = Cj)> where *,- is identified
with output j.

'The case where state is stored by the logic gates is handled specially in Chapter 2.

• If the data input of flip-flop j is driven by 8j :S x Ej -¥ B, then T =ni=i(2/j =^)-
T is complete, since a circuit must have a reaction for each input.

Figure 1.2 shows the FSM M2 corresponding to the circuit in Figure 1.1. State 1'

corresponds to flip-flop value 0, and state 2' to value 1. Throughout the diagram, Boolean

equations are used to refer to subsets of the Boolean space. Hence, the label q refers

to the output {0}, and the edge labels ap, a + p, and T refer to {00}, {01,10,11}, and

{00,01,10,11}, respectively.

Mi

M2 a+p

Figure 1.2: Example of FSM composition: p is the output of Mi, q is the output of M2,
and a is an external input, aq is shorthand for the input assignment 10. The union of aq,
aq and aq is denoted by a+q. The tautology is denoted by T.

The state transition graph, G, of an FSM is a directed graph with vertex set S and

edges {(x,y)\3a € E/ such that (x,a,y) e T}. A state x is reachable if there exists a path

in G from an initial state to x. The set of reachable states is all states that are reachable.

Suppose we wish to compose two Moore FSMs, Mi and M2, whose outputs are

disjoint, and where some outputs of Mi are connected to inputs of M2, and vice versa.2

This creates a new Moore FSM M where

• S = Si x S2

• I = 11 x I2

If M\ and M2 are both Mealy machines, this can lead to combinational cycles, addressed in Chapter 2.

• X = (Xi UX2) \ (Xi n O2) U (X2 n Oi) (the original inputs, minus those those driven

by one of the components)

• E/ =

• O = Oi U 02

• Eo = Bl°l

• O = Oi x 02

• TCSxE/xS where ({x,s),(a,c),{y,t)) € T iff 36 6 02 s.t. (z,a-6,y) e 7\ and

(s,6) € 02, and 3d € Ox s.t. (s,c-rf,i) € T2 and (z,d) € Ox.

Figure 1.2 shows the composition of two Moore FSMs, Mi and M2. Note that Mi

has a nondeterministic next state on input aq from state 1. The sets of inputs and outputs

for Mi are {a, q} and {p} respectively; and for M2 are {a,p} and {q} respectively. For the

composition Mi x M2, the sets of inputs and outputs are {a} and {p,q} respectively.

1.1.3 Binary decision diagrams

Suppose we want to represent Boolean functions spanned by the binary variables

Xi,..., xn. A binary decision diagram (BDD) is a data structure used to store and manipu

late such functions [5]. A BDD is a rooted, directed, acyclic graph. There are two types of

vertices. Terminal vertices have no outgoing edges and are labeled by the constants ZERO

or ONE. Non-terminal vertices are labeled by a variable xt, and have a lo child and a hi

child.

The variables of the function to be represented must be ordered. Here, we assume

the ordering xi < ... -< xn. The variable labels of the vertices of any root-to-terminal path

must respect this ordering. Two rules are applied to reduce a BDD.

1. Ifa node exists where the loand hichildren are the same, then that node iseliminated,

and all incoming edges are redirected to the child node.

2. If two nodes exist that have the same variable label, the same lo child, and the same

hi child, then these two nodes are merged into a single node.

Xl X2 + X3

Figure 1.3: A BDD: the function represented by each node is shown. The lochild is indicated
by a 0 edge, and the hi child by a 1 edge.

The function f(G) represented by a BDD node G, with label x,-, is defined induc

tively as follows:

/(ONE) = 1

/(ZERO) = 0

f(G) = Xi-f(G.hi) + Xi-f{G.lo)

For example, the BDD of Figure 1.3 represents the function

Zl (X3) + X~[(x~2~ + X3) = XjX2~ + x3.

For a fixed ordering, BDDs are canonical, in that each Boolean function has a unique BDD
representation.

A BDD can be used to represent an arbitrary set by considering the characteristic

function of the set. In particular, consider a set 5 taken from some universe U. Then the

characteristic function, xs, is a Boolean function xs '- U -> B, where

, , (1 ifseS
(0 otherwise.

This gives us the power to use BDDs to represent a setof states of an FSM, or to represent
the transition relation, which is nothing more than a set of 3-tuples (x,a,y).

Even though BDDs provide a compact representation for many functions, some

times their size is too large to manipulate effectively. To combat this problem, in some

applications the function being represented can be modified in an attempt to reduce its

BDD size. In particular, suppose that a function / : Bn -¥ B has an associated care set

c : Bn -4- B, such that for any x G Bn where c(x) = 0, we are free to modify the value of

/. This freedom can be used to find a new function g such that f-cCgCf + c. The

operators restrict and constrain can be used for this purpose [6, 7, 8].

10

Chapter 2

Logical Analysis of Combinational

Cycles In Synchronous Circuits

2.1 Introduction

We analyze the logical behavior of synchronous circuits described at the gate and

flip-flop level. A combinational cycle in such a circuit is a structural cycle containing

only logic gates. The analysis of circuits without combinational cycles is straightforward.

Consider for a moment a circuit with no flip-flops. A Boolean function for each node,

in terms of the circuit inputs, can be derived by applying functional composition in a

topological order. These Boolean functions exactly correspond to the steady-state electrical

behavior of the circuit. If flip-flops are present, then these Boolean functions give the

behavior at each clock cycle.

On the other hand, circuits with combinational cycles are usually avoided because

the presence of cycles can lead to oscillating or unpredictable behavior. However, not all

combinational cycles lead to such undesirable behavior. Informally, we say that a circuit

is well-behaved if for every input, the output stabilizes to a unique value within a bounded

amount of time. All acyclic circuits are well-behaved in this sense. Also, some cyclic

circuits are well-behaved. For example, for the circuit in Figure 2.1, the output is z = x,

even though there can be an oscillation at node y when x = 0. Other cyclic circuits may

not be well-behaved. In Figure 2.2, on input x = 0, there exists an assignment of delay

values to the circuit such that the output z will oscillate (even though the output of the

11

AND would seem to be forced to 0).

Combinational cycles arise in practical situations, and therefore techniques to an

alyze their synchronous behavior are useful. Consider the following situations in which

combinational cycles arise:

1. State-holding elements specified at the gate-level. An example of this is an RS-latch

designed as a pair of cross-coupled NOR gates.

2. Transistor-level circuits consisting of bidirectional transistors.

3. High-level synthesis, where cycles are created to share circuit resources. An example

is Figure 2.3, which computes z = if (c) then F(G(x)) else G(F(x)). Because c and

c are mutually exclusive, the cycle is false (i.e., never closed).

4. The composition of Mealy machines. When a single FSM is synthesized within the

context of a set of interacting FSMs, the resulting composition may create a combi

national cycle [9].

5. The specification of reactive programs in synchronous programming languages. A

language like Esterel allows the specification of "zero-delay cycles," and it is the task
of the compiler to determine if such cycles are false.

In some cases (1 and 2), combinational cycles are created intentionally to hold

state. In other cases (3 and 5), combinational cycles are also created intentionally, but

with the knowledge that the cycles are false (i.e., for every input provided by the operating
environment, no event can be propagated around the cycle). In still other cases (2, 4 and
5), the cycles may have been created inadvertently, and the circuit may or may not be
well-behaved. Regardless of how or why a combinational cycle is created, the only issue is
whether the resulting circuit is well-behaved from a black-box point of view.

FO

Figure 2.1: Well-behaved, even though y oscillates when x =0 (Figure 4b from [1]).

12

We analyze the behavior of circuits composed of an arbitrary interconnection of

logic gates and flip-flops (operated on a global clock). Even though we are interested in the

logical analysis of combinational cycles, the issue of circuit delays cannot be avoided because

they can affect the steady-state behavior of a circuit. Thus, before any class of well-behaved

circuits can be defined, we must state precisely what the underlying delay model is, and

what the temporal interaction is between the circuit and its environment. For delays, we

use the up-bounded inertial delay model of Brzozowski and Seger [3]. For the interaction

with the environment, we assume that the circuit is clocked with a sufficient period so that

any output that will eventually stabilize has time enough to do so. Also, the environment

provides inputs, and samples outputs, at the clock ticks.

When defining a class of well-behaved circuits, there are two factors to consider.

The first is whether the definition is made with respect to single (but arbitrary) input

vectors, "combinational," or sequences of input vectors,"sequential." The second factor is

the assumed mode of operation of a circuit, "constructive" or "extended fundamental." In

the constructive mode, it is assumed that at each clock tick, all the combinational nodes

(those driven by logic gates) "forget" their values from the previous clock cycle, and thus

are incapable of storing state. On the other hand, in the extended fundamental mode,

combinational nodes "remember" their values across clock ticks, and hence state-holding
elements can be embedded in the combinational part of a circuit.

Circuits that are well-behaved over sequences of inputs, operating in the extended

fundamental mode, arecalled sequentially output-stable. Circuits that arewell-behaved over

sequences in the constructive mode are called constructive.

When considering well-behavedness over single input vectors, the sequential op

erating mode is irrelevant. Hence, circuits that are well-behaved over single input vectors

«}

«^pQ 5>

Figure 2.2: Not well-behaved when x = 0 (Figure 6b from [1]).

13

4t tj-

Figure 2.3: Sharing of resources leads to a false combinational cycle (Figure 2 from [1]).

should logically be called "combinational," as Malik calls them. However, since the term

"combinational" is often used to describe any network of logic gates, we instead use the

term combinationally output-stable.

Thus, we have established three classes of well-behaved circuits: combinationally

output-stable, constructive, and sequentially output-stable. The relationship between these

three classes is shown in Figure 2.4. We will see that the more permissive the class, the

more expensive is the classification test. Often, a conservative approximation will suffice

for a particular application. We now briefly discuss each class.

Combinational output-stability treats the inputs and outputs of flip-flops as circuit

outputs and inputs, respectively. A circuit is combinationally output-stable if for every input

vector, the outputs stabilize to a unique value in bounded time, regardless of the initial node

values and circuit delay values. The complexity of deciding if a circuit is combinationally

output-stable is co-NP-complete in the size of the circuit description.

A circuit is constructive if for every input sequence, there exists a unique out

put and next state sequence. This is more permissive than combinational output-stability

because it considers state reachability. In particular, consider an output that is not well-

behaved for a given valuationof the flip-flops (i.e., a state): even if this state is not reachable,

14

all circuits

Figure 2.4: Three classes of well-behaved circuits.

the circuit is not combinationally output-stable. The class of constructive circuits is impor

tant for two reasons: 1) it coincides exactly with the class of well-behaved Esterel programs,

and 2) it is insensitive to glitching on circuit inputs. The complexity of deciding this class

is PSPACE-hard in the size of the circuit description.

Whereas the combinationally output-stable and constructive classes are knowingly

conservative with respect to hardware, the class of sequentially output-stable circuits is the

most permissive class of well-behaved circuits of which we could conceive. First, it is

more permissive than the constructive class because it allows the combinational nodes to

hold their values across clock ticks. Second, sequential output-stability does not require

uniqueness on the flip-flop next state. Thus, the circuit is simply viewed as a black box.

However, the definition of this class assumes a stricter condition on the environment, namely

that the circuit inputs do not glitch. The complexity of deciding this class is PSPACE-hard

in the size of the circuit description.

We provide decision procedures for all three classes of circuits. If a circuit is

not well-behaved, then each algorithm returns a sequence of inputs (or a single vector in

the case of combinational output-stability) that demonstrates a condition when the circuit

is not well-behaved. If a circuit is well-behaved, then a by-product of each algorithm

is a functional description of the circuit. This description can be easily translated to a

15

circuit without combinational cycles, having the same I/O behavior as the original circuit.

This capability is significant because many CAD tools, such as cycle-based simulators and

formal verification tools, require as input, circuits without combinational cycles. Hence, our

algorithms can be used as preprocessors for these tools.

A circuit may be well-behaved only if certain assumptions are made about the

inputs that the environment provides. Each of our algorithms allows the specification of

possible input sequences, and well-behavedness is then checked with respect to this set of
sequences.

To illustrate the above discussion, consider the RS-latch in Figure 2.5. This circuit

is not combinationally output-stable because the output q is not uniquely determined when

the input rs = 11. For the same reason, the circuit is not constructive. The circuit is also

not sequentially output-stable, but the analysis becomes more interesting. The circuit is

not sequentially output-stable when the first input is 00, or when the input 00 follows 11.

Assume we know that the environment of the RS-latch never produces such sequences; then

we can describe the possible input sequences by the input-less Moore machine in Figure 2.6.
With respect to this environment, the RS-latch is sequentially output-stable, and we can

derive a Mealy machine with the same I/O behavior (under the synchronous hypothesis);
see Figure 2.7. As a last step, a circuit can be synthesized from this machine (Figure 2.8).
In summary, we started with a state-holding combinational circuit, and produced, under

certain environmental assumptions, a circuit with flip-flops and no combinational cycles.

Figure 2.5: RS-latch.

The outline of this chapter is as follows. Section 2.2 discusses related work. Sec

tion 2.3 reviews the relevant work of Brzozowski and Seger, which provides the foundation

for our analysis. Sections 2.4, 2.5 and 2.6 treat the classes of combinationally output-

16

Figure 2.6: An environment for the RS-latch. States B, C and D are initial, as indicated
by the incident wedges.

Figure 2.7: Minimized Mealy FSM for the RS-latch composed with an environment.

f—9

^
±

A.

Figure 2.8: Acyclic circuit with the functionality of an RS-latch.

17

stable, sequentially output-stable, and constructive circuits, respectively.1 Some proofs are

relegated to Section 2.7. Finally, Section 2.8 gives the summary and discusses future work.

2.2 Related work

We divide related work into four categories.

1. Motivation: This work highlights the need for rigorous analysis of combinational

cycles.

2. Circuit analysis: These works provide techniques to analyze the behavior of circuits,

without attempting to classify well-behaved circuits.

3. Circuit classification: These works classify circuits based on their well-behavedness.

4. FSM extraction: These works provide algorithms to extract finite state machines from

transistor-level netlists. Their classification of well-behaved circuits is implicit in the

result of their algorithms.

2.2.1 Motivation

Stok [2] explains how false combinational cycles arise naturally when datapath resources

(e.g., adders, shifters) are allocated during high-level synthesis. He gives as an example the

following scheduled code fragment:

Si c = a + 6; 1

d = c-\-e; 2

S2 f = g + e; 3

t = / + 6; 4

Additions 1 and 2 are scheduled during a different cycle than additions 3 and 4. Hence, one

possibility is to shareadditions 1 and 4, and additions 2 and 3. This results in the datapath

shown in Figure 2.9. The combinational cycle shown in bold arises because addition 2 must

follow 1, and 4 must follow 3, but 1 and 4 are being shared, and 2 and 3 are being shared.

Nonetheless, this cycle is false because the multiplexors mi and 7712 are controlled in such

a way that the loop is never closed.

^summary ofthematerial inSection 2.5 ispresented in [10], andthematerial in Section 2.6 ispresented
in [11].

18

-\jV

Figure 2.9: Datapath with combinational cycle shown in bold (Figure 2 from [2]).

Thus, even though the natural tendency of high-level synthesis tools is to create

(false) combinational cycles in order to share resources, Stok notes that such cycles are

undesirable because downstream tools (e.g., logic synthesis, timing analysis) cannot handle
cyclic circuits. His approach to solving this problem is to modify the resource sharing phase
of high-level synthesis algorithms to prevent cycles from being created in the first place.

The procedure that he presents is quite successful in that for the benchmarks he

tested, he was able to generate acyclic circuits without increasing the number of functional

units (although more control circuitry was needed in some cases). Nonetheless, we know
examples exist (see Figure 2.3) where extra functional units must be added to eliminate

the combinational cycles. Given this, our philosophy is to provide rigorous analysis so that
circuits with cycles can be handled directly.

2.2.2 Circuit analysis

Brzozowski and Seger [3] study asynchronous circuits under various delay models. In
particular, for the up-bounded inertial delay model, they present two methods to analyze
the behavior of a circuit. The first, GMW analysis, correctly gives all the possible state
sequences that a circuit can follow, although it abstracts away the time at which states are

visited. The second, ternary simulation, abstracts away state sequences themselves, and
just "summarizes" the set of states a circuit can be in after it has had time to settle.

This work does not address the classification ofcircuits according to well-behaved-

19

ness. However, it is pivotal to our research because it provides the theoretical foundation

upon which we define and analyze well-behaved circuits. Section 2.3 is devoted to reviewing

Brzozowski and Seger's work.

Burch et al. [12] model logic gates by ternary-valued relations, where the third value, _L,

represents an oscillating or intermediate voltage. By using J_, oscillating behaviors caused

by combinational cycles are preserved when gates are composed (by taking the intersection

of their corresponding ternary-valued relations). This is in contrast to the use of Boolean

relations to model gates, where oscillating behaviors "disappear" when gates are composed.

Burch uses the ternary model to solve various substitution and rectification problems for

gate-level circuits. However, they do not address the problem of well-behaved circuits.

Maler and Pnueli [13] provide an elegant method to translate asynchronous circuits,

described at the gate-level, into timed automata. They use a delay model that is equivalent

to the bi-bounded inertial delay model of Brzozowski and Seger; this is more general that

the up-bounded inertial delay model that we use because it allows the specification of a

lower bound on the delay.

For each gate in the circuit, they introduce a delay element with an associated timer

(or clock). They prove that the resulting timed automaton has the same I/O behavior over

time as the original circuit, for the given delay model. Using the timed automaton, they

are able to perform state reachability and solve several synthesis problems. However, they

do not address the well-behavedness problem, nor is it immediate how this problem can be

solved within their framework. Also, their analysis, as presented, does not allow flip-flops

in the circuit.

The use of timers complicates the analysis considerably. As we will show for the

up-bounded inertial delay model, the well-behavedness property is independent of the delay

bounds in the circuit, and hence translating to timed automata is excessive. However, for

the bi-bounded inertial delay model, this complication may be necessary, and hence this

approach may be useful.

2.2.3 Circuit classification

Malik [14] provided the original inspiration for our research. He noted that combinational

cycles do arise in practice, but that no method for rigorously analyzing such circuits had ever

20

been proposed. To remedy this situation, he introduced the class of "combinational" circuits

to capture well-behavedness, and proposed using ternary simulation to decide whether or not

a circuit is combinational. However, he did not make precise the underlying delay model,

which is crucial for formally defining any notion of well-behaved circuits. Consequently,

although his intuition was correct, it is not possible to give a formal proof of the correctness

of his decision procedure.

The first goal of our research was to formalize Malik's work. We use the up-

bounded inertial delay model, and based on this, we are able to formally define the class

of combinationally output-stable circuits, which captures the intuition of "combinational"

circuits. Also, we are able to formally prove that Malik's algorithm does in fact decide

this class correctly. With this goal completed, we then extend the spirit of Malik's work to

define well-behavedness over sequences of inputs, rather than just over single input vectors.

Halbwachs and Maraninchi [15] define a classof well-behaved circuits called consistent

circuits. Basically, they view a circuit as a system of Boolean equations (one equation for

each gate), and consider the solutions of this system. For a given input valuation, if the

system has at least one solution, and for each output, this output has the same value for aH

solutions, then the circuit is deemed weakly consistent. As a special case, if there is exactly
one solution, then the circuit is strongly consistent.

Thisclass is not comparable to our class ofcombinationally output-stable circuits.

The circuit in Figure 2.1 is combinationally output-stable, but it is not weakly consistent
because there is no consistent assignment to variable y when x = 0. On the other hand,
the circuit in Figure 2.2 is strongly consistent, but not combinationally output-stable. It is
strongly consistent because 0 is the only consistent value for y in the system ofequations.
It is not combinationally output-stable because when x = 0, y can in fact oscillate.

Akin to our study of well-behaved circuits, Halbwachs and Maraninchi perform
consistency analysis for circuits with flip-flops, taking into account care inputs and reachable

states. Likewise, they can generate a loop-free circuit if a circuit is found to be consistent.

2.2.4 FSM extraction

The works in this group are difficult to compare to our research because of their

lack offormality. First, they do not address the underlying delay model. They simply accept
as input to their own tools, the output ofa circuit extraction tool, like TRANALYZE [16]

21

or ANAMOS [17], without formal regard to how the tool does the extraction. Second, they

do not formally classify those circuits that can be represented by an FSM (i.e., are well-

behaved), and those that cannot. Instead, they implicitly define well-behavedness by the

result of their extraction algorithms: if the algorithm is successful in extracting an FSM,

then the circuit can be considered well-behaved, otherwise not. Third, there is no proof

that, when the algorithm is able to extract an FSM, that this FSM has the same behavior

as the original circuit; that such proofs are not given comes as no surprise, since a formal

framework is never established.

Despite this lack of formality, we describe their algorithms, and discuss their results

on some specific circuits. Also, these tools have some interesting capabilities that provide

directions for extending our own research.

Singh and Subrahmanyam [18] propose a method to extract FSMs, at the Boolean

function level, from transistor netlists. They employ TRANALYZE as a preprocessor, which

generates a network of zero-delay logic blocks (defined over the four values 0,1, X, Z) and

unit-delay elements, from a transistor netlist. The unit-delay elements are introduced by

TRANALYZE to break feedback loops and to model charge storage nodes. An assignment

of values to the unit-delay elements is called a configuration', this is the state of the network.

From this, Singh creates the unit-step relation by setting each unit-delay variable equal to

the zero-delay logic function driving the delay element, and then taking the product of all

of these terms.

Singh first tests this relation for stable behavior; that is, for every input combina

tion, there exists some stable binary configuration. The circuit in Figure 2.1 fails this test

because when x = 0, there is no consistent assignment to the unit-delay element used to

break the feedback. If a circuit fails this test, then no further analysis is done. Otherwise,

the unit-step relation is massaged to produce the stable unit-step relation. This is done by

replacing a sequence of transitions passing through transient states by a single transition

to the final steady state. The combinational test is then performed on this relation: for

output z, and for each input combination a, z must evaluate to either 0 or 1, but not both.

If a circuit passes this test, then the output functions can be used to derive an equivalent

acyclic circuit. Otherwise, if the designer distinguishes certain inputs as clocks, then the

synchronous test is applied.

For the synchronous test, each delay-element signal is classified into one of three

22

groups.

1. Combinational: the signal value is independent of the clock phase.

2. Level-sensitive: the signal changes during exactly one clock phase, and is inactive

during the rest of the clock cycle.

3. Undefined: the signal is neither combinational nor level-sensitive.

A circuit is declared synchronous if no output depends on an undefined signal, and all the

signals are uniquely defined for each stable binary configuration.

From our point of view, the primary shortcoming of this work is that it does not

address the issue of delay models directly. Without this, it is not possible to give precise

definitions of combinational or synchronous circuits, and hence it is not possible to prove

the correctness of the classification algorithms. Instead, this work just accepts whatever

the preprocessor (in this case, TRANALYZE) gives to it. TRANALYZE uses a 4-valued

algebra in deriving logic gates from transistors. Ironically though, it usesa 2-valued algebra

to simplify the logic gates that compose a zero-delay logic block. Hence, the expression y-y

is simplified to 0. For this reason, the circuit in Figure 2.2 is simplified by TRANALYZE

to z = x, and thus Singh classifies it as combinational. This is counter to our classification.

This work also suffers from two other weaknesses. The first is embodied in the

critical assumption that if there exists a stable binary configuration corresponding to a

given input, then the circuit will settle in that configuration when the input is applied. This

assumption ignores the possibility that the circuit may settle into an indefinite, race-free

oscillation instead. The second weakness is that for a given input and current configuration,

only one next configuration is possible. This is inherent in the fact that TRANALYZE uses

functions, and not relations, to model the outputs of zero-delay logic blocks. Thus, different

next configurations arising from critical races cannot be modeled. Taken together, these

two points demonstrate that this technique is incompatible with an inertial delay model.

Pandey et al. [19] give a procedure for extracting a cycle-based FSM from a transistor

netlist. The first step is to execute TRANALYZE. The second step is to perform symbolic,

3-valued simulation, over one complete clock cycle. This step takes user input specifying

the relationship between the clocks, specifying on which clock phases each input is stable,

and specifying on which phases each output is sampled. Symbolic simulation is initialized

23

by setting the unit-delay elements to Boolean symbolic values. A primary input is set to a

Boolean value if it is stable at the given clock phase, otherwise it is set to X. At each clock

phase, simulation is iterated until the circuit is stable. Since some initial combinations

of unit-delay element values may cause instability, "oscillation suppression" is employed

to guarantee convergence. Simulation for the next clock phase begins with the unit-delay

element values from theend ofthe previous phase. The symbolic function for a given output
is saved from the last clock phase in which the output is sampled; the next state functions

for the unit-delay elements are taken from the final result of the simulator. The procedure

halts with an error if any next-state function, in the transitive fanin ofanoutput, evaluates
to X for some input/present state combination.

This procedure is inherently conservative for several reasons. First, X's at state

nodes may only occur for unreachable states, thus having no ill-effect on the circuit. Sec

ond, even if there are X's at state nodes for reachable states, these X's may not have an

adverse effect on the observable outputs. Third, the environment driving the inputs is not
considered; it may be that certain input sequences, which can lead to unstable behavior in

a circuit, are never produced by the environment. On the other hand, this procedure may

be too permissive for the same reason as in Singh's work, because TRANALYZE performs
Boolean simplification.

Kam and Subrahmanyam [20] proposed an algorithm to extract FSMs from transistor

netlists. The first step in their algorithm is to invoke ANAMOS, a tool that extracts the

ternary valued "excitation function" of each potential storage node in the netlist. Then,

holding the inputs and clock fixed, they compute the steady-state response (i.e., the fixed
point) of the system ofexcitation functions. The main weakness of their approach is that
this fixed point computation isnotguaranteed to converge for some cyclic circuit structures,
even though these structures do notlead to unstable behavior. Also, like thework ofPandy,
Kam's approach does nottake into account sequential input don'tcares orstate reachability.

2.3 Background

In this section we formally introduce the circuit model and two methods of circuit

analysis, the general multiple winner method and ternary simulation. The notation, defini
tions, and results introduced in this section are largely those ofBrzozowski and Seger [3].

24

2.3.1 Circuits and networks

A circuit is an arbitrary interconnection of logic gates and flip-flops. For the time

being, we neglect flip-flops; instead, we treat their I/Os as circuit I/Os. A network is a

circuit with delay elements placed on various wires.

2.3.1.1 Circuits

The objects we analyze are circuits composed of an arbitrary interconnection of

gates. The topology of a gate circuit is given by a circuit graph.

Definition 2.1 [Brzozowski and Seger] A circuit graph is a 5-tuple G = (X,1,Q,W,E)
where

• X is a set of input vertices, labeled A"i, X2,..., Xn\

• J is a set of input-delay vertices, labeled xi,x2,..., xn\

• Q is a set of gate vertices, labeled t/i, t/2»- ♦ •j2/r;

• W is a set of wire vertices, labeled zi, z2,..., zy, and

• E C (X x X) U ((I UQ) x W) U(W x Q) is a set of directed edges.

Notice that a circuit graph is bipartite, with vertex classes 1U Q and X UW; for example,

two wire vertices cannot be directly connected, nor can a gate vertex be connected to itself.

An arbitrary subset O of circuit vertices (i.e., XUlliQUW) may be designated as outputs.

Example 2.2 [Gate circuit and circuit graph] Figure 2.10 shows a gate circuit, and Fig

ure 2.11 gives its corresponding circuit graph. Xi is an input vertex, xi is an input-delay

vertex, yi,..., y4 are gate vertices, and zi,..., z7 are wire vertices. •

For each gate, wire, and input-delay vertex, there is an associated vertex function.

Definition 2.3 [Brzozowski and Seger] The vertex function of a vertex is defined as follows:2

2For convenience, all gate vertex functions are defined over B,w', even though any given gate may only
depend on a strict subset of W. A similar comment applies to wire vertex functions. In addition, in the
sequel we usually consider a vertex function V as being defined over all input-delay, wire, and eate vertices:
V : l'1" x B'w'+Icl -> B.

Xi
z3

£iT
2i~l^3yi Z2

iV2 Z4
,V3

Z6

Z$
*7

Figure 2.10: Gate circuit. (Figure 4.5 from [3].)

© @~^@

(V)—*{V)—*(W)—a\^) •**V 2/3 -0

25

Va

Figure 2.11: Circuit graph corresponding to the gate circuit in Figure 2.10 (Figure 4.6
from [3].)

• gate vertex j/,-: Yi : B'™' -* IB (maps a wire-vertex state to B; this is just the Boolean

function of the gate corresponding to the gate vertex);

• wire vertex z,-: Zt- : Blrl+Ial -> B (provides the value of the input-delay or gate vertex
driving the wire vertex);

• input-delay vertex a;,-: the vertex function is X{, where Xi maps a state of the envi

ronment to B (i.e., Xi is the input value provided by the environment).

Example 2.4 [Vertex functions] In Figure 2.10, the vertex function for y2 is Y2 - z2z3, for

zi is Zi = Xi, and the input-delay vertex function is X\, •

2.3.1.2 Up-bounded inertial delays

The value of a vertex and the value of the corresponding vertex function may be

different. This permits the physical notion ofdelay. A delay element hasan input X{i), an

output x(t), and a delay S(t), as depicted in Figure 2.12. The signals X(t) and x(t) vary

26

with time. They are assumed to be binary and capable of instantaneous changes from 0 to

1 and from 1 to 0. z is unstable at time t if x(t) ^ X(t).

Figure 2.12: Delay element. (Figure 3.3 from [3].)

We employ the up-bounded inertial (UIN) delay model.

Definition 2.5 [Brzozowski and Seger] In the up-bounded inertial delay model,

0 < 6(t) < D,

and the following two properties must be satisfied:

l.Ifx changes, then it must have been unstable.

Formally, if x(t) changes from a to o at time r, then there exists 6 > 0 such that

X(t) = a for t- 8<t < t.

2. x cannot be unstable for D units of time without changing.

Formally, if X(t) = a for r < t < r + D, then there exists a time f, r < f < r + D,

such that x(t) = a for f < t < r + D. (Note that this property implies that the 6 in

Property 1 must be less than jD.)

Intuitively, if an input pulse is at least D units of time, then the output must respond within

D. If an input pulse is less than D, then the output may or may not respond. Figure 2.13

shows two possible responses to an input waveform, where D = 2.

2.3.1.3 Networks

A network N is derived from a circuit graph by associating delay elements with

some subset of vertices, called the state vertices. The minimum requirement is that each

cycle in the circuit graph must contain at least one state vertex. A network where each

vertex is a state vertex is called a complete network. Each state vertex has a state variable

Si, a delay bound Di, and an excitation function Si, defined as follows.

27

D = 2

X(t)

x(t)

x'(t)

Figure 2.13: Up-bounded inertial delay waveforms.

Definition 2.6 [Brzozowski and Seger] Start with the vertex function. Then repeatedly

remove all dependencies on vertices that have not been chosen as state vertices, by using

functional composition of the vertex functions. The result of this process is the excitation
function 5,-. •

A total state c = a-b of a network is an (n + m)-tuple of binary values, the n-tuple

a being the value of the input excitations, and the m-tuple 6 being the values of the state

variables Si,S2,.. .,sm. The total state a-b is stable if &,- = Si(a-b) for each state variable

Si, and is unstable otherwise.

In Section 2.4, we need to also reason about the vertices not selected as state

vertices. The depth of a vertex in a network is the longest path from a state vertex to that

vertex.

Definition 2.7 Consider a vertex v in a circuit graph G, and a network N derived from

G. The depth of v in N is:

depth(v) =
if v is a state vertex in iV,

1+ ma,x{depth(u)\(u, v) G E} otherwise.

Since the state vertices are required to form a feedback-vertex set, the depth of t; is uniquely
defined. •

A value for each of thestatevertices uniquely determines the value for each of the remaining

vertices of the circuit graph. These values are computed by the set of circuit equations of

the graph.

28

Definition 2.8 Let a-b be a total state of network N. Let v be a vertex with vertex

function V. The circuit equation F of v is defined inductively on the depth of v.

pt h\ —) ^ ^ vcorresPon<^s to state variable st-,
[V(a-Fi(a-b)-F2{a-b)-...-F\w\+\Q\(a-b)) otherwise.

Remember that state variables have depth 0 by definition. The value of F on a-b is uniquely

defined because it only depends on the values of vertices with lower depth. •

Note that for any vertex in a complete network, the vertex function, excitation function,

and circuit equation are the same.

2.3.1.4 Behavior

Thus far, we have described the topology of a circuit and the concepts of vertex

functions and delay elements. The concept of a UINa-history captures the behavior of a

network as it evolves over time in response to an input a. For state variable s,-, st(£) is the

value of s,- at time t, and Si(X(t) -s(t)) is the value of the corresponding excitation at time

t, where X(t)-s(t) gives the value at time t of the total state.

Definition 2.9 [Brzozowski and Seger] A WA^-history of a network N for some a € Bn is

an ordered triple \i —(0, X(t),s(t)), where

• 0 is a strictly increasing sequence 0 = (t0, ti,...) of real numbers giving the instants

at which the state vector s changes.

• X(t) = a for all t > t0.

• s(t) maps the real numbers to Bm, and satisfies the properties that:

1. s(t) is constant during any interval [t,-,tt+1),

2. s(t) changes at each ti,

3. if the sequence (t0, ti,...,tr) is finite, then the last state reached, s(tr), must be

stable, and

4. if the sequence (to, ti,...) is infinite, then only a finite number of state changes

occur in any finite time interval (i.e., non-Zeno).

• the input/output waveform ofeachdelay elementsatisfies the properties of UIN delays.

29

Note that the definition of W7Va-history places no restriction on the initial state s(to).

A UINa-history can be seen as a timed sequence of states. Also, one can associate a

corresponding untimed history giving the sequence of states through which the network

passes.

Example 2.10 [UIN history] A UIN history is shown for the network in Figure2.14, where

Di = 1, D2 = 3 and D3 = 2. The UINi-history is given by 0 = (0,0.5,3.0,4.3), X(t) = 1

for all t > 0, and s(t) is given by the waveforms si, s2, s3 in Figure 2.14. One can verify

that these waveforms are consistent with the properties of UIN delays, for the specified

delay bounds. The corresponding untimed history is (001,101,111,110). •

Si 62. 1£2_

>
S3 -CD-53

x J

si

S2

s3

s3

Figure 2.14: A UINi-history; Dx = 1, D2 = 3 and D3 = 2.

Because each inertial delay is up-bounded, the network can remain in the "tran

sient" phase after an input change for only a bounded time, before passing into the "non-

transient" phase. The following definition and theorem make this notion precise.

30

Definition 2.11 [Brzozowski and Seger] Let N be &network with maximum delay bound

D. Let N be started in state 6 with the input held constant at a. A state b' is said to

be D(a,b)-nontransient with limit r for a-b if it is reachable from 6 and there exists a

UINa-history \i and a time t > r such that s(t) = b'. •

That is, a state is D(a, 6)-nontransient with limit r if the network can be in that state some

time after r. Note that nontransient does not mean non-changing; it simply means that the

network can be in any of a certain set of states after the bound r.

Theorem 2.12 (Brzozowski and Seger) Let N be a network with m up-bounded delays

with upper bound D. Suppose N is in state b at time 0 and the input is held constant at

a from time 0 until time t > (2m - 2)D. Then the state of the network at time t is a

D(a, b)-nontransient state, with limit r = (2m - 2)D.

In other words, by waiting at most (2m - 2)D time, the network has enough time to pass

through any transients. In the sequel, D(a,6)-nontransient states will always be with limit

(2m - 2)D. We refer to a state as simply nontransient if it is D(a,6)-nontransient for a
given a and 6.

2.3.2 GMW analysis

General multiple winner (GMW) analysis is a technique to determine the response

of a network to a given input. The technique is called "general" because the relative values

of the delays are not specified. The only assumption is that the delays are bounded from

above.

For a total state c = a-b, the set of unstable state variables is defined as

U{a-b) = {Si\bi^Si(a-b)}.

That is, a state variable s,- is unstable with respect to state a-b ifapplying the corresponding

excitation function Si to a-b yields a value different from the current value 6t. State c is

stable if U{c) = 0. The GMW relation RaCBm x Bm describes how the internal state of

network N evolves with the input held constant at a.

Definition 2.13 [Brzozowski and Seger] Forany 6 GBm,

• bRab, if U(a-b) = 0, i.e., the total state a-b is stable

31

bRabK, \fli(a-b) ^ 0, and Kis any nonempty subset of U(a-b), where bK means 6with
all the variables in K complemented.

The model is called "multiple winner," because in a race condition, any nonempty subset

of unstable state variables can change at the same time. Note that Ra makes no reference

to an initial state.

The relation Ra can be depicted as a directed graph, where an edge from b to b'

indicates that bRab'. A state 6 may have more than one immediate successor, indicating

a race condition. A state b with a self-loop indicates that a-b is stable. Ra(b) denotes the

graph Ra restricted to those states reachable from b.

Example 2.14 [RS-latch] Consider the RS-latch in Figure 2.5, with inputs r and s and

state variables qand z. The graph of /?oi is shown in Figure 2.15. Each pair of binary values

is a state qz. An underlined value indicates that the corresponding variable is unstable in

that state. The states 01 and 00 each have one unstable variable, so each has a unique

successor state. The state 11 has two unstable variables, so it has three successor states,

one for each nonempty subset of unstable variables. State 10 is stable, so it has a self-loop.

The graph corresponds to i?0i(ll), the subgraph induced by thosestates reachable from 11,

holding the input constant at 01. •

/
01

y

00'

Figure 2.15: Possible state sequences over qz, for the RS-latch with input rs = 01.

2.3.2.1 Nontransient behavior

For GMW analysis, there is a concept corresponding to the nontransient states

of the UIN delay model. Consider the GMW relation of Figure 2.16, for some input a.

The cycle (000,010) is called transient because there exists a variable (the third one)

010'

32

that is unstable and has the same value (0) in every state of the cycle. Since all delays

are up-bounded, the network cannot remain in this cycle indefinitely. Contrast this to the

nontransient cycle (001,HO). The network can remain in this cycle indefinitely because

each unstable variable changes value during the cycle. As an aside, the network is not

constrained to remain in this cycle, since it can transition to the stable state 101 whenever

it is in state 001.

100 —*- 000^^ 010

I ^^I " transient cycle

001^2^ HO
\

Ql nontransient cycle

o-

Figure 2.16: A general multiple winner relation.

Those states that are in a nontransient cycle, or follow a nontransient cycle, are

called outcome states. Formally, Brzozowskiand Seger define out(Ra(b)), the outcome states

ofb, as that set of states in the graph Ra(b) that are reachable from 6 via a nontransient cycle.

For the graph in Figure 2.16, out(Ra(100)) = {001,110,101} and out(Ra(lQl)) = {101}.

Note that states of a transient cycle can be outcome states of 6, as long as they are reachable

from 6 via a nontransient cycle. The next result establishes the correspondence between

the nontransient states of the UIN delay model and the outcome states of GMW analysis.

Theorem 2.15 (Brzozowski and Seger) Let N bea network with maximum delay bound

D. Let N be started in state b with input held constant at a. Then D(a, b)-nontransient =

out(Ra(b)).

In our analysis of combinational cycles, we are interested only in the states that a network

can be in after the network has had time to "settle". The sequence of state transitions

made to reach these states is of no concern to us. Theorem 2.15 enables us to capture this

set of states using GMW analysis.

