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Abstract

The prisoners dilemma ( PD ) game is a simple, still surprisingly efficient model of
the basic mechanisms of several different areas of science, such as economics,
ecology, sociology and game theory. The model, as opposed to the Darwinian view of
evolution, incorporates the possibility of cooperation between individuals. A
relatively younger branch of the PD research is that of the spatial PDs. In the
present paper aCNN implementation ofthe spatial PD model presented in [1] will be
proposed along with the introduction of a new selection strategy. The similarities
and differences between the two models are illustrated by simulation results.

1. Introduction

The Prisoner's Dilemma game ( henceforth called PD ) has been an extensively
investigated topic ofeconomics, ecology, sociology and game theory in the recent years.
The idea of the game originates from A. W. Tucker [5] who proposed it in the early
fifties. Since the birth of the original notion it has provided several new insights to the
basic mechanisms of the different areas of science mentioned above. In spite of the
relative simplicity of the model it has several parameters and displays a big variety of
qualitatively different behaviors.
The model, as opposed to the Darwinian view ofevolution, incorporates the possibility
ofcooperation between individuals. It also represents acrossing point between individual
interest versus group interest since the payoff for defection is never worse than
cooperation whereas the sum ofbenefits from mutual cooperation are always greater than
in the case when one defects while the other cooperates.
A relatively younger branch of the PD research is that of the spatial PDs. It has been
addressed in several papers recently, among which [1] served as a basis for the present
paper. The authors had shown that with the given configuration is very sensitive for
certain parameters and also presented evidence for the survival ofa cluster ofcooperators
in a strongly defectorfavored environment.
In the following a CNN ( Cellular Neural Network ) [2] implementation of the spatial

PD model presented in [1] will be proposed using a new concept ofmapping a spatial
extremum problem into the temporal domain, along with the introduction of a new
selection strategy. The similarities and difference between the two models are illustrated
by various simulation results.



2. Definitions, Strategies and Framework of the Prisoner's Dilemma
Game

Before proceeding to the implementation part, some of the basic features and
configuration parameters ofthe PD will be introduced in the following sections.

2.1 General Concept of the Prisoner's Dilemma game

The basic setup is as follows: there are two suspects (prisoners) who are indeed guilty of
a certain felony and well aware ofeach others' affairs are facing the dilemma whether to
confess or withhold the truth. Without the informations only known by the suspects
neither ofthem can befully proven guilty whereas giving out information about the other
individual results in significant benefits. The person who withholds the truth about his
partner will henceforth be called cooperator and the one who bears witness against the
other will be called defector. The interactions of the two individuals yield four different
outcomes depending on their decision:

1-2. One of the two suspects cooperates while theother one defeats (and the
symmetric case). The cooperator will beheavily sentenced, while the defector
will get negligible punishment.

3. If both cooperate, then they cannot be fully proven guilty of felony; hence they
will be sentenced only a few years.

4. If both suspects defect, then they will be heavily sentenced butnotas much as a
cooperator against a defector.

2.2 The spatial Prisoner's Dilemma

There are many possible arrangements to simulate the Prisoner's Dilemma game. One of
them is the so called spatial prisoners dilemma which has drawn the attention of
researchers recently.
Let us consider the following setup for the Prisoner's Dilemma game:
A number of players are placed in the nodes of a 2D finite grid, they can be either
cooperators ( C ) or defectors ( D ). In each iteration ( generation ) the players interact
with their immediate neighbors and are rewarded according to a so called transition
matrix:

c D

c Pec PcD
D Pdc Pdd

More general definition of the neighborhood is also possible, but we restrict ourselves to
the one described above.

The entries of the transition matrix are the payoffs for CC, CD, DC, DD interactions,
respectively (row-wise), subject to following constraints:



Pdc>Pcc>Pdd^Pcd (2-1)

that is defection against a cooperator is the most rewardingbehavior for an individual.
The second highest payoff comes from mutual cooperation. Mutual defection is rather
poorly rewardedbut the lowest paidbehavior is that of the cooperatoragainsta defector.
Furthermore usually stands:

2Pcc>Pdc + Pdd (2-2)

This latter inequality provides the "drive" to form cooperative clusters, since the joint
payoff is biggerthan in the the total payoffofa defector cooperator pair.
The payoffs of interaction with the neighbors and possibly self interactions are summed
up in each generation and the next state of each player is determined according to a pre
defined strategy discussed in details in the following sections, considering the payoff
values belonging to each cell. The updating process when each player selects its next
state at the same time ( synchronously ) is the so called synchronous updating. There is
an other way of updating, the so called asynchronous updating, when only one player's
state is updated at a time and the game is played over again with its partners. In the next
iteration an other player's state will be updated.
The payoffof the player in position ij (represented by its Cartesian coordinates):

