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Abstract

Incremental Methods for Formal Verification and Logic Synthesis

by

Gitanjali MeherSwamy
Doctor of Philosophy in En^neering-Electrical Ec^neerlng and Computer Sciences

University of California, Berkeley

Professor Robert K. Brayton, Chair

IC design is an iterative process; the initial specification ofa detign is rarely complete and
correct. The designer begins with a preliminary and usually incorrect sketch (possibly from
a previous generation design), and iteratively refines and corrects it. Usually, refinements
are small, and there ismuch common information between successive dedgn iterations. The
current genre of CAD tools do not take into account this iterative nature ofdesign. For
each change made to the design, the design is re-verified and re-optimized vdthout taking
advantage of information from previous iterations. This leads to meffident performance.
In this thesis, we propose the paradigm of incremental algorithms for CAD. Incremental

algorithms use information from a previous design iteration, as well as information about

changes to the design to evaluate the design cffidently. In particular, we examine incre

mental algorithms for two different dasses ofCAD problems: formal design verification and
logic synthesis.

Design verification is the process of checking If the design satisfies all the initial

specifications. Most existing techniques for verification evaluate theentire design ina single
pass. In practice design verification isnever called justonce; thedesigner tends tomodify the
system both iteratively and incrementally, and would like to incrementally call the verifier

at each stage. Current techniques ignore this common information. This redundancy is

particularly costly while dealing with large systems that take a lot of time and efibrt to

verify.

This thesis proposes incremental formal design verification as a solution to this

problem. Incremental verification runs theentire verification process only once, and prop-



agates successive changes or increments thereafter. We have developed incremental algo
rithms for the two most commonly used methods for formal design verification: language
containment and model checking.

Logic syntheds refers tothe process ofoptimizing a logic description of a drcuit,
spedfied as a netlist oflogic gates. This representation can be optimized for area, delay,
and power. Most problems in lo^c qmthesis are computationally hard, and are solved
using heuristics. This often makes algorithms unstable; if the Input is changed slightly,
the new result of synthesis can be significantly different. Since a designer spend much
effort hand-optimizing drcuits, it Is desirable to retain as much of this human Insight as
possible. In addition, the network may have already been implemented in silicon at a
lower level of the design hierarchy, and it can be Inconvenient to change. We propose
the paradigm of incremental synthesis, whose underlying motivation is to preserve the old
design implementation, while keeping the objective (power,area,deiay) reasonable.

In incremental verification, it is imperative to get exactly the same answer as by
running non-incremental verification; incrementaJization saves the designer computation
effort and time by utilizing information from previous iterations. However, an incremental
synthesis algorithm is concerned more with preserving rimUarity to the earlier design, and
hence is not guaranteed to have the same result as the corresponding non-incremental
algorithm.

The paradigm of incremental analysis, in both synthe^ and verification, raises
issues of detecting change from a new high-level specification of the derign. We present
methods for detecUng changes made to the qrstem from a high-level «p«yification of the
design.

The final overall goal of this thesis is create incremental algorithms for CAD, and to
demonstrate their effectiveness to the user.

Professor Robert K. Brayton
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Design Flow for Digital IC's

Digital IC's are designed using a top-down design methodology as shown in Figure 1.1. The

design is optimized at three key levels of abstraction: behavioral, logical and physical. Each

stage of optimization is followed by a translation to a more detailed level of representation.

The final result of the top-down design process is a silicon mask, which is sent to the IC

manufacturing facility to use in fabricating the chip.

A typical design flow begins with a description of the system in some high-level language.

The three most common high-level hardware description languages (HDL) Verilog [1], C

[2], and VHDL [3]. Most high-level languages describe the design as combination of behavior

(specified as a program) and structure (specified as hardware). High-level synthesis [4] is

the process of optimizing and further translating this behavioral description of the design.

It concludes by compiling this high-level description into a low-level HDL, which describes

the same design as a hierarchical system of interacting circuits or networks of logic gates.

A network [5] is a graph whose nodes correspond to hardware elements such as logic gates

and latches, and edges correspond to interconnections between them. The network is a logic

gate circuit implementation for the design. We describe this hierarchy of networks using a

low-level format called Blif-Mv [6], which supports a multi-valued, hierarchical system of

networks. The hierarchical description of the design can be re-structured and optimized
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and this process is called hierarchical synthesis

A critical part of the design process is identifying whether the design is correct. This

process of checking if what was designed was in fact wanted is called design verification.

Design verification of digital systems is traditionally accomplished by simulation [7] and

more recently by formal design verification methods [8] [9].

To verify the design behavior, a finite state machine or FSM representation must be ex

tracted from the network. Some methodologies may directly translate the high-level HDL

into an FSM representation by bypassing the network. The FSM for a design includes a set

of "states" representing the design at different times. The states correspond to the values

on the latch (or timed) elements in the network. The FSM must also contain functional

information that relates the next state of the design to the current state and inputs to

the design. It represents the sequential and functional behavior of the design without any

references to the actual hardware realizing it.

Verification usually involves traversing the state space of the FSM. If verification fails, the

designer must modify iiis/her design, or possibly the stalemenls that are being checked,

and run verification again. This happens many times in the design process. The network

description can also be sent to a synthesis engine in the event that the designer desires to

optimize the network logic to simplify it for easier design verification.

Once the behavioral model of the design has been verified, the next stage consists of the

logic-level optimization (or synthesis). The eventual goal of logic synthesis consists of cre

ating an optimized network implementation for the design. This optimized representation

must also be represented in terms of logic gates that are available in the set of basic gates

prescribed by the manufacturing process. This set of basic gates is called the technology of

choice. The design network is first optimized independent of the technology for objectives

like area, delay and power etc [10]. This is called technology independent logic synthesis.

After this, the netlist is mapped [11] into the technology of choice, and this is referred to as

technology mapping. Next, the mapped circuit may also be further re-optimized; a process

that is called technology dependent logic synthesis.

It is important to verify that this optimized design is indeed functionally the same as the

design input to the synthesis process. This is accomplished via implementation verification;



a process that compares and verifies that these two designs are the same. Implementation

verification can be performed between the behavioral and synthesized versions, as well as

the synthesized and optimized versions of the design.

After logic optimization is complete, the next stage in the design process consists of layout

[12], where the net-list of logic gates is translated into the actual "layout" on the silicon

surface. The layout representation is in the form of polygons that represent transistors on

the silicon surface. It patterns how portions of the silicon surface must be treated during

manufacture. Common objectives in layout optimization may be minimizing area, reducing

crosstalk etc. Finally, the silicon map obtained from the layout stage is sent to a silicon

fabrication facility to make the IC chip.

The process of designing an IC chip is therefore complex and time consuming. Time to

market is a very critical factor for the success or failure of any IC chip, and it becomes

imperative to use all means to save time and effort in this process. Thus, the primary aim

of any CAD method is to reduce time to market, and optimize performance.

1.2 Motivation: Design is Incremental and Iterative

It is a well established fact that IC design is an iterative process. The designer rarely has a

complete and correct specification for a design to begin with. Usually he/she begins with a

preliminary and usually incorrect sketch (possibly from a previous generation design) and

incrementally refinesand corrects it. There also many insLaiices of intrinsically iterative [13]

algorithms in both formal design verification and logic synthesis. There is much common

information between successive iterations. Unfortunately, the current genre of CAD tools

are monolithic in their approach; information is rarely used between stages. For each change

made to the design, the design is re-verified and re-optimized and this leads to inefficiency

as well as poor quality design.

We propose the new paradigm of incremental algorithms for CAD that use information from

a previous design iteration, as well as information about changes to the design to efficiently

re-compute the required quantities. In particular, we examine incremental algorithms for

two 'different types of design problems: formal design verification and logic synthesis. By



proposing this new class of algorithms we reduce the design time in two ways:

• By taking advantage of pre-computed information in Incremental Formal Design Ver

ification^ we reduce the time taken to compute information at each stage in the top-

down design process,

• We pipeline the top-down design process by re-using earlier implementations, and

hence allowing parallel development at a diflFerent level of the hierarchy in Incremental

Synthesis. Pipelining reduces the design time.

In this thesis, we begin by identifying how to detect increments or changes to the system

in Chapter 3. First, wc describe design verification and demonstrate how this may be

incrementalized in Chapters 4, 5 and 6. The objective of incrementalization in this context

is to reduce the time at each stage in the design process by re-using information. In

Chapter 7. we examine incremental logic synthesis, with the goal of reducing time by

allowing pipelining of design process.

1.3 Detecting Commonalities between Designs

The first step toward creating incremental tools consists of detecting what information has

changed in a design, and what information may be re-utilized. The problem of detecting

differences between twodesigns reduces to the problem of identifying a "matching" between

the two design networks. A matching is a function that maps each gate or "node" in the

new circuit into one in the old circuit. If a matching does not exist, the node is mapped to a

"null" node. The matching problem does not require any correspondences in inputs to the

design; the purpose is to identify structurally identical regions in the networks. Verification

and Synthesis information is computed from the network structure, and we hope to preserve

some of the previously computed information by identifying commonalities of structure.

In Chapter 3 we propose a two stage algorithm that first identifies nodes that match func

tionally and next iteratively prunes this set to identify nodes such that their network sub

structures match. We examine all potentially matching substructures to find the set of

matchings that are maximal, i.e. match the largest number of nodes. Once common sub-
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structures are identified, functional information for each substructure need only be com

puted once. Hence, we save in the computation of FSM information from the network.

1.4 Incremental Verification

1.4.1 Introduction: Formal Design Verification

Design verification is the process of checking if what the designer created was indeed what

was intended. In the context of this thesis we will be concerned with the verification of

sequential logic circuits [14] [15]. These circuits can be represented as finite state machines

or finite automata, often using the process of abstraction [16].

Design verification of systems that can be modeled as FSM's may be performed in many

ways. Two important paradigms used to verify finite state structures are: Language Con

tainment and Model Checking, The behavior of a sequential circuit can be represented as a

LJ regular language [17], which is simply a regular language on infinite strings.

In Language Containment [18] the property is specified by a property automaton, which is

an FSM which monitors the system, and accepts or rejects the behavior of the system based

on some acceptance criterion. The property is sa-tisfied if all behavior is acceptable. If the

language of the system is a subset of the language of the property, then it indicates that

the behaviors exhibited by the system satisfy the requirements on system behavior. This

is referred to as language containment, and indicates that the design satisfies requirements.

Language containment is checked by creating a product machine, which is the composition

of the system automaton, and the complement of the property automaton. For the language

containment check to be satisfied, the product machine must have an empty language. This

language emptiness check is performed by traversing the product automaton to find the

presence of states that are involved in valid (or bad) behavior. These states are also called

fair states, and if the language emptiness check fails, the set of these states is returned as

witnesses to the failure.

In Model Checking [19] the required behavior is specified by a formula in a temporal logic. If

the system is a model of the formula representing required behavior, then the system is said

to pass model checking. In this thesis, we examine a temporal logic called Computational



Tree Logic (CTL) [19]. In CTL model checking, the system automaton is traversed to

ascertain states that satisfy the CTL property. This is done successively, by first marking

states that satisfy sub-formulae, and then using them to compute the states that satisfy

the entire formula. The CTL property is satisfied if and only if the specified initial states

of the system FSM are contained within the stales that satisfy the property.

The smallest basic CTL formulas are a labels on the states in the FSM that arc called

atomic propositions. Apart from atomic propositions, there are 4 four CTL formulae:

p + 9, EXp^ EGp, E(p(Jq), where p, q are CTL sub-formulae.

In general, an incremental approach will first identify the changes to the system FSM or

properties and other constraints. Note that all methods of verification return some set of

states that are witness to the failure of verification. The incremental method tries to use

change information to update this witness set. Thus, our incremental algorithms are three

step processes that consists of identifying changes, using them to recompute the witness set,

and finally using the new witness set to compute a new answer to the verification question.

Reachability analysis is also done incrementally, by using the change information to modify

the reachable/unreachable set.

1.4.2 Incremental FSM Traversal

Both model checking and language containment involve some form of traversal (or reacha

bility) of the state space of the FSM; the complexity of these algorithms is polynomial in

the number of states. At the end of this traversal the states in the FSM are marked either

reachable or unreachable from some specified initial state. This can be computationally ex

pensive due to the "explosion" in the number of states in real design. The representation of

the reachable states currently used in synthesis and verification is inherently non-updatable

[20] [14]. In addition it tends to have a large representation, even if the finite state machine

itself has a compact representation.

The incremental algorithms use the reachable set representation computed at a previous

iteration, and information about the changes to the system to update it, rather than com

puting the reachable set from the beginning. We have also examined alternate ways to

represent the reachable set that ease the incremental update of traversal information.
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Remark: Instead of dealing with a single finite state machine, we will be dealing with

systems of interacting finite state machines. In order to extend the analysis to such systems,

we will be relying on the techniques of Aziz et al [21].

1»4.3 Key Idea for Incremental Verification

All methods for verification that are described above, involve the computation of *fixed

point" algorithms [22]. Fixed point algorithms begin with some initial set of states in the

FSM, and consistently add or remove states from this set, until a quiescent point also called

fixed point, is reached. If the set of states increases monotonically, the fixed point is called

the least fixed point or LFP, and if it is monotonically decreasing, it is called the greatest

fixed point or GFP, An important observation about fixed point algorithms is that an

LFP algorithm returns the correct final set of states (of the FSM), when supplied with

any subset of the final set of states , and a GFP algorithm returns the correct final set of

states (of the FSM), when supplied with any superset of the final set of states. We exploit

this fact in order to generate an incremental algorithm. We use information about changes

made to the system, and the original answer to compute the best starting sot of states for

a fixed point algorithm.

1.5 Incremental Synthesis

The aim of incremental logic synthesis differs considerably from that of incremental design

verification. In incremental verification, we are concerned with getting exactly the same

answer as by running ordinary verification. However, we hope to save time and effort of

computation by utilizing information from previous iterations. In incremental synthesis, we

are concerned less with performance. A designer can spend much effort hand-optimizing a

circuit for speed or layout area, so it is desirable to retain as much of this human insight as

possible. The aim of incremental synthesis is to retain as much of the old implementation

as possible.

Unfortunately, most problems in logic synthesis are computationally hard, and are solved

using heuristics. This often makes algorithms unstable; if the input is changed slightly, the



new result of synthesis can be significantly different.

Preserving information will reduce time to market in two ways: (1) it avoids the effort of

re-optimizing the unchanged portions of the design, and (2) it enables the pipelining of the

design process by making synthesis algorithms "stable" (small input changes do not lead

to drastic output changes). Thus, the high-level, logic-level and physical-level descriptions

of the design can be simultaneously operated on, because the propagation of information

between levels is relatively "stable".

Traditional methods for logic synthesis [23] represent the design as a graph, where the

nodes represent logic gates that compute some Boolean function, and the edges represent

interconnections between them. This representation is alsocalled a network. Logic synthesis

is accomplished by re-factoring the the Boolean functions computed by this network, so as

to improve the area , delay, and power numbers. Traditional re-synthesis restructures the

entire network.

Our approach will consist of finding subregions of the old network implementation, whose

re-synthesis aione can realizethe newfunctionality. The sub-regions alone are re-synthesized

using traditional synthesis algorithms. There are conflicting objectives: weneed to minimize

the change to the implementation, while getting the best performance. To address these

conflicting objectives, we introduce the notion of a sensitivity measure to determine which

sub-regions give better performance with re-synthesis.

Given the old implementation of the design, and the new required specification (function

ality) of the design; first we answer the following subproblem: given a region (by hitherto

unknown means), we show how to check whether re-synthesis of the given region is adequate

to effect the given change in functionality (sufficiency check). Next, we examine two proce

dures that use the above sub-procedure many times; an exact one and a heuristic one. The

exact procedure implicitly represents all possible subregions and searches through them to

find the exact minimum answer. In the heuristic procedure, we identify a means to evaluate

the viability of the node for re-synthesis in terms of sensitivity. We combine this with the

sufficiency check to get an incremental synthesis algorithm that iteratively adds nodes (in

order of their sensitivities) to a region until it is suflRcient for re-synthesis.
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1.6 Background: Incremental Algorithms

There has been a body of work in incremental algorithms in related areas. The purpose

of this section is to place these in perspective from the point of view of CAD. As stated

in the previous section, design is an iterative process. In the traditional design paradigm,

(Figure 1.2), each time the design is changed, the entire verification, synthesis and layout

process is run from the beginning.

DESIGN 0

VERIFY/

SYNTHESIZE

DESIGN 1

VERIFY/

SYNTHESIZE

DESIGN 2

VERIFY/

SYNTHESIZE

Figure 1.2: Traditional CAD

A superior paradigm is the incremental one (Figure 1.3), wherethe answerto each successive

iteration is obtained by updating the previous answer.

DESIGN 0 DESIGN 1 DESIGN 2

VERIFY/ VERIFY/ VERIFY/

SYNTHESIZE SYNTHESIZE SYNTHESIZE

Figure 1.3: Incremental CAD

We define incremental algorithms as:

Incremental Algorithm; An incremental algorithm is one that has the ability to re-use
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information about one input instance for another (close) input instance.

There are no restrictions placed on the time, complexity or nature of update. This is less

stringent than the criterion imposed by Ramalingam and Reps et al [24], who studied in

cremental algorithms for certain graph problems. This work defined incremental algorithms

as those algorithms, whose time complexity could be written as a function of the change to

the system alone, where the change or A could be written as the sum of the change in the

input and output of the algorithms. Thus, A = A,„p„^ -|- Ao^tputy ^tnd the complexity of the

algorithm = 0(/(A)). They show that some problems were intrinsically non-incremental;

i.e. there was no locally persistent (storing only local information) algorithm that could be

written for updating the information, which had a complexity only dependent on the size

of the change.

Unfortunately, one problem which has no locally persistent algorithm and hence is not

incrementalizable according to these criteria, is the problem of reachability, which is essen

tially the heart of all verification algorithms. Hence, for our purposes, we will impose a less

rigid criterion for incrcmentality: we require that the incremental algorithm re-use more

information than the corresponding non-incremental algorithm.

Incremental Algorithms have been proposed in many fields. They have been relatively

common in the field of compilers and languages [25] [26] [27]. Incremental algorithms for

layout are already present in the field of digital IC design. Some examples of this are in

the work on incremental design rule checking by Taylor and Ousterhout [28], which are

incorporated in the Magic system. At the layout level, the circuit is laid out as a map

of silicon polygons. This map is used by the manufacturing facility to determine how to

process different regions on the silicon surface. It is important to verify that the silicon

polygons created may actually be manufactured, i.e. they are not too close together etc.

This process of checking is called design rule checking (DRC). In [28], when the layout was

modified, instead of running the design rule checker on the entire circuit, the tool recorded

areas that were modified and only re-checked the modified areas. In order to perform DRC

incrementally. Magic had to store additional information on the status of a region. Since

DRC is also a form of verification, this technique is sometimes referred to as incremental

verification; however, we are not interested in verification at this level in the design process.

There is no commonality between this work and ours, other than the incremental paradigm.
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Swartz et al [29] also proposed a similar methodology for incremental layout.

Closer to our work is the workdone in [24] on the computational complexity of graph prob

lems. Similar problems had been examined in [30]. They proposed incremental algorithms

for three classes of graph theoretic problems: the single sink shortest path, the all paths

shortest path, and the circuit value problem. We shall illustrate the single sink shortest

path. The incremental algorithm modifies Dijkstra's algorithm [31] for the sssp problem.

They store the graph of all shortest paths annotated with the distance to each node. The

incremental update consists of two procedures:

Delete Edge-. If an edge is deleted from the system, and it is not a member of the shortest

path graph then no further update is necessary. If it is a member, then successor states to

the edge, which have no other predecessor must be re-assessed. These vertices are identified

as the aflfected set.

Add Edge: If an edge is added to the system, the predecessor to this edge must be re

assessed. It must be identified as an affected state. Both Add and Delete Edges update

the distances from the affected states by checking to see if the distance to their immediate

successors may change. If the distance does change (due to the addition or subtraction

of edges), then the algorithm propagates the affected state frontier to the successor states

of the current affected set. This propagation is very similar to the algorithm of Dijkstra

original algorithm for shortest paths [31]. Figure 1.4 illustrates the functioning of this

algorithm on one example. The complexity of this algorithm is shown to be 0(A/o5r(A)),

where A is the size of the affected set. However, this work was restricted to a limited set

of graph theoretic algorithms, and there was no experimental justification oflfered.

In the field of verification, relevant work done concurrently with our research is on incre

mental model checking in modal mu-calculus [32]. They presented an incremental algorithm

for model checking in the alternation free fragment of modal mu-calculus. They used as

starting point the linear time algorithm of Cleveland and Steflfen. One of the flaws of this

work lay in the relative lack of experimental validation. Our work was done concurrently,

with this work and subsumes it.

Also relevant is the work done concurrently by Kim et al [33] on efficient prototyping based

on fncremental design and module by module verification. They describe a system for
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Figure 1.4: Single sink shortest path

incremental prototyping, and the main focus of their work is on methods for iteratively

refining the design. Their work would primarily be an application for our algorithms rather

than an alternate approach.

In the field of incremental logic synthesis, there is related work by Watanabe et al [34],

which represented the design as a network. If on a successive design iteration the func

tionality of the network is changed to some new functionality, then the old implementation

was updated by adding post and pre-rcctifying logic to it. This method had the intrinsic

disadvantage that at each iteration the network only increased in size. Brand et al [35]
approached this problem by identifying cones of un-affected logic. If the function of a node

in the network was changed, the transitive fanins (cone) was affected. Only affected logic

was re-synthesized. The flaw in this work lay in the fact that if the output function was

changed, then the entire circuit was affected. An alternative approach was proposed first

by Kukimoto et al [36] [37] and then Lin et al [38] that attempted to obtain a region within

the network, whose re-synthesis alone was sufficient to realize the new functionality. These
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works proposed identifying whether or not the re-synthesis of a region was sufficient to real

ize the functionality of the new circuit by computing the observability relation of the region

that was consistent with the overall functionality (new) and compatible with the remainder

of the circuit. However, a major limitation of these works is that none of these methods

suggested a strategy for identifying a good region for re-synthesis.

1.7 Summary

In this thesis we have provided a theoretical framework for the incremental CAD, as well as

experimental evidence to show that considerable gains may be obtained by the use of such

a paradigm. We address the following goals:

1. We show in Chapter 3 how incremental modifications to the system can be made,

and recognized from a network (HDL) description of an FSM. In particular, we find a

solution to the problem of finding a maximal set of common subregions between two

successive versions of a design. We give two algorithms to delect common substruc

tures; an exact one and a heuristic one. The exact solution may only be run on small

examples. For these, we experimentally show that the quality of the solution of the

heuristic algorithm is comparable with the exact answer. We prove the correctness

of both algorithms. Next, we experimentally illustrate incremental preservation of

information by recomputing functional information for only the subregions that are

not common.

2. We address the following four aspects of the incremental design verification problem:

(a) Most computations in FSM based verification are of a fixed point nature. We

prove certain properties about general fixed point algorilhnis in Chapter 2, and

show how these properties of fixed points can be exploited to get incremental

algorithms.

(b) We give incremental approaches for FSM traversal, and evaluate their perfor

mance in Chapter 4. The reachability computation (or traversal) is an integral

part of verification and synthesis. We make this incremental by storing different

variants of traversal information, which are used to reconstruct new traversal
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information in the event of a change to the FSM representing the design. We

give three different strategies for incremental FSM traversal based on different

amounts of stored traversal information. We prove the correctness of all these

procedures and experimentally show how gains in time may be obtained by their

use.

(c) We alsopropose an incremental strategy for language containment; onemethodof

design verification. Weconstruct an incremental algorithmto use the information

about changes to the system, and the answer to the previous computation of

language containment. We prove the correctness of this algorithm and compare

its performance with the current methods. This is described in Chapter 5.

(d) In Chapter 6, we extend the aforementioned ideas to get an incremental algo

rithm for model checking, another method for design verification. We prove the

correctness of this algorithm and prove some theoretical results about further

improvements to incremental model checking.

3. We propose an incremental algorithm to the synthesis problem. This algorithm at

tempts to preserve the previous implementation of a design, while realizing a new

functionality. We prove the correctness of such an algorithm. We also examine an

exact algorithm for realizing the smallest possible change to an implementation to get

a new functionality. We experimentally evaluatethe performance of these algorithms.

Chapter 7 describes this incremental approach to synthesis.



Chapter 2

Some Terminology in Digital

Design
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As explained in Section 1.1, IC's are designed using a top down design methodology. In this

section, wc relate the various representations of the design at the high-level and logic level

in the top-down design methodology. This methodology begins with a high-level description

of the design. This high-level description represents the design as a hierarchy of interacting

modules.

Interacting FSM's Hierarchy

Figure 2.1: Hierarchy

module A(clk);

incut elk;

int wire 1142;

subm B(il42);

subn C(il42);

subo DG2);

Verilog

Definition 1 Hierarchical Netlist/iffy.* A Hierarchical Netlist (or Hierarchical Node) is

defined recursively as an n-tuple AT, /, O, H, where
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• N is a circuit or interconnection of logic gates.

• Tt is a finite set of input values.

• T is a finite set of output values.

• H is a set of hierarchical netlists (or children).

A hierarchy node that is not the child of any other node is called a root node. Each node

interacts with other nodes via its inputs and outputs. We show a system of interacting

modulesf the corresponding hierarchy and Verilog description in Figure 2.1.

In this system of interacting modules, each module has a "state". It reads in inputs from

other modules and the environment, and depending on these moves to another state, while

producing outputs for the other modules to read. Our designs are represented as modules

with a finite number of states, and hence we refer to them as Finite State Machines (FSM).

b/l
a/0

a/0, b/^

b/l

M

Figure 2.2: Finite state machine

Definition 2 Finite State Machine; A finite state machine or finite automaton Ad is

a 5-tuple (Q,E, r, r, 7) where

• Q is a finite set of states

• S IS a finite set of input values

• T is a finite set of output values

• T C Q X xT X Q is the transition relation
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• I is a set of initial or starting states of the machine.

Figure 2.2 describes a finite state machine with 2 states, 1 input, 1 output, and 4 edges in

the state transition graph, i.e transition relation.

r(9, c, 7,i) = 1 means that from state q ^ Q on input a G E, there is a transition to

some state i € Q, while the output is 7 G F. Thus an FSM can be represented by a state

transition graph, whose vertices are states, and edges are labeled with elements of (E x P).

Since our entire system is a collection of interacting modules, we sometimes refer to the

entirety as a Product Machine.

^ 1/a ol i2 ^

a/0,

O/a " il o2 b/l

Q(sl.tl) ✓-Vsl,t2)

5^(a,0)
W))

( ^s2^^^(s2,t2)
Ml:il,01 M2:i2,o2

M = Ml X M2

Figure 2.3: Forming the product machine

Definition 3 Product Machine: Given a collection of interconnected finite state ma

chines {Ml,M2,...,M„}, their product is the finite state machine on the product state

space. The transition relation is the Cartesian product of the component transition rela

tions.

In Figure 2.3 we describe a system of interacting finite state machines Mi, M2, and the

corresponding product machine M.

A closed system of interacting FSM's is a system with no external inputs. Any open system

can be closed by adding machines that simulate the environment.

Each module, or collections of modules may be "flattened" into a single circuit or network.

A network represents the design as digital hardware, which is an implementation of the

design.

Definition 4 Boolean network [5]: A network N = {ni} is a set of nodes with three

associated functions: func(7i) is the function of the node, fanins(n) G {0,1,...} is the number
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o/fanins of the node, anrf fanin(n,/:) e N,k = {1,.. .,fanins(n)} is the kth fanin of the

node.

N, can also be thought ofas a directed acyclic graph (DAG) such that each node in ff has
a Boolean function (func(n)(ni.. .Wm))* There is a directed edge from node n, to node n

if the function func{n) is dependent on node ni. We say that node Ui is a fanin of a node

n, and node n is a fanout of node Ui.

A node n,- is a transitive fanin of a node n if there is a directed path from Ui to n, and

we denote n as the transitive fanout of n,-.

Some nodes of a Boolean network are denoted as its primary inputs and primary out

puts. Primary inputs are read from the environment outside the network, and primary

outputs are written to the environment.

Nodes with at least one fanin and one fanout are called internal.

Figure 2.4 describes a small network with 6 nodes.

Let y,- denote the output variable of node n,-, unless n,- is a primary input or output. Let x,

denotea primaryinput and Zi denotea primary output. If func{n3) = then ya = x^+xe-

In a sequential network, some nodes are designated as latches. The output of a latch is

a function of its inputs at the previous time step.

Notice that the output of each node is a Boolean function of its inputs. Both logic syn

thesis and formal verification consist of algorithms that manipulate Boolean functions and

relations on the network and FSM domains.