33

2.3.3 Ternary simulation

In theory, GMW analysis could be used to compute the outcome states of an

input change. However, in practice, constructing the graph of jRa and traversing it is

computationally intractable. Ternary simulation is an efficient means to "summarize" the

set of outcome states. Furthermore, as we will show in Section 2.4, the result of ternary

simulation is sufficient to determine if a network is combinationally output-stable.

2.3.3.1 Definitions

Ternary simulation uses a third value, $, to denote an uncertain or changing value

on a wire. The set {0,1, $} is a partially ordered set on the "uncertainty" relation E where,

0C0,1C1,C,0C$, and 1C$.

When s C t, we say that t covers s. Likewise, the vector (ti, t2,..., tn) covers (si,s2,..., sn)

if Si C ti, for all i. Any nonempty subset of {0,1,$} has a least upper bound, or lub. In

particular, lub{0} = 0, lub{l} = 1, and the lub of every other nonempty subset is equal to

$.3

A ternary function4 f is a mapping from {0, l,$}n to {0,1,$}. For any Boolean
function / there exists a natural ternary extension, defined as follows:

f(a) = lub{f(t) 11 € Bn and t C a}.

Figure 2.17 shows the ternary extension for several Boolean functions. They follow the

basic rule that a 0 or 1 output value can be deduced whenever there is sufficient information

available at the inputs. For example, a 0 at any input of an AND gate forces the output to 0.

An important property of the ternary extension f of any Boolean function / is monotonicity:

aCb implies f(a) E f(b).

That is, if b is at least as uncertain as a, then the output f (b) is at least as uncertain as

f(a).

Other authors refer to the third value as JL or X. And rather than having an ordering on uncertainty,
they may use an ordering on certainty, or information content, where JL or X is the least element of the
partial order.

Following Brzozowski and Seger's convention, boldface is used to refer to ternary valued functions,
relations, and variables.

a NOT

0 1

1 0

$ $

a b AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

$ 0 0 $ $

$ 1 $ 1 $

0 $ 0 $ $

1 $ $ 1 $
$ $ $ $ $

34

Figure 2.17: Ternary extension for the NOT, AND, OR, and XOR functions.

Given a binary network N with n inputs and ra state variables, its ternary ex

tension N is just N with each excitation function Si : {0, l}n+m -» {0,1} replaced by its

ternary extension S; : {0,1, $}n+m -4 {0,1,$}. The vector of ternary excitation functions

is denoted by S. This corresponds to the interpretation of the network in Scott's ordered

Boolean domain B± = {±,0,1}, familiar in other communities [21, 22].

2.3.3.2 Algorithm A

Ternary simulation is applied to a ternary network N, starting from a binary

valued initial state 6 with the input held constant at the binary value a. As presented by

Brzozowski and Seger, it is implemented by applying two algorithms, A and B, in sequence.

Algorithm A takes as input the total state a-b, and propagates maximum uncertainty into

the network, while leaving the input fixed at a.

Algorithm A

h:=0;

s° := 6;

repeat

h:=h + l;

sh:=lub{sh-1,S(a-sh-1)y,
until s/l = s/l~1;

sh denotes the ternary vector of state values at each iteration. Due to the monotonicity
of the ternary extensions of the excitation functions, it can be shown that Algorithm A

35

converges in at most m steps. The final value of sh is denoted by s^6, or by AlgA(a,6).

Example 2.16 [RS-latch] Algorithm A is illustrated in Figure 2.18, where the input is

rs = 01 and the initial state is qz = 01, and rs-qz is shown at each step. •

Algorithm A Algorithm B

01-01 01-$$

j \
01-0$ 01-$0

1 t
01-$$ 01-10

o o

Figure 2.18: Algorithms A and B in operation on the RS-latch, over states rs-qz.

Since m passes are necessary for convergence in the worst case, and each pass

requires 0(m) time, the complexity of Algorithm A is 0(ra2) (this assumes that the ex

citation functions are evaluated in topological order, and each function can be evaluated

in constant time). In fact, Berry gives a linear time algorithm for ternary simulation on

concrete inputs [23]. Ultimately, we are interested in simulating a network for all inputs,
and hence in Section 2.4 we turn to symbolic methods to gain efficiency.

The result of Algorithm A is exactly equal to the lub of the reachable states found

by GMW analysis starting in the total state a-b.

Theorem 2.17 (Brzozowski and Seger) Let N be a complete binary network and N be
its ternary extension. Then

s£6 = lub reach(Ra(b)).

2.3.3.3 Algorithm B

The second phase of ternary simulation is to apply Algorithm B to N starting

from the initial state s£t while holding the input constant at a. Algorithm B removes as
much as possible the uncertainty introduced by Algorithm A.

Algorithm B

36

h:=Q;

+o ._ ~A .
1 — Sa,6>

repeat

h:=h+l;

th := S(a-th-1);
until t/l = t/l"1;

Again, it can be shown that Algorithm B converges in at most m steps. The final value of

th is denoted by tf6, or by AlgB(a, AlgA(a,6)).

Example 2.18 [RS-latch] Algorithm B is illustrated in the right hand side of Figure 2.18,

where the input is still rs = 01 and the initial state is the final value from Algorithm A,

qz = $$, •

The complexity of Algorithm B is 0(m2). Algorithm B is computing the greatest

fixed point of the excitation functions, over the domain {0,1, $}m. As such, there are

other ways of computing this fixed point [21], but we are interested not in the method, but

only in the result, which we use to characterize combinationally output-stable networks in

Section 2.4.

The key theorem is that the result of Algorithm B is exactly equal to the lub of

the set of outcome states found by GMW analysis starting in the total state a-b.

Theorem 2.19 (Brzozowski and Seger) Let N be a complete binary network andN be

its ternary extension. Then

tjt6= lub out(Ra(b)).

In particular, note that if out(Ra(b)) consists of a single state, then tfbwill in fact be a
binary vector identifying this state.

2.4 Combinational output-stability

In this section, we give an operational definition of combinationally output-stable

networks, and then show three equivalent notions of combinational output-stability. One

of these definitions leads directly to an implicit algorithm proposed by Malik for deciding

combinational output-stability. We present this algorithm, along with a refinement to the

algorithm that heuristically minimizes the computation involved.

37

2.4.1 Definition and properties of combinational output-stability

Intuitively, a network is combinationally output-stable if for every input value,

there exists a unique output value to which the network stabilizes in bounded time, re

gardless of the initial state of the network. This section deals with the static analysis of

networks; that is, analysis for a single input vector. In the next section, we add explicitly

clocked elements to networks, and then analyze the behavior ofnetworks over multiple clock
cycles.

2.4.1.1 Combinational output-stability

We begin with an operational definition of what it means for a network with

up-bounded inertial delays to be combinationally output-stable. Let the set O of output

vertices be {ji,j2,.. -,jP}- For example, Fj,(a-6) refers to the circuit equation ofoutput ji
evaluated on the total state a-b.

Definition 2.20 Network N is combinationally output-stable if for every input a, there

exists a unique d 6 W such that V6 6 W" ,W € Z>(a,6)-nontransient, Fj.(a-6/) = d{, for
1 < %< p. m

This says that a network is combinationally output-stable if forevery input a, there

is a unique output value d to which the network stabilizes in bounded time; this condition

must hold regardless of the starting state band for all possible delay values respecting the

delay bounds. (As stated, this condition is vacuously true if N has no input vertices. In

order to avoid the vacuous case, a dummy input connected to nothing could be added to

the network. This possibility will not be discussed in the sequel.)

Combinational output-stability is defined for networks, and not circuits, because

combinational output-stability is dependent on which circuit vertices are chosen as state

vertices (or in other words, where delay elements are placed). Note that an acyclic network

is combinationally output-stable regardless of the placement of delays, because the outputs

are functionally determined by the inputs.

Example 2.21 [Placement of delays] Consider the circuit in Figure 2.19 (Figure 6a from
Malik [1]). Let Ni be the network with just one state variable, y{. The excitation function

for yi is Si = x -f (yT-J/i) = x. Since yi is uniquely determined for all values of the input

38

x, the output is also uniquely determined, and hence Ni is combinationally output-stable.

Now let iV2 be the network with state variables yi and t/2> and corresponding excitation

functions Si = x + (pT'tft) and S2 = t/i- The GMW relations over yiy2 for x = 0 and x = 1

are shown in Figure 2.20. When x = 1, yxy2 stabilizes to 11; this is fine. However, when

x = 0, both 01 and 10 are D(0,01)-nontransient states. Since the circuit equation for the

output z is Si, and Si(0-01) = 1 and Si(0-10) = 0, the output is not uniquely determined,

and hence N2 is not combinationally output-stable. •

Figure 2.19: Different placement of delay elements affects combinational output-stability.

Ri ^ 00.

oi-

11

o

io

Figure 2.20: GMW relation over t/iy2 for network N2.

As a side note, the work of Kautz is often cited as proving the existence of logic

functions whose minimal circuit implementation using 2-input NOR gates must have com

binational cycles [24]. Interestingly, the example circuit he gives actually fails the test for

combinational output-stability, under the UIN delay model. In particular, he suggests a

39

class of m-input, m-output logic functions, which for m = 3, have the form:

zi = ^1^2 + a?i x3

z2 — #i X2 + x~2~x3

Z3 = XiX^ + X2X3

He claims that the minimum 2-input NOR gate implementation is the circuit in Figure 2.21,

which has a combinational cycle. However, under the assumption that y3 and z3 are among

the chosen state variables, then for the input Xi = 1, x2 = 1 and x3 = 0, z3 is not uniquely

determined. The key point is that the signal y3 has two paths to the gate at y3, and these

two paths may have different delays; this can cause an oscillation at y3, and hence at z3.

The analysis is similar to that of network iV2 in Example 2.21.

Figure 2.21: Kautz's circuit with a combinational cycle.

2.4.1.2 Properties and equivalent characterizations of combinational output-

stability

The definition of combinationaloutput-stability is based on the nontransient states

ofa network, where the network has a specific maximum delay bound, say D. One might
wonder if the set of nontransient states changes as the delay bounds change, and hence

if the property of being combinationally output-stable depends on the delay bounds. The
answer is no, as demonstrated by the following theorem.

40

Theorem 2.22 Consider two networks N and N' that are exactly the same, except that N

has maximum UIN delay bound D and N* has maximum UIN delay bound D'. Let a be an

input and b be an internal state. Then D(a, b)-nontransient = D'(a, b)-nontransient.

Proof The definition of the GMW relation Ra is independent of the delay bounds (it only

assumes they are finite), and hence the definition of out(Ra(b)) is independent of the delay

bounds. By Theorem 2.15

out(Ra(b)) = D(a,6)-nontransient, and

out(Ra(b)) = D'(a,6)-nontransient,

and the result follows trivially. •

In summary, once the state variables of a circuit have been chosen, then the com

binational output-stability property is a function only of the circuit equations, and not of

the specific delay bounds.

The next proposition reduces the test for combinational output-stability to the

GMW analysis of the outcome states.

Proposition 2.23 Network N is combinationally output-stable if and only if for every

input a, there exists a unique d eW such that V6 6 W11 ,W € out(Ra(b)), Fj{(a-b') = di,
for 1 < i < p.

Proof Trivial, since by Theorem 2.15, D(a, 6)-nontransient = out(Ra(b)). •

We have shown that the placement of delay elements affects the combinational

output-stability property, but wehave not addressed where delay elements should be placed.

The most conservative approach is to assume that each gate and each wire can have a delay

independent of the others. This corresponds to a complete network. This assumption is

warranted because it corresponds to the reality of circuits. Also, one would not want to rely

on matched delays to guarantee the correct logical operation of a circuit. It turns out that

adopting this conservative approach allows up to leverage the power of ternary simulation,

and hence simplify the analysis. The following theorem gives the correspondence between

combinational output-stability of complete networks and ternary simulation. Remember

that a complete network contains all the output vertices as state variables; we denote by

b\,o an internal state b restricted to the output state variables.

41

Theorem 2.24 Let N be a complete network. The following are equivalent statements,

where a is a network input value, d is a binary output value and b and b' are binary state
values.

1. N is combinationally output-stable.

2. Va, there exists a unique d such that V6 € Bm,t^blo = d.

3. Va, there exists a unique d such that AlgB(a, $m)lo = d.5

The proof of this theorem is presented in Section 2.7.1. These statements have the following

interpretations. For every input a, there exists a unique binary output d such that

1. regardless of the starting state 6, every state that the network can be in after the

transient phase, when restricted to the output variables, has value d.

2. regardless of the starting state 6, the result of Algorithm A followed by Algorithm B,

when restricted to the output variables, has value d.

3. the result of Algorithm B applied to the starting state of all $ values, when restricted

to the output variables, has value d.

Using a complete network would seem to complicate the analysis of combinational output-

stability, because there would inevitably be more state combinations to consider. Fortu

nately, as will be shown in the next subsection, to determine if a complete network is

combinationally output-stable, it suffices to apply Algorithm B to a network containing

only feedback variables.

Deciding if a network is combinationally output-stable is intrinsically hard. Malik

stated the following result, and gave a proof within his context. The proof is reproduced

here for our circuit model, using our terminology.

Theorem 2.25 (Malik) Deciding if a complete network is combinationally output-stable
is co-NP-complete.

Thisis just another way ofsaying that the greatest fixed pointof the ternary excitation output functions
does not have any $ components.

42

Proof We show that deciding if a network is not combinationally output-stable is NP-

complete.

Membership in NP: To show that a network is not combinationally output-stable, one

needs to produce an input a on which an output is unstable. A guess can be verified in

time polynomial in the network size by examining the result ofAlgB(a,$m), in accordance
with Theorem 2.24.

NP-hardness: The reduction is from Boolean satisfiability. Let / be a Boolean function

that we wish to check for satisfiability. Consider the complete network in Figure 2.22.
Clearly, z is not combinationally output-stable if and only if / is satisfiable. •

/

Figure 2.22: z is not combinationally output-stable if and only if / is satisfiable.

2.4.2 Malik's algorithm for deciding combinational output-stability

Independently of the work of Brzozowski and Seger, Malik devised a BDD-based

algorithm for determining whether or not a network iscombinationally output-stable (Malik
uses the term "combinational" instead) [1]. It turns out that Malik's algorithm is closely

related to the test given instatement 3 ofTheorem 2.24. In this subsection, we present the

details of Malik's algorithm, and in the next subsection we propose a refinement to Malik's
algorithm.

2.4.2.1 Malik's algorithm on concrete values

The algorithm proposed by Malik works with symbolic input values; however, we

begin by presenting his algorithm for concrete input values. Before the algorithm isinvoked,

a vector y of k feedback gate vertices is selected to serve as the state variables of the circuit.

The algorithm starts with the feedback variables initialized to $ (line 2). In each round,
the input a and the current values of the feedback variables are propagated through the
network to compute the new value at each gatevertex (lines 5-6). At the end ofeach round,

the values of the feedback variables are updated with the new values of the feedback gate

43

vertices (lines 7-8). The algorithm terminates when one complete round fails to change the

value of any feedback variable.

Malik's Algorithm

1 h:=0;

2 y°:=$*;

3 repeat

4 h:-h+\;

5 for each gate vertex in topological order

6 Fi(a.y/l-1):=Vi(a.F1(a-y/l-1).F2(a.y/l-1).....F|a|(a.y/l-1));
7 for each feedback vertex

8 yf := Fj(a-yh~1); /* where Fj is the circuit equation of y,- */
9 until y/l = y/l-1;

Note that Fj only depends on the value of vertices of lower depth, whose values

for round h have already been computed when Fj is evaluated in round h. Malik's test for

combinational output-stability is that for every output vertex ji, Fj.(a-yM) ^ $, where M
is the final value of h in the algorithm.

This algorithm looks almost identical to Algorithm B. However, the test for com

binational output-stability given in Theorem 2.24 assumes that the network is complete,

whereas Malik's algorithm only assumes a feedback-vertex network. Hence, we need to

prove that using just a feed back-vertex set as state variables suffices for checking combi

national output-stability. To show this, we need to first introduce Brzozowski and Seger's

concept of a reduced network.

2.4.2.2 Ternary simulation on reduced networks

Consider a ternary network N with state variables si,s2,...,sm. s, is a legal

reduction variable if the corresponding excitation function S,- does not depend on any input

excitation function, nor on the value of st itself. Note that this specifically excludes input-

delay variables as legal reduction variables. A reduced network N of N is created by

removing a legal reduction variable, and re-expressing the remaining functions in terms of

the remaining variables. Without loss of generality, assume that the variable to be removed

is sm.

44

Definition 2.26 [Brzozowski and Seger] Let N be a ternary network and sm a legal reduc

tion variable. Then the reduced network N has the state variables Si,s2,..., sm_i, excitation

functions

Sj(a«s) = S,-(a-s-Sm(a'S-$)) for 1 < i < m,

and circuit equations

i? , -s f Sm(a-s-$)) if i = m,
hi{a-s) = <

y Fi(a-s-Sm(a-s-$)) otherwise.

Note that when evaluating Sm, the value of sm is immaterial, since Sm is assumed to be

independent of sm. •

Brzozowski and Seger state the following theorem, which says that Algorithm B

gives the same result on N and N, with respect to the variables present in N.

Proposition 2.27 (Brzozowski and Seger) Suppose vertex m is a legal reduction vari

able. Assume a-s is a total state of N such that vertex m is ternary stable, i.e., sm =

Sm(a-s). Let tB be the result of Algorithm B for N, when N is started in state a-s. Sim
ilarly, let iB be the result of Algorithm B for N, when N is started in state as, where
s? = Sj, for 1 < j < m - 1. Thenfor 1 < j < m - 1,

tB -iB

Brzozowski and Seger state and prove a similar result for Algorithm A. Although they do
not explicitly give the proof for Proposition 2.27, they state that it is the dual of the proof

they give for the result on Algorithm A. For completeness, we present this dual proof in
Section 2.7.2.

Thenext proposition extends Proposition 2.27 to an arbitrary set oflegal reduction

variables, which has the property that any variable in the set remains a legal reduction
variable even after any subset of other variables in the set has been removed.

Proposition 2.28 (Brzozowski and Seger) Let a-s be a total state ofN. Let R C

{1,2,..., m], where Vi 6 R, st is a legal reduction variable and s,- is stable on a-s. Let N be

the reduced version o/N with respect to the variables R. Then Vi € {1,2,..., m}\R (i.e.,
the remaining variables),

tB -iB

45

Proof Proposition 2.27 says the result is true for \R\ = 1. The result follows by induction
on the size of R. •

As a corollary to Proposition 2.28, Algorithm B gives the same result when applied

to N and any feed back-vertex network N, with respect to the feedback vertices.

The last step in proving the correctness of Malik's algorithm is to extend Proposi

tion 2.28 to the values computed by the circuit equations. The proofof the following result

appears in Section 2.7.3.

Proposition 2.29 Let G be a circuit graph, and let N be the corresponding complete,

ternary network with m state variables. Let a-s be a total state o/N. Let N be a reduced

version of N where the eliminated variables are legal reduction variables and are stable on

a-s. Then for 1 < i < m

tf = Fi(a-iB).

That is, the value of state variable s,- found by Algorithm B on complete network N is

the same as that computed by the corresponding circuit equation evaluated on the result of

Algorithm B when applied to the reduced network N.

2.4.2.3 Combinational output-stability on feedback-vertex networks

Now we are ready to state the combinational output-stability condition in terms

of the result of applying Algorithm B to a feedback-vertex network. Recall that the set O

of output vertices is {ji, j2,..., jp}.

Theorem 2.30 Let N be a complete network and N be a ternary, feedback-vertex network

of N. Let iB be the result of applying Algorithm B to N starting from the total state

a-$k+n, where k is the number of feedback vertices and n is the number of inputs. Then N

is combinationally output-stable if and only if

Va,Fj.(a-tB) ^ $, for 1 < i < p.

That is, for every input, the circuit equation for each output has a unique binary value.

Proof By Theorem 2.24, N is combinationally output-stable if and only if

Va, there exists a unique d such that AlgB(a, $m)lo = d.

46

Since the result of applying Algorithm B to a given total state is unique, this is true if and

only if

Va,AlgB(a,$m)j. ^ $, for 1 < i < p.

Since each state variable is stable on total state a-$m, we can apply Proposition 2.29, where

tB - AlgB(a, $m), to yield

AlgB(a,$m)j, = Fj.(a-tB), for 1 < i < p.

This proves the theorem. •

As stated, this result requires the presence of the n input-delay state variables. In

fact, for the special case where all state variables are initially $, the input-delay variables

are not needed since in the first round of Algorithm B, the only variables to change value

are the input-delay variables: they change from $ to their corresponding input value. Thus,

running Algorithm B on a network with the input-delay variables absent is equivalent to

starting Algorithm B from the second round with these variables present.

Theorem 2.30 is stated for Algorithm B, and not for Malik's algorithm. However,

Malik's algorithm is exactly Algorithm B on a feedback-vertex network, except that the

statement yh := S(a-yh~1) in Algorithm Bis replaced with lines 5-8 in Malik's algorithm.
To explain this difference, first note that since y,- is a state variable ofthe reduced network,
the corresponding circuit equation F, is the same as the excitation function S,-. Thus, the
difference reduces to the question of how F, is evaluated on a-y*1'1. Algorithm B does
not specify a procedure for this. On the other hand, Malik's algorithm explicitly evaluates
F, on a-yh~l by simulating the network (i.e., propagating a-yh~l through the network in
topological order). Hence, Malik's algorithm is in fact a specialization of Algorithm B.
Thus, Theorem 2.30 proves the correctness of Malik's algorithm for concrete input values.

2.4.2.4 Symbolic version of Malik's algorithm

As presented, Malik's algorithm would have to be executed 2n times, once for each
input combination, to determine ifa network is combinationally output-stable. In fact, the
algorithm proposed by Malik works on symbolic input values, using BDDs. In effect, all 2n
cases are handled in parallel, with possible sharing ofwork among the cases.

The conversion from the explicit algorithm tothe symbolic algorithm is straightfor
ward. The circuit equations are defined over the circuit inputs. That is, for each valuation

47

of the inputs, a given circuit equation gives the ternary value for the corresponding vertex.

Since the inputs are assumed to be binary valued, the functions to be represented are of the

form / : {0, l}n —• {0,1,$}. Such functions are in turn represented by a pair of boolean

functions (/\/°), where f1 (resp. f°) is the characteristic function of the set of inputs for

which / evaluates to 1 (resp. 0). The set of inputs for which / is evaluates to $ is computed

as /* = f1 + f°. The functions f1 and f° are represented by BDDs.
To start the algorithm, each input is initialized to a Boolean symbolic variable,

and each circuit equation corresponding to a feedback vertex is initialized to the function

$. As before, within each round, the gates are visited in topological order. For each gate,

the new circuit equation is computed by combining the circuit equations of lower depth

according to the Boolean operation implied by the vertex function V. For example, if V

is the Boolean conjunction of two vertices represented by the equations g and h, then the

new circuit equation for / is given by f1 = g1 • h1 and f° = g° + h°. The algorithm

repeats until none of the circuit equations at the feedback vertices change from one round

to the next. Convergence is guaranteed within k rounds, where k is the number of feedback

vertices. Correctness of the symbolic algorithm follows from the fact that it is just a symbolic

implementation of the concrete algorithm.

When the algorithm terminates, the circuit equations F^, Fj2,.. .,Fjp of the out

puts are examined. If Ff. ^ 0 for some 1< i < p, then any satisfying assignment of Fff
gives an input valuation for which output i is not combinationally output-stable. IfF* = 0
for all 1 < i < p, then the network is combinationally output-stable, and Fj. gives the
Boolean function representing output i. Since Fj. is represented as a BDD, which has a
trivial transformation to an acyclic, multi-level circuit, then a by-product of the algorithm

is an equivalent acyclic implementation of the circuit.

Malik mentions that the test for combinational output-stability can be done with

respect to a care set of inputs. Such a set expresses a constraint on the combinations of

input values that can occur. If all of the satisfying assignments for F?, for 1 < i < p, fall

outside of the set of care inputs, then the network is combinationally output-stable.

2.4.3 Proposed refinement to Malik's algorithm

Here we propose a different method from Malik's to compute the ternary-valued

circuit equations. The goal is to minimize the number of gate evaluations performed during

48

ternary simulation. As far as correctness is concerned, the gates of the network can be eval

uated in any order. The only requirement is that the process of evaluating gates continues

until convergence is reached. On the other hand, the number of evaluations is sensitive to

the order.

Example 2.31 [Order of evaluation] Consider the circuit in Figure 2.23on input 1,1,1. All

vertices are initialized to $. Say we break the feedback at the outputs of gates 3 and 4,

and then evaluate the gates in the order 1, 2, 3, 4. This would require 3 passes to reach

convergence. However, if we break the circuit at the output of 2 and use the order 3, 1,4,

2, we reach convergence in a single pass. •

i=ti>l-yT)i^rE)r

Figure 2.23: Number of gate evaluations depends on evaluation order.

We apply an evaluation ordering scheme by Bourdoncle [25] to heuristically min

imize the number of gate evaluations. Bourdoncle's algorithm takes as input a directed

graph and produces a weak topological ordering (WTO). A WTO can be thought of as a

decomposition ofa graph into recursive, strongly connected components (SCCs). Consider
the graph in Figure 2.24. The set {3,4,5,6,7} forms an SCC. By removing vertex 3 from
the subgraph induced by this set, we see that {5,6} forms an SCC. In this way, SCCs can
be nested. The WTO for the example graph is

1 2 (3 4 (5 6) 7) 8.

The elements within a matching pair of parentheses constitute a component, and the first

element ofa component is the head (heads are underlined above). The depth6 ofan element
is the number of nested components containing the element (e.g., element 3 has depth 1; 6
has depth 2). The important properties ofa WTO are that 1) each component is strongly
connected, 2) the set ofheads constitutes a feed back-vertex set (that is, all backward edges
are incident upon heads), and 3) it gives a total ordering on all the vertices.

This depth is different from the one used earlier; the meaning will be clear from the context.

49

Figure 2.24: A directed graph.

Bourdoncle proposed a gate-evaluation order using a recursive strategy whereby

an inner component is stabilized each time one pass is made of its containing component.

So in the above example, we first evaluate 1, 2, 3, 4, 5, 6. But then, instead of going to 7,

we return to 5, and continue looping between 5 and 6 until there is no change. Then 7 is

evaluated, and then we return to 3. The process repeats until the component (3 4 (5 6) 7) is

stabilized, and lastly 8 is evaluated. Bourdoncle showed that the total number of evaluations

is bounded by Yldepth(v), where the sum is taken over all vertices. This contrasts to the

method that Malik uses, which is bounded by N(k+ 1),where N is the number ofgatesand

k is the number of feedback arcs. It can be shown that Y,depth(v) < N(k+ 1). However,

for a given network, both methods may converge faster than these bounds, and it is possible

that Malik's method may converge sooner.

Returning to the problem of combinational output-stability, we compute the cir

cuit equation for each gate by evaluating the gates using Bourdoncle's recursive strategy.

In addition to using Bourdoncle's method, we employ event-driven ternary simulation to

further reduce the number of evaluations. With this technique, a gate is scheduled for

evaluation only if the circuit equation of one of its fanins has changed. Once convergence

is reached, we examine the circuit equations as explained above to determine whether the

network is combinationally output-stable.

2.5 Sequential output-stability

In this section, we extend the analysis of combinational output-stability to se

quences of input vectors. Also, we now allow circuits with explicitly clocked storage de

vices, called flip-flops. Considering sequences of input vectors is more complicated than

the case of single input vectors considered in Section 2.4, but the intuition remains the

same: roughly, a network is sequentially output-stable if for every input sequence, there is a

unique output sequence. The theory for sequential output-stability does not build upon the

50

theory of combinational output-stability presented in Section 2.4, but instead starts with

the background established in Sections 2.3.1 and 2.3.2.

We start by extending the circuit model to include flip-flops, and discuss the op

eration of such circuits over multiple clock cycles. Next, we define the transition graph of

a network, which captures the cycle-based behavior of a network. We then give a formal

definition of sequential output-stability, and present an algorithm to decide this class. If

a network is sequentially output-stable, we show how an equivalent Mealy machine can

be derived. If a network is not in this class, we show how an error trace can be gener

ated demonstrating an unstable output. Finally, we discuss how information about the

environment can be taken into account.

2.5.1 Circuit model and mode of operation

2.5.1.1 Circuit model

The definition of a circuit graph given in Definition 2.1 is extended to include a

set of flip-flop vertices, and a corresponding set of flip-flop-delay vertices. With respect to

the combinational part of a circuit, these vertices play the same role as input and input-

delay vertices, respectively. Like gate vertices, flip-flop vertices can be driven only by wire

vertices.

We change the notation a bit from Section 2.3 to emphasize the sequential opera

tion of a circuit, u is a binary n-tuple giving the values of the input vertices, a; is a binary

/-tuple giving the values of the flip-flop vertices; a valuation of the flip-flops is called an

external state. The concatenation of u and z is a combinational input, and is referred to

by a. Some subset of the input-delay, flip-flop-delay, gate, and wire vertices is chosen as

the set of state variables; this subset must obey the minimum requirement that each cycle

has a delay. Without loss of generality, and for ease of exposition, we assume that each

output and flip-flop input is chosen as a state variable (otherwise, we would have to refer to

the circuit equations, rather than directly to the state variables). A value for all the state

variables is an internal state, and is referred to by b. This binary m-tuple is partitioned into

the outputs z, the wires y driving the flip-flop vertices (the next external state), and the

remainder of the internal state w. The concatenation of y and z is a combinational output.

The concatenation of a and b is referred to as a total state q. In summary q = a-b, where

51

a —u-x and 6= w-y-z.7 Figure 2.25 illustrates the composition of a circuit with flip-flops.

u »- z

Figure 2.25: The variables of a circuit.

2.5.1.2 Extended fundamental mode of operation

Now we discuss the operation of a circuit over multiple clock cycles. We assume

the existence of a global clock that drives all the flip-flops and controls the interaction of the

environment with the circuit. At a given clock tick, the environment samples the output

value z computed from the previous cycle, provides a new input value u, and causes the

flip-flops input value y to be copied to the flip-flops output value x. All of this occurs

simultaneously and instantaneously. The values of internal state variables are carried over

across clock ticks. In accordance with Theorem 2.12, we assume that the time between

clock ticks is at least (2m - 2)D, which allows the combinational part enough time to pass

through the transient phase (recognize though that the internal state can be unstable even

after the transient phase has passed). Between clock ticks, it is assumed that the input a

is held constant. We call this the extended fundamental mode of operation. Note that the

usual fundamental mode for asynchronous circuits requires the internal state to be stable

before the inputs are allowed to change.

A few detailed points about the extended fundamental mode are in order.

1. For a given clock cycle, all changes on the input vector a are assumed to be simulta

neous. Nonetheless, since a delay element can be placed on each input wire, a change

on an input may be "seen" by the circuit any time within £>, units of the clock tick.

Sometimes weomit the concatenation symbol "•". Also, if a reference to a total state includes subscripts
or superscripts, then these annotations carry over to the components a,b,u,x,w,y, and z.

52

Thus, the model effectively accounts for all possible orderings ofarrivals on the input
vector, at each clock cycle.

2. Each input vertex is assumed to change at most once per clock cycle; that is, glitches

on inputs are not allowed. For circuits whose correct operation relies on state-holding

elements in the combinational part, this is a reasonable assumption. For example,

an RS-latch whose inputs are glitchy will not function properly. If for a particular

application, this assumption is not valid, then the constructivity test of Section 2.6

should be used; although it is conservative, it is insensitive to glitches.

This assumption also implies that the outputs of the flip-flops present in a circuit do

not glitch. Again, the constructivity test should be used if this assumption is invalid.

3. It is assumed that unstable internal variables do not change at the same instant that

the clock ticks. This assumption is made to ease the exposition; it will be shown that

this assumption does not alter the class of sequentially output-stable networks, nor

does it affect the equivalent acyclic circuits generated.

2.5.1.3 Operation at power-up

Lastly, we need to discuss the operation of a circuit at power-up. For every flip-

flop, it is assumed that a nonempty subset / C B is given that specifies the allowable initial

values of the flip-flop. At the first clock tick, each flip-flop must take one of its initial

values. We assume that at least (2m - 2)D time passes between power-up and the first

clock tick. This gives the circuit enough time to pass through the transient phase. The

only assumptions made on the value of q = uxwyz at the moment before the first clock

tick is that a is a possible nontransient state and y is consistent with an initial value of the

external state. Such total states are called initial states, and are defined as follows (recall,

by convention, q = a-b = ux-wyz).

Definition 2.32 If N has flip-flops, then q is an initial state of network N if y is an external

initial state of N and there exists 6such that 6 6 D(a, 6)-nontransient (i.e., the nontransient

state 6 can be reached from some power-up state 6 when the input is held constant at a).

If there are no flip-flops in N, then the set of initial states is exactly the set of nontransient

states. The set of initial states of N is denoted init. •

53

Example 2.33 [Flip-flop with XOR gate] Consider the network in Figure 2.26 with initial

external state / = {0} (this network is uninteresting because it lacks combinational cycles,

but it suffices to illustrate the definitions). At power-up, all eight binary combinations of

values for ux-y are possible. However, only four of these (one corresponding to each input

combination ux) are possible nontransient states. And of these four, only 00-0 and 11-0

are consistent with the external initial state y = 0. Hence, the set of initial states of the

network over ux-y is {00-0,11-0}. •

u

A.

Figure 2.26: A simple network containing a flip-flop and an XOR gate.

The set init is partitioned into the set of blocks A/ where

• if there are flip-flops in N, then there are as many blocks as there are external initial

states, and q,q' 6 init are in the same block if they have the same y component, and

• if there are no flip-flops in N, then there are \init\ blocks, each containing exactly one

initial state.

Each block in A/ is called an initial block. For Example 2.33, the only initial block is

{00-0,11-0}. The intuition is that for a network to be sequentially output-stable, we want

all the states within a given initial block to have the same, deterministic behavior.

2.5.1.4 Runs on a network

The sequential operation of a network can be formalized by the notion of a run.

Definition 2.34 A run on network N on input sequence a = u1, u2,... starting from state
q° is a sequence 7 = g°, a1,..., where

1. 6,+1 e D(a,+1,6*)-nontransient for all i > 0 (i.e., the nontransient internal state 6I+1
can be reached from b% when the input is held constant at a,+1), and

54

2. x1+1 = yl for all i > 0 (i.e., flip-flop outputs after clock tick i + 1 are equal to the
flip-flop inputs before clock tick t+ 1).

A run is initialized if q° is an initial state. •

Example 2.35 [Flip-flop with XOR gate] Consider the initialized runs for the network in

Figure 2.26 on input sequence or = 1,1,0,..., starting from the external initial state y° = 0.

As mentioned above, the possible values for uxy before the first clock tick are 000 and

110. Upon the first clock tick, a: becomes 0 (the external initial state), u becomes 1 (the
first input from the environment), and y settles to 1 (the exclusive OR of0 and 1). After
the second clock tick, uxy = 110, and after the third, uxy = 000. Hence, the initialized

runs are 7 = 000,101,110,000,... and 7 = 110,101,110,000,.... Note that 7 has a zeroth

component, whereas a does not. •

2.5.2 Transition graph of a network

In the next subsection, we define the notion ofsequential output-stability directly
on a network. However, it helps to first have in mind the concept of a transition graph,
which is an abstraction of a network that captures the cycle-based behavior.

Definition 2.36 A transition graph G = (Q,J,T) is a directed graph where Q is a finite
set ofstates, J C Q is a set ofinitial states, and T CQx Q is a set ofdirected edges. •

The transition graph Gn = (Qn,Jn,Tn) corresponding to a network N is defined using
GMW analysis as follows:

Qn = {q Iq= uxwyz is a valuation for the variables ofN}

Jn = {q\y is an external initial state ofN and 36 s.t. 6€ out(Ra(b))}

Tn = {(0,0') \x' = y and b'£ out(Ra,(b))}

If there are no flip-flops in AT, then JN is exactly the set ofoutcome states. The concept of
initial blocks carries over from networks. Note that the definition ofTN(q, q') is independent
ofthe component a = ux ofq. Also note that since every a € Jn is an outcome state, and
for every (q,q') e TN, q' is an outcome state, then every state reachable from JN is an
outcome state. In the examples of TN that follow, we typically show just the reachable
states.

We can define runs on Gn in the same way we defined runs on N.

55

Definition 2.37 For a network N, a run on transition graph Gn = (Qn, Jn,Tn) on

input sequence a = ul,u2,... starting from state g° is a sequence 7 = q°,q1,... where

(q',qi+1) 6 TN, for all i > 0. The run is initialized if o° € Jjv. •

Proposition 2.38 A network N and its corresponding transition graph Gn have the same
set of runs and initialized runs.

Proof This is immediate from Theorem 2.15, which states that out(Ra(b)) = D(a,b)-
nontransient. •

This result allows us to abstract the details of the UIN delay model and the

transient states of a network, in favor of the simpler, cycle-based transition graph.

2.5.2.1 Examples

Before moving on to the definition of sequential output-stability, we illustrate in

detail the construction of the transition graph for two networks.

Example 2.39 [Flip-flop with XOR gate] For the network in Figure 2.26, the state space

Qn is all eight binary combinations for values of u, x, and y. As mentioned above, the set of

initial states is Jn = {00-0,11-0}. To construct Tn, we must examine the GMW relation,

shown in Figure 2.27 (here we show the input value at each state). An edge from ux-y

to ux-y' indicates that starting from internal state y and holding the combinational input

constant at ux, the internal state can change in one step to y'. From the GMW relation,

it is easy to see that there are four outcome states, 00-0, 01-1, 10-1, and 11-0 (all of which

are stable). The outcome states are indicated by heavy ellipses.

Figure 2.28 shows the transition relation Tn over the outcome states. Consider

starting from the initial state 00-0. If on the next clock tick the input u remains at 0, then

the network remains at state 00-0; hence the self-loop. If the input changes to 1, then the

network initially moves to the non-outcome state 10-0 before settling in state 10-1. Hence

Tn has an edge from 00-0 to 10-1. Now consider an input change from 1 to 0 at state 10-1.

The new value of a; is 1 (the old value of y), so the new combinational input is 01, causing

an initial change to non-outcome state 01-1. Since this state is stable, the network remains

in 01-1; hence the edge from 10-1 to 01-1. Note that in moving from state ux-y to u'x'-y'

in Tn, the new combinational inputs u' and x' are used to compute the new internal state

!/'••

56

Figure 2.27: The GMW relation over states ux-y for the network of Figure 2.26.

Figure 2.28: The transition graph over states ux-y for the flip-flop with XOR gate.

57

Example 2.40 [RS-latch] The RS-latch of Figure 2.5 does not have any flip-flops, but we

can still analyze the sequential behavior of the network. The transition graph has 24 = 16

states. The GMW relation is shown in Figure 2.29. There are seven outcome states. For

example, 00*10 is an outcome state because from 00-11, holding the input constant at 00,

the networkcan be in 00-10 after an unbounded amount of time. Since there are no flip-flops

constraining the possible initial states, all seven outcome states are initial states.