P,i=lP(^>^) (2-3)
kl

where p/j is the payoff in position ij, JP(uij,uki) is the transition function which returns the
corresponding values of the transition matrix for each configuration of uy cell and u^
neighboring players.
We can summarize the various conditions ( configuration parameters ) which
significantly affect the spatio-temporal behavior ofthe PD :

• the initial configuration (number and location ofcooperators and defectors)
• the values of the transition matrix entries

• the strategies
• the updating method
• the presence or absence of self interaction

2.3 Strategies

Amongst the configuration parameters given in the previous section strategies to decide
the player's next step considering the achieved payoffs play a crucial role. These
strategies can be deterministic or probabilistic.
A strategy is deterministic if there is a prescribed response for each situation possible to
occur. In the probabilistic case e.g. a certain probability proportional to the payoff value
can be assigned to each neighbor with which the next state is selected.



There are also strategies with non-zero memory length. This means that the player
considers notonly the outcome of the current interaction but also the past iterations upto
certaindepth (determined by the memory length).

2.4. A special case

In the following we will consider a special case of the transition matrix . This transition
matrix was thoroughly examined in [1]. Note that all matrix entries comply with
inequalities (2-1) and (2-2). Despite its simplicity the matrix is general in a sense that it
allows us to explore the full Pdc/Pcc range.
Let the transition matrix P be:

C D

c 1 0

D b 0

where 2>b >1 (i.e. PCd=0Pdd=0, PCc=l Pdc=1>)-

3. CNN Implementation

The spatial arrangement described in the previous section bears remarkable resemblance
to that of the Cellular Neural Networks. In the following we show two examples of the
CNN implementation of the spatial Prisoner's Dilemma.

3.1 Payoff calculation

Clearly, this specific type ofthe game consists of two consecutive steps:

1. Calculating payoffs
2. Selecting next state of the player (cell) accordingly

Step 1 is well suited for CNN implementation. Let us assign -1.0 to cooperators ( C ) and
1.0 to defectors ( D ), respectively and load the binary field containing the players' state
to the input of the CNN. Introducing the following nonlinear function (Fig. 1 ),

?(uij,ui+kJ+1) =^(2uij+ui+kj+1)

This function implements the actual transition function for the PD.
Let us define the feedforward template:

(3-1)
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Fig. 1 Nonlinearfunction representing the transition function ofthe PD in the general
case (a) andfor the special case given in section 2.4

the state of the CNN will contain the sum of payoffs for each player in the corresponding
position.
In the following sections, the implementation of two different selection strategy
implementations will be presented.



3.2 The "Best Individual" Strategy

Step 2: The implementation of the selection strategy.

Definition:
After calculating thepayoffs in each generation the state of theplayer belonging to the
highestpayoffin the neighborhood will be selected as the nextstate ofeachplayer in the
next generation. This strategy will henceforth be referred as best individual strategy
(BIS).

This is the strategy that was used in the experiments in [1].
The implementation of selection strategy described above is not trivial. The task to find
the position of a maximum for the payoff function constrained by the local neighborhood
for each cell is rather "ill-posed" for the regular CNN structure. It will be shown
however, that with the proper selection of the output nonlinearity of the CNN cell, the
spatial extremum problem can be translated into a more tractable temporal problem.
Let us assume that all entries of the transition matrix are non-negative which stands for
the transition matrix given in [1]. Let us modify the nonlinear function (3-1 ) (transition
function ) given in the previous section the following way:

(3-2)

Fig. 2 Modifiednonlinearfunctionfor the implementation of "best individual" strategy

The sign of the function argument determines the state of the central element. This
modified function will provide negative payoffs for cooperators and positive payoffs for
defectors.

Let us consider the two-layer arrangement in Fig. 3.



