

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

RAPID PROTOTYPING AND DEPLOYMENT OF

USER-TO-USER NETWORKED APPLICATIONS

by

Wan-teh Chang

Memorandum No. UCB/ERL M96/95

18 December 1996

RAPID PROTOTYPING AND DEPLOYMENT OF

USER-TO-USER NETWORKED APPLICATIONS

Copyright © 1996

by

Wan-teh Chang

Memorandum No. UCB/ERL M96/95

18 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Rapid Prototyping and Deployment of
User-to-User Networked Applications

by

Wan-teh Chang

Doctor of Philosophy in Engineering - Electrical Engineering
and Computer Sciences

University of California at Berkeley

Professor David G. Messerschmitt, Chair

User-to-user networked applications provide shared functionality to two or more human

users distributed across a network. Examples include general telecommunications applica

tions (voice telephony, video conferencing, etc.) and collaborative applications (shared

whiteboards, shared editors, etc.). Compared with stand-alone or user-to-server applica

tions, there exist relatively few user-to-user applications today. I argue that this is due to

the unique difficulties in their design and deployment. To encourage a proliferation of

user-to-user applications, this dissertation addresses these two difficulties.

I propose a heterogeneous approach for the rapid prototyping of user-to-user applica

tions. This approach uses the most suitable models of computation to design different por

tions of an application, and combine them. User-to-user applications typically require

intricate distributed control to handle the user interface, networking, and user-to-user

interaction, which adds significant complexity to the design task. Therefore, I focus on the

design of control. I study formal models with hierarchical finite state-machine semantics

1

for specifying complex control, andthesemantic issues in mixing thecontrol models with

concurrency models such as dataflow. I describe an implementation in the Ptolemy simu

lation environmentwith examples.

Afternewuser-to-user applications have beendeveloped, theirdeployment is stillhin

dered by what the economists call the network externality problem, which means that the

utility of an application to one user increases with the number of other users who also have

that application. Network externality makes anapplication of little value toearly adopters,

and hence is a major obstacle to developing and deploying such applications. With high

speed networking, software-defined applications can be transferred quickly from a reposi

tory to programmable terminals at session establishment and during the session, thus

bypassing network externality. I study this dynamic network deployment approach, and

describe a design of thesystem architecture and session establishment protocols based on

the standard Java and World Wide Web framework.

Professor David G. Messerschmitt, Chair Date

Contents

Preface viii

Vita xii

1 Framework 1

1.1 Introduction 1

1.2 Taxonomy of Networked Applications 2

1.3 Execution of Networked Applications 6

1.3.1 Increasing Heterogeneity and Flexibility 7

1.3.2 A Carefully-Crafted Architecture to Manage Complexity 8

1.4 Data Delivery 9

1.4.1 Quality of Service 9

1.4.2 Substreams for Variable Quality of Service 11

1.4.3 Remarks: Quality of Service Guarantee vs. Best Effort 12

1.5 Session Control 13

1.5.1 Session Establishment 13

1.5.1.1 User Involvement: Initiating and Responding Users 15

1.5.1.2 Allocation of Quality of Service and Processing 15

1.5.1.3 Negotiation of Quality of Service and Processing 16

1.5.2 During Session 19

1.5.3 Remarks: Intelligent Network vs. Intelligent Terminal 20

1.6 Scope of Dissertation 22

1.6.1 Design 22

1.6.1.1 Design Challenges 22

1.6.1.2 Rapid Prototyping Methodology 23

iv

1.6.2 Deployment 24

1.6.2.1 Deployment Obstacles 24

1.6.2.2 Dynamic Network Deployment 25

1.6.3 Relationships Between Chapters 26

Rapid Prototyping Methodology 29

2.1 Introduction 29

2.2 The Heterogeneous Design Approach 30

2.2.1 The Ptolemy Design Environment 31

2.2.2 Partitioning of Functionality 32

2.2.3 Domain of Applicability 33

2.3 Mixing Concurrency Models in Ptolemy 33

2.3.1 Synchronized Interaction Semantics 34

2.3.2 Generating Events 36

2.3.3 Time Advance and Round Initiation 38

2.4 Formal Models for Specifying Control 39

2.4.1 Finite State Machines 40

2.4.2 Hierarchical Finite State Machines 41

2.5 Mixing Control and Dataflow 42

2.5.1 Control/Data Separation Style 42

2.5.2 Control/Data Nesting Style 43

2.5.3 Dynamic or Boolean Dataflow 46

2.6 The *charts Model: Hierarchical Nesting of Control and Concurrency 46

2.6.1 Mode Switching 46

2.6.2 Generalizing Statecharts 47

2.6.2.1 Modular Semantics of Statecharts 47

2.6.2.2 Concurrency Models Can Be Replaced 50

2.6.2.3 Concurrent Components Do Not Have to Be FSMs 51

2.7 A Hierarchical Finite State Machine Model 52

2.7.1 Syntax 52

2.7.2 Operational Semantics 56

2.8 Discussion 57

2.8.1 Strengths 57

2.8.2 Weaknesses 58

2.8.3 Possible Extensions 59

2.9 Conclusions 60

3 Ptolemy Implementation and Examples 62

3.1 Ptolemy Implementation 62

3.1.1 Visual Editor for State Transition Diagrams 62

3.1.2 Hierarchical FSMs as Dynamic High-Order Functions 63

3.2 Examples 67

3.2.1 Digital Watch 67

3.2.2 Telephone Answering Machine 72

3.2.3 Video Encoder: MPEG and H.261 73

4 Dynamic Network Deployment 74

4.1 Introduction 74

4.2 Dynamic Deployment of Peer-to-PeerApplications 75

4.3 Issues 78

4.4 Dynamic Deployment Based on Java and World Wide Web 79

4.4.1 System Architecture 81

4.4.1.1 Local, Originating Peer 81

4.4.1.2 Remote, Responding Peer 83

4.4.2 Session Establishment Procedure 83

4.5 Related Work 87

4.6 Implementation 88

4.6.1 The Startup File .rdclientrc 89

4.6.2 Placing a Call 91

4.6.3 Call Setup Procedure 92

4.6.4 Session Coordination Procedure 94

VI

4.6.5 A Peer-to-Peer Application Example 95

4.6.6 Portability Issues 103

4.6.7 Possible Extensions 105

4.7 A Security Model 106

4.7.1 Hypotheses 106

4.7.2 Security Policies 107

4.8 Example: Distributed CAD Environment 109

4.9 Conclusions 110

5 Conclusions 113

5.1 Conclusions 113

5.1.1 Heterogeneous Design Methodology 113

5.1.2 Dynamic Network Deployment 115

5.2 Open Issues 116

5.2.1 Downloading Time 117

5.2.2 Performance of Java for Multimedia Processing 118

Bibliography 120

Vll

Preface

This dissertation marks the completion of my graduate study at the University of Califor

nia at Berkeley, a period of my life filled with the joy of learning in the best academic

institution, with the best minds, under the blue, sunny Califomian sky. I have been fortu

nate enough to conduct my Ph.D. research under the guidance of Prof. David Messer-

schmitt. A Bell Labs researcher before joining the Berkeley faculty, he suggested that I

study the design and architecture issues of telecommunications control software. Indeed,

the teleconununications software system is the largest distributed software system in the

world and is enormously complex. It definitely needs a disciplined design method and a

carefully crafted architecture to allow it to evolve and progress rapidly.

Network control, i.e. signaling and call processing, is the coordination between termi

nals and networks for setting up and managing network connections. Network control

software has always been very complex, and in the future we would only expect it to

become even more complex as terminals, networks, and applications are becoming more

and more heterogeneous. How should the network-terminalcoordination proceed in order

to enable terminals, networks, and applications to configure themselves, interoperate effi

ciently, and adapt themselves to changing conditions? To achieve these new objectives,

new functions must be added to the network control software. How should these network

control functions be organized? In the first chapter of this dissertation, I express my opin

ions on these issues. Although these are far from complete and final, and are bound to be

controversial, they serve as a framework for the two specific issues I am going to delve

into in depth in my dissertation.

viii

The two issues I have addressed are the design and deployment of user-to-user net

worked applications. User-to-user networked applications include thegeneral telecommu

nications applications (voice telephony, video conferencing, etc.) and collaborative

applications (shared whiteboards, shared editors, etc.). Auser-to-user application provides

shared functionality to two or more human users distributed across a network. There are

not that many user-to-user networked applications today, compared with stand-alone

applications or user-to-information-server applications. I contend that this is because the

design anddeployment of user-to-user applications face difficulties thatdonotexistor are

far less severe for stand-alone and user-to-information-server applications. One especially

serious obstacle to the deployment of user-to-user applications is network externality. Net

work externality is the economist's term for the phenomenon that the utility of an

application to oneliserincreases with thenumber of other users who also have that appli

cation.Networkexternality makes an application of little use to early adopters. The failure

of AT&T's attempt to deploy Picturephone in the 1970s was exactly due to this. Who

would buya Picturephone when there were not many otherowners of Picturephones with

whom to communicate? Network extemality has been a great obstacle to innovations in

telecommunications.