Figure 2.30 shows the transition relation Tn- Since there are seven outcome states

and four possible values for rs at each clock tick, there are a total of 28 transitions. For

example, from 01-10 on input 10, the network initially moves to 10-10, and then passes

through 10-00 before reaching the stable state 10-01; hence the edge from 01-10 to 10-01.

As another example, from 11-00 on input 00, the network initially moves to 00-00. Holding

the input constant at 00, after an unbounded amount of time, the network may be in any of

the states 00-00, 00-01, 00-10, or 00-11; hence there are edges from 11-00 to each of these

states. On input sequence 10,11,00,11,..., the possible initialized runs on Tn are

9°, 10-01,11-00, g3,11-00,...

where q° can beany one ofthe seven outcome states, and q3 can beany one of00-00, 00-01,
00-10, and 00-11. •

Figure 2.29: The GMW relation over states rs-qz for the RS-latch.

58

Figure 2.30: The transition graph over states rs-qz for the RS-latch.

2.5.3 Definition and properties of sequential output-stability

2.5.3.1 Sequential output-stability

Now that we have described the operation of a network overa sequence of inputs,

we are in position to define sequential output-stability. Let 7 = o0,^1,... be a run. Let

7flb = z1, z2,... be the projection of 7 onto the outputs ignoring the output z° of q°. This
distinction is important because for initialized runs, we do not care about the value of the

output before the first clock tick.

Definition 2.41 A network N is sequentially output-stable if for every input sequence a =

ul,u2,... and for every initial block B, there exists an output sequence a = z1, z2,... such
that for every initialized run 7 on a starting from a state in B, 7^ = a. •

In other words, a network issequentially output-stable, with respect to the UIN delay model

and extended fundamental mode ofoperation, if for every input sequence and initial block,

the network produces a unique output sequence starting from anystate in that initial block.

This condition must be satisfied for all possible delays respecting the bounds of each delay

element. There are several points to make regarding this definition.

1. The definition does not constrain the placement of delay elements. However, as with

combinational output-stability, the placement of delays can affect the property of se-

59

quential output-stability. As before, using a complete network is the most conservative

approach.

2. There is no stipulation that the projection onto the flip-flop inputs is unique.

3. The definition makes no assumptions about input sequencesgenerated by the environ

ment; we will see later how knowledge of the environment can be taken into account

to weaken the definition.

4. By Theorem 2.22, the sequential output-stability property is independent of the delay

bounds used.

5. We can make the analogous definition for sequential output-stability of a transition

graph. Since the runs of a network N and its transition graph Gn are the same, N is

sequentially output-stable if and only if Gn is sequentially output-stable.

Example 2.42 [Flip-flop with XOR gate] The network in Figure 2.26, where we take z =

y to be the output, is sequentially output-stable because for every input sequence a =

ul,u2,... and for the initial block {00-0,11-0}, theunique output sequence isa = z1, z2,...,
where zx —ux ® yx~l, Vi > 1. •

Example 2.43 [RS-latch] The RS-latch is not sequentially output-stable on the output q.

Consider the input sequence a = 10,11,00,11,.... As shown in Example 2.40, both

7i = 00-00,10-01,11-00,00-00,11-00,..., and

72 = 00-00,10-01,11-00,00-10,11-00,...

are possible initialized runs on ex. But 71^ = 0,0,0,0,... and «f2lo = 0,0,1,0,..., which

are different. This difference occurs because the input 00 follows 11. We will see later that

under certain environmental assumptions, the RS-latch is sequentially output-stable. •

The property of sequential output-stability is not compositional, in the following

sense. Consider a network N composed of two networks Ni and N2, where Ni drives iV2.

Even if each of Ni and N2 is sequentially output-stable, this does not imply that N itself

is sequentially output-stable. The reason is that the outputs of Ni, which are the inputs of

N2, may be glitchy, which violates the assumption that the inputs are glitch-free. However,

if the outputs of iV"i pass through glitch-free flip-flops, then we can compose Ni and iV2.

Alternatively, if N2 passes the constructivity test, then it is safe to drive N2 by JVV

60

2.5.3.2 Properties of sequential output-stability

Checking sequential output-stability is even harder than checking combinational
output-stability.

Theorem 2.44 Deciding if a network is sequentially output-stable is PSPACE-hard.

Proof The reduction is from single state reachability [26].

Instance: Given an acyclic network N with n inputs, m gates, / flip-flops, an external

initial state x' € B' and a state x" 6 B'.

Question: Is x" reachable from x'1

Construct the network N' shown in Figure 2.31, which is the network N with an

additional output s5. The logic block x = x" produces a 1 if the current state x is equal to

x", and 0 otherwise. Its size is 0(1).

Figure 2.31: Network N', used in the PSPACE-hard proof.

Claim: x" is reachable from x' if and only if N' is not sequentially output-stable.

First note that since si is driven by acyclic logic, Si must stabilize to 0 or 1 during

each clock cycle. Now focus attention on the state variables S2,s3, and s±. These three

variables participate in a nontransient cycle as illustrated in Figure 2.32. Since these three

variables are not influenced by the values of the remaining variables of N', the nontransient

61

cycle exists independently of the state of the rest of the network. In this cycle, s2 oscillates.

This oscillation is seen at the output of the AND gate S5 if and only if si is stable at 1.

000

110 001

Figure 2.32: Nontransient cycle on variables S2S3S4.

(=>) Suppose x" is reachable from x' in the kth step on input ex. This implies that

in the fcth clock cycle, «i stabilizes to 1. As argued above, when «i is stable at 1, the output

S5 can oscillate. Thus, in the kth clock cycle on input ex, s5 can be either 0 or 1. Hence, N'

is not sequentially output-stable.

(<*=) Suppose N' is not sequentially output-stable. Since N is acyclic in the combi

national part, the outputs of N must be stable in every reachable state of Nf. This implies

that there exists some input a such that when the network is started in state x', at some

clock cycle A;, the remaining output S5 can be either 0 or 1. As argued above, this implies

that si is stable at 1 in cycle k, which then implies that x" is reachable from x'. •

As mentioned in Section 2.5.1, we assume that unstable internal variables do not

change simultaneously with clock ticks. Call this assumption ASMP. The following theorem

demonstrates that this assumption does not alter the definition ofsequentially output-stable

networks. The intuition is that although removing the assumption adds runs, the additional

runs are already "accounted for" by the runs that meet the assumption.

Theorem 2.45 Network N is not sequentially output-stable with ASMP if and only if N

is not sequentially output-stable without ASMP.

The proof of this theorem appears in Section 2.7.4. We will see later that when a network

is sequentially output-stable, we can derive an equivalent acyclic, Mealy machine. In this

case, the presence of the extra transitions without ASMP does not affect the derived Mealy

machine, because these transitions do not introduce any new I/O behaviors.

2.5.3.3 Combinational output-stability versus sequential output-stability

It is interesting to compare the class of combinationally output-stable networks

to the class of sequentially output-stable networks. Combinational output-stability is more

62

conservative than sequential output-stability, in the following sense.

Proposition 2.46 Let N be a network with flip-flops. Let N' be the same network, except

where the flip-flops are removed and the flip-flop outputs become network inputs, and the

flip-flop inputs become network outputs. If N' is combinationally output-stable, then N is
sequentially output-stable.

Proof Let ex = it1, u2,... be an input sequence for N, and let q and q' be states of some

initial block B, where the flip-flop initial state is y°. Inductively define yxzx, for i > 1,

as the unique value produced by N' on input uxyx~l. Let 7 and 7' be runs on a starting

from q and q' respectively. Since 0 and q' have the same initial flip-flop value and N is

combinationally output-stable, then by induction 7 and 7' must agree on the y component,

and hence must agree on the z component. Thus, 7^ = j'Xq. •

The following example shows that combinational output-stability is strictly more

conservative than sequential output-stability.

Example 2.47 [Combinational output-stability versus sequential output-stability] Con

sider the network in Figure 2.33 with state variables w and z, where the flip-flop value

is initially 1. This network is not combinationally output-stable because when x = 0, z

can be either 0 or 1. However, the network is sequentially output-stable, because upon

the first clock tick x is stable at 1, which then forces z to be stable at 1. In succeed

ing clock cycles, regardless of the input value u, a stable 1 is "locked in" at z. Hence,

z is in fact logically equivalent to the constant 1. This is clearly seen by examining the

transition graph over states ux-wz of the network (see Figure 2.34). The initial block is

{10-00,10-01,10-10,10-11,11-11}. After the first clock tick, the output z is always 1 in

every state of every run. •

^
A

W -L

Figure 2.33: A network of a flip-flop with an OR gate. This network is sequentially output-
stable, but not combinationally output-stable.

v- -*y

63

Figure 2.34: Transition graph over states ux-wz of the network in Figure 2.33.

There are three reasons why combinational output-stability is more conservative

than sequential output-stability.

1. Combinational output-stability assumesthat the internal state variables "forget" their

values at each clock tick. This is implicit in the fact that combinational output-

stability analysis assumes that the initial internal state is arbitrary. Hence, combi

national output-stability ignores the fact that the combinational part can hold state

from one clock cycle to the next (in the above example, z remembers if a 1 has been

seen at a:).

2. Combinational output-stability requires the flip-flop inputs to be stable. This is con

servative because nondeterminism in the external state does not necessarily lead to
unstable outputs.

3. Combinational output-stability implicitly assumes that all external states are reach

able. It is possible that a network is not combinationally output-stable for some

external state that, in fact, can never be reached.

In Section 2.6, we extend combinational output-stability to resolve the third limitation.

The resulting notion is still conservative with respect to sequential output-stability, but it

has significant application in the software domain, and it is insensitive to input glitching.

2.5.4 Bisimulation and the quotient Mealy machine

In the next subsection, we present an algorithm for checking sequential output-

stability that takes as input the quotient Mealy machine with respect to bisimulation. In

this subsection, we define the bisimulation relation and give the quotient construction.

64

2.5.4.1 Bisimulation

Bisimulation is an equivalence relation on states [27, p. 88]. This relation is finer

than I/O trace equivalence, but coarser than graph isomorphism. We define bisimulation

on finite transition graphs as a least fixed point operation.

Definition 2.48 Let AT be a network, GN = (Qn,Jn,Tn) be its corresponding transition
graph, and p,q € Qn- Then, p and qare bisimilar, denoted p ~B q, ifp~f q for all i > 0,
where

• p ~B q iff pio = qlo, and

• p~f+1 qiff p~f qand for all inputs u,

- if (p,p') e Tn where p'lx = u, then there exists q' such that (q,q') 6 Tn,
q'lx = w, and p' ~f g', and

- if (q,qf) € Tw where g'J,* = u, then there exists p' such that (p,p') € Tn,
p'lx —u, and p'~f (/.

Of course, since we only deal with finite-state systems, there is guaranteed to be some k > 0

such that ~S=~B, for all j > k. We denote by B an equivalence class of the bisimulation

relation.

For a network N, the bisimulation relation can be computed in time 0(\Tn\ •

log \Qn\) — linear in the number of edges and logarithmic in the number of states of the

corresponding transition graph — using the Paige-Tarjan algorithm for stable partition

refinement [28]. Of course, this bound is exponential in the size of N (as would be expected

since the problem of testing for sequential output-stability is PSPACE-hard in the size of

N).

2.5.4.2 Quotient Mealy machine

Mealy FSMs are defined in Section 1.1.2. For the purpose of this discussion, a

Mealy FSM is a 6-tuple (S, I, E/, Eo,O,T).

65

Given a network N, the quotient Mealy FSM induced by bisimulation on N is

denoted by MB = (SB,IB,Y,f ,Eg,0B,TB) where

S = {B | B is a bisimulation equivalence class},

7B = {£ |3q e B s.t. q€ tni*},

EB = Bn (n is the number of binary inputs of N),

EB = BP(p is the number ofbinary outputs ofN),

0B = {(B, u', z') |3(q, q') 6 TB s.t. o€ B,g';* = u', and o'+o = z'}, and

TB = {(B,u',B') |3(q,q') e TB s.t. q£B,q'eB' and o'|* = u'}.

Example 2.49 [Flip-flop with XOR gate] Taking y as the output, the bisimulation equiv

alence relation is just ~B. Hence, the equivalence classes are {00-0,11-0} and {01-1,10-1}.
The quotient Mealy FSM is shown in Figure 2.35. For example, the edge 01-1 -> 11-0

in TN (see Figure 2.28) results in the transition {01-1,10-1} ^? {00-0,11-0} in the Mealy
machine. •

Figure 2.35: Quotient Mealy FSM for the network of the flip-flop and XOR gate.

Example 2.50 [Flip-flop with OR gate] Consider the transition graph of Figure 2.34. The

equivalence classes of~B are {00-11,01-11,10-01,10-11,11-11} and {10-00,10-10}. This
is in fact the fixed point because regardless of the input value, each state transitions to a

statein the first equivalence class. Thequotient machine isshown in Figure 2.36. Note that
even though the two states of the quotient generate the same I/O language, they do not
form a single equivalence class, because they generate different outputs (i.e., their output
components z are different). •

Example 2.51 [RS-latch] Considering the transition graph of Figure 2.30, where the out
put is q, and the initial partition ~B is {11-00,00-01,00-00,10-01} and {00-11,00-10,01 -10}.

66

0/1, 1/1

Figure 2.36: Quotient Mealy FSM for the network of the flip-flop and OR gate.

The first equivalence class is subdivided into {11-00,00-00} and {00-01,10-01} because on

input 00, the states in the former class can move to the state 00-10 where the output is

1, whereas the latter states cannot. Likewise, {00-11,00-10,01-10} is split into {00-11}

and {00-10,01-10}. The resulting quotient machine is shown in Figure 2.37; all states are

initial. •

00/0, 11/0

00/1, 01/1 00/0, 10/0

Figure 2.37: Quotient Mealy FSM for the RS-latch.

2.5.4.3 I/O equivalence of transition graph and quotient machine

As we will see, we can test for sequential output-stability directly on the quotient

machine, because the transition graph Tn and quotient machine MB have precisely the

same I/O behavior.

67

Lemma 2.52 Let N be a network. Let p, q G B, where B is a bisimulation equivalence

class. If (p,p') GTn, where p' GB', p'Xx = u' and p'lo = z', then there exists q' GB' such

that (q,q') GTn, q'ix = v>'> and q'lo = z'.

Proof The statement of the lemma is illustrated in Figure 2.38. By definition of bisimula

tion, if p ~B q and (p,p') GTn where p'\x = u', then there exists q' such that (q, q') GTn,

q'lx —u;, and p'~B q'. Since p'lo = z', then q'io = z'. •

Figure 2.38: The existence of transition (p,p') implies the existence of transition (q,q').

The following theorem states the equivalence of runs on MB and Tn-

Theorem 2.53 Let N be a network. Let q° be a state and B° a block such that q° € B°.
Then there exists a run

b° uiii B1 u^4 B2 U^S...

in MB if and only if there exists a run

in Tn, where qx G Bx, qx\,x = ux, and qxlo = zx, for all i > 1.

Proof (=^>) The proof is by induction on the length i of the run.

Base i = 1: B° u-4 B1 implies that there exists p0,^1 such that (p°,pl) GTN, p° GB°,
p1 G B1, p1ix = u1, and pl\,o = z1. By Lemma 2.52, there exists q1 € Bl such that
fa0,*1) e TN, qlix = ul, and gUo = z1.
I.H.: The hypothesis holds for k < i.

I.S.: We need to show how to extend the run in Tn to qx+1. This case is identical to the

base case.

(«=) By construction, (qx,qi+l) € TN, where qx G Bx, qi+1 G Bi+l, qi+lix = «,'+1, and
qi+1lo = zi+l, implies £*' u,+. '̂+1 Bi+l in MB. -

68

Corollary 2.54 Let N be a network. Then the initialized I/O runs of MB and Tn are the

same.

2.5.5 Algorithm for deciding sequential output-stability

In this subsection, we present an algorithm that can determine whether or not a

network N is sequentially output-stable. The algorithm takes as input the quotient machine

M and the set of initial blocks A/ corresponding to a network, and returns "sequentially

output-stable" or "not sequentially output-stable". The algorithm, named Algorithm C, is

shown in Figure 2.39. We assume that the quotient machine has been preprocessed so that

every state of MB is reachable from an initial state.

Algorithm C

1 foreach state B of MB

2 foreach input vector u

3 if there are 2 or more distinct successors of B on u

4 return "not sequentially output-stable"

5 foreach initial block B of A/

6 foreach input vector u

7 S := {B'\B' is a state of MB and 3q' GB' s.t. q'Xx = u and

BqeB s.t. (q,q')eTN)

8 if \S\ > 1

9 return "not sequentially output-stable"

10 return "sequentially output-stable"

Figure 2.39: The sequential output-stability algorithm.

The test for sequential output-stability simply reduces to checking if the transition

relation ofMB isdeterministic; that is, if for each input, each state has a unique next state.

69

As seen in Algorithm C, the test for determinism is broken into two parts. In the first part

(lines 1-4) every (reachable) state is checked for determinism for each input valuation.

The second part (lines 5-9) handles a special case. Remember that by the defini

tion of sequential output-stability, there must be a unique output sequence, for each input

sequence, starting from any state in a given initial block. This condition is not ensured by

part one of the algorithm, because a given initial block is not constrained to lie within a

single bisimulation equivalence class. This is obvious because all states of an equivalence

class must have the same output component z, whereas the states of an initial block are only

required to have the same next state component y. Hence, the second part of the algorithm

simply checks that for a given initial block and input, there is at most one successor state

MB on that input. If a network passes both parts of the algorithm, then it is declared
"sequentially output-stable".

For a network N, Algorithm C can be executed in time 0(\Qn\ + \Tn\)- Each edge

of the transition graph needs to be examined only a constant number of times.

2.5.5.1 Examples

Example 2.55 [Flip-flop with XOR gate] The Mealy machine in Figure 2.35 passes the

first part because there is a unique next state on each input. In this example the only

initial block {00-0,11-0} corresponds to an equivalence class (because the next state signal

is taken as the output), so the first part of the algorithm subsumes the second part. Hence,

this network is declared "sequentially output-stable". •

Example 2.56 [Flip-flop with OR gate] The Mealy machine in Figure 2.36 clearly passes

the first part. By analyzing the Mealy machine, the network in Figure 2.33 is seen to be

sequentially output-stable since all transitions of MB terminate at a single state. •

Example 2.57 [RS-latch] The RS-latch fails the first part of the test because state {00-11}

has multiple successors on input 00 (see Figure 2.37). Hence, the network is not sequentially

output-stable. •

70

2.5.5.2 Proof of correctness of sequential output-stability algorithm

To prove the correctness of Algorithm C, we first define the language of a state.

This is just the set of runs from the state, projected onto the inputs and outputs.

L(q) = {u°z°,u1z1,... | 3 a run 7 = q°,ql,q2,... s.t. q= q0}

By identifying states with the same language, we can define the language equivalence rela

tion. Namely, p ~L q if L(p) = L(q). It is well known [29] that

1. for deterministic structures, bisimulation and language equivalence coincide, and

2. for nondeterministic structures, bisimulation refines language equivalence (i.e., p ~B q
implies p~L q, but the converse is not necessarily true).

We call the language of a state nondeterministic if there exists two runs from the

state on the same input sequence, which produce different output sequences. The following

lemma shows that for nondeterministic transition graphs, if two states are not bisimilar,

but are language equivalent, then it must be that the language is nondeterministic. Note

that the transition relation Tn of a network N is complete (i.e., for every state q and every

input u', there exists a next state q' with input component u'), because the network must

do something on each input.

Lemma 2.58 Let N be a network, and let p and q be states of the corresponding transition

graph Gn- tfp^Bq and p~L q, then L(p) is nondeterministic.

Proof For sake of contradiction, suppose L(p) is deterministic, and assume L(p) = L(q).

We show by induction that p~f q for all i > 0, and hence that p ~B q.

Base: Since p and q each have a unique output, and L(p) = L(q), then the outputs of p

and q must be equal. Hence, p ~B q.

I.H.: If L(p) = L(q) and L(p) is deterministic, then p~f q, for all 0 < i < k.
I.S.: We show that p ~B+1 q. First, p~f q is satisfied by induction. Now, let u be some
input, and suppose (p,pf) G Tn where p'lx = u. Since Tn is complete, then there must

exist some q1 such that (q, q') GTn where q'\.x = u. We want to show that p' ~f q'. Since

L(p) is deterministic, then every successor of p on u must have a deterministic language,

and furthermore, all of these successor languages must be the same. Likewise, all of the

successors of q on u must have the same deterministic language. Hence, if L(p') ^ L(q'),

71

then this would imply that L(p) ^ L(q), a contradiction. Thus, L(p') = L(q'), and L(p')

is deterministic. Finally, by induction p' ~f q'. The reverse condition for bisimulation is
shown in a similar fashion. •

The following theorem asserts the correctness of Algorithm C.

Theorem 2.59 Let N be a network. N is not sequentially output-stable if and only if

Algorithm C returns "not sequentially output-stable".

Proof (=>) Suppose N is not sequentially output-stable. This implies there exists

• an input sequence a = u1, u2,..., uk (where k is less than or equal to the number of

states), and

• initialized runs 7 = q0^1,.. .,qk and 7 = q0,^1,.. .,qk on a in Tn,

such that

• q° and q° belong to the same initial block,

• zx = zx for 1 < i < k, and

• zk ^ zk.

That is, there are runs, on the same input sequence, from two states in the same initial

block, which have different output sequences. Clearly qk ^B qk, since they have different

outputs. Now, either

1. qx ~B qx for some 0 < i < k, or

2. qx i±B qx' for all 0 < i < k.

Suppose that the first case is true, and let j be the largest such i. Since q*+l r^B gJ+1, then

on input wJ+1, the equivalence class containing g-7 and q* has more than one successor state

in the quotient machine, and hence Algorithm C returns "not sequentially output-stable"

on line 4.

Now suppose that the second case is true. Since q° and q° (which belong to the

same initial block) have successors on w1 that are not bisimilar, then Algorithm C returns

"not sequentially output-stable" on line 9.

(<=) Suppose Algorithm C returns "not sequentially output-stable" on line 4. Then there

72

exists a state B in MB that has distinct successors Bi and B2 on some input u. Let qi be

the state in Bi inducing the transition from B to Bi, and let #2 be the state in B2 inducing

the transition from B to B2- Since £ is reachable by hypothesis, then by Corollary 2.54,

there exists initialized runs 71 and 72, on the same input sequence, whose last input is u,

and that terminate at q{ and q'2, respectively, where q[~B qi and q'2 czB q2. Since qi j±B q2,
and hence q[gkB q'2, there are two possibilities to consider.

1. L(q'i) ^ L(q2). Since Tn is complete there exists some input sequence on which q[

and q2 generate different output sequences. By extending 71 and 72 by this input

sequence, initialized runs can be produced having different output sequences.

2. L(q[) = L(q2). By Lemma 2.58, L(q[) is nondeterministic. Hence, there exists some

input sequence on which q[can generate two different output sequences. By extending

71 and 72 by this input sequence, initialized runs can be produced having different

output sequences.

The alternative is that Algorithm C returns "not sequentially output-stable" on

line 9. Then for some initial block and some input u, both Bi and B2 are possible successors

in M . We can show that N is sequentially output-stable usingthe same reasoning as above.

•

Algorithm C could be applied equally well to the quotient machine formed with

respect to language equivalence, rather than bisimulation. However, language equivalence

on nondeterministic structures is much harder to compute.

We close this subsection with another example that illustrates Algorithm C and

the proof of correctness.

Example 2.60 [Sequential output-stability and runs] The network in Figure 2.40 has in

ternal state variables y and z, and two flip-flops, each initialized to 0. The states of the

network are 5-tuples uxix2-yz. There is one initial block {000-00,001-00,100-00,101-00},

corresponding to the one external initial state Xiy = 00. Figure 2.41 showsthe possible runs

of the network on input a = 1,0,1,1,1. This example is interesting because even though the

output is functionally determined by the flip-flops (z = £1X2), z is no* sequentially output-

stable, qs and qg are not bisimilar because they differ in the output z. Consequently, qe and

q^ are not bisimilar, because they have non-bisimilar successors on input u = 1. Thus, in

the quotient machine, the equivalence class containing q$ has a nondeterministic successor

73

on u —0, so the network is declared not sequentially output-stable. This example reinforces

the fact that sequential output-stability is a property of the runs of a network, and not a

local property of the reachable states. •

Figure 2.40: Network with external initial state 00 is not sequentially output-stable, even
though z is a function of flip-flop outputs.

qi =000-00 92=001-00 q3 =100-00 94=101-00

910 =110-10 99=111-11

99=111-11

Figure 2.41: Runs of network in Figure 2.40, on sequential input 1, 0, 1, 1, 1.

2.5.6 Extracting an equivalent acyclic implementation

If a network N is sequentially output-stable, then the quotient machine MB is a

deterministic Mealy FSM that has the same I/O behavior as the original circuit. MB is

not state-minimal by construction because bisimularity is not an equivalence on languages.

That is, it may be that L(p) = L(q) for two states, even though p and q are not bisimilar.

Rather than complicating the procedure to produce an equivalence on languages, we just

74

pass MB through an FSM state minimizer. Since MB is deterministic, this can be done in

polynomial time.

Example 2.61 [Flip-flop with XOR gate] The quotient machine in Figure 2.35 is in fact

state-minimal. The two states of this machine correspond to the two states of the original

circuit in Figure 2.26. •

Example 2.62 [Flip-flop with OR gate] From Figure 2.36, it can be seen that the two

states of the quotient machine can be merged, yielding a one-state FSM that produces 1 on

any input. This can be realized by a circuit where the output is driven by a logical 1. •

Given a deterministic Mealy FSM M (described for example, by a table of tran

sitions), a synthesis tool (e.g., [30]) can be used to produce a multi-level implementation

without combinational cycles. The number of flip-flops in this implementation is not corre

lated with the number in the original circuit (even excepting the fact that the state encoding

method, for example, one-hot versus minimal, influences the number of flip-flops). In gen

eral, the implementation may have more flip-flops because the combinational part of the

original circuit can store state, whereas the acyclic combinational part of the implemen

tation cannot. However, as seen in Example 2.62, the implementation may actually have

fewer flip-flops.

2.5.7 Generating an error trace

If a network is determined to be not sequentially output-stable, then we wish to

find an input sequence a that violates the condition in Definition 2.41. In addition to a,

it is desirable to show two initialized runs 71 and 72 on a that produce different output

sequences. This information can be generated by "unwinding" the fixed point computation

for bisimulation.

Algorithm C can return "not sequentially output-stable" by failing the condition

on line 3 or line 8. We will concentrate on generating an error trace for the first case; the

other case is similar.

If a network fails line 3 of Algorithm C, then we have equivalence classes B, Bi

and B2, and input u such that Bi and B2 are both successors of B on u in MB. Since B

is reachable in MB, we can produce and initialized run in MB that terminates at B. By

75

following the proofof Theorem 2.53, this run can be transformed into an initialized run 7

on Tn, having the same I/O.

The run 7 can be extended by one state in two different ways. The first is to a

state 91 in Bi, on input u, and the second way is to a state 92 in B2, again on input u. Call

these extensions 71 and 72 respectively. We now show how 71 and 72 can be extended on

the same sequence of inputs, to yield different output sequences.

If two states p and 9 are not bisimilar, then either they have different outputs, or

there exists i > 0 such that p9^ 9 and p~? 9. Considering the latter case, this implies
that there exists an input u such that

1. there exists p' such that (p,p') GTN and p'ix = «, and for all q' such that (9, q') GTN
and q'lx = u, p' £f q', or

2. thereexists q' such that (9, q') GTn and q%x = u, and for all p' such that (p,p') GTN
and p'lx = u, p' gkf q'.

For every pair of states (p, 9) that have the same outputs but are not bisimilar, we record

during the bisimulation computation, the input u and the next state (p' for condition 1, q'
for condition 2) that demonstrates why p and 9 are not bisimilar.

Returning to the scenario above, we have initialized runs 71 and 72 leading to 91

and 92, respectively, where 91 qkB 92. If 91 and 92 have different outputs, then we are done

generating the error trace. Otherwise, for some i, 91 qkf+1 q2 and 91 ~f 92, and we recall the
input u' and the condition that demonstrates why 91 ykf+l q2. Suppose that it is condition
1, where the next state q[of 91 on input u' cannot be matched by 92. Then, we extend

7i by q[, and extend 72 by an arbitrary next state q2 of q2, on input u'. By hypothesis,

9i 9^f a2- Now> either q[and 92 have different outputs, or we again recall the input and
condition that demonstrates q[gkf q'2. Each time that we do this, we decrease i by one, so

that eventually we must reach a pair ofstates that have different outputs. At this point, we

will have generated initialized runs 71 and 72, on the same input sequence ex, which have

different output sequences.

Example 2.63 Consider the partial graph shown in Figure 2.42. Eachstate is labeled with

its input and output component. Suppose 90 is reachable from an initial state. Even though

L(qi) = L(q2), 91 $tB 92. These are the equivalence classes at each step of the bisimulation

fixed point computation:

= {{?o}, {91,92}, {93,94,9s}, {96,9s}, {97,99}}

= {{9o}, {91, Q2}, {93}, {94}, {95}, {96,9s}, {97,99}}

= {{9o}, {91}, {ft}, {93}, {94}, {95}, {96,9s}, {97,99}}

= {{%},{91}, {92}, {93}, {94}, {95}, {Qe}, {9s}, {97}, {99}}

*g

-f

*?

*?

U3/23 u3/z4 u3/z3 u3/z4

76

Figure 2.42: Generating an error trace to demonstrate that a network is not sequentially
output-stable.

The test for determinism on the quotient machine finds that {90} has two succes

sors, {qi} and {92}, on input «i. Thus, we construct runs 71 and 72 leading to 91 and 92,

respectively. The states 91 and 92 are not ~f-equivalent because 91 has a ^-successor (93)
that is not ~f-equivalent to any ^-successor of 92. Hence, we extend 71 to 93, and 72 to

95. Now, 93 and 95 are not ~f-equivalent because 95 has a ^-successor (99) that is not
^-equivalent to any u3-successor of 93. Extend 71 to 96 and 72 to 99. Finally, q6 and 99
are not ~B-equivalent because they have different outputs. In summary,

7i = ---90919396, and

72 = ..-90929599-

77

2.5.8 Sequential output-stability in the presence of an environment

The definition of sequential output-stability requires output-stability "for every

input sequence a = ul,u2,...". However, it may be that the environment supplying the

inputs only produces a subset of all possible sequences. Thus, we want to redefine sequential

output-stability to be with respect to a regular set 0 of input sequences.

An FSM, given at the state transition level, is used to specify 0. We make two

assumptions about this FSM:

1. The FSM is a Moore machine. If we were to allow a Mealy machine, then

the composition with MB may not be well-defined because of combinational cycles

between MB and the FSM. If one wanted to model such effects, the FSM could be

given at the circuit level, and then the FSM and original circuit could be analyzed

together as one circuit, using Algorithm C.

2. The only inputs to the FSM are from outputs of the circuit under anal

ysis. Hence, the composition of the FSM and circuit yields a closed system. This

assumption is made to ease the presentation.

Let the Moore machine Mq = (Sq,Iq,Eo,^i,Oq,Tq) be an environment for

network N, where the output alphabet Eo of N is the input alphabet of Mq, and the input

alphabet £/ of N is the output alphabet of Mq.

The procedure for checking sequential output-stability is modified by taking the

product of Mq and the quotient Mealy machine AfB to produce a new Mealy machine Mn,

where the transitions and outputs are defined according to the diagram in Figure 2.43. In

words, if the present state is [B,s] and s (a state in Mq) can produce the output u', then

MB can move to a state B' on input u' and produce output z'. Mq then moves along a
transition labeled z' to reach the next state s'.

Example 2.64 [RS-latch] An environment Mq for the RS-latch is shown in Figure 2.6.

Each state is labeled with a single output rs. There is a transition between each pair

of states, except from D to A; the absence of this transition prevents the input 00 from

following 11. The transitions are not conditional upon the outputs of the RS-latch; they

are always enabled. For example, when Mq is in state B, it can produce the output 01,

and then move to any other state. Every state except A is initial; this prevents 00 as the

first input.

78

MB

(V)-^ *(V) Mn
Mq

Figure 2.43: Product of edges of quotient machine and environment.

The product of the quotient Mealy machine (Figure 2.37) and the environment

yields a Mealy machine with 16 states and 84 transitions. Table 2.1 lists the transitions,

where

1. The states 1, 2, 3 and 4 are labels for the quotient states {00-00,11-00}, {00-11},

{00-10,01-10}, and {00-01,10-01}, respectively, and

2. a "-" in a next state label indicates that that component of the state is free to take

any value in its domain.

For example, state AB can move to any of the states 3A,3B,3C or 3D on input 01, and
produce the output 1.

The initial states and reachable states are marked in the first two columns. The

important point is that the problematic states 1,4 and 2A are not reachable. The behavior

from these two states corresponds to the input 00 at power-up, or the input 00 following
11. •

To test for sequential output-stability in the presence of an environment, the test

for nondeterminism on the original quotient machine is modified. If a state is found in the

quotient, for which on a given input there is nondeterministic behavior, then the product

machine is checked to see if this state/input combination is reachable. If not, then the
observed nondeterminism is ignored.

Example 2.65 [RS-latch] The test for nondeterminism on the quotient machine of Fig
ure 2.37 reveals that states 1 and 2 are nondeterministic on input 00. Input 00 corresponds

to state A of the environment. From Table 2.1, we observe that states 1A and 2A are not

reachable. Hence, the RS-latch, in combination with the environment, is declared "sequen
tially output-stable". •

initial reachable state next states

\A 1-/0, 2-/1, 3-/1, 4-/0
2A 1-/0, 2-/1, 3-/1, 4-/0

V ZA 3-/1
V AA 4-/0

V V IB 3-/1
V V 2B 3-/1

V V SB 3-/1

V V AB 3-/1

V V \C 4-/0
V V 2C 4-/0
V V ZC 4-/0
V V AC 4-/0
V V ID l{B,C,D}/0
V V 2D l{B,C,D}/0
V V ZD l{B,C,D}/0
V V AD l{B,C,D}/0

79

Table 2.1: Transition graph for the RS-latch composed with the environment of Figure 2.6.

In deriving an equivalent acyclic implementation, the unreachablestate/input pairs

can be used as a source of don't cares to minimize the implementation.

Example 2.66 [RS-latch] Again, refer to the quotient machine of Figure 2.37. For state

1 on input 00, let the next state be 4 and the output be 0. Then states 1 and 4 become

equivalent, and can be merged. Likewise, let the next state of 2 on input 00 be 3, with

output 1; then states 2 and 3 can be merged. The result is the 2-state FSM shown in

Figure 2.7. The left-hand state in the figure remembers that the output q is 0, and the

right-hand state remembers 1. Finally, a circuit can be synthesized from this FSM, as shown

in Figure 2.8. •

2.6 Constructivity

In this section we introduce a third notion of well-behavedness, called constructiv

ity. This name, coined by Berry, is derived from the relationship between constructive logic

and this notion of well-behavedness [23]. We will see that constructivity is strictly more con-

80

Figure 2.44: Extracted Mealy FSM for the RS-latch composed with an environment.

81

servative than sequential output-stability, but strictly more permissive than combinational
output-stability.

The circuit model and mode of operation used to define constructive networks is

identical to that used inSection 2.5 for sequential output-stability, with one majorexception.

Here, we assume that the internal state is lost at each clock tick, whereas for the extended

fundamental mode of operation, weassume that the internal state is carried over across clock

ticks. We call this the constructive mode of operation. Put another way, in the constructive

mode, the state of a network is just the value of the flip-flops, whereas for the extended

fundamental mode, the state also includes the values of all internal state variables.

One positive consequence of this more conservative operating mode is that it allows

us to remove the assumption, made for the extended fundamental mode, that the inputs do

not glitch. Hence, a circuit that is well-behaved under the constructive mode of operation

is more robust than one well-behaved under the extended fundamental mode, because the

former is insensitive to input glitching.

Another difference between constructivity and sequential output-stability is that

constructivity requires the flip-flop inputs, as well as the circuit outputs, to be uniquely

determined for each input sequence. A consequence of this restriction is that the quotient

machine construction of the sequential output-stability test can be replaced by a local check

on the reachable states of the transition graph, thus simplifying the test.

The constructive mode of operation is not natural for hardware circuits because

combinational wires can in fact store state. Also, the condition that flip-flop inputs must

be stable is overly restrictive. Nevertheless, constructivity is useful for hardware because

its less aggressive nature allows for more margin of error (e.g., it is insensitive to glitchy

inputs), and the algorithm for testing constructivity is more efficient.

The motivating application for constructivity comes from software, in particular

from the synchronous language Esterel. The constructive mode is natural in this domain

because the state vertices represent the automatic variables (which are initialized on each

invocation — they do not remember their previous value) and the flip-flops represent static

variables (whose assignment should be unique) This application is thoroughly explored

in [23], where Berry defines the constructive semantics of pure Esterel. He shows that an

Esterel program is constructive (in the sense of these semantics) if and only if the network

derived from the program is constructive (in the sense defined here). This "full abstraction

theorem" is very powerful because it provides a means of automatically classifying Esterel

82

programs as legal (i.e., constructive) or illegal. The fact that the theorem connects the

abstract world of programs to the (more) concrete world of circuits with delays also points

to the universality of constructivity.

2.6.1 Circuit model, mode of operation, and transition graph

The definitions and propositions from Sections 2.5.1 and 2.5.2 for the sequential

output-stability case mostly carry over to the constructive case. The similarities and differ

ences are quickly reviewed.

A total state of a network is composed of the same five components:

u — circuit inputs

x — flip-flop outputs (present external state)

w — internal state, less y and z

y - flip-flop inputs (next external state)

z — circuit outputs

We require networks to contain at least one flip-flop, because these are the only elements

that hold state across clock ticks; it would not make sense to speak of the multi-clock cycle
operation of a network with no state elements.

The definition of initial states and initial blocks is identical for the two cases.

As mentioned above, the primary difference is in the mode of operation, and this

difference surfaces in the first part of the definition of a run.

Definition 2.67 A run on network N (operating in the constructive mode) on input se
quence a = u1, u2,... starting from state q° is a sequence 7 = q°, 91,..., where

1. there exists a 6; such that 6,+1 GD(ai+1,6t)-nontransient for all i > 0, and

2. xi+1 = yx' for all i > 0.

Notice that 6t+1 is completely independent of bx. The only requirement is that the non-

transient state 6,+1 can be reached from an arbitrary state 6, holding the input constant at
ax+1. This weaker condition implies that the set of runs under the constructive mode is a

superset of the set of runs under the extended fundamental mode.

83

The set of runs under the constructive mode is insensitive to the occurrence of

glitches on the inputs. Glitches can in fact change the internal state of a network. However,

we are already assuming that the internalstate is unknown immediately following each clock

tick, so glitches cannot make things any worse. The only condition that must be ensured is

that enough timeis allowed to pass (at least (2m-2)D) afterthe inputs stabilize, and before

the next clock tick occurs. In this case, ai+1 in Definition 2.67 is taken as the stabilized

value of the vector of inputs.

The definition of the transition graph Gn corresponding to a network N is the

same, except that now

Tn = {(q,q') \x' = y and 36 e out(Ra,(b))}-

Example 2.68 [Constructive mode] The transition graph under the constructive mode, for

the network of Figure 2.33, is shown in Figure 2.45. The states are valuations of ux-wy.