Definition 5 A completely specified Boolean function F with n inputs and m outputs

is a mapping F : J5" —y , where B = {0,1}. If m = I the onset and offset are the

set of points satisfying F{x) = 1 and F(a;) = 0 respectively. A minterm v of a function F

is a vertex ( i.e. a point in B^) such that F{v) = 1. The cofactor Fx- of F (completely

specified) with respect to variable Xi is the function F evaluated at Xi = 1. The Shannon

form of F = Xi' Fxi + 57 •F57 (i.e. in terms of its cofactors). The size of F(x), (|F(a;)|j

denotes the number of minterms (onset points) in F{x). An incompletely specified

Boolean function is a mapping F : B" —y K"* where V = {0,1,*} (★ =» F can 6e 0 or 1).



N = {nu.,.,n6}

func(?ii) = func(n3) = /i

func(n2) = /2

fanins(n2) = 3

fanins(n5) = fanins(7i6) = 0

fanin(n2,1) =

fanin(n2) 2) = 715

fanin(712)3) = 714

tf(7li) = {7l3,«5)«6}

Figure 2.4: A network
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If m = 1 the onset, offset, and don't care set (dcset) are the set of points such that

F{x) = 1, F(x) = 0, and F{x) = ★ respectively.

A relation is a more general form than a function. In order to represent a relation as a func

tion, it must be deterministic and completely specified. Determinism requires that for each

input assignment, there is exactly one output assignment. Complete specification implies

that there is no input assignment for which there does not exist an output assignment.

Definition 6 A Relation is a mapping 0^{x,z) : B" x B*" —> B, where x fix] = n) are
inputs and y (\y\ = m) are outputs. Given inputs x and outputs z, a relation is characterized

as 0^{x,z) = 1 if input assignment x leads to output assignment z, and 0^{x,z) = 0
otherwise.

Any Boolean function with inputs a; = (xi,..., a:„) and outputs z = (zi,..., Zm)y (z = F(x))

may also be represented as its observability relation 0^(x,z) := 2:0F(x). Given inputs

Xand outputs 2, an observability relation is characterized as 0^(x, 2) = 1 if 2 = F(.t) and

0^{x,z) = 0\{zjl:F(x).

Logic Synthesis is concerned with obtaining an optimal network description of the design.

This is usually accomplished by finding a better function for each node, or groups of node

in the network.

Notice that the latch elements in hardware have a "time" aspect. Thus, the output of a

latch at the next time step is a function of the inputs of the latch at the current time step.

Thus, the circuit has a corresponding finite state machine, whose transition relation relates

the latch outputs and primary outputs to latch inputs and primary inputs at the previous

time step.

In most FSM based formal design verification algorithms, wedefine functions that map the

set of states of the FSM representing the design to itself. The algorithms are concerned

with computing the fixed points of these functions.

Definition 7 Fixed pointLet f -Q Q be a monotone (increasing or decreasing)

function, the fixed point FP of f given I is given by the set /*(/), where /(/'(/) = /*(/)).
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If / is monotonically increasing, then the fixed point is called the least fixed point or LFP^

and if / is monotonically decreasing, it is called the greatest fixed point or GFP.

R = /(/)
if (R = I)

return R

else

return FP(/(Q), R)

Consider S = {The set of all subsets of states of the FSM }. We can define a linear order

of elements of this set:

Rules 2.1 ^a,beso- < b ^ a C b

Every subset if bounded and below trivially as the set of states is a finite and discrete set.

Hence, we can apply the Knaster Fixed Point theorem [39] to guarantee that there exists

at least one LFP for given a function / that is monotone increasing. Similarly, if I define

the linear order:

Rules 2.2 Vo,6e5a < 6 -o- a D 6

By a similar logic, 1 can guarantee that there exists at least one GFP for given a function

/ that is monotone decreasing.

The key ideas in this thesis are based on the following theorems:

Theorem 2.1 ////,/s : Q Q are monotonically increasing and fs(Q) ^ fl{Q)> Ihen

Vs/ 2 5, LFP{fs(Q),S) D LFP{fi{Q)J) = L.

Proof. S D I fs{S) 2 /s(^) (monotonicity).

fs{S) 2 fs{J) 2 fi{I) (by definition).

^ V*/*5(5) 2 /'/(/).
^ LFP(fs(Q),S) 2 LFPUm,!).
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Theorem 2.2 If f is monotonically increasing Q C f{Q), and L = LFP(f{Q)^I), then

V5/C5CZ,, LFP{f{Q),S) = L,

Proof. Assume the converse. Let L' = LFP{f{Q),S)^ L = LFP{f(Q)^I).

Figure 2.5: Proof: LFP theorem

From Theorem 2.1 L' D L

Consider L'f]L.

Let Hi be the set such that f(Hi) = L'f\L

1. Hif]L=:t

If not, 3s ^ L such that f{s) ^ L.

L is not a fixed point.

A contradiction, hence proved.

Repeating this argument, there is a sequence Hk'

Let I reach fixedpoint in n steps.

Hence, 3i?„ D I such that = L'f]L.



•

2. ^„n5 = 0.

If not 3x € //n n S.

i L (else a contradiction),

i.e. 3x € 5,V/^(x) ^ L.

L is not a fixedpoint.

A contradiction, hence proved.

3. ifnH'S' = 0 and HnQL'^ V QS. i\ contradiction, hence V = L.
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Theorem 2.3 If fi,fs : Q Q are monotonically decreasing and fsiQ) ^ fl{Q))

V55 C T, GFP{fs{Q), S) C GFP(fi(Q), 1) = G.

Proof. S C I fs{S) C fs(I) (monotonicity).

=> Is(S) C fs(I) C //(/) (by definitioii).

=>V,A(5)C/^(/).

=4- GFP(fs(Q),S) C GFP(fi{Q)J),

•

Theorem 2.4 7/ / is monotonically decreasing f(Q) Q Q, and G = GFP{f{Q)^I), then

VsG C 5 C /, GFP(/(Q),S) = G.

Proof. Assume the converse. Let G' = GFP(/(Q),5), G = GFP(/(Q), 7).

From Theorem 2.3 G' C G

Consider G (!<?'•

Let Hi be the set such that/(77i) =Gf]G'

h Hif\G' = (l\.

If not, 3s € G' such that f(s) ^ G'.



Figure 2.6: Proof: GFP theorem

=> G' is not a fixed point.

A contradiction, hence proved.

Repeating this argument, there is a sequence of Hk^s.

Let I reach fixedpoint in n steps.

Hence, 3//„ C I such that /"(//„) = G[]G'.

2. ff„n5 = 0.

If not 3x e Hnf] S-

( G' (else a contradiction),

i.e. 3x GS,\lf^(x)iG'.

G' is not a fixedpoint.

A contradiction, hence proved.

3- /fnD'S' = 0 and Hn 2 G =>• G /D5. A contradiction, hence proved.

25
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Figure 2.7: BDD for /(a, 6) = a •6 + a •6

Theorem 2.5 The GFP and LFP satisfy the following rules.

1. GFP{f(Q),{A \ B]) CGFP{f{Q),A) + GFP{f{Q),B).

2. LFP(f{Q),(A + B))CLFP(f(Q),A) + LFP(f(Q),B).

Proof. From Theorems 2.1 and 2.3. •

One data structure which is commonly used to represent all these Boolean functions and

relations is a binary decision diagram.

Definition 8 Binary Decision Diagram/V(?/ [41]: A binary decision diagram or BDD,

(Figure 2.7) is a compact representations of recursive Shannon decompositionsfor the func

tion. A function graph is a rooted directed graph with a vertex set containing two types of

vertices: a non terminal vertex which has a variable identifier and two children (a left child

and a right child), and a terminal vertex which has as attribute 0 or 1. This representation

is canonical for given variable ordering, and is used to implicitly represent sets of points.

The BDD can be used to implicitly represent sets of points. The complexity of operations

on a BDD are proportional to the number of nodes, however the number of vertices that a

BDD may represent may be as much as exponential in the number of nodes. Hence, this
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representations allows us to operate on sets of states, instead than on individual states, and

this is referred to as implicit computation.

A typical example is the computation of the set of reachable states from the initial states.

Using Binary Decision Diagrams (HDDs) as a data structure. Boolean formulas and op

erations on them can be performed efficiently even on instances of very huge size, where

explicit enumeration would fail. The reason is that the size of BDD representations is not

linear in the size of the represented sets. Issues of BDD ordering [42] [43], partition of

the system representation [44], and new types of decision diagrams have been explored to

represent compactly important sets of Boolean and discrete functions.

Though not explicitly mentioned throughout this thesis we will be representing and manip

ulating quantities via their BDDs.
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Chapter 3

Detecting Commonalities Between

Designs

3.1 Introduction

The first step towards an incremental paradigm consists of detecting change, or alternately

identifying what information may be preserved.

We address the problem of finding a high quality matching between two networks. We

compare pairs of networks—combinational logic designs represented as directed acyclic

graphs whose nodes are generalized (multi-valued, non-deterministic) gates and whose

edges are generalized (multi-valued) connecting wires. We look for matchings, functions

M : N N' U {0} from each node in a new network N to &node in an old network

N' or to "unmatched" (0) such that if M(n) = n', then the gates at nodes n and n' are

identical (when their inputs are permuted) and their fanins match (M(nk) = nj. for corre

sponding fanins Uk and nj.). The quality of a matching is the number of matched nodes

q{M) = |{n G N\M{n) ^ 0}|. We solve the problem of finding the maximum quality

matching.

The ability to reuse information is the primary motivation for solving this problem. One

application, incremental design analysis, stems from the iterative nature of design. A de

signer usually wants to analyze each version of a design (with, e.g, a formal verification
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check). Analysis can be done more efficiently by identifying unchanged portions of a design

and reusing the information computed for them. If we have a matching M, we can reuse

information for each node n where M{n) ^ 0. Our techniques may also be used to identify

common areas within a single design, allowing common information to be computed effi

ciently. Another application is incremental synthesis, where the aim is to preserve as much

of the old design as possible.

A matching corresponds to structurally identical transitive fanin cones of the design that

start at a node and contain all the nodes and wires in its transitive fanin. We choose to

identify these because the global function at a node is a function only of its transitive fanins.

An example is the transition function [45], used frequently in formal verification and usually

computed using BDDs [40]. Identifying matching nodes allows us to compute the new BDD

by substituting variables, which can be done efficiently.

The approach we propose does not require any additional matching information (e.g., cor

respondences between the primary inputs). We expect most designs we compare will be

the output of a compiler that does not usually supply any correspondence information. An

alternative would be to use names to guess correspondences, but this is insufficient when

names are automatically generated—they are often very sensitive to small changes in a

design. Finally, by not assuming input correspondences, our algorithms can be applied to
more general problems such as identifying identical portions within the same design.

We propose a greedy three-phase algorithm to find a good matching. First, nodes with

identical functions are identified. Next, this information is combined with connectivity
information to find nodes that have identical structures in their transitive fanins. Finally,
the matchings implied by these nodes are combined into a high-quality matching. We use
both a greedy heuristic, as well as an exact formulation.

Other approaches to incremental synthesis rely on knowing input correspondences. Brand

et al's [46] work on incremental synthesis, which identifies regions of commonality similar
to our own, requires knowledge of input correspondences and can only detect regions that

start at the inputs. We assume that any two primary inputs may match if they can take

the same set of values.

Burch et al [47] solve a functional matching problem that does not require input correspon-
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dence information. However, they are only comparing Boolean functions, and their approach

does not generalize to circuit designs. Our main objective is to get a quick matching rather

than the exact node function matching. We adopt a similar notion of a semi-canonical form,

but our form is simpler (and hence faster) at the expense of some precision. Also, we deal

with more general multi-valued functions [48], rather than just binary.

The techniques presented here can be used to drive the incremental verification algorithms of

Swamyet al [49] [50] and Sokolosky et al [32]. These use information about the similarities

between two designs to speed up the verification process.

This chapter is organized as follows. Section 3.2 contains exact and heuristic solutions to the

network (structural) matching problem. We present both an exact formulation (Section 3.4)

and a greedy algorithm that works well in practice (Section 3.5). Section 3.6 describes our

approach to the gate function (node) matching problem. Section 3.7 describes the results

of some experiments on the algorithms and presents our conclusions.

3.2 Network Matching

Our aim is to find a node in the old network for each node in the new network, with

information we can use for its analysis. This information, by assumption, is only a function

of the node and its transitive fanin. Thus, the matching node in the old network must have

an identical transitive fanin.

We cannot use the technique of using the simulation signatures of nodes to distinguish them,

because we do not have an input correspondence. We identify the set of all potentially

matching nodes (called candidate pairs) and combine a compatible subset of these to form

the matching. In Section 3.4, we show that the problem of finding the best subset can

be reduced to finding a maximal prime compatible. In Section 3.5, we present a greedy

algorithm for finding a good subset.

A network (defined in Chapter 2) is characterized by a set of nodes with three associated

functions: func(n) is the function of the node, fanins(7i) € {0,1,...} is the number of fanins

of the node, and fanin(n, /:) e iV, A; = {1,..., fanins(n)} is the kth fanin of the node.

We only consider acyclic networks. Formally, n ^ tf(n), where tf(7i) denotes the set of
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nodes in the transitive fanin of n.

Definition 9 The transitive fanin of a node n is the set of nodes

tf(n) = (fanin(n, k) Utf(fanin(n, A;))).

The following definition characterizes which nodes we might consider matching. Informally,

two nodes could match if their functions are identical and their respective fanins could

match.

Definition 10 A pair ofnodes ni, TI2 is a candidate pair (denoted ui n2) lyfunc(ni) =

func(7i2), fanins(ni) = fanins(n2), ^ fanin(7i2,fc)- Note
that the correspondence between the fanins is determined by reducing the node function

representation to some semi-canonical form, and noting that in that form, the ith variable

for (canonical) node function for n must correspond with the ith variable for the (canonical)

node function for n'.

This is of course an approximation, since there may be several permutations of fanins where

func{n{) = func{n2). Note that this definition implies that all primary inputs may match

with each other. We add the caveat that the primary inputs may match provided they can

take the same set of values, i.e. a primary input that can take values 0,1,2 cannot match

with a primary input that takes values 0,1,2,3,4,5.

Not all candidate pairs lead to consistent matchings. Specifically, it may be necessary to

match a node in the new network to twoor more nodes in the old network simultaneously.

This is particularly nonsensical in the case of zero-fanin nodes, which represent inputs to

the network. Figure 3.1 depicts a contradictory situation.

Formally, the consistency constraint requires a matching to be a function mapping each

node in the new network either to a matched node in the old network, or to "unmatched,"

represented as 0.

Definition 11 Given two networks N (the new network) and N' (the old network), a

matching is a function M : AT -)• AT' U{0} such that M(n) ^ 0 implies (n M(n)

and\/k = 1,...,fanins(n) . M(fanin(n,/:)) = fanin(M(n),A:)).



NEW OLD

Figure 3.1: A candidate pair (ni ~ u'l) with no consistent matching.

Note: This definition implies that if M(n) /=<j>, then Vwa Gtf(n),M(no) /=<!>•

OLD
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Figure 3.2: A matching with q(M) = 3

Our objective is to find a matching that maximizes the number of matched nodes (called

the quality of the match), i.e. those for which M{n) ^4>.

Definition 12 The quality of a matching M is the number of matched nodes, i.e., q{M) =

|{n I M(n) ^0}|.

Definition 13 If it exists, the implied matching of a candidate pair ni n-i, is

M(ni) = 712

VjbM(fanin(7io, A:)) = fanin(M(7ia), fc), tIq e tf(7ii) U{tii}

M(n) = 0, 71 ^ tf(7ii)

Theorem 3.1 An implied matching is a matching.
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Proof.

1. VA: = l,...,fanins(n),M(fanin(n,A;)) = fanin(M(7i),fc).

2. M is a function.

We will be combiningimplied matchings to form bigger matchings, but some pairs of implied

matchings—those that map a node in the new network to two different nodes in the old—

cannot be combined. We need a formal definition of which matchings can be merged:

Definition 14 A pair of matchings Mi and M2 are compatible (written Mi # M2) if

(Mi(n) ^ 0) A(M2{n) 7^ 0) Mi{n) = M2(n).

Note that compatibility is not transitive; i.e. Mi ^ A/2, and A/2 ^ A/3, does not imply

that Ml # A/3. Let N and N' be the networks in Figure 3.2. A/i,A/2,A/3 are defined as

follows.

Mi{ni) = n[ M2(ni) = <j> Mz(ni) = n\

A/i(n2) = ni A/2(712) = <f) A/3(712) = 773

Miins) = 713 A/2(713) = (f> Mziuz) —n'2

. A/i ^ A/2, and A/2 # A/3, but Mi y^A/3.

Definition 15 The merge of two matchings Mi and A/2, written A/i +A/2, is thefunction

h{n) t/A/i(7i) = 0
(A/i + A/2)(7l)= .

.(ti) otherwise

Lemma 3.2 If Mi ^ A/2, then Mi + A/2 is a matching and Mi + A/2 = M2 + Mi,

i.e. ' merging is commutative. Moreover, if in addition A/2 ^ M3 and Mi # A/3, then

(Ml + A/2) + M3 = A/i + (A/2 + M3), i.e. merging is associative.

_ f A/2I
~1 Mil
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Proof. M\ # M2 ^ V„(Mi(7i) ^ 0) • (M2(n) ^ 0) Mi{n) = M2{n).

M2(n) ifMi(7i) = 0
(Ml + M2)(n) =

• '-{n) ifMi(7i)#0

f Af2l
1 Mil

{(M. +MO(n) =^ ifM.(n) =0
M2{n) if M2(n) ^ 0

1. ifMi/0, M2#0.

=> Ml + M2 — Ml = M2 = M2 + Ml.

2. if A/i = 0, M2 0.

=> A/i + M2 = M2 = M2 + Ml.

3. if Ml ^ 0, M2 = 0.

=» Ml + M2 = Ml = M2 + Ml.

4. if Ml = 0, M2 = 0.

Ml -j-M2 = 0 = M2 4"Ml.

=>> Ml + M2 = M2 + Ml. Associativity proved in a similar manner, i.e. by enumerating all

possibilities. •

Lemma 3.3 MeTying only improves quality, i.e., if Mi ^ M2, thenq(Mi),q{M2) < g(Mi+

M2).

Proof. Assume not.

=4^ 3n St (Mi(n) 0) • (Mi + M2)(7i) = 0.

Mi(n) ^ 0 =?• (Ml + M2)(7i) = Mi(n) ^ 0.

=» (Mi + M2)(n)7^0.

A contradiction, hence fln st (Mi(w) ^ 0) • ((Mi + M2)(ra) = 0.

=> q(Mi) < q{Mi + M2). •
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Partition nodes in both networks by function

Refine this partition s.t. all nodes in a bucket have fanins in the same buckets

Form all candidate pairs by considering all pairs of nodes in each bucket

Sort the candidate pairs by the number of nodes in their trauisitive fsuiin

Figure 3.3: Identifying compatible nodes.

3.3 Determining Matchings: A Refinement Algorithm

In order to determine the entire set of implied matchings, we use the following iterative al

gorithm. We begin by assuming all nodes whose node functions are matched to be matched.

We implement this algorithm with a hash table. Nodes with the same node function are put

into the same initial "bucket" in the hash table. The canonical form of the node function

imposes a certain order on the fanins of the node. If two node functions in canonical form

are equal, then the fanins node corresponding to ith variable of the node function, must

correspond. We refine the node matchings iteratively, by "un-matching" two nodes, if some

of their corresponding fanins are un-matched. We accomplish this by re-bucketing each

node in the hash table. At each iteration, the new bucket signature of a node consistsof its

table signature (canonical form) and the bucket numbers of its fanins (in the order imposed

by their node function tables). Thus, if at some iteration, any nodes in the same bucket

have corresponding fanins in diiferent buckets, then after that iteration, these nodes get put

into different buckets.

This algorithm is similar to the algorithm for the computation of equivalent states in an

FSM [51], [45]. After this refinement, all pairs of nodes in a bucket are candidates. The

algorithm is shown in Figure 3.3.

Though we have described a procedure that matches entire cones, this procedure can be

modified to match sub-regions by restricting the number of iterations of the refinement

procedure, or keeping track of all buckets seen during the refinement process.
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3.4 An Exact Formulation

Once we have a set of consistent matchings (Section 3.3), we addressthe problem of finding

a maximum compatible matching exactly.

Lemma 3.3 indicates that merging compatible matchings gives higher quality matchings.

In this section, we use this idea to exactly characterize the problem of finding the maximal

quality matching. We show that the maximal matching is a "prime" matching—one for

which merging in other matchings is either impossible or unproductive.

Lemma 3.4 If M is the sum of a finite number of compatible implied matchings then it is

a matching, i.e., ^ijMi ^ Mj and M = Mi + M-z H 1- Mk => M is a matching .

Proof. Follows from the definition of matching, implied matching, and Lemmas 3.2. •

We can define a dominance relation [52] [53] [54] as follows:

Definition 16 A matching Mi dominates a matching Mz (written Mi > M-z) if Mi ^

Mz and Mi + Mz = Mi.

Definition 17 j4 prime matching is one that is not dominated by any other matching.

Lemma 3.5 If Mi is a prime matching, and Mi > Mz, then q(Mi) > q{Mz))'

Proof. Since Mi > Mz, Mi ^ Mz => Mi = Mi -\- Mz^

Lemma 3.3 implies q{Mz) < q{Mi + Mz)- Since Mi-\- Mz = Mi, it follows that q{Mz) <

q{Mi). •

We can reduce maximal or prime matching to a prime generation problem in the following

manner.

1. Associate a Boolean variable Ui with each matching M,-. u, = 1 implies Mi is part of

, the given matching.
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2. For each pair of matchings Mi and Mj that are not compatible M,- construct

a clause (iZ7+wj). This means either Mi must not be in the partition or Mj must not

be in the partition.

3. logically AND all such clauses to get a function f(u).

4. A primeof function f(u) corresponds to a compatible set of matchings. The maximal

prime corresponds to a maximal matching.

Theorem 3.6 A maximum matching is a prime matching and can be built from a set of

compatible implied matchings.

Proof. Follows from Lemmas 3.4 and 3.5. •

Thus, from the above the problem of finding the maximum matching is one offinding the

maximum quality prime. We can do this naively by enumerating each prime matching

and calculating its quality (in actuality, we implement a slightly more efficient procedure).

However, since the number of primes of a set of n elements is 0(3"/n) [55] and n can be
0(Ar2), where N is the number ofnodes in each network, it isoften impractical to explicitly

search the entire set of primes. This worst case comes when the network consists of a set

of zero-faiiiii nodes with identical functions.

3.5 A Greedy Algorithm

The exact method cannot handle large examples; we extend the scope of the examples by

usingthe following heuristic algorithm. Our heuristicalgorithm finds the set of all candidate

pairs with implied matchings and merges themgreedily, trying the highest quality ones first.

First we used the refinement procedure of Section 3.3 to identify candidate pairs. Once

the candidate pairs are identified, we build a matching by merging together compatible

implied matchings. We consider candidate pairs one at a time, starting with those with the

largest number of nodes in their transitive fanins, and "grow" a matching by merging each

compatible implied matching.
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Partition nodes in both networks by function

Refine this partition s.t. all nodes in a bucket have fanins in the same buckets

Form all candidate pairs by considering all pairs of nodes in each bucket

Sort the candidate pairs by the number of nodes in their transitive fanin

M{n) = 0, the empty matching

for Mi largest to M,- smallest

if M T=i Mi

M = M + Mf

RETURNM

Figure 3.4: The greedy matching algorithm.

The entire algorithm is shown in Figure 3.4. The performance of our implementation of

this algorithm on example circuits is discussed in Section 3.7.

3.6 Table Matching: Matching Node Functions

In this section, we discuss how to identify whether two node functions are identical if we

do not have an input correspondence. This is known as Boolean matching, and is a well

studied problem. For our experiment, we are looking for a quick estimator of whether two

node functions, represented as node function tables match.

The nodes in our networks have discrete-valued functions (a generalization of Boolean func

tions) associated with them. These are represented in BLIF-MV-style tables [48], such as

that in Figure 3.5. Each column on the left represents an input variable, and each row is a

pattern that, when the inputs match it, produces the output in the rightmost column. Each

entry is either a single value (e.g., 3), a set of values (e.g., 1,2,5), or the set of all values (i.e..

Note that BLIF-MV permits symbolic values of the form red, blue, greeen, which are

represented as the values 0,1,2.

Figure 3.5 represents a function f(xi,X2,X3) that is 3 when a:i = 0 and a;2 = 2 or 3, or

when X2 = 1; is 0 when xi = I, X2 = 0, and 0:3 = 1; and is 1 default.

We want to be able to quickly identify tables that compute the same function. Transform-
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0 2,3 - 3

- 1 - 3

1 0 1 0

default
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Figure 3.5: A multl-valuecl table, xi, X25 sind xs are the input variables.

ing each table into a permutation-invariant canonicalform is an approximate approach to

solving this problem; different tables that are not equivalent modulo permutations may

also compute the same function. Computing a canonical form (modulo all permutations)

is much more expensive([47]); in the interests of quick computation, we have opted for this

simpler semi-canonical form.

Definition 18 Two tables are permutation equivalent if one can transformed to the

other by permuting the rows and columns.

We assume that the values in each entry are always ordered, so that we do not have to

distinguish between 2,3 and 3,2. To make this entry compact, we use ordered lists of

ranges, i.e. 2 —5,7 —8, to represent each entry.

Definition 19 A function is canonicalizing iff it maps all permutation-equivalent tables

to a single table, which is called the permutation-invariant canonical form of the table.

A function is canonicalizing if it imposes a permutation-invariant total order on rows and

columns and then sorts the rows and columns based on this. Finding such a total order is

difficult and expensive, so we resort to an order that is partial for certain tables. We count

the number of times a particular value appears in the entries in a row or column and order

the rows and columns based on this sum. The reason we use this "addition" of the number

of times a value occurs in a column as a hash function is because we need a permutation

invariant canonical form.

Consider the table in Figure 3.6. If we order the rows and columns according the number

of I's that appear in each row and column, we obtain the table in Figure 3.7. We were
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1

1

3

1 0 ^

1 1

0 0

2 1

E =

2

3

1
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Figure 3.6: A simple table annotated with the number of Vs in each row and column.

fortunate in this example, since the number of I's in each row and column is diflFcrcnt, but

in general, this strategy only produces semi-canonical tables.

E =

E

^ 0 0 1 \ 1
0 1 1

1 1 1

12 3

Figure 3.7: The table in canonical form

We can extend these ideas to tables with set-valued entries by converting each entry to an

integer. First, each set is transformed to a vector of O's and I's. Each 1 represents the

presence of a value in the set; each 0 represents the absence, e.g., the entry 2,3 would be

represented as a vector (1100). A bitwise sum of all such vectors in a row or column (zero-

extending them if necessary) gives a vector than can be used to impose a partial order. E.g.

The bitwise sum of (2,3) = (1100) and (0,1,2) = (0111) is (1211). (1211) denotes that in

the given column there is one 0 value, one 1 value, two 2 values and one 3 value.

These vectors can be transformed to integers to make them easier to manipulate.

Intuition

Note that in a table with n rows and m columns, the total number of I's in a position in a

column cannot exceed n. Similarly, the total number of I's in a row cannot exceed m. By

transforming these vectors to base b = max{m, n} -f 1 integers, we can sum the integers in
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Figure 3.8: Identical tables

a row or column, and still ensure that each column sum only includes information about

that column [no carry between (value) positions). For example, if each entry in a column is

the entry 2 = (0100), and there are 15columns. The bitwise sum for the column is OFOO; F

denotes 15 in base 16. If wewere to represent the number in base 10, then the sum would be

(1500), and due the carry we cannot distinguish between fifteen 2 entries versus one 3 and

five 2 entries. Under this representation permutation equivalent rows or columns have the

samesum. This may result in some ambiguity. Consider the two tablesshown in Figure 3.8;

both rows of the given tables have the same sum, and hence are indistinguishable. If this

ambiguity is never resolved, then these two rows will never be interchanged. Thus, the fact

that the two tables are identical will not be detected. This issue can be resolved by using a
secondary tie breaker like the position of the first 1 entry. In general, this problem is part

of a larger problem of "symmetries" [56].

Definition 20 Fora table with n rows andm columns, let mj be the maximum value of the
input variable in column j, and let Eij{k) be 1 if the entry in row i and column j contains

the value k and 0 otherwise. The numerical representation of this table is annxm matrix

T with entries

tij
k=0

It is clear that each subset of values at a table entry has unique encoding tij. Figure 3.9
shows the table of Figure 3.5 converted to a matrix of natural numbers. For this table,

(1 +'max{m,n}) = 4. As an example, the entry 2,3 is converted to a base four number:

= 4° •0 + 4^ •0 + 42 .1 + 43 .1 = 80.