To encourage a proliferation of user-to-user applications, we should first minimize

their development effort, and then maketheir deployment easy. This dissertation proposes

a rapid prototyping methodology for user-to-user applications and a rapid deployment

approach called dynamic network deployment.

Chapter Organization and Overview

The dissertation consists of five chapters. Chapter 1 is the foundation for the subsequent

chapters. It first standardizes thesomewhat divergent terminology usedby the telecommu-

IX

nications and computer networkingcommunities, and then lays out a framework for termi

nal-network coordination for networked applications to deal with heterogeneity and

exploit flexibility. Then it motivates the two issues addressed by this dissertation - a rapid

prototyping methodology and a dynamic network deployment approach for user-to-user

applications.

Chapter 2 describes a heterogeneous approach to rapid prototyping based on superim

posing models of computation on general-purpose programming languages and mixing

models of computation. It focuses on the design support for complex control functionality,

which is common in application and service configuration in telecommunications net

works and terminals. I describe specialized models of computation for specifying control,

in particular one based on hierarchical finite state machine semantics. The control model

can be mixed with other concurrency models such as dataflow, synchronous/reactive sys

tems, and discrete event. I discuss the semantic issues on the interaction between models.

In Chapter 3,1 describe the implementation of the results of Chapter 2 in the Ptolemy

software environment. I also express opinions drawn fi:om the experience with using this

approach to design example applications.

Chapter 4 describes the dynamic network deployment approach, which transfers soft

ware-defined user-to-user applications over the network to programmable terminals

dynamically at session setup. This approach bypasses the network extemality problem, a

major obstacle to the rapid deployment of user-to-user applications, and should encourage

a proliferation of this class of networked applications. I first investigate this approach in

general, and then work out a design, including the system architecture and protocols,

based on the standard, widely disseminated framework of Java and World Wide Web

HTTP (HyperText Transfer Protocol) servers and browsers.

Chapter 5 presents the concluding remarks and points out open issues.

Note that the rapid prototyping methodology presented in Chapters 2 and 3 and the

dynamic deployment approach presented in Chapter 4 can be read independently. More

over, Chapter 2 is in fact applicable to other application domains as well, for example

embedded system design.

Acknowledgments

I would like to thank my research advisor. Prof. David Messerschmitt, for his guidance of

my research. I have learned a lot from his experience, visions, and unique perspectives.

Some ideas in this dissertation were originally inspired by him. 1 would also like to thank

Prof. Edward Lee, who is practically a second advisor to me, for his guidance of my work

on the rapid prototyping methodology. I would like to thank Prof. John Rhodes of the

Mathematics Department for serving on my dissertation committee and reading my disser

tation. I would like to thank Stephen Edwards, Brian Evans, Alain Girault, Weiyi Li, and

Jose Pino for their careful review and honest critique of my dissertation. The work pre

sented in this dissertation has benefited greatly from discussions with Joe Buck, Stephen

Edwards, Alain Girault, Bilung Lee, Weiyi Li, and Kennard White. I would like to thank

everyone in Dave's and Edward's research groups for the collaboration. I would like to

thank my parents and the Semiconductor Research Corporation (SRC) for their financial

support for my graduate study.

Berkeley, California Wan-teh Chang

December 1996

XI

Vita

Wan-teh Chang (5SS^) was bom on August 30, 1966 in Tainan, Taiwan, Republic of

China and spent his boyhood in the suburb of Kaohsiung. He received a B.S. in electrical

engineering from National Taiwan University in 1987. After two years' military service in

the army, he came to the US for graduate study at the University of California at Berkeley.

His intellectual interests are mathematics, computer programming, and linguistics.

Xll

1

Framework

1.1 Introduction

User-to-user networked applications provide audio-visual conimunication or some other

shared functionality between two or more human users distributed across a network.

Examples of user-to-user applications include general telecommunications applications

(e.g., voice telephony, videophone, video conferencing, facsimile, and modem) and col

laborative applications (e.g., shared whiteboards and shared editors) [1][2]. The number of

user-to-user networked applications available today is small compared with stand-alone or

user-to-information-server applications. Although the telecommunications industry has

existed for over 120 years, we still have relatively few telecoimnunications applications.

(Nevertheless, these teleconununications applications are of broad interest and very suc

cessful.) In sharp contrast, anyone walking into a computer software store will be amazed

by the large number and wide variety of stand-alone applications available for personal

computers. In the past decade we have seen some networked applications emerging on the

Internet, such as electronic mail, newsgroups, file transfer, gopher. World Wide Web

browsing [3][4][5], talk, chat [6], and groupware [7], but their number is still small com

pared with the number of stand-alone applications, and most of them are user-to-informa-

1

tion-server, rather than user-to-user applications. (Chapter 7 in Tanenbaum's textis a good

introduction to many of these Internet applications [8].)

Why are there so few user-to-userapplications?Perhaps inherently there are just fewer

compelling user-to-user applications. However, I argue that this is because user-to-user

applications face unique design and deployment difhculties that do not exist for stand

alone or user-to-information-server applications, so that they havebeen avoided by appli

cation developers. To rectify this situation, I propose a rapid prototypingmethodology for

user-to-user applications, addressing what is particularly difficult about their design, and

suggest a new method to deploy a user-to-user application that avoids the obstacles to the

traditional way of deploying them. These points will be elaborated in Section 1.6. As a

preparation, I first standardize the terminology and express my opinion on what should

happen during the execution of a networked application. This will serve as a framework

for subsequent discussion.

1.2 Taxonomy of Networked Applications

I have used the terms networkedapplication, user-to-user, and user-to-information-server

without formally defining them. What exactly is a networked application, and how is a

user-to-user application different from a user-to-information-server application? In this

section I would like to classify networked applicationsand standardize the usage of termi

nology in this dissertation. Although the fields of telecommunications and computing are

converging, the distinct terminologies used by the two communities for the same or similar

ideas are often a barrier to the communication and healthy cross-fertilization between

these two fields. Therefore, it is instructive to establish a standard terminology. I follow

the terminology and taxonomy of networked applications proposed by Messerschmitt in

his paper on the convergence of telecommunications andcomputing [9]. (There is an ear

lier, condensed version [10].) The taxonomy is similar to thatproposed by Fluckiger [11].

An application is a collection of functionality that provides value to a human user. A

networked (as opposed to stand-alone) application has its execution distributed across a

distributed networking and computing environment. Because this dissertation is concerned

with networked applications exclusively, the word "networked" is often omitted where

there is no possibility of confusion. I use the layered network model proposed by Messer-

schmitt, illustrated in Figure 1.1 [9]. (This network model is a simplified version of that

proposed by the National Research Council [12].) In this layered model, applications are

at the top level. Examples of networked applications are telephony, video conferencing,

electronic mail, database access, file transfer, and World Wide Web (WWW or Web)

browsing [3][4][5]. Below applications are the services^ which are the more generic func

tions provided by terminals and networks to the applications. Services include the trans

port of various types of data (audio, video, data, etc.) by protocols such as Transmission

Control Protocol (TCP) [13][14] and Real-time Transport Protocol (RTP) [15], and the

middleware services [16] such as directory service and encryption. At the bottom layer,

the bitways are the underlying conduits of bits, including network technologies such as

Applications

Bitways

Figure 1.1 The layered network model.

Asynchronous Transfer Mode (ATM) [17][18][19], wireless access [20][21][22], Ethernet

[23], etc. and internetworking protocols such as Internet Protocol (IP) [13][14].

Networked applications can be divided into two classes according to the number of

users involved (see Figure 1.2).

• User-to-user applications, which involve two or more users. Typical user-to-user

applications are general telecommunications applications, such as voice telephony,

video conferencing, electronic mail, and voice mail, or collaboration of users in some

shared task, such as the computer-aided design of a system or generation of a proposal

or paper.

• User-to-information-server applications, in which a human user interacts with an

information server computer. Examples of user-to-information-server applications

include video on demand, WWW browsing, and file transfer.

In the temporal dimension, networked applications can be divided into immediate applica

tions, whose user participation is at the same moment, and deferred applications, whose

user participation can be delayed to a later time. For example, voice telephony is an imme

diate application. The two parties in a phone call must participate simultaneously. On the

other hand, voice mail is a deferred application. The sender leaves a message in the voice

mail server (usually when the receiver is not available to answer a phone call), and the

receiver plays back the message at a later time.

User

ft
1

User User Information

server

y

Figure 1.2 User-to-user and user-to-lnformation-server applications.