Fig. 3 CNN implementation ofPDfor "best individual" strategy using modified output
nonlinearities. The nonlinearfunction implementing the transfer function is shown in the
bottom ofthefigure

The CNN state equation for the first layer:

x,=B'u*Ui=Z%'(uvUir) (3-3)

where: uj the input matrix of layer 1 and ulr contains the corresponding neighborhood
values. * denotes spatial convolution



Since the argument of the nonlinear function is constant throughout the transient ( static
input) and there is no feedback for the first layer the derivative of the state variable also
remains constant. This implies that if the state of the CNN had initially been set to zero
the order of the state values remains unchanged during the transient and complies with
the order of the resulting payoffs . Let us consider the output nonlinearity of layer 1 in
Fig. 2. If threshold value c is set to a positive value smaller than the lowest non-zero
payoff, then all cell states whose derivatives are different from zero will reach this level
sooner or later, though the order of reaching this threshold will concur with the final
order of payoff values. This way we have translated the 2D spatial extremum problem
into a ID temporal problem. As soon as one of the cell state valuesreaches the threshold
the corresponding output value will be the sign of the state variable due to the threshold
type nonlinearity. The second layer serves as a "watchdog" circuit. It captures the first
non-zero output ofthe first layer in the immediate neighborhood for each cell and fixes it
on the output of layer two, thus yielding the state belonging to the highest payoffin the
neighborhood.
( see Fig. 3 for an example of a transient and Fig 4 for the flowchart of the algorithm. In
Fig 4 "field" is the "playground" of cooperators and defectors. In our case fields is the
input ofthe first layer while fields} is calculated as the output of the second layer)
The state equation of the second layer:

x2=Ai2*yi+A22y2 (3-4)

y2 =L2(x2)

where fout2 is the output nonlinearity for layer 2. This is practically a sign function with
2e insensitivity band around zero to filter out noise and make the arrangement
sufficiently robust,

since A12* yi= XYi.r anc* A22= 8:
r

x2=Iy,,+8l,2(x2) (3-5)

There are 4 different stages can bedistinguished inthe operation of the structure inFig 3.
corresponding to to-t3 in Fig 4. Let us consider the cell characterized by its Cartesian
coordinates ij and its neighboring cells:

1. t = to At the very beginning of the transient all cell state and output in layer 1 and
layer 2 are zero

2. t =tj The state values corresponding to non zero payoffs in layer 1 are different from
zero, though one of them reached threshold level c. Therefore the output of layer 1 is
0 and x2= 0 according to the state equation.

3. t = t3 One of the neighboring cell states in layer 1 passes c or -c. In the first layer's
output a 1.0 or -1.0 value appears, respectively . The first term of the state equation
( 3-5 ) becomes strongly positive or negative depending onthe first layer's output. As



the state value on the second layer passes e the strong feedback "locks"this value on
the output of layer 2.

4. t = t» More neighboring cells reach c on the first layer, but it has no effect on the
locked values, because the second term of the state equation ( 3-5 ), once its differs
from zero, is always greater than the first one.

i-3 i-l i+1 i+3

1st layer input | •

J
c •

1st layer state •
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i i i • i 1 1 1 • 11st layer output 1 1 III 1 1 1 1 1 1

2nd layer state 1 II 1 1 1 1

2nd layer output I II 1 1 1 1

to ,, t2 t3

Fig. 4 A 1 dimensional examplefor transient in thestructure implementing the BIS.
t = t0 = 0 All layers' state and output valuesare 0
t = /; The state absolute values in layer 1 start to increase. Because ofthe

modified transitionfunction inFig. 2 thestate values corresponding to
cooperators are changing toward-<» whereas defector values are
changing toward «>. The order oftheir absolute valuescorresponds to the
order ofthefinal payoffs, e.g. inFig. 4 the highest state value belongs to
cell i-1 becausethis is a defector surrounded bytwocooperators. The
second is cell i-l, which is a cooperator surrounded bytwo other
cooperators. The smallest values belongto cell i-2, /' and i+2. They are
all cooperator cells surrounded byonedefector andone cooperator
neighbors
Sincenoneofthem has reached c output threshold the output oflayer 1
and therefore thestate and output oflayer 2 are 0..

t = t2 The state ofcell /'+1 has reached threshold c andoutput 1 at /+1 changes
to 1. The state values oflayer 2 at /+/ and i (which is a neighbor of
/'+1) start to increase and via thethreshold type nonlinearity locks 1 on
the output

t = t3 The state ofcell i-l hasreached threshold -c andoutput 1 at i-l changes
to -1. Atposition i-l on layer 2 the state value decreases toward -«> and
flips output at i-l to -1. Ithasnoeffect oncell i though, because 1 has
already been locked bythe strongfeedback at i during the previousphase
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*
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mapping