E =

5

E =

1 80 86

5 4 5 14

4 1 4; 9

10 85 14

Figure 3.9: The table converted to a matrix of natural numbers.

^ 4 4 1

5 5 4

1 5 80
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Figure 3.10: The table in semi-canonical form

Definition 21 In an mx n table a row i is before row k < Ej=i Ikj- A.

column j is before a column k ifY^^i Uj < ES:i Uk-

Definition 22 The semi-canonical form of a table tij is a permutation of the rows and

columns of tij such that if row i is before row k then i < k, and if columnj is before column

k then j < k.

Figure 3.10 shows the table in Figure 3.9 converted to semi-canonical form.

Theorem 3.7 A table in semi-canonical form represents the same function as the original

table under some permutation of variables.

Hence two tables with the same semi-canonical form represent the same discrete function.

3.7 Experiments and Results

We have implemented the algorithms described in the VIS [6] environment.
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In order to to test our procedure, wedesigned the following experiment. We assume that the

design has been read in, and the designer has computed the output function BDDs of each

node (as functions of the primary inputs). At this point the designer modifies the original

design by either changing the functionality, or just re-optimizing the hardware for some

other objective. The designer would like to use the BDDs computed for the old network

to efficiently compute the BDDs in the new network. Obviously, we assume that there is a

sufficient amount of structural similarity between the old and the network design.

To emulate a design change, we took MCNC, ISCAS and VIS benchmark examples and

modified them to obtain a circuit called "new". The original benchmark spec corresponds

to the "old" design.

As an experiment we built the function BDDsassociated with the "old" design. This is done

recursively, by building the BDD at each node as a function of the BDDs of its fanin nodes.

Next, we ran the matching algorithm on the old and new designs. If there existed a match

from a node in the new network, to the old, we re-used the BDD for the old node by merely

substituting the old network BDD variables with the corresponding BDD variables in the

new network. If there was nomatch, we re-compiited the BDD by using the BDDs computed

for the fanin nodes of the new node. We reported time for this incremental computation

(Inc Time) as well as the time for computing the matching (Total Match Time). We also
built the BDDsfor the new network from scratch, and reported this non-incremental time

(Non-Inc Time).

Tables 3.1 and 3.2 report the quality of the matching Vs. the time to match the examples.

Columns 2 and 3 list the total and matched number of nodes in the network respectively.

The matching times arelisted by its component; i.e. time to get the initial matching(Match

Initial Time), time to refine the partition(Match Refine Time), and time to generate match

ing in Column 4, 5 respectively, as well as the total time to match (Total Match Time =

initial -f- refine -f-time to generate and evaluate the quality of the entire matching cones),

in Column 6. Since we used an explicit matching algorithm, it is rightly observed that as

the size of the matching increases so does the time to match. The dominant portion of the

time appears to be spent in generating the matching rather than the refinement or initial

time.

Tables 3.3 and 3.4 report the times for the non-incremental BDD computation (Column
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Example j| Nodes jj Nodes Match Initial Match Refine Total Match

Total in Match Time Time Time

alu2 429 6 0.067 0.15 0.217

alu4 126 126 0.117 0.05 0.184

apex6 1031 37 0.083 0.1 0.2

apex? 330 12 0.033 0.017 0.05

bigkey 1369 791 0.317 0.033 1.567

c8 182 15 0.017 0.017 0.034

clma 11382 10973 4.766 3.534 11.783

clmb 10842 10407 4.634 3.416 10.45

cml63a 68 11 0.017 0 0.017

cordicJatches 3468 2873 0.35 0.267 1.617

dalu 1206 1206 0.183 0.083 0.716

des 1182 1174 0.933 0.35 1.95

dsip 4554 3920 0.384 0.283 20.884

ilO 2754 2750 0.284 0.6 1.734

i2 364 48 0.067 0.016 0.083

key 1604 980 0.367 0.1 1.967

markl 133 18 0 0.016 0.016

minmaxlO 723 87 0.033 0.117 0.15

minmaxl2 914 104 0.066 0.15 0.233

mm9a 830 637 0.05 0.05 0.316

mm9b 714 106 0.067 0.083 0.167

mult32b 665 253 0.05 0.017 0.084

pair 2141 77 0.217 0.183 0.45

rot 1038 240 0.1 0.117 0.25

S1196 816 126 0.083 0.083 0.2

S1238 847 79 0.1 0.067 0.184

S13207 10065 8713 0.75 1.333 18.583

S1423 1199 298 0.1 0.083 0.317

S1488 711 97 0.084 0.083 0.184

sl494 658 34 0.083 0.083 0.183

S15850 11591 10272 0.933 1.684 12.183

S38584 23775 20839 5.767 7.267 138.434

s9234 6266 5844 0.616 0.85 8.483

terml 257 62 0.033 0.017 0.05

Table 3.1: Quality and Time to Match
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Example HNodes {} Nodes Match Initial Match Refine Total Match

Total in Match Time Time Time

arbiter 248 194 0.05 0.017 0.084

bakery 415 383 0.1 0.066 0.216

coherence 880 814 0.3 0.2 0.683

counter 58 52 0.017 0 0.017

ctlp3 127 111 0.017 0.016 0.033

dcnew 320 296 0.066 0.034 0.133

eisenberg 400 376 0.134 0.083 0.267

elevator 1327 1227 0.55 0.15 0.95

gigamax 569 549 0.083 0.083 0.233

ping-pongjiew 118 110 0.017 0.016 0.05

scheduler 814 774 0.183 0.1 0.583

slider 274 256 0.033 0.017 0.117

tcp 1668 1592 0.567 0.416 2.017

Table 3.2: Multivalued Examples: Quality and Time to Match

Example Non-Inc Inc Total Match Total (Match+Inc) Matched Total

Time Time Time Time Nodes Nodes

bigkey 1 0.183 1.65 1.883 791 1369
cordicJatches 2.367 0.066 1.7 1.766 2873 3468

clma 11.6 0.8 11.78 12.68 10973 11382

clmb 11.45 0.8 10.45 11.25 10407 10842

des 2.884 0.017 1.967 1.984 1174 1182

ilO 13.334 0.067 1.867 1.934 2750 2750

minmaxlO 800.734 0.2 0.35 0.55 87 723
minmaxl2 352.634 0.25 0.467 0.717 104 914

mm9a 27.034 0.033 0.35 0.383 637 830
mm9b 526.0 0.2 0.367 0.567 106 714

pair 1.434 0.884 0.466 1.35 77 2141

S13207 1.6 0.217 18.734 18.941 8713 10065

sl423 1.783 0.133 0.317 0.315 298 1199

S15850 31.617 0.267 12.317 12.584 10272 11591

S38584 10.85 1.35 138.434 139.784 20839 23775

Table 3.3: Incremental Vs. NonJncremental Update
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Example Non-Inc Inc Total Match Total (Match-hinc) Matched Total

Time Time Time Time Nodes Nodes

arbiter 0.067 0 0.084 0.084 194 248

bakery 0.15 0.016 0.216 0.232 383 415

coherence 0.5 0.016 0.683 0.099 814 880

counter 0.016 0 0.017 0.017 52 58

ctlp3 0.034 0 0.033 0.033 111 127

dcnew 0.117 0.016 0.133 0.149 296 320

eisenberg 0.2 0.017 0.267 0.284 376 400

elevator 0.35 0.033 0.95 0.983 1227 1327

gigamax 0.45 0.017 0.233 0.25 549 569

ping_pong_new 0.034 0 0.05 0.05 110 118

scheduler 0.267 0.033 0.583 0.616 774 814

slider 0.15 0 0.117 0.117 256 274

tcp 1.116 0.05 2.017 2.067 1592 1668

Table 3.4: Multivalued Examples: Incremental Vs. Non.incremental Update

2) Vs. the incremental BDD computation (Column 3) and total matching time (Column

4). The times for incrementa.1 BDl) computation alone were always better than the non-

incremental time (obviously using previously computed information is better than no infor

mation). However, when we add in the matching time, this is not always the case.

OF the reported example (we only considered those with more than 1 sec of CPU time),

most have significantly better total times for the incremental procedure (match time +

incremental time) as compared to the non-incremental procedure. Only 2 had significantly

worse time for the incremental method, 2 had approximately equal times and the rest always

reported better times (incremental -f- matching) for the incremental method. We report the

results on some small multi-valued examples to illustrate that the procedure does indeed

work similarly for multi-valued examples. However, the times on these examples is too small

for any conclusions. We also report the results on the exact computation (Section 3.4)as

compared to the heuristic (Section 3.5). The exact method ran out of memory much faster,

and hence we were only able to deal with small examples with the exact method. However,

Table 3.5 shows that for examples where the exact method could complete, the heuristic

answers were almost always the same.



Example Heuristic jj Nodes Exact HNodes
in Matching in Matching

apex? 12 12

bbsse 23 23

c8 15 16

cm163a 11 11

12 48 48

markl 18 18

minmaxlO 87 87

minmaxl2 104 104

mult32b 253 253

terml 62 62

Table 3.5: Exact Vs. Heuristic Common Substructures
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We have implemented the matching algorithms, and demonstrated that on BDD building

the incieiiieiital procedures take less time than the non-incremental. We can conclude that

on an average the incremental procedure should less time than the non-incremental. We

have also implemented the exact matching, and shown that for small examples the exact

answer is almost identical to our heuristic. This demonstrates the effectiveness of our

heuristic.

We examined the one example where the matching time far exceeded the non-incremental

time, and found that the cause ofthisproblem was the large symmetry in the circuit coupled

with the large size ofthecircuit. There were many possible matchings, and examining them
all, while determining the qualities of matchings was expensive. As part offuture work, the

work of Malik [56] to detect symmetries could be used to speed up our computation. We
found that aswe increased thesize oftheexample, thematching time increased significantly.
This isdue to ourexplicit formulation ofthe matching algorithm. As future work an implicit

formulation of the matching algorithms can used to overcome some of the size limitations.

Our techniques could be extended to deal with matching arbitrary sections of the network,

rather than the entire transitive fanin cone. One application would be finding structurally

identical sections within a single network, so that information computed at one section may
be re-used for another structurally identical portion.
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Chapter 4

Incremental FSM Traversal

4.1 Introduction

Reachability is an essential computation in both formal verification [14] and sequential

synthesis [57] & [58]. Given a directed graph, and a set of initial nodes in the graph, any

node such that there is a path from the initial nodes to it, is denoted as reachable. A finite

state machine (or FSM) can be represented by a directed graph, which is also called a state

transition graph. Computing the reachable states (nodes) of this graph is accomplished by

any combination of breadth first search (BPS) or depth first search (DPS) [31] exploration

of the state transition graph beginning at the initial states.

Unfortunately, this computation explodes when the number of states in the finite state

machine becomes very large. This is often called the state explosion problem. To overcome

this problem, an implicit representation called a binary decision diagram or HDD [40],

is sometimes used to represent all the required quantities, e.g. the transition relation,

which implicitly represents the PSM's state transition graph, and any set of states (initial,

reachable etc.). When HDD's are used, a BPS traversal of the state transition graph is more

convenient, and the steps in this BPS traversal can be written as fixed point computations

of propositional formulae on the transition relation, initial states etc ([45]).

The process of design is iterative, and the designer may modify the design many times.

The current techniques for reachability require that each time the designer modifies the
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FSMl
vs

FSM2

Figure 4.1: Reachability is non-incremental

design, the set of reachable states must be re-computed from the beginning. This results in

unnecessary re-computation, which is particularly cumbersome in light of the state explosion

problem. Instead, it is preferable if the set of reachable states can be updated incrementally

at each iteration of the design process.

This chapter deals with the construction of such incremental algorithms for reachability.

The complete reachability analysis is executed only once, and all successive changes are

propagated from the previous iteration. We note that knowing only the set of reachable

states is not sufficient for updating the reachable set. This can be understood by considering

the two examples in figure 4.1. Both have identical reachable states(l, 2,3,4,5), but if edge

(2,3) is deleted, then FSMi has a differentset of reachable states from FSM2. This is due

to the presence or absence of edge (5,4), and if no traversal information is stored, then this

cannot be determined without examining the entire state space of the two FSM's.

We overcome this problem by storing a reached state relation instead to represent the

reachable states, instead of the set of reached states. The spanning tree, or graph that can

be generated by any BFS type procedure for reachability are valid reached state relations.

We update this relation after every change. For example, refer to the FSM in Figure 4.2.

Usual reachability algorithms just store 0-1 reachable information, i.e. whether or not the

state is reachable. Westore the spanning tree of edges traversed during FSM traversal. We

use information about the changes made to the system, and the original spanning graph of

the reachable states, to compute a new spanning tree, which represents the new reachable

states.

In this chapter we will examine three different alternate representations for the reached

state set and traversal information.
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A more succinct version of this work can be found in [50].

4.2 Terminology for FSM Traversal

We have defined a Finite State Machine^ its states, inputs, outputs, transition relation

T(x,i,o,y), and initial states I{x) in Chapter 2. Using those definitions, we shall discuss

how to compute the reachable states of the finite state machine in this section.

Definition 23 Reachable states; The set of reachable states is denoted by R, q ^ R if

and only if there is a path from some initial state qo £ I (the set of initial states) to q.

Since, we are only concerned with reachable behavior in this chapter, we will be using the

tra.nsition relation after removing input and output dependencies. This will be referred to

as T{x,y), where x and y are present state and next state variables respectively. Note that

T(x,y) = 3(„^^)T{x,y, cr,7).

Let R{x) denote the reachable states, and /(a;) denote the initial states. If fixed points FP

are defined as in Chapter 2, then the set of reachable states is computed as the LFP{f(Q), I)

of f{Q{x)) = Q(x) + 3yT{y,x) •Q{y), given J{x) the initial states. The set of successors

(3yT'(2/, a;) •Q(2/)) of any given set of states is called its image, and image computation is

the key step in this fixed point computation.

Recollect that this entire set of computations will be done in the context of a system

of interacting finite state machines, which may also be represented as a product machine

(defined in Chapter 2)

Our incremental algorithms will use Theorem 2.2 about fixed points; i.e. for an LFP

computation, any subset of the final answer that contains the initial set, returns the correct

final answer, when supplied to the LFP as a starting point. A similar statement can be

made about GFP computations, as shown in Chapter 5 and 6.
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4.3 FSM Traversal

Computing the set of reachable states in the transition relation of a finite state machine is

equivalent to doing a traversal of the state transition graph, beginning at the initial states.

This traversal may be breadth first, or depth first.

Touati et-al [45] and Burch et-al [8] independently extended this concept to handle reach

ability in larger systems, by using partitioned implicit methods. All quantities (transition

relations, sets of states etc.) are represented by HDD's (binary decision diagrams), and the

algorithm is represented by a fixed point computation (refer to Chapter 2).

Algorithm 4.1 (T[x^y)J(x))

/(Q(i)) = 3„T(y,x)Q(y) + Q(i)

R(x) = LFP(f(Q),I(x))

return i2(a;)

Using HDD's the complexity of this algorithm is 0(A^^), where N is the number of states.

Each image step takes 0{N) (the size of the HDD's involved), and since at each step of the

fixed point, at least one state must be added, there are at most N steps involved. If the

algorithm uses HDDs, this analysis is somewhat meaningless in practice.

Unfortunately, this algorithm is not incremental, and if the designer modifies the system,

the reachable states have to be computed from the beginning.

4.4 Incremental Algorithms for Reachability

Let R(x) is a set of reachable states in the system. We want to use information about the

changes to the system to incrementally modify R(x). The potential for speedup is that
i2(a;) need not be recomputed from the beginning; intermediate results can be used to avoid

unnecessary computations.

Unfortunately, as shown in the example in Figure 4.1 (Section 4.1), just the old set of

reachable states is not sufficient to update information. However, the traversal tree that

is generated during the reachability computation or a variant of it, is sufficient to update
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reachability information. Thus, we overcome the aforementioned problem by storing a

variant of the traversal tree that can be generated during reachability computations. We

call this variant the reached state relation (P(x,i/)).

Let P(®,t/) be any acyclic relation (graph) such that 3j,(P(a;,i/) + P(p,x)) = i2(a;). If

P(x, y) is a tree we say that P is a reached state tree.

We implement three different reached state relations. The first chooses P to be the spanning

tree that is obtained by retaining only one of the many edges traversed to reach a state

from one of its neighbors. The second chooses P to be a spanning graph that is a subset

of the transition relation. The third computes, and stores the acyclic transitive closure of

the state transition graph, which can also be obtained during normal reachability analysis.

Figure 4.2 shows the spanning tree, spanning graph and acyclic transitive closure for a given

transition structure. Thus, instead of storing the reachable states 1,2,3,4,5, we store the

tree (1,2), (2,3), (3,4), (1,5), the graph (1,2), (2,3), (3,4), (1,5), or the transitive closure

(1,2),(2,3),(3,4),(1,5),(1,3),....

Once the designer changes the system, the current P(a:,y) is modified using information

about the changes made to the system and this process is repeated as often as the system

changes.

4.4.1 Characterizing Incremental Changes

There are four different incremental changes to an instance of reachability. Briefly, changes

to the system may consist of 1) addition or subtraction of edges to the transition relation,

and 2) addition or subtraction of states (and henceedges) to the state space of the machine.

Addition and subtraction of states can be characterized in terms of edges. Removing a state

from the state space is equivalent (behaviorally) to removing all edges to the state, thus

making it unreachable. Similarly, if a state is added to the state space, it is similar to

making one of the unreachable states in the state space reachable by adding edges.

Thus, we consider only two types of incremental change: addition and subtraction of edges.

For each type we first deal with a set of changes of the same type, and then we provide

a general incremental algorithm to handle a complex change with many individual types.

The algorithms are given in terms of implicit HDD operations.
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Figure 4.2: Different reached state relations

Actual modifications can be made to the system at many levels; the designer may input

the changes in a high-level language like Verilog. Alternately the internal data-structures of

the algorithm can be directly modified. These high-level changes must be translated to the

addition and subtraction of edges from the FSM. In our system, the designer is allowed to

directly modify the component transition relations, or to input new processes to the system.

The designer modifies the original transition relation T to a new transition relation T"®"'.

Using and T, we create two sets: and AT"''''. AT^^^ consists of all deleted

transitions, which were removed in T"®^ and AT'^^^ consists of all transitions added in
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4.4.1.1 Modifications to the System

The designer modifies the original transition relation T to a new transition relation T"®"*

by adding and subtracting edges from the transition structure. In practice, this may be

done in following ways:

1. Directly Modification

The designer might choose to directly modify the transition structure of the original

system. Let AT®'''' and AT""'* represent the set of edges, which are to be added and

subtracted respectively. The corresponding T®*''' and T®"'' can be computed by using

the following equations.

rpsub _ Ji PI ^fj^sub

rjpadd ijtsub jj ^rpadd

irT were a partitioned transition relation, then instead of a single edge deletion/addition,

a set of edges are deleted/added from each partition component.

= JlTinArf''
i

ijpadd rpadd /jpsub y rpadd

A designer can also modify the system by adding or subtracting processes from the

system of interacting processes.

2. Add Processes

Ta is the product transition relation of the added processes, is the transition

relation of the old system, and T"®*® is the new transition relation of the augmented

system. Ra is the set of states within the transition structure Ta that are reachable

from its initial states /a(®), and can be computed as Ra = LFP(fa(Q)iIa(x)), where

. faiQ(x)) = 3xTo(y,a:) • Q{y) •\-Q(x). In order to compute T®'''' and T^®^ in this
framework the state space of the original transition relation must be expanded to



account for the new processes, and following equations may be used:

T = T"'"'X X

^ijisub _ PI 'jpnew

^j^add ^ Q

rpsub rpnew

rpadd _ ijijinetu
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This set of equations essentially augments the old T®''' to the product space of the

Cartesian product x Tq.

If T were a partitioned transition relation, then this analysis can be extended as

follows:

rpnew rpnew rpold rpold rp
— •'l •-'o

= Tf''...T^''xRa{x)xR,(y)

^2^add _ Q

Tstlb rpsub rpold rpold rp
1 • • •-'m — -'l " a

rpadd rpadd rj^old rpold ^ p

3. Subtract Processes

If processes Ts{xs^ys) are subtracted from the system, and ^ before,

then the system can be shrunk to account for these subtracted processes. Quantifi

cation will reduce the state space to that of the new system, while preserving the

reached state set.

T = 3x,.v.T'"''(x,y)
^padd pnew pjp

^psub _ Q

psub _ p

padd p

This removes the state space of the deleted processes from the product.
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Again, if T were a partitioned transition relation, then this analysis can be extended as

follows;

rp rp rp q fpold rpold
* 1 • • • m 1 ♦ • • •' m

^J,5u6 _ Q

^rpadd fj^new q ^

r^add _

q rpold rpold
^XatVa-'-l ••••'m

We do not have to do the quantification 3a?, until the image computation step, and hence

we can treat Xs^ys effectively as inputs. This enables to use partial product methods on

such a system.

We have already discussed how to extract the transition relation from the new de

scription of the system in Chapter 3. Having once identified and reduced changes to the

addition and subtraction of edges from the finite state machine, we will present incremental

algorithms that update the reached state relation.

4.4.2 Spanning Tree Algorithm

In this section wedeal with an incremental algorithm, which chooses P{x, y) to be a spanning

tree that can generated during the course of reachability computations.

4.4.2.1 Computing the spanning tree

The implicit reachability algorithm described in Section 4.3, begins with a current set of the

initial states of the FSM. At each stage the image of the current set is computed and added

to it. Computing the image of the current set, involves computing the edges of the FSM

that begin at any state in the current set, and terminate at any state of the FSM. This is

part of a BFS traversal of the state transition graph. During this BFS procedure we choose

to select onlyone of the manyedgesthat terminate at a given state. This returns a spanning

tree graph that spans all the reachable states of this FSM. We denote this spanning tree
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y© Cpioject(T(x,y),x) y®

Figure 4.3: Using Cproject

as rs-spanning tree. Note that a tree must be contiguous. In order to decide which edge to

choose as the representative edge, any selector function like "cproject" may be used.

Definition 24 Cproject Operator/JP/; The cproject project operator can be used to ex

tract a tree subset graph of an acyclic graph. The cproject operator as a selection operator,

which when given a relation T(x,y), and a reference vertex a{y) = ai(yi),..., in

the y = yi,.. .,yn variables, it is defined as follows:

F = cproject{T{x,y),y) = {(x,y')|?/'= closest vertex to a s.t. T{x,y') = 1}

= {(«, y'W = <^r9min^yiT(x,y)=i)Moi^ J/)},
where ± is a distance metric.

The interested reader may refer to [59] for a more detailed description of the cproject

operator. For example, the operation of cproject is shown in Figure 4.3.

Thus the spanning tree is computed by the following algorithm, where P(.t, y) denotes the

rs-spanning tree, R{x) the set of reachable states, and ro(x,y) is the initial rs-spanning tree.

The following algorithm takes as input a starting rs-spanning tree (which can be the tree

of edges from initial states), and returns a rs-spanning tree for the reachable states in the

FSM.

Algorithm 4.2 (T(x,y),To(x,y))

/(Q(®, y)) = cproject{R(x) •T{x,y) •R{y), y) -f- Q(x, y))
where R(x) = '^y{Q(y,x) -\-Q(x,y))

P(x,y) = LFP{f(Q)M^.y))
return P(x, y)

As an example of this procedure consider the example in Figure 4.4
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Lemma 4.1 Algorithm 4-2 is correct, i.e. it returns a reachable states rs-spanning tree

of the state transition graph if To{x,y) = cproject{I{x) •T(x,y) • I{y)^y), i.e. the initial

rs-spanning tree, and I{x) is the set of initial states.

Proof. Proof by induction.

Let Ractuaii^) all states reachable by the ith iteration.

Assume at step i, Q(x,y) is a tree and spans all states reachable by ith iteration,

i-e- RictuaM = R*M = 3y(Q(x, y) + Q(y, x))
Consider step i + 1, where R*'*'̂ (x) —3yf(Q(x, y)) + f(Q(y, x))

f{Q(x, y)) = cproject{R'(x) •T(x, y) •R'{y), y) + Q(x, y)) .

cproject{R^(x) •T{x,y) • i?'(y), y) /=^ (else we have converged).

1. /(Q(«,y)) is a tree.

Consider an edge (a, s) € cproject(R*(x) T(x,y) •i?'(y),y) .

=> cproj€ct{R^{a) •T{a, s) • y) = 1 .

By definition cproject selects just one edge from •T(x, y) -R*{y).

=> 72'(a) •T(a, s) •72'(s) = 1.

=> R*{a) = 1, T(a,s) = 1 and 72'(s) —0.

72'(s) = 0, hence s is not already part of Q{x,y).

72'(a) = 1, hence a is part of Q{x,y).

cproject adds only one edge to s.

=» f(Q(x,y)) is a tree.

2. f(Q{x,y)) spans all states reachable by 1th iteration.

Consider s e 72 '̂rt„a/(®)-

• If s € RictuaM we are done.
Otherwise s ARLtuai(^)^ i-®-

• If 3a : f(Q(a, s)) = 1 s 6 R*'*'̂ (x), then we are done

Otherwise Vaf(Q(a, s)) = 0 .

VaCproject(R*(a) •T(a, s) •R*(s),y) = 0 .

Va72'(a) •T(a,s) •72*(s) = 0 (by definition of cproject).



• But S € -RoctiiaK®) ^ ^aT{<l,s) •Ractuali^) ~~

And we know = 0-

• ^'(^) = -Riciua/(a^)
3aT{a, s) •W{a) = 1 and R*{s) = 0

T(a, s) •W{a) /=0 and R^{s) = 0
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i2'(a) •r(o, s) •i2'(s) /=0.

A contraxliction, hence f(Q{x^y)) spans all states reachable by i + 1th iteration.

Hence, if Q(a:, t/) is a tree at the ith iteration, then it is at the i + 1 iteration, and tq is a

tree. Hence by induction Algorithm 4.2 returns a tree. •

A stronger statement about this algorithm for the rs-spanning tree, can be stated as follows:

Theorem 4.2 The Algorithm 4-2 returns a correct rs-spanning tree, if tq is any subset of

the rs-spanning tree that includes all the initial states .

Proof. From Lemma 4.1, Theorem 2.2 and the fact that tq includes all the initial states .

•

4.4.2.2 Addition of Edges

If the only changes to the system consist of the addition of edges to the transition relation,

then the new rs-spanning tree is a superset of the current rs-spanning tree. Note that adding

edges to the transition relation can never make a reachable state unreachable and hence

can never remove a state (representative edges) from the rs-spanning tree. Hence the new

rs-spanning tree must be a superset of the current rs-spanning tree. The following lemma

summarizes this:

Lemma 4.3 If the only change to the system consists of the addition of edges to the tran

sition relation, then P{x,y) C P^^^{x,y).

Proof. Consider some edge E{x,y) € P(x,y) .

=> There exists a path from the initial states to the edge E{x, y).
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Figure 4.4: Computing the rs-spanning tree P(x^y)

The existence of this path is not affected by the addition of any other edges (all edges in

the path always remain).

Hence, the edge E{x^y) € P^^^{x^y) P{x^y) C t/). •

4.4.2.3 Deletion of Edges

If edges that do not belong to the rs-spanning tree are deleted from the transition relation,

they do not affect the rs-spanning tree, and it remains the same. However, if these edges

do belong to the rs-spanning tree, then potentially every (eventual) successor edge of each

deleted edge may be removed from the rs-spanning tree. After the removal of these edges,

we will be left with a proper subset of the rs-spanning tree. This is the starting point for

the iterative reachability Algorithm 4.2.

Let Ar^"''(a:, y) denote the edges that are deleted from the transition relation, and P"^(a:, y)
denote the rs-spanning tree minus AT®"''(x,y) and all its successors. P''"(x,y) may be

computed as the greatest fixed point of P+(a:,y) • (3j,P'^(y, a;) /(x)), given P(a;,y) —

Ar®"^(a;,y); i.e. by iteratively deleting all states that have no predecessors. This notion is
formalized in the following lemma:
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Lemma 4.4 If the only change to the system consists of the subtraction of edges from the

transition relation,

y)) = (Q(x,y) •(3yQ(y, x) + I(x))), and
P+{x,y) = GFP(r{Q), (P(x, y) - AT^-\x, y)))

then P'^(x,y) is a tree that contains all the initial states.

Proof.

1. P+(x,y) contains the initial states.

The fixed point function f{Q{x, y)) = (Q(a:, y) •(3yQ(y, a;) + I(x))) always retains the

initial states I(x), i.e. 3yQ{I{x),y) = 1 => ^yf{Q(I{x),y)) = 1 (by construction).

All the initial states are part of P(x,y) by construction (Theorem 4.2).

Hence P"'"(x,y) contains the initial states.