Networked applications have the following two implementation architectures, shown

in Figure 1.3:

• PeeMO'peer architecture, inwhich two users each interact withpeercomputers or ter

minals, which inturn communicate over the network toprovide shared functionality to

the two users. There are no central servers in this architecture. This architecture

matches user-to-user applications naturally. For example, the talk program on Unix

workstations uses the peer-to-peer architecture to implement a user-to-user text-based

communication apphcation.

• Client-server architecture, in which a user interacts with a client computer or terminal,

which in turn communicates over the network with a servercomputer [24][25]. The

server is notdirectly associated with another user, butrather provides services or func

tionality to the remote user. Usually the server implements the main functionality, and

the client is simple, primarily implementing the user interface. The centralized server

can usually handle multiple clients simultaneously. Clearly, a user-to-information-

server application must be implemented with a client-server architecture, but a user-to-

user application can also be implemented with a client-server architecture. For exam-

Peer-to-peer architecture: talk

Peer Peer

Client-server architecture: chat

Client Client

J Server

Peer Peer Client

Figure 1.3 Peer-to-peer and client-server architectures.

Client

pie, Internet Relay Chat (IRC) uses the client-server architecture to implement a user-

to-user text-based communication application [6]. Another example is CU-SeeMe for

video communication on the Internet [26] [27] [28].

Whereas the primary distinction between peer-to-peer and client-server architectures is

whether a central server is involved, the detailed implementation characteristics typically

differ as follows:

• Peer-to-peer architecture is typically fairly symmetric between the two peers with

respect to network traffic, while client-server architecture is typically asynunetric. A

server usually generates more network traffic than the client does.

* A server does not originate session establishment requests, but must be willing to

receive a request at any time, and thus needs to be running at all times. A client only

originates establishment requests at the initiative of the user, and thus only needs to be

running at the behest of the user. Peers are an intermediate case: each peer must

respond to establishment requests as well as initiate them, and must be running any

time the user is available to participate in an application. Therefore, a peer can be

viewed as a hybrid of a client and a server.

1.3 Execution of Networked Applications

Having defined the terminology, I now discuss the issues in the execution of networked

applications in a heterogeneous environment. A networked application may need to run on

different kinds of terminals, such as telephones, desktop computers, and hand-held mobile

devices. The terminals may send and receive different kinds of traffic (audio, video, data,

etc.) over a concatenation of different kinds of network transport (broadband ATM net

works, wireless access, etc.). The network architecture and protocols should be able to

handle the heterogeneity and exploit the flexibility in applications, terminals, and network

transport. In this section I survey the current work in this active area of research.

1.3.1 Increasing Heterogeneity and Fiexibiiity

The traditional telecommunications network is an infrastructure dedicated to the provision

of only one application, namely voice telephony, which is functionally simple and of uni

versal interest. There is some heterogeneity in that the network elements are manufactured

by multiple equipment vendors and operated by multiple service providers, but it is a rela

tively homogeneous environment. In the future we will see increasing heterogeneity in

applications, network transport, and terminals. The applications will have more complex

functions, and typically will combine multiple media such as voice, images, video, and

data that have different traffic characteristics and quality-of-service requirements. Confer

ence and collaborative applications will have multipoint participants, giving rise to more

complex connections. The terminals vary widely in their display and processing capabili

ties, ranging from powerful desktop computers to more restricted hand-held mobile

devices. The network transport media vary widely in bandwidth, delay, and error mecha

nisms, ranging from the high bandwidth and low error rate of ATM to the more scarce

bandwidth and high bit error rate in wireless access.

Expected to operate in such a heterogeneous environment, applications, terminals and

networks must be increasingly flexible [29]. They should be configurable in order to han

dle the differences in the coding formats, capabilities, and available bandwidth and pro

cessing resources of the components. The components should also dynamically adapt

themselves to changing conditions. All these goals should be achieved with low cost and

high subjective quality.

1.3.2 A Carefully-Crafted Architecture to Manage Complexity

It is important that the future networks, applications, and terminals be flexible in order to

operate in a heterogeneous and dynamic environment. New objectives, which are mutually

dependent and sometimes even mutually conflicting, need to be achieved. As pointed out

by Yun and Messerschmitt [30], a possible set of objectives are:

• handling the heterogeneity in applications, terminals, and network transport;

• high subjective quality and low perceived delay;

• high traffic capacity;

• multicast, multi-source connections;

• mobility;

• privacy by end-to-end encryption.

To achieve these objectives requires a complex coordination between the applications, ter

minals, and networks. How should we organize this complicated coordination? This is a

complexity management problem. The first step to manage complexity is to have a well-

crafted architecture, which divides the system into interacting modules with well-defined

interfaces that minimize and control the dependencies [31]. Before I describe a possible

architecture, I will first define some terminology.

• Session: A session is an execution of an application. For example, a session of voice

telephony is a phone call.

• Signaling: It is a common practice to divide networking functions into data delivery

and control. Control functions include coordination and configuration. In telecommu

nications terminology, the exchange of information between applications, terminals,

and networks for the purpose of realizing control functions is called signaling

[32][33].

8

In Section 1.4,1 first review a proposed data delivery approach. Then in Section 1.5,1

describe the control of such data delivery.

1.4 Data Delivery

Data should be delivered via substreams with optional quality ofservice guarantees. I now

explain these two notions.

1.4.1 Quality of Service

Audio-visual data, such as voice, still images, and video, are different from computer data

in many aspects.

• Audio-visual data are sampled and quantized versions of analog signals. The digital

representation of these analog signals may have different resolutions (e.g., image size,

number of bits per pixel, etc.), which represent different temporal-spatial sampling

rates and quantization steps.

• Audio-visual data can be mixed and superimposed. This is especially useful in confer

ence applications where there are multiple sources. Mixing the traffic from the multi

ple sources can cut down the incoming bandwidth to a receiver. These operations do

not make sense for general computer data.

When transported over the network, audio-visual data are also different from computer

data.

• The transfer of computer data, such as computer programs, cannot tolerate any error,

while audio-visual data can tolerate moderate errors (except in some safety-critical

applications like biomedical imaging), which correspond to distortion in the equivalent

analog representation.

• Audio and video are also called continuous media [34][35]. Continuous media are

streams of temporal samples, and hence their live reconstruction at the receiver

imposes hard real-time requirements on the throughput and latency of the network

transport. On the other hand, for computer data and still images, low throughput or

long delay in general does no harm other than annoying impatient users.

These points are summarized in Table 1.1.

Table 1.1. Quality of service requirements for different media.

Media type Error Delay

Computer data none tolerant

Continuous media tolerant strict if

(audio and video) interactive

Still images tolerant tolerant

Audio-visual data have quality ofservice (QoS) objectives that need to be satisfied by

the transport. There are many proposed ways to describe QoS [36][37], but in general, bit

rate (throughput), latency, and reliability/error (loss and corruption) are the three dimen

sions of QoS. Each of these dimensions can be described by some parameters. For exam

ple, sourcebit rate can be characterized by simple numbers like peak and average rates, or

a more dynamic temporal characterization like leaky buckets [38][39], which are used in

policing functions. In latency, the parameters would be maximum delay, average delay,

delay jitter (variance in delay), etc. In the error dimension, loss and corruptionshould be

distinguished for audio-visual data, where corruption (inaccurate information) is often bet

ter than loss (no information). Corrupted audio-visual data can often be utilized and

should not be simply discarded. Moreover, if the protocol uses retransmission for error

control, a corrupted version can be displayed first to let the user have something to look at

very quickly, and it is successively improved as retransmitted packets arrive. This way we

10

can achieve asymptotic reliability while reducing the perceived delay. This approach has

been appliedto still imagesand graphics in a wireless computing environment [40].

All the above QoS parameters are concemed with just one stream of data. Inter-stream

QoS parameters can also be defined, for example, the synchronization of audio and video

streams.

1.4.2 Substreams for Variable Quality of Service

I have explained why streams of different types of data should receive different QoS treat

ment from network transport. But even within a stream, some portions may still be more

important than others. This notion of variable QoS is obvious for reliability/error. For

example, in uncompressed, pulse code modulation (PCM) samples, the most significant

bits of each sample are less tolerant of bit errors than the least significant bits. After com

pression, some bits may become almost intolerant of bit errors (e.g., the motion vectors in

motion compensation). These differences in error susceptibility benefit from different

qualities of service from the network transport. Error protection mechanism, such as

redundancy coding and power control, can be applied using this information to allocate the

resources optimally; we do not need to protect a bit more than is necessary.

In addition to variable loss and corruption, we can also exploit variable delay. For

example. Asynchronous video does not use the traditional synchronous, frame-by-frame

reconstruction. It allows components of a frame to have different delays. The visually

important component would have a low delay, while the visually less important compo

nent would have a higher delay. By relaxing the worst-case delay and hence smoothing

traffic, asynchronous video achieves a perceived delay less than the worst-case delay and a

higher traffic capacity [41][42].