The two state-groupings exist solely to simplify the drawing. An edge from a grouping

indicates an edge from each state in the grouping; likewise, an incoming edge applies to all

states in the grouping.

The one initial block of the network contains the states 10-00,10-01,10-10,10-11,

and 11-11. Consider the transitions from 01-11 on input 1. Even though wz = 11 in state

01-11, any value for wz is possible in the next state because at each clock tick, the internal

state is lost. Thus all states in the top grouping are possible next states of 01-11 on input

1. Compare this to the transition graph in Figure 2.34 for the same network under the

extended fundamental mode. In Figure 2.34, from 01-11 on input 1 the only next state is

10-11, because the internal state is preserved across clock ticks. •

2.6.2 Definition and properties of constructivity

2.6.2.1 Constructivity

The definition of constructivity is identical to sequential output-stability, except

that the set V of flip-flop inputs must also be stable.

Definition 2.69 A network N is constructive (operating in the constructive mode) if for

every input sequence a = ul,u2,... and for every initial block B, there exists an output

sequence a = z1, z2,... and a flip-flop sequence \i —y}, y2,... such that for every initialized

run 7 on o starting from a state in B, 7^ = 0 and j\.j, = p. •

84

Figure 2.45: Transition graph over states ux-wz of the network in Figure 2.33, under the
constructive mode.

As before, the definition itself does notconstrain the placement ofdelay elements,

although their placement can affect the property of constructivity. Also, the constructive

property is independent of the delay bounds used. Finally, because the constructive mode

is insensitive to input glitches, the class of constructive networks is closed under cascade

composition. That is, if each of N\ and N2 are constructive, then JV*i driving N2, or N2
driving JV*!, is also constructive. However, connecting Ni and N2 in a cycle is not guaranteed
to preserve constructivity (consider two NOR gates connected to form an RS-latch).

2.6.2.2 Constructivity versus combinational output-stability and sequential
output-stability

Constructivity is more conservative than sequential output-stability for two rea
sons:

1. theconstructive mode allows a superset ofruns compared to the extended fundamental

mode because the internal state is lost at each clock tick, and

2. the definition of constructivity is stricter than that of sequential output-stability,
because of the extra condition on the flip-flop inputs.

The following example shows that this relationship is strict.

85

Example 2.70 [Sequential output-stability versus constructivity] Consider the network of

Figure 2.33. Under the constructive mode on input sequence 1,0,1, both ax = 1,1,0 and

U2 = 1,1,1 are possible output sequences, and hence the network is not constructive.

However, as argued in Example 2.47, the network is sequentially output-stable. •

Combinational output-stability and constructivity are nearly the same, but combi

national output-stability is more conservative because it implicitly assumes that all external

states are reachable.

Example 2.71 [Combinational output-stability versus constructivity] Consider the net

work of Figure 2.46 with initial state 10. The network is not combinationally output-stable

because when X1X2 = 11, then ?/2 is unstable. On the other hand, the network is construc

tive. From Figure 2.47, which shows Tn over the states Xii2-yiy2, it is evident that starting

from t/i*/2 = 10, the external state 0:1X2 = 11 cannot be reached after the first clock tick. •

2/2 X2

A

Xi 2/1

A.

Figure 2.46: Constructive, but not combinationally output-stable.

2.6.2.3 Complexity of deciding constructivity

Theorem 2.72 Deciding if a network is constructive is PSPACE-hard.

Proof The same proof as for Theorem 2.44 can be used. The forward implication of the

claim holds because if N' is not sequentially output-stable, then it is also not constructive.

The backward implication holds because the only oscillation that can arise in N' is the one

involving the variables S2,s3, and S4. •

86

Figure 2.47: Transition graph over states xiX2-yiy2 for the network of Figure 2.46.

2.6.3 Algorithm for deciding constructivity

The condition for constructivity is just a special case of sequential output-stability,

if we include the flip-flop inputs in the circuit output set O.8 Hence, we could use the

sequential output-stability algorithm to decide constructivity. However, we can develop a

more efficient algorithm by exploiting the fact that constructivity is a local property on

external states, as opposed to the language nature of sequential output-stability.

The algorithm we present for testing constructivity invokes a subroutine for testing

combinational output-stability to determine on which combinational inputs a combinational

output is unstable. If the network is not complete, then we are obligated to resort to GMW

analysis to compute the set of outcome states (refer to Proposition 2.23). However, if the

network is complete, then we can leverage the power of ternary simulation. In the interest

of efficiency, and since completeness is a reasonable assumption, we assume hereafter that

the network is complete.

2.6.3.1 First version of algorithm

A first version of an algorithm for testing constructivity is shown in Figure 2.48.

Lines 1-4 compute the set unstableDomain of combinational inputs for which a combina

tional output is unstable. It does this by invoking Algorithm B on each combination ux,

with the internal state initialized to $m. Note that initializing the state to $m exactly

Of course, for testing constructivity, weuse a different mode of operation, and hence a different transition
graph.

87

corresponds to the assumption that the internal state is lost at each clock tick. If the y or

z component is not binary, then ux is added to the unstableDomain. Line 5 projects the

unstableDomain to the flip-flop outputs to yield the set of unstableStates.

1 unstableDomain := 0

2 for every ux € Bn x Bl

3 t :=AlgB(ux,$m)

4 if t is not binary on yz

5 unstableDomain := unstableDomain U {ux}

6 unstableStates := {x\3u s.t. ux € unstableDomain}

7 if unstableStates is reachable in > 1 steps from Jn in Tn

8 return "not constructive"

9 else

10 return "constructive"

Figure 2.48: Algorithm for deciding constructivity.

From this point, the algorithm is simple. If a state q, where x of q is in unsta

bleStates, is reachable from Jn in Tn, then N is not constructive; otherwise, it is construc

tive. The following argues the correctness of this classification. If a state in unstableStates

can be reached, then there exists an input ex = ul,u2,...,uk and a run 7 = q°,ql,...,qk

on ex such that in state qk, a combinational output is unstable. On the other hand, if

unstableStates is unreachable, then for every reachable state the combinational outputs are

uniquely determined, so the network is constructive. Note that for a constructive network,

there cannot be two distinct runs on the same input, but which agree step-by-step on the

combinational outputs, because the only state carried across clock ticks is the external state.

2.6.3.2 Modified version of algorithm

The first version of the algorithm requires searching a graph of size 2n+/+m, where

n is the number of inputs, I the number of flip-flops, and m the number of input-delay,

88

flip-flop-delay, gate, and wire vertices. We can do substantially better by searching the

projection of this graph onto the external next state component. The projected graph has

just 2l states.

Definition 2.73 Let Gn = (Qn, Jn, Tn) be the transition graph corresponding to network

N. The reduced transition graph ofGn is &n —($N, Jn,Tn), where

<$N = B'

Jn = {y\Bq = uxwyz € Jn}

Tn = {(y,y')\B(q,q')eTN}

Example 2.74 [Reduced transition graph] Figure 2.49 shows Tn corresponding to Tn of

Figure 2.47 and the network of Figure 2.46. For example, the edges 11-10 -> 10-01 and

01-10 -> 10-01 of Tn collapse to the edge 10-> 01 of Tn. Runs on this graph represent the

possible sequences of next external states. •

Figure 2.49: Reduced transition graph Tn, over states yiy2, for the network ofFigure 2.46.

Example 2.75 Figure 2.50 shows Tn corresponding to Tn of Figure 2.45 and the network

ofFigure 2.33. Since the next state is unconstrained (it is just the input u), Tn is complete.

The modified algorithm incorporating Gn is the same as that ofFigure 2.48, except
that line 7 is replaced by

7 if unstableStates is reachable in > 0 steps from Jn in Tn.

89

Figure 2.50: Reduced transition graph Tn, over states u, of Figure 2.45.

Example 2.76 For the network of Figure 2.33, unstableStates = {0}. From Tn of Fig

ure 2.50, state 0 is clearly reachable. Recall that this network is sequentially output-stable,

because a 1 at z in the first step is "locked in". •

Example 2.77 For the network of Figure 2.46, unstableStates = {11}. From Tn of Fig

ure 2.49, state 11 is unreachable. Recall that this network is not combinationally output-

stable, because combinational output-stability does not take into account reachability. •

The complexity of the algorithm is determined by the for loop at line 2. There are

2n+l calls to Algorithm B. Using a feedback-vertex set of size k, each call to Algorithm B

requires at most k passes, where each pass requires m time (for m total vertices). Thus,

the total complexity is 0(fcm2n+').

2.6.3.3 Proof of correctness of the algorithm

Lemma 2.78 If q = uxwyz is reachable from Jn in Tn, then y is reachable from Jn in

fN-

Proof Let q be reachable by 7 = q°,ql,...,qk, where q° 6 Jn and qk = q. Since

(qx,qi+1) e TN for 0 < i < k - 1, then (ySy1*1) € fN for 0 < i < k - 1. Also, q° € Jn
implies y° 6 Jn- Hence, 7 = y°, y1,..., yk is a run on Tn starting from an initial state y°
and terminating at y = yk. •

Theorem 2.79 Let N be a complete network. N is not constructive if and only if the

algorithm returns "not constructive".

90

Proof (=>) Suppose N is not constructive. This implies there exists

• an input sequence a = tt1, u2,..., uk (where k is greater than zero and less than or
equal to the number of states), and

• initialized runs 7 = q°, q1,..., qk and 7 = g°, q1,..., qk on ex in TN,

such that

• q° and q° belong to the same initial block,

• yxzx = yxzx for 1 < i < k - 1, and

• ykzk ^ ykzk.

Since ykzk ^ ykzk, but ukxk = ukxk (since yfc_1 = yfc_1), then A\gB(ukxk,$m) is not
binary on yz. This implies that ukxk € unstableDomain, which in turn implies that xk =

yfc_1 6 unstableStates. By Lemma 2.78, since qk~x is reachable in T;v, then y*-1 is reachable

in Tn. Hence, the algorithm will return "not constructive" upon reaching y*-1.

(•<=) Suppose the algorithm returns "not constructive". This implies there exists 7 =

y°> y1, •••»Vk in Tn, where A; > 0, y° € Jn, and yk 6 unstableStates. This implies that there

exists u such that wyfc € unstableDomain, which in turn implies that AlgB(uy*,$m) is not
binary on yz. This and the existence of 7 implies the existence of two runs

7 = q°,q1,...,qk,qk+l, and

7
_ „o „1
= 9 >9 !•• •-.l*,**1

in Tn such that

• 9° € Jn,

• 0*4-P = y* for 0 < i < k,

• u = wfc+1 = uk+1, and

• yfc+i2fc+1 ^yfc+15*+1.

Thus, there exist two runs 7 and 70110= u°,u1,...,uk,uk+1 such that 74.J) i1 lib or

74.J, ^ yi}>, and hence AT is not constructive. •

91

2.6.3.4 Symbolic version of algorithm

We can devise a BDD-based implementation of the above algorithm. First, we

use Malik's algorithm to implicitly test combinational output-stability for each of the 2n+l

combinational inputs. A by-product ofthis algorithm isa pair ofBoolean functions F}(u,x)
and Ff(u,x) for each combinational output i. Then,

unstableDomain(u, x) = ^F?(u,x) =^(^(^il + ffju,!)).
t i

The set unstableStates is computed using existential quantification:

unstableStates(x) = 3u unstableDomain(u,x).

The next step is to perform symbolic reachability analysis. We would like to derive

a next state function for each flip-flop, sothat we have theflexibility ofemploying reachabil

ity methods that exploit the determinism of functions (as opposed to the nondeterminism

of relations). However, in general, the next states are not functionally determined. For

example, in Figure 2.49, state 11 has four possible next states. Nonetheless, there is a way
around this contradiction: as long as we limit ourselves to the stableStates (the complement
of unstableStates), then F*(u,x) gives the correct value for the next state. Thus, we use
the function Fl (u, x) corresponding to each flip-flop as the next state function.

Reachability then works as follows. Before each BFS step of reachability, the set

of states to be explored is intersected with the set of unstableStates. If this intersection is

non-empty, then "not constructive" is returned. Otherwise, it is safe to perform the next

reachability step. If the fixed point is reached, then "constructive" is returned.

Example 2.80 For the network of Figure 2.46, we use as the next state functions Ff = xjx2
and F2l = xixj. These functions give the correct values on the stableStates = {00,01,10}:

F/(00)^(00) = 00,

F}(01)^(01) = 10, and

F}(10)Fi(10) = 01.

92

2.6.4 Extracting an equivalent acyclic implementation

If a network is constructive, then the network never enters the unstableDomain.

Hence, the positive components F1 ofeach outputand flip-flop inputgives the corresponding

Boolean function that needs to be implemented. Since we represent these Boolean functions

by BDDs, we can easily translate these BDDs to multi-level circuits.

An important point is that the new circuit contains the same set of flip-flops and

uses the same state encoding; the only difference is that the cyclic combinational part has

been replaced with an equivalent acyclic implementation. Contrast this to the procedure

for sequentially output-stable networks, where the new circuit may have a different num

ber of flip-flops; this is inherent in the fact that in the extended fundamental mode, the

combinational part can store state.

2.6.5 Generating an error trace

We wish to generate an input sequence demonstrating why a network is not con

structive. If a network is not constructive, then reachability analysis provides a reachable

unstable state. We simply work backwards starting from the unstable state to find a se

quence of inputs back to an initial state. The process of generating an error trace is the

same as that used in formal verification tools [31].

2.6.6 Constructivity in the presence of an environment

To test constructivity for a network N with respect to an environment Mq, the

reduced transition graph Gn must be derived from the product of Mq and Gn. Mq serves

to restrict the runs of Gn-

2.7 Proofs

2.7.1 Proof of Theorem 2.24

In this section, we prove that the three statements of Theorem 2.24 are equivalent.

Proposition 2.81 proves the equivalence of statements 1 and 2 (where Proposition 2.23 is

used for statement 1), and Proposition 2.84 proves the equivalence of statements 2 and 3.

Some intermediate lemmas are needed as well to prove the result.

93

Proposition 2.81 For complete network N,

Va, there exists a unique d such that V6 6 Bm,V6' € out(Ra(b)), b'io = d

if and only if

Va, there exists a unique d such that V6 6 Bm,t^bio = d.

Proof We first prove the forward implication ofthe proposition, except for the uniqueness

claim. Let a € Bn. Choose dtosatisfy the hypothesis. Let 6€ Bm. By Theorem 2.19, tfb=
lub out(Ra(b)). Thus t*hU> = (lub out(Ra(b)))i0. By hypothesis, V6' € out(Ra(b)),b'lo =

d. Hence, (/«6 out(Ra(b)))io = d.

We now prove the reverse implication of the proposition, except for the uniqueness

claim. Let a € Bn. Choose d to satisfy the hypothesis. Let b € Bm. By Theorem 2.19,

tB>b = lub out(Ra(b)), and thus d= tB[blo = (/«& out(Ra(b)))lo- Since d is binary, this
implies that V6' € out(Ra(b)), b'io = d.

Toshow uniqueness in the forward implication, we simply argue by contradiction

using the construction given for proving existence in the reverse implication. To show
uniqueness in the reverse implication, we do the opposite. •

Lemma2.82 is the key to proving the completeness ofstatement 3 ofTheorem 2.24.

Lemma 2.82 Let N be a complete network. Then Va, 36 such that AlgA(a, b) = $m.

Proof Let a € Bn. Recall in Algorithm A that

s° := 6,-, and

s? := /w6{s?-1,S,(a-s/l-1)}.

Construct b as follows. Consider first an input-delay vertex labeled st- that is driven by
input Xj. Let 6t- = aj. Since St- = Xj = aj, then:

sj = 6,- = aj, and

sj = lub{s?,Si(a-s°)} = lub{aj,aj} = $.

Hence, after the first iteration, each input-delay variable is set to $.

Next consider a gate variable S{ driven by wire variables wi,W2,...,Wk. Choose

an arbitrary initial assignment for t0i,ti/2,..Mti;jb, say &i,62,.. .,&*. (Note that Wj, for

94

1 < j < k, only fans out to gate s,- since N iscomplete, so no other gate is constraining the

value of Wj.) If S,(a-6) = a, then let 6t- = a. Then,

s° = b{ = a, and

sj = lub{s1,Si(a-s°)} = lub{ai,a} = $.

Hence, after the first iteration, each gate variable is set to $.

At this point, we have constructed the initial value 6,- for each variable, but we

have not shown that the wire variables are forced to $ in Algorithm A. Consider a wire

variable st driven by gate variable Sj. Then,

s2 = lub^lSifa-s1)} = /w6{sj,s}} = lub{s],<P} = <P.

That is, after iteration 1, every gate is driven to $, so that after iteration 2, every wire

variable is guaranteed to be driven to $. •

Lemma 2.83 In Algorithm B, let t? and t§ be two different starting points. 7/tJ Qt§, then
*i E tj, for all h>0, where h is the iteration number in Algorithm B. That is, Algorithm
B is monotonic.

Proof By induction on h. The basis is provided by the hypothesis. Suppose tf C t^.
Then tx+1 = S(a-tf) CS(a-tJ) = tj+1, where the inequality follows by the monotonicity
of 5. (Note that Algorithm B is not guaranteed to converge for an arbitrary t? or t§,
because neither t? nor t§ is assumed to be ternary stable.) •

Proposition 2.84 For complete network N,

Va, there exists a unique d such that V6 6 Bm, t^64.c> = d

if and only if

Va, there exists a unique d such that AlgB(a,$m)io = d.

Proof We first prove the forward implication of the proposition, except for the unique
ness claim. Let a € Bn. Choose d to satisfy the hypothesis. Hence, V6 € Bm,tf6|0 =
d. Choose b to satisfy Lemma 2.82. Thus, AlgA(a,6) = $m. Hence, d = tB^io =
AlgB(a, AlgA(a, b))io = AlgB(a, $m)io.

95

We now prove the reverse implication of the proposition, except for the uniqueness
claim. Let a€Bn. Choose dto satisfy the hypothesis. Hence, AlgB(a,$m)|o =d ($m is
ternary stable, so Algorithm Bis guaranteed to converge on input a, $m). By Lemma 2.83,
Vt C$m, AlgB(a,t) CAlgB(a,$), which implies AlgB(a,t)|c? CMgB(a,$)io = d, which
implies AlgB(a,t)|0 = dsince dis binary. Let 6€ Bm. Since AlgA(a,6) C$m (trivially),
then AlgB(a, AlgA(a,6))|0 = tf>6|0 = d.

To show uniqueness in the forward implication, we simply argue by contradiction
using the construction given for proving existence in the reverse implication. To show
uniqueness in the reverse implication, we do the opposite. •

2.7.2 Proof of Proposition 2.27
Proof Consider Algorithm Bfor N. Ifthe excitation ofsm never changes, i.e., ifSm(a-t') =
*m = am, for 0 < i < B, then the proposition holds trivially (because the successors of sm

cannot see a difference). Hence, assume Sm(a-t') changes for the first time at step r > 0.

From the monotonicity of Algorithm B, the fact that Sm does not depend on any input

excitations, and the assumption that sm wasstable in total state a-s, we can conclude that

Q . ^ i Jm = $ if i < r,M<) =| '"
if i > r, where ex € B.

From this and the definition of Algorithm B, it follows that

i; _ f $ if t <r+1,
y ex if i > r + 1.

Clearly, t*- = tj; for 1 < j < m - 1 and 1 < i < r, because up until and including round

r, there is no difference between Sm and tm. Since Sm(a-t) does not depend on tm (by

definition of a legal reduction variable), it follows that for i<rwe have

Sm(a-t''.*) =Sm(a.tl'-$) =Sm(a-tl) =| * **<^
y a if i = r.

However, by the monotonicity of Algorithm B, tr 3 ix for i > r. Since Sm is monotone, it

follows that

, .; x f ^ if i < r,Sm(a-t«-a) = ^
ex if t > r.

96

Consequently, tm "follows" Sm by at most one round:

tjn3Sm(a-tt'-a)3t^1 (2.1)

We now proceed by induction on i to show that

tj- 3 tj 3 tj+1,for 1< j < m- 1. (2.2)

For the basis, observe that tj = Sj and Vj = Sj for 1 < j < m- 1 (i.e., N and N have
the same starting point). By the monotonicity ofAlgorithm B, t0 3 t}, so the basis holds
(t° 3 i°j 3 tj). Assume inductively that tj 3 tj Dtj+1,for 1< j < m- 1. This hypothesis,
the monotonicity of S, and the monotonicity of Algorithm B, yield for 1 < j < m - 1

S.-fa-f) (by definition)

3 SiCa-t'-ti,) (by I.H. and mono, of S)

3 Sj(a-tt'.Sm(a-t1' -a)) (by LHS of (2.1) and mono, of S)

= Sj(a-ix) (by definition)

D Sj(a-V-t^) (by RHS of (2.1) and mono, of S)
3 Sj(a-tx+i) (by RHS of I.H. and mono, of S)

=

«+2 (by definition)

and the induction goes through.

Given (2.2) and the fact that Algorithm B converges, it follows immediately that
tf = if for 1< j < m- 1. •

2.7.3 Proof of Proposition 2.29
Proof Consider a vertex u,- of the circuit graph. The proof is by induction on the depth
of V{ in N.

Base: depth(v{) = 0: Since the depth of u, is zero, it has a corresponding state variable,

say s,-, in N. By Proposition 2.28, tf = if. By Definition 2.8, for a vertex of depth 0,
tf = Fi(a-iB).

I.H.: For all j < k, where depth(v{) = j, tf = F,(a-tB).

I.S.: Suppose vertex ut- has depth A:, with vertex function V,, and corresponding state
variable st- in N. Since the result of Algorithm B is ternary stable,

tf = S,(a-tB).

97

In a complete network, the excitation function and vertex function are the same for any
vertex. Hence,

tf = Vt(a-tB)

= V,(a-tf-t?.....t£).

By the induction hypothesis,

tf = Vi(a-Fi(a-iB)-F2(a-iB)-... -Fm(a-iB)).

Finally, by the definition of circuit equation,

tf = F,(a-tB).

2.7.4 Proof of Theorem 2.45
Proof Consider a reachable state ao-b. Without loss of generality, assume ao-b is stable.

Suppose (ao'b,ai-b') € Tn, where ai-b' is unstable. Since b' is unstable, ai-b' must belong

to a nontransient cycle (ai -bo, ai-bi,..., ai-bk-i), where b' = b{ for some 0 < i < k -1, and

b{Raibi+i forO<i<k-l (subscripts are always modulo k). (Recall that jRQi is the GMW

relation for the input held constant at a\.) Thus, (ao-b,ai-6,) € Tn, for 0 < i < k - 1.

This is depicted in Figure 2.51a, where the solid arcs indicate GMW transitions, dotted arcs

indicate transitions of Tn, and wavy arcs indicate a sequence of GMW transitions, holding

the input constant.

Suppose the next input is a2, and let 02•&*+,- be an outcome state of 02-6,, for

0 < i < k - 1. Hence, with or without ASMP, (ai-6,-,a2•&*+») £ Tn- However, without

ASMP, when ai changes to a2, it is also possible for &,- to change to 6,+i simultaneously.

This gives rise to the additional transitions (ai-6,-,a2-6fc+t+i) (see Figure 2.51b).

Since the set of transitions without ASMP contains the set with ASMP, if N is

not sequentially output-stable with ASMP, then clearly it is not sequentially output-stable

without ASMP.

Hence, it remains to show the converse: the additional transitions alone cannot

cause a network to be not sequentially output-stable. Consider the runs of length two

starting from state a0-b. Let type I runs be those present with or without ASMP. These

have the form

a0-b,ai-b{,a2'bk+i, for 0 < i < k— 1.

aob

(a)

a0b «£--

(b)

a2bi+i

a2b{

a26,_i

a2bi+1

a2bi

a26,_]

-*K

a2h+i+i

a2bk+i

a2bk+i-i

-Ck.

a26jt+,+i

a2bk+i

a2bk+i-i

Figure 2.51: a) Runs with ASMP. b) Runs without ASMP.

98

99

Let type II runs be those present only without ASMP:

a0-b,ai-bi,a2'bk+i+i, for 0 < i < k - 1.

Wesay that two runs differ if they havedifferent output componentson the sameclock cycle.

Without lossof generality, assume that all internal state variables are outputs. Suppose N

without ASMP is not sequentially output-stable. There are three cases to consider.

Case 1: Two type I runs differ. Since N with ASMP contains all type I runs, then N with

ASMP is also not sequentially output-stable.

Case 2: A type I run 71 differs from a type II run 72. Suppose

7i = a0-b,ai-bi,a2'bk+i, and

72 = a0-b,ai-bj,a2-bk+j+i.

Consider also the type I runs

73 = a0-b,ai-bj,a2-bk+j, and

74 = a0-b,ai-bj+i,a2-bk+j+i.

If Ti and 72 differ because 6,- ^ bj, then the type I runs 71 and 73 differ. Likewise, if 71 and

72 differ because 6*+t- / fyb+j+i, then 71 and 74 differ. In either case, this shows that N

with ASMP is also not sequentially output-stable.

Case 3: Two type II runs 71 and 72 differ. Suppose

71 = a0-b,ai-bi,a2-bk+i+i, and

72 = a0-b,ai-bj,a2-bk+j+i.

Consider also the type I runs

73 = a0-b,ai-bi,a2'bk+i,

74 = a0-b,ai-bj,a2-bk+j,

75 = a0-b,ai-bi+i,a2-bk+i+i, and

76 = a0-b,ai-bj+i,a2-bk+j+i.

If 71 and 72 differ because 6,- ^ bj, then the type I runs 73 and 74 differ. Likewise, if 71 and

72 differ because 6jb+t+i ^ bk+j+i, then 75 and 76 differ. In either case, this shows that N

with ASMP is also not sequentially output-stable. •

100

2.8 Summary and future work

We have presented a formal classification of synchronous circuits based on their

input/output behavior, which takes into account the effects of combinational cycles. This

analysis is grounded in the up-bounded inertial delay model.

Generally speaking, a circuit is output-stable if for every input sequence, the circuit

produces a unique, stable output sequence. This general notion is formalized in three

different classes of circuits, giving a tradeoff on the time to decide the class, versus the

permissiveness of the class.

The easiest class to decide, and the most conservative, is combinational output-

stability. This class assumes that all flip-flop states are reachable, and it ignores the state-

holding ability of the combinational part of the circuit. BDD-based ternary simulation is

used to decide this class.

The most difficult class to decide, and the most permissive, is sequential output-

stability. This class takes into account the state-holding ability of the combinational part,

and distinguishes between behavior in the reachable and unreachable state space. Because

of the aggressive nature of this class, we must assume that the inputs do not glitch; conse

quently, the class of sequentially output-stable circuits is not closed under composition. The

decision procedure for this class first constructs the transition graph based on the GMW

relation, then builds the quotient machine of the graph with respect to bisimulation, and

finally, tests the quotient machine for deterministic behavior.

The last class, constructivity, falls between the other two classes in the time to

decide the class, and the degree of permissiveness. It distinguishes between behavior in the

reachable and unreachable state space, but does not permit the combinational part to hold

state. However, due to this last restriction, the inputs are not required to be glitch-free,

and consequently, this class is closed under composition. This class exactly coincides with

the class of constructive Esterel programs.

For each of the three classes, if a circuit falls within that class, then we provide a

method to produce a new circuit with the same I/O behavior, and without combinational

cycles. This is an important feature, as many high-level CAD tools do not accept circuits

with combinational cycles.

If a circuit does not fall within a given class, then we provide a procedure to

generate an error trace, giving a sequence of inputs that demonstrate why the circuit fails.

101

Lastly, information about the environment, if known, can be taken into account in a refined

analysis.

There are several directions that future work can take. The first is to extend the

analysis in the following ways.

1. Allow transistors and tri-state devices.

2. Allow multi-phase clocks.

3. Allow alternate delay models, such as bi-bounded inertial delay and fixed ideal delay.

The second avenue of future work is to refine the methods we have presented. For

example, it would be interesting to formulate an implicit procedure for deciding sequential

output-stability, possibly employing ternary simulation. Also, for output-stable circuits, it

would be useful to derive an acyclic implementation that preserves as much structure of the

original circuit as possible, so that the changes are not as drastic.

The third direction is to define new classes of output-stable circuits, with different

properties. For example, following the spirit of Singhal's work [32], one could ignore unstable

behavior for the first k clock cycles, to allow a circuit enough time to be reset. Another

possibility is to define a class strictly larger than constructivity, but which is still insensitive

to glitching.

Chapter 3

Formula-Dependent Equivalence

for Formal Verification

102

3.1 Introduction

Formal design verification is the process of verifying that a design has certain

properties that the designer intended. A well known verification technique is computation

tree logic (CTL) model checking. In this approach, a design is modeled as a finite state

machine (FSM), properties are stated using CTL formulas, and a "model checker" is used

to prove that the FSM satisfies the given CTL formulas [33]. The complexity of model

checking a formula is linear in the number of states of the FSM.

Oftentimes, large designs are constructed by linking together a set of FSMs. The

straightforward approach to model checking such a design is to first form the product of the

component FSMs to yield a single FSM, and then proceed to model check this single FSM.

However, the size of the product machine can be exponential in the number of component

machines, and hence the model checker may take exponential time. This is known as

the "state explosion problem" when using explicit representations, or the "representation

explosion problem" when using implicit representations, like BDDs (see Section 1.1.3). As

it turns out, we cannot hope to do better than this in the worst case, because the problem

of model checking a system of interacting FSMs is PSPACE-complete [26].

Our goal is to develop an algorithm that alleviates the explosion problem by iden

tifying equivalent states in each component machine. These equivalent states are then used

REQ IDLE ACK IDLE

M'

0H*^J-^^/^3^»U
REQ IDLE ACK IDLE

0

103

0

2)M^T-

Figure 3.1: Finite state machine M with inputs 0 and 1 and outputs req, ack, idle and
EOT. The symbol T means "true", the union of all input assignments.

to simplify the components before taking their product, thus leading to a smaller prod

uct machine. It is well known that bisimulation equivalence is the coarsest (or weakest)
equivalence that preserves the truth of allCTL formulas [34]. However, in general we are

interested in model checking a system with respect to just a few formulas, and hence pre

serving all CTL formulas is stronger than needed. Thus, we investigate a formula-dependent

equivalence that preserves the truth of a particular formula of interest, but possibly not of

other formulas. This leads to a coarser equivalence, and thus to a greater opportunity for

simplification. If an explicit representation is used for the FSMs, then this equivalence is

used to form the quotient machines of the components. If BDDs are used, then the equiva

lence is used to define a range of permissible transition relations, among which we want to
use the one with the smallest BDD.

Consider for example the Moore FSM M described in Figure 3.1. The CTL for

mula <j> = VG(REQ -• VFack) expresses the property that every request is eventually

acknowledged. The behaviors from state 1 and 5 are different because states 4 and 8 pro

duce different outputs. However, since there are no behaviors from states 4 and 8 where

REQ is produced, then <j> is always true at these states. Hence, states 1 and 5 can actually

be merged, with respect to <j>. Consequently, M can be replaced by the 5-state machine M'\

verifying <f> on a product machine containing the component M is equivalent to verifying <f>
on the product machine with M replaced by M'.

The approach we have developed can be applied to any formula of CTL. Thus,

we can handle formulas that refer to atomic propositions of any number of the component

machines, and the formulas can be nested arbitrarily. The approach is fully automatic and

it is exact, in that it returns exactly the set of product states satisfying the formula of

interest. Finally, in some cases the approach can detect if a formula passes or fails, without

104

composing all the component machines.

Section 3.2discusses related work, and Section 3.3 presents some preliminaries. In

Section 3.4 wedevelop our formula-dependent equivalence, and in Section 3.5 we discuss how

this equivalence can be used to simplify compositional model checking. Finally, Section 3.7

mentions future work and gives a summary, and Section 3.6 contains the proofs of the

theorems.1

3.2 Related work

Other researchers have addressed the problem of reducing the complexity of model

checking. As mentioned in the introduction, bisimulation preserves the truth of all CTL

formulas, and hence can be used to identify equivalent states to derive smaller component

machines. This technique has been used by [36].

Clarke et al. presented the interface rule, which can be applied when a CTL

formula refers to the atomic propositions of just one machine, the "main" machine [37]. In

this case, the outputs of the other machines, which cannot be sensed by the main machine,

can be "hidden". After hiding such outputs, some states in the other machines may become

equivalent, and hence the number of states can be reduced. This technique is orthogonal

to our approach, and thus the two approaches could be combined. In general, any output

not referred to by the formula, and not observable by other machines, can be hidden.

Griimberg et al. defined a subset of CTL, known as ACTL, which permits only

universal path quantification, and not existential path quantification [38]. They go on to

develop an approach to compositional model checking for ACTL. If an ACTL formula is

true of one component in a system, then it is true of the entire system. Thus, in some

cases the full product machine can be avoided. However, the formula may be true of the

entire system, without being true of any one component in isolation, i.e., their approach is

conservative, and not exact. In this case, some components must be composed, and the

procedure repeated. The user has the option of manually forming abstractions for some of

the machines. If the formula is false, then the product machine must always be formed. An

asset of this approach is that it handles fairness constraints on the system.

Dams et al. have also devised an approach using ACTL [39]. Like our method,

they compute an equivalence with respect to a single formula. Although they are limited to

'This chapter is largely taken from [35].

105

formulas ofACTL, it may turn out that coarser equivalences are possible by restricting to
a subset of CTL. They do not address how their equivalence can be used in compositional
model checking, where a formula may refer to theatomic propositions ofseveral interacting
machines.

Our experience indicates that existential path properties are useful for determining
if a system can exhibit a certain behavior. This is especially true when ascertaining if the
environment for a system has been correctly modeled so that it can produce the stimuli of

interest. Hence, we are interested in techniques that can handle full CTL.

The work of Chiodo et al. [40] has similar aims as ours, and the current work can

be seen as an outgrowth of that work. Both approaches are exact, fully automatic, and

formula dependent. We have extended Chiodo's method (see Section 3.5.3), and have cast
our extension as an equivalence on states.

3.3 Preliminaries

3.3.1 Finite states machines

The systems that we want to verify are synchronous, interacting Moore FSMs, as

defined in Section 1.1.2. Each component FSM receives a set of binary-valued inputs, and
produces another set of binary-valued outputs. For the purposes of this discussion, we omit

the initial states / and the output alphabet Eo from the specification of an FSM. Hence,
an FSM is a 6-tuple M = (S,X, £/, O, O, T), where, as a reminder,

• S is a finite set of states,

• X is the set of input signals,

• £/ is the set of assignments to X,

• O is the set of output signals,

• O is the output function, and

• T is the (complete) transition relation.

106

3.3.2 Computation tree logic

Computation tree logic is a language used to describe properties of state transi

tion systems. We are interested in checking CTL formulas that describe properties of the

composition of a set of interacting FSMs. Since the composition of a set of FSMs is again

an FSM, we give the syntax and semantics of CTL for a single FSM M. We allow two types

of atomic propositions:

1. each output variable is an atomic proposition, and

2. each subset of states is an atomic proposition

The second type arises naturally when recursively checking formulas. With this, the set of

CTL formulas is defined inductively as follows.

Definition 3.1 CTL syntax:

• p is a CTL formula, where p is an output variable or a subset of states, and

• ifVi and fa areCTL formulas, then soare -yfa, faVfa, 3Xfa, 3Gfa, and 3[fa U fa].

m

Note that inputs are not allowed as atomic propositions. However, by modeling an input

by an FSM whose output describes the expected behavior of the input, one can implicitly

use an input as an atomic proposition.

The semantics of CTL is usually defined on finite Kripke structures, which are

directed graphs where each node is labeled by a set of atomic propositions [33]. To extend

these semantics to FSMs, we just ignore the labels on the transitions of the FSMs, and we

view the outputs as atomic propositions. Let M = (S,X,T,i,0,0,T) be an FSM. A path

from state xo is an infinite sequence of states xo£i£2 •.. such that for every i, there exists

an a € £/ such that (x,-, a, xi+i) € T. The notation M,x0 |= <f> means that <f> is true in state

xo of FSM M. The semantics of CTL is defined inductively as follows.

Definition 3.2 CTL semantics:

• M,x0\= p, where p 6 O, iff p € O(x0).

• M, xq |= p, where p C S, iff x0 Gp.

107

• M, xo \= ->fa iff M, xoftfa.

• M, x0 |= fa V fa iff M, a?o |= fa or M, x0 |= fa.

• M, a?o h 3A"0i iff there exists a path xo^i«2 •••such that M, xi f= fa.

• M, xo |= 3G0i iff there exists a path x0^i^2•••such that for all i, M, X{ |= fa.

• M,a?o |= 3[fa U fa] iff there exists a path x$x\X2... and some %> 0 such that

M, Xi \= fa and for all j < i, M,Xj \= fa.

For example, in machine Mi xM2 of Figure 1.2,state (1,2') satisfies the formula 3G(-*pA->q),

whereas none of the other states do. The expression BFip is an abbreviation for 3[true U fa,

where true is a logical tautology.

Our objective is to solve the following problem.

Definition 3.3 Let M = (S, X, Ej, O, O, T) be an FSM, and let ^ be a CTL formula. The

CTL model checking problem is to determine all states x GS such that M, x (= (f>. •

3.4 Formula-dependent equivalence

3.4.1 Overview

Our goal is to define an equivalence on the states of each component machine

that is as coarse as possible with respect to a given CTL formula <f>, while being efficiently

computable. Section 3.5 explains how we intend to apply this equivalence to model checking,

but the main idea is to merge equivalent states to minimize the size of each component.

The minimized machines are then composed. Optionally, the product can be computed

incrementally by composing a few of the minimized machines, and then computing a new

equivalence for this sub-product. When the top level is reached and just a single machine

remains, the usual CTL model checking algorithm is applied to determine the states that

satisfy <j>.

Our formula dependent equivalence can be best explained by comparing it to

bisimulation ("strong bisimulation" of Milner [27, p. 88]).

108

Definition 3.4 Given an FSM M = (S,X,T,j,0,0,T), the bisimulation equivalence rela

tion, denoted by ~, is the coarsest equivalence relation satisfying the following:

For all x, y € 5, x ~ y implies

• 0(z)=0(y),and

• for all a € £/

- whenever iAt, then for some w, y A w and t ~ w, and

- whenever y A w, then for some t, x A t and t ~ w.

The soundness of this definition follows from the observation that the class of equivalence

relations satisfying the above definition contains the identity, and is closed under union. In

tuitively, twostates are bisimilar if their corresponding infinite computation trees2 "match".

This means that the two states have the same outputs, and on each input, the two states

have next states whose infinite computation trees again match.

We use the notion of PASS and FAIL states to ease the strict requirement of

bisimulation that the infinite computation trees of two states match. Loosely, if a state is

a PASS* state with respect to a CTL formula <j>, then it satisfies <j> in all environments;

likewise, if a state is FAIL*, then it does not satisfy <j> in any environment. Given PASS*

and FAIL* states, the first modification to bisimulation we make is that subtrees rooted

at FAIL* states are ignored. This means that transitions to FAIL* states from one state

need not be matched by the other state. This works because only potential witnesses to a

formula need to be preserved. The second modification is that two states are equivalent if

they are both PASS* states. A consequence of this is that whereas bisimulation requires

the infinite computation trees of next states (for a given input) to match, now it is sufficient

that the next states are both PASS* states. This is what we mean by two infinite trees

matching up to PASS* states. Essentially then, we say that two states are equivalent with

respect to <j> if

1. they are equivalent with respect to the immediate subformulas of <f>, and

The infinite computation tree of a state is formed by "unrolling" the FSM starting from that state.