Layer 2

Fig. 5 Operationalflowchart ofCNNfor BIS

J

Note that in the practical implementation it is impossible for more than one state values
to reach threshold c at the same time due to random parameter variation of the particular
implementation. This introduces a probabilistic selection between the cells that have
theoretically the same payoffs. The final output of layer two will be theresult of the "best
individual" selection strategy. For those cells which don't have neighbors with non-zero
payoffs the output will be zero.
This arrangement realizes one generation of PD for the "best individual strategy". In
order to simulate more generations the output of the second layer must be loaded to the
input of the first layer ( The cell in locations with zero values in the second layer output
keeptheir previous input values. Seeauxiliary decide circuit in section 3.4 ).
The same idea can be exploited using regular CNN cells with ( regular output
nonlinearities ), though this requires more nonlinear templates and somewhat less
effective interms of computation speed. This arrangement can be seen in Fig. 6

m



U(i+l)=y(i)

Fig6 CNN implementation ofPDfor "best individual" strategy using regular CNN
output nonlinearities.
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3.3 "Better Average" Strategy

Let us consider a following strategy:

Definition:
The statefor which better average payoffhas been achievedin the neighborhood is to be
selected as next state. This selection strategy will henceforth be referred as better
average strategy (BAS).

This strategy is quite similar, though not identical to the original. This is also a valid
strategy from the practical point of view ( possibly even more effective ) and unlike the
previous one it can be implemented serially on single layer CNN Universal Machine.

Let us decompose the nonlinear function used in the previous section into two functions,

one of which will reward only cooperators (fjM) and the other one only defectors

( f/+>) in central position. Let us introduce the following three layers (Fig 4(a)):

1 The output of this layer contains the negative payoffs for cooperators after a fixed
time:

x^lLsu'1'
J (3-6)

yi = f0uti(xi)

Furthermore yi = Xi =c( t) p(") stands throughout the transient, where p " is
thenegative sum of thepayoffs achieved by cooperators in theneighborhood
supposing we have setthetemplate and timing values in order to keep state
values in the lineardomain of the standard output nonlinearity and c( t) is time
dependent coefficient.

2 The output of this layer contains the payoffs for defectors. Similarly to the
previous:

x2=B22*uri>
~ (3-7)

y2 = f0ut2(x2)
and y2=X2 =c( t) p( +) stands throughout the transient, where p ' is the sum
ofthe payoffs achieved by defectors in the neighborhood

The state ofthis layer contains the sumofthe cellsin the binary input for the
given neighborhood in each cell position. This discrete values (ranging from -9to
9) enable usto determine theratio of the cooperators and defectors for the given
neighborhood in each cell position. We use two different output nonlinearities for
this layer to calculate the proper weighting coefficients for cooperators and
defectors:

i?



r

y* =%-'(**)=™(~' (3-8)

where w(~* and w( +*are the weighting coefficients for cooperators and defectors,
respectively and

v/"; number of cooperators

and

v/+> number of defectors

0.5(x+9)if x>-7
1ifx<-7

0.5(9-x) if x<7
1ifx>7

f/-'(x)=<

f4"(xH

(3-9)

(3-10)

(3-11)

(Note that x can take only discrete values.)
Throughout the discussion we assume that the timing values have been set to comply
with the previous equations (e.g. c( t) = 0 ). If this assumption does not hold all equation
and function values have to be normed accordingly.
As a second step we have to multiply the weighting coefficients with the proper payoff
values then sum the results in order to obtain the weighted average payoff. The sign of
this value will whether cooperator or defectors achieved better within the neighborhood
of each cell. Thus using a sign type nonlinearity for the layer which sums up the weighed
payoffs provides with the desired output which will serve as the input configuration for
the next generation (Fig. 4(b)):

u"+1' =y(i> =s#i(w'-y-' +w'V+>) (3-12 )

Note that though we talk about a three layer parallel structure, all calculations can be
done sequentially thus can be implemented on a single layer CNNUM with proper data
transfer between the analog memories. Nevertheless this approach results in definitely
slower simulation ( which might still not be a problem considering the tremendous
computational speed of the analog circuitry).

n



Uj =U^>
u2=u<j)
u3=u<i>

Layer 1

B„=

Layer 2

B22 -

?'"' ?/"' I"
%<-> ?/"' ?/"'
?r-> 7f-> 7f->
Ji Ji Ji

f+> rf+> r^+^
C f,

'(+)

• (*)

*1

x2

y41-- /^—.
yi

-l'y—i—

- -i

—^

X .