Thus a stream could be further subdivided into substreams. The data in each substream

should be treated identically in terms of QoS. (Messerschmitt uses the term substream to

11

denote a subset of a stream that should receive the same QoS [43]. In Internet Protocol

version 6 (IPv6), this notion is called a. flow [44][45].) As a simple example, a stream of

PCM samples can be divided into two substreams, one carrying the most significant bits

and the other carrying the least significant bits. The transport should endeavor to deliver

the most significant bit substream with a lower error rate.

Data transport should be performed as a set of end-to-end substreams. The difference

between streams and substreams is that substreams coming firom the same stream have

additional information available on their joint behavior (e.g., joint rate) that the network

transport might be able to exploit. Note that variable QoS control and the reconstruction of

streams from substreams at the receiverpotentially have high overhead.

The substream structure is motivated by the interaction between signal processing and

networking for continuous media [43]. In the above I have given a motivation: variable

QoS. A second motivation forsubstreams is to transport scalable, layered coding of audio

[46] andvideo [47][48][49]. Each layer is transported asa substream. Using this approach,

we can easily vary the quality of video, such as the resolution or rate, especially in a mul

ticast context where the receivers have different capabilities (access bandwidth or display

resolution). Transporting layered coding in substreams also helps the network to adapt to

changing network traffic conditions dynamically by selectively throwing away packets in

less important substreams (this can be used in bothpoint-to-point and multicast connec

tions).

1.4.3 Remarks: Quality of Service Guarantee vs. Best Effort

There are two schools of thought on real-time networked applications. One school pro

poses guaranteed QoS, usually achieved by reserving resources such as bandwidth, buffer

space in routers and switches, processing, and display resolution [50]. This results in sim

pler applications but more complicated networks, because the networks must realize QoS

12

guarantees. The other school advocates best effort network transport and (bandwidth)

adaptive applications. The applications observe the current network conditions and

dynamically adaptthemselves accordingly. Network transport would do theirbesteffortat

light load, andenforce fairsharing of resources at heavy load [51][52]. Thephilosophy of

this school is that resources like bandwidthprobably will not be scarce in the future, while

the signaling complexity to achieve QoS guarantees may offset the benefits gained.

Indeed, the processing overhead to achieve the QoS guarantees maybe extremely high, as

the scheduling problems involved are often intractable.

Despite its high complexity, a compelling reason for QoS control is interactive delay,

which experiments show should be less than 400 ms in critical interactive applications.

(Asynchronous video [41][42] and asymptotic reliability [40] are two approaches to

reduce the perceived interactive delay.) Another compelling reason is the traffic capacity

on wireless access links. The limited bandwidth on wireless links is a lasting bottleneck,

which will not go away with improving technology.

In the next section, I will discuss the session control for the guaranteed QoS approach,

which has a more complicated session establishment procedure than the best effort

approach.

1.5 Session Control

I now discuss the control a session, i.e., the application-terminal-network coordination at

session establishment and during a session.

1.5.1 Session Establishment

How should a session be established? An application needs to coordinate with the network

and terminals to configure the service they provide. The network and terminals also need

to coordinate among themselves. I will describe a general model that works for both tele-

13

communications [53][54][55][56][57] and computer networking [58][59][60]. If certain

assumptions are made about the network or terminals in the model, simplifications ensue.

They can explain the differences in the cultures of the telecommunications and computer

networking conmiunities.

In general, a session establishment would consist of the following mutually dependent

steps. (The order of these steps is not definite. Also, some steps should ideally be per

formed jointly to reach a truly optimal solution.) These steps may take place as follows.

• Dynamic deployment. Usually applications are built into the terminals, for example,

telephone sets and videophones. If an application is implemented in software, applica

tion functionality does not have to be built into the terminals. Application descriptions

can be downloaded from some repository to programmable terminals at startup time.

This optional dynamic deployment step is elaborated in Section 1.6.2.2.

• Presenting a session model: The applicationstarts execution and sends a session setup

request to the network. In the session setup request, the application presents to the net

work a session model, which is a collection of abstract connections. An abstract con

nection is a high-level logical model of the connection with only minimal information

such as media type and terminal descriptions. For example, the video connection in a

multipoint video conference would be described by its media type (video), network

addresses of the participants, and their video coding formats and display capabilities.

How this multipoint video connection can be realized is determined in the next step.

• Realizing the abstract connections: The terminals and networksjointly determine what

resources are necessary to realize the abstract connections in the session. The

resources include physical network connections (both point-to-point and multicast), so

this involves solving the routing problem. The resources may also include processing.

14

such as conversion (to match the different access bandwidths and processing/display

capabilities of the terminals) and composing (in multi-source connections) functions.

• Negotiation, resource allocation, and admission control: The application data will be

delivered over the network connections as substreams with QoS requirements. The

application, terminals, and networks negotiate the end-to-end QoS for each substream,

subject to cost constraints. They may also negotiate where (in the terminal or network)

the conversion and composing functions should be performed. A concatenated net

work needs to allocate the end-to-end QoS to the constituent links. If an agreement

cannot be reached, the connection is not admitted.

• Configuration: Finally, each terminal and network link configures itself according to

the negotiation agreement.

If conditions in the network or terminals change during the session, this process may be

repeated dynamically to adapt to the changing conditions. In the following subsections, I

elaborate on some of the steps.

1.5.1.1 User Involvement: Initiating and Responding Users

In inunediate user-to-user applications, responding users are invited to join a session. So

session establishment has an additional alerting step (for example, the phone rings) to

notify the user of an incoming call.

1.5.1.2 Aiiocation of Quality of Service and Processing

In a concatenated network, we need to allocate the given end-to-end QoS objective onto

the constituent subnetworks operated by multiple service providers. This is a disaggrega-

tion of the QoS model, as shown in Figure 1.4. We also need to perform the inverse opera

tion, the aggregation of QoS models for the constituent subnetworks into a single end-to-

15

end QoS model. Therefore, the QoS models must be able to be aggregated and disaggre

gated, in addition to describing the needs of the applications.

Some processing functions, such as composing (e.g., conference bridges [61]) and

conversion functions (e.g., transcoders or the proxy architecture of Fox and Brewer for

mobile clients [62])can be performedeither by the terminals or by the network,or even by

some third-party service providers. Where such processing should be allocated depends on

the routing and the relative costs for these entities to perform the processing. Shih-Fu

Chang has done some work on the allocation of video composing functions in his Ph.D.

dissertation [63].

1.5.1.3 Negotiation of Quality of Service and Processing

In a heterogeneous network environment, an end-to-end connection consists of concate

nated links with different QoS characteristics, possibly operated by different service pro

viders. At session establishment, there must be a complex negotiation among endpoint

terminals and the network, as well as among network entities, to arrive at a mutually

acceptable set of QoS (delay, loss, corruption, rate) guarantees that also meet user cost

objectives. This is a form of terminal-network signaling.

One possible model to carry out the QoS negotiation is to use negotiating agents. In

the negotiation, a component, which can be an application, terminal, or network link, is

End-to-end QoS

QoS —• QoS —> QoS —• QoS

Figure 1.4 QoS disaggregation.

16

represented by an autonomous entity called an agent [64][65]. An agent encapsulates rele

vant information about a component, such as its cost and performance models (as func

tions of resources), resource coupling, current network conditions, and negotiation

strategy. The negotiation agents jointly seek to optimize some metric, for example, to

maximize performance subject to cost constraints, or to minimize cost subject to perfor

mance constraints. This optimization is logically distributed, represented by the negotia

tion strategy of each autonomous agent. In general it needs several rounds of information

exchange because of the lack of a centralized entity, the inherent complexity of the optimi

zation problem, and the **give and take" nature of negotiation. Although agent negotiation

has a valid goal, its overhead must be minimal for it to be practical.

If the agents are stationary, they have to negotiate with each other across the network

using message passing or remote procedure calls (RPC). With many rounds of information

exchange, the end-to-end propagation delay and the signaling traffic overhead can become

expensive, as shown in the top half of Figure 1.5. In particular, propagation delay is funda

mentally constrained by the speed of light. It cannot be decreased by progresses in net

working technology.

A viable approach to avoid the propagation delay and reduce signaling traffic overhead

is to apply techniques from transportable computation^ where itinerant agents can move

around the network to accomplish their tasks [66][67]. A component would send an agent

to the site of another component, as shown in the bottom half of Figure 1.5. Then the two

agents' interaction becomes local and does not go through the network. Only when the

negotiation is done is the result sent back across the network to the component. If the

negotiation involves multiple parties, the agents would all physically move to a centralized

place (the negotiation engine) and conduct the negotiation there locally, as shown in Fig

ure 1.6.