109

Figure 3.2: Infinite computation trees of states x and y. "P" indicates a PASS* state, and
"F" indicates a FAIL* state.

2. either they are both PASS* states or both FAIL* states, or the infinite computation

trees of the two states match up to PASS* states, ignoring all subtrees rooted at

FAIL* states.

This last point is illustrated in Figure 3.2, which shows the computation trees from two

states, x and y. Subtrees rooted at FAIL* are ignored, while corresponding subtrees rooted

at PASS* states are sufficient to declare a match of the subtrees.

3.4.2 PASS* and FAIL*

Before formally defining our equivalence relation, we define the PASS* and FAIL*

sets. For a given formula <f>, PASS* and FAIL* sets are defined for each component. In the

following definition, we assume a system ofjust twocomponents, M and M'. In defining the

PASS* and FAIL* sets for M, M' is referenced because the atomic propositions in <j> may
refer to M'. The symbols pQ and pi are used to distinguish those output atomic propositions

produced by M and those produced by M', respectively.

Definition 3.5 Let M = (S,X,Ej,0,0,T) and M' = <S', A", £'/5 0', O', T') be FSMs,

and let 0 be a CTL formula. Let p0 € O, p{ € O', and ps C S x S'. PASS* and FAIL* for

M are subsets of 5, as follows:

<f>
Pi

i^;

fay fa

3Xij>

3G$

3[faUfa]

Figure 3.3: Illustrating PASS* and FAIL*, and the fact that S* is coarser than bisimulation.

PASS*
FAIL*

PASS*

FAIL*

PASS*
FAIL*

PASS*

FAIL*

PASS*

FAIL*

PASS*
FAIL*

PASS*

FAIL*

PASS*

FAIL*

p ^*p

0

0

{xes\poeO(x)}
{xeS\p0tO(x)}
{xeS\W€S',(x,J)€p.}
{xes\vs'es',(x,s')<tps}
FAIL*

PASS*

PASS*1 U PASS**
FAIL*1 n FAIL**

{x g 5|Va € £/, 3t € PASS* s.t. x A t}\x t j|va ^ 2^/, 3t £ rAS^ s.t. a; -» t)
{xq € 5|for every path xqX\X2 ♦ ♦., a?i € FAIL*}
greatest fixed-nnint. nf: Rn = PAG.C!*-

v-,j .— |— j t .wmwjw^ ..., ^,A

greatest fixed-point of: RQ = PASS*;
Ri+i = Rjn{xe 5|Va 6 £/, 3t € fl, s.t. x A t}
{xo € 5|for every path xo^i«2 •••, there exists i > 0

s.t. a?,- € FAIL*}
least fixed-point of: R0 = PASS*7;
Ri+i = R{U{xe S\x € PASS*1, and Va e E/,

Bt € Rj s.t. iAt)
{a?o £ 5|for every path £02:12:2 ..., either

1) there exists i > 0 s.t. X{ € FAIL*1 and
Vj <i,Xje FAIL**, or

2) Vi>Q,XieFAIL**}

110

As an example of PASS* and #4/L*, consider the FSM in Figure 3.3. For if> = p,
states 1, 2, 3, 5, 6 and 7 lie in PASS* and states 4 and 8 lie in FAIL*. For <£ = 3Gp, states 3
and 7 lie in PASS*, while states 4 and 8 lie in FAIL*, and states 1, 2, 5 and 6 lie in neither.
The following proposition says that, indeed, if x is in PASS*, then any product state with

a; as a component satisfies <f>. The proof is given by Proposition 3.14 in Section 3.6.2.

Proposition 3.6 Let <f> be a CTL formula, and let x be a state ofM. If x € PASS*, then
for every FSM M', and every state t ofM', M x M',(x,t) \= <f>. Likewise, if x € FAIL*,

Ill

thenMxM',(x,t)^<f>.

Note that the converse is not true. For example, consider a component M and the

formula <f> = qA-»q, where q is an output of some other component. Then FAIL* for M is

empty (because FAIL* and PASS* are empty by case pi ofDefinition 3.5), even though <f> is
not satisfiable (i.e., for any component M', no state in M x M' satisfies <f>). However, this

weakness in the definition of FAIL* makes it tractable to compute. In fact, strengthening
the definition of FAIL* so that the converse of Proposition 3.6 holds would make FAIL*
EXPTIME-hard to compute.

Proposition 3.7 Let <f> be a CTL formula, and let x be a state ofM. Suppose FAIL* was
defined such that then for every FSM M', and every state t ofM',

M x M', (x, t) ft <j> iff x e FAIL*.

Then, FAIL* would be EXPTIME-hard to compute.

Proof Thereduction isfrom CTL satisfiability, which isknown to be EXPTIME-complete

[41]. To check if a formula <f> is satisfiable, compute FAIL* for the component M shown in
Figure 3.4, which has no outputs, and which is not referred to by <j>.

Claim: x 6 FAIL* if and only if <j> is not satisfiable.

Since M has no outputs, and its one transition is always enabled, then composing
M with another component M' does not alter the transition relation of M'. That is, M'

and M x M' are isomorphic. Thus, for any state t of A/', and for any formula 4>,

MxM',(x,t)^=(l>ffiM',t\=(f>.

(=>) If x € FAIL*, then (by supposition) for any state t of any FSM M', M x
M', (x,t)ft 4>, and hence M', t ft <j>. Thus, <j> is not satisfiable.

(<=) If <f> is not satisfiable, then for any state t of any FSM M', M',t ft <f>, and
hence M x M', (x, t) ft <j>. Thus, x € FAIL*, m

Thus, satisfiability could be answered if we could compute FAIL* exactly. Simi

larly, since x € FAIL* if and only if x € PASS"*, the same reduction shows that PASS*
would also be EXPTIME-hard to compute.

iT

x

112

Figure 3.4: Component machine used to show that computing FAIL* exactly is EXPTIME-
hard.

3.4.3 Equivalence relation S*

Now we formally define our equivalence relation.

Definition 3.8 Let M = (5,*,£/,<9,0,T) and M' = (S^X'^O^CV) be FSMs,

and let ^ be a CTL formula. The equivalence relation S* on the states of FSM M is the

coarsest equivalence relation satisfying the following.

For x,yeS, £*(x,y)\ff:
Case 4> = pi: (x, y) e S x S.

Case <f> = p0: x € FAIL* and y € FAIL* or x GPASS* and t/ 6 PASS*.

Case 0 = ps: for all s' € S', (x,s') e p3 iff (y, s') € ps.

Case<£=-^: S*(x,y).
Case 4> = faVfa\ S*1 (x, y) and £^ (x, y).

Case <j> = 3Xfa S*(x, y) and

1. a? 6 FAIL* and y € F4/L*, or a: € JMS5* and y € P4SS*, or
2. O(x) = O(y), and for all a e £/

• whenever a: A £and t £ FAIL*, 3w s.t. y A wand £^(t,w), and
• whenever yA wand iu £ F>l/2^, 3* s.t. a: A *and ^(t, w).

Case <f> = 3Gfa S*(x,y) and

1. x € F^/I* and y € E4/L*, or x € JMSS* and t/ € P4SS*, or
2. O(s) = 0(y), and for all a <E £/

• whenever a; A i and i £ FAIL*, 3w s.t. yA wand £*(*, w), and
• whenever y A wand iu £ F47I*, 3* s.t. a: A *and S*(t, w).

Case <£ = 3[fa U fa]: E*1 (x, y) and €** (x, y) and

1. a? € F4/Z* and y € F4JX*, or a: € P4S.S* and y <= P>155*, or
2. O(x) = O(y), and for all a <= £/

•whenever a: A *and t g FAIL*, 3w s.t. yA w and £*(*, w), and
•whenever yA w and w £ Jtt/L*, 3* s.t. xA t and £*(*, w).

113

apq apq apq

Mi x M2

Figure 3.5: Equivalence on subformulas is required. Only the states reachable from (1, l7)
and (4,l7) are shown in Mi x M2.

In a manner similar to Milner, we can show that E* is the maximum fixed-point of a

certain functional (see Lemma 3.21 of Section 3.6.3.1). Hence, using a standard fixed-point

computation, E* can be computed in polynomial time.

Notice that E* requires equivalence on all subformulas. As the following example

shows, this requirement is warranted. Consider Mi in Figure 3.5. For </> = 3F(pA3F(pAq)),
states 2, 3 and 5 lie in FAIL*, as detailed in Table 3.1. So with respect to <f>, the infinite

computation trees of 1 and 4 match when FAIL* successors are ignored, and if we did not

require equivalence on subformulas, they would be £*-equivalent. However, if we were to

compose Mi with M2, we see that (j> holds in state (1, l7) but does not hold in state (4, l7).

Thus, it would be wrong to have 1 and 4 be £*-equivalent. Requiring equivalence on all

subformulas fixes this problem (in particular, 2 and 5 are distinguished by 3F(pAq) because

they differ on an output, namely a, and this in turn causes 1 and 4 to be distinguished).

3.4.4 Properties of E*

Since we define CTL so that formulas may refer directly to states via atomic

propositions, then any formula-independent equivalence (e.g., bisimulation) will distinguish

every pair of states, whereas E* may make some states equivalent. However, even if we

could not refer to states, E* is still coarser than bisimulation. As stated earlier, one reason

<t> PASS* FAIL* equiv classes

1 V {1,4} {2,3,5} {1,4},{2,3,5}
2 V {2,3,5} {1,4} {1,4}, {2,3,5}
3 a 0 0 {1,2,3,4,5}
4 pAq 0 {1,4} {1,4},{2,3,5}
5 3F(pAq) 0 0 {1},{4},{2,3,5}
6 p A3F(p Aq) 0 {2,3,5} {1},{4},{2,3,5}
7 3F(pA3F(pAq)) 0 {2,3,5} {1},{4},{2,3,5}

Table 3.1: Equivalence classes for Mi of Figure 3.5 on 3F(p A 3F(p Aq)).

PMx

114

Figure3.6: E* equivalence is incomplete. The input to Mi is q, and the output is p. States 1
and 3 can be safely merged with respect to the formula <j> = 3Gq.

for this is that the subtrees rooted at FAIL* states are ignored. This is illustrated in Figure

3.3: if <f> = 3Gp, then 4 is a FAIL* state, and thus 1 and 5 are £*-equivalent; however, they

are not bisimilar.

On the other hand, there are cases where E* distinguishes two states that could

actually be merged. Consider the FSM Mi in Figure 3.6 and the formula 4> —3Gq, where q

is an output of some component not shown. Since q is an input to Mi, the sets PASS* and

FAIL* are empty, and hence E* reduces to bisimulation. States 1 and 3 are not bisimilar

because 2 and 4 have different outputs, and thus 1 and 3 are not £*-equivalent. However,

q must be false to reach states 2 and 4, and thus the difference between states 1 and 3 does

not affect the validity of <f>. Hence, states 1 and 3 could be merged with respect to <f>, but

E* will not merge them.

The following proposition says that £*-equivalent states cannot be distinguished,

with respect to <f>, by any environment. This is key in proving Theorem 3.11, the theorem

of correctness. The proof is given by Proposition 3.14 in Section 3.6.3.2.

Proposition 3.9 Let <f> be a CTLformula, and let x andy be states ofM such that E*(x, y).

Then for any state t of any FSM M': M x M', (x, t) ft <j> iff M x M', (y, t) ft <f>.

115

As an aside, note that the converse of Proposition 3.9 is not true. In fact, just

because twostates cannot be distinguished with respect to <j> by any environment, this does

not imply that they can be merged. Forexample, consider Mi in Figure3.5,and the formula

<f> = 3F(p A3F(pAq)). As stated earlier, states 2 and 5 lie in FAIL*, and thus for any

state t of any FSM M', Mx x M', (2, t) ft <f> iff Mx XM', (5, t)ft<f> (i.e., by Proposition 3.6,

neither (2, t) nor (5, t) satisfies <j>). However, ifwe were to merge states 2 and 5 into a single

state, states 1 and 4 would become equivalent. But, as discussed earlier, it would be wrong

to have 1 and 4 be £*-equivalent.

3.5 Application of £* to model checking

3.5.1 Compositional model checking

The equivalence relation E* can be used to manage the size of the transition

relations encountered in compositional model checking. The assumptions are that each

component machine is relatively small and easy to manipulate, and that the full product

machine is too large to build and manipulate. The general idea is to minimize each com

ponent machine, with respect to E*, before composing it with other machines. We can

incrementally build the product machine by composing machines into clusters, and again

applying minimization to each cluster. When just one machine remains, we apply a stan

dard CTL model checker to determine the final result. Figure 3.7 outlines a procedure for
this approach.

The question of how to minimize a component with respect to E* depends on what

sort of data representation is used for the transition relations.

3.5.1.1 Use of E* with explicit representations

If an explicit representation is used (e.g., adjacency lists), then minimization is

simply a matter of forming the quotient machine of each component with respect to E*.

Definition 3.10 Let M - (S,X,HhO,0,T) and let <f> be a CTL formula. Impose an

arbitrary total ordering on the elements of S. Let the equivalence classes of the equivalence

relation E* C S x 5 be denoted by 5* = {ci,c2,...,cr}, where c, C S. Define ci to be the
representative of ct, where c, is the least element of ct. Then the quotient machine of M

with respect to £* is M* = (S*, X,E/, O, O*, T*), where

compositionalModelChecker(<£, Mi,...,Mn)

if (n = 1)

return modelChecker(0, Mi);

for (i = l;t < n;i++)

M* = minimize(Mt-, <j>);

M[,...,Ml = formClustersfMf,..., M.*);

return compositionalModelChecker(<£, M[,..., M[);

116

Figure 3.7: Outline of procedure for compositional model checking: minimize and form
product incrementally.

• O* : 5* -> 2° such that 0*(c) = 0(c), and

• T* C5*xE/ x5*such that (c, a,d) € T* iff 3x € cand 3y € dsuch that (x, a, y) € T.

Note that the output of c depends on the ordering of the states of M. However, in the

proofs to follow, we never assume anything about the ordering; that is, the output of c can

be chosen to be the output of any state in the equivalence class c. Notealso that we use [s]

to denote the equivalence class of s.

As described in the algorithm for the compositional model checker, we use the

quotient machine of each FSM in place of the original component. The following theorem

asserts that doing this does not alter the result returned by the model checker. The proof

is given by Corollary 3.29 in Section 3.6.3.2.

Theorem 3.11 Let <f> be a CTL formula, and let Mu...,Mn be FSMs. Let Mf be the
quotient ofMi with respect to Ef, and let [si] denote the equivalence class ofE* containing
Si. Then for all product states (si,..., sn),

MiX...xMn,(si,...,sn)ft<t> iff M*x...xM*,([si],...,[sn])ft<f>.

117

After the model checker is applied to the product of the quotient machines, The

orem 3.11 can be directly applied to recover the product states in the original state space
that satisfy <p.

3.5.1.2 Use of E* with implicit representations

Ifan implicit representation is used, then minimization becomes more complicated.

We focus on the case where BDDs are used. There is no correlation between the size of the

BDD for a transition relation, and the number of transitions in the relation. Thus, the idea

behind minimization in this case is to use E* to define a range oftransition relations, any of

which can be used in place of the original transition relation, and then choose the relation

in this range with the smallest BDD. It should be noted however, that smaller component

BDDs do not guarantee a smaller product BDD—this is only a heuristic.

For a component M, we take the upper bound of the range to be Tmax, which is

the relation formed by adding to T any transition between two states for which there exists

a transition between equivalent states:

Tmax(x,a,x') = T(x,a,x')U{(x,a,x')\(s,a,s') € T and E*(x,s) and E*(x',s')}.

The lower bound is T itself. Given these bounds, a heuristic like restrict [42] is used to
find a small BDD between T and Tmax. Theorem 3.30 of Section 3.6.3.2 shows that any

transition relation between T and Tmax can be used without altering the result returned

by the model checker. Alternatively, instead of looking for a small relation between T and

Tmax, we can just use Tmtn, which is the transition relation of the quotient machine, if it

turns out that Tmin is small.

3.5.2 Early pass/fail detection

Sometimes the model checking problem is posed as: given a formula <f> and a subset

of product states Q, is Q contained in the set of states satisfying <f>? For example, Q may

be the set of initial states.3 Since our method returns all states satisfying <f>, a simple

containment check answers the question. However, in some cases, we may be able to answer

Ifa set of initial states is known, then we can restrict our attention to the reachable state space. In this
case, we can apply known techniques for exploiting the unreachable states, suchas minimizing the transition
relation withrespect to unreachable states; these techniques are orthogonal to those discussed in this paper.

118

the question without composing all the machines, yielding a further savings in time. This
is known as early pass/fail detection.

Let Q = {ql,q2,...,qm}, where q* is the product state (4,4> •••»*£>! and let
FAILf be the FAIL* states in component i. If sj 6 FAILf, then any product state
(h, •••,U-i,S*, U+i ,...,tn) does not satisfy <f>, so in particular, gJ does not satisfy <j>. Hence,
the answer to the above question is "no". So in summary, iffor any i, FAILf intersects the
ith state component of the set Q, then the answer is "no".

On the other hand, to reach an early "yes" answer, we need each state in Q to be

"covered" by at least one PASS* state. If sj € PASS?, then every state in Qwith s{ as its
ith component is guaranteed to satisfy <f>. So in summary, if for every state in Q, at least

one of its component states is a PASS* state, then the answer is "yes".

3.5.3 Processing subformulas

As the number of subformulas in <f> increases, the equivalence E* becomes finer

because equivalence on all subformulas is required. However, if some of the subformulas of

<f> are first replaced by fresh atomic propositions representing the product states satisfying

the subformulas, then this may lead to a coarser equivalence. This follows since knowing
which product states satisfy a subformula adds information to what was originally known,

information that can be used at the component level in computing E* (for the new <j>).
This is illustrated by the system in Figure 1.2, where <f> = (3G(pAq))AQ, and Q is

the set {(1, l7), (2, l7)} ofproduct states. Lines 1 through 6ofTable 3.2 show theequivalence

classes calculated for Mi on the subformulas of <f>. The end result (line 6) is that no states

are equivalent; hence, we havegained nothing. Instead of processing all of <j>, we could stop

after computing the equivalence for 3G(pAq). In this case, states 2 and 3 are equivalent

(line 4), and thus a smaller machine can be built for Mi. When this quotient machine is

composed with M2 and the model checker is applied, we discover that no product states

satisfy 3G(p Aq). At this point, we can create a fresh atomic proposition, Q', to represent

this (empty) set ofstates. Then when we calculate the equivalence on Mi for Q' AQ (which

is the same as the original <j>), we see that states 1 and 2 are now equivalent (line 8), so we

can again construct a smaller machine for Mi.

Thus, we may want to follow a strategy where a nested formula is recursively

decomposed into simpler subformulas, and the compositional model checker of Figure 3.7

<t> PASS* FAIL* equiv classes

1 9 0 0 {1,2,3}
2 P {2,3} {1} {1},{2,3}
3 pAq 0 {1} W,{2,3}
4 3G(pAq) 0 {1} {1},{2,3}
5 Q 0 {3} {1,2}, {3}
6 (3G(pAq))AQ 0 {1,3} {1},{2},{3}
7 Q' 0 {1,2,3} {1,2,3}
8 Q'AQ 0 {1,2,3} {1,2}, {3}

119

Table 3.2: Equivalence classes for Mi of Figure 1.2 on (3G(p Aq)) AQ.

is applied to each subformula. Note that whereas Chiodo et al. [40] always recursively

decompose a formula into its immediate subformulas, we can decompose a formula into

arbitrary subformulas, since our equivalence works on nested formulas.

Of course, even though we may be able to compute coarser equivalences with this

strategy, the drawback is that a reduced product machine must be constructed for each

subformula. Experiments are required to determine how to decompose a formula to achieve

a balance between these conflicting demands.

3.6 Proofs

3.6.1 Preliminaries

In the definitions, theorems and proofs that follow, x is used synonymously with

x0. For example, when we say "there exists a path ar0 -*• xi -> ...", it is implicit that

x = x0. Also, (x,y) e TI* means the same thing as U*(x,y).

Fact 3.12 Let Mx and M2 be two FSMs. If the path (x0,s0) ->• (xusi)
Mi x M2, then the path x0 —» xi -t ... exists in M\.

exists in

3.6.2 PASS* and FAIL*

This section establishes the truth of Proposition 3.6 of Section 3.4.2. For easy
reference, we give the sets ->PASS* and -*FAIL*.

120

Fact 3.13 Let M = (S,X, Ej, O,O,T) and M' = ((S7, X',E},0', O', V) be FSMs, and let

<f> be a CTL formula.
0 ^PASS* ^FAIL*

Pi S S

Po {x£S\p$0(x)} {x e S\p e 0(x)}
Ps {a;6S|3s7€57,(a:,s7)2p3} {xes\3s'eS',(x,s')epa}
—itj) -iFAIL* -,PASS*
faVfa ^PASS^'D-tPASS** ^FAIL*1 U -iFAIL*2

3Xi> {x G5|3aGE/s.t. Vt,x 4*
implies t € ->PASS*}

{xo 6 51there exists a path
a;0a;iX2 •••, s.t. xi $. FAIL*}

3Gi/> (not needed) {xq € 5|there exists a path
xqXix2..., s.t. Vz > 0,

Xi i FAIL*}
3[fa U fa] (not needed) {xq 6 5|there exists a path

£o£i&2 ... and 3t > 0 s.t.
Xi i FAIL** and Vj < i,

Xj^FAIL*1}

Also, it is worth keeping in mind the following two equivalences:

-*B[fa U fa] & V([->fa U(->fa A-ifa)] VG-ifa) (not a CTL formula)

-ti[fa U fa] <=> 3[-yfa U(^fa A^fa)] V3G-ifa

Proposition 3.14 (Proposition 3.6 of Section 3-4.2) Let <f> be a CTL formula, and let

x be a state of M. If x € PASS*, then for every FSM M', and every state t of M',
M x M', (x, t) ft <j>. Likewise, if x € FAIL*, then M x M', (x,t) ft <j>.

Proof (by induction on the structure of <f>)

Case (f> = pi

Since PASS* = FAIL* = 0, this case is vacuously true.

Case (f> = p0

PASS: x e PASS* implies p0 € 0(x), which implies p0 € 0((x,t)), which implies
(x,t)ft<t>.

FAIL: x 6 FAIL* implies p0 £ 0(x), which implies p0 $ 0((x, t)), which implies (x, t) ft <j>.

Case 4> = pa

PASS: x e PASS* implies vV € S', (x,sf) 6 ps, which implies (x,t) e ps which implies

121

(x,t)ft<j>.

FAIL: x € FAIL* implies Vs7 € S',(x,s() £ p5, which implies (x,i) £ ps which implies
<x, *)£<£.

Case 4> = -t0

PASS: x e PASS* implies x € fl4/L*, which by the I.H. implies (x,t) ^ V, which implies
(x,t)ft<f>.

FAIL: x 6 E4/I* implies x GPASS*, which by the I.H. implies (x,t) ft fa which implies
(x,t)ft<f>.

Case <f> = fay fa

PASS: a; e /14SS* implies a; € PASS*1 or a: 6 P-ASS^, which by the I.H. implies
(x,t) ft fa or (x,t) ft fa, which implies (x,t) ftfaV fa.

FAIL: x e FAIL* implies x <E F4/L^ and x € itt/L^2, which by the I.H. implies
(x,t) ft fa and (x, t) ft fa, which implies (x,t) ftfaV fa.

For the remaining formula types, the intuition is as follows. For the PASS case,

if x has a "PASS path" in M, then in the presence of any environment, x will still have a

PASS path, since the environment and M are required to be complete. For the FAIL case,

if all the paths from x in M are "FAIL paths", then composing M with some environment

may remove some paths from x, but whichever remain are still FAIL paths.

Case <f> = 3Xij)

PASS: Assume x e PASS*. We must show that there exists a next state (x',t') of (x,t)
such that (x',t') ft ij>. By the completely specified assumption, every state has a next

state, so let (x',t') be a next state of (x,t). It remains to show that (x',t') ft ty. Suppose

(x1, t')fttl), and suppose i4i'. x e PASS* implies there exists x" such that x 4 x77 and

x77 € PASS*. By the I.H., (x77,s) |= ^, for all s 6 S'. If x77 = x7, we have a contradiction.

If x77 ^ x7, then (x77,i7) must also be a next state of (x,t). Since (x77,*7) |= if), we are done.

FAIL: Assume x € FAIL*. Let (x7,*7) be a next state of (x,(). Since x 6 FAIL*, then

x7 € FAIL*, which by the I.H. implies (x7,t7) ft ^, which finally implies (x,t) ft <j>.

Case <f> = 3Gij)

122

PASS: Assume x € PASS*, and suppose that (x,t) ^ 3GV>. This implies that for every

path (x0,t0) ->• (xi,ti) -> ..., there exists k such that (xk,tk) ^ ^. By the completely

specified assumption, there must exist at least one such path. Let K be the maximum of

all such k. The following claim shows that this leads to a contradiction, where N = K.

Claim: Ifx € PASS*, then for any N > 0, there exists a path4 (x0,t0) -> failt\)-t ...-*
(xN,tjv) such that for all i < N, (xi,U) \= $ and X{ € PASS*.

Base, N=0: We are given that x € PASS*. This implies x € P.455^, which by the I.H. of

the proposition implies that (x,s) |= t}), for all s € S'. Thus, (a;,*) |= ip.

I.H.: For &< iV, there exists a path (xo,to) -)> (&i,*i) -»...-»• (a;/t,tfc) such that for all

i < k, (x{, U) \= t/> and X{ GPASS*.

I.S.: Bythe completely specified assumption, there existsa next state (xjt+i, t*+i) of (xk, tk).

Suppose (xk+i,tk+i) ^ ip, and suppose Xk A Xk+i. Xk € PASS* implies there exists x'k+1
such that xk 4 a;^+1 and z'fc+1 6 PASS*, and hence that x'k+l € PASS*. By the I.H.,
(xM-i>5) h ^i f°r a^ s € 5'. If x'k+l = a;;k+i, we have a contradiction. If x'k+1 ^ arjt+i,
then (&i+1,*jb+i) is also a next state of (a:*, tk). Since (x'k+1,tk+i) \= i{), we are done. This
finishes the claim, and hence proves that (x,t) \= 3Gt/).

FAIL: Let (x0,t0) ->• (xi,ti) -> ... be a path. Since x € FAIL*, there exists an i > 0 such

that X{ e FAIL*. By the I.H., this implies that (x{,ti) ^ iff. Since the path was arbitrary,
then (x,t) ft<j>.

Case <f> = 3[V>i U $2]

PASS: Assume x e PASS*. Define R0 = R0, and for i > 0, J?t = /fc\ Jfc-i. where #, refers

to the definition of PASS*. Then for some i, x € R{. Suppose the fixed-point is reached at

iteration N. Then for i < N, the following claim proves the proposition.

Claim: For all a; € Ri, and for all t 6 S', (x,t) ^= <j>.

4Pathswere defined earlier to be infinite. However, in a few cases we also use the same term to refer to
finite paths; the correct interpretation will be obvious from the context.

123

Base, i=0: x e Ro implies x 6 PASS*2. By the I.H. of the proposition, this implies
{x,t) |= fa which in turn implies (x,t) \= <j>.

I.H.: For k < i, for all x € Rk, and for all t e S', (x, t) \= <f>.

LS.: x € Rk+i implies x £ Ro, which implies x € PASS*1. By the I.H. of the proposition,

this implies (x,t) (= fa. By the completely specified assumption, there exists a next state

{x',t') of (x,t). If x7 € /?*, then x' € Rj for some j < k. Hence, by the I.H. {x',t') \= <j>,
and therefore (x,t) |= <£. If x' £ #fc, then suppose a: A x'. Since x € Rk+i, then there

exists x" 6 #* such that x A x", and therefore (x",*') is also a next stateof (x,t). Since
x" 6 Rk, then applying the I.H. as above, we have (x,t) \= <f>.

FAIL: Let (x0,t0) -» (xi, tY) -> ... be a path. Since x € E4/I*, either

1. there exists i > 0 such that xt- £ FAIL*1 and for all j < i, Xj € FAIL*2, or

2. for all i >0, xt-<E FAIL*2.

By the I.H., this implies

1. there exists i > 0 such that (x,-,it) ^ V'l and for all j < i, (xj,tj) ^ fa, or

2. for all i>0, (xi,U) Wi>2-

Since the path was arbitrary, then {x,t) ^ <f>.
m

A state cannot be in both PASS1, and FAIL*.

Corollary 3.15 PASS* and FAIL* are disjoint.

Proof For the sake of contradiction, suppose there exists a state x such that x £ PASS*C\

FAIL*. Then by Proposition 3.14, for all t, Mx M', (x,t) \= <f> and M x M', (x,t) £ </>.
Since a formula and its negation cannot be true at the same state (because x |= ->V iff

x \fc ^)>tms is a contradiction. •

124

3.6.3 Formula-dependent equivalence relation

3.6.3.1 Formula-dependent bisimulation

We defined S* in Definition 3.8 as "the coarsest equivalence relation" satisfying
a certain property. However, it is not immediately obvious that this definition is sound,

i.e., that there exists a unique such relation. This section establishes that the definition is

indeed sound.

Proving this fact is not straightforward. Our development parallels that ofMilner's

development [27] showing that bisimulation is also "the coarsest equivalence relation" sat

isfying a certain property. We start by defining a formula-dependent bisimulation (FDB) in

Definition 3.16, which looks like £*, but provides only a one-way implication. Lemma 3.17

then establishes an important relationship between FDBs and the sets of PASS* and FAIL*

states. Lemma 3.19 proves that the identity relation is an FDB, and FDBs are closed under

inverses, composition, and union. £* is then actually defined as the union of all FDBs,

and Lemma 3.21 shows that S* is the largest FDB, and is an equivalence relation. Finally,

Proposition 3.23 shows that a two-way implication holds for £*, by proving that E* satisfies

the converse of Definition 3.16.

Definition 3.16 Let M = (S,X,T,hO,0,T) and M' = {(S',X',Y,'I,0',0,,T') be FSMs,

and <f> a CTL formula. A binary relation H* C S x S is a formula-dependent bisimulation
(FDB) if ll*{x,y) implies:

Case <f> = pi

(x,y) €S xS.

Case <f> = p0

x e FAIL* and y € FAIL*, or x € PASS* and y 6 PASS*.

Case <f> = ps

for all s' GS', (x, s') <E p3 iff (y, s') € pa.

Case <f> = -iij)

there exists an FDB 11* such that TZ*(x}y).

Cases <j> = fa V fa and <f> = faAfa

there exist FDBs 11** and V*2 such that U**(x,y) and 1l*2(x,y).

Case <£ = 3A"V>

there exists an FDB V* such that K*(x,y) and

1. x 6 itt/I* and y € F4/Z*, or x € PASS* and y 6 PASS*, or

2. O(x) = O(y), and for all a G E/

• whenever x A t and i £ FAIL*, 3w s.t. y A tu and U*(t, w), and

• whenever y A u; and w # FAIL*, 3t s.t. x A *and 7^(2, w).

Cases <f> = 3GV> and <f> = 3F0

there exists an FDB V* such that Tl*(x,y) and

1. x GF4JI* and y Gi^/i*, or x GPASS* and y GP-4SS*, or

2. O(x) = O(y), and for all a G £/

• whenever x A t and i £ FAIL*, 3w s.t. y A w and U*(t, w), and

• whenever y A tu and w £ FAIL*, 3t s.t. x A £and #*(*, w).

Case 0 = 3[0i U fa]

there exist FDBs TZ*1 and ft^ such that 1l*l{x,y) and 1l*2(x,y) and

1. x GE4/£* and y GE4/L*, or x GPASS* and y GPASS*, or

2. O(x) = 0(y), and for all o€E/

• whenever x A *and t $ FAIL*, 3w s.t. y A w and ll*(t, w), and

• whenever y A w and w £ FAIL*, 3t s.t. x A *and #*(*, w).

125

The following lemma implies that if the state pair (x,y) is in H* and one of the

states is in PASS*, then the other state must also be in PASS*'', likewise for FAIL*.

Lemma 3.17 Let <f> be a CTL formula, and suppose that 1Z* is an FDB such that TZ*(x, y).
Then x GPASS* implies y GPASS*, and x GFAIL* implies y GFAIL*.

126

Proof (by induction on the structure of <f>)

Case <f> = pi

Since PASS* = FAIL* = 0, this case is vacuously true.

Case 4> —p0

V*(x,y) implies x G PASS* and y G PASS*, or x G .R4/L* and y G FA/I*. Since
x G PASS*, then x G PASS* and y G PASS*, which implies y G PASS*. Similarly if
x G FA/L*.

Case </> = ps

1Z*(x,y) implies that for all s' G S',(x,s') G psiff(y,s') € ps. x G PASS* implies
Vs' G S',(x,s') G pa. Thus, Vs' G S',(y,s') G ps, and hence y G PASS*. Similarly if
x G FAIL*.

Case 0 = -i^

Tl*(x, y) implies there exists an FDB U* such thatK*(x, y). x GPASS* implies x GFA/I*,
which by the I.H.implies y GFA/I*, which then implies y GPASS*. Similarly ifx GFAIL*.

Case cf> = fay fa

PASS: TZ*{x,y) implies there exist FDBs ft*1 and ft** such that Tl**(x,y) and V*2(x,y).
x GPASS* implies x GPASS*1 or x GPASS*2, which by the I.H. implies y GPASS*1 or
y GPASS*2, which then implies y GPASS*.

FAIL: x G FA/I* implies x G FA/I*1 and x G FAIL*2, which by the I.H. implies

y GFA/I*1 and y GFA/I**, which then implies y GFA/I*.

For the remaining cases, we proceed as follows. Assume that Tl*(x,y) and x G

PASS*—we want to show y GPASS*. V*(x,y) holds because x GFA/I* and y GFAIL*,
or x G PASS* and y G PASS*, or by condition 2 of Definition 3.16. By Corollary 3.15,

x G PASS* implies x £ FAIL*, and hence it cannot be the case that x G FA/I* and

y GFA/I*. If ll*(x, y) holds because x GPASS* and y GPASS*, then y GPASS* and we
are done. Hence, we assume y £ PASS*, which implies that ft*(x,y) holds by condition 2,

and proceed to show a contradiction. We proceed in a similar fashion to show that %*(x, y)

127

and x GFAIL* implies y GFAIL*.

Case <f> = 3Xrj)

PASS: Assume x G PASS* and y £ PASS*. Since y £ PASS*, there exists a G£/ such

that whenever y A w, then w £ PASS*. Let a7 be such an a. Since x GPASS*, there exists

such that x -4 t and t GPASS. Since ft*(x,y) holds by condition 2and *£ FA/I*,
then there exists an FDB ft* and there exists w such that y A tu and ft*(£, iu). But this

implies, by the I.H., that w GPASS*, a contradiction. Hence, y GPASS*.

FAIL: Assume x G FAIL* and y £ FA/I*. Since y £ FA/I*, there exists a next state

iu of y on a such that w g FAIL*. Since ft*(x,y), there exists a next state t of x on a
and an FDB ft* such that 1Z*(t, w). Since x GFAIL*, then *GFAIL*. But ft*(*, w) and
t GFA/I* imply, by the I.H., that wGFAIL*, a contradiction. Hence, y GFA/I*.

Case ^ = 3Gij)

PASS: Assume x GPASS* and y £ PASS*. The claim below shows that y Gi?;,Vi > 0,
where R{ refers to the definition of PASS*. Since the fixed point is reached in a finite

number of steps, then y G PASS*, which is a contradiction.

Claim: Ifx GPASS* and there exists an FDB ft* such that ft*(x,y), then for all z' > 0,
y G /?,-.

Base, i=0: ft*(x, y) implies there exists an FDB ft* such that ft*(x, y). Also, x GPASS*
implies that x GPASS*. Thus, by the I.H. ofthe lemma, these facts imply that y GPASS*',
which implies y G /?o-

IMA For A; < i, ifx GPASS* and there exists an FDB ft* such that ft*(x, y), then y G#*.

LS.: To show that y G -Rjk+i, we need to show

!• y € fljt, and

2. Va GEj, 3w s.t. t/4tu and w G.ft*.

128

The first part follows by the I.H., since x G PASS* and there exists an FDB ft* such that

ft*(x,y). For the second part, let a G£/. Since x GPASS^, then there exists a next state
t of x on a such that t GPASS*. If y GPASS*, then automatically y GRk+i, so we can
assume that ft*(x,y) holds by condition 2. Hence, there exists a next state w of y on a
such that ft*(*, w). Since *GPASS* and there exists an FDB ft* such that 11*(t, w), then
by the I.H. w GRk- Hence, y GRk+i-

FAIL: Assume x GFAIL* and y £ FA/I*. Since y £ FA/I*, there exists a path y0 ^
yi^ ... such that yt- £ FAIL* for all i, which in turn implies that yt- £ FA/I* for all i.

Since x G FAIL*, then every path x0 ^4 Xi ^ ... from x must eventually reach

a state x* such that X* G FAIL*. This implies that all states leading up to x* must also

be FAIL* states (because if not, then there would be a path from x that never reaches a
FAIL* state). Since ft*(x,y) holds by condition 2 and y, £ FA/I* for all i, then repeated
application ofcondition 2 shows that one of the paths x0 ^ Xi ^4- ... is such that ft*(xt-,yt)

holds for all i < k, where xjt G FAIL*. But 1Z*(xk,yk) implies that there exists an FDB

ft* such that ft*(xfc,yfc). But since X* GFAIL*, then by the I.H., yk GFA/I*, which is a
contradiction.

Case <f> =• 3[fa U fa]

PASS: Assume x GPASS* and y £ PASS*. Since x GPASS*, then there exists i > 0 such

that x £ Ri, where /?,• refers to the definition of PASS*. Therefore, by the following claim,

y G Ri, which implies y G PASS*, a contradiction.

Claim: For all i > 0, if ft*(x,y) and x G#,, then y GRi.

Base, i=0: x G Ro implies x G PASS*2. ft*(x,y) implies there exists an FDB ft*2 such

that ft*2(x,y). Then by the I.H. of the lemma, y GPASS*2, which implies y G#0.

I.H.: For k < i, if ft*(x, y) and x GRk, then y G fljt-

I.S.: x G -ftfc+i implies one of the following:

• x G Rk

129

• x G PASS*1, and Va GE/,3t s.t. x A t and t G#*.

If x G .ft*, then by the I.H. y G Rk and we are done. So assume x g Rk. To show

y G J?*+i, we will show that y G PASS*1, and Va G£j,3w s.t. y A tu and w G#*. Since

x GPASS*1 and there exists anFDB ft*1 such that ft*1 (x, y), then by theI.H. y GPASS*1.