2. P'^(a;, y) is a tree.

P(x, y) is initially a tree.

f{Q) removes states that have no predecessor edge, (by construction)

if some state has no predecessor then f{f(Q{x,y))) C f(Q(x,y)).

=> GFP(f{Q), (P(a;,y) —AT^^^(x, y))) cannot terminate if some state has no prede

cessor edge.

Hence P"^(a:, y) is a tree, since it is obtained by removing edges from a tree and its is

contiguous (states without predecessors are removed).

Hence proved. • P'^(a;,y) is a tree that contains the initial states, and from Theorem 4.2

it can be supplied to Algorithm 4.2.

4.4.2.4 Incremental Rs-Spanning Tree P Algorithm

A general change consists of both the addition, and subtraction of edges. Let T"®"' denote

the new transition relation that is obtained by adding, and subtracting the requisite edges

from the transition relation, and P"®^ be the corresponding rs-spanning tree. Lemmas 4.3

and 4.4 can be combined to give the following lemma.
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Lemma 4.5 For any general change to the system,

/(Q(«.y)) = {Q{.x,y) • (^yQ(y,x) + i{x))), and
P+(x,y) = GFP{f{Q),P(x,y) - Ar»'(x,ff)) C P^'^^x.y).

Proof. Any change to the reachable set can be characterized by the addition and sub

traction of edges from the transition structure. The proof follows from Lemma 4.4 and

Lemma 4.3. •

Note that this lemma, in conjunction with Theorem 4.2 can be used to compute a new

rs-spanning tree via the following algorithm,

Algorithm 4.3

T'""(x,y) T(,x,y) + hT"^\x,y) - AT"'(i,j/)

J(Q(x,y)] = (Q(x, y) • (3yQ(y, x) + /(x)))
P+(x,y) = GFP(f(Q), (P{x,y)- AT«^{x,y))

return Algorithm 4'2(r^^^(x,y), P'^{x,y), I{x))

Here P(x,y) denotes the rs-spanning tree before the change, is the new transition

relation, and /(x) the initial set of states. In order to demonstrate this algorithm consider

Figure 4.5.

4.4.3 Spanning Graph Algorithm

Since the computation of the spanning tree is somewhat complicated, a variant of this

procedure, which computes a spanning graph rather than a tree may also be used. The

basic procedure is the same; however this procedure does not use the cproject selector, as

it does not require a tree. The computation of this graph P'(x,y) C T(x,y) is given by the

following algorithm, where ro(x, t/) = /(x) •T(x,y) •I(y):

Algorithm 4.4 (T(x,y),To{x,y))

' /W(a^, y)) = {R{x)' r(x, y) •i?{y)) -|- Q{x,y)
where R{x) = 3y(Q(i/,x) -|- Q(x, y))
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Figure 4.5: Updating the rs-spanning tree P{x,y)

P^{x,y) = LFP{f{Q),To{x,y))

return P'{x^y)

The proofof correctnessis similar to the prooffor the tree algorithm in the previous section.

We denote this spanning graph as rs-spanning graph.

4.4.3.1 Addition of Edges

All conclusions that were made for a rs-spanning tree in the previous section, also hold for

the rs-spanning graph. Hence Lemma 4.3 also holds for the graph P'{x^y).

4.4.3.2 Deletion of Edges

If edges that do not belong to the rs-spanning graph are deleted from the transition relation,

they do not affect the rs-spanning graph, and it remains the same. However, if these edges

do belong to the rs-spanning graph, then potentially every (eventual) successor edge ofeach

deleted edge may be removed from the rs-spanning graph. Note that any successor that

has another predecessor does not need to be removed. After the removal of these edges, we
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may be left with a proper subset of the rs-spanning graph. This is the starting point for the

iterative reachability Algorithm 4.4. This set can also be computed by using Lemma 4.6,

i.e. retaining states that have predecessors.

Lemma 4.6 If the only change to the system consists of the subtraction of edges from the

transition relation,

/(<3(®.y)) = (Q(«.!/) • (3s,Q(y,x) + /(!))), and
P+(i,y) = GFP(f(Q), (P(x,y) - AT«*'(a:,y))) C P°""(x,y).

Proof. Similar to Lemma 4.4. •

4.4.3.3 Incremental Rs-Spanning Graph P' Algorithm

A general change consists of both the addition, and subtraction of edges. Let T"®*" denote

the new transition relation that is obtained by adding, and subtracting the requisite edges

from the transition relation. the corresponding rs-spanning graph is computed via

the following algoriLlim,

Algorithm 4.5

y) = T(x,y) + b.V^{x, y) - AT"^{x, y)

f{Q{x,y)) = (<3(x,y) • (3j,Q(y,x) + I{x)))
P'+(x,y) = GFP(f(Q), (FCx, y) - AT"^(x,y)))

return Algorithm t/),P''^(x,y)^

Here P'{x,y) denotes the rs-spanning graph before the change, is the new transition

relation, and I{x) the initial set of states.

4.4.4 Transitive Closure Algorithm

The transitive closure represents all paths in the state transition graph. A state is reachable

if there exists a path from the initial states to it. Thus, the transitive closure restricted

to the reached set represents the set of reachable states. However, as demonstrated in the
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previous sections, we cannot retrieve information from cyclic graphs, so we choose to store

an acyclic variant of the rs-transitive closure that consists of all reachable edges in the

transitive closure, except for a few that are deleted so as to ensure that it is acyclic. We

denote this closure as rs-transitive closure. We use the existence of an edge to a vertex as

an indication of a path to the vertex from an initial state; cycles pose an inherent problem

for our incremental computation because an incoming edge to a vertex may just represent

a path from the vertex itself, and not another distinct path from an initial state. This issue

will become more clear after we present the algorithm.

The rs-transitive closure will be referred to as C, and is used to represent the reachable

states. Since C is more dense than the transition relation, it may have a more compact BDD

representation. The closureC can be computed by iteratively taking one BPS (reachability)

step of the state transition graph, and computing the closure as the sum of the closure

computed at the previous iteration and the new additions to the closure from the edges

traversed in the current BPS step. There is an additional caveat that no edge that completes

a cycle with pre-existing edges, is added to C at any iteration. We heuristically exclude as

many edges from the rs-transitive closure as necessary to ensure this acyclicity.

C is computed using a fixed point that computesCf+i as the union of Cj and a set of edges,

which are the immediate successors of the edges in C, (in the transition relation) and do

not create a cycle in C,+i.

Let T(x^y) denote the transition relation, where x k. y denote the present and next state

variables respectively. Let I{x) denote the initial states, and Co{x^y) denote the initial C

supplied. Por the current discussion this may be assumed to consist of edges out of the

initial states; Co{x,y) = T(x,y) - I(x) •{x ^ y)^ however in later sections we will show how

this may take other interpretations. The following algorithm gives a means of computing

C:

Algorithm 4.6 (T(x,y),Co(x,y))

f(Q(x, y)) = Q(x, y)+ S^Q{x, z) •T(z, y) •Q(y,x) R'(x) •T(x, y) •Q(y,a;)
where R*(x) = 3yQ{y, x) -f Q(x, y)

C(x,y) = LFP(f(Q),Co(x,y))

return C(x, y)
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Figure 4.6: Computing C

The functioning of this algorithm is shown in Figure 4.6.

There are many acyclic rs-transitive closures for a given graph. This algorithm picks one

according to the starting set Cq. Any Cq that does not violate a some condition (does not

contain some edge that will not be present in the final acyclic rs-tran.sitive closure) is a

valid starting point. Note that if needed the reachable set of states can be extracted from

C using R{x) = 3yC{y,x) + C(t/, x), and hence C is sufficient to represent the reachable

states.

Lemma 4.7 Algorithm 4'6 is correct, and returns a validC, when supplied with the transi

tion relationT(x, y), Initial states I(x), and where Co{x, y) = T(x, y)'I(x)'(x ^ y)'T(y, x),

i.e. C is an acyclic closure that spans the reached state set.

Proof. Proof by Induction.

Assume at some step, Q{x,y) is an acyclic rs-transitive closure of the graph restricted to

states reachable in i or less steps.

i2*(a:) = Ractuali^)

Consider f(Q{Xjy)).

If there exists a path zq,zi.. 2:„ from zq = a to Zn = s, = 0-
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1, Either = IV^ctuaA^i) = 1-

=> Q(a>s) = 1 /(Q(fl,s)) = 1.

2- If 3a:y S«c/l that R^{zj) = = 0, and = 1-
Without loss of generality assume zj = s, i.e. exactly i?* (s) = 0. If for some interme

diate R^(zj) = 0, then consider a path from a to Zj = s instead.

R^^tuaM ~ I' since s is reaehable by the i -f-1 th step.
We need to prove that R '̂̂ ^(s) = 1.

• Either there exists an edge between a and s

=> T(a, s) = 1, R*{a) = 1

=> i?'(a) •T(a, s) • g) = 1

=> /(Q(a,s)) = 1.

= 1.

• Or, the path can be broken into a path from zq = a to Zn-i followed by an edge

from Zn-\ to Zn —s.

=> Q(a,2:n_i) = l,r(z„_i,s) = 1 and Q(s,a) = 0.

(To avoid cycles there must be no path from s to a)

i?'+i(s) = 1.

Finally, Co(a,s) = 1 if r(a, s) = 1, i.e. there is a path from a to s of length = 1, and

i?°(a) = 1(a) = 1 • A stronger result holds for Algorithm4.6.

Theorem 4.8 Algorithm 4.6 returns a correct C, when given as inputCo{x^y) any subset

of the final C that contains the initial states.

Proof. From Lemma 4.7, Theorem 2.2 and the fact that Algorithm 4.6 is a least fixed

point computation. •

4.4.4.1 Addition of Edges

If the only type of change to the system consists of edge addition, then all edges already

present in C must remain there, because addition of edges can only add more paths; it can

never delete paths. This is formalized by the following lemma:
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Lemma 4.9 If edge addition is the only class of change applied to the system, then

C(x,y)CC^^-'(x,y).

Proof. The existance of a path between a and s is never affected by the addition of edges,

hence all edges already present in C{x,y) must remain.

C(a;,y)CC"«^(ar,j/). •

Thus, by Theorem 4.8, C"®"'(a:,y) = Algorithm 4.6(r(a;,y),C(x,t/)).

4.4.4.2 Subtraction of Edges

If edge subtraction from the transition relation is the only class of change applied to the

FSM, then all successor edges of deleted edges that have no other predecessor edge may

be removed in In addition, edges in C that represent paths no longer in the

FSM, may also be deleted. This set can also be represented as the fixed point of Q{x,y) •

{3zQ{x, z)T^'^^(z,y) + y)) •{3zQ{z, x) •I(z)), where /(x) is the set of initial states,

Q(x,y) is initially supplied the original C(x, y) computed before the change, and C"®"'(x, y)

is the new transition relation.

The first term in this expression (3zQ(x,z)T^^^(z,y) + T"^^(x,y)) recursively removes

edges in C that correspond to paths that no longer exist in the FSM, and the second term

(3zQ(z,x) •/(z)) removes edges that have no path from /(x).

Lemma 4.10 IfT^^^(x,y) —T{x,y)n AT^^^{x,y) is the new transition relation, then

f(Q) = Q(x, y) •{3zQ(x, z) • y) + T"®«'(x, y)) • (3zQ{z, x) • I(z)), and

C"^(x,y) = LFP(f(Q),C{x,y)) C C"®^(x,y), i.e. C"'"(x,y) is a subset of rs-transitive

closure that contains all the initial states.

Proof. We need to prove that C+(x,y) C C"®"'(x,y).

Assume 3(a, s) st C'^(a, s) = 1.

1. There exists a path from a to s.

. If r"««'(a,s) = 1 then = 1 (by Algorithm 4.6).

Hence s) = 1 3g^C'̂ {a,Zn) •T^^^(zn,a) = 1. (by definition of f{Q))
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=>• 3z„(C'̂ {a,Zn) = 1 and = 1).

Applied recursively

3^1...Zn such that r(a, zi) = 1,.. .r(2:,_i, z,) = 1.. .T{zn^ s) = 1.

=» there exists a path from a to s.

Hence, it is a closure.

2. a is reachable.

C''"(a,s) = 1 => 3zC''^(z^a)I(z) = 1. (by definition of f[Q))

there exists a path from initial states I{x) to a.

a is reachable.

3. C+(a;,2/) is acyclic.

Q C(x^y) and C(x^y) is acyclic.

=» C'^(x^y) is acyclic.

There exists a reachable path that creates no cycles, from a to s.

= 1 Hence C+(a:,y) C C"®^(a:,y). •

Thus, by Theorem 4.8, Algorithm 4.6(r(a;,t/),C+(x,y)) = C"'°"'(x,y).

4.4.4.3 Incremental C Algorithm

The lemmas in the previous sections and Theorem 4.8 can be combined to get the following

algorithm for any general change:

Algorithm 4.7 (T(x,y),C(x,y)J(x),6.T"^(x,y),h.'r^(x,y))
y) = T(x,y) + l\T'"^(x, y) - AT'^(x, y)

f{Q) = Q{x,y)- (3.-<3(»;, z)T'"^(z,y) + y)). (3..Q(j, .r) + /(i)
C+(a:,y) = GFP{m),C{x,y)) CC'"^{x,y)

return Algorithm ^.tf(T^®"'(x,y),C+(x,y),/(x)j

C(x,y) denotes the rs-transitive closure before the change, is the new transition rela

tion, and I(x) is the initial set of states.
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Theorem 4.11 Algorithm ^.7 is correct, i.e.

Algorithm 4.7(T(x,y),C{x,y)J(x),i\T^(x,y),AT'^(x,y)) = C '̂̂ ^ix^y).

Proof. From Lemma 4.10 and Lemma 4.9. •

4.4.5 Extending Incremental FSM Traversal to Partial Products Heuris

tics

All the methods described in the previous section have the intrinsic flaw that they require

building the monolithic transition relation associated with the product machine. However,

this is not necessary for traversal; in fact building and manipulating the monolithic product

transition relation is a more time-consuming and expensive method of FSM traversal. In

practice, traversal may be done using the partial product heuristics, as described in [45],

[60] [61], and [62]. Thus, traversal requires computing the fixed point of

/(Q) = Q(x)-VSQ(x)

SQ{x^ = t/i, i).. .Tn(a;, yn, i) •Q{x))y^-x

R(x) = LFP(f(Q)J(x))

where 3,(ri(a:,yi, i) 'T2(x,y2,i).. .Tn(x,yn^i) = T(x,y)), the product transition relation.

Wefind efficient methods for computing the result f(Q) from the previous expression, rather

than forming the product transition relation. This can be extended in order to compute

the reached state relation. In this section, we will describe how the reached state relation

(we will only be describing the rs-spanning graph representation) can be computed using

partial products heuristics. We will rely on the the methods of [61] to efficiently compute an

expression of the form (33:,,(ri(x, yi, i)'T2(x, y2, i).. .T„(x, y„, i))-Q(x)) Thus algorithms 4.4

and 4.5 can be re-written in the partial product context as:

Algorithm 4.8 (T(x,y),ro(x,y)j

!(Q(x, y)) = Q(x, y) -h SQ(x, y)

. SQ(x,y) = (3iTi(x,yi, i).. .r„(x,y„,i) •Ii(x)) •R(y)
Ji(x) = By(Q(x,y) + Q(y, x))



Figure 4.7: Example

P'(i,!/) = LFP(/(Q),ro(x,y))

return P(a:, y)

Algorithm 4.9

y) = T(x,y) + AT""(x, y) - AT"^{x, y)

/(<3(®. y)) = <3(®i y) •(3»<3(y. + /(®))
P'+Ci.y) = GFPUiQ), (P-Cx.y) - AT™'(x,y)))

return Algorithm 4'8(T^'^^(x^ t/), y))
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For a deterministic transition system, the rs-spanning graph, which is a subset of the transi

tion relation isalso deterministic, and hence Q(x, i, y) = Qi{x,i, yi)-Q2(a^, h 1/2) •. 'Qn(x, i, yn).

Theexpressions R(x) = 3a:,iQi(x, i, yi)'Q2(x, i, y2).. .Q„(a:, i, y„), and <5 g(a:, y) = ((3i(Ti(x,yi, i)

22(3:, y2, i).. .Tn{x, yn,«) •P(x)))) are both of the form required by the heuristic algorithms

of [61]. A similar extension can be made to compute the quantification operation used for

the deletion of edges.

4.5 Efficient Update

Notice that with all the algorithms presented in the previous section, it is possible to first

remove, and then replace the same set during one iteration of the algorithm.

For the example described in Figure 4.7, if edge (2,3) is deleted, then the all three algo

rithms will first remove and then re-add (3,4) to the corresponding reached state relations.

This is because none of the reached state relations described completely represent all path

information, and hence complete update is not possible. All of them do not contain edge

(4,2). In order to explore the possibility of a truly incremental algorithm, we conducted
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the following thought experiment. Store the complete rs-transitive closure with path count

information annotated at each edge.

If an edge is added to the graph, you can update this closure graph by adding all new paths

that are created as a result of this edge (similar to Algorithm 4.6). All old paths remain.

If an edge is deleted from this graph, you must reduce the path count of all paths (edges)

through this edge. If any edge count drops to zero, it must be removed from the graph. If

an edge is removed, it is never put back.

However, the effort required to update this reached state relation is related to the number

of paths in the graph rather than the number of states, and hence this procedure is usually

far more in-efficient than re-computing the reached state information.

4.6 Experiments and Results

We have implemented the algorithms described in the previous sections, in the HSIS [63]

environment, and tested these on some ISCAS 89 and miscellaneous benchmarks. The

following graphs and tables (Figure 4.3, Table 4.2, and Figure 4.1) summarize the results.

The basic algorithm was run once, and then random changes consisting of addition and

subtractions of sets of edges, were made. After these changes were made, both incremental

and non-incremental algorithms were run on the new input. This process was repeated. The

actual set of edges that are added, and subtracted is randomly chosen. The NR algorithm

refers to Algorithm 4.1 reported in section 4.3, IRT refers to Algorithm 4.3, IRG refers to

Algorithm 4.5, and PIRG refers to Algorithm 4.8. All successive incremental changes were

made directly to the system within the HSIS environment.

Figure 4.1 reports the ratio of the incremental to the non-incremental time for all methods,

and Table 4.2 tabulates the incremental time to non incremental time for some representa

tive examples (using the partial product method).

Only the partial product methods were able to handle larger examples, and examples tic.
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Table 4.1: Ratio Incremental FSM Traversal Vs. 0-1 Reachability

Total Time (sec)
Example Incremental Non-Incremental

PIRG PNR

s27 0.01 0.01

s298 0.03 2.26

s344 2.76 1.80

s400 1.72 12.57

s526 3.6 7.44

s641 6.07 9.06

s713 5.78 8.85

s820 0.12 0.16

gigamax 4.07 6.11

tic 0.09 0.53

sbc 1109.78 1363.86
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Table 4.2: Incremental Graph Algorithm (Partial Product)

gigamax, sbc etc. only report partial product times.

Figure 4.3 presents the average ratio of the depth (number of iterations to fixedpoint within

the algorithm) taken by the incremental algorithm as compared to the non-incremental

algorithm in a single run of both algorithms. Notice that since this ratio is always smaller

than 1, the incremental algorithm always takes fewer iterations to reach a fixed point.
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Table 4.3: Ratio Incremental Vs. Non-Incremental Depth



Chapter 5

Incremental Language

Containment
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5.1 Introduction

Design verification is the process of checking if what the designer specified is what he/she

wants. One way to perform design verification on sequential logic circuits is to specify

the design (also called the system), as well as the requirements of the design (also called

the properties) as &finite automaton (or finite state machine), usually by the process of

abstraction. Next, we verify that the language (the set of behaviors) of the property is a

superset of the language (or behavior) of the system. The requirement that the language of

the propertycontains the language of the system is called language containment. Language

containment fails due to the presence of states that show behavior that is in the system but

not in the property. This set of states is called the set of Fair states.

In general, the system itself need not be a single finite state machine. It is more commonly

expressed as a set of interacting finite state machines that form a compound entity called

the product machine. Figure 5.1 illustrates a system composed of three interacting finite

state machines (Ml, M2, M3), with transition relations (TuT2,T^). The transition relation

of this system describes how the current state of the system and inputs relate to the next

state and outputs; it is the Cartesian product of the individual transition relations of the
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component machines, namely T = Ti x T2 x T3. The problem of language containment has

to besolved in this environment of interacting finite state machines [64].

^ l/_a ol i2 ^

>

0/a " il o2 b/1

Ml:il,01 M2;i2,o2

Q(sl,tl)
V>k(a,0)
W))

^
^(s2.t2)

M = MlxM2

Figure 5.1: A system of interacting finite state machines

Current techniques [14] [15] perform language containment as a single pass. If the designer

modifies the design after a solution has been obtained, then the entire language contain

ment algorithm is repeated on the new design. In practice, the process of design is iterative;

the designer modifies and re-verifies the design many times. If standard language con

tainment algorithms are used in real-life design situations, they often result in redundant

re-computation of information because the similarity between the old system and the new

system is not utilized. We introduce the concept of incremental verification, which allows

multiple changes to the system but runs the entire language containment algorithm only

once, and propagates successive changes or increments from the latest solution.

The language containment algorithms of Touati et al [14] and Hojati et al [15] start with

all reachable states, and successively reduce this until only the fair states remain. These

algorithms are monotonic in nature, i.e., once a state is removed from the set of potential

fair states, it is never added back. Hence, a similar algorithm that starts with any superset

of the fair set, would return the fair set. Our algorithm uses information about the change

in the system and the original set of fair states to derive a smaller superset of new fair

states (smaller than the set of all reachable states). Then, it reduces this superset with an

algorithm similar to [15]. Since this superset is much smaller than the set of all reachable

states, the incremental algorithm converges faster.

The aim of this exercise is to get the new answer to the verification decision problem, "Is

what I specified what I wanted?", using the old fair states (also referred to as Fair+), and

the incremental changes that the designer made to the input problem, while spending less
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time and effort in this computation than if the entire language containment algorithm was

run on the new problem.

Our approach to incremental language containment will begin by identifying classes of

changes to the system. For each type of change, we show how to modify the Fair"^ set to

account for it (Section 5.4), and finally we merge these into a single incremental language

containment algorithm (Section 5.5). A shorter description of this work has been published

in [49].

It is important to keep in mind that all operations are to be carried out in the context of the

Binary Decision Diagram (HDD) data structure [40] (defined in Chapter 2). Even though

not explicitly stated, all sets and relations are represented as their HDD's [45].

5.2 Some Terminology for Language Containment

The following terms are defined on a Finite State Machine (defined Section 4.2) with tran

sition relation T(a;,t,o,j/), initial states I(x), reachable states i2(a;).

Definition 25 Projection; Given a relation R{x,y), the projection A(R(x^y),x) denotes
the projection of the relation on the x variables, i.e. A(i2(x, y),x) = ByR(x, y).

If R{x,y) denotes a set of edges in the FSM (e.g. R(x,y) = T{x,y)), then A{R{x,y),x)
denotes the ofset of predecessor states of the given edges.

Definition 26 Run; A sequence ofstates, r = ro...ri...,r e Q*', is a run,or a path of
T for a word <7 = (ao... ...), a € tq € / and for i > 0, r(r,-, a,-, 7,-, n+i) = 1. The
set I refers to the set of initial states.

The infinity set of a run r, denoted as inf(r), is the set ofstates that are visited infinitely

many times in r. An accepting run or fair path r over T requires that inf(r) satisfies some

acceptance condition C. The acceptance condition C distinguishes different a?-automata

(Automata accepting infinite behavior, e.g. L-automata, Buchi, Streett and Rabin au

tomata).
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The behavior (set of fair runs) of the system is a subset of the runs of the system. This

subset is specified using fairness constraints on the processes of the system. The fair

ness conditions express restrictions on the infinitary behavior of the finite state machine,

and are used to model the system, the environment, and acceptable behaviors. Fairness

conditions are modeled differently for different classes of automata. The language of an

automaton M, represented as L(M)j is the set of all strings accepted by it.

Definition 27 Language Containment; The requirement that the language of the prop

erty (or specification) is a superset of the language of the system is called language contain

ment.

In the language containment paradigm, verification of the system is equivalent to determin

ing if there is a fair path starting at an initial state. This path corresponds to behavior

that is generated by the system but rejected by the task or property automaton and it is a

witness to the failure of the property. The set of states which are involved in fair behavior

are called Fair states.

We will be considering the following types of infinitary automata.

Definition 28 Buchi Automata; Buchi automata are characterized by acceptance con

ditions that consist of U a subset of the state space of the machine and run r is accepting

if and only if some of the states in U are traversed infinitely often, i.e. (inf(r) OU / 0).

Definition 29 L-Automata; The L automaton[l 6] acceptance condition consists of a pair

{R, U). R C Q XQ, is termed the set of recur edges, and U = U\...Un is the set of cycle

sets (or Buchi sets). Run r is accepting if and only if 3i,inf(r) C Ui or infe(r) f] R:/^^,

where infe{r) denotes the set of infinitely occurring edges in r.

Definition 30 L-Process ; An L-process is syntactically the same as an L-automata, with

one exception; the acceptance conditions for L-automata are complementary to those of L-

processes, i.e. run r is accepting if and only if ^iinf{r) % Ui and infe{r) n = 0, where

infe(r) denotes the set of infinitely occurring edges in r.
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Definition 31 Streett Automata [65]: An FSM that accepts infinite behavior, which

satisfies the Streett acceptance conditions is called a Streett automaton. Streett acceptance

conditions consist of a finite set of orderedpairs C = {(I7i,Vf), (U2, V2),{Un, Vn)} where

Ui and Vi are subsets of the state space of the machine and run r is accepting if and only

if ^i((inf(r) fl U, ^ 0) + (m/(r) C VJ)), where 0 < i < n. This can also be written as

F~(C7.) + G~(V;).

Edge Streett have additional fairness constraints in the form of positive fair edges Ei which

must be traversed infinitely often and negative fair edges iV,- which must not be traversed

infinitely often in any accepting run r.

Definition 32 Rabin Automata [66]: The fairness conditions for a Rabin Automaton

are the complements of thefairness conditions for a Streett automaton, i.e., ^i{{inJ(r)r\Ui =

0)n(my(r) %K)).

Edge Rabin may also have positive and negative fair edges constraints.

Definition 33 Fair"'"; The set of states which can reach a fair cycle' (including those on

it), i.e. a cycle which satisfies the fairness constraints, constitute Fair+. The presence of

a non-empty set Fair"*" indicates that the automaton has non-empty behavior.

The least fixed points (LFP) and greatest fixed points (GFP) are defined as in Chapter 2.

We are concerned with functions that map sets of states in the FSM to other sets of states.

The following operators defined using the fixed point operators of Chapter 2 will be used

in this chapter.

Definition 34 Forward Reachable Operator; Given T{x,y), the transition relation

and A{x), a set of vertices, the forward reachable operator returns the set of vertices which

can be reached by A.

The forward reachable operator FR is computed using the following algorithm:

f(Q(x)) = %T(x,y) •Q{x)\y^j: + Q(x)
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FR(T(x,y),A)

return LFP(f(Q),A(x))

Definition 35 Backward Reachable Operator : Given T(x^y), the transition relation

and A(x), a set of vertices, the backward reachable operator returns the set of vertices that

can reach A.

It can be computed as follows:

f(Q{x)) = 3yT(x,y)-Q{y)-^Q{x)

BR(r(x,y),A)

return LFP{f{Q)fA{x))

Definition 36 Reach Reachable States Operator; GivenT(x,y), the TransitionRela

tion and A(x), a set of states, the Reach Reachable States operator returns the set of states

which can reach some state in A or be reached by some state in A. The RRS operator

returns the set of states, which are on paths through A.

The Reach Reachable States operator or RRS(T(x,y),A) is computed as follows:

RRS(r(a:,y),A)

return (BR{T{x, y), A)+ FR{T{x, y), A))

5.3 Language Containment

Vardi and Wolper [67] observe that the problem of verifying whether a machine (M) sat

isfies a given property (F) reduces to the problem of checking whether the language of

the machine automaton is contained in the language of the property automaton. The lan

guage containment check in turn reduces to a language emptiness check for the product of

the system automaton and the complement of the property automaton. Checking whether

L(M) C L(P) is the same as checking whether the language of D = M XP is empty, i.e.,

whether L(M x F) = </>.
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When P is expressed as an L-automaton, the problem of complementing F is solved by ex

pressing it as an L-process [14]. The acceptance conditions for L-processes and L-automata

are complementary and representing F by a L-process is easily done (if P is deterministic)

by just keeping the same transition structure and complementing the acceptance conditions

(the complementation is implicit by the choice of representation). Similarly when P is ex

pressed as a Rabin automaton the problem of complementation is solved by expressing P

as a Streett automaton, since the acceptance conditions for Rabin and Streett automata

complementary. Our experiments use a Streett and Rabin environment, and hence all suc

cessive discussions in this report are centered around Streett and Rabin automata, but are

also applicable to other classes of automata.