17

Note that the itinerant agent approach does not change the functionality of the negotia

tion; the same functionality is realized whether the agents are stationary or itinerant. How

ever, the itinerant agent approach offers two potential advantages. First, it is a new

programming abstraction, a new way of thinking about network programming. In some

cases the itinerant agent abstraction may be more natural than the message passing or RFC

abstraction. Second, the itinerant agent approach may reduce the networking overhead in

negotiation. The overall network latency is the sum of propagation delay, which is the

geographical distance divided by the speed of light, and the transmission delay, which is

the number of bits to transmit divided by the transmission rate. Since an agent contains

complicated program code (the negotiation strategy, optimization algorithms, etc.) and

data (the cost and performance models, traffic conditions, etc.), it takes longer to transmit

an agent than simple messages. But the itinerant agent approach incurs propagation delay

agent •
4 agent

Negotiation by message passing or remote procedure caiis requires
many signaiing message exchanges, each adding a round-trip delay.

agent

result
agent agent

if an agent moves to the premises of the other entity and negotiates locally
with the agent there, the interaction does not go through the network.

Figure 1.5 Message passing vs. itinerant agents in service negotiation.

18

less often, only when the agent and the result are transferred. As transmission rate

increases, eventually the propagation delay will dominate the overall latency. Therefore,

the itinerant agent approach has a potentially superior performance to message passing or

RFC in situations with high transmission rate, long geographical distance, and extended

rounds of interaction.

Because itinerant agents are executable programs coming from remote sources, secu

rity is an important issue. Programming languages with built-in security mechanisms, such

as Telescript [68][69], Safe-Tcl [70][71][72], and Java [73][74][75][76], must be used to

write the agent programs. More details on applying agents to QoS negotiation and tele

communications signaling can be found in Weiyi Li*s Ph.D. dissertation [77].

1.5.2 During Session

When a session is in progress, two actions can be taken to respond to changing network

conditions.

O

Negotiation
agents

o o o

Negotiation Engine

Figure 1.6 Negotiation agents ail move to a centralized place, the negotia
tion engine, and perform the negotiation locally.

19

• Renegotiation: In principle, when the network promisesa QoS guarantee to an applica

tion, the network shpuldobey its contract. However, a session may spana longperiod

of time. It is likely that in the middle of a session the network condition has changed

significantly from the time the session was established. The network may want to

request the application to lower its QoS objective so that more users can be admitted.

A renegotiation of QoS would be required. Another reason for QoS renegotiation is

that the application's QoS objective may change during a session. For example, some

video compression algorithms, such as MPEG [78][79], produce variable bit rate out

put streams. The bandwidth requirement should be renegotiated during a session,

tracking the output rate of the video coder, to make efficient utilization of the network

bandwidth resource [80][81][82].

• Dynamic adaptation: If the network offers best effort service with no QoS guarantees,

an application can be written to be aware of the current traffic condition and adapt

itself dynamically in response to changing network conditions. For example, a voice

telephony application on the Intemet may switch to a more aggressive (and hence

lower quality) compression algorithm when it detects that the network has become

congested.

1.5.3 Remarks: Intelligent Network vs. Intelligent Terminai

Telecommunications has taken the network-centric, intelligent network view [83][84]. The

terminals are minimal (e.g., the telephone sets), and the network performs some of the

application functions, such as mixing (by conference bridges) and transcoding [61]. There

are economic reasons behind this: network service providers would like to offer bundled

services.

20

On the other hand, computer networking (the Internet) has taken the intelligent termi

nal view. The terminals are intelligent, such as personal computers and workstations, and

network is minimal, acting as a conduit of bits. All the conversion and mixing functions, if

deemed necessary, are performed by the terminals. The network provides best effort trans

port, which is considerably simpler, and the applications run adaptively on the terminals.

The computer networking community has begun to take some of the intelligent net

work flavor. For example. Fox and Brewer's proxy architecture [62] enables a mobile cli

ent terminal, which typically has low access bandwidth, low processing power, and low

display resolution, to access a Web server by transparently converting the full-resolution

data to a lower-quality version that can be handled by the mobile client. The proxy is a ser

vice provided by the network for the client terminals.

Even in the realm of functions that must be performed by network nodes, such as net

work control and management (routing, charging, billing, etc.), recently there have been

proposals for exposing an open interface for end terminals to access and program these

network functions. I give two representative examples here. The xbind project, leaded by

Lazar at Columbia University, defines an object-oriented programming model and an

application programming interface to ATM networks for the creation, deployment, and

management of multimedia applications [85]. Tennenhouse and Wetherall of the Labora

tory for Computer Science, MIT advocated an active network architecture that allows

users to inject customized programs into network nodes to perform computation (e.g.,

compression) on the user data flowing through them or to tailor the node processing to the

user application [86]. Although the two approaches use different technologies (xbind uses

remote object method calls; the active network uses transportable computation), they real

ize the same goal — allowing users to program the network.

21

1.6 Scope of Dissertation

In this section, I identify the scope of my dissertation in the framework that I have laid out.

Now we revisit the question asked at the beginning of this chapter: why are there so few

user-to-user applications? To answer this question, I examine their design and deployment,

two important phases in bringing new applications from ideas to reality. My dissertation

addresses the issues in these two phases. The contributions are:

• a design methodology that is tailored to the design of networked applications, in par

ticular the control functionality, which is a dominant component of network protocols;

* a dynamic deployment approach that avoids the standardization and network external

ity barriers faced by new user-to-user applications in their deployment.

Applications developed using the design methodology can be deployed to the hands of the

users using the dynamic deployment approach at session establishment. The goal is that by

reducing the design effort and avoiding the deployment obstacles, we can encourage a pro

liferation of compelling user-to-user applications. The issues and proposed approaches are

described below.

1.6.1 Design

1.6.1.1 Design Challenges

I first argue that networked applications, in particular user-to-user applications, are inher

ently more difficult to design than stand-alone applications. Networking protocols usually

have intricate control functionality, which is hard to specify and verify the correctness

[87]. Therefore, the networking component in networked applications presents additional

complexity to the design task. In addition, as I point out in Section 1.3.1, terminals and

network transport are becoming increasingly heterogeneous and flexible. It is especially

challenging to design networked applications that can deal with the heterogeneity in termi-

22

nals and networks while simultaneously exploiting their flexibility. The next generation of

networked applications should beable tonegotiate, coordinate, and reconfigure inorder to

interoperate, use resources efficiently, and achieve the best subjective quality. All this

complicated interaction between applications, terminals, and networks adds complexity to

the control functionality in applications as well as in terminals and networks. Therefore,

the design of sophisticated control is key in the design process of networked applications.

Control in user-to-user applications is especially hard to design. User-to-user applications

implemented in thepeer-to-peer architecture must usedistributed control, which is usually

symmetric interaction and complicated. They cannot use the centralized control imple

mented by the client-server architecture, where the interaction is often of the simpler

request-response type.

1.6.1.2 Rapid Prototyping Methodology

To minimize the development effort, I propose a design methodology for user-to-user

applications. The design methodology combines specification, simulation, verification,

and synthesis all within an integrated environment. The design environment, based on

Ptolemy [88], has special design support for the sophisticated distributed control in user-

to-user applications. It also has design support for the other parts of user-to-user applica

tions, for example signal processing.

To model and design a system composed of diverse subsystems, I advocate a heteroge

neous approach. The approach superimposes models ofcomputation such as dataflow and

finite-state machines on standard programming language such as C++ [89], Tel [90], and

Java [73][74][75]. Systems are constructed by interconnecting modules. A model of com

putation coordinates the interaction between modules, which can be primitives in the

model of computation or programs written in a standard programming language. Domain-

specific models of computation can be mixed and combined to achievegenerality.

23

In the Ptolemy design environment, a design is specified using a mixture of visual and

textual descriptions. A design can be simulated to validate its functionality and critical

properties can be checked at compile time. Finally, an implementation in software or a

hardware description language (e.g., VHDL) can be automatically synthesized.

1.6.2 Deployment

1.6.2.1 Deployment Obstacles

Once new networked applications have been developed, they are still difficult to deploy

quickly. Certain closed network architectures prevent easy introduction of new applica

tions. If applications are implementedby the network, then to introduce a new application

or modify an existing application requires upgrading some or even all of the network

nodes. What is worse, this upgrade has to be done by the network operators. On the other

hand, if an application is implemented in the endpoint terminals, then only those users

who want the new application need to upgrade their terminals, and the userscan upgrade

independently of the network. In fact, this fragmentation of application space and auton

omy of users are characteristic of the computer industry and are one main reason behind

its booming growth.