Now, let a G £/. Since x G#jfc+i, then there exists t s.t. x A *and £ G#*. If y G-R*+i

we are done, so assume that ft*(x, y) holds by condition 2 of the definition of FDB. Since

t G /2fc, then t G PASS*, so condition 2 implies there exists ws.t. y A iu and 1Z*(t, w).
Thus, since t G#jt and 1Z*(t,w), then by the I.H. wG#*. Hence y GRk+i-

FAIL: Assume x G FAIL* and y £ FA/I*. Since y £ FA/I*, there exists a finite path
yo ^ yi 4 ... ^ yn such that yt- £ FA/I*1 for all i < n, and yn £ FA/I*2, which in turn
implies yt- £ FAIL* for all t < n.

Since x GFAIL*, then for every path x0 %xi ^ ..., one ofthe following must be
true:

1. there exists k > 0 such that x* G FAIL*1 and x* G FA/I*2, and for all i < k,
xtG FAIL*2,ot

2. for all i>0, x, G FAIL*2.

Since ft*(x, y) holds by condition 2and yt- £ FA/I* for all i < n, then repeated application
ofcondition 2shows that one of the paths x0 Q xi %... is such that one of the following
is true:

1. ft*(xt-,yt) holds for all i < k. This implies that there exist FDBs ft*1 and ft*2 such
that ft^fxi.y.) and ft^fx^y,) for all i < k. We must consider 3different ranges for
k:

(a) k < n: xk GFAIL*1 implies x,- GFAIL*1 for some i < n, which by the I.H.
implies & GFAIL*1 for some i < n, which is a contradiction.

(b) k = n: xn GFA/I*2 implies by the I.H. yn GFA/I*2, a contradiction.

(c) k > n: Since for all %< n xt- GFAIL*2, by the I.H., yn GFAIL*2, a contradiction.

2. ft*(x»,yt) holds for all t < ra. This implies that there exists an FDB ft*2 such that
K^ixmyn). But since xn G FA/I*2, then by the I.H., yn GFAIL*2, which is a
contradiction.

130

In each case we have a contradiction, and hence y G FAIL*.
•

Definition 3.18 Given binary relations ft, (i = 1,2,...) over a set S, define:

1. Ids = {(x,x)\x GS} (identity)

2. ftf1 = {(y,x)|(x,y) Gft,} (inverse)

3. ftift2 = {(z,z)| for some y, (x,y) Gfti and (y,z) Gft2} (composition)

4. ftiUft2 = {(x,y)|(x,y)Gfti or (x,y)Gft2} (union)

The following lemma shows that the identity relation is an FDB, and FDBs are

closed under inverses, composition, and union.

Lemma 3.19 Assume that each offcf (i = 1,2,...) is an FDB. Then the following rela
tions are all FDBs:

1. Id*

3. Tl\K*2.

4. U»€/^f> for some index set I.

Proof (by induction on the structure of 4>)

Case <f> = pi

1. Let (x,x) GId*s. Then (x,x) eS xS.

2. Let (y, x) Gftf ~ . Then (x, y) Gftf, which implies that (x, y) GSxS, which implies
that (y, x) G S X S.

3. Let (x,z) Gftfft2. Then for some y, we have (x,y) Gftf and (y,z) Gft2. This
implies that for some y, (x,y) G S x S and (y, 2) G S x S, which implies that

(x,2) eS xS.

2. ft;

131

4. Let (x,y) GU,€/ftf• Then for some i, (x,y) Gftf, which implies that (x,y) e SxS.

Case <f> = p0

1. Let (x,x) G/df.. If x G PASS*, then x G PASS* and x G PASS*. Likewise if
x G FA/I*.

2. Let (y,x) Gftf"1. Then (x,y) Gftf, which implies x GPASS* and yGPASS*, or
x GFAIL* and y GFA/I*. By symmetry ofconjunction, this implies y GPASS*
and x GPASS*, or y G FA/I* and x G FA/I*.

3. Let (x,z) Gftfftf;. Then for some y, we have (x,y) Gftf and (y,*) Gftf. This
implies that for some y, x € PASS* and y GPASS*, or x GFA/I* and y GFA/I*,

and y G PASS* and 2 G PASS* or y G FA/I*, and z G FA/I*. This implies
x GPASS* and y GPASS* and 2; GPASS*, or x GFA/I* and y GFA/I* and
^ GFAIL*, which in turn implies x GPASS* and z GPASS*, or x GFA/I* and
z G FA/I*.

4. Let (x,y) GU,e/ftf. Then for some i, (x,y) Gftf, which implies that x GPASS*
and y GPASS*, or x GFAIL* and y GFAIL*.

Case <j> = ps

1. Let (x, x) G/dj. Trivially, for all s' GS', (x, s') Gps iff (x, s') Gpa.

2. Let (y,x) Gftf"1. Then (x,y) Gftf, which implies for all s' GS',(x,s') G
Ps iff (y,«0 Gp3. By symmetry of "iff", this implies for all s' GS', (y,s') Gps iff
(*,«') eps.

3. Let (x,z) Gftfftf. Then for some y, we have (x,y) Gftf and (y,z) Gftf.
This implies that for some y, for all s' G S',(x,s') G ps iff (y,s') G p5, and for
all s' GS', (y,s') Gpa iff (z,s') Gpa. By transitivity of "iff", this implies for all
s'GS',(x,s')Gp5iff (2,s')ejV

4. Let (x,y) GU,€/ftf- Then for some i, (x,y) Gftf, which implies that for all s' G
S',(x,s')eps iff (y,s')eps.

Case <f> = -i^>

132

1. Let (x, x) GId*s. Since Id*s = Id*s, then (x, x) GId*s. Thus, Id*s serves as the needed
FDB 11*.

2. Let (y,x) Gftf"1. Then (x,y) Gftf, which implies that there exists an FDB ftf
such that ftf(x,y). This in turn implies ftf _1(y,x). By the I.H., ftf"1 is an FDB,
and hence serves as the needed FDB.

3. Let (x,z) Gftfftf. Then for some y, we have (x,y) Gftf and (y,z) Gftf. This
implies that there exist FDBs ftf and ftf such that ftf(x,y) and ftf (y,z). This in
turn implies (x,z) Gftfftf. By the I.H., ftfft* is an FDB, and hence serves as the
needed FDB.

4. Let (x,y) GU,€/ftf- Tnen for some i, (x,y) Gftf, which implies that there exists an
FDB ftf such that ftf (x, y). Thus, ftf serves as the needed FDB.

Case <f> = fa V fa

1. Let (x,x) G7dJ. Since Id* = /dfj1 = /42> then (*»*) € Id*^Idf- Thus> 74' and
/rfj2 serve as the needed FDBs.

2. Let (y,x) Gftf"1. Then (x,y) Gftf, which implies that there exist FDBs ftf1
and ftf2 such that 1Zfl(x,y) and ftf2(x,y). This in turn implies ftf1_1(y,x) and
ftf2 _1(y, x). By the I.H., ftf1 _1 and ftf2 _1 are FDBs, and hence serve as the needed
FDBs.

3. Let (x,z) Gftfftf. Then for some y, we have (x,y) Gftf and (y,z) Gftf. This
implies that there exist FDBs ft*1 and ftf2, and ftf1 and ftf2, such that ftf'(x,y)
and ftf2(x,y), and ftf^y,*) and 1lp{y,z). This in turn implies (x,*) Gftfftf1
and (x,z) Gftf2ftf2. By the I.H., ftf1 ftf1 and ftf2ftf2 are FDBs, and hence serve
as the needed FDBs.

4. Let (x,y) GU,e/ftf- Then for some i, (x,y) Gftf, which implies that there exist
FDBs ftf1 and ftf2 such that 1l*x(x,y) and ftf2(x,y). Thus, ftf1 and ftf2 serve as
the needed FDBs.

Case <f> = 3J\T^>

We first must show that "thereexists an FDB ft* such that ft*(x, y)". This isdone exactly

as for the case <j> —->if>. As a reminder, the needed FDB for each case is:

133

1. Id*

2. ftf"1

3. ftfftf

4. ftf

It remains to show that condition 1 or 2 is satisfied. We break this into case

a, where x G FAIL*, and case b, where x £ FAIL* and x £ PASS*. The case where
x G PASS* is similar to case a.

1. Let (x,x) GId*s.

(a) x G FA/I* implies x G FAIL* and x GFA/I*.

(b) 0(x) = 0(x). Let a and t be such that x A * and <£ FAIL*. Then trivially, a

and t are such that i4i, and /d^(i, £)•

2. Let (y,x) Gftf-1. Then (x,y) Gftf.

(a) By Lemma 3.17, this implies y GFA/I*. Hence, y GFAIL* and x GFA/I*.

(b) This implies 0(x) = 0(y), and Va G£/

• whenever x A t and t $ FAIL*, 3w s.t. y A w and ftf (£, w), and

• whenever y A tu and w $ FAIL*, 3t s.t. x A *and ftf (t, w).

By symmetry of equality and conjunction, this implies 0{y) = O(x), and

• whenever y A u> and w £ FAIL*,3t s.t. x A t and ftf (*, w), and

• whenever x A i and *£ FAIL*, 3w s.t. y A it; and ftf (t, w).

Finally, 1Zf(t,w) implies 1l*~l(w,t). Hence, we have O(y) =O(x), and

• whenever y A tu and w £ FAIL*, 3t s.t. x A t and ftf _1 (w, t), and

• whenever x A «and *£ FA/I*, 3u> s.t. y A w and ftf _1(w;, *).

3. Let (x, z) Gftf ftf. Then for some y, we have (x, y) Gftf and (y, z) Gftf.

(a) By Lemma 3.17, we have y G FAIL*, and a second application of Lemma 3.17

gives z G FAIL*. Hence, x G FAIL* and 2 G FA/I*.

(b) (*,y) Gftf and x £ FA/I* and x £ PASS* imply O(x) =Q(y), and Va GE/

134

• whenever x A t and t g FAIL*, 3w s.t. yA wand ftf (t, w), and

• whenever yA wand w£ FAIL*, 3t s.t. x A t and ftf (t, w).

By Lemma 3.17, we have y £ FA/I* and y £ PASS*. This and (y, z) Gftf imply
0(y) = 0(z), and

• whenever yA wand u; £ FAIL*, 3v s.t. 2A v and ftf (it;, v), and

• Va, 1; s.t. 2A v and u£ FAIL*, 3w s.t. yA it; and ftf (it;, u).

By transitivity of equality, 0(x) = 0(2). To show the second part, let a and t be

such that x A t and *£ FAIL*. This implies the existence ofwsuch that yA it;
and 1l*(t,w). By Lemma 3.17, we have w£ FAIL*. This in turn implies the
existence of vsuch that zA vand ftf (w, v). Therefore, ftf (J, it;) and ftf (w, v)
imply ftfftf (t, v). Putting this all together, we have that xA t and t g FAIL*
imply that there exists v such that 2A v and ftfftf(*,v). Likewise, it can be
shown that a next state v of 2 on a implies that there exists a next state t of x

on a such that ftfftf (£, v).

4. Let (x,y) GU,e/ftf. Then for some i, (x,y) Gftf.

(a) By Lemma 3.17, this implies y GFAIL*. Hence, x GFA/I* and y GFA/I*.

(b) We need to show that

O(x) = 0(y), and VaGE/

• whenever x A t and t g FAIL*, 3iu s.t. y A it; and ftf (t, w), and

• whenever y A wand it; £ FAIL*, 3t s.t. x A £and ftf (£, w).

But this is exactly what 1lf(x,y) implies.

Case <f> = 3GiJ)

We first must show that "there exists an FDB ft* such that ft*(x, y)". This isdone exactly
as for the case <f> = -1^.

It remains to show that condition 1 or 2 is satisfied. We break this into case a,

where x GFAIL*, and case b, where Jx GFAIL* and Jx GPASS*. Case a is exactly the
same as for <f> = 3Xip. Case b is nearly the same (just replace ip by <j> everywhere ip occurs
in FAIL* and ft*).

135

Case 4> = 3[fa U fa]

The existence ofFDBs ft*1 and ft*2 such that ft*1^) and ft*2(x,y) can be shown as
for case <j> = faVfa. The rest of the proof is the same as for the case <j> = 3Gip.

m

The formal definition of E* is deceptively simple.

Definition 3.20 Define S* = U{ft*|ft* is an FDB}. •

Lemma 3.21 /. £* is the largest FDB.

2. S* is an equivalence relation.

Proof

1. By Lemma 3.19(4), E* is an FDB and includes any other such.

2. rejL: For any x£S, E*(x,x) by Lemma 3.19(1), since E* includes Id*s.

sym.: If E*(x, y), then ft*(x, y) for some FDB ft*. Hence ft* _1 (y, x), and so E*(y, x)
by Lemma 3.19(2).

trans,! If E*(x, y) and E*(y, z) then ftf(x, y) and ftf(y, z) for some FDBs ftf and ft*.
So ftfftf(x, 2), and so E*(x, z) by Lemma 3.19(3).

•

We have shown that E* is an FDB. Now we want to show that E* also satisfies

the converse of Definition 3.16. Following Milner, we define a new relation T* in terms of

E*. Then we show that T* and E* are in fact equivalent.

Definition 3.22 T*(x,y) iff:

Case <f> = pi

(x, y)eSxS.

Case <f> = p0

x GPASS* and y GPASS*, or x GFAIL* and y GFAIL*.

Case <f> = pa

for all s' GS', (x, s') Gps iff (y, s') Gps.

Case ^ = ->ip

e+(*,v).

Cases <f>= faV fa and <j> = fa and ^2

£*'(x,y)and£**(x,y).

Case (f> = 3X4)

£*(x,y)and

1. x GFA/I* and y GFA/I*, or x GPASS* and y GPASS*, or

2. 0(x) = O(y), and Va G Ej

• whenever x A t and ££ FAIL*, 3w s.t. j/Aw and E*(t, w), and

• whenever y A w; and w g FAIL*, 3t s.t. x A i and E*(t, w).

Cases <f> = 3Gij) and 0 = 3F^

£*(x,y)and

1. x GFAIL* and y GFA/I*, or x GPASS* and y GPASS*, or

2. 0(x) = 0(y),and Va G E/

• whenever x A t and t g FAIL*, 3w s.t. y A it; and E*(t, w), and

• whenever y A it; and w g FAIL*, 3t s.t. x A t and E*(t, w).

Case ^ = 3[fa U fa]

E*1(x,y)a,nd£*2(x,y)a,nd

1. x GFAIL* and y GFA/I*, or x GPASS* and y GPASS^, or

2. O(x) = 0(y), and Va G E/

• whenever xA iand t £ FAIL*, 3w s.t. yA «; and £*(*, iu), and

• whenever yA w and iz; £ FA/I*, 3t s.t. xA iand £*{t, w).

136

137

Proposition 3.23 E*(x,y) iffT*(x,y).

Proof (=*•) For the base cases, £*(x, y) directly implies T*(x, y). Ofthe remaining cases,
we show the case <f> = 3Gip in detail; the rest of the cases are similar.

Case (f> = 3Gtj>

Since E* is an FDB, E*(x,y) implies:

there exists an FDB ft* such that ft*(x,y) and

1. x GFAIL* and y GFAIL*, or x GPASS* and y GPASS^, or

2. O(x) =0(y), and VaGE/

• whenever x A *and t g FAIL*, 3w s.t. yA wand £*(£, w), and

• whenever y A it; and it; £ FA/I*, 3* s.t. x A *and E*(t, w).

Let ft'* be such an FDB. Since E* includes all FDBs, then W*(x,y) implies E*(x,y).
Hence, we have:

£*(x,y)and

1. x GFAIL* and y GFA/I*, or x GPASS* and y GPASS*, or

2. O(x) = O(y), and Va G E/

• whenever x A t and ££ FAIL*, 3w s.t. y A wand £*(*, iu), and

• whenever y A it; and it; £ FAIL*, 3t s.t. x A t and £*(*, w).

By Definition 3.22, this implies T*(x,y).

(<*=) It suffices to show that T* is an FDB, since E* includes all FDBs. For the base cases,

the definition for T* directly implies the FDB definition. Of the remaining cases, we show
the case <j> = 3Gip in detail; the rest of the cases are similar.

Case (j> - 3Gtj)

By Definition 3.22, T*(x,y) implies:

£*(x,y)and

138

1. x GFAIL* and y G FAIL*, or x GPASS* and y G PASS*, or

2. O(x) = 0(y), and Va G E/

• whenever x A t and ££ FAIL*, 3w s.t. y A it; and E*(t, w), and

• whenever y A u; and it; £ FAIL*, 3t s.t. i4t and £*(£, it;).

Since £* is an FDB, then this implies that thereexists an FDB ft* such that ft*(x, y). Also,

by the forward implication of this proposition, E*(t,w) implies T*(t, w). Thus, T*(x,y)

implies the following, and hence is an FDB:

there exists an FDB ft* such that ft*(x,y) and

1. x GFAIL* and y GFAIL*, or x G PASS* and y G PASS*, or

2. O(x) =0(y), and VaGE/

• whenever x A t and J 0 FAIL*, 3w s.t. y A iu and T*(t, w), and

• whenever y A it; and it; £ FAIL*, 3t s.t. x A i and T*(J,it;).

3.6.3.2 E* preserves CTL

This section demonstrates that two states related by E* have the same truth on <f>,

and that the quotient with respect to <j> can be used in place of M in compositional model

checking.

Fact 3.24 For the cases <f> = 3Gi>, and <f> = 3[fa U fa], those states related by condition 2

of the definition of E* are computed by the following greatest fixed-point computation:

Qo = {(ar,y)GSxS|0(x) = 0(y)}

Qi+i = Q,n{(x,y)GSxS|VaGE/,

(V* GS s.t. x A * andttf FAIL*, 3w GS s.t. y A w and {t, w) GQi), and

(Vw; GS s.t. y A it; ana* w £ FAIL*, 3* GS sJ. xAUnrf («, w) GQ,)}

Proposition 3.25 (Proposition 3.9 of Section 3.44) Let <f> be a CTL formula, and let x

and y be states ofM such that E*(x,y). Then for any state t of any FSM M',

M x M', (x,t) \= (j> iff M x M', (y,t) \= <f>.

139

Proof The proof is by induction on the structure of <f>. We show that M x M', (x,t) \= <f>
implies M x M', (y, t) \= <f>. The converse holds by symmetry.

Case <f> = pi

(x, t) |=pi implies (2, t) |= p{ for all ze S, which in turn implies (y, t) \= pi.

Case (f> = p0

(M) t= Po implies p0 GO(x). £*(x,y) implies p0 GO(x) iff j>0 GO(y), and thus p0 GO(y).
Finally, this implies (y, i) |= p0.

Case <f> = ps

(x,t) \= ps implies (x,t) Gps. £*(x,y) implies for all s' GS',(x,i') Gps iff (y,£') Gp3.
Thus, (y,i) Gps, which in turn implies (y,t) |= ps.

Case ^ = ->ip

(x,t) \= <f> implies (x,t) ^ ^. £*(x,y) implies E*(x,y), which by the I.H. implies (y,t) ^ ^,
which in turn implies (y, i) |= <j>.

Case 4>— fay fa

(x,t) f= <£ implies (x,*) |= ^ or (x,£) |= ^2. £*(z,y) implies E*'(x,y) and £*2{x,y), which
by the I.H. implies (y,f) |= fa or (y,t) (= fa, which in turn implies (y,t) (= <£.

Case <f> = 3Xip

(x,t) |= <£ implies that there exists a next state (x',t') of {x,t) such that (x',t') \= ip.
Suppose a GE/ such that x A x' and a = O'(s). Now, since (x,t) (= <£, then by Proposi
tion 3.14, x £ FA/I*. Also, ify GPASS*, then the lemma follows, so assume y £ PASS*.
Thus, E*(x,y) holds by condition 2, and hence O(x) = 0(y) and there exists y' such that
yA y' and E*(x', y'). This implies that (y, *) -> (y', *'), and by the I.H. (y', *') (= V>. Finally,
this implies (y, t) |= 0.

Case 0 = 3Gij)

(x,t) \= <f> implies that there exists a path (x0,t0) -» (xuti) -+ ... such that (x,-,*,) |= ^
for all i. This implies by Proposition 3.14 that x,- £ FAIL* for all i, which in turn implies

140

Xi g FAIL* for all i. Suppose a; GE/ such that x0 % xi % ... and a,- = 0'(t,_i).
For the sake of contradiction, suppose (y,t) tf= 3Gij>. This implies that for every

path (yo,s0) -• (yi,si) -•..., there exists A; such that (yk,Sk) fc£ 0. For each path, we

are interested in the minimum such k. Since (yk, sjt) ^ ^, this implies that for all i < k,

(yii*i> t^ 0i whicn by Proposition 3.14 implies yt- £ PASS*.

Since £*(x, y) holds by condition 2 and xt- £ FAIL* for all i, then repeated appli
cation of condition 2 shows that one of the paths y0 ^ yi %• ... is such that 0(xt) = 0(yt)

and E*(xi,yi) holds for all i < k. This implies that (yo,t0) -• (yi,*i) -4 ... ->• (y*,**) is a
path. By assumption, (yk,tk) tf= 0- ^(xkiVk) implies E*(xk,yk)\ since (x*,**) (= V, then
by the I.H., (yjt,tjfc) |= 0, which is a contradiction. Hence, (y,t) |= </>.

Case <f> = 3[fa U fa]

(x,t) |= (f> implies that there exists a path (x0, t0) ->• (xi,ii) -> ... and some k such that

(xk,tk) \= fa and for all j < k, (xj,tj) \= fa. This implies by Proposition 3.14 that

xk $ FAIL*2 and for all j < k, xj £ FAIL*1, which in turn implies xt- g FAIL* for all

i < k. Suppose a,- GE/ such that x0 -^ Xi ^ ... and a,- = 0'(£,_i).

For the sake of contradiction, suppose (y,t) ^ 3[fa U fa]. This implies that for

every path (y0, s0) -» (yi,si) ->..., one of the following is true:

1. 3/ > 0 such that (y/,s/) ^ fay fa and Vj < /, (yj,Sj) ^ ^>2 (for each path, we are

interested in the minimum such /).

2. Vi>Q,{yi,Si)fifa.

This implies that for each path, one of the following is true:

1. 3/ > 0 such that Vj < /, yj <£ PASS*,

2. Vt > 0, yt $ PASS*.

Since E*(x,y) holds by condition 2 and xt- £ FAIL* for all i, then repeated
application of condition 2 shows that one of the paths y0 ^ y\ ^ ... is such that one of

the following is true:

1. If / < k, then 0(xt) = 0(yt-) and E*(x{,yi) holds for all i < I. This implies that

(yoM) -» (*/i,*i) -> ••• -4 (y/,*/) is a path. By assumption, (y/,t/) ^ fa. E*(xt,yt)

141

implies £*(x/,yj); since (xt,ti) \= fa, then by the I.H., (yi,ti) |= fa, which is a
contradiction.

If / > k, then 0(xt) = 0(yt) and £*(xt-,yt) holds for all i < k, where yk $ PASS*2.
This implies that (y0,t0) -» (yi,*i) -• ... -> (y*,**) is a path. By assumption,

(yk,tk) ^ fa. E*(xk,yk) implies E*{xk,yk)\ since (xfc,*fc) (= V>2, then by the I.H.,
{yk,tk) |= ^2j which is a contradiction.

2. Same as the case for / > k immediately above.

In each case, we have a contradiction. Hence, (y, t) \= <f>.
•

Definition 3.26 Let M = (S,X,Y,hO,0,T), let 0 be a CTL formula, and let M* =

(S*,X,T,hO,0*,T*) be the quotient machine of M induced by E*. Define M = (S, X,
E/, (9, 6, t) as follows:

• S = S U S*,

• fcSxE/xSsuch that (s,a,t) ef iff (s,a,t) GT or (s,a,i) GT*,

• 6 :S -• 2° such that 6(s) = O(s) if s GS, and 6(s) = 0*(s) if s GS*.

Intuitively, M is derived by "placing M and M* side-by-side", and considering the result

as a single FSM. Let E* denote the equivalence computed on M with respect to <f>. The
following lemma says that states s and [s] of M are related by E*.

Lemma 3.27 Let M = (S, X,E/, O, O, T) and W = ((S', X', EJ, 0', O',T') be FSMs, and
let <f> be a CTL formula. Let M refer to the machine defined in Definition 3.26. Then for
all statesseS, (s, [s]) GE*.

Proof (by induction on the structure of <f>)

For this lemma, we carefully state the inductive hypothesis: for every subformula

ip of <f>, and for all s GS, (5, [s]) GE*, where [s] is always the equivalence class of s with
respect to <f>.

142

Case <f> = pi

Since E* contains all pairs ofstates in M, it contains (s, [s]).

Case (j> = p0

If Po € 0{s), then for all t such that E*(s,t), p0 eO(t). Hence, regardless of the represen
tative used for [s], we have p0 G0*([s]). Therefore, (s, [s]) GE*.

Likewise, if p0 $0(s), then for all t such that E*{s, t),p0g 0(t). Hence, regardless

of the representative used for [s], we have p0 £ 0*([s]). Therefore, (s, [s]) G£*.

Case 0 = ps

Since p,C5x S', we must first extend ps to ps C S x S'. If (s, s') GS x S', then (s, s') Gps

iff (s,s') Gpa- If (W,s'> e S* x S', then ([s],s') Gpa iff for all t GS such that E*(s,t),
(t,s')epa.

Now we are ready to prove this case. For all states t G S, if £*(s,i), then for all

s' GS', (s, s') Gps iff (t, s') Gp.. Hence, (s, [s]) G£*.

Case <j> = -tip

By the I.H., (s, [s]) G£*. But, since E* = E*, then trivially (s, [s]) GE*.

Case <j> =• fay fa

By the I.H., (s, [s]) G^ and (s, [s]) G^*2. Hence (s, [s]) G^*.
We break each remaining case into three mutually exclusive subcases: s G FAIL*,

s GPASS*, and s £ FAIL* U PASS*.

Case <£ = 3X4>

s GFA/I*: Let a G E/. and let [«] be such that [s] A [t] in M*. We need to show that

[t] GFA/I*. Since [s] A [*], there exists x and y such that E*(s,x) and E*(t,y) and x A y
in M. Since £*(s,x) and s GFA/I*, then by Lemma 3.17, x GFAIL* and hence y GFAIL*.

Then £*(<,y) implies £*(t,y), which implies t GFA/I*. By the I.H., [t,[t]) GE*, and thus
W GFAIL*, which implies that [s] GFA/I*. Hence, (s, [s]) G£*.

s GPASS*: Let a G E/. Then since s G PASS*, there exists t such that 5 A t and

* G PASS*. Therefore, there exists [t] such that [s] A [*]. By the I.H., [t,[t]) GE*, and
thus [t] G PASS*. Hence, (s, [s]) GE*.

143

s £ FAIL* UPASS*: In thiscase, every stateequivalent to s under E* is related by condition

2 of the definition of E*. Therefore, for all x such that E*(x,s), 0(x) = 0(s), and thus
O(s) = 0*([s]), regardless of the representative chosen for [s].

Let a GEj, and let t besuch that s A t and t # FAIL*. Then there exists [t] such

that [s] A [*], and by the I.H., [t, [t]) GE*. This satisfies the first half ofcondition 2.
On the other hand, let [t] be such that [s] A [t] and [t] $ FAIL*. Then there

exists x and y such that £*(s,x) and E*(t,y) and x A y. By the I.H., [t,[t]) G£*. Then
E*(t, y) implies E*(t,y), which implies by transitivity thatE*{[t], y). Then by Lemma 3.17,
y £ FAIL*. Now we apply condition 2 to show that there exists v such that s A u and

£*(y,u). By transitivity, £*([*], v). Hence [s,[s]) G£*.

Case <f> = 3Gty

5GFAIL*: For sake ofcontradiction, assume that [s] g FAIL*. This implies that there
exists a path [w0] %[wi] %..., where w0 = s, such that for all i > 0, [«;,•] £ FA/I*. By
the following claim, this implies that that there exists a path s0 Q Si ^ ..., where s0 = s,

such that for all i > 0, st- £ FAIL*. But this contradicts the fact that s GFA/I*, and hence
[s] GFA/I*.

Claim: For all j > 0, if s0 GFA/I* and there exists a path [w0] ^ [Wl] %... %[Wj],
(where w0 = s0), such that for all 0 < i < j, [w{] £ FAIL*, then there exists a path
so^si^ ...%• Sj, where s0 = s, such that for all 0<i <j, s; £ FAIL* and E*(s{, w{).

Base, j=0: [w0] i FAIL* implies [s0] £ FAIL*, since w0 = s0- By the I.H. of the lemma,
(«o, [so]) GE*, and hence s0 g FAIL*. Since w0 = s0, then trivially E*(s0, w0).

LiL: For A: < j, if s0 G FAIL* and there exists a path [w0] 4 [u>i] ^ ... ^ [wk],
(where u>0 = «o), such that for all 0 < i < k, [w{] £ FAIL*, then there exists a path
so ^ si 4 ... ^ sk, where sQ = s, such that for all 0< i < k, st- £ FAIL* and £*(s,-, wt).

LSil [w*] ^! [u?fc+i] implies there exists x and y such that E*(x,wk) and £*(y,u;jk+i)
and x a^' y. Since s0 GFA/I* and for all 0 < i < k, s{ 0 FAIL*, then sk GFAIL*.
By transitivity, E*(x,sk), and hence x GFAIL*. Also, £*(x,s/k) implies £*(x,sjt), which

144

implies x £ FAIL*. Since Mis completely specified, there exists Sk+i such thatSfc °-^1 sjt+i.
Now, since x £ FA/I* and x G FA/I*, then y G FAIL*. Likewise, since sk i

FAIL* and sk G FA/I*, then sk+i G FA/I*. This implies that E*(y,sk+i), which by
transitivity, implies that E*(sk+i,Wk+i). By the I.H. of the lemma (wk+i, [wk+i]) GE*,
which implies that iojk+i £ FA/I*. Finally, by Lemma 3.17, this implies that sk+i £ FA/I*.

s GPASS*: We show that [s] GPASS* by proving the following claim, where Ri refers to
the definition of PASS*.

Claim: If s GPASS*, then for all i > 0, [s] GRi.

Base, i=0: s G PASS* implies s GPASS*. By the I.H. of the lemma, [s,[s]) GE*, and
hence [s] GPASS*. Thus, [s] G#0.

ULi For k < i, if s GPASS*, then [s] G#*.

ULi By the I.H., [s] G #*. Let a G E/. Since s G PASS*, then there exists * such that

s A *and t GPASS*. Therefore [5] A [*], and since t GPASS*, by the I.H., [t] G#*.

sjFAIL* UPASS*: The following claim shows that (s, [s]) G£* by showing that for all
i > 0, (s, [s]) GQi, where Q, refers to the fixed point computation for E*. Remember that
E* is already known.

Claim: For all i > 0, (s, [s]) GQi.

Base, i=0: Since all the states in the equivalence class of s have the same outputs, then

0(s) = 0*([s]). Hence, (s,[5])GQo-

liL: For k < i, {s, [s]) G Qk-

ULi By the I.H., (s, [s]) GQk- Let a GE/. Let i be such that s A t and t £ FA/I*. Then

there exists [i] such that [s] A [i], and by the I.H., (t, [t]) GQk- This satisfies the first half

145

of condition 2.

On the other hand, let [t] be such that [s] A [t] and [t] &FAIL*. Then there exists

x and y such that E*(s,x) and E*(t,y) and x A y. We need to show that y £ FAIL* in
order to apply condition 2. If y GFAIL*, then by Lemma 3.17, t GFA/I*. Then applying

the above subcase, this implies that [t] G FAIL*, which is a contradiction. Hence, we can

assume that y £ FAIL*. Applying condition 2, there exists vsuch that s A u and £*(y, u),
which by transitivity implies that E*(t,v). This trivially implies that (t,v) GQfc, which
combined with the I.H. that (t,[t]) GQjb, gives that ([*], v) GQ*.

Case 4> = 3[V>i £/ fa]

s GFAIL*: (This proof is similar tothe corresponding case for Lemma 3.17.) For sake of con
tradiction, assume that [s] g FAIL*. This implies that there exists a path [w0] Q [w{] %...,
where w0 = s, and there exists j > 0 such that [wj] g FAIL*2 and for all i < j,
[w^ £ FAIL*1. The following claim shows that a path of all non-FA/I*1 states from

[w0] can be matched by a path of all non-FA/I*1 states from s0. Then we consider the fact

that there exists j such that [wj] £ FAIL*2. By the I.H. of the lemma, (wj,[wj]) G£*2,
and hence Wj £ FAIL*2. By the claim, E*(sj,wj), which implies E*2(sj,wj), which in turn
implies Sj £ FAIL*2. This contradicts the fact that s GFAIL*, and hence [s] GFAIL*.

Claim: For all j > 0, if s0 GFAIL* and there exists a path [w0] ^ [iui] 4 ... %[wj],
(where w0 = s0), such that for all 0 < i < j, [wi\ £ FAIL*1, then there exists a path

so Q si ^ ... -4- Sj, where s0 = s, such that for all 0< i < j, s,- £ FAIL*1 and £*(s,-,«;,-).
The proof is exactly the same as for the corresponding claim in the case <f> = 3Grp,

except that ij) is replaced by fa.

s GPASS*: Since s GPASS*, then there exists i > 0 such that s G.R,-, where i?t refers to
the definition of PASS*. We show that [s] GPASS* by proving the following claim.

Claim: For all i > 0, if s GRi, then [s] G#,.

Base, i=0: s G#o implies s GPASS*2. By the I.H. of the lemma, (s,[s]) G£*2, and hence
s GPASS*2. Thus, [s] GJ?0.

146

I.H.: For k < i, if s G Rk, then [s] G Rk-

I.S.: To show that [s] G Rk+i, we need to show that:

• [5] G Rk, or

• [s] GPASS*1, and Va GE/,3[*] s.t. [s] A [*] and [t] Git!*.

Let s G #*+i- If s Gi?*, then by the I.H., [s] GRk- So assume s £ Rk. First, by the I.H.

of the lemma, (s,[s]) G£*•, which implies [s] GPASS*1. Next, let a GE/. Since s $ Rk,
there exists t such that s A t and £GRk- Therefore [s] A [i], and since *€ A*, by the I.H.,
W € Rk-

s g FAIL* UPASS*: Same as for thecorresponding subcase for the case <j> = 3Gt/>.
m

The following theorem states that M can be replaced by its quotient M* in com

positional model checking.

Theorem 3.28 Let M = {S,X,Y,hO,0,T) and M' = ((S',A",E'7,0',O',T') be FSMs,
and let <j> be a CTL formula. Then for all product states (s, s'),

M x M', (s, s') \=<f>\ffM*x M', ([s], s) \= <f>.

Proof By Lemma 3.27, (5, [s]) G£*. Then applying Proposition 3.25, we have

M x M', (s,s') f= <f> iff M x M', ([s], s') \= <j>.

Since M and M* do not interact with each other, we have

M x M', (s,s'JMiffMx W, (s,s') (= cj>,

and

M x M', {[s], s') \=<f>\ffM*x M', ([s], s') ^= 4>.

Combining this series of equivalences gives the theorem. •

Note that a formula <f> may directly refer to the states S of a component machine

M via an atomic proposition psCSx S'. If we want to model check <j> on a system where

M has been replaced by its quotient M*, then we must first modify <f> by replacing ps with
a new atomic proposition p* that refers to the states in S* rather than S. In particular,
M *') <= Pt iff for all t GS such that E*(s, t), (t, s') Gps.

147

Corollary 3.29 (Theorem 3.11 ofSection 3.5.1.1) Let<j>bea CTL formula, and let Mi,...,
Mn be FSMs. Let Mf be the quotient of Mt- with respect to Ef, and let [st] denote the
equivalence class of E* containing st-. Then for all product states (si,...,sn),

M1x...xMn,(s1,...,sn)\=<j>iffM*x...xM*,([si],...,[sn])\=<fi.

Proof If we can show that for any i

Mi x...xMt_! xMtxMt+i x...xMn,{s1,...,si-l,Si,si+1,...,sn) |= 4> iff

MiX.^xM.-.i xM? xMi+1x...xMn,(s1,...,Si-l,[si],Si+l,...,sn)\=(f>,

then by applying this fact successively n times, the corollary is proved.

By associativity and commutativity of FSM composition, we have

Mx x ... x M^ x Mi x Mi+1 x ... x Mn,(su.. .,*i-i,*i,*.-+i,.• -,*n) N 4> iff

(M1x.,..xMi-1xMi+1x...xMn)xMi,((s1,...,Si-1,Si+i,...,sn),Si)t=<j>.

Then applying Theorem 3.28 gives

(Mi x ... x Mt_! x Mt-+i x ... x Mn) x M,-,{{sh...,Si-uSi+i,...,sn),s{) \= <f>. iff

(Mi x ... x Mt_i x Mt+i x ...x Mn) x M?,((s1,...,si-1,Si+1,...,sn),[si]) \= <f>,

and finally associativity and commutativity gives

(MiX...xMf_1xMt+1x...xMn)xMf,((s1,...,5l_1,st+1,...,5n),[Sl])|=^ iff
MiX.^xM,--! xMtxMi+lx...xMn,(s1,...,Si-1,[si],Si+1,...,sn){=<f>,

m

The following theorem showsthat any transition relation between T and Tmax can

be used in place ofT for compositional model checking.

Theorem 3.30 Let 4> be a CTL formula and let x be a state ofM. Let M be an FSM with

the same specification as M, except that T C f C Tmax. Then for any state t ofany FSM
M',

M x M', (x,t) \= $ iff M x M', (x,t) \= <f>.

148

Proof (by induction on the structure of <j>)

Case <f> = pi

Pi is independent of M, and hence of M, so there is no change.

Case <f> = p0

The outputs of M and M are the same for each state, so there is no change.

Case <f> = ps

The state space of M and M are the same, so there is no change.

Case <j> = -up

M x M', (x, t) |= 4> if and only if M x M', (x, t) ^ tp, which by induction is true if and only

if M x M', (x,t)ft i>, which is true if and only if M x M', (x, t) \= <j>.

Case <f> = fa V fa

M x M', (x, t) |= <t> if and only if M x M', (x,t) \= fa or M x M', (x, t) \= fa, which by

induction is true if and only if M x M', (x,t) (= fa or M x M', (x, t) [= ^2> which is true if

and only if M x M', (x, t) [= <f>.

Case <j> = 3Xil)

(=>) Trivial, since if a witness path exists in T, then it must also exist in f.

(«=) M x M', (x,t)\=4> implies that there exists a next state (x;, t') of (x,t) in M x M' such

that M x M', (x',V) \= ij;. Suppose a GE/ such that x A x' in f and a = O'(s). Then by

the definition ofTmax, there exists y,y' such that y A y' in T and £*(x,y) and £*(x',y').

Byinduction, MxM', (x',*') |= ^, which implies that x' ^ FA/I*. Since £*(x', y'),

which implies that £*(x',y'), we have that y' $? FAIL*.

Now suppose that £*(x, y) by Condition 1ofthedefinition of£*. Since y' £ FA/I*,
this implies that y £ FAIL*, which in turn implies that x £ FA/I* (by Lemma 3.17), which
finally implies that x GPASS*. Hence, M x M', (x,t) \= <j>, for any M' and t.

Now suppose that £*(x,y) by Condition 2. Since y' £ FAIL*, this implies that
there exists x" such that x A x" in T and £*(y', x"). Since £*(x',y') and M x M', <x', i') (=

V», then by Proposition 3.25, M x M', (y',t') (= V- Hence, again by Proposition 3.25,

M x M', (x",*') f= ^>, which finally implies that M x M', (x,t) |= <f>.