A language emptiness check remains to be done, and it is performed by checking the product

automata D = MxP for acceptable infinite behavior[14] (or fair paths), which indicate that

the language for the system-property product machine is not empty. A cycle is associated

with any infinitary behavior in a finite graph, and in order for this infinite behavior to be

acceptable, this cycle must also satisfy the fairness constraints. Thus, a machine has a

non-empty language if there exists a path from an initial state to cycle that satisfies the

fairness constraints. The set of states that lie on such cycles form a set of fair states^ which

cause the fair or non-empty behavior. In general, we compute a superset of this set called

Fair"'", which consists of all states on a path to e. fair cycle.

Touati et al [14] have presented an algorithm for the computation of the Fair states under

Buchi and L-process acceptance conditions. This has been extended by Hojati et al [15] to

an algorithm for computation of Fair"*" within a Streett environment. This algorithm relies

on the following two operators.

Definition 37 Forward Stable Set Operator[15]: Given a transition relation T(x,y)

and a set of vertices A{x), the forward stable set operator or FSS(T(x,y)^A) returns a

set of states in A, which are on a cycle or can reach a cycle in A. Alternately, the FSS

operator removes from A all those states which have no successors states (next states) in

the transition structure.

The'following algorithm is used to compute the Forward Stable Set operator FSS :
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f{Q(x)) = Q(x)' (3yT(x, y),A(x) •Q(y))

FSS{T(x,y),A)

return (GFP{f(Q), A(x)))

Definition 38 Forward Fair Path Operator[15]: Given a transition relation T{x^y), a

set of states A(x), and a set of fairness constraints C(x), the forward fair path operator or

FFP(T{xjy)yC, A), returns a subset of states in A(x) which are on a fair path. For this

analysis, C(x) IliCi Streett fairness constraints in the form Ci = + G®®(K).

Hence, FFP returns those states a in A such that for each Ci, either a ^Vi or there is a

path in A from a to some state in Ui.

Note that this operator returns just a path and not necessarily an infinite path. The FFP

operator can be computed by using the following algorithm:

f(Q(x)) = (3,T(a:,y).A(i) •Q(y) +0(a;))

FFP(T(a:,s,),C,A)

return(ni,„6C(x)(if^'(/(O). Vi(x) •A(x))) + Vi(x) •A(x))

To extend the FFP to edge Streett automata, an additional term must be added to the

above expression that accounts for states such that for each Ej, there is a path from the

state to Ej.

The algorithm computes Fair"^ by starting with the set of reachable states, and alternately

applying the FSS and FFP operators. These operators successively restrict the original set

of reachable states to those on a path from an initial state to a cycle (FSS) and those which

are on a fair path (FFP). Thus, the set Fair"^ is obtained by successively shrinking the set

of reachable states until only those states that are on a path from some initial state to a fair

cycle remain. The algorithm for verification in the Streett-Rabin environment becomes:

Algorithm 5.1 NonHncremental-Language-Containment

Fair'^(x) = Compute.Fair'^

if'Fair'^{x) is empty return(PASS)

else return(FAIL)
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The set Fair'^ is computed using the foliowing algorithm:

Algorithm 5.2 Compute.Faif^

Restrict the Transition Relation T{x,y) to reachable states

Set R(x) = Reachable states

f(Q(x)) = FSS(T{x,y),FFP{T{x,y),C(x),Q(x)))

Fair+(x) = GFP(f(Q),R(x))

return Fair'^{x)

The proof of correctness of this algorithm can be found in [15].

This algorithm has a complexity of 0{N^), where N is the number of reachable states in

the state space. At each iteration of the fixed point computation, at least one state in

the set of reachable states, but not in is deleted from the reachable set, and this

step takes 0{N) time, which results in an overall complexity of 0{N^). This computation
of complexity assumes that each step takes 0(1) time, and all successive arguments on

complexity in thischapter, also make thisassumption. Even if this assumption did not hold,

the complexities are valid for comparing the incremental method to the non-incremental

method.

Though not explicitly stated in the above algorithm, the set of reachable states can also be

used to minimize the transition relation HDD. This simplification results in a considerable

speedup and will be used throughout this chapter without an explicit mention.

5.4 Incremental Language Containment

5.4.1 Overview

The computation ofFatr+ involves successive applications ofthe FSS and FFP operators,

which involve the successive reduction of the set of states involved. It is important to note

that the algorithm begins with a superset of the states in Fair"^ (namely all reachable

states), and eliminates states. Once a state has been removed from this set, it is never

added back, and hence the algorithm is monotonic. Our incremental algorithm is based
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Fair"'"'"

Figure 5.2: Key Idea: incremental language containment

on the intuition of Theorem 2.4 that if any superset of Fair^ is given to Algorithm 5.2, it

still returns the set Foir+. The trick lies in using the previously computed Fair"^ and the

changes to the system to obtain a superset of the new Fair"*", which is not necessarily as

large as the set of all reachable states, and in most cases is significantly smaller (Figure 5.2).

Given a smaller set, the algorithm converges faster and hence the incremental algorithm is

typically faster.

5.4.2 Characterizing Incremental Changes

Recall that Fair"^ is a set of states that characterize the fair or unwanted behavior in the

system. We want to use information about the changes to the system to incrementally mod

ify Fair'^. The potential for speedup in this method is that Fair"*" need not be recomputed

from the beginning; intermediate results can be used to avoid unnecessary computations.

We have categorized six different incremental changes to an instance of the language con

tainment problem. Briefly, changes to the system may consist of 1) addition or subtraction

of edges to the transition relation, 2) addition or subtraction of fairness constraints. Addi

tion and subtraction of states can be characterized in terms of edges. Clearly, removing a

state from the state space is equivalent ( behaviorally) to removing all edges to the state,

thus making it unreachable. Similarly, if a state is added to the state space, it is similar to

making one of the unreachable states in the state space reachable by adding edges.

Suppose the designer modifies the original transition relation T to a new transition relation



85

j-net/; Using and T, we create and consists of the original transition

relation T minus all transitions, which were removed in T'"®"'. These subtracted transitions

are referred to as consists of T®"** plus all the transitions added in J"**®^.

The added set of transitions is referred to as AT"*'''. Note that but for the

purposes of incremental modification we can deal with T®'''' as a single modification to

by only adding edges. The exact computation of T®''®' and T®"^ under different methods for

changing input, is described in Section 4.4.1.

Note that fairness constraints never affectthe transition structure; they only affect the FFP

operator (Section 5.2). The newfairness constraints, with constraints added and subtracted

from theoriginal set,areused to compute a new FFP operator. Let C®''*' refer to the original

set C plus the new constraints added to the system AC®'''̂ . Also, let C®"^ denote the final set

ofconstraints, which can also be interpreted as C®®'*', minus the set ofsubtracted constraints

AC®"''. For brevity, we denote AC®"''(a;) = + KW).

In order to prove the correctness of the results, we will make useof the following properties

of the FFP and FSS operators:

Theorem 5.1 Theforward stable set operator satisfies thefollowing three properties:

1 JfJ^Sub Q

FSS(T">'(x,y),A{x)) C FSS(T(x,y),A(x)).

2. IfT'^DT,

FSS(T"'''{x,y),A{x))C FSS(T(x,y), ^(x)) + mS(T'""(x, y),K(tT"'\x,y),i))

3. FSS{T{x,y),A(x)) C A(a;)

Proof.

1. FSS is a GFP computation.

T'"' CT =!• f-pM C /r

Where / denote the function in the GFP computation on page 81.

Hence, by Theorem 2.5 and 2.3

FS5(T»"'(x,y),>t(i)) C FSS{T{x,y),A(x)).



86

2. Consider s € F55(r®''''(a:, y),A(a;)).
jiacfd 3 y ^ 3

Where / denote the function in the GFP computation on page 81.

=> FSS{T'''̂ '̂ (x,y),A{x)) DFSS(T(x,y),A{x)).

If s 6 FSS(T{x^y)jA{x)), then proved.

Else if s ^ F55(T(a:,y), A(a;)), then 3 a newly created infinite path with s. (by

definition ofFSS).

This path is not in the old FSM (r(a;, y)), hence it must involve one of the new edges.

RRS{T'̂ '̂ '̂ {x, y),A(AT°''''(a;, y),.t)) includes all paths through the new edges (AT"'̂ '̂ ).

(From RRS definition).

=(• s € RRS(T{x,y) + AT"^{x,y),M^T'"'''[x,y),x)).
Hence proved

3. From the definition of FSS.

Theorem 5.2 The forward fair path operator satisfies the following five properties:

1 JJJ^Sub Q

FFP{T"^(x,y),C{x),A{x)) C FFP(T{x,y),C{x),A{x)).

2. IfC"^ DC,

FFP(T(x,y),C''^\x),A(x)) C FfP(T(x,y),C(a:), A(x)).

S. IfT'^2T,

FFP(T^{x,y),C(i),yl(i)) C FFP(T(x,y),C(x), A(x))+RRS(T""(x,y),A(AT""(x,y), x))

I IfC"^ C C,

FFP{T(x,y),C'"''{x),A(x)) C PFP(T(x,y),C{x),A{x))+AC>»»

5. FFP{T(Xjy),C(x),A{x)) C A{x)

Proof.
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1. FFP involves a LFF computation. C T =J«- fjaub C fj

Where / denote the function in the LFF computation on page 82.

=> C FF/>(T(x,y),C{i),/l(i)).

2. FFF involves a LFF computation. D C{x) => fc<^dd C fc.

Where / denote the function in the LFF computation on page 82.

By Theorem 2.5 and 2.1

=)• FFF(r(x,y),C'"'''(i).'4(x)) C FFP{T{x,y),C{x),A(x)).

3. Consider s 6 FFP{T"'''{x,y),C(x),A(x)).
-padd 2 QH ^ 2 /r

Where / denote the function in the LFF computation on page 82.

=(• FFP(T'''^{x,y),C(x),A(x)) DFFP(T{x,y),C{x), A(x)).
(By Theorem 2.5 and 2.1.

If s € FFF{T{x^y),C(x)^A{x)), then proved.

Else if s ^ FFF(T(x, y)^C{x), then 3 a newly created path to C containing s.

(by definition of FFP).

This path is not in the old FSM, hence it must either involve one of the new edges

RRS{T'̂ ^^{x^ y),A{AT°'̂ (x, y)) ®)) includes all paths through the new edges Ar'" '̂'(a;, y).
RRS{T'" '̂̂ {x,y),A{AT'" '̂̂ (x,y),x)).

4. Consider s e FFF{T(x,y),C^^^(x)^A(x)).
Csub 2C^ fcsub Dfc

Where / denote the function in the LFF computation on page 82.

FFF{T(x,y),C'-\x),A) DFFF(T{x,y),C(x),A(x)).
(By Theorem 2.5 and 2.1.

If s G FFF{T(x,y),C{x)^A(x)), then proved.

Else if s ^ FFF(T(x, y),C(a;), i4(a:)), then 3 a newly created path originally violating

. C®"'' containing s. (by definition ofFFP).

This path is not in the old FSM, hence it must have been removed originally because
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of the newly subtracted constraints.

includes all states (paths) that may violate the subtracted constraints

=» s € AC^(a:).

5. From the definition of FFP.

Lemma 5.3 f(Q) = FSS(T{x^y)^FFP{^(x^y)^C(x)^Q(x)) is a monotonically decreas

ing function.

Proof. FFP{T(x,y),C(x)jQ{x)) C Q(x) (from definition of FFP)

FSS{T{x^y),Q(x)) C Q(x) (from definition of FSS)

^ FSS(T(x,y),FFP(T(x,y),C(x),Q(x))) C Q(x)

^ S(Q) C Q

Hence, f(Q) is a monotonically decreasing function. •

5.4.3 Subtraction of Edges

Consider the system obtained after subtracting a set of edges from the transition relation.

Subtracting an edge cannot make any unreachable state reachable, nor can it create a new

cycle in the state transition graph. Thus, subtracting an edge can never add a new state to

Fair+. Figure 5.3 indicates that deleting edge ah can potentially remove all states in sets

Fair+

Figure 5.3: Deleting edge ah can potentially remove all states in A and B from fair"^

A and B from the set Fair+. The following lemma formalizes this idea.
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Lemma 5.4 The set for the new system obtained by deleting edges from the

original transition relation is a subset of the Fair"^ of the original system.

Proof. FSS{T''''>{x,y),A{x))CFSS(T{x,y),A(x)).
FFP(T"^(x,y),C{^),A(z)) C FFP{T[x,y),C{x), A(x)).
(From Theorems 5.1 and 5.2).
^ FSS{T"^(x,y), FFP{T"^(x, y),C(x), 4(x))) C FSS{T{x, y), FFP{T{x, y),C(x), A(x))).

Using /(Q) = FSS(T(x,y),FFP(T(x,y),C(x),Q(x))).

This function is monotonically decreasing, (from Lemma 5.3)

^ ffaub C fj'.

GFP{fTsub(Q),A{x)) C GFP(fT(Q),A{x)).

^ Fair'^^^^(x) C Fair'^(x). •

Thus, if the only change induced in the system consists of subtraction of edges from the

state transition graph, then the following algorithm can be used to generate Fair'*'"®"' given

the new transition relation and the old set of states comprising Fair"'".

Algorithm 5.3 (T^^^{x,y),C{x),Fair+(x))
I(x) = Initial States

FairQ(x) = Fair+(x) n R^^^(x)

f(Q{x)) = FSS(T(x,y),FFP{T{x,y),C(x),Q(x)))

Fair-^(x) = GFF(/(Q),Fairo(x))

return Fair+(a:)

Theorem 5.5 If the only changes induced in the system consist of subtraction of edges

from the state transition graph then Algorithm 5.3 is correct and returns Fair^^^^

Proof. From Lemma 5.4, Theorem 2.4 and [15] •

Computing the conjunction of and Fair"^ in step 4. of the Algorithm 5.3 is not

necessary to the computation, but increases the efficiency, if the computation of is not

expensive. For the evaluation of the complexity of this algorithm, this operation is ignored.
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Subtraction of edges can only remove states from Fair"^. At each pass of tlie fixed-point

computation in Algorithm 5.3, at least one state, which was in the old Fair"^ ^but not in

the new Fafr"^, is removed. Thus, it converges in at most WFair"^ —Fair"*""®*"!! steps. But

||Fair+ —Fair+"®^|| = < A, and eachstep takes 0(N) time. Hence, the algorithm

completes in 0{N -A) time.

5.4.4 Addition of Edges

Consider the addition of a set of edges to the state transition graph. This may result in the

creation of a new reachable cycle, whose states satisfy the fairness constraints. These states

are not necessarily in Fair+. Thus, addition of edges to the state transition graph may

increase Fair+. Figure 5.4 indicates that adding edge ab can potentially add all states in

01d-Fair+

1

V /Jl ^ i

I ^ 1

Figure 5.4: Adding edge ab can potentially add all states in A and B to Fair^

sets A and B to the set Fair'^. However, we will prove that if the addition of edges results

in the addition of one or more states to Fair"^, these states must satisfy at least one of the

following conditions in the new transition system

• The state belongs to the set Fair'^(x).

• The state can reach or be reached by one of the new transitions. This set Fair^ is

computed as:

Fair^(x) = RRS{T'''̂ '̂ (x,y),A(T'" '̂̂ (x,y),x)) (Section 5.2).
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Lemma 5.6 The new set is a subset of Fair"^ + Fair^, i.e. Fair'^^^^(x) C

Fair^'^{x) = Fair^(x) + Fair^{x).

Proof. FSS{T""(x,y),A{x)) C FSS{T{x,y),A(x))+RRS{T'"'''{x,y),A{AV"(x,y),x)).
FFP(T'^(x,y),C(x), A(i)) C FFP(T(x,y),C(i), A(x))+RRS(T"'''(x,y), A{AT"'''(x,y), x)).
(Theorems 5.1 and 5.2).

Using frMQ) = F5S(r«''''(x,y),FfP(r«'"(i,y),C(x),Q(x))).
This function is monotonically decreasing, (from Lemma 5.3)

Hence /5f'''(Hfl5(r»"'''(x,y),A(A2""'''(x,y),x))) C RRS{V"^(x,y),K(AT'^\x,y),x)).
Using this and the distribution of GFP from Theorem 2.5.
^ FSS{r^(x,y),FFP{:r^(x,y),C(x),A{x))) CF55(T(x,y),FFP(T(x,y),C(x),/l(x)))+

RRS(T'*^(x, y),A(AT<«"(x, y),x)).

=!• GFPUtMQ), £ GFPihiQ), A(i)) + RRS(T^{x,y),A{AT<"'''{x,y), x)).
Fair+"®«'(x) C Fair++(a;). •

If the only changes to the system consist of edge addition, the new set can be

computed as a two step process that first computes Fair++, and then reduces it by using

the Algorithm 5.3.

Algorithm 5.4 (T(x,y),T'" '̂̂ (x,y),C(x),Fair-^{x))
Fair++(x) = Fair+{x) + RRS{T'''̂ '̂ {x, y),A(T'" '̂̂ (x, y), x))
Fairo{x) = Fa2r"*"+(x)

f(Q{x)) = FSS{T(x,y),FFP(T{x,y),C(x),Q(x)))

Fair+(x) = GFF(/(Q),Fmro(a;))

return Fair'^(x)

Theorem 5.7 If the only changes induced in the system consist of addition of edges from

the state transition graph then Algorithm 5.4 is correct and returns the new set Fair+"®"'.

Proof. From Lemma 5.6, Theorem 2.4 and [15]. •

As noted in Section 5.3, the set of reachable states can be used to simplify the BDDfor the

transition relation. In Algorithm 5.3 the set of reachable states is not explicitly involved

but may be used to simplify the transition relation BDD. It is important to note that for
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changes described in this section, reachability computations do not need to be carried out

by starting at the initial states but need only proceed from the old set of reachable states

R.

The Algorithm 5.4 converges in at most ||Fatr+"'" — = A' steps. Since, A' < iV,

for small changes, where N is the number of reachable states. Thus, the complexity of this

algorithm is 0(N •A'). Assuming A' < N, this is faster than running the non-incrementaJ

algorithm from the beginning.

5.4.5 Addition of Fairness Constraints

The set Fair^ satisfies all the fairness constraints. If new fairness constraints are only

added, then the new set must satisfy all of the older constraints as well as the

new ones. The set Fair+"®"^ must be a subset of the old Fair'^.

Lemma 5.8 If additional fairness constraints are imposed on the system, then
Fajr+neti;(2.) g Fair+(x).

Proof. FFP(T(x,y),C'"^'^(x),A(x)) C FFP(T(x,y),C(x),A(x)).

(Theorems 5.1 and 5.2).

^ FSS{T{x,y),FFP(T(x,y),C<"^{x),A(x))) C F5S(7'(x,!,),FFP(r(x,!,),C(i),A(i))).

Using f{Q) = F5S(r(x.y),FFF(T(x,y),C(x),0(x))).

This function is monotonically decreasing, (from Lemma 5.3)

/c?add C fc.

GFF{fcoa,{Q),A(x)) C GFP(fc{Q),A(x)).

=> Fair'^^^^{x) C Fair'^{x). •

If the only change to the system consists of addition of constraints, the algorithm for

computation of the new Fair"'""®"' is:

Algorithm 5.5 (r(x,y),C^^^{x),Fair'^{x))

Fairo(x) = Fair"'" (a:)

, f(Q(x)) = FSS(T(x,y),FFP{T(x,y),C(x),Q(x)))

Fair-^(x) = GFP(f(Q), Fairo(x))
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return Fair'^{x)

Theorem 5.9 If the only changes to the system consist of addition of constraints then

Algorithm 5.5 is correct and returns the new set

Proof. From Lemma 5.8 Theorem 2.4, and [15]. •

Using the samereasoning as Section 5.4.3, this algorithm has a timecomplexity of0(Ar-A),

where N is the number of reachable states.

The addition of constraints can very easily be used in conjunction with the addition and

subtraction of edges. If edges are deleted, in addition to adding constraints, algorithm 5.3

can be used with the FFP operator (including the new constraints) to compute the new set

If edges are added then Algorithm 5.4 can be used in conjunction with the new

FFP operator. The following lemmata formalize this idea.

Lemma 5*10 If additionalfairness constraints are imposed on the system, and edges are

only subtracted from the transition structure then Fair'̂ ^^^{x) C Fair'*'(x).

Proof. From Lemma 5.4 and Lemma 5.8 •

With the previous lemma, it is easily observed that the subtraction of edges and addition

of constraints can be simultaneously handled by using Algorithm 5.3 (for the subtraction

of edges) with the additional caveat that the FFP operator is modified to include the new

constraints.

Lemma 5.11 If additional fairness constraints are imposed on the system, and edges are

only added to the transition structure then Fair'̂ ^^^(x) C Fair++(x), where Fair++ is as

defined in Lemma 5.6.

Proof. From Lemmas 5.6 and 5.8 •

In a similar manner to the previous analysis, it is observed that the addition of edges

and addition ofconstraints can be simultaneously handled by using Algorithm 5.4 (for the

addition of edges) with the additional caveat that the new FFP operator (as defined in

Lemma 5.8) is used for the computation.
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5.4.6 Subtraction of Fairness Constraints

The set Fair"^ contains states involved in infinite behavior that satisfy all fairness con

straints Ci' If some constraint C,- = F^{Ui) H- is subtracted, Fair"^ still contains

states that are involved in infinitary behavior, and satisfy all constraints Cj ^ Ci (as well

as Ci). Thus, the set Fair"^ C In addition to the states in Fair+, also

contains states that may be in infinitary behavior that violates the deducted constraint C,-.

Such states are definitely a subset of {Ui + K); namely states not in Ui or Vi.

Since more than one constraint may be subtracted, let C,- € denoted the entire set

of subtracted constraints. Also, we denote AC^^^{x) =

Lemma 5.12 If constraints Ci = F°°{Ui) -j- i € 5 are subtracted from the set of

original constraints, then the set

C Fazr++(a;) = Fair+{x) + AC-««'(x).

Proof. FFP(r(a;,y),C'"^(a:),A(a;)) C FFF(r(x, t/),C(a:), A(a:))-f-AC^^^-Ca;).
(From Theorem 5.2).

Using f(Q) = F55(r(a:,y),FFF(r(a:,j/),C(a:),Q(a:))).

This function is monotonically decreasing, (from Lemma 5.3)

Hence f(AC^{x)) C AC^(x).
Using this and the distribution of OFF from Theorem 2.5.

F55(T(rr,y),FFP(r(a:,y),C-^(a:),A(a:))) C F5S(r(a:,y),FFP(r(a:,y),C(x), A(a:)))+

=;> GFF{fc.ui>(Q),A(x)) CGFF{fc(Q),A{x))-{-AC^{x).
=> Fair+"®"'(x) C Fair''*+(x). •

This leads to the following algorithm for changes, where constraints are only subtracted

from the system.

Algorithm 5.6 (T(x,y),C^^^(x),AC''^^{x),Fair'^(x))

Fair'^'^{x) = Fair'*'{x) -1- AC^"^(x)

Fgiro{x) = Fair'^'^{x)

f{Q(x)) = FSS{T{x,y),FFF(T(x,y),C(x),Q{x)))
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Fair+(x) = GFP(f{Q),Fairo{x))

return Fair'^{x)

If, in addition to constraint subtraction, edges were added (added states= (A(Ar®''''(a:, y),x)))

to the transition structure, then states in the new must satisfy at least one of the

following conditions in the new Transition system

• The state belongs to the set Fair"^.

• The state can reach or be reached by one of the new transitions. This set Fair^ is

computed as:

Fair'(i) = RRS{T'''''{x,y),\{AT'''^{x,y),x)) (Section 5.2).

• The state violates deleted constraints.

Fair'̂ (x) = AC^^^(x) = Uc<eAC«"''(^»(®) + K(a:)) (Section 5.2).

Lemma 5.13 If fairness constraints are subtracted from the system, and edges are only

added to the transition structure then

p'a2r+"®"'(a:) C Fair++{x) = Fair+(x) + RRS{T'" '̂̂ ,A(AT'" '̂̂ (x,y),x)) + ^(x)

Proof. From Lemma 5.6 and Lemma 5.12. •

Ifsubtraction ofconstraints is used in conjunction with addition ofedges, then thefollowing

algorithm describes the computation of the new

Algorithm 5.7 Cr''^(x,y),T(x,y),C"'''(x),AC"''(x),Fair+(x))
Fair++(x) = Fair*{x) + RRS{T'̂ (x, y),\{AT'̂ ^(x, y), x)) + ^(x)
Fairo(a:) = Fair+'''(a:)

f{Q(x)) = F55(T(x,y),FFF(r(a:,y),C(a:),Q(a:)))

Fair+{x) = GFF(/(Q),Fmro(a:))

return Fair'^{x)

This algorithm has a complexity of 0{N ' A'), where N is the number of reachable states.

The^ next section deals with putting these individual algorithms together to form a general

algorithm which handles any change to the system.
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5.5 General Algorithm

We describe an incremental algorithm for language containment, when a general set of

changes consisting of deletion and addition of edges,from the transition structure and ad

dition and subtraction of constraints, is applied to the system.

We begin by separating the augmented transition relation into which consists

of the original transitions relation T minus all transitions which were removed in and
Tadd is seen as plus all the transitions, which are added in T"®"'.

The change to the system can be seen as a two stage process; in the first stage, constraints

are added and edges are only subtracted from the system. In the second stage constraints

are only subtracted and edges are only added to the transition structure obtained from the

previous stage. The first stage computes an intermediate under the assumption

that the only changes consist of edge subtraction and constraint addition and for this stage,

the transition structure is used. The second stage computes the new using

as input the intermediate Fair"®"'̂ and the new transition structure

For a moredetailed description of how to compute T®"'' underdifferent situations refer

to the discussion in Section 4.4.1.

Modifications can be made at many different levels. The designer may input the changes in

a high level language (e.g. Verilog). Alternately, he/she might choose to augment individual

subprocesses in the system of interacting processes by directly modifying the data-structure

that stores their transition relations and constraints. In our implementation, the designer

is allowed to directly change the individual transition relations, or input process constraints

and new processes via the intermediate *Pif' [68] format.

5.5.1 Iterative Verification

Another alternate system of changes comes from the iterative algorithms of Balarin et-al.

[13]. They use iterative methods in the formal verification of digital systems. In order to

illustrate how incremental language containment may be used in an iterative system, we

consider two cases: the compositional iterative algorithm and the iterative verification of
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timed automata algorithm of Balarin [13].

Given a system to be verified, Balarin describes an iterative algorithm that begins with

some initial abstraction of the machine, calls verification (language containment), and uses

the resulting answer to this call to modify the abstraction and make it more accurate.

The iterative verification of timed automata functions begins with an untimed machine as

the initial abstraction, and the compositional algorithm begins with some subset of the

component machines.

Balarin makes changes to the initial system by composing with another FSM. Note that

if a designer modifies any machine by composing it with another, it is equivalent to the

addition and subtraction of edges from it (our basic unit of change).

If the abstrztction passes language containment, then the original machine also passes lan

guage containment. However, if the abstraction fails language containment, then the error

trace (or report of some unacceptable behavior) in the abstraction is examined. If this be

havior is indeed present in the actual machine, we know language containment has indeed

failed. If it is not present, another component is created and composed with the abstrac

tion, in order to eliminate this behavior, and refine the abstraction. Thus, our incremental

procedure may be applied at each iteration by using the modifying machine to compute

changes to the original abstraction, and using the original answer to language containment

and change information as input to the incremental algorithms of this chapter.

5.5.2 Incremental Language Containment

The general algorithm for computation of is based on Algorithm 5.3 and Algo

rithm 5.4. The general incremental language containment (ILC) algorithm:

Algorithm 5.8 : IncrementalJLanguage.Containment

Fair'^{x) = IncrementaLCompute-Faif^

if Fair^(x) is empty return(PASS)

else return(FAIL)

where the algorithm for the incremental computation of Fair"^ is:
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Algorithm 5.9 ; IncrementaLCompute.Faif^

Fair+"««'i(a:) = Algorithm b.Z(T'''^(x,y),C'"^(x),Fair+{x))

Fair+''^^(x) = Algorithm 5.7(r'»'̂ '̂ (x,y),r^"^{a:,y),C^"''(x), AC"«^(®), Fair+"«^i(x))

return Fair''""®"'(a;)

Theorem 5.14 Algorithm 5.9 is correct and returns the new set Fair+"®^.