For example, the voice telephony application uses the usual POTS ("plain old tele

phone service'') telephone sets as terminal equipment. All the application functionality

and features, such as digital voice coding, call forwarding, and call waiting, are imple

mented by the network. Todeploy new functionality or features, it is necessary to modify

the network nodes. This not only can be a large-scale, comprehensive operation but also

requires the cooperation of the network operators. The users have no choice but to wait for

the network operators' action.

An opposite example is the voiceband modem, whose functionality is implemented in

the terminals (the modems). In recent years we have seen the data transmission rate of

24

modems rising from 300 bits per secondto 28.8 kilobits per second. For the samereason,

we have seen faster progress in the networked applications on the Internet. Most of the

Intemet applications are implemented in the terminals, which are computers or worksta

tions with a lot of processing power. The network merely provides end-to-end transport.

When new applications come out, it is only necessary to upgrade theendpoint computers,

and only those who want the new applications need to upgrade.

The trend has clearly moved towards implementing application functionality in the

endpoint terminals. But even with this architecture, the progress and innovation in net

worked applications has long suffered from two major obstacles to the rapid deployment

of new networked applications. The first is the perceived need to standardize individual

applications to achieve interoperability. Standardization is a lengthy process and adds a

significant delay before the development can even start. The second is the community of

interest^ or what the economists call the network externality problem, where a sufficient

number of specialized terminals must bedeployed before a sufficient community of appli

cation participants exists [91][92][93]. The network externality problem is an especially

serious obstacle to the deployment of user-to-user applications implemented in the peer-

to-peer architecture. It has slowed down theprogress andinnovations in user-to-user appli

cations significantly.

1.6.2.2 Dynamic Network Deployment

With the high-performance microprocessors available today, many multimedia networked

applications canbe realized in software on programmable terminals suchas desktop com

puters and workstations. With high-speed networking, software-defined application func

tionality can be downloaded from a central repository to the terminals very quickly at

session establishment. This is called the dynamic network deployment of applications.

25

Java applets downloaded from Web servers to Web browsers are an example of dynamic

deployment [73][74][75].

Dynamic network deployment largely avoids the two obstacles to the deployment of

networked applications - standardization at application level and network externality.

Since the application software comes from the same source, interoperability is ensured

without need of standardization. Moreover, with dynamic deployment, the network exter

nality problem becomes less severe. The success of a new application would now depend

on a critical mass of standardized programmable terminals, which is easier to achieve than

a critical mass of specialized application terminals.

Dynamic deployment has the potential to save user-to-user applications from being

"second-class applications" and encourage a proliferation of innovative user-to-user appli

cations. Therefore, I propose to incorporate dynamic network deployment into the session

establishment procedure (see Section 1.5.1).

1.6.3 Relationships Between Chapters

Although the design methodology and dynamic network deployment approach can be

used independently, we gain the most leverage when they are integrated, as shown in Fig

ure 1.7. A new application is first prototyped in the design environment, using intuitive

high-level computational models such as dataflow, finite state machine (FSM) control, dis

crete event, and synchronous reactive systems. After the design is fully validated and

tested in the design environment, application descriptions in a language suitable for

remote execution such as Tel or Java are automatically synthesized from the high-level

specifications. The application descriptions are then stored in a repository and deployed

dynamically to the programmable terminals at session establishment.

We have previously demonstrated this combined design and deployment process using

Ptolemy as both the prototyping and run-time environment (the programmable terminals

26

were Unix workstations running Ptolemy), the Ptolemy interpreted language (based on

Tcl/Tk) as the application description language, and a custom dynamic deployment proto

col based on TCP [94]. In Ptolemy, we prototyped a software emulation of a telephone

set,^ using the synchronous dataflow model for real-time audio processing and finite state

interaction semantics

^FSM control^ ^iscrete event^

(Da.af.ow)

Design environment:
specify, simulate,
verify, synthesize

Application
description

Application design using
a mixture of models of
computation

Dynamic network deployment
of application description to
programmable terminals

Programmable Network: architecture Programmable
terminal and protocols terminal

Figure 1.7 Relationship between the design environment and the dynamic
network deployment.

1. A shared whiteboard and a shared text editor were also prototyped, though not in the Ptolemy environ
ment.

27

machines for control. The application description (a Ptolemy interpreter file) is relatively

small because it uses Ptolemy*s software library modules installed on the terminals.

Since Java was annoimced in early 1995, we have adopted Java as the application

description language for its better security mechanism. Our second implementation of the

dynamic deployment approach uses a Java-enabled Web browser such as Netscape Navi

gator as the run-time environment and the HyperText Transfer Protocol (HTTP) as the

dynamic deployment protocol [95]. We have demonstrated the dynamic deployment of a

text-based communication application (similar to talk on Unix workstations) and a shared

whiteboard on this standard, widely available framework.'

The remainder of the dissertation delves into the design and deployment issues in

depth. Chapter 2 describes the rapid prototyping methodology. The general philosophy of

the heterogeneous approach of Ptolemy and its application to heterogeneous design and

simulation have been published [88][96][97]. Therefore, Chapter 2 focuses on a computa

tional model based on hierarchical state machine semantics for the design of complicated

control. Chapter 3 describes the implementation of this methodology in the Ptolemy soft

ware environment and some example applications. Chapter 4 describes the dynamic

deployment approach. Chapter 5 gives concluding remarks and points out open issues.

1. Java code generation capability in Ptolemy is not finished yet at the time of this writing.

28

2

Rapid Prototyping Methodology

2.1 Introduction

In this chapter I propose a rapid prototyping methodology for networked applications

(both user-to-user and user-to-information-server applications). The methodology is an

application of the heterogeneous design approach of the Ptolemy design environment,

developed at the University of California at Berkeley, to networked applications. The het

erogeneous approach encourages designers to use domain-specificmodels of computation

to design different parts of the system. In Ptolemy, subsystem descriptions in different

models of computation are mixed by hierarchical nesting. A subsystem in one model can

be hierarchicallynested in a block in another model. Key to the heterogeneous approach is

to define the semantics of the interaction between hierarchically nested models.

Models of computation describe the following aspects of system functionality:

• concurrency and communication (or concurrency in short): the interaction (via events)

between concurrent components;

• control flow (or control in short): the sequencing of operations of an individual com

ponent.

29

I first review Ptolemy's interaction semantics formixing concurrency models. Then I

go on to the main theme of this chapter: mixing control models with concurrencymodels.

Because networked multimedia applications typically have a layer of sophisticated control

functionality (e.g., network protocols and user interface) overlaid on signal processing

operations (e.g., compression, error protection, and encryption), I examine hierarchical

state machine models for describing control, and study how to mix hierarchical state

machine control with concurrency models such as dataflow that describe numeric compu

tation.

In digital systems, control flow and numeric computation are usually structured into

separate control (usually a finite state machine) and datapath modules. I propose an alter

native scheme, called *charts (pronounced starcharts), for mixing state machine control

and numeric computation. In *charts, a subsystem in some concurrency model can be hier

archically nested within a control state, with the intended interpretation that the internal

subsystem describes the active portion of the datapath when the control is in that state. At

any time instant, the subsystem inside the current control state is active. The active sub

system is switched as the control makes a state transition. The *charts model is flexible.

Various concurrency models can be mixed with hierarchical state machines to obtain

essentially variants of Statecharts, the most popular hierarchical state machine model. I

describe the syntactic features of *charts and define its semantics by giving an execution

algorithm.

2.2 The Heterogeneous Design Approach

A networked application is a reactive system [98][99]. Reactive systems interact continu

ously with their environment at the speed of the environment. Reactive systems have real

time constraints, and are frequently concurrent systems.

30

The heterogeneous approach to system design seeks to combine a variety of design

methodologies and implementation technologies. Design methodologies are encapsulated

in models of computation, which define the semantics of the interaction between system

components. Examples of models of computation include dataflow (the dataflow model,

which originated from Dennis's seminal work [100], has many variants such as synchro

nous dataflow [101][102][103], Boolean dataflow [104][105], cyclo-static dataflow [106],

and dataflow process networks [107][108]), discrete-event, synchronous reactive systems

[109][110][111], and finite state machines [112]. Instead of using a monolithic model of

computation to describe the entire system, the heterogeneous design approach uses multi

ple models of computation to describe different parts of the system. The heterogeneous

approachis based on the belief that a collectionof small, domain-specific models of com

putation, when seamlessly combined, is better than a big, universal model of computation

for the specification of system functionality, synthesis of efficient implementation, and

verification of critical properties. The Ptolemy design environment, developed at the Uni

versity of California at Berkeley,supports the heterogeneousdesign methodology.

2.2.1 The Ptolemy Design Environment

Ptolemy is a system-leveldesign environment for signal processing and reactive, real-time

systems [88]. A system component is called a block in Ptolemy. (What Ptolemy calls a

block is called aprocess in many concurrencymodels.) Blocks can be composed to form a

subsystem, and they interact according to some model of computation. A block can be

hierarchical, containing a subsystem of other blocks. Ptolemy overlays high-level,

domain-specific models of computation (called the coordination languages) on top of gen

eral programming languages (called the host languages) such as C++ [89], C [113], Tel

[90], and Java [73][74][75]. An atomic block can be a primitive in a model of computa

tion, or its function can be specified by a piece of code in a host language.