149

Case <f> = 3G$

(=>) Trivial, since if a witness path exists in T, then it must also exist in t.

(<=) M x M', (x, t)\=<f> implies that there exists a path (x0, t0) -» (xut{) -> ... in M x M',

where x0 = x and t0 = t, such that M x M',(xi,ti) \= $ for all i > 0. By induction,

this implies that for all i, M x M',(x;,tt) |= fa which by Proposition 3.14 implies that

Xi g FAIL* , which in turn implies xt- £ FA/I* . Suppose at GE/ such that x0 Q xi ^ ...
in f, and at-= 0'(*t_i).

We now prove the following claim by induction.

Claim: There exists a path x0 ^ xj 4 ... in T, where x0 = x, and for all i > 0,
O(x'i) = 0(x.) and £*(x;,xt); or, there exists a path x'0 Q x\ 4 ... ^ x'fc in T, where
x0 = x, and for all i < k, 0(x\) = 0(x,) and E*(x\, xt), and x^ GPASS*.

Base, i=0: Suppose x0 = xQ<Z PASS*. Trivially, O{x'0) = O(x0) and E*{x'0, x0).

LILl For / < i, there exists a path x0 ^ x'x ^ ... 4 x[in T, where x0 = x, and for all
i < I, O(x') = 0(xi), and for all t < /, E*{x'i,xi).

IS.: If z[GPASS*, then the claim is proven. Suppose x{ £ PASS*. We must extend the
path from x{ to xj+1. Now, x/ ^4 x/+i in f implies that there exists y, 2such that y^iz
and £*(x/,y) and £*(x/+i,z). By I.H., £*(xj,x/), and hence by transitivity, £*(xj,y).

Since x/ £ FAIL* and £*(xj,x,), then xj £ FA/I*. Thus, £*(xj,y) holds by
Condition 2 of the definition of £*. First, this implies that 0(x\) - 0(y) = 0(x/). Next,

x/+i i FAIL* implies z £ FAIL* (by Lemma 3.17), and thus y ^±1 z and £*(x{,y) imply
that there exists xj+1 such that x{ ^4 xj+1 in T and E*(x'l+1,z). By transitivity, this
implies £*(xj+1,x/+1). This completes the claim.

Now the proposition follows. If the claim is true by the first part, then since

the outputs of Xi and x\ agree, there exists a path (x0,t0) -• (x[,ti) -> ... in M x M'.
Since £*(xj,xt), then £*(xJ,Xi). Since M x M',(xi,U) |= V, then by Proposition 3.25,
M x M', (x<, U) |= V, for all i > 0. Hence, M x M', (x0, *0) h 0.

If the claim is true by the second part, then the reasoning is the sameexcept that

x'k GPASS* implies that M x M', (x'k, tk) \= <f>, which along with M x M', (xj, *,) |= ip for
«< A, implies M x M', (x0, to) |= <£.

150

Case (j> = 3[fa U fa]

(=>) Trivial, since if a witness path exists in T, then it must also exist in f.

(<£=) M x M', (x, t)\=(j> implies that there exists a path (x0, t0) -• (xu ti) -» ... -» (x*, tk)
in M x M', where x0 = x and t0 = t, such that for all i < k, M x M', (xt-,*t) (= fa, and
Mx M', (xk, tk) (= fa. By induction, this implies that for all i < k, M x M', <xt-, t{) (= Vi,
which by Proposition 3.14 implies that xt- £ FAIL*1, which in turn implies xt- £ FAIL*1.
Likewise, xk $. FAIL*2. Suppose a, G E/ such that x0 4 xx 4 ... ^ xfc in t, and
at = 0'(*,_i).

The rest of the proof follows the case for <f> = 3Gij). •

3.7 Summary and future work

We have presented a formula-dependent equivalence that can be used to manage

the size of the transition relations encountered in compositional CTL model checking. We

have yet to implement the method, and the ultimate effectiveness of the method can be

confirmed only by experimentation. Given an arbitrary CTL formula </>, the method works

by first computing an equivalence, which preserves <j>, on the states of each component

machine. If an explicit representation for transition relations is used, then the quotient

machine is constructed for each component, and the quotient machines are used to build a

smaller product machine.

If BDDs are used, then the equivalence for each component is used to determine

a range of permissible transition relations. More work remains to derive a procedure for

efficiently choosing a relation from this range that will ultimately lead to a smaller product

machine.

Our approach can be applied incrementally to build the product machine by clus

tering some minimized machines, forming their product, and repeating the equivalence

computation. Research is needed to understand how best to cluster the components to

achieve the smallest sub-products. Also, we outlined how our approach can be applied to

the subformulas of a formula, to achieve a coarser equivalence. We need to devise a heuristic

to intelligently decompose a formula into subformulas to take advantage of this.

An important part of a CTL model checker is the ability to generate counter

examples. Since we are altering the product machine, a counter-example in the altered

product may not actually exist in the full product. A method needs to be developed to

151

handle this. Finally, we plan to extend our method to fair-CTL model checking, and we

would like to apply similar ideas to the language containment paradigm.

152

Chapter 4

Deciding State Reachability for

Large FSMs

4.1 Introduction

We are concerned with the problem of determining if there exists a path, in the

state transition graph of a system of interacting FSMs, from a given set of initial states /

to a final set F. We call this the state reachability problem. This problem is more specific

than the usual problem of determining the set of states R reachable from /. Obviously, if

R is known, then by checking if R and F intersect, the state reachability problem can be

answered. However, it may not be necessary to compute R to decide state reachability.

Finding efficient algorithms to solve state reachability is crucial because several

problems in verification, logic synthesis and testing can be efficiently reduced to the state

reachability problem. For example, to determine if two FSMs Mi and M2 are equivalent,

we can define the set of initial states / to be those product states that are initial in both

Mi and M2, and F to be those products states where the output values of Mi and M2

differ. Then, Mi and M2 are equivalent if and only if / cannot reach F in the product

of Mi and M2. As another example, checking safety properties specified as automata over

finite strings can be reduced to state reachability. In particular, if a monitor T is defined

that enters a BAD state when a property is violated, then an FSM M satisfies the property

if and only if the BAD states cannot be reached from the initial states, in the product of M

and T. In summary, an efficient solution to the state reachability problem would provide

153

efficient solutions to a host of other CAD problems.

When an FSM is described as a set of interacting FSMs, the state reachability

problem is PSPACE-complete [26]. Even so, algorithms based on symbolic breadth-first

traversal using BDDs can handle FSMs with several hundred flip-flops. However, on larger

examples, the standard approaches start to falter because

1. the BDD representing the set of states reached at an intermediate step grows too

large, or

2. the image of a given set of states cannot be computed.

This work dDes not address the first problem directly, but instead focuses on the second

problem; in doing so, we aim to increase the size of FSMs that can be analyzed.

To understand the idea behind our approach, consider the state transition graph

G of an FSM M, representing a set of interacting FSMs. We assume that G is too large

to build and analyze directly. Instead, we make a series of over- and under-approximations

to G, where with each approximation, we attempt to narrow in on a path from / to F,

or prove that such a path cannot exist. An over-approximation of G is a graph containing

a superset of the edges1 of G, and an under-approximation of G is a graph containing a
subset.

Consider an over-approximation V to G, and restrict V to those transitions lying

on a path from / to F. If there is a path in G from J to F, then this path must exist in

the restricted V. Now, consider an under-approximation U. Denote by /' all those states

that are reachable from / in U, and by F' all those states that can reach F in U. If I' and

F' intersect, then certainly / can reach F in G, because, bydefinition, all of the transitions

in U are in G. On the other hand, if /' and F' do not intersect, then we try to extend

the frontier of /' by looking for true transitions (i.e., those in G) among those in V that
lead from states in /'. If no such transition can be found in V, then we have proven that /

cannot reach F in G. We also try to work backwards from F' at the same time, in a similar

manner. In summary, V is used to guide the search in U for a path from / to F.

The feasibility of our approach is predicated upon finding approximations to G

that have reasonable BDD sizes, but yet are close enough approximations to G to permit

useful information to be derived. To this end, we introduce two new as BDD operators,

The terms edge and transition are used interchangeably.

154

called bddOverApprox and bddUnderApprox. Consider the BDD F representing a function /.

BddUnderApprox selectively replaces some subgraphs in F by the constant ZERO, yielding
a new BDD G representing the function g, such thatG has fewer nodes than F, and g C /.

Nodes are selected for replacement based on a cost function that takes a parameter that

controls the tradeoff between reducing the BDD node count, and reducing the onset size.
In a similar manner, bddOverApprox adds minterms to a function by replacing BDD nodes
by the constant ONE. Ravi and Somenzi [4] independently and concurrently formulated the

same BDD approximation problem, although they apply it in a different situation.

The main contribution of this work is a BDD-based algorithm to solve the state

reachability problem, via a series of under- and over-approximations to the state transition

graph. To our knowledge, the idea of using both under- and over- approximations in this

domain is novel. Also, we define, and give a heuristic solution to, the new problem of

approximating Boolean functions to yield a small BDD.

4.2 The state reachability problem

FSMs weredefined in Section 1.1.2. For the state reachability problem, the outputs

of an FSM are of no interest, and hence we omit them from the specification of an FSM.

Thus, an FSM is specified as a 5-tuple, M = (S, I, X, £/, T), where:

• S is the state space ofsize 2l, spanned by the binary variables x = [xx, x2,..., x/]. We

also introduce a second set of variables y = [t/i, t/2> •••>yi] to denote the next state.

• / is a subset of S, denoting the initial states.

• X is the set of n inputs, with associated binary variables u = [u\,U2,...,«„].

• £/ = W1 is the input alphabet.

• T is the next state function, T : S x £/ -• S. T is presented as a vector of / Boolean

functions, S= [Si, S2,..., Si], where Si is the next state function of the state variable x,.

Ti = (yi = Si(u, x)) gives the corresponding transition relation of x,-, and T = n!=i Ti.
S is typically given as a multi-level logic network.

The state transition graph G(x,y) of M is a binary relation over S defined by

/

G(x,y) = 3uY[Ti(x,u,yi).
t=i

155

That is, G(x,y) = 1 if and only if there exists an input u such that from state x =

[xi, X2,..., xi], Si evaluates to t/t-, for all 1 < i < I. The state sequence n = x°x1... is a run

of M if (x\ xi+1) e G, for all i > 0. The run n is initialized if x° GJ.

Definition 4.1 An instance of the state reachability problem consists of an FSM M =

(S, I, X, £/, T) and a subset of states F C S. The answer to the state reachability problem

is YES if there exists an initialized run x°x1 ...xr in the state transition graph of M such

that xr G F, and NO otherwise. •

As defined, the next state behavior of an FSM must be deterministic. However,

sometimes FSMs are specified with nondeterminism, meaning that for a given input and

present state, there may be more than one next state. In this case, a relation, rather than

a function, is needed to specify the next state behavior. Since we are only interested in

the state transition graph G derived from the relation T, nondeterminism does not pose a

problem; we stick with determinism for clarity.

Finally, we are interested in analyzing a system of interacting machines, but our

definition of the problem is with respect to a single FSM.This limitation is easily overcome

by realizing that any system of FSMs can be thought of as a single FSM by amassing the

next state functions of all the state variables of the system into a single vector of next state

functions.

4.3 Related work

The problem of traversing the state graph of an FSM, whether to compute the

set of reachable states or to determine if a specific subset of states is reachable, has been

the object of intensive research over the last decade. A breakthrough occurred in 1989

when Coudert, Berthet and Madre proposed using BDDs to perform symbolic breadth-first

traversal of state graphs [42]. With this approach, the number of states in the graph is no

longer the principal limitation (as in depth-first traversal); instead the "complexity" of the

Boolean functions defining the underlying circuit govern the efficiency.

Since symbolic traversal was proposed, many researchers have suggested various

heuristics in a quest to traverse ever largerand complex FSMs. These heuristics have been

shown to be effective in some cases, and not so in others. Here we review some of the

previous work, and how it relates to our research.

156

4.3.1 Image computation

Image computation is the central task in symbolic traversal. Given a set of states

A, we want to determine the successors ofA in the graph G of an FSM. The image can be
computed as

image(y) = 3x(G{x,y) •A(x)).

That is, a state y is a successor ofA if there exists a state x in A such that there is an edge

from x to y in G. Substituting for G from above,

/

image(y) = 3x3u(JJ T,(x, u, y{) •A(x)).

The naive approach of first taking the product of the T,-'s and A, and then quantifying x

and u, is ill-conceived because often the intermediate product is large even though the final

result is not so large. In general, the full product must be computed because existential

quantification does not distribute over Boolean conjunction. However, a special case can

be exploited where it does distribute. Namely, the equation

3x(f{x,y)-g(y))

can be rewritten as

3z(/(z,i/))-0(y).

Several researchers have used this fact to quantify some variables before the entire product

is formed, in an attempt to avoid the intermediate blowup in the overall computation [43,

44, 45, 46, 7].

Another technique for simplifying image computation is to use certain sets of states

as don't cares to simplify the BDDs of the set A of states and the individual transition

relations Tt. In particular, suppose that the set R of states has already been reached, and

during the previous image computation, the set B was reached for the first time. For the

next image computation step, there is no harm in re-exploring states in R that are not in

B. Thus, any set C such that B C C C R is suitable for the next image computation.

In addition, we can arbitrarily choose the behavior of T, on any state x not in C, since

such states are disregarded when the eventual product with C is formed. The operators

constrain and restrict implement the simplification of BDDs using don't care sets [6, 7, 8].

157

Cabodi et al. [47] introduce the existsCofactor, which is similar to the constrain

operator, but allows existential quantification to distribute overconjunction. In particular,

they are able to rewrite

^(f(x,y)-g{x,y))

as

3xf(x,y)-3g'(x,y)),

where g'(x,y) is the existsCofactor ofg with respect to /.

All three of the techniques discussed in this subsection are orthogonal to our
approach, and in fact can be used in combination with our approach

4.3.2 Exact state reachability

Balarin introduced an algorithm to test for language emptiness of automata over

infinite strings [48]. For ease ofpresentation, we describe his algorithm for thesimpler case
of automata over finite strings. An automaton over finite strings has a designated set F
ofaccepting, or final, states. The language ofsuch an automaton is not empty if and only
if there exists a path from / (the initial states) to F; thus, state reachability provides the
answer to language emptiness.

To solve this problem, Balarin makes a series ofsuccessively finer over-approxima
tions to the state graph G of the automaton, in an attempt to determine if / can reach F.

Each over-approximation V is analyzed to determine if there is a path from / to F. There
are two cases to consider.

1. There is a path from / toF in V: Ifthis path exists in G(G is analyzed for this single
path), then the language is not empty, and the algorithm terminates. Otherwise, a new
over-approximation is constructed that eliminates this path in V, and the procedure
is repeated.

2. There is not a path from / to F in V: Then the language is empty, and the algorithm
terminates.

Balarin's algorithm partly served as inspiration for our approach. However, whereas Balarin
analyzes a single path from / to F in V at a given iteration, we analyze all of the paths
from J to F to guide the search for a real path in the under-approximation U.

158

The work of Cabodi et al. [49] is similar in spirit to ours. They first compute
an over-approximation of the states reachable from /, and then use this information to

constrain an exact backward search from F. If J is reached in the backward search from F,
the the state reachability problem is answered in the affirmative.

The work of Courcoubetis et al. [50] addresses the problem of not being able to
build the transition relation for an FSM M. Instead ofemploying BDDs and performing
BFS on the state graph, they use DFS, building up the graph one transition at a time.

Since this method is explicit, they are limited in time to exploring roughly 108 states. This

method is referred to as "on-the-fly", because statesare checked to see if they belong to F
while the graph is being built.

4.3.3 Approximate state reachability

The set of reachable states is the set of states R that can be reached from the

initial states /. Obviously, if R is known, then the set / can reach F if and only if R and F

have a non-empty intersection. Even if R is not known, sometimes an approximation to R

can be used to answer the state reachability problem. If an under-approximation R~ and

F intersect, then clearly R and F intersect, and the answer to state reachability is "YES".

On the other hand, if an over-approximation R+ and F do not intersect, then R and F

do not intersect, and the answer is "NO". In the cases where R+ or R~ cannot be used to

answer the state reachability problem, they could be used as a starting point to focus the

search for a path from / to F.

Cho et al. [51] have devised various techniques for over-approximating R. The first

step of these techniques is to partition the flip-flops of the FSM to yield a set of k interacting

sub-FSMs. This partitioning is done so that flip-flops with strong interaction tend to be

placed in the same sub-FSM. Next, the set /?, of reachable states of sub-FSM,- is computed

for each i. This computation does not consider the full, dynamic interaction of sub-FSM,

with the other sub-FSMs, but instead considers some partial constraints on the values of

the inputs of sub-FSM,- driven by the other sub-FSMs. This yields an over-approximation

of the state reachable in sub-FSM;. Finally, an over-approximation R+ of the entire reached

set is given by the Cartesian product R+ = Ri x ... x Rk. They use the complement of R+

as an under-approximation of the unreachable states to perform logic minimization.

Ravi and Somenzi [4] propose a technique to under-approximate R. Their al-

159

gorithm proceeds with the usual symbolic BFS, but when the set of states A to explore

becomes too large (in terms of BDD size), they continue the search from only a subset

of A. This subset is heuristically chosen to have a small BDD while retaining as many

states as possible from A. As mentioned previously, this problem of approximating a set

using a small BDD is the same problem we have formulated. As such, we could employ the

heuristics proposed by Ravi and Somenzi in our work.

As mentioned earlier, Courcoubetis et al. [50] perform state graph traversal using

depth-first traversal, and not using BDDs. To represent the set of states visited thus far in

a traversal, they use a data structure whose size is directly proportional to the size of the

set of states. The problem is that this set may become too large to represent. To combat

this problem, they use a hash table without collision chains, which hashes a state to a single

bit indicating if the state has already been visited. Since collisions may occur in this hash

table, it may be incorrectly deduced that a state has already been visited, when in fact it

has not been. This may in turn lead to visiting only a subset of the total set of reachable

states, thus yielding an under-approximation. They use probabilistic analysis to quantify

the probability of collisions for a randomly chosen hash function.

4.4 Algorithm to decide state reachability

Figure 4.1 gives an outline of ouralgorithm to solve the state reachability problem

for the FSM M and final state set F. The algorithm also takes 0 < a < 1 as input, which

controls the degree of approximation used during the algorithm. Here we discuss the top-

level control of the algorithm and illustrate the algorithm in detail with an example. In
Section 4.6, we discuss each of the subroutines in detail.

We assume that the graph G(x, y)of M is too big to build and manipulate. Instead,

we construct a series of approximations to G(x, y) that are small enough to manipulate

efficiently. We are willing to trade off execution time in favor of memory savings, in an
attempt to handle very large FSMs.

The initial step is to compute an over-approximation V(x,y) D G(x,y) (line 1),

and an under-approximation U(x,y) C G(x,y) (line 2). G is a set of directed edges of a

graph, so V is asuperset and U isa subset of this setofedges. The goal is to choose V(x, y)
and U(x,y) so that they are close to G(x,y), but have much smaller representations.

The algorithm then iterates, adding edges to U(x,y) and removing edges from

160

stateReachability(M, F, a)

1 V := InitialOverApprox(M, a)
2 U := InitialUnderApprox(M, a)

3 / := initial states / of M

4 F := input parameter F

5 while (TRUE)
6 I := I + ForwardReachability(U, I) /* states reachable from / in U */
7 F := F + BackwardReachability(U, F) /* states which can reach F in U */

8 if (/ intersects F)
9 return "yes, / can reach F"

10 V := RestrictToFinal(V, I, F) /* restr. V to edges on paths from / to F */

11 if (/ cannot reach F in V)
12 return "no, / cannot reach F"

13 toF := V(x, y) •F(x) - F(y) /* transitions to F in V */
14 fromi := V(x,y) -I(x) -/(y) /* transitions from / in V */

15 falseToF(x,y) := ApproxFalseEdges(M, toF, V, a) /* C false edges in toF */
16 trueToF(x,y) := ApproxTrueEdges(M, toF, V, a) /* C true edges in toF */
17 falseFromI(x,y) := ApproxFalseEdges(M, fromi, V, a) /* C false edg. in fromi */
18 trueFromI(x,y):=ApproxTrueEdges(M,fromI,V,a) /* C true edg. in fromi */

19 if (falseToF AND trueToF AND falseFroml AND trueFroml are empty)
20 <rueToF(x,2/) := ExactTrueEdges(M, toF)
21 trueFromI(x,y) := ExactTrueEdges(M, from!)
22 if (frueToF OR trueFroml is empty)
23 return "no, / cannot reach F"
24 else

25 falseToF(x, y) := toF(x,y) - <rue7bF(x, y)
26 falseFromI(x, y) := fromI(x, y) - trueFromI(x, y)

27 V := V - (falseToF + falseFroml) /* remove false edges from V */
28 I/:=tf+ (trueToF+ trueToI) /* add true edges to U */

Figure 4.1: Algorithm to decide state reachability.

161

V(x,y), until it is determined whether or not there exists a path from / to F in G. The

search is conducted working forward from / and backward from F. In particular, each

iteration starts by performing, in U, forward reachability from / and backward reachability

from F (lines 6 and 7). Reachability is carried to a fixed point. Any states reached from

/ are added to /, and any states that can reach F are added to F. Since all edges in U

are present in G, all states in / and F can also be reached in G. If at any time / and F

intersect, then we know that a path exists from the original / to the original F in G (lines

8 and 9).

The next step is to restrict V to those edges that lie on some path from I to F

in V (line 10). If there does indeed exist a path from / to F in G, then it must lie in the

restricted V. Hence, if it is discovered that there is no path from / to F in V, then we

can immediately conclude that no such path exists in G (lines 11 and 12). This restriction

is done on each iteration, because as we will see, we eliminate some edges from V on each

iteration (line 27). Remember that we assume that the representation for V is small enough
so that we can do reachability on V efficiently.

Since we carried reachability in U to a fixed point (lines 6 and 7), by definition,
there are no edges in U leaving / or entering F. Hence, to continue the search in U, we
need to find edges ofG leaving / and edges entering F. Where do we look for such edges?
Naturally, we look for them in V. In particular, V focuses our search for a path from /

to F, since if such a path exists in G, it must exist in V. Furthermore, V contains only
those edges lying on a path from / to F in V (because of line 10). This is a key point.
Thus, in lines 13 and 14, we restrict V to those edges entering F (toF) and those exiting /
(fromi). Our intention is to determine which edges in these sets are "true" (exist in G) and
which are "false" (do not exist in G). Just answering the question for one edge is already
NP-complete (reduction from SAT). Hence, we try to approximate the true and false sets

(lines 15-18). If all of the approximations are empty, then we must do exact analysis (lines
20 and 21) on the true edges in order to draw any conclusions. If exact analysis does not

find any true edges, then we can conclude (line 23) that no path exists from / to F in G.
If at least one of falseToF, trueToF, falseFroml, and trueFromlis non-empty, then

we remove false edges from V, and add true edges to U (lines 27 and 28). Removing false

edges from V is important because it may further narrow the search. At this point, we
repeat the entire loop.

There are three major subroutines in this procedure:

162

1. initial over-approximation of G (line 1),

2. initial under-approximation of G (line 2), and

3. approximation of edges from / and to F (lines 15-18).

Each of these subroutines involves approximating a set of edges represented by a BDD.

For this task, we make extensive use of the BDD approximation operators. Section 4.5

addresses the BDD approximation problem.

4.4.1 Example

We illustrate the algorithm with a detailed example. Figure 4.2 shows the graph

G(x, y) of a 21-state FSM. The states are labeled for reference. The set of initial states is

^ = {3}5 and the set of final states is F = {13}. Toemphasize, we do not have direct access

to this graph in the algorithm; it is shown here to clarify the operation of the algorithm.

Figure 4.2: Graph G of a 21-state FSM. The initial state is 3 and the final state is 13.

The initial over-approximation Vi and under-approximation Ui are shown in Fig

ures 4.3 and 4.4, respectively. Throughout the example, the current sets of states / and F

are each indicated by a dotted region. In addition, the false edges of the over-approximations

(although not known a priori by the algorithm) are indicated by dots.

163

Iteration 1 Performing reachability in U\ (lines 6, 7), / is enlarged to {2,3} (because

of the edge 3->2) and F is enlarged to {9,13} (because of 9-^13). Since / n F = 0, we

proceed to restrict Vi (line 10) to edges on paths from J to F, to yield V{ in Figure 4.5.2

For example, edges 3—»6 and 16—^15 are removed. With careful analysis, even edges 9—>3

and l->3 can be removed, since their removal does not affect the reachability question. In

addition, we remove the self-loops in Vi. Since / cannot reach F in V[, the condition at line
11 if false.

Figure 4.3: Initial over-approximation Vi. The sets / and F are indicated by the dotted
region. False edges are indicated by a dot.

As a side note, as the algorithm is presented, whenever we can remove edges from
Vi, we do so. In reality, removing such edges may make the BDD for V needlessly larger.
Hence, these edges should be treated as don't cares and used to minimize the BDD size of

V. In addition, edges between two states in /, or between two states in F, can be treated
as don't cares in both V and U.

Continuing with the algorithm, line 13 identifies those edges of V{ entering F,

toF= {5-^9,10-H3,11-H3,12->9}.

and line 14 identifies the edges of V{ leaving J,

fromi = {2-fl,3->4,3-+5}.

Now the new / and F are shown. Edges contained within / or within F are not drawn.

164

.14

16.

•® ©

©-f©)
^5)

Figure 4.4: Initial under-approximation Ui.

Figure 4.5: Over-approximation V[, formed by restricting Vi to edges on paths from / to
F. Edges contained within / or within F are not drawn.

165

Since these edges belong to an over-approximation, we do not know a priori which edges

are true and which are false. Suppose lines 15 to 18 make the following approximations:

falseToF = 0,

trueToF = {12->9},

falseFroml = {3-44},

trueFroml = {2-)-l}.

Since not all of these are empty, the algorithm proceeds to lines 27 and 28, where edge 3-44

is removed from V{ to yield V2 (Figure 4.6), and edges 12-»9 and 2->-l are added to U\ to

yield U2 (Figure 4.7).

Iteration 2 Reachability on U2 expands / to {1,2,3,4,5}, and expands F to {9,11, 12,

13, 17}. Notice that pre-existing edges in the under-approximation (e.g., l->4, 4->5) allow

the reachability computation to progress beyond those edges just added to the under-ap

proximation.

/ and F still do not intersect, so we restrict V2 (for example, by removing all edges

to and from states 18, 19 and 20), to yield V2' (Figure 4.8). / can still reach F in V2' (line
11), so we compute

toF = {5-49,10-413,10-+11,21-411}, and

fromi = {5-^7,5-^9,5^10}.

Suppose lines 15 to 18 make the following approximations:

falseToF = {10^13,21-^11},

trueToF = 0,

falseFroml = {5-»9},

trueFroml = {5-»7}.

Then the false edges are removed from V2' to yield V3 (Figure 4.9), and the true edge is
added to U2 to yield U3 (Figure 4.10).

Iteration 3 Reachability on U3 adds states 7 and 15 to /. / and F do not intersect.

Restricting V3 removes edges 10->7 and 15-421, to yield V3' (Figure 4.11). Attention is

166

Figure 4.6: Over-approximation V2, formed by removing edge 3-»4 from V[.

i4

16.

^S)

Figure 4.7: Under-approximation U2, formed by adding edges 12-4-9 and 2-»l to U\.

/©

«; © © / /

Figure 4.8: Over-approximation V2, formed by restricting V2 to edges on paths from / to
F.

167

focused on

toF = {10-411}, and

fromi = {5-^10,15-410}.

Suppose lines 15 to 18 make the following approximations:

falseToF = 0,

trueToF = {10->11},

falseFroml = 0,

trueFroml = {15-»10}.

These twotrue edges are added to U3 to yield f/4 (Figure 4.12).

Iteration 4 Reachability in U4 adds state 10 to /, and also to F. At this point, / and F

intersect, and the algorithm returns "yes, / can reach F."

4.5 Approximating Boolean functions

Our algorithm to decide state reachability efficiently is predicated upon being able

to find close approximations to sets of edges (e.g., the graph G(x, y), and the sets toF(x, y)

(© _©,--(©" © @\®
© >.

8

168

Figure 4.9: Over-approximation V3, formed by removing edges 10—)-13, 21—^11 and 5-»9
from V2'.

i® ®/7©
©

i4

16.

•® ©

/®\%

Figure 4.10: Under-approximation Uz, formed by adding edge 5-47 to U2.

i.6

21

-*©\ ©

{® ®y'(® ®®\®
©

169

Figure 4.11: Over-approximation V3', formed by restricting V3 to edges on paths from J to
F.

/'" ©
/ © ©; ®-y^~©

k .®/f© ' ®©
© a

'•••».«'

^

Figure 4.12: Under-approximation C/4, formed by adding edges 10—>11 and 15-^10 to U3

170

Figure 4.13: The BDD over-approximation problem.

and fromI(x,y)), which have small BDDs. In this section, we define a general problem

whose solution can be used to approximate sets of edges. We discuss the related work of

Ravi and Somenzi, and then offer our own heuristic to solve the problem.

4.5.1 Statement of the problem

Given a Boolean function /, we say that the Boolean function g if an over-ap

proximation of / is g D f. This definition can be extended to relations by considering the

characteristic functions of relations. We want to find an over-approximation g of f such

that g just "barely" contains /, and yet the BDD for g is much smaller that the BDD for

/ (under a fixed variable ordering). This problem is illustrated in Figure 4.13, where the

function / is a "complicated" function with a large BDD, and g is a "simple" function with

a small BDD, derived from / by adding some minterms to the onset.

The demands of having a close approximation and yet having a small BDD are

sometimes conflicting. There are two extreme approximations we could consider. The first

is the function / itself; this approximation is exact, however, by assumption, this function

has an unwieldy BDD.The second approximation is the tautology; this approximation has a

BDD of size 1, however, it is unlikely to be useful since it does not contain any information.

171

These conflicting demands lead us to the following optimization problem.

Definition 4.2 The BDD over-approximation problem is, given the BDD for a function

/ : Bn -4 B and 0 < a < 1, find g D f such that the cost of g is minimized, where

cost(g) = a(\ogl |onset($)|) + (1 - a)|BDD(^)|

and |onset(flf)| is the size of the onset ofg, and |BDD(p)| is the size of the BDD for g. •

Several remarks regarding this problem are in order.

1. The parameter a appearing in thecost function allows us to control the relative weight
between finding a close approximation and finding an approximation with small BDD

size. We see that when a = 1, the minimum cost solution is / itself, and when a = 0,
the minimum cost solution is the tautology.

2. Since for an over-approximation g of /, |onset(#)| > |onset(/)|, ifcost(g) < cost(f),
then this implies that |BDD($)| < |BDD(/)|.

3. The logarithm ofthe onset size is used to balance the two terms being summed. Even
though both |onset(5f)| and |BDD(#)| can be exponential in n, functions we can handle

typically have exponential size onsets but polynomial size BDDs. Therefore, so that
the onset size term does not dominate the BDD size term, we take the logarithm
squared of the onset size term.

4.5.1.1 Complexity of the BDD over-approximation problem

The decision problem corresponding to the state reachability problem is in NP.
Instance: Afunction / : Bn -*• Brepresented by a BDD, 0<a < 1, and K< |BDD(/)|.
Question: Does there exist g : Bn -4 Bsuch that g Df and cost(g) < K1

Proposition 4.3 The above problem is in NP.

Proof We must verify in time polynomial in |BDD(/)| whether or not a guess g is a
solution to the problem. If |BDD(p)| > |BDD(/)|, then we can immediately dismiss g
as a potential solution, by the second remark above. Otherwise, we traverse BDD(g) to
determine |onset(y)|; this can be done in time 0(\BDD(g)\). Then we compute cost(g), and
verify whether or not cost(g) < K. If so, we verify that gDf; this can be done by checking
that / g = 0, which can be done in time 0(|BDD(/)| •|BDD(^)|). •

172

4.5.1.2 Minterms versus BDD size

The drawing in Figure 4.13 is meant to suggest that just by adding a "few"
minterms to the onset of /, the BDD size can be drastically reduced. Unfortunately, the
truth is not so ideal. We now show that adding one minterm to the onset of / cannot
reduce the BDD size of / by more than n, where n is the number of variables. Thus, if
|BDD(/)| is exponential in n, then to get an exponential reduction in the BDD size, we
mustadd an exponential number ofminterms, which can nolonger be construed as a "close"
approximation.

Let xi, x2,..., xn span the space Bn. Without loss of generality, assume the BDD

variable ordering is xi < x2 < ... < xn, wi*,h Xi being the top variable.

Lemma 4.4 Let f : Bn -4 B and let m G Bn be a minterm in the offset of f. Then

\BDD(f + m)\ < \BDD(f)\ + n. That is, adding a minterm to the onset of a function
cannot increase the size of its BDD by more than n.

Proof We argue that the number of nodes at level i cannot increase by more than 1. Since

there are at most n levels, the total size cannot increase by more than n.

Let bj € B denote an assignment to Xj, and let m be the minterm b'i,...,b'n.

Consider the cofactors of / on all combinations of &i,..., 6,-_i. Partitions these cofactors

into equivalence classes based on equality. The number of classes whose representative

depends on a;,- gives the number of nodes at level i in the BDD for /.

Now consider the cofactors of / + m on all combinations of 6i,..., 6,_i. First, we

note that cofactoring distributes over disjunction, so

(f + m)bl 6,_, = fbx &,_, + m&, 6,_1-

The cofactor of m by &i,...,6,_i is 0 for every combination of 6i,...,6,_i, except for

b[,..., 6[_1. Thus, all but one of the cofactors of / + m are the same as the corresponding

cofactors of /. Hence, each cofactor remains in the same equivalence class, with the excep

tion of the cofactor by b\,..., 6j._j. In the case that this cofactor forms its own class, and is

dependent on £,-, the number of nodes at level i will increase by one. In all other cases (the

cofactor joins another class, or forms its own class but is independent of a;,), the number of
nodes at level i does not increase. •

173

Lemma 4.5 Let f : Bn -4 B and let m e Bn be a minterm in the onset of f. Then

\BDD(f •m)\ < \BDD(f)\ + n. That is, removing a minterm from the onset of a function

cannot increase the size of its BDD by more than n.

Proof The proof is similar to Lemma 4.4. In this case, we have

(f'm)bi 6,_! =/6,,...,6,_, •W»6,,...,6i_,.

The only combination of &i,...,6,_i where mbl &._, ^ 1 is b\,. ..,b_v Thus, all but one

of the cofactors of / •m are the same as the corresponding cofactors of /. The rest of the

proof is the same. •

Theorem 4.6 Let f : Bn -4 B and letmeW1 be a minterm. Changing the value of f on
m cannot change the size of the BDD for f by more than n.

Proof

Case 1: m is in the offset of /. By Lemma 4.4, |BDD(/ + m)\ < |BDD(/)| + n. We must

show that |BDD(/+m)| > |BDD(/)|-n. For sake ofcontradiction, suppose |BDD(f+m)\ <
|BDD(/)| - n. Let g= f + m. By Lemma 4.5, \BDD(g •m)\ < \BDD(g)\ + n. Since

g . m = (/ + m)m = / •m = /,

then substituting for g gives |BDD(/)| < |BDD(/+m)|+n. By hypothesis, |BDD(/+m)| <
|BDD(/)| - n, which implies |BDD(/)| < |BDD(/)| -n + n = |BDD(/)|, an obvious
contradiction. Thus, adding a minterm to / cannot change the BDD size by more than n.

Case 2: m is in the onset of/. By Lemma 4.5, |BDD(/ •m)\ < |BDD(/)| 4- n. To show
that |BDD(/ •ra)| > |BDD(/)| - n, we proceed exactly as in Case 1, using Lemma 4.4 this
time. Thus, removing a minterm from / cannot change the BDD size by more than n. •

Thus, we see that the effect on BDD size of adding minterms to a function is

somewhat gradual. Adding k minterms can reduce the BDD size by at most kn. Ofcourse,

adding minterms can also increase the BDD size, so choosing which minterms toadd requires
judiciousness. As a side note, the above lemmas and theorem can be easily generalized to
adding and removing cubes, rather than just minterms.

174

4.5.1.3 Under-approximations

So far we have discussed only the problem of finding good over-approximations.

However, we are also interested in finding good under-approximations. The formal state

ment of the BDD under-approximation problem follows.

Definition 4.7 The BDD under-approximation problem is, given / : Bn -4- B and 0 < a <
1, find g C / such that the cost of g is minimized, where

cost(g) = a(log2(|0ffse%)|)) + (1 - a)|BDD(^)|.

Thus, to minimize the cost, we want to minimize the size of the BDD and the size of the

offset, subject to the constraint that g C /. Note that when a = 1, the minimum cost

solution is / itself, and when a = 0, the minimum cost solution is the zero function.

4.5.2 The subsetting problem of Ravi and Somenzi

Ravi and Somenzi independently and concurrently formulated a problem, termed

the subsetting problem, which is nearly identical to our BDD under-approximation prob

lem [4]. They employ subsetting to compute an under-approximation of the set of reachable

states of an FSM, as explained in Section 4.3. Here, we explain the subsetting problem,

and the heuristics they propose for solving this problem.

Definition 4.8 The subsetting problem is, given a BDD for / : Bn -4 B and a threshold

K < |BDD(/)|, find a function g such that g C f, \BDD(g)\ < K, and the number of

minterms in the onset of g is maximum. •

This problem is nearly identical to ours, the only difference being that Ravi and

Somenzi use the threshold K to control the degree of approximation, whereas we use the

parameter a.

The first heuristic they propose is termed heavy branch subsetting. This method

starts at the root of the BDD for / and follows a singlepath through the BDD,setting to the

constant ZERO the side branches along this path. For a given node on this path, it always

sets to ZERO that child "holding" the lesser number of minterms in the onset of / (the

Tight" child), and keeping the other (the "heavy" child). The procedure terminates when

175

enough nodes have been eliminated so that the total BDD size falls below the threshold

K. The procedure keeps track of how many nodes are being eliminated by computing,

in a preprocessing step, the number of nodes "held" by each light child, exclusive of its

corresponding child (called the differentiaLnode.count). Using this technique, the total

runtime is linear in |BDD(/)|. The result of this procedure is a BDD with a string of nodes

at the top, each with one child pointing to ZERO.

The second heuristic is called short path subsetting. The idea here is to keep just

those short paths from the root to the constant ONE, because they hold a large number of

minterms but cost little in terms of the number of BDD nodes. The procedure first labels

each node with the sum of its shortest distance from the root, and its shortest distance

to the constant ONE; this is called the pathJength. Then, based on the threshold K, it

determines a maximum value for pathJength such that removingall nodes with a pathJength

greater than the maximum will yield a BDD of size less that K. The resulting BDD may

have many disjoint paths, and consequently little sharing of BDD nodes.

Experiments were conducted to compute under-approximations of the set of reach

able states for several large FSMs. These experiments validated the utility of subsetting.

As a side note, neither heuristic was shown to be superior to the other.

4.5.3 Heuristic for the BDD under-approximation problem

For a function / with k minterms in its onset, there are 2k functions g C /. Since

we want to find an approximation g with lower cost than /, g must have fewer BDD nodes.