Proof. The first stage of the algorithm does not involve addition of edges, hence the

use of Algorithm 5.3 is valid and returns the correct set of fair states, for this

subproblem to the next stage (refer to Theorem 5.5 and Lemma 5.10). The second stage

does not involve the subtraction of edges; hence the use of Algorithm 5.7 is valid and the

correct set Fair*''"®"' is returned (refer to Theorem 5.7, Lemma5.11 and Lemma 5.13) •

5.6 Experiments and Results

We have implemented the algorithms described in the previous section and tested these

on a set of verification benchmarks. Each example was modified, and the Fair+ was

recomputed for a general change to the system, which consists of addition and subtraction

of edges and constraints. The actual edges/constraints that were added or subtracted from

the transition relation are arbitrary, and were chosen so as to make the system pass the

language containment check.

The first row in each table reports the name of the example, and the iteration number. The

second row reports the time taken by the incremental language containment (ILC) algo

rithm; this includes the time for incremental update of input data, and re-initialization. The

last row reports the time for the non-incremental (NLC) algorithm with the non-incremental

update; this includes the time for non-incremental input of data and initialization. The last

column reports the total incremental, and non-incremental times, summed over all itera

tions.

We ran the incremental, and non-incremental algorithms on four examples, and made 5

successive sets of changes. The columns labelled with integers i = 1,2,3,4,5 report the

times taken on iteration (set of changes) i. The first example, Gigamax, was a description
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of the gigamax distributed multiprocessor, using a shared memory architecture. The second

example, Scheduler, describes a version of the scheduler example by Milner [69], and the

system consists of a token ring, where element of the ring, called a cell, communicates with

its "job", and its two nearest neighbor cells. The third example, Tcp, describes a simplified

version of the TCP/IP communication protocol. The final example. Idle, describes an

industrial data link controller example. All the examples were written in Verilog, and

translated into the 6/i/-mt; format using the vl2mv translator [63]. Allsuccessive incremental

changes were made directly to the system within the HSIS environment.

Gigamax 1 2 3 4 5 Total

ILC^ 25.0 9.1 35.2 22.8 25.1 117.3

NLC2 42.4 29.1 53.9 41.1 44.9 211.5

Scheduler 1 2 3 4 5 Total

ILC 18.5 0.8 21.7 8.5 19.6 69.2

NLC 25.4 7.7 27.6 23.8 29.2 113.8

Tcp 1 2 3 4 5 Total

ILC 40.6 14.6 97.3 22.3 8.4 183.2

NLC 447.7 420.6 463.9 431.0 417.2 2180.5

Idle 1 2 3 4 5 Total

ILC 247.1 369.8 463.2 176.6 - 1256.7

NLC 2403.2 2659.4 2461.6 2573.3 - 10094.5

Table 5.1: Incremental Vs. Non-Incremental Language Containment(in seconds)
1: ILC =Incremental algorithm and incremental data update
2: NLC =Non-incremental algorithm and non-incremental data input

The changes themselves were made by examining an error trace (describing some non

empty behavior in the system) generated, and deleting and adding edges and constraints

so as to remove the particular error trace, and eventually make the system pass language

containment.

The results show that the incremental algorithm was always considerably faster than the

non-incremental algorithm.

It should be noted (from the results)thatas the size ofthe example increases (from Gigamax

to Idle), so does the gain from using an incremental algorithm.
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Chapter 6

Incremental Model Checking

6.1 Introduction

In this chapter we will discuss how to extend the arguinciits of Chapter 4 and 5 to Model

Checking, an alternate method for formal verification.

In model checking, the property is written as a formula in some temporal logic [70], and the

system or design is represented as an FSM. Design verification consists of checking whether

the design FSM is a model for the formula.

Checking whether the formula holds on the design FSM is accomplished by traversing it. We

are restricting ourselves to Computation Tree Logic (CTL) [19], where formulae are defined

on paths in the FSM. The paths in an FSM can be un-wrapped and represented as a tree for

computation, and properties in CTL are defined with respect to these paths. For example,

"For all paths...". CTL formulae are recursively defined in terms of sub-formulae, which

themselves are CTL formulae. The logic consists of path quantifiers (for all paths, there

exists a path), forward time temporal operators (at the next state, globally, finally, until),

Boolean operands (not, or, and..), and labels on the states (p is true). CTL formulae must

be defined on some finite state machine. The finite state structure that the CTL formula is

defined on is also referred to as Kripke structure. The formula is said to fail on the FSM, if

there is a witness path (or set of paths) in the FSM that does not satisfy the formula. For

example, the formula "/or all paths globally p is true^, fails on the given FSM, if it can be
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shown that there exists a path from some initial state along which there is one state where

p is not true. The formula p in turn may be another CTL formula, which was previously

computed. CTL formulae are evaluated by recursively evaluating states that satisfy a sub

formula, and using them (as new labels) to compute states satisfying the formula. The

evaluation process consists of traversing the finite state machine representing the design.

Current techniques [9] for model checking perform it as a single pass, and often result in

redundant re-computation over multiple passes. This particularly relevant, because verifi

cation tends to be an expensive and time consuming process. Anotherstrong motivation for

incremental model checking comes from the fact that the design rarely checks a single prop

erty; usually the he/she tests a large suite of specifications. It is very possible that we may

save considerable effort by re-using common information between two diflferent property

evaluations.

We introduce the concept of incremental model checking^ which allows multiple changes

to the system but runs the entire model checking algorithm only once, and propagates

successive changes or increments from the latest solution. Given an answer to an instance of

the model checking problem: ""Does the given design represented as a finite state machine,

satisfy the property represented as a formula in temporal logic we aim to use it and

information about incremental changes madeto the input problem to compute the answer to

a new instance of the problem. We plan on spending less time and effortin this computation

than if the entire model checking algorithm was run on the new problem. All algorithms

in model checking consist of the computation of fixed points on the states of the FSM

representing the design. To accomplish this, we use the insights of Theorem 2.4 and 2.2.

As with the previous chapters in this thesis, model checking is carried out under the context

of interacting finite state machines.

The chapter is organized as follows. We define some additional terms to be used in Sec

tion 6.2. Next we describe the syntax of CTL and model checking in Section 6.3. Our

work begins in Section 6.4, by recognizing that all (small) changes to the system can be

translated to the addition and subtraction of edges, states and constraints and relabeling

of atomic propositions. Next, we analyze how each of these changes to the system can be

propagated to get new answers to and prove the correctness of these techniques. The sec

tion summarizes how incremental changes are classified and how each particular change can
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be handled individually. We briefly discuss the possibility of Canonical CTL structures to

minimize re-computation of information. We describe the procedures for handling individ

ual classes of change, and merge them to get a general algorithm for handling any change

to the system.

It is important to keep in mind that all operations are to be carried out in the context of

the Binary Decision Diagram (HDD) data structure[40] defined in Chapter 2.

6.2 Some Terminology for Model Checking

In this chapter we will be referring extensively to the definitions of a finite state machine

(FSM) or finite automaton, its inputs, outputs, states, transition relation r(a:, j/), and initial

states I(x). These have already been discussed in Section 4.2. In general, let x represent the

present state and y represent the next state. T{xy y) represents the transition relation, which

defines a relationship between present states (x variables) and next states (y variables) in

the state transition graph, irrespective of input and output. Let LFP and GFP refer to

the least and greatest fixed point operators defined in Chapter 2.

In addition, we will be discussing this chapter in the context of w-automata, where runs r,

i.e. a sequence of states beginning at the initial states, are infinite (Defined in Section 5.2).

In particular, we will be examining the model checking problem in the context of automata

whose acceptance conditions consist of sets of Buchi conditions.

Deflinition 39 Buchi Constraints A Buchi automata is characterized by Buchi accep

tance conditions, which consist of a set of states 17,= Si... Sn at least one of which must

be traversed infinitely often in any accepted run. The results presented here are for a set of

Buchi acceptance conditions C = U\.. .Un', however, it should be noted that they are easily

generalized to other classes offairness constraints.

This section describes the computation procedure for some important operators required

in this chapter. In particular, the following three operators will be extensively used in this

chapter.
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The Forward Stable Set Operator FSS(T(x,y),A(x)) (defined in Section 5.2) when ap

plied to a set of states A returns a set of states in A, which are on a cycle or can reach a

cycle in A. Alternately, the FSS operator removes from A all those states which have no

successors states (next states) in the transition structure. The following algorithm is used

to compute the Forward Stable Set operator FSS :

f{Q{x)) = Q{x) • (3,T{x,y).A{x) •Q{y))

FSS{T,A)

return {GFP{f(Q),A{x)))

The forward fair path operator in the context of Buchi automata is defined as follows:

Forward Fair Path Operator: Given T(x,y) the transition relation, A(a:) a set of states

and C(x), a setoffairness constraints, theforward fair path operatoroT FFP{T{Xjy),C{x),A{x)),

returns a subset of states in A(a;) which are on a fair path. For our analysis, C(x) are sets

of Buchi fairness constraints in the form C,- = F°®(i7,). Hence, FFP returns those states a

in A such that for each (7,-, there is a path in A from a to some state in Ui. Note that this

operator returns just a path and not necessarily an infinite path. The FFP operator can be

computed by using the following algorithm:

/«(!)) = (3,T{x, y).A(x)•Q{y) + Q{x))

FFP(T,C, A)

return(ni,c<€Cw(ifP(/(<3)-£/.(®) •'4(x))))

Also recall that given a relation R{xy y), A(Ji(x, y), x) denotesthe projection of the relation

on the Xvariables, i.e. A(/2(x,t/),x) = ByjR(x,y), If i2(x,y) denotes a set of edges in the

FSM (e.g. R(x, y) = T(x, y)), then A(Ii(x,y),x) denotes the projection ofset ofpredecessor

states of the given edges. This has been defined in Section 5.2.

In the context of Buchi automata, the set, i.e. the set of states that are involved in

all accepted behavior (sometimes called "bad" behavior) in the automata, can be obtained

by alternately applying the FFP and FSS operators as described in Section 5.3. A simpler

procedure can be used for Buchi in particular, as shown in [9] and [71], however for this

discussion, we will use the more general form of Algorithm 5.2.
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6.3 CTL Model Checking

CTL or Computational Tree Logic, created by Clarke et al [19], is a propositional temporal

logic of branching time. CTL is defined on the computational tree created by expand

ing all the paths in the FSM (also called a Kripke structure) that the formula is defined

on. The syntax of CTL is defined recursively using a path quantifier, a temporal operator,

Boolean operands and smaller CTL formulae. The smallest CTL formula is called an atomic

proposition and consists of a label on the states of the FSM.

Since CTL is defined on paths, each formula must have a path quantifier. There are two

path quantifiers:

• A (for all paths): The formula is said to hold at a given state if for all paths from the

state the clause following A is true.

• E (exists a path): The formula is said to hold at a given state if there exists a path

from the state where the clause following E is true.

Since CTL is a temporal logic, there are four forward time temporal operators:

• G (Globally): The clause following the G operator holds everywhere (along path or

paths of concern).

• F (Finally): The clause following the G operator holds sometime in the future (along

path or paths of concern).

• X (Next state): The clause following the X operator holds in the next state (along

path or paths of concern).

• U (Until): The clause preceding the U operator must hold until the clause succeeding

the operator holds (along all paths of concern).

Using the above CTL formula are defined recursively:

• All atomic propositions (or labels on states) are CTL formulae.

• If p and q are CTL formulae, so are
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1. EGp AGp

2. E{pUq) A{pUq)

3. EXp AXp

4. p EFp

5. p + q AFp

All CTL formulae can be written in terms of the set EGp^E{pUq)^EXp^p^ q,p (e.g.

AFp = EXp). The set of Normalization rules which convert all formula to the above set

are:

Rules 6.1 .

1. AXp = EXp

2. EFp = E{TrueUp)

3. AFp = EGp

4' AGp = E[rrueUp\

5. A(pUq) = E(qU(p + 9 + EGq))

A CTL formulae specified as the above can be read in and stored as a CTLparse iree^ where

each node represents a formula and its immediate fanins the component sub formulae.

Definition 40 CTL Parse Tree; A CTL parse tree is a tree graph where every node may

have the following labels; a path quantifier (E,A) and an temporal operand (G^ U^X), or a

Boolean operand (p, +), or an atomic proposition (p is true). A node labeled with an atomic

proposition has no children, and is a leaf node of the tree. Other nodes may have one or

two children depending on the label (EGp has labels EG and one child p).

Figure 6.1 describes a CTL parse tree for the CTL formula E(pUq). Note that CTL parse

trees are not a canonical form; the semantically same formula may be represented by many

different trees.
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E(EGpUE(pUq))

Figure 6.1: A CTL parse tree

Definition 41 CTL Model Checking; Given a finite structure (FSM) M and a formula

f in CTL, model checking determines whether this M defines a model of f, i.e. loosely

speaking, whether the initial states of the FSM are part of the set of states satisfying f. If

M satisfies f is denoted as M ^ f.

The states satisfying various CTL formulae are computed as fixed points (greatest or

least fixed points depending on the formula). For the purpose of this work, we will

be restricting ourselves to Buchi acceptance conditions, i.e. we will be performing CTL

model checking on systems represented as Buchi automata. Let EcGp(x) denote the

set of states satisfying the formula EGp under Buchi fairness C = ...C/„. Similarly,

Ec(pUq)(x),EcXp(x), (p+ g)c(^c) denote the states satisfying E(pUq), EXp), (p+ q) re

spectively under Buchi acceptance C. Given p{x),q{x) the sets of states satisfying the

sub-formulae p and q respectively, the set of states satisfying the CTL formulae can be

computed as:

1. States satisfying EcGp denoted as EcGp{x):

/(Q(x)) = FSS(T(x,y),FFP(T(x,y),C,Q(x)))

EcGp(x) = GFP(/(Q),p(x))

From lemma 5.3 f(Q) is monotonically decreasing.

2. Fair'^ states denoted as:

. Fair+(x) = EcG(TIiUE)
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3. States satisfying EcXp denoted as:

EcXp(x) = BImg{p(x) •Fair+(x)):

4. States satisfying Ec(pUq) denoted as Ec{pUq){x):

f(Q{x)) = q + p.EX(Q(x))

EcipUq){x) = LFP{f(Q),q{x)'Fair+(x))

The states satisfying (p + 9)c(a:) = p(x) + ^(a;).

Note that item 1 is the most complex computation, because it requires a fixed point within

each iteration.

CTL model checking proceeds iterativeiy, from the leaves of the CTL parse tree to the root.

The atomic propositions correspond to the leaves; their immediate fanouts are formulae

defined on the atomic propositions and so on. The following is a non-incremental algorithm

for CTL model checking:

Algorithm 6.1 NonJncrem€ntal^odeLCh€cking(T(x,y),I(x),p)

Fair+ = Compute.Fair (defined in Section 5.3)

Solution = Mod€LCheck{p^Fair'^{x))f]I{x)

if Solution ^ 0 is empty return(PASS)

else return(FAIL)

Model Checking is done using the following algorithm:

Algorithm 6.2 ModeLCheck(f^Fair'*'{x))

Case:

f is an atomic proposition

f(x) = Set of states satisfying f.

return f(x) •Fair'^{x)

f = EGp

'p{x) = ModeLCheck(p)

f{Q{x)) = FSS{Tix,y),FFP(T(x,y),C(x),Q(x)))



EcGp{x) = GFP{f{Q),p(x))

Return EcGp{x)

f = E(pUq)

p{x) = ModeLCheck(p)

^(a;) = ModeLCheck(q)

f(Q)^p{^) + q{x)'EX(Q(x))

Ec{j>Vq)(x) = LFPUiqUi?:)" f«r+(i))

Return Ec(pUq)(x)

f = EXp

p{x) = ModeLCheck(p)

EcXp(x) = Fair+(x) •^yT{x,y)'p{y)

Return EcXp(x)

f = p-\-q

ja(x) = ModeLCheck(p)

^(a;) = ModeLCheck(q)

iP+q)c(x)=p{x)-\-q{x)

Return (p + 9)c(a^)

f = P

p(x) = ModeLCheck{p)

Return p(x) •Fair'^(x)
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If Af = (Q,E,r,T,/) and M |= /, then Non-Incremental-ModeLChecking{T{Xjy)^I{x),f)

returns TRUE.

Though not explicitly stated in the above algorithm, the set of reachable states can also be

used to minimize the transition relation BDD. This simplification results in a considerable

speedup and will be used throughout this chapter without an explicit mention.

6.4 Incremental Model Checking

As discussed in the previous section CTL model checking consists of GFP and LFP com

putations. We discuss the incrementalizing of LFP computations in Chapter 4. For an
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LFF, we begin at some initial state A, and apply a monotonically increasing function to

it until we reach a final convergent set. In such an LFP computation, if any subset of the

final set, which includes the initial set is supplied to the self same LFP computation, it

returns the same final answer. However, it will take fewer iterations to converge, because it

is closer to the final set. Since, the LFP now takes fewer iterations to converge, it is faster.

We have also discussed a similar idea for incrementalizing GPP computations in Chapter 5.

Thus, if the answer to a previous iteration of this LFP (without changes) is B', we intend

to use this answer, as well as information about changes to the system to compute a subset

C to the new answer B that is larger than the initial set A. The better the C chosen, the

more efficient the incremental algorithm.

We rely extensively on Theorem 2.2 and 2.4

6.4.1 Characterizing Incremental Changes

We have determined changes to the system to be one of 5 types.

1. Changes to the Property.

• Changes to the CTL formula. The designer might modify the property to

be checked or want to check another CTL property. Both these changes may

be regarded as changes to the CTL formula. Since CTL formulae are commonly

represented as CTL parse trees; thesechanges may be regarded as changes to the

parse tree structure. A trivial example of such a change would be checking the

property EX{EGp) as compared to checking EGp. Notice that the set EGp from

the previous computation may used as a starting point to re-check EX(EGp).

In this chapter, we propose far more extensive ways of preserving information.

• Changes to the set of states marked with a proposition. This set is char

acterized by the addition and subtraction of states satisfying an atomic propo

sition. Let denote the set of states subtracted, and denote the

set of states added to states marked p. These changes may also occur as a re

sult of other classes of changes. In particular, if the formula EG{p-\- Ap) was

checked as compared to EGp., then the set of states marked p have been changed
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to p + Ap. As result states marked q = EGp are incrementally updated to

q-\-Aq = EG(p+ Ap). At the next level in the CTL formula states marked q are

assumed to change to q + Ag, and the entire argument is repeated. This class

may save computation while propagating a change up the CTL parse tree.

2. Changes to the System.

• Changes to the FSM transition relation. As discussed previously in Sec

tion 5.4.1, this set is characterized by the addition and subtraction of edges from

the design FSM. We let AT^"^ denote the set of edges subtracted from the orig

inal FSM. As a result of this subtraction alone, we can obtain an intermediate

set We let denote the set of edges added to the original FSM, and

as a result of this addition to we can obtain the final transition relation

rpadd _ yneti; addition and subtraction of states from the FSM can be

characterized in terms of edges.

• Changes to the acceptance conditions. This class is characterized by the

addition and subtraction of constraints from the set of Buchi acceptance sets (See

Section 5.4.1). We denote the added constraints by and the subtracted

constraints by AC®®^ The new set of constraints may be denoted by

The designer uses this change to ignore certain bad behavior after it has been

detected, and examine the remainder for further bad behavior, before attempting

to change the design.

In general, Buchi constraints can also be regarded as CTL formulae. Thus, you

can deal with them as with CTL formulae.

6.4.2 Identifying Changes to the CTL parse Tree

Changes to the CTL formulae are characterized by changes to the CTL parse tree. We

hope to preserve information by detecting common substructure between two CTL parse

trees. However, unlike the work in Chapter 3 we are given an input correspondence as the

atomic propositions are known. It is debatable whether significant gains can be obtained

by comparing CTL formula that are identical except for the atomic propositions involved,

since the truth or falsity of a formula is dependent on the FSM model involved. Consider



Figure 6.2, which shows the parse tree of two diiferent formulae.

EU EU

E(EGpUE(pUq))
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E(qUE(pUq))

Figure 6.2: Changes to the CTL formula

The sub-formulae E{pUq) are identical in both, thus information can be preserved by using

the answer for set E(pUq) in E{EGp U E(pUq)).

Given the old and new CTLformulae, we need to detect whether they have identical subfor-

mulae. In general, the sameCTL formula can be represented as many semantically identical

but syntactically different forms. For example, EG(g+ h) = EG(EGg+ h). This moti

vates the need to have canonical forms, which give syntactic equivalence for all semantically

identical formulae.

Definition 42 A representation of a CTL formula is a Canonical CTL Form if two for

mulae that are semantically identical (E.g. EGp = AFp), always have the same represen

tation in this form.

Unfortunately, we will show that to construct such a canonical form would take Q(exp{\f\)
for a formula /, i.e. at least exponential time in the size of the formula, and hence is not

practical.

In order to show this, we use the following theorem from [22]. Satisfiability of a CTL

formula / is the problem of checking whether there exists any FSM model on which the

given CTL formula / holds. This theorem shows that it takes at least exponential time to

show that a CTL formula issatisfiable (i.e. / ^0). Fora detailed exposition onsatisfiability,

completeness and other related terms refer to Carey and Johnson [72].
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Theorem 6.1 [22]The problem of testing satisfiability for a CTL formula is complete for

deterministic exponential time, i.e. satisfiability is ©(ea:p(|/|).

Proof. (Sketch) Construct an automaton that accepts this formula (tableau), and show

that this is exponential in size.

^ Reduction from alternating polynomial space bound Turing machines [73]. •

Next, we construct a lemma to show that satisfiability of / reduces Lo checking the equiva

lence of CTL formulae.

Lemma 6.2 The problem of checking whether two CTL formulae are equivalent is at least

as hard as checking whether a formula is satisfiable, i.e. equivalence is n(ea:p(|/l)).

Proof. Assume / is satisfiable.

=>3M, M^f.

Hence satisfiability reduces to equivalence. Satisfiability is ©(eit'p(|/|), and hence equiva

lence is fl(ea'p(|/|)). •

Hence, we combine these results to get the following theorem.

Theorem 6.3 Finding a canonical form for a CTL formula f is at least Q{exp{\f\).

Proof. From Theorem 6.1, satisfiability of / is J^(exp(|/|)), and from Lemma 6.2, equiva

lence is at least as hard as satisfiability.

=> Equivalence is at least f2(ea;p(|/|)).

Assume that we can find a canonical form in less than exp time (converse).

Using the above construct a procedure for equivalence as follows:

fi = f2 can be checked by

1. Reducing fi to its canonical form /[.

2. Reducing /2 to its canonical form f^.
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3. Comparing /{ and f^.

=> The canonical forms cannot beexponential in size, or construction would take exponential

time.

=> The entire procedure takes less than exp time.

=>• Equivalence takes less than exp time.

A contradiction.

Hence, finding a canonical form for CTL must be exp time (fi(ea:p(|/|))). •

Thus, wecannot construct a canonical formfor CTL in lessthan exponential time, and hence

cannot re-use all previously computed information. We propose to re-use some information

by using semi-canonical forms for CTL proposed by Deharbe and Borrione [74]. These

consist of a set of reduction rules that attempt to semi-canonicalize the CTL parse tree by

the use of local reductions. For example, EF(EFp) may be reduced to the simpler form

EFp.

Unfortunately, the order in which reduction rules are applied sometimes makes a difference

to the final answer. Consider the following example:

Example 6.1 Consider the CTL formula EF[EFp) EF{h), and the reduction rules

1. EFp -h EFh = EF(p+h)

2. EF(EFp) = EFp

Rule 1 applied first reduces EF(EFp) -f EF{h) to EF(Efp-\- h).

No further reduction is possible.

However Rule 2 applied first followed by Rules 1 reduces EF(EFp) EF{h) to EF(p-\-h).

The two forms are not syntactically identical.

This order dependency is not desirable. Rules have to be confluent.

Definition 43 Confiuent Rules; A set of reduction rules (for CTL) are confluent if the

set gives the same final answer irrespective of the order in which the rules are applied.

Borrione et al [74] define the following two sets of confluent rules.
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Rules 6.2 .

/. AGp-AGh = AG(p h)

2. EFp + EFh = EF{p + h)

S. EG((EGp+ /!) + (?+ EGh)) = EGp + EGh

I AF((AFp •h) + (p- AFh)) = AFp + AFh

5. AF{(p-p')U{{A{p'Uh') •h) + (p' •A(pUh))) = A(pUH) •E{p'Uh')

Rules 6.3 .

1. AG(AGp) = AGp

2. EF(EFp) = EFp

S. EG{EGp) = EGp

4. AF{AFp) = AFp

5. AG(EGp) = AGp

6. EF{AFp) = EFp

7. AG{EF(AG(EFp))) = EF(AG(EFp))

8. EF(AG(EF(AGp))) = AG(EF(AGp))

9. AF(EG{AFp)) = EG(AFp)

10. EG(AF(EGp)) = AF(EGp)

11. AF(AG(AFp)) = AG(AFp)

12. AG(AF(AGp)) = AF(AGp)

13. A{pUA{pUh)) = A(pVh)

Theorem 6.4 Iterative application of the rewrite rules of Rules 6.2 or 6.3 to a CTL

formula always terminates.
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Proof. The number of (temporal) operators on the left side of the rewrite rules are always

less than the right side. At each step, the CTL formula must lose at least one operator.

There are a finite number of operators in a CTL formula, and hence applying the rewrite

rules must converge. •

Theorem 6.5 The set of Rules 6.2 are confluent.

Proof. Experimentally shown in [74]. O

Theorem 6.6 The set of Rules 6.3 are confluent

Proof. Experimentally shown in [74]. •

Definition 44 Semi-Canonical CTL form: A CTL form f is said to he semi-canonical

if all formulae that are syntactically equivalent to it under the re-write rules 6.2 & 6.3

have the form f after re-write.

Using the results of Theorem 6.4, 6.5, and 6.6 wc propose the following algorithm to
semi-canonicalize a CTL formula.

Algorithm 6.3

Apply Rules 6.2

Apply Rules 6.3

Normalize (Apply Rules 6.1)

return

To identify the changes between two semi-canonical CTL forms, the algorithms ofChapter 3
may be used. As stated before, the truth or falsity of a CTL formula is also dependent
on the FSM model, and hence it is questionable as to what gains may be obtained by
comparing two CTL formula that are identical except for the atomic propositions. Thus, it
is more relevant to extend the algorithms of [75], which rely on knowing the input (atomic
proposition) correspondence.

Substructures in the CTL parse tree that are unchanged require no update from differences
in the CTL property, and the previous answers may be re-used directly.
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6.4.3 Incremental Model Checking

As previously discussed in Chapter 5, edge subtraction and constraint addition cannot add

behavior to the system. Hence, the states involved in valid behavior before edgesubtraction

and constraint addition are a superset of the final valid set. The incremental analysis for

Fair"^ proceeds similarly to the analysis in Section 5.4. If states previously marked p

(atomic proposition or subformula) are changed to p it affects states satisfying any CTL

formula dependent on p. We consider this change to be a relabeling of states marked p to

p. Under this relabeling, the new set of states satisfying any CTL formula dependent on p

is always a subset of the old set. For example, states that are initially marked EcGp are

a superset of the new EcGp^^^. Edge deletion and constraint addition may also affects

the states satisfying EcGp. To understand this, consider the example of edge deletion in

Figure 6.3. As a result of the deletion of the edge shown, some state may no longer be

able to reach a state that satisfies p. This state can no longer satisfy EcGp^^^. Since,

EcGp is a GFP computation (Section 6.3), we use the ideas in Theorem 2.4 to create an

incremental algorithm. Similarly, since Ec(pUq) is an LFF computation, we use the ideas

of Theorem 2.2 to incrementalize it. The computation of states satisfying EcXp,p-\- q,p

are not fixed points; however, these sets are dependent on Fair"*", and some gain can be

obtained from an incremental procedure for Fair"^ to compute these sets.

Before, we begin our discussion, we define the following operator, which can be used to

reduce the set of states satisfying a given CTL Ec{pUq) formula to ensure that remaining

elements do indeed satisfy it after changes are made.

Definition 45 CTL Reduce Operator (RP(T,F,p,q)): Given a transition relationT{x, y),

the set of states satisfying F{x), the set of states satisfyingp(a;), and the set of states sat

isfying q{x), the reduce operator returns those states in the set F{x) that are either in q(x)

or in p(x) with a next state in that set F(x).

This state may be computed using the following algorithm:

f(Q(x)) = Q(x)' (3yT(y,x) 'Q(x)' p(y) + 9(2:))

RP(r,F,p, q)

return(GFF(/(Q),F(a:)))
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Figure G.3: EcGp changes under edge deletion

We also define a corresponding expand operator that increases the set of states involved in

a CTL EGp formula, when changes are made.

Definition 46 CTLExpand Operator (EO(T,F,p)): Given a transition relation T{x,y),
the set ofstates satisfying p{x), and the set ofstates satisfying F^x), the expand operator
returns those states in p(a:) that have a path also exclusively in p{x) to a state in F{x).