31

Ptolemy mixes models of computation by hierarchical nesting, as shown in Figure 2.1.

A block in one model of computation may hierarchically contain a subsystem of blocks in

another model of computation. Such a hierarchical block, called a wormhole, is treated as

an atomic block by the model of computation on the outside.

2.2.2 Partitioning of Functionality

Networked multimedia applications frequently combine intensive numerical computations

with sophisticated control. Coding and decoding the audio and video signals require

sophisticated signal processing. But a sizable portion of the application functionality is in

control operations such as initialization, configuration, dynamic reconfiguration, adapta

tion, network protocols, and user interaction. A layer of control must be overlaid on top of

the signal processing.

In general, the fiinctionahty of an application can be partitioned into control (decision

making and sequencing of operations), numeric computation, and data manipulation.Each

of these aspects of applicationfunctionality has a distinct style, and there are domain-spe

cific design methods that work especially well. For example, dataflow models are t5q)i-

cally used for signal processing and numeric computation [101][102]. Hierarchical finite-

state machines, such as the Statecharts model [114] and at least 20 variants [115][116]

including Argos [117][118], are typically used for control. Data structures, such as linked

X

Figure 2.1 Mixing models of computations using hierarchy: shown here is
a subsystem of model of computation Y embedded in model of
computation X as a hierarchical block.

32

lists, stacks, and queues, are used for data manipulation. (Note that data structures are not

models of computation.)

2.2.3 Domain of Applicability

Ptolemy overlays models of computation on programming languages. The concurrency

(such as dataflow and synchronous reactive systems) and control (such as hierarchical

state machines) models augment the sequential control flow constructs available in imper

ative languages. The concurrency models also impose structures on the interaction

between concurrent components. The benefit of structured interaction between concurrent

components is analogous to the benefit of the previous stages of structuredprogramming:

structured programs are easier to understand and maintain.^ Moreover, if we use semanti-

cally small models of computation to describe the interaction between high-level compo

nents, the verification of some critical properties (at the level of the models of

computation), such as determinacy and freedom of deadlocks, remains decidable and can

be automatically performed. Lower level details, such as the manipulation of data struc

tures, are done using the underlying progranmiing languages.

2.3 Mixing Concurrency Models In Ptolemy

In Ptolemy, the execution of a block is divided into a sequence of discrete firings. A firing

is a quantum of computation. Ptolemy further requires that the execution of a subsystem of

concurrent blocks be divided into a totally ordered sequence of rounds. (A reason for this

requirement is to mix concurrency models, which is elaborated in Section 2.3.1.) The con

currency model defines what a round of execution is. Within each round, individual blocks

1. The first stage of structured programming (Dijkstra) is concerned with sequential programming. Control
flow structures such as if-then-else^for loops, and while loops are preferred over unstructured goto and
conditional branch statements. The second stage of structured progranuning is concerned with mutual
exclusion and synchronization in concurrent programming. Constructs such as conditional variables, crit
ical regions, and monitors are preferred over the primitive semaphores.

33

are executed, one firing at a time, in an order determined by the semantics of the concur

rency model. Firings within a round are in general only partially ordered. A firing of a

hierarchical block is defined to be a round in the execution of its constituent blocks.

In some concurrency models, such as synchronous reactive languages and discrete-

event models, the execution of a subsystem of blocks naturally has the structure required

by Ptolemy: a totally ordered sequence of rounds. Other concurrency models, such as

dataflow, may not impose sufficient ordering relations on the block firings to have the

required structure, so additional order relations, not intrinsic in the model, must be

imposed on the execution to turn it into a sequence of rounds. The additional order rela

tions in effect restrict the set of legal executions originally allowed by the execution policy

of the concurrency model.

In dataflow, firings are only partially ordered by data dependency. A natural definition

of a round in the execution of a dataflow graph would be a complete cycle. A complete

cycle is a minimal finite execution that returns a dataflow graph to its original state, where

the state of a dataflow graph is defined to be the number of tokens on each arc. An exam

ple is shown in Figure 2.2. For synchronous dataflow, a complete cycle, if it exists, can

always be found [101][102]. For the more general Boolean or dynamic dataflow, deter

mining whether a complete cycle exists is an undecidable problem [105], so there is no

obvious definition for a round of execution. A programming environment may leave the

definition of a round to the user.

2.3.1 Synchronized interaction Semantics

Ptolemy uses a synchronized interaction semantics to mix concurrency models [96]. Defi

nition of a round of execution is crucial for Ptolemy to mix concurrency models this way.

The algorithm is outlined below.

34

In Ptolemy, blocks communicate with each other by exchanging events. An event

denotes the intuitive notion ofaninstantaneous happening. Atany time instant, anevent is

either present or absent, and it may carry a value. A model of computation is timed if the

events in the model carry real-valued time stamps. For example, the discrete-event model

is timed. A model is untimed if its events do not have time stamps. Forexample, the syn

chronous dataflow model is untimed.

In orderto mixtimed models withuntimed models, weneedto impose time stamps on

untimed models. In Ptolemy, each round is assigned a time stamp whether the model is

timed or untimed. An untimed model ignores the assigned time stamps for its internal exe

cution, but use them for interacting with a neighboring model, which is possibly timed.

Time is stopped during a round. This means that the events within the same round,

although possibly causally related, are considered simultaneous. Time is advanced from

one round to another (see Figure 2.3).

(a) An SDF subsystem where every actor
consumes one token on each input and
produces one token on each output.

An arc from a group of firings
(enclosed In a bubble) to
another Is a shorthand for
saying that every firing In the
"source" group precedes
every firing In the "destination"
group.

i
01

t

A1 A2 A3 A4

i I i i
C1 —• 02 —• 03 —• 04

t _t .t .1
(b) Partial order of firings Imposed by the
dataflow model of computation.

1
02

t
i
I

k
1

(c) Partial order of firings after grouping the firings Into rounds.

Figure 2.2 Effect on partial orders of the quantum of computation.

35

A round begins withreceiving external inputevents from the environment of the sub

system. Then theenabled blocks fire and generate intermediate events, which in tumtrig

ger more block firings. When all the firings have finished, external output events are

delivered to the environment. In the following, I briefly describe some issues in resolving

the differences in models.

2.3.2 Generating Events

Events are usually generated by blocks in response to triggering input events. Then where

do the first input events that get a round going come from? Such an initial input event may

come from the external environment, or it may come from the simulator (in response to a

future event notice), or it may be generated without any triggering, e.g., by a source block

(ablock with no input), a latch, oraMoore finite state machined

The output events generated by a block become input events to other blocks. Models

differ in when the newly-generated events become available for other blocks waiting on

these events. There are three possibilities (the first two are synchronous models, the third

simulates asynchronous models):

time advance

Execution | >1 • •••
a round of execution

input firings intermediate firings output
events events events

Figure 2.3 in Ptolemy, the execution of a subsystem of blocics is struc
tured as a totally ordered sequence of rounds. Firings and
events within a round are partially ordered.

1. The outputs of a latch or a Moore finite state machine depend only on its current state. Therefore, its out
puts can be generated without waiting for input events.

36

• Generatedeventscan be used immediately within the current round.This amounts to a

"zero-delay" block. The initial events trigger intermediate events, which trigger other

intermediate events and eventually output events. To ensure that there exists at least

one behavior, we may either require that there be no causality loops (i.e., the firings

within a round are partially ordered, and hence there are no deadlocks) or use a fix-

point semantics to give meaning to cyclic dependency (e.g., the synchronous reactive

programming languages [110]). Furthermore, it is desirable that there is at most one

behavior, i.e., there is no nondeterminism in the computation resultsdue to the execu

tion schedule actually used. If a block in a model must wait until an event becomes

present, then it can be shown that there is no nondeterminism due to different execu

tion schedules used (e.g., in dataflow and Kahnprocess networks) [119][120][121]. If

a blockin a model may react to the presence or absence of an event differently, then

there is potential nondeterminism due to the actual execution order used in a round

(e.g., in some discrete event models). To eliminate such nondeterminism, blocks in

Ptolemy's discrete event model provide hints to the simulator so that it can constrain

the execution schedule and ensure that the emitter of an event is fired before the con

sumer of the event. Some models have a notion of consuming an event. An uncon-

sumed event may persist to the next round (e.g., via the FIFO arcs in dataflow). If not,

a latch block must be used to hold the event over to the next round.

• Generated events can only be used in the next round, e.g., systolic arrays and the 5-

cycles in VHDL simulators.