Fig 7(a) Thefirststage ofCNNstructure ( oranalogic program) implementing "Better
average "strategyfor spatial Prisoner's Dilemma game
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3.4 Remarks on the implementation

Notethat in the implementation of both strategies we usedsigntype output nonlinearities
with insensitivity band. This is because in some cases the resulting state is zero and the
unavoidable asymmetry in the implementation of the sign function would lead to the
destruction of the PD's symmetry . The resulting output will not be binary but will also
contain values close to zero. It seems to be reasonable to keep the previous value of the
player in thesepositions. For this purpose the following auxiliary operation is proposed:

ui+1=sgn(Ui+2y{) (3-13)

The schemeofthe corresponding CNNoperation can be seen in Fig. 5

is



(i+1)

Fig. 8 Auxiliary circuit to assign value to cell inputs for the next generation
undetermined by the given strategy

4. Simulation results

Both arrangements have been tested for several different values of b as well as for
different initial conditions. The results for "best individual" strategy concur with the
results published in [1].
In Fig. 9 simulation results can be seen for different values of b = Pdc- There are
perceptible qualitative differences : for b=1.77 after 30 iteration a rather static structure
seems to evolve whereas for b=1.85 a dynamic equilibrium develops with significantly
larger proportion of defectors ( the color coding of the last row in Fig 9 shows the
dynamics of the fields. Red and Blue pixels denote static values. The color coding is
explained in detail in the caption of Fig. 9 and intheAppendix )
Fig. 10 and Fig. 11 show The process as adefector invades the field of cooperators for

"best individual" strategy (b=1.85 ). Fig. 12 is the same for "better average" strategy.
The resulting patterns have different structures. The BIS output consists of large blocks,
while results obtained by using BAS have fractal-like structures.
Fig. 13 and 14 demonstrates that a sufficiently large cluster of cooperators can survive
starting in the middle ofa field ofcooperators.
Fig. 15 shows the state of large fields after 100 iteration for both defector and cooperator
invasion.

ifi
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b=1.77 b=1.85

Fig. 9
Simulation resultsfor "best individual" strategyfor b=L77 (left column) and b=1.85 (

right column ) after 33 iteration. Thefist row ( staticfields ) shows the distribution of
cooperators ( whitepixels ) and defectors ( blackpixels). Thesecond row (payoff

fields )shows thepayoffdistribution in hot colormap (yellow corresponds to higher
values, red and black correspondto lower values). The last row's (dynamicfields)

color coding is asfollows: blue represents a cooperator (C) which was alreadya C in
thepreceding generation; red is a defector ( D) following a D; yellow is a Dfollowing a
C and green is a Cfollowing a P. All imagesare 200x200, the initial configuration was

random with cooperatorfrequency 0.9 (For color coding see Appendix).
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Fig. 10Consecutive snapshots as a defector invades afield ofcooperators ( dynamic fieldcolor coding.
see Appendix). Time horizon :2-24 iterations. Array size: 39x39, Pdc= 1-85
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Fig. 11 Simulation results for "best individual" strategy
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Fig. 11 (cont. ) Simulation resultsfor "best individual" strategy
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Fig. 12 Simulation resultsfor "better average "strategy
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Fig. 13A cluster ofcooperators invades afield ofdefectors, (dynamicfield color coding, see Appendix).
Arraysize: 39x39, Cluster size: 11, Pdc= 1-79, Time horizon : 2-14



Fig. 14 The cluster ofcooperators has to be sufficiently big to surviveand grow in the hostile
environment ofdefectors. For the parameters used in this experiment a 2x2 cluster ofcooperators is

virulent enough. Pcd" 1-79 (dynamic field color coding, see Appendix).
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All images: image size: 127x127, number ofiterations: 100

( dynamicfield color coding, see Appendix).



5. Conclusion

Two different solutions for simulating spatial prisoners dilemma by CNN have been
proposed. The CNN implementation of the "best individual" strategy yields the same
results as it was published in [1]. In order to implement this strategy on a CNN we
translated the spatial local extremum problem into amore tractable temporal problem.
A new strategy called "better average" strategy has been introduced for its greater
conformity with the regular CNN structure. From the practical point of view it provides
an at least equally efficient way of selecting the player's next state. This strategy yields
similar, though not identical results.
Beside the theoretical importance of these experiments the CNN's superior
computational speed provides new insight to the long term behavior of the prisoner's
dilemma game and makes the exploration of its emergent properties possible.
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Appendix

Legend of color coding of simulation results:

Static field: cooperator

defectors

Payoff field: Hotcolormap MIN

Dynamic field: cooperator--> cooperator

defector--> defector
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