This state may be computed using the following algorithm:

fiQ(x)) = 'ByT(x, y)' Q{y) •p{x) + Q{x)

EO(r,F,p)

return(GFP(/(Q), F(®). p(x))

The following lemmas characterize relevant supersets and subsets that may be computed,
when a change is made to an instance of model checking.

Lemma 6.7 If the only changes to the system consist of the subtraction of edges, the ad
dition of constraints, and the relabeling of states marked p to p, then

Fair+''̂ '"{x) C Fair+{x)
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EcGp'"'°(x) C EcGp(x)-Fair*'"'''(x)

Ec{pUqr'^{x) 2 Ec{pUq)-{x)

where Ec(pUq)—{x) = RP{T"-^{x,y),Ec{pVq)(x)-FaiT+'"^{x),{p-Ap'̂ ){x),q(x))

{p + 7r'"(x) = (p+q)(x)-6.p"^(x)-q(x)

f""(x) = (p+Ap'"')(x)-Fotr+"""(x)

Proof.

1. Fair'^^^^{x) C Fair'^{x).

(From Lemma 5.10, as formula changes do not affect the Fair'*' states).

2. EcGp''^'"(x) C EcGp{x) -Fair'*''''''^(x)

= T'^'^x) C r(a:).

C"®"'(aj) = C'" '̂*(x) DC(a;).
^ jnew g

where the /'s refer to the / in the fixed point computation of EcGp on page 106.

=> EcGp^^^{x) C EcGp(x) (From Theorem 2.3).

Also, EcGp^^^{x) C Fair+"®^(®) (by definition) .

=>• EcGp'*'{x) C EcGp{x)' Fair'*'(x)

3. Ec{pUq)^^^(x) D Ec(pUq) (x).

• Ec{pUq)^^^(x) C Fair"^(x) (by definition).

• Ec{pUq)'^'^^(x) D Ec(pUq) (x).

Assume not.

=J> 3s € Ec(pUq)--(x),s /^Ec(pUq)''''"(x).

£^c(pC/9)"'^(5) = 0.

- Either ^(s) = 0 and p(s) = 0.

=^Ec(pUq)—(s) = 0.

A contradiction by the construction of the RF operator on page 116.

- Or g(s) = 0 and for all next states s', Ec(pUq) (s') = 0.

A contradiction by the construction of the RF operator on page 116,



•

=> Ec(pUqY^^(x) D Ec(pUq) (x).

4. (p + = (p + 9)(a^) - Ap^"^(a;) •g(x) (by definition)

5. p^^^(x) = (p(a;) + Ap®"''(x)) •Fair'̂ ^^^(x) (by definition)
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If edges are added, constraints are subtracted, or states are relabeled from p to p then the

arguments are reversed. As shown in Section 5.4, the new set is now a superset

of the old Fair+. Similarly, the new set ofstates satisfying any CTL formulae dependent

on p is a superset of the old set. The following lemmasummarizes the relationship between

old and new state sets under this class of changes.

Lemma 6.8 If the only changes to the system consist of the addition of edges, the subtrac

tion of constraints, and the relabeling of states marked p to p, then

Fair+'""'(a:) C Fair+{x) + RRS{r"'''{x,y),\{Ar"'''{x,y),x)) + 'EC^{x)

EcGp''""{x) C EcGp++{x)

where EcGp++{x) = EcGp{x] +EO{T"^(x,y),(A(AT'"'''(x,y),x)),{Ap'̂ +p){x)) +

{Ap"" + p){x) •AC"*{x).

EcipUqr"'(x) 2 EcipUg){x).

(P + 9)"''"(®) = {p + q)(x) +Ap°^(x).

r""{x) = p(x) - Ap""{x).

Proof.

1. Fa2r+"«^(a;) CFa2r+(a:) + FF5(r"««'(a;, y), A{AT'''̂ '̂ (x, y),x)) + AC'̂ ix)
(From Lemma 5.13, as formula changes do not affect the Fair+ states).

2. EcGp''^'"(x) C EcGp+-^{x)

• Adding states,subtracting constraints and relabeling states marked p to p cannot

remove states marked EcGP, hence FcGp"®^(x) D EcGp{x) .

• Consider s € EcGp^^^(x).
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—Either s is either in new states that may be fair.
^ . AC^ti6(5) = 1,

=» s GEcGp-^+{x).

—Or s in new behavior created by AT"'''' or which also satisfies p.

By the definition of EO operator on page 117.

EcGp++{x).

3. Ec(pUq)^'^(x) D Ec(pUg)(x).

T'^^(x) = T'"^\x) DT(x).

C C(x).

^ /»eto D /,

where the /'s refer to the / in the fixed point computation of Ec{pUq) on page 107.

Ec(pUq)''^'^{x) D Ec(pUq){x). (Theorem 2.1)

4. (p -h = {p q)(x) I Ap '̂̂ '̂ {x)

(by definition)

5. p"®"'(x) = p(x) —Ap®''''(x)

(by definition)

6.4.4 General Changes

We can combine Lemmas 6.7,6.8 to get the following theorem that characterizes the relevant

supersets and subsets to an instance of model checking with changes.

Theorem 6.9 For a general change to an instance of model checking:

Fair+'̂ '"(x) C Fair+(x) +RRS(T"""(x,y)A(AT'^(x,y),x)) + A^(x)

EcGp''"'(x) C EcGp++(x)

where EcGp'̂ '''(x) = EcGp(x) + EO(T'"'"(x,y},(A(Ar"'''(x,y),x)),(Ap°'''' + p-Ap"''')(x)) +

(Ap""'"' + p - Ap'"'') (x) •A^(x)

Ec(pC/g)""''(x) D Ec(pUq)--(,x)
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where Ec{pUq)—(x) = BP(T"'""(i,y),£'c(pl^9)(x) •fatV+»""(x), (Ap'"''' + p- Ap"'),?)

(p+ gr^-W = (p+?)(i)-Ap'"'(x)-g(a:) + Ap'"'''(j:)

p"""(x) = p(x) + Ap'»'(i) - Ap'"'''(i)

Proof. From Lemmas 6.7 and 6.8. •

Using the above Theorem, we propose the following incremental algorithm

Algorithm 6.4 IncrementalJdodeLCheck(f^Fair^^^^(x))

Case:

f is an atomic proposition

return f{x) •

f = EGp
pTiew _ ^/^padd _^p_

= {Ap'" '̂̂ + p-Ap'''^){x)

= Incremental^odeLChcck{p^^'^^ Fair+"®^(a;))

/((3(x)) = F5S(T"'«'(x,y),FFP(r""«(x,p),C"""(x),(9(i)))
EcGf^(x) = GFPU(Q),EcGV^*{x))

where FcGp++(i) = EcGp(x) + EO(T '̂''(x, y), (K(AT<'̂ (x, y), i)), +p- Ap«'')(i))+
(Ap"''' + p{x) —Ap'"') •AC'"''

Return EcGp^^^{x)

f = E(pUq)
pnew _ ^ _ ^pSub^

—IncrementalJiIodeLCheck{p^^^j Fair+"®"'(x))

^(x) = Incremental-ModeLCheck{q)

/(0(®)) = (Ap'"''' + p- Ap"'»)(x) + g(x). FX(0(1))
EcipUq)""" = LFP{f{Q),Ec{pUq)-{x))

where Ec(pUq)—(x) = RP{T""'(x,y),Ec(pUq)[x) •Foir+'""'(i), (Ap'"'''p - Ap»«')(x), ?(®)).
Return Ec(pUqY^^

f = EXp

, p"® '̂ = (Ap"'̂ '' + p - Ap'"'')

p^^^{x) = (Ap'''̂ '̂ + p - Ap^«^)(x)



= Incremental^odeLCheck(p^^^^ {x))

= Fa2r+"««'(a;) •3yr"®'̂ (a;,y) • -\-p-Ap''''')(y)

Return EcXp^^'"(x)

/ = p + g
j^new _ (^podd ^ p _ ^psubj

' = IncrementalJiIodeLCheck{p^^^ y (x))

q(x) = Incremental-ModeLCheck{q)

(p+ = (p+ 9)(a^) - Ap®"^(x) •q(x) + Ap'̂ '̂ [x)

Return (p +g)?®"'(a;)

f = P

p^(x) = (p+ Ap^"^ - Ap'" '̂̂ )(x) •Fair+"®^

Return p"®"'(a;)
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Theorem 6.10 Algorithm Incremental-MudeLCheck is correct.

Proof. From Theorem 6.9. •

As a final comment, it is necessary to note that the proposed subsets are not necessarily

the best.

6.5 Conclusions

We have extended the arguments of Chapter 5 to model checking, and shown how to exploit

the fixed point nature of CTL model checking to get incremental algorithms. This analysis

may be very useful when checking many different CTL formulae. The implementation of

this proposed method remains to be done. We assume that the results of CTL model

checking (as well as subformulae) are cached. In the methodology we propose, whenever a

new formula is read in, it is transformed into the semi-canonical form described on page 115.

The parse tree for this semi-canonical form is compared against existing CTL formula by

using the common substructure techniques of Chapter 6. This comparison helps to find

commonalities that may be re-used. We identify sub-formulae in the new CTL formula that
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have already been computed, and CTL model checking proceeds using these subformulae

as starting points. If additional changes are made to the FSM itself, the methods described

if Chapter 4 can be used to detect these changes, and compute the resulting etc

relations. This change information can also be supplied to Algorithm 6.4 to incrementally

re-compute CTL model checking.
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Chapter 7

Incremental Synthesis

7.1 Introduction

Logic synthesis refers to the process of optimizing a logic description of a circuit, given as a

net-list of logic (Boolean) gates [57]. This representation can be optimized for area(minimum),

delay (minimum or meeting requirements), and power(minimum). Since these problems are

hard to solve exactly, heuristic algorithms are generally used. However, these algorithms

are unstable; if a small change is made in the network function, the output of the synthesis

algorithm may vary greatly from the previous implementation. A designer can invest eflfort

in optimizing the original design by hand, so it is desirable that most of the hand-designed

or optimal parts be preserved, even when changes are made to the specification. In addition,

the network may have already been implemented in silicon at a lower level of the design

hierarchy, and it can be inconvenient to change.

Previous algorithms for the problem of incremental synthesis have dealt with post-rectification

(Watanabe et al [34]), and preserving cones of logic (Brand et al [76]) in the design. Some

relevant work has also been done by Kukimoto and Fujita [77] but this is concerned with

FPGA's rather than general logic. In addition, this work restricted re-synthesizable parts

of the network to all nodes at a level, rather than a general re-synthesis region. Other ap

proaches to this problem, which use Boolean unification were proposed by Fujita et al [36],

and*Lin et al [38], however these approaches do not consider the optimality of sub-regions
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in the network as a factor in choosing candidate regions for re-synthesis. None of the above

approaches have dealt directly with preserving the "highly-optimal" parts of the circuit.

Changes to the system are defined as changes in the functions computed at the primary

output nodes. The problem is stated as: Weare given a logic design that has inputs a:,- € a:,

outputs Zi G z, and an implementation I of z = F{x). I has already been optimized for

an objective, which may be power, delay or area. Now, due to engineering change, a new

specification 2 = Fnew(a;) is given. We want to find some sub-region R of the implemen

tation I that alone may be re-synthesized so that I with R re-synthesized, implements the

new function Fnew-

We propose and experiment with two solutions to this problem; an exact algorithm and

a heuristic one. The exact algorithm implicitly enumerates all regions R and chooses the

best one. Unfortunately, this can only handle very small circuits. The heuristic proposes

an iterative solution to the problem; we begin with a small region for re-synthesis (selected

using some criteria), and iteratively expand that region until a solution is obtained. At

each stage, we test if re-synthesizing this region alone can realize the new specification. As

a second pass, we trim the region iteratively, so that it becomes minimal in the sense that

no subset of the current region can realize the change in functionality.

However, not all minimal regions are equivalent in terms oftheir power, area or delay opti-
mality. Tocompare two different minimal re-synthesis regions, we use a heuristic evaluation

criteria for the acceptability of regions for re-synthesis called sensitivity. In this chapter we
compute the sensitivity (or acceptability for re-synthesis) for power. In this respect, we
rely heavily on the work done by Lennard [78] for the computation ofpower sensitivities of

nodes. This sensitivity criteria is used to pick nodes in the iterative scheme.

We assume that F and Fnew are completely specified; the extensions to incomplete spec
ifications are straightforward. The designer can designate which regions may not be re-

synthesized, or order the regions in terms of where re-synthesis is more acceptable. We
attempt to find the minimal re-synthesis region.

This chapter is organized as follows: Section 7.2 describes the terminology and definitions
in this chapter. In Section 7.3 we give a procedure for determining whether re-synthesis ofa

giveh a sub-region of the network can realize an implementation with the new functionality
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z = Fnew(®)« In Section 7.4.2, we formulate the exact algorithm using the results of the

previous section. Next, we briefly discuss the need for estimates of the goodness of a node

for re-synthesis (or sensitivity). The next section (7.4) discusses the heuristic algorithm

and its motivation. This is an iterative algorithm for incremental synthesis that begins

with an empty re-synthesis region, and iteratively picks nodes from the rest of the network

to add to the region (in order of their sensitivity). We present some experimental results in

Section 7.5.

7.2 Terminology for Synthesis

Recall that a completely specified Boolean function F with n inputs and m outputs

is a mapping F : B" —v B*", where B = {0,1}. If m = 1 the onset and offset are the set

of points satisfying F(x) = 3 and F(a:) = 0 respectively. A minterm u of a function F is

a vertex (i.e. a point in B") such that F(v) = 1.

The size of F(a;), (|F(a;)|) denotes the number of minterms (onset points) in F(x). An

incompletely specified Boolean function is a mapping F : B" —> V*" where Y = {0,1,*}

(★ =» F can be 0 or 1). If m = 1 the onset, offset, and don't care set (dcset) are the

set of points such that F(a:) = 1, F(a:) = 0, and F(z) = ★ respectively.

We're interested in Boolean functions, because the optimization of digital circuits relies

heavily of Boolean functions and their manipulation. In this context, we define a network

or circuit as:

A Boolean network (Figure 7.1) A/", is a directed acyclic graph (DAG) such that each node

in Af has a Boolean function (n = fn(ni.. .rim))- There is a directed edge from node n,- to

node n if the function /„ is dependent on node Wj, node n,- is a fanin of a node n, and node

n is a fanout of node n,-. A node Ui is a transitive fanin of a node n if there is a directed

path from ra,- to n, and n is called a transitive fanout of Wj. The inputs x = («!,..3^n)

of the Boolean network are called primary inputs and outputs z = (zi,..., Zm) are called

primary outputs. Nodes with at least one fanin and one fanout are called internal.

A more general form of representing Boolean relationships is an observability relation.
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Figure 7.1: Network

Definition 47 An Observability Relation is a mapping 0^(x^z) : B" x B"* —> B,

whtre X are inputs and z outputs. Given any function of the network with inputs x =

(xi,.. .,Xn) <ind outputs z = (^i,.. (z = F{x)) may also be represented as its ob

servability relation 0^{x,z) := zff)F{x). Given inputs x and outputs z, an observability
relation is characterized as 0^(x,z) = 1 if z = F(x) and 0^{x,z) = 0 if and only if
z^F{x).

Given a boolean function 5(7i), the projection (Qi(S{n))) is the representation ofset S{n)
in terms of the variables of some input set I. In the context of nodes in a network, if a

node n has a function n = G(I) associated with it, and I denotes the set of inputs, then

0/(5(71)) = (7-1(5(71))).

Definition 48 Composition of Functions; Given two Boolean observability relations

Fi(x, u) and F2(u, z), the composition ofthe two functions Fi(x, u)©|uF2(u, z) = 3^Fi (x, u)-
F2(u, z). Given two networks, with Boolean observability relations Fi(x,u) and F2{u,z),
their composition has the observability relation Fi(x,u) ©|«F2(u, z) = 3„Fi(x,u) •F2{u, z).

The composition network can be obtained by connecting the two as shown in Figure 7.2. Note

that one can compose the corresponding functions z = f2{u),u = fi{x) as z —f2{fi{^))-

A relation Fi(x, u) is said to be compatible with a relation F2{u, z) iffFi(x, u)0uF2(u, z) ^

<f). Fi{x,u) is compatible with a relation F2{u,z) and consistent with F{z,z) iffFi{x,u)0

\uF2{u,z) = F(x,z).
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Network 1
Composition

Figure 7.2: Composition

Apart from the usual logic connectives, we will also be using the following operands in first

order prepositional logic.

Definition 49 The cofactor Fa- of F (completely specified) with respect to variable Xi is

the function F evaluated at Xi = 1.

Definition 50 Consensus or universal quantification V is defined as

fxi ' fxi' Is the largest Boolean function contained in f that is independent of Xi. The

consensus satisfies the following properties:

Vx/ C /

Vx(/ + 17) 2 Vx/ + V,p

Vx/-P =

Definition 51 Smoothing or existential quantification B is definedas /(^it •••f^n)

fxi + /xT* ^s the smallest Boolean function containing f that is independent of Xi. The

smoothing satisfies the following properties:

3x/ 2 /

^x(f + 9) = ^xf + ^x9

* 3®/ •9 ^ 3a;/ •BxP
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One Boolean function of interest is the Boolean difference:

Definition 52 The Boolean difference of a function f with respect to a variable x is

defined as |^ = fxf^ + fxfx- This function gives all the conditions under which the value
of f is influenced by the value of x. Its complement consist of the conditions under which

f is insensitive to x.

7,3 Conditions on a Valid Re-synthesis Region

Asstated before, we have a logic function (possibly multi-output) z = F(a;) (z = (zi... Zm))^

which is a function of inputs a: = (a:i.. .x„). We already have a network realization for this

function. The logic function of this network is changed to a new function z = Fnew(a^).

We may also represent the new function as a separate network. The objective is to realize

jPnewC^c), while simultaneously preserving as much of the old network structure / (particu
larly hand-optimized portions) as possible.

We recognize the following sub-problem: Given a network with original functionality z =

F(a;), which isto bechanged to z = Fnew (a^), and a region for re-synthesis R (see Figure 7.3)

with inputs v and outputs u, determine whether the new function can be implemented by

re-synthesizing the region R exclusively.

To answer this question, we first compute an observability relation for the region F, that

is consistent with the overall implementation z = Fnew (a:) and compatible with the imple

mentations for the remainder of the original network. Next we impose conditions on this

relation that ensure that it is implementable.

The overall observability relation for the original circuit is characterized by 0^{x,z) =

2r®F(a;), and the new relation is characterized by OnewC^^j^) = a:®Fnew(a:). The region of

re-synthesis F, with inputs v and outputs w, is characterized in its current implementation,

by an observability relation 0^(u,u) that is consistent with 0^(a;,z) and compatible with
the remainderof the network. The remainder of the network is characterized by the network

N (with the region F deleted), with inputs u and x and outputs z and v. Its characteristic

function is given by N{x^v^u,z). Figure 7.3 illustrates these regions, and their inputs

and outputs. In this section we illustrate how to compute the required functionality of a
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cf[x,z)

N(x,u,v,z)

Figure 7.3: Re-synthesis region

predefined region when the output function is changed. We first state the following theorem,

which is adapted from [79].

Theorem 7.1 The maximum observability relation for region R that is consistent with

N{XyVfU,z) and compatible with 0^{x,z) is:

0^{v,u) = z)=>0^{x,z)).

Proof. We need to prove that composed with N gives F, i.e. 0^(u, «)©!«,«AT (a;, u,u, z) =

0^[x^ z).

The network N puts no restrictions between sets of allowable w, v, i.e. v is not dependent on

u or vice versa. However, for F to be produced by the final network additional restrictions

must be placed on u, u's. Thus,

V, u,z) D0^(x^z),

• w) © \u,vN(x^ V, u,z) C 0^{x, z).

Assume not,

Bx',z' such that 0^(x'yz') = 1 and 0^(t;, u)© u,ti,z') = 0
=> 3u,v(Vs,«iV(X, Uy Vy z)-f 0^(Xy z)) ' N(x',Uy Vy z') = 0.

- Either Ar(x',u, w, 2') = 0. (use Bxf 2 /)

Substitute in => 3u,v(Va:,«iV(x, UyVyz) + 0^(x, z)) •A^(x', iz, v,z').

0 = 3u,wiV(X, Vy Uy z) D0^{Xy Z) .
^ 0^{XyZ) = 0.

A contradiction.
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- Or Vx,«A/'(a:, u,u,z)+ 0^(®, 2:) = 0

for (a;', z')^N(x\ii, u, z') + 0^{x\ z') = 0
We know from the previous part that iV(x', /=0 and 0^(x\z') ^0.

A contradiction.

• 0^(vy u) 0 |u,uAr(x, V, u,z) 3 0^(x, z).
Assume not.

=J> 3a:',such that 0^(x', z') = 0 and 0^(v, u) ©\u,vN(x', u,«,z^) = 1
3u,t;(Va;,aAr(x, u, V, z) + 0^(x, z)) •Ar(x', u, u, z') = 1.
Vu,t,(3a;,aAr(x, u,u,z) •0^(x, z)) + Ar(x', u, u,z') = 0.

iV(x'j u, u,z') = 0 and (3x,aiV(x, u,v,z) •0^(x, z)) = 0. (use 3a;/ 3 /)

=>• 0^(x', z') = 0

=^0^(x\z') = l
A contraxiiction.

Hence, 0^(v, u) 0 |u,vA^(®) v,«,z) = 0^(x, z). •

When F has been changed to i^new» we can simply replace F by Fncw in the above and

give a condition for realizability of the new functionality.

Theorem 7.2 Let 0^new(v-, u) = \/x,z(N{x, v, u, z) => O^etvi^i ^))* new functionality
can be realized by re-synthesizing R iff (^v^u0^new{v, u) = 1),

Proof. From Theorem 7.1 Ojew(v,«) 0 v, u, z) = Og'ewC®, z)-
The relation has be completely specified for a valid behavior to exist within it.

i.e. Vv3tt0^new(t'j w) = 1. •

A relation that satisfies Theorem 7.2 cannot directly yield a hardware realization, since

hardware can only implement functions. In general, 0^new(v, u) is not a function. However,
any O^newC^^j w) satisfying Theorem 7.2 has at least one function asa subset. To find such a

function, we have to solve a set of Boolean equations. The following theorem from Boolean

unification [80], details all solutions y = G(x) to theequation f{x,y) = 1,when y isa single
variable.

Lemma 7.3 If f(x^y) = 1, where y is a single variable, f{x,0) C /(x, 1),
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Proof. f{x,y) = l.

y f(x,l) + y' f(x,0) = l.

/(») 1) 2 y •/(®, 1) and

/(«,0) 2 y-/(x.O).

/(aj,l) + /(a^,0) = 1.

(/(x,0)=»/(a;,l)).

/(«,0) C /(x,l). •

Theorem 7.4 T^e solutions y = C?(x) io an equation /(x, y) = 1, where y is a single

variable, can be characterized by the inequalities f(x,0) C G(a:) C f{x, 1).

Proof. From Lemma 7.3 f (x,0) C f(x, 1).

• y = y(®) = f[x, 1) is the largest function such that f(x,y) = 1.

Assume not; By = U{x) such that U(x) D /(a:,l) and f{x,U(x)) = 1.

Since U{x) D f(x, 1), 3^, C/(s) = 1 and f(s, 1) = 0.

But then, 1 = f(s,U{s)) = /(s, 1) = 0.

A contradiction, hence y = g{x) = f(x, 1) is the largest function st f(x,y) = 1.

• y = 9{x) = /(a^,0) is the smallest function st f (x,y) = 1.

Assume not; 3y = L(x) such that L{x) C /(a;,0) and f{x,L(x)) = 1.

Since L(x) C /(a:,0), 3s,L{s) = 0 and /(s,0) = 0.

But then, 1 = /(s, L(s)) = /(s, 0) = 0.

A contradiction, hence y = 5f(x) = /(a;,0) is the smallest function st f(x, y) = 1.

Hence, f{x,0) C G(x) C f(x,l) for any G(a;) satisfying f(x,G{x)) = 1. • The following

theorem, adapted from [80], characterizes a family of functions that yield a valid imple

mentation of the relation. We assume that 0^new(i^>M) satisfies Theorem 7.2. Note that

Theorem 7.5 is a generalization of Theorem 7.4 for multiple output variables.

Theorem 7.5 If O^newi^y ti) is the observability relation for a region R, then anyfunction

u = g{v) = gi(v) ...gm{v), (u = ui. ..Um) that satisfies fi(v) < gi{v) < (/,• + d,)(u), where
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ft + rf,- = n = ({^...uj...^.^,^O^new(v,«)) •nik<,(«Jfe®fl'fc(u)))|(u.=i)

r,- + d,- = 7; = m)) •nfc<iK®<7jt(t;)))|(„_o)

satisfies the relation O^newi^tOi"^)) = 1- every stage /,• represents the onset, di the

donH care set, and r, offset from which g, is chosen.

Proof.

• If m = 1 , this is true from Theorem 7.4.

• Assume for m = w the theorem holds.

Consider m = n + 1.

0'^(v,ui,...Un, u„+i) is a function with m = n + 1outputs.
Ui ...Un, u„+i) is a function with m = n outputs.

Hence, any function u = flr(u) = pi(t;).. .</„(«), (u = ui.. .u„) that satisfies

fi(v) < gi{v) < (ft + d,)(u), where

fi + df = r7 = ^,)3u„+,0Vw(u, w)). njfe<.(wjk®^ife(u)))|(„,=i)

fi +di = ri= ((3...uj...^^^.^0\ew(v,u)) •nfc<i(ttjfc®^gfc(u)))|(u.=i)
And

n + di = fi = ^,j3„„+,0^new(u, w)) •nfc<.(«ik®PJfe(t;)))|(„.=o)

n + di —fi — new(t^)^)) •nfc<t(^/:®y/:(^)))l(tt,=o)

is a valid solution for the first n outputs.

Note that 3u„^jO^(u, ui.. .u„,Wn+i) is independent ofu„+i. For m = n + 1, theso
lutions g\...gn are already consistent with any solution gn+i as they are independent

of u„+i.

• We can compute a solution for the n -f 1th output, u„+i = as follows:

Any function that is

- Consistent with ui.. .Un = gi{v).. .gn(v), i.e.

V,<n-t.i«t = 9i(v) ^ Ui®gi(v) = 1 and
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- Satisfies the relation, i.e.O'̂ (t;,«i,..."Un?<7n+i(v)) = 1

is a valid solution.

Hence, one such set of functions is: /n+i(v) < < (/n+i + dn+i)(v), where

/n+j +<in+i = 'ViT= {(3....j...y^i,0«new(»,«))-nii<,(«Jt®fft(«)))l(„„+,=i)
Tn+i +dn+i =7^ = ((3...„j...y^.,0''new(i',«)) •nK((«*®Sk(«)))l(u„+,=o)

We can use the freedom provided by the d,- to optimize the function. Reordering the u,-

gives rise to different functions; in general a good ordering should be found.

7.4 Minimum Re-Synthesis

We examine two algorithms for minimal re-synthesis; an exact one, which is guaranteed to

find the exact minimum region, and a heuristic one that attempts to find a small region for

re-synthesis. In both these strategies, we use the method for determining whether a region

is sufficient to realize the new functionality (Section 7.3). Before we give the details of the

iterative algorithm, we impose certain restrictions on the structure of valid regions.

We require a loose form of structural contiguity restriction on R. In particular, we do not

allow the inputs of R to be dependent on outputs from R. This structural restriction is

needed to use Theorem 7.2. For instance the left hand side region of Figure 7.4, R, which is

composed of two non-contiguous regions, is not a valid region, since in network Ni input A

depends upon C. The right hand side region is valid. This restriction is imposed, since re-

synthesis of such a region R might possibly create a combinational cycle within the network,

by synthesizing C to be depend on A.

7.4.1 Searching for Minimal Regions

Definition 53 A re-synthesis region is minimal if every node that can be removed from R

while preserving structural continuity, destroys the ability, by re-synthesis of R, to obtain

the new functionality Fnew
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Figure 7.4: Invalid and valid regions

It is easy to see that, if a region R is sufficient for re-synthesis (Theorem 7.2), then every

superset RC R' is alsosufficient for re-synthesis. Consequently, if we greedily remove nodes

from a feasible contiguous region, while maintaining feasibility and structural validity, our

search is guaranteed to terminate in a locally minimal region. However, finding a global

minimum is much harder; We examine a strategy that implicitly enumerates all feasible

sub-regions and is guaranteed to find a global minimum.

7.4.2 Exact Minimum Re-synthesis

The strategy for getting the exact minimum re-synthesis region consists of implicitly enu

merating all regions, and examining this set to find the minimum solution.