We try to find such a g by replacing some subgraphs of / by the constant ZERO; this is

also the general approach of Ravi and Somenzi. This is guaranteed to reduce the number

of nodes, while meeting the condition that g C /. However, depending on the value of a,

replacing a subgraph by ZERO may actually increase the cost. The challenge is to determine

which set of subgraphs to replace by ZERO in order to maximize the cost reduction.

Although we have not been able to determine a lower bound on the complexity

of the BDD under-approximation problem, it seems likely that solving the problem exactly

would be prohibitive. In fact, since we want to repeatedly apply the approximation operator

on BDDs of tens of thousands of nodes, we require an algorithm that is linear, or nearly so.

Because of this, we take a very greedy approach.

The basic idea is to visit the nodes of the BDD for / on a level-by-level basis, from

176

top to bottom. Within a level, the nodes are visited in an arbitrary order. When a node v
is visited, we compute

• numOnset(v), which is the number of minterms in the onset of / that would be

removed if all edges pointing to v were redirected to ZERO, and

• nodeSavings(v), which is the number ofnodes in the subgraph rooted at v that would

be saved if v were replaced by ZERO. Note that some nodes in the subgraph ofv are
shared by other parts ofthe BDD, and hence do not contribute to nodeSavings(v).

Given these two measures, we can determine whether or not replacing v by ZERO will
increase or decrease the overall cost; if it will decrease, then we greedily make the replace
ment. We continue processing each node in turn until all non-constant nodes have been

processed.

We now detail the four majorstepsofthe algorithm, and illustrate it on the BDD in

Figure 4.14. To simplify the presentation, we assume that complement pointers arenot used

in the BDD. However, the implementation must ultimately take into account complement
pointers, because all present-day BDD packages use them. The main complication is that
replacing a node v by ZERO will actually add minterms to theonset off, ifvcan be reached
by an odd number of complement pointers.

4.5.3.1 Step 1: Compute the onsetFraction of each node v in f

For the Boolean function rooted at v, onsetFraction(v) gives the ratio of the size
of the onset to the size of the entire Boolean space. This figure can be computed for all
nodes of / in linear time by applying DFS from the root of /. The terminal cases of the
recursion are

onsetFraction(ONE) = 1, and

onsetFraction(ZERO) = 0.

The onsetFraction of a non-constant node is computed in terms of the onsetFraction of its
two children:

onsetFraction(v) = -onsetFraction(v.left) + -onsetFraction(v. right).

177

Figure 4.14: BDD used to illustrate the bddUnderApprox algorithm.

178

The onsetFraction for each node in ourexample BDD is shown in Table 4.1. For example,

onsetFraction(C) = 1 = -.
2 8 2 8 8

node onset-

Fraction

function

RefCount

node-

Sav

num-

Min-

num-

Onset

costBenefit, a

0 .2 A .6 .8 1

ings terms

A 25/32 1 10 64 50 10 3.7 -2.6 -8.9 -15.2 -21.5
B 3/4 1 5 32 24 5 1.4 -2.2 -5.8 -9.4 -13.0
C 5/8 1 4 16 10 4 1.9 -0.2 -2.3 -4.4 -6.5
D 13/16 1 1 32 26 1 -2.0 -4.9 -7.9 -10.8 -13.8
E 3/8 1 3 8 3 3 2.0 0.9 -0.1 -1.2 -2.2

F 7/8 3 1 40 35 1 -2.6 -6.2 -9.8 -13.4 -17.0
G 1/4 1 1 4 1 1 0.6 0.3 -0.1 -0.4 -0.8
H 3/4 2 2 36 27 2 -1.2 -4.5 -7.7 -11.0 -14.2

J 1/2 2 1 6 3 1 0.4 -0.3 -0.9 -1.6 -2.2
K 1/2 1 1 18 9 1 -0.4 -1.8 -3.2 -4.6 -6.0

Table 4.1: The bddUnderApprox algorithm applied to the BDD of Figure 4.14.

4.5.3.2 Step 2: Compute the functionRefCount of each node v in /

functionRefCount(v) gives the number of edges pointing to v from within the

function /; it excludes pointers from other functions within the same BDD manager. This
figure can be computed for all nodes of / in linear time by performing BFS from the root.

The functionRefCount of each node is initialized to 0. Then, for each node visited, the

functionRefCount of each of its children is incremented by one. The functionRefCount of
each node of our example BDD is shown in Table 4.1.

4.5.3.3 Step 3: Approximate the BDD

This step is the heart of the procedure. The nodes are visited via BFS. The

subgraph rooted at a node is replaced by ZERO if this reduces the overall cost of the

solution. When this happens, the functionRefCounts of some nodes in the subgraph are
decremented.

The details of this step are now given. For each node v visited that has a non-zero

functionRefCount, the following three actions are performed.

179

Action 1: Compute nodeSavings(v), the number of nodes that would be eliminated in / if

just the subgraph rooted at v was replaced by ZERO. This can be computed by performing

a local BFS starting from t;. Each node has a localRefCount, which is initialized to func

tionRefCount each time a local BFS is commenced. When a node u is visited during a BFS,

if its localRefCount is non-zero, then u is not explored further, and it does not contribute

to nodeSavings of v; a non-zero localRefCount indicates that such a node is being shared by

other parts of the BDD for /. On the other hand, if the localRefCount of u is zero, then

nodeSavings(v) is incremented, and the localRefCounts of m's two children are decremented

by one.

Consider computing nodeSavings fornode B in our example. Bydefinition, B itself

contributes 1 to nodeSavings(B). The localRefCount of the children of B are decremented:

for C, 1 is decremented to 0, and for F, 3 is decremented to 2. Next, C is visited, and since

its localRefCount is now 0, nodeSavings(B) is incremented (to 2), and the localRefCounts of

E and F are decremented, to 0 and 1, respectively. Say F is visited next. Its localRefCount

is not 0, so we skip over F and proceed to E. Its localRefCount is 0, and proceeding in this

fashion, we see that E, G and F all contribute to nodeSavings(B). Hence, nodeSavings(B)
is 5. The nodeSavings for other nodes is shown in Table 4.1.

This step, repeated for each node, can lead to overall quadratic running time

(consider a BDD that is just a single chain of nodes; BFS from each node will explore the

rest of the chain). However, because the local BFS search from a node is pruned at nodes

whose localRefCount is non-zero, the running time in practice should be nearly linear.

Action 2: Compute numOnset(v), the number ofminterms in the onsetof / that would be

removed if v was replaced by ZERO. This can becomputed by multiplying onsetFraction(v)

by numMinterms(v). NumMinterms(v) records how many ofthe 2n mintermsof the Boolean

space "pass through" v. For the root of/, numMinterms is 2n. As each node u (that is not

replaced by ZERO) is visited in the global BFS of Step 3, numMinterms of each child of u

is incremented by one-half of numMinterms(u).

In our example,

numMinterms(A) = 26 + 64,

numMinterms(B) = -numMinterms(A) = 32,

numMinterms(F) = -numMinterms(B) + -numMinterms(C) + -numMinterms(D)
£ c 2.

Hence,

180

= 16 + 8+16 = 40

numOnset(F) = onsetFraction(F) • numMinterms(F)

= l40=35-
For each node, numOnset can be computed in constant time.

Action 3: Compute costBenefit(v), which measures the change in cost of the solution if

t; were replaced by ZERO, to yield the function fnew- This is computed as follows.

costBenefit = cost(f) - cost(fnew)

= Wlog? \offset(f)\) + (1 - o)|BDD(/)|]

-["(log* \offset(fnew)\) + (1 - Of)|BDD(/„cw)|]

= orpog? \offset(f)\ - logi |ojJ»e*(/n«i>)|]

+(l-a)(|BDD(/)|-|BDD(/neu,)|)

= <*[logl(\offset(f)\) - \ogl(\offset(f)\ + numOnset(v))]

+(1 - a) nodeSavings(v)

If costBenefit(v) is greater than zero, then the flag replaceByZero(v) is set, and

the functionRefCount of t>'s two children are decremented by one. If this causes function

RefCount of a child to fall to zero, then the functionRefCounts are recursively decremented.

For example, if costBenefit(B) is greater than zero, functionRefCount(F) will fall to one,

and functionRefCount of C, E and G will fall to zero.

If costBenefit(v) is less than or equal to zero, then the flag replaceByZero(v) is

reset, and numMinterms of each child of t; is incremented by one-half of numMinterms(v).

The costBenefit computed for a node v is affected by which other nodes have

been marked for replacement by ZERO. In particular, numMinterms(v) may decrease, and

nodeSavings(v) may increase, as nodesat or above the level of v are marked for replacement

by ZERO (of course, if functionRefCount(v) falls to zero, then costBenefit(v) is irrelevant).

By processing the nodes in a top-down fashion, costBenefit(v) needs to be computed just

once, when v is considered for replacement.

Even though costBenefit(v) is affected by the actions above v, the values for cost-

Benefit in Table 4.1 are computed, for illustration purposes only, assuming that no nodes

181

processed before a given node are marked for replacement. Also, since costBenefit is a

function of a, the value of costBenefit is shown for 6 different values of a. As expected,

as a tends to one, the costBenefit becomes negative, meaning replacement by ZERO is

undesirable.

4.5.3.4 Step 4: Build the new BDD

This process starts from the root and proceeds recursively in DFS fashion. If the

constants ZERO or ONE are reached, then that constant is returned. If a node marked

replaceByZero is reached, then ZERO is returned. Otherwise, for a node labeled by variable

x, a new node is created labeled with x and with children formed by the recursive building
process.

For our example, suppose a = 0.4. Then the first node processed with positive

costBenefit is E. In fact, this is the only node replaced by ZERO (G becomes irrelevant

once E is replaced). The new BDD is shown in Figure 4.15. Whereas the original BDD

had 50 onset minterms and 10 nodes, the new BDD has 47 onset minterms and 7 nodes.

4.5.3.5 Discussion

Greedily choosing one node at a time for replacement by ZERO may lead to a

suboptimal solution. Consider the partial BDD shown in Figure 4.16. Both of the children

of node A are shared by other parts of the function, so nodeSavings(A) is one (node A
itself). Hence, unless oc is nearly zero, A probably will not be replaced by ZERO. Likewise,

nodeSavings(B) is one and B probably will not be replaced. However, if we considered

replacing A and B simultaneously by ZERO, we would find that nodeSavings({A, B}) is
K+ 2, where K is the number ofnodes in the common subgraph ofAand B. If K is large,
this may trigger replacement.

The algorithm could be modified easily to consider pairs of nodes for replacement.

However, thiswould increase thecomplexity ofthealgorithm, which may make it impractical

for intermediate to large BDDs. Also, instead of pairs of nodes, we might want to consider
larger sets for replacement.

Another limitation with our approach comes in selecting the value for a. In our

example, for a = 0, all nodes qualify for replacement, whereas at a = 0.6, none of the nodes

qualify. Combining the onset size and the BDD size terms in the same equation makes it

182

1 0

Figure 4.15: The result of bddUnderApprox applied to the BDDof Figure 4.14. E is replaced
by ZERO.

Figure 4.16: Neither A nor B will be replaced by ZERO when considered individually, but
may be replaced by ZERO if considered simultaneously.

183

difficult to select a precise value of a that distinguishes "good" replacements from "bad"

replacements. Possibly a threshold-based approach, like that of Ravi and Somenzi, might

be more robust.

4.5.4 Application to binary Boolean operations

In our algorithm for deciding reachability, we frequently want to find a good ap

proximation to the Boolean combination of a pair of functions, for example, the conjunction

f-g. We could define a new BDD operator that takes as input two functions and returns an

approximation to their conjunction. Instead, we take an alternate approach where we form

the conjunction exactly, and then approximate the result. This approach begs the question

if we are able to form the conjunction exactly. We can, as long as we keep small the

intermediate BDDs of the reachability computation. In other words, if we apply bddApprox

to all intermediate BDDs, then we should be able to performs local computations exactly.

A benefit of this approach is that we can concentrate on developing heuristics for just a
single problem, the BDD approximation problem.

4.6 Approximating sets of edges

We concluded Section 4.4 by listing the three major subroutines ofour algorithm

to decide reachability. Each of these subroutines involves approximating a set ofedges; we
now discuss each in detail.

4.6.1 Initial over-approximation of G

Thegoal ofthis subroutine is to find a superset Vofthe edges ofGsuch that V has

low cost, as defined in Definition 4.2. As a reminder, the function we wish to approximate
is

G(x,y) = 3uY[Ti(x,u,yi).
t=i

The first step is to build each Tt. Then, some u variables are "cut" to partition the TVs

into a set of clusters. Next, each cluster is built separately, and finally the clusters are

conjuncted to yield the over-approximation V. At each stepof this process, bddOverApprox
is used to control the size of the BDDs.

184

4.6.1.1 Building each T,

As stated earlier, T, = (y{ = Si(x,u)), where Si is the next state function of the

ith flip-flop. The BDD for Si may be too large to build. In this case, T, can be represented
by the conjunction ofa set of smaller terms by introducing intermediate variables.3

Specifically, starting at thecombinational inputs x and u and proceeding in topo
logical order through the combinational network, we begin by constructing the BDD for
each network node in terms of the combinational inputs. However, if the BDD for the func

tion gj of a given node vj exceeds a user-settable threshold, then an intermediate variable

Pj is introduced at node Vj. Then the BDDs of nodes in the fanout of Vj are built in terms
ofpj. Ti can then be expressed as the conjunction of the terms (pj = gj), with the inter
mediate variables existentially quantified. Each of these terms can be over-approximated

using bddOverApprox so that their product has a reasonable BDD size. In the sequel, we

refer to the result of this step as Ti(x, u,yt), regardless of whether or not Tt has in fact been

approximated.

4.6.1.2 Cutting u variables

The next step is to "cut" some u variables to partition the T,'s into a set of clusters.

This approximation relies on the observation that (3a:/) •(3xg) D3x(f -g). The idea is to

cut some of the u variables by moving them into the product. For example, we might cut
«i by replacing

3ux, u2 [Tt(x, tii, u2,yx) •T2(x, uu y2)]

by

(3ui, u2 Tx(x, ui, u2,yx)) • (3ux T2(x, ux, y2)).

Equivalently, the problem is to cluster the T,-'s; any u variables passing between clusters

are cut. We want to minimize the number of cut variables, so that the amount of over-ap

proximation is minimized. We formulate the problem as a traditional graph partitioning

problem on hypernets. In particular, we create an undirected graph, where each flip-flop is

represented by a vertex, and there exists an edge labeled by Uk between vertices i and j if

Ti and Tj both depend on Uk. Then we successively apply graph bipartitioning (using, for

example, the Fiduccia-Mattheyses algorithm), minimizing the number of u variables cut.

3This technique has been used by others in a variety of settings, e.g., [52, 53, 54].

185

The size of each partition is limited by a user provided parameter, giving the maximum of

the sum of BDD sizes for each partition.4

4.6.1.3 Building each cluster

At this point, we must construct the graph Cj(x,y) for each cluster:

Cj(x, y) = 3u JJTi(x, u, y{)
i€J

where J is the set of flip-flops in the jth partition. First, we find a schedule for the

conjunctions and quantifications (for example, using the techniques in [45]). In general,

this may be in the form of a tree. Then we build Cj according to this schedule, but we

apply bddOverApprox to intermediate results to avoid large BDDs. In particular, there are

two types of intermediate computations.

1. Conjunction: form the conjunction exactly and then apply bddOverApprox to the

result.

2. Existential quantification: apply bddOverApprox to the results of the intermediate

disjunctions (i.e., fx -f /j), and to the final result of existential quantification.

4.6.1.4 Conjuncting the clusters

The last step is to take the product of the clusters Cj. Again, we form each

conjunction exactly, and then apply bddOverApprox to the result. The final result is the

approximation V.

V should have no more than approximately 10,000 BDD nodes, so that we can

manipulate it efficiently. Hence, we need some dynamic control to make sure that V does

not exceed this limit. This could take the form of stopping the computation when the limit

is exceeded, and restarting it with a lower value of a (i.e., a worse approximation, but

smaller BDD size); or we could just restart the phase of conjuncting clusters with a lower

value of a.

4The flip-flop partitioning technique ofCho et al. [55] could also be applied to the present problem.

186

4.6.2 Initial under-approximation of G

The goal of this subroutine is to find a subset U of the edges ofG such that U has

low cost, as defined in Definition 4.7. Computing U follows the same outline as computing
the over-approximation V.

We cut the u variables using the same partition found in computing V. However,

rather than existentially quantifying the cut variables, we now universally quantify them,

relying on the fact that (Va;/) • (Vxg) C3x(f-g). To build each cluster, we use under-ap

proximation on intermediate results, rather than over-approximation.

4.6.3 ApProxIMaTion of edges from I in V

The variable fromi in the reachability algorithm contains those edges in the

current over-approximation V that pass from a state in I to a state not in I. The set fromi

can be partitioned into two sets.

1. True edges: these are edges that exist in the exact graph G and that, when added

to the under-approximation U (line 28), allow the forward traversal in U to progress
(line 6).

2. False edges: these are edges that do not exist in G, and that, when removed from V

(line 27), further restrict the set of potential paths from I to F (line 10).

The set of true edges E is the set of all edges from I in V, restricted to the exact graph
G(x,y):

E(x, y) = G(x, y) •fromI(x, y)
l

= (3u J[Ti(x, u, y,)) •fromI(x, y)
t=i

The set offalse edges is then just the set difference of E from V, V(x, y) \ E(x,y).
Ideally, we would like to determine the partition exactly. Unfortunately, this

problem is hard, as deciding if just a single edge is true or false is already NP-complete.

Thus, we settle for approximating the sets of true and false edges. We want to find some

edges from I that are definitely false (line 17), and some that are definitely true (line 18);
the status of the remainder of the edges in fromi will be unknown.

Clearly, an under-approximation of E yields an approximation to the true edges,

and an over-approximation of E yields an approximation to the false edges. To compute

187

these approximations of E, we would like to rewrite the equation for E so that it has the

same form as the equation for G, thus permitting the application of the procedures outlined

in Sections 4.6.1 and 4.6.2. This can be done simply:

/

E(x,y) = 3u[([[Ti(x,u,yi)).fromI(x,y)]
t=i

/

= 3u[]\(Ti(x,u,yi).fromI(x,y))]
t=i

/

= 3uY[T!(x,u,yi)
»=i

where T/ = Tj -fromi.5 Thus, we have expressed the set E of true edges from / in V as the

product of individual transition relations, and we can apply the procedures of Sections 4.6.1

and 4.6.2 to compute an over-approximation and under-approximation, respectively. Fig
ure 4.17 illustrates the various sets involved in the above computation.

G = exact graph

V = current over-approximation of G

U = current under-approximation of G

fromi = edges from / in V

E = GO fromi

V' = over-approximation of E

U' = under-approximation of E

approx. false edges = fromi\ V'

approx. true edges = U'

Note that V does not necessarily contain G, because some trueedges are removed
from V at line 10.

The procedure for approximating the true and false edges to F follows analogously.

5Alternatively, we could define T? = reatrict(Ti, fromi), using the restrict operator of [6] . Then 3u[] T-
is no longer exactly E(x,y), but can still be used to form approximations.

188

SxS

Figure 4.17: Diagram showing over- and under-approximations to E(x,y).

189

4.7 Summary and future work

We have presented a technique for deciding state reachability for large FSMs.

Specifically, we seek to answer if there exists a path from a set / of initial states to a set

of F of final states in an FSM. Several problems in logic synthesis, formal verification, and

testing can be reduced to this question, and hence an efficient algorithm for solving this

problem would have great benefit.

Our approach constructs an over-approximation V, and an under-approximation

U, to the state transition graph G. Then, the potential witness paths from I to F in V are

used to guide the search for a true path in U from / to F.

The success of our approach hinges on the quality of the approximations that we

construct. A good approximation is one that retains most of the original information, yet

has a small representation. We use BDDs to represent the set of edges of a state graph.

We have formulated a general optimization problem, called the bddApprox problem, which

seeks to find a set representing a close approximation of another set, and yet having a small

BDD representation. We presented a heuristic for solving the bddApprox problem. Ravi and

Somenzi formulated the same problem, and presented several heuristics. We suspect that

others will find applications for the bddApprox problem, and will develop more heuristics

for its solution.

As with any heuristic for solving a hard problem, our approach can ultimately be

validated only by implementing the algorithms and testing them on a set of examples. This

remains as future work.

190

Chapter 5

Summary

This dissertation has addressed three problems concerning the formal analysis of

synchronous circuits and FSMs. The first problem is that of analyzing the logical behavior

of synchronous circuits containing combinational cycles. We formalized what it means for

a circuit to be output-stable, and provided decision procedures to classify circuits based on

their output behavior.

Next, a new heuristic for model checking CTL formulas on a system of interacting

FSMs was presented. This method defines a formula-dependent equivalence relation on the

states of the component FSMs, and uses this equivalence to simplify the components before

forming their product.

Finally, the problem of state reachability in FSMs, or that of determining if one

set of states can reach another set, was addressed. As part of the solution presented to this

problem, we defined a new problem, the BDD approximation problem.

The second and third problems haveexisted for many years, and this work attempts

to provide new solutions to them to extend the size of FSMs that can be handled. The first

problem has been formulated here, and algorithms are provided to solve it; now, circuits with

combinational cycles need not be summarily rejected. Taken together, the work presented

on these problems should advance the analysis of synchronous circuits.

191

Appendix A

VIS: Verification Interacting with

Synthesis

A.l Introduction

This manual provides a brief overview of the architecture of VIS. The first section

looks at VIS as a whole, and subsequent sections cover the major components of VIS.

VIS was designed to be modular and lightweight. By understanding the architec

ture of the system, future VIS developers can work to maintain these attributes.

A.2 VIS

VIS is partitioned into three main components:

1. VIS-F — The front end. It provides the ability to read and write BLIF-MV files, and

supports a hierarchical data structure mimicking the constructs of BLIF-MV.

2. VIS-V — The verification system. This provides facilities for combinational and

sequential equivalence checking, fair CTL model checking, and cycle-based simulation.

3. VIS-S — The synthesis system. This provides state minimization, variable encoding,

and hierarchical restructuring capabilities.

Figure A.l is a block diagram showing how the three components interact. The

packages that constitute each component arelisted along with edges denoting dependencies

192

glu

edge from pkg A to B denotes that A depends on B

Figure A.l: Components and packages of VIS. An edge from package A to B denotes that
A depends on B (edges implied by transitivity are not shown).

193

among the packages, glu is the Generic Libraries Utility, which contains utility packages

such as array, list, and bdd. Note that

• VIS-F does not depend on VIS-V or VIS-S, and

• VIS-V and VIS-S are independent.

The first point allows VIS to be easily compiled leaving out VIS-V, VIS-S, or both,

to produce an executable containing a subset of the capabilities. The second point forces

communication between verification and synthesis to occur via the front end, rather than

directly.

The division of VIS into the three components is not reflected in the directory

structure of the source code. Instead, all packages are kept within a single directory named

src.

A.3 VIS-F: Front End

VIS-F is the front end. It provides an in-memory representation of BLIF-MV.

This hierarchical representation can be traversed and manipulated. VIS-F consists of the

following packages:

• vm — Contains the mainO function, and provides the compilation date, version num

ber, and the location of the VIS library.1

• cmd — The interactive command interface. Provides a global table to store values

for user-settable variables (e.g., the value autoexec). Also provides the system level

commands like help, alias, and set.2

• mvf — A data structure to represent multi-valued input, multi-valued output func

tions, based on BDDs.

• tbl — A data structure to represent multi-valued relations, in particular the .table

construct in BLIF-MV.

• var — A data structure to represent multi-valued variables, in particular the .mv

construct in BLIF-MV.

'Largely borrowed from the main package of SIS.
2Largely borrowed from the command package from SIS.

194

• hrc — Data structures to represent a hierarchical design, in particular the .model,

. subckt, and . latch constructs in BLIF-MV.

• io — Routines to read and write BLIF-MV and BLIF files.

• tst — A package template that can be used as the starting point for the creation of

new packages.

When a BLIF-MV file is parsed, a directed acyclic graphof models is created by the

io package, corresponding to the hierarchy given in the file. The DAG is then transformed

by io into a tree by creating separate nodes for each instantiation of a model. Traversal

and manipulation of the hierarchy takes place on the tree, and not the DAG, using routines

provided by hrc.

The Hrc_Node_t data structure provides a lookup table for applications (e.g., VIS-

V and VIS-S) to store data associated with a node in the hierarchy. In this manner, VIS-F

can remain independent of VIS-V and VIS-S.

A.4 VIS-V: Verification

VIS-V provides analysis capabilities for designs. From any node in the hierarchy

(the current node), executing the command flatten_hierarchy causes a flattened network

to be created, representing everything from the current node down to the leaves of the

hierarchy. Having a flattened representation in which all combinational "gates" and latches

exist in a single network allows for the global analysisof that part of the design encompassed

by the current node of the hierarchy. The packages of VIS-V are:

• ntk — A directed graph representation, where the vertices are "gates," inputs and

latches. Combinational cycles are not precluded by the network data structure, but

many of the packages assume the absence of combinational cycles.

• ord — Routines to order the MDD variables of a network, based on the structure of

the network. Also provides an interface to dynamic ordering of variables.

• ntm — A routine to build the Mvf_Function_ts of the roots of an arbitrary region of

a network, in terms of the leaves of the region. The leaves can be treated as variables

or as specific constants.

195

• part — Routines to build an MVF representation of a network. The MVFs are stored

at the vertices of a DAG, where the sinks correspond to the combinational outputs

of the network, and the sources to the combinational inputs. In general, intermediate

vertices can be introduced to control the size of the MVFs.

• sim — A cycle-based network simulator. Simulation is performed by evaluating the

MVFs provided by the part package. Simulation vectors can be provided by the

application, or random simulation can be performed.

• inig — Generic routines for performing forward and backward image computation.

The routines work off the graph of MVFs provided by the part package, and have no

direct knowledge of the ntk or f sm packages. Since this is an active area of research,

a generic interface has been designed to easily allow the addition of new computation

methods.

• f sm — An abstraction of a network. The FSM does not actually store the next state

functions of the FSM — these are provided by part. It does store the vectors of

present state and next state variables, reachability information, fairness constraints-

related information, and image computation information.

• mc — A fair CTL model checker and debugger for FSMs.

• eqv — Routines for performing combinational equivalence between regions of two

networks, and for performing sequential equivalence between two FSMs.

• ctlp — A CTL parser.

The nodes of a network have a single output. The function of a combinational

node of a network is represented by a Tbl.Table.t. A k-output table in the hierarchy

is represented by k combinational nodes in the corresponding network, where each of the

k nodes points to the same table, but are distinguished by which output column they
represent. This splitting is done by the flattening routine in the ntk package.

Throughout VIS-V, it is assumed that the combinational outputs are completely

specified and deterministic. Non-determinism is introduced via pseudo-inputs. A pseudo-
input is like a non-deterministic constant that can update its value on each clock cycle. See

the documentation for the ntk package for more information on pseudo-inputs.

196

Because the emphasis of VIS-V is on analysis, the ability to modify the network

data structure is not provided. It is assumed that once a network is created from the

hierarchy, the network will be unchanged until it is destroyed.

Notice that the ntk package is independent of all other packages in VIS-V. This

independence is maintained by allowing applications (e.g., f sm, part) to store information

associated with a network in a lookup table. It is important to maintain this independence

so that the ntk data structures do not become cluttered.

A.5 VIS-S: Synthesis

Only one package has been written thus far for this component. It is anticipated

that packages will be added to support state minimization, variable encoding, and other

operations. However, note that VIS-F already allows a BLIF file to be written, which can

be massaged by the sequential synthesis system SIS and read back into the hierarchy. The
packages of VIS-S are:

• rst — Routines for restructuring the hierarchy.

A.6 Possible Improvements

1. The mvf package could be located in the Generic Libraries Utility.

2. One existing complication in removing the restriction that networks can't be modified

is that the Tbl_Table_t and Var_Variable_t data within a network are owned by

(and hence freed by) the hierarchy manager (hrc package). This could be resolved by

creating a global manager for tables and a global manager for variables.

197

Bibliography

[1] Sharad Malik. Analysis of cyclic combinational circuits. IEEE Trans. Computer-Aided
Design, 13(7):950-956, July 1994.

[2] Leon Stok. False loops through resource sharing. In Proc. Int'l Conf. on Computer-
Aided Design, pages 345-348, November 1992.

[3] Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits. Springer-
Verlag, 1995.

[4] Kavita Ravi and Fabio Somenzi. High-density reachability analysis. In Proc. Int'l Conf.
on Computer-Aided Design, pages 154-158, November 1995.

[5] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans, on Computers, C-35(8):677-691, August 1986.

[6] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification ofsequen

tial machines using Boolean functional vectors. In Proceedings of the IFIP International

Workshop, Applied Formal Methods for Correct VLSI Design, November 1989.

[7] Herve J. Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines using BDDs. In Proc.

Int'l Conf. on Computer-Aided Design, pages 130-133, November 1990.

[8] Thomas R. Shiple, Ramin Hojati, Alberto L. Sangiovanni-Vincentelli, and Robert K.

Brayton. Heuristic minimization of BDDs using don't cares. In Proc. 31st Design
Automat. Conf., pages 225-231, San Diego, CA, June 1994.

198

[9] Yosinori Watanabe and Robert K. Brayton. The maximum set of permissible behaviors

for FSM networks. In Proc. Int'l Conf. on Computer-Aided Design, pages 316-320,
November 1993.

[10] Thomas R. Shiple, Vigyan Singhal, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Analysis of combinational cycles in sequential circuits. In Proc. Int'l

Symposium on Circuits and Systems, pages 592-595, vol. IV, May 1996.

[11] Thomas R. Shiple, Gerard Berry, and Herve Touati. Constructive analysis of cyclic
circuits. In European Design and Test Conference, pages 328-333, March 1996.

[12] Jerry R. Burch. David Dill, Elizabeth Wolf, and Giovanni De Micheli. Modeling hier

archical combinational circuits. In Proc. Int'l Conf on Computer-Aided Design, pages

612-617, November 1993.

[13] Oded Maler and Amir Pnueli. Timing analysis of asynchronous circuits using timed

automata. In Paolo E. Camurati and Hans Eveking, editors, Proceedings of the Con

ference on Correct Hardware Design and Verification Methods, volume 987 of Lecture

Notes in Computer Science, pages 189-205, Frankfurt/Main, Germany, October 1995.

Springer-Verlag.

[14] Sharad Malik. Analysis of cyclic combinational circuits. In Proc. Int'l Conf. on

Computer-Aided Design, pages 618-625, November 1993.

[15] Nicholas Halbwachs and Florence Maraninchi. On the symbolic analysis of combina

tional loops in circuits and synchronous programs. In Euromicro'95, September 1995.

Como, Italy.

[16] Randal E. Bryant. Extraction of gate level models from transistor circuits by four-

valued symbolic analysis. In Proc. Int'l Conf. on Computer-Aided Design, pages 350-

353, November 1991.

[17] Randal E. Bryant. Boolean analysis of MOS circuits. IEEE Trans. Computer-Aided
Design, 6(4):634-649, July 1987.

[18] Kanwar Jit Singh and P. A. Subrahmanyam. Extracting RTL models from transistor

netlists. In Proc. Int'l Conf. on Computer-Aided Design, pages 11-15, November 1995.

199

[19] Manish Pandey, Alok Jain, Randal E. Bryant, Derek Beatty, Gary York, and Samir

Jain. Extraction of finite state machines from transistor netlists by symbolic simulation.

In Proc. Int'l Conf. on Computer Design, pages 596-601, October 1995.

[20] Timothy Kam and P. A. Subrahmanyam. Comparing layouts with HDL models: A

formal verification technique. IEEE Trans. Computer-Aided Design, 14(4):503-509,

April 1995.

[21] M. J. C. Gordon. The Denotational Description of Programming Languages. Springer-

Verlag, New York, 1979.

[22] G. D. Plotkin. LCF as a programming language. Theoretical Computer Science,
5(3):223-256,1977.

[23] Gerard Berry. The constructive semantics of pure Esterel. To Appear, 1996.

[24] William H. Kautz. The necessity of closed circuit loops in minimal combinational

circuits. IEEE Trans. CompuL, 19(2):162-164, February 1970.

[25] Francois Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proceed
ings of the International Conference on Formal Methods in Programming and theirAp

plications, volume 735 of Lecture Notes in Computer Science, pages 128-141. Springer-

Verlag, 1993.

[26] Adnan Aziz and Robert K. Brayton. Verifying interacting finite state machines. Tech

nical Report UCB/ERL M93/52, Electronics Research Laboratory, U.C. Berkeley, July

1993.

[27] Robin Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[28] R. Paige and R.E. Tarjan. Three partition-refinement algorithms. SIAM Journal of
Computing, 16(6):973-989,1987.

[29] R. J. van Glabbeek. The linear time - branching time spectrum. In J. C. M. Baeten

and J. W. Klop, editors, CONCUR '90, Theories of Concurrency: Unification and

Extension, volume 458 of Lecture Notes in Computer Science, pages 278-297. Springer-

Verlag, August 1990.

200

[30] Ellen M. Sentovich, Kanwar Jit Singh, Cho Moon, Hamid Savoj, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli. Sequential circuit design using synthesis and
optimization. In Proc. Int'l Conf. on Computer Design, October 1992.

[31] Ramin Hojati, Robert K. Brayton, and Robert P. Kurshan. BDD-based debugging
of designs using language containment and fair CTL. In Costas Courcoubetis, editor,

Proceedings of the Conference on Computer-Aided Verification, volume 697 of Lecture

Notes in Computer Science, pages 41-58. Springer-Verlag, June 1993.

[32] Vigyan Singhal, Carl Pixley, Adnan Aziz, and Robert K. Brayton. Exploiting power-
up delay for sequential optimization. In European Design Automation Conference,
Brighton, Great Britain, September 1995.

[33] Edmund M. Clarke, E. Allen Emerson, and Aravinda Prasad Sistla. Automatic ver

ification of finite-state concurrent systems using temporal logic specifications. ACM

Trans, on Programming Languages and Systems, 8(2):244-263, April 1986.

[34] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Characterizing Kripke
structures in temporal logic. Technical Report CS 87-104, Department of Computer

Science, Carnegie Mellon University, 1987.

[35] Adnan Aziz, Thomas R. Shiple, Vigyan Singhal, and Alberto L. Sangiovanni-

Vincentelli. Formula-dependent equivalence for compositional CTL model checking.

In David L. Dill, editor, Proceedings of the Conference on Computer-Aided Verifica

tion, volume 818 of Lecture Notes in Computer Science, pages 324-337, Stanford, CA,

June 1994. Springer-Verlag.

[36] A. Bouajjani, J-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal

state graph generation. Science of Computer Programming, 18(3):247-271, 1992.

[37] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional model

checking. In J^th Annual Symposium on Logic in Computer Science, Asilomar, CA,

June 1989.

[38] Orna Grumberg and David E. Long. Model checking and modular verification. In

J. C. M. Baeten and J. F. Groote, editors, CONCUR '91, International Conference

201

on Concurrency Theory, volume 527 of Lecture Notes in Computer Science. Springer-

Verlag, August 1991.

[39] Dennis Dams, Orna Grumberg, and Rob Gerth. Generation of reduced models for

checking fragments of CTL. In Costas Courcoubetis, editor, Proceedings of the Con

ference on Computer-Aided Verification, volume 697 of Lecture Notes in Computer

Science, pages 479-490. Springer-Verlag, June 1993.

[40] Massimiliano Chiodo, Thomas R. Shiple, Alberto L. Sangiovanni-Vincentelli, and

Robert K. Brayton. Automatic compositional minimization in CTL model checking.

In Proc. Int'l Conf. on Computer-Aided Design, pages 172-178, November 1992.

[41] E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 995-1072. Elsevier Science Publishers B.V., 1990.

[42] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification of syn

chronous sequential machines based on symbolic execution. In J. Sifakis, editor, Pro

ceedings of the Workshop on Automatic Verification Methods for Finite State Systems,

volume 407 of Lecture Notes in Computer Science, pages 365-373. Springer-Verlag,
June 1989.

[43] Jerry R. Burch, Edmund M. Clarke, and David E. Long. Representing circuits more
efficiently in symbolic model checking. In Proc. 28th Design Automat. Conf, pages
403-407, June 1991.

[44] Daniel Geist and Ilan Beer. Efficient model checking by automated ordering of tran
sition relation partitions. In David L. Dill, editor, Proceedings of the Conference on

Computer-Aided Verification, volume 818 of Lecture Notes in Computer Science, pages
299-310, Stanford, CA, June 1994. Springer-Verlag.

[45] Ramin Hojati, Sriram C. Krishnan, and Robert K. Brayton. Early quantification and
partitioned transition relations. In Proc. Int'l Conf. on Computer Design, October

1996.

[46] Rajeev K. Ranjan, Adnan Aziz, Robert K. Brayton, Bernard Plessier, and Carl Pix-

ley. Efficient BDD algorithms for FSM synthesis and verification. In International

Workshop on Logic Synthesis, pages 3-27 - 3-34, May 1995.

202

[47] Gianpiero Cabodi and Paolo E. Camurati. Exploiting cofactoring for efficient FSM

symbolic traversal based on the transition relation. In Proc. Int'l Conf. on Computer

Design, pages 299-303, October 1993.

[48] Felice Balarin. Iterative Methods for Formal Verification of Digital Systems. PhD
thesis, University of California, Berkeley, 1994.

[49] Gianpiero Cabodi, Paolo E. Camurati, and Stefano Quer. Efficient state space pruning
in symbolic backward traversal. In Proc. Int'l Conf. on Computer Design, pages 230-

235, October 1994.

[50] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wclper, and M. Yannakakis. Memory-

efficient algorithms for the verification of temporal properties. Formal Methods in

System Design, 1(2/3)-.275-288, October 1992.

[51] Hyunwoo Cho, Gary D. Hachtel, Enrico Macii, Bernard Plessier, and Fabio Somenzi.

Algorithms for approximate FSM traversal. In Proc. 30th Design Automat. Conf,

pages 25-30, June 1993.

[52] Patrick C. McGeer, Kenneth L. McMillan, Alexander Saldanha, Alberto L.

Sangiovanni-Vincentelli, and Patrick Scaglia. Fast discrete function evaluation using

decision diagrams. In Proc. Int'l Conf. on Computer-Aided Design, pages 402-407,

November 1995.

[53] Jawahar Jain, Amit Narayan, Claudionor Coelho, Sunil P. Khatri, Alberto L.

Sangiovanni-Vincentelli, Robert K. Brayton, and Masahiro Fujita. Combining Top-

down and Bottom-up Approaches for ROBDD Construction. Technical Report

UCB/ERL M95/30, Electronics Research Laboratory, U.C. Berkeley, April 1995.

[54] Rajeev K. Ranjan. Private communication, 1996.

[55] Hyunwoo Cho, GaryD. Hachtel, Enrico Macii, Massimo Poncino, and Fabio Somenzi. A

structural approach to state spacedecomposition for approximate reachability analysis.

In Proc. Int'l Conf. on Computer Design, pages 236-239, September 1994.

	Copyright notice 1996
	ERL-96-76 (1)
	ERL-96-76 (2)