7.4.2.1 Implicit Enumeration of Regions

In order to enumerate all regions implicitly, we introduce one variable r,- for each element

in the region R of interest and each node that fans into the region. This set of nodes will be

called the extended region E. Figure 7.5 shows an example with six nodes in the extended

region, four of which are in the region. This example will be used to illustrate all the

concepts introduced in this section. We introduce six variables ri, r2,..., re- We will use r

to denote the vector of r'-s. A sub-region of E can be represented as an assignment to r,

with the usual interpretation that a node is in the region iff its corresponding r,- variable is

1. In the example, (1,1,1,0,0,0) denotes the region {ri, r2,rs}. A function of f, represents
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Figure 7.5: Region with variables rj for each node in the extended region

a set of sub-regions. In our example, /(f) = rir2 + r3r4 represents the set of seven regions,

{{n, r2},{ri, r2, ra}, {ri, r2, r4},{ra, r4}, {n, ra, {r2, ra, r4},{n, r2, ra, r4}}.

In this space, if region r contains r', it is denoted as r' < r.

Let I{r) denote the set of one node regions, i.e. I(r) = ni^'t *

Let /, (r) denote the node i, i.e. /,(r) = r,- •

7.4.2.2 Structural Validity of Regions

Recall that in the previous section we placed restrictions on valid regions. In our example,

is not a structurally valid region, and {ri,r2} is one. A structurally valid region

can be encoded using its upper and lower "frontiers". Referring again to our example, the

upper frontier of {ri,r2} is {ri} and the lower frontier is {r3,r4,r5}. We will henceforth

refer to structurally valid regions as just valid regions. Using well known techniques to

traverse a graph implicitly, we can write a function StValid(r) to specify all structurally

valid (contiguous) regions. We can also compute relations that denote the upper and lower

frontiers ofa region UFront{r, r^) and LFront(r, r^).

Let G(r, r') represent the connectivity in the graph, i.e. G(a, 6) = 1 implies nodeb is fanout

of node a.
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LetG*(r, r') represent the connectivity information in the network as follows: IfG*(a,6) = 1

then there is a path in the network from node a to node b. G* is also called the closure of

the network, and may be computed using a fixed point formulation.

A region is structurally valid if it is contiguous, i.e. each successor, which is also a prede

cessor is also in the region.

StValid(r) = ^s,t(Succ(r,s) •Pred(r, t) => JI(/t(s) •Ii(t) =» /»(r)))
i

Let iS'ticc(r,r') represent the successor relation, i.e. Succ{a^b) = 1 implies that region b

is in the transitive fanout of region a. Similarly, let Pred(r, r') represent the predecessor

relation, i.e. Pred{a, 6) = 1 implies that region a is in the transitive fanout of region 6.

All relations can be represented as predicates over the extended r space. For example, to

compute the 5ucc(r, P) region, we can iterate over each singleton node /,(r'), a region r is a

successor if either r is the singleton node itself /, (r) = 1 or the region r contains a singleton

node s (s < r) such that s is successor ofsome singleton node t {G*(s,t) = 1), which turns

out to be the singleton node itself = 1).

Thus, we can computeall the required relation using such predicates on the extended space.

To summarize:

Succ{r,r') = JJ (/i(r') (/.(r) + 3.,(G*(s,«) •(s < r) •/.(t))
iSNetwork Nodes

Pred(r,r') = J] (^tW •» (/i(r')+ 3.,,G*(s,«)•(«< r') •/;(«))
iSNetwork Nodes

LFront{r,r') of a region r consists of those predecessors of r that are not already part of

r. It can be computed byfinding all regions of predecessors of nodes in the region that are

not in the region.

LFront{ry) = 3,Pred{r,s)- J] ' A(r) •(3.,,G(«, t) •/.(«)•(«< r)))
i^Network Nodes

A similar computation can be made for UFront, We will not discuss their computation

any further. We also require a sub-region to have enough behavior to implement the new
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Figure 7.6: Transformed network for computing universal relation

functionality. We call this requirement sufficiency. The rest of this section will build tools

to implicitly characterize sufficiency. The encoding of a valid region in terms of its upper

and lower frontier is crucial for this characterization.

7.4.2.3 Universal Relation

Recall that our aim is to implicitly enumerate all valid regions that are sufficient for re-

synthesis. We transform the network by introducing two variables Si and t/,-, for each node,

represented by some variable rf in the extended region.

Figure 7.6 shows the new variables introduced and the associated transformed network for

our example. The functionality of the triangle-shaped node is given by riSi + rjiSi. i.e, it

uses Si as a selector variable to choose between r,- and ?/,•. We then construct a Universal

Relation.) U(a:,z, r, 77), which is the observability relation of the transformed network, with

all the r,'s made observable. The intuition behind construction the universal relation is that

it encodes the N relation (refer to Theorem 7.2) for all sub-regions of R. To obtain the iV

relation for a sub-region 5 from U:

• Set the <y,'s corresponding to the upper frontier of 5 to 1 and all other S variables to

0.
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• Existentially quantify all r,'s that are not in the lower frontier of S.

• Existentially quantify all 7y,'s that are not in the upper frontier of S.

In the example, ^r,ir]4T}5r)6^rir2r3r6U(x,Zyr,S,7f)\g^^Q^^^^QQQ^ yields the N relation for the
sub-region {r2,r3}.

7.4.2.4 Dynamic Quantification

Weneed one last step in implicitly enumerating all sufficient and valid sub-regions. Weneed

to be able to do the quantifications mentioned above "on the fly". For this purpose, weintro

duce additional sets of variables r and ?), to get the dynamically quantified universal relation

r,f, <J, ry, ^). The idea is that existential quantifications of U can be transformed

into co-factor operations in C/®". For example, t/{x, 2, r,i,v)|fc,0,1,1,0,0,0)
will be equivalent to f/^«(x,2,r,f,i,),,^)|j^,„ ,_, o,o,o),r=(o,o,o,i.i,o),fl=(o,i.i,o.o,o)-

7.4.2.5 Computation of from U

We consider the following abstract version of the problem. Let denote the projection of

a with respect to a set of indices s and let s denote the complement of s. For example, if

o = (1,1,0,1,0,1) and s = {1,3,6}, then is (1,0,1)and ajis (1,1,0). Given some relation

T{x,y), we seek to compute T^^(x,x,y) such that (x,x,y) € iff (a;a,y) € 3x-T{x,y),
where s represents the set of positions where x has I's.

To understand this definition better, let us consider some special cases first. When x is a

vector of all I's weseek the original relation T(x,y). When x is a vector of all O's, we seek

the relation 3xT{x, y). When x isa vector ofsome O's andsome I's, we seek to "dynamically

quantify" some of the x,'s from T depending on the value of x.

The following theorem gives a procedure for computing

Theorem 7.6 If

r^^(x, X, y) = 3z{T{z, y) •JJfx,- => (x,- 2,)]}
i

^ rpEQ _ rpDQ
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Proof.

9 X^Q D

Let (a, 6,c) € This implies that if we existentially quantify from T, the a:,'s

corresponding to the 0 entries of 6, the resultant relation will contain (a^jc), where s

is the set of indices corresponding to the 1 entries of b. Consequently, there must exist

an entry in T that matches with (a, c) in positions defined by the s. By the definition

of it must contain (a, 6,c).

« X^Q C

Let (a, 6,c) G and let s be the set of indices corresponding to the 1 entries of b.

This means that there exists (d, c) € T, where d and a match at positions defined by

s. Thus (a,6,c)GT^^.

•

Note that T is related to in the same way that U is related to We can directly

apply Theorem 7.6 to compute from U.

7.4.2.6 Implicit Enumeration of Valid and Sufficient Regions

We now have all the tools necessary to implicitly enumerate all regions that are structurally

valid and are sufficient to realize the changed functionality. Recall the definition of relations

StValidy LFront and UFront, The enumeration is provided by the following theorem:

Theorem 7.7 Let r' denote a vector that specifies the initial region R. A subregion S

specified by s is valid and sufficient for re-synthesis if and only if

{(s< r^) •StValid{s) •Vfl^77t/[t/Front(s, rju) •LFront(s, sl) => Sufficient(sL, T^t/)]} = 1

where Sufficient(sL^riu) is defined as:

Vr3;,{Vxz[35{(d = 7?) • z, r, sl, S, ??, f}u)}] 0^new(x, z)}

Proof. By combining the conditions for structural validity and sufficiency of implemen

tation. The condition (s < r') ensures that 5 is a sub-region of R. The definition of

Sufficient(sLi t}u) is just a restatement of Theorem 7.2 with the new tools in hand. •
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7.4.3 Exact Algorithm

If the initial region R is taken to be the entire circuit, Theorem 7.7 can be used to implic

itly enumerate all valid and sufficient re-synthesis regions for the entire circuit. We could

represent these solutions as a BDD and search through the solution space for the desired

optimum solution. Our objective is to minimize the number of nodes in the region of re-

synthesis. For this objective, the problem reduces to finding a path from the root of the

BDD to the terminal "1-vertex", such that the number of edges with label 1 is minimized.

This is a shortest path problem and can be solved in time proportional to the size of the

BDD.

The cost function we use for defining the optimal sub-region is the number of nodes. In

principle, one can also handle more complex cost functions like weighting each node by the

number of literals in its factored form.

7.4.4 Heuristic AJgorithm

In practice, the exact algorithm fails when handling larger circuits. We propose an iterative

algorithm first adds nodes to the region, one at a time, while maintaining contiguity until
a feasible region is obtained. Then, it removes nodes, while maintaining contiguity until a

minimal region is obtained. In reality, not all minimal regions are comparable. Some have

better results in terms ofpower, area or delay. Thus, we need to come up with an objective
that decides which minimal regions are better for re-synthesis. This leads to the idea of an

objective sensitivity:

In order to evaluate nodes to be chosen to add to a re-synthesis region, we use a measure

called the sensitivity of a node (or region).

Definition 54 The sensitivity of a node is the expected decrease in the objective function

(area, delay or power) that is expected if the node is re-synthesized.

Obviously, it is too expensive to calculate the exact change in objective; in part because we

do not know the exact change. Hence, sensitivity is an estimate.
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In the experimental section, we will describe one measure of sensitivity to power. The

sensitivity allows us to choose nodes so as to get the minimal re-synthesis region that also

has the best power performance.

The iterative algorithms works as follows: First, the designer is allowed to mark out regions

that may not be re-synthesized. For the remaining network, we compute the approximate

sensitivities for every node in the network. We use an iterative algorithm that progressively

adds nodes to the re-synthesis region.

Algorithm 7.1

Mark regions designer wants unchanged (M)

il = 0

While R not sufficient (Theorem 7.2)

p = Node of highest sensitivity (excluding M and R)

R = R + p

Reduce R to get a minimal region (Section 7.4-1)

Compute u = R{v) (Theorem 7.5)

Synthesize u = to get Rnew

replace R with Rnew

return

We add the node of highest sensitivity to the resynthesis region i?, and examine whether

re-synthesizing the current region R could achieve the new functionality. If not, we add

the nodes of next highest sensitivity to the region and repeat the process. This greedy

process iteratively tries to determine a small partition of the initial circuit that has high

potential for gains in the objective ( power for our current implementation) that can be

re-synthesized in order to implement the new functionality. In order to make the region

minimal (Section 7.4.1), we post process it by attempting to remove nodes to get a smaller

feasible region.

7.5 Experiments and Results

In the previous sections, we have described how to identify sufficient regions, a brief expla

nation for measures of picking nodes and an iterative algorithm that combines the both. In

this section, we will experimentally examine these strategies.
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We have implemented the exact and heuristic algorithms and sensitivity measures described

in this chapter in SIS [57]. Though not explicitly stated during this chapter, we used the

BDDs to represent our functions and relations. Logical predicates may be represented as a

sequence of BDD operations; we used BDD's for the computation of logical predicates.

To emulate a design change, we took benchmark examples with external don't cares and

optimized them to obtain a circuit called "old". The new spec Fnew for each example is

the same circuit benchmark but without the external don't cares given. In some circuits

without external don't cares, we wrote a script that flipped random bits in the tables of the

blif file. This procedure yielded a new specification called "new".

7.5.1 Experiments with Minimum Re-Synthesis

We used three methods to do incremental re-synthesis: the heuristic method proposed

in Section 7.4.2, the exact method described in section 7.4.3 and the hybrid approach that

combines both. Ourcost function is the total number ofnodes in the re-synthesis region. We

tabulate the results ofourexperiment on some sample examples in Table 7.1. Theoretically,
the exact method should always produce the minimum number of nodes in the region, and

the hybrid method must always be as good as or better than the heuristic method. The

experimental results concur with this. A entry denotes that the experiment did not

complete because we ran out of memory. As expected, the hybrid method completes in

some cases where the exact method runs out of memory.

No optimization scripts were used to get the given results that compare the exact method

with the heuristic and hybrid methods.

7.5.2 Experiments with Low Power Re-Synthesis

Our primary objective is to preserve as much of the old implementation as possible by re-

synthesizing the re-synthesis region alone. However, we would also like to get "good" power

results while preserving as much of the old network structure as possible.

In particular, we will experiment with networks and the optimality criteriaof power. Thus,

we need to illustrate how to compute a power sensitivity; i.e. a criteria to pick nodes that



HTotal )J Region Run Time (seconds)
Example Nodes Heuristic Exact Hybrid Heuristic Exact Hybrid
alu2 32 7 * 5 6.4 * 22.5

alu3 35 8 * 4 9.7 * 25.4

017 10 2 2 2 0.1 0.2 0.1

dekoder 21 4 2 2 0.2 1.9 0.3

dk27 35 14 * 10 2.1 * 24.7

bl 10 2 1 1 0.1 0.1 0.1

cml38a 25 7 2 2 0.3 1.0 0.9

cmlSla 20 3 2 2 0.2 0.9 0.9

cm42a 30 2 2 2 0.2 3.6 0.3

cm82a 24 3 1 2 0.1 0.3 0.1

x2 26 5 2 2 0.5 3.9 1.1

z4ml 16 4 3 4 0.5 1.5 1.3

Table 7.1: Exact Vs. Heuristic Algorithms

give better power numbers when re-synthesized.

7.5.2.1 Illustration: Power Sensitivity
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To illustrate a measure for sensitivity for objectives like area, delay and power, we pick a

sensitivity for power.

The definition of sensitivity is easily extended to regions. We rely on the work done by

Lennard [78] et al on computing the power sensitivity of a node. A node n is a good

candidate for re-synthesis if local change in activity (power) plus change in activity in the

transitive fanout reduces overall power. A method for determining expected activity E[n)

is outlined below:

Consider a node n in the network with immediate fanins (refer to Figure 7.7).

Node n computes a function /n(wi.. -Wm) of its fanins. Let denote an arbitrary set of

minterms that are added to the onset of fanin ni. Let this be the only change made to the

fanins of n. The set of of minterms that are added to the onset of /„ are those minterms

in Ani that actually change the value of the function /« from 0 to 1. Similarly, the set of

minterms that are removed from the onset of /„ are those minterms in that actually
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"l "2 "3

Figure 7.7: Sensitivity computation

change the value of /„ from 1 to 0. Let An denote the set of minterms that are added to

the onset of /„ and i2„ denote the set of minterms that are removed from the onset of /„

due to this change. An and Rn can be computed as follows (Recall that Qj(f{x)) is the

projection of points in f{x) onto the input space):

1. An{Ani) — */n|„i=:o) ' *

2. R„(i4„j) —^^/(/n|„i=:i */nlnl=o) ' ^ ni

The quantities 5+„(ni) = /nL=i •/n|„i=o' ^ind 5-„(ni) = •/n|„i=o are called the
functional positive and negative sensitivities. Similar measures can be computed for the set

of minterms that are added and subtracted from the onset of /„, when R„, minterms are
subtracted from the onset ofits fanin (actually by taking 1 and 2 and interchanging added
A and removed R).

These quantities have no real significance as yet, since we do not know the exact change
that is actually made to an internal node of the network. However, if we assume that any

change in the onset size is equally likely^ the expected size of the sets An and can be

computed with just the knowledge of the size of the change (without knowing the actual

minterms in the change!) by computing the expectations of the quantities in equations (1)

and (2):
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The expected sizeof the set An is a measure of the change in switching for the given node.

Thus, we can compute a switching probability p by dividing the expected size of the onset

change E{An(Ani)) by the original size of onset.

Given a probability p of evaluating to high at a node, the functional transition activity is

given by 2(l-p)p. Switching happens if the signal switches from 0 to 1 (with probabilities

1- p and p respectively), or from 1 to 0. Hence probability of the 0,1 switch is (1—p)p, and

probability of the 1,0 switch is p(l - p). The total probability is 2p(l —p). Thus, a p far

from 0.5 implies a smaller transition activity. Given a change in onset size at a given node

Til, the expected change in onset size can be derived for all nodes in the transitive fanout of

n\. Thus, the expected onset sizes of nodes directly relate to their switching probabilities;

the higher the estimates the more the sensitive the node.

We use the estimated changes E(An{Ani)) and as sensitivity (estimated) mea

sures of how much switching change can result at output n from re-synthesizing node n\.

If this number is high, then node n is very sensitive to changes in node n-i.

We use this analysis to compute a "good" ordering of nodes for re-synthesis; we prefer to

add nodes with high sensitivity to the re-synthesis region.

The efficacy of this measure of the sensitivity of a node has been demonstrated statistically

in [78]. For the purpose of this chapter, we will not discuss this further.

7.5.2.2 Experiments with Power Sensitivity based Re-Synthesis

In general our primary goal conflicts with an objective of minimal power; assuming we have

good power optimization routine, we can always get better power results by completely

ignoring "old" (hence we have more flexibility). Thus we expect to get worse power results

for the incremental algorithm as compared to "new". However, using a good measure of

power sensitivity to pick nodes to add to the re-synthesis region should give us better power

results than using any random method to pick the nodes. We expect the power numbers,

Pnerp < Paensitivity < Prandom- There may be many minimal regions in a network that can

implement the same functional change; our objective is to pick the minimal region that
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gives good power results.

Thus, to summarize, we ran the following experiment: we optimized the old and new

specifications using a power optimization scripts, we also implemented the new specification

by incrementally re-synthesizing the optimized old network to get the new functionality. In

our experiments, we used two methods for choosing the region for re-synthesis: "sensitivity"

and "random". In "sensitivity", wechose the new node to be put in the region of re synthesis

according to the power sensitivity measure discussed in Section 7.5.2.1. In "random" we

chose the new node randomly. Note that both approaches do not take the ability of a

node to re-synthesize the new function into account when choosing a node. The iterative

algorithm (Section 7.4.4) and the greedy search for a minimal region (Section 7.4.1) attempt

to minimize the resynthesis region. We compared the sizes of the regions, as well as total

power of the resultant network obtained for both random and sensitivity based measures.

We used two different scripts for power optimization, the first was from Buch et al [81], and

the second was the script.rugged script from SIS [57].

Figure 7.2 summarizes the percentage of the network preserved; these numbers were consis

tently over 50% and quite often as high as 90%. We were indeed preserving large portions

of the old network. However, at this stage we do not know what the exact minimum answer

is; our future work will determine this.

We also tabulate the results of our experiment on the first power script in Table 7.3. Isyn

denotes the results obtained byour incremental synthesis and Nsyn denotes results obtained

by complete resynthesis. We see that for 10 of the 14examples in Table 7.3, "sensitivity"

produces circuits with equal or better power numbers than "random". In four examples,

"random" produces circuits with lower power. It was also interesting to note that a circuit

like cu could be fixed to the new functionality by re-synthesizing just one node, and this

gave power results which were just as good as re-synthesizing the entirecircuit. The power

numbers were computed assuming a 2^Mhz clock and a Vdd of 5t;.

We also experimented with another optimization script (script.rugged without don't care

optimization), which was not specifically targeted for power. Table 7.4 reports the results

for this script. Even using this script, out ofthe 14examples, 10 showed better or equivalent

results for the sensitivity based method.
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HTotal {t Region ISyn Power NSyn Power
Example Nodes Sensitivity Random Sensitivity Random Old New

alu2 16 6 6 589.4 589.4 583.1 478.6

cm150a 9 6 6 272.8 272.8 243.4 244.6

cml62a 12 5 4 205.2 247.7 163.4 177.3

cm85a 6 3 3 291 274.1 201.3 189.1

cmb 8 5 3 279.6 316.^1 229.3 256.5

Cll 14 1 1 214.6 224.6 214.6 214.6

dekoder 10 4 4 206.9 208.3 199.8 183.8

dkl7 30 15 12 833.7 517.7 310.9 263.3

il 13 4 4 183.6 183.6 193 183.6

markl 57 30 27 538.5 605 524 267

set 21 12 15 341.8 315 288.1 283.9

tcon 8 5 4 133.4 133.4 140 133.4

xldn 10 5 4 545.7 545.7 443.8 435.9

z4ml 8 3 4 315.2 276.5 163.4 169.2

Table 7.3: Script1: Sensitivity Vs. Random Regions
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|j Total HRegion ISyn Power NSyn Power
Example Nodes Sensitivity Random Sensitivity Random Old New

alu2 21 10 12 1093.1 1169.6 502.8 411.6

cm150a 9 3 3 275.4 275.4 243.4 244.6

cm162a 12 5 6 202 248.9 163.4 177.3

cm85a 6 3 3 281 237.3 201.3 189.1

cmb 8 6 3 261.5 292.3 229.3 256.5

cu 14 1 1 214.6 214.6 214.6 214.6

dekoder 11 2 4 199.7 204.4 173.1 180.1

dklT 31 16 11 563.8 666.9 289.2 258

il 13 4 5 183.6 183.6 193 183.6

markl 57 27 26 421.1 452.3 496.5 254.4

set 21 13 14 294.6 274.8 288.1 283.9

tcon 8 5 5 133.4 133.4 140 133.4

xldn 10 5 3 509.1 481.2 443.8 435.9

z4ml 8 4 4 267.1 240.1 163.4 169.2

Table 7.4: Script2: Sensitivity Vs. Random Regions

In only 4 examples did the random measure have smaller regions. Thus, on an average

the sensitivity was producing smaller re-synthesis regions, with better power results. This

is surprising since smaller regions mean less flexibility and hence higher power. This is

attributable to the fact the sensitivity measure is picking good nodesfor power re-synthesis.

7.5.3 Conclusions and Future Work

Given an original network and a changed specification, we have shown how to realize the

new specification while preserving much of the old network. In particular, we have defined

and used a measure of power sensitivity of the node, and shown that by choosing nodes for

re-synthesis according to this , we get mostly better results than any random selection of

nodes. Our method of re-synthesis is effective in preserving much of the old network. It is

also effective in picking the re-synthesis region so as to get good power results (ascompared

to any other random strategy).

As part of future work, it is necessary to examine different measures of the sensitivity of

a node (region) (wrt to different objectives), and evaluate the performance of the iterative
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algorithm using these strategies. In this chapter, we have described both a greedy strategy

for re-synthesis, and an exact strategy for minimum sufficient sub-region. The exact tech

nique used enumerates all sufficient sub-regions implicitly and searches for the best solution

using any desired cost function. If the given region of re-synthesis is taken to be the entire

circuit, the algorithm can be theoretically used to solve the minimum re-synthesis problem.

We also gave a hybrid algorithm to be able to handle larger circuits.

Because of the way wc have defined structural validity, we do not consider regions in which

inputs to the region are dependent on the outputs from the region. Finding the minimum

region with the structural validity condition relaxed is an open problem.

We find that we can handle circuits of modest sizes at this time. One possibility is to use

don't cares to minimize our intermediate HDDs. We have a lot ofdon't cares because we care

about only structurally valid regions. However, we find that functions like "bdd.between"

in our HDD package are unable to use the don't cares effectively. Handling large sets of

don't cares in minimizing BDDs effectively will increase the sizes of circuits we can handle.

Heuristics for early quantification, dynamic re-ordering in the presence of large don't care

sets will be helpful.

In Section 7.3 we implemented one particular function from the entire class of possible func

tions. One future extension is to examine the entire class of solutions for the most optimal

implementation, using the work of Watanabe et al [82] on heuristic Boolean minimization.

Since we are recomputing a new O^newC*'}^^) many times during the iterative algorithm,

it becomes pertinent to explore incremental ways of updating the relation, rather than re

computing it from the beginning. We expect that some of the methods adapted from [83]

may be used.
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Chapter 8

Conclusions and Future Work

The main contributions of this thesis have been:

1. To motivate the need for incremental algorithms in CAD; in particular logic synthesis

and formal verification.

2. To provide a theoretical framework for the construction of such incremental algo

rithms.

3. To construct incremental algorithms for formal verification and logic synthesis and

experimentally demonstrate their utility.

We have addressed all these aspects in this thesis.

In Chapter2, we have proved some key theorems onfixed point algorithms. Most algorithms

in formal verification are of this form. We used these insights to construct incremental

algorithms for verification. We began by addressing the problem of FSM traversal, the key

FSM verification operation, in Chapter 4. We showed how by storing some variant of the

traversal graph, we are able to update the FSM traversal information more efficiently in the

event of change. We examined the effectiveness of storing different variants of the traversal

information.

In Chapter 3 we began by identifying how commonality between two designs represented

as networks may be detected. We presented both a heuristic and an exact method for
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determining commonality, and showed that the proposed heuristic performed almost as

well as the exact method. We also showed that considerable gains could be achieved by

re-use of information.

Next in Chapter 5 we examined the problem of language containment, a key computation in

verification, and showed how incremental algorithms may be constructed. We demonstrated

that significants gains may be obtained by the use of these algorithms. In Chapter 6 we

extended the arguments to the problem of model checking, another method of formal design

verification. We briefiy discussed the construction of canonical structures that ease the

detection of change.

In Chapter 7, we break away from the verification problem, and address the incremental

synthesis problem. We briefiy discuss previous approaches to the problem and distinguish

them from our approach. The key improvement lies in the fact that we propose a method

ology that tries to preserve optimal and hand optimized regions of the design. We conclude

with results of the effectiveness of our approach.

This thesis is just the first step towards an iterative prototyping environment, which would

fit in better with the design fiow. A key failing of this work is the fact that it is not possible

to gain access to such an environment, so we used random changes to simulate the design

process.

8.1 Future Work

It is evident that there is a tradeoff between space and time in the incremental approach.

We give up in space by storing information from previous design iterations, in the hope that

this may give us gains in time. However, it is possible to construct examples, where this

tradeoff does not pay. Thus, one avenue of future research is the examination of methods to

determine when to apply the incremental methods, and when to run the entire computation

from the beginning. The incremental methods need only be used when we are guaranteed to

have gains from its use. For large changes where there is no common information between

the old and new design the incremental algorithm need not be applied.

There is also the issue of how many previous iterations to store, as well as which information
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to store. Can we get significant gains form storing more than one design iteration ? This

issue needs to be addressed. A point of note is that recently, there has been a trend in the

synthesis industry towards re-usable design blocks, and this fits in with our philosophy of

re-use.

Another relevant avenue is of research is how information for re-use may be written out and

stored in main memoryfor future use. Most of our computations are done using HDD's. It

would be interesting to formulate a method for storing HDD managers with all component

HDDs in main memory for later re-use. This allows for libraries of results and computations

to be stored for future reference.

It is also important to re-implement all the mentioned algorithms in the context of new on

going research in efficient verification and synthesis; e.g. improvements like partial product

heuristics, partitioned systems, more efficient HDD manipulation etc. Our methods have

not made use of don't care information to efficiently compute incremental sets. We can ex

tend our analysis to utilize the small HDDs that may be obtained by the use of don't cares.

For example, insteatd of running the RRS computation on page90,on it might make

more sense to minimize AT®'''̂ with existing transitions in whose behavior is already

included in the old fair set. To conclude, this research is just one step in the direction. The

real proofof the pudding lies in the development of an iterative design rapid prototyping

system with all these incremental algorithms in place. Such a prototyping system would

read in a high level description of the system, and keep track of the incremental changes.

If the differences are small and incremental, one way to do this is using the methods used

in incremental compilers. Then, these incremental differences need to be propagated down

the entire design flow. In the framework that our research wasdescribed, first the network

that is built from the high-level description is incrementally rebuilt. This would involve

adding and subtracting portions oflogic (gates, latch elements etc) to the existing network.

Next the HDD ordering information must be updated. If new latches or inputs have to be

added to the system, the corresponding variables must be added in to the old HDD order

ing. In this, we are helped by dynamic ordering techniques, which can re-order upon the

introduction of these new variables. Alternately, the static ordering algorithms can also be

incrementalized to add in new HDD variables in the existing old order. The new variables

must also be added /subtracted from the existing data structures for image computation,

and further propagated through the new network, while using the methods described to re-
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use as much of the old information as possible to update the transition function or relation

BDD's. Then, these updated functions can be used in conjunction with the incremental

verification algorithm described to get more efficient verification. A similar incremental

design flow can be proposed for synthesis of the circuits.

There is no doubt that such an approach to CAD is more suited to fitting in with the way

10 design is done.

Succinct versions of this work can be found in [49], [50], [84], [85], [86].
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