• Eventnotices^ rather thanevents, are generated for a future time, e.g., in discrete event

simulators. In Ptolemy simulation, a block when fired must return inunediately. This

implementation restriction is not a problem for synchronous models in the previous

37

two cases. To simulate asynchronous models, where enabled blocks may take an arbi

trary delay to react and generate outputs, Ptolemy uses the event-scheduling paradigm

[122][I23][124]. In this paradigm, an enabled block (e.g., triggered by an event) fires

(and returns) immediately and generates event notices with the times the events

are supposed to occur. An event scheduler maintains the event notice list and generates

the future events on behalf of the blocks at the right times in chronological order.

Remark: A block in such a model may be unable to generate future event notices, e.g.,

it is a wormhole containing another concurrency model. If we want to model a worm-

hole block with a nonzero delay, the trick is to have the wormhole block generate a real

output event (which would have the same time stamp as the triggering input event) and

feed the output event to a delay block, which generates a future event notice for the

wormhole block.

2.3.3 Time Advance and Round initiation

After a round of execution has finished, the next step in simulation is to advance the time

and initiate a new round. A round may be initiated by a triggering event, e.g., in discrete

event models. In this case, the time stamp of the round is set to be equal to the time stamp

of the triggering event. A round may also be initiated automatically without trigger. For

example, a synchronous dataflow system with its own source blocks and no external

inputs is always enabled for firing. In this case, the user must specify how the time is

advanced between rounds because timing information is irrelevant to and ignored by the

synchronous dataflow model. In Ptolemy, a synchronous dataflow system with no external

inputs advances its time between rounds by a fixed increment (called the schedule period

in Ptolemy) provided by the user.

38

Sometimes a subsystem that sits within another model (i.e., it is inside a wormhole

block) can initiate a round of execution without any trigger from the outside model. It

either does not need any trigger at all (e.g., a synchronous dataflow subsystem with no

external inputs, as mentioned in the paragraph above) or has its own intemal triggering

(e.g., a discrete event subsystem with intemal future event notices). In such cases, the

intemal subsystem of a wormhole block informs the outside model of the future time at

which it should be invoked. Where it does not violate the execution policy of the outside

model, the outside model fires the wormhole block at the requested time. (Note that this

mechanism for a wormhole block to schedule itself for future execution is not yet fiilly

implemented in Ptolemy.)

2.4 Formal Models for Specifying Control

Control is studied by many fields. (A common structure of a control system is shown in

Figure 2.4.) However, the word control is used in many senses, and the styles of control

studied by different communities can be quite different. Therefore the models or lan

guages suitable for describing each style of control functionality may be different.

In programming languages and digital electronic systems, control (short for control

flow) means the sequence in which operations are performed. Control (also called control-

Control unit

Control

A

r

Performance or
status feedback

Input
Process

Output

Figure 2.4 Common structure of a control system.

39

leVy control unit, etc.) also refers to the system component in charge of sequencing the

operations performed by other system components. The states of such a control module

typically correspond to the steps to perform a task or the operation modes. Therefore, the

control module's states usually have no algebraic structure and must be enumerated. Simi

larly, the control signals that the controlmodule sends to the controlled process typically

have no structure (usually denote various control actions such as select, switch, enable,

etc.) and must be enumerated. The state transition relation is best represented as a state

machine.

This style of control is distinct from the control most often studied by the control the

ory community, where the state variables are typically numbers and the control functional

ity seeks to ensure that the numeric state variables stay close to desired values or evolve

close to desired trajectories by giving numeric control parameters to the controlled pro

cesses. Because state variables are numbers, state transitions are best represented by dif

ferential (in continuous-time systems) or difference (in discrete-time systems) equations.

Note that this style of control actually performs intensive numeric computation.

Here I focus on the former style of control, i.e., sequencing of operations. The main

objective of this chapter is to develop specialized models of computation (both their for

mal semantics and visual syntax) for describing complex control functionality and mix

them with concurrency models such as dataflow. In the rest of this section, I first review

the most common models for specifyingcontrol flow in reactive systems.

2.4.1 Finite State Machines

A number of modem programming methodologies aimed at the domain of control-domi

nated applications are based on finite-state machines (FSMs) [112]. FSMs are based on

the intuitive notions of states and events, and have a well-developed mathematical theory.

FSMs can be represented visually by state transition diagrams. A generic state transition

40

diagram consists of nodes that stand for states and arcs that stand for transitions. There are

extended versions of state transition diagrams that have state nodes but replace the outgo

ing transition arcs from each state by an acyclic decision diagram (flowchart), for exam

ple, the ASM (Algorithmic State Machine) chart in logic design [125], the OC (object

code) automata format generated by some synchronous language compilers, and the inter

national telecommunication standard SDL (Specification and Description Language)

[126][127].

2.4.2 Hierarchical Finite State Machines

Simple FSMs have a major weakness: nontrivial systems have a very large number of

states. Modem solutions add hierarchy and concurrency to the basic FSM model. Hierar

chical state machines, such as Statecharts and its variants, are representative [114][115]. In

a Statechart, a state can be either atomic^ as in a basic FSM, or hierarchical. There are two

kinds of hierarchical states: sequential and concurrent. A sequential hierarchical state con

tains another (sequential) FSM. A concurrent hierarchical state contains multiple FSMs

operating simultaneously and communicating by event broadcast.

Statecharts retain the inherent concurrency in the control fimctionality to avoid the

state explosion in forming the Cartesian product of the state spaces of the concurrent

machines. Hierarchy in Statecharts organizes the state space and amounts to behavior

refinement and abstraction. The behavior during a hierarchical state can be refined into the

FSMs nested inside, and the hierarchical state represents an abstraction of the more com

plicated behavior. Hierarchy allows us to look at the behavior at various levels of abstrac

tion and is a tool for containing the complexity of the control functionality.

Hierarchy is also handy for describing interrapt-like behavior. If an outgoing transition

arc from a hierarchical state is triggered, the hierarchical state is exited no matter what

state the intemal FSM is in. Without hierarchy, we would need to replicate the outgoing

41

transition arc for every state of the internal FSM. The use of hierarchy reduces the number

of transition arcs.

2.5 Mixing Control and Dataflow

Control and data computation are two complementary aspects of system functionality.

Dataflowmodels excel at describing numeric computation. A dataflow system is a graph,

where the nodes, called actors, represent computation, and the arcs are first-in-first-out

chaimels that carry data tokens flowing between the actors. The order of executing the

actors is solely determined by data dependencies among the actors. An actor can be either

atomic or hierarchical (containing another dataflow graph). A subset of dataflow called

synchronous dataflow (SDF) requires that an actor consume fixed numbers of tokens on

input arcs and produce fixed numbers of tokens on output arcs in each firing [101][102].

With this constraint imposed, the order of executing the actors can be determined at com

pile time. SDF is very suitable for describing multirate signal processing algorithms.

Mixing control and dataflow is an important issue in system-level design. In this sec

tion, I examine the various styles in which control flow and dataflow are combined in

models of computation and specification languages.

2.5.1 Control/Data Separation Style

The traditional approach to mixing control and data is the control/data separation style.

This style reflects the common structure of a control system shown in Figure 2.4. In this

approach, there are a control entity and a separate data computation subsystem. Two

examples are given below.

1. Digital circuits, A digital circuit is often divided into the control and the datapath

[125][128]. The control sends control signals to the datapath and receives status signals

from the datapath. The control is usually implemented as a finite-state machine, although

42

other architectures such as microcoded controllers are also possible. The datapath consists

of functional units (e.g., adders, multipliers, and arithmetic logic units), registers, and

interconnections (e.g., multiplexers and buses). The control uses the control signals to

select the function of a multi-function unit and change datapath configurations (intercon

nects), and changes its state in response to external events or internal status signals. Such

control/datapath systems can be built hierarchically, that is, some of the datapath units

may in tum be composed of control and datapath.

2. STATEMATE. The STATEMATE design environment takes a similar control/data sepa

ration approach [129]. A system is built hierarchically. At each level of the hierarchy, there

are some interconnected activities (processes) specified using an activity chart. One of the

activities is special: the control activity. For convenience I call the other activities data

activities^ although this is not standard STATEMATE terminology. The control activity is

internally specified using a Statechart [114]. In addition to sending control signals to data

activities, the control activity in STATEMATE is equipped with some coarse-grained,

asynchronous control primitives — it can start, stop, suspend, and resume a data activity.

These activity control primitives are similar to those provided by an operating system for

controlling software processes.

2.5.2 Control/Data Nesting Style

Another style of mixing control and data is hierarchical nesting. A graph that describes

control flow, such as a flowchart or state transition diagram, can be nested inside a node in

a dataflow graph, and conversely, a dataflow graph can be nested within a node in a con

trol flow graph.

The control/data flow graph (CDFG) (e.g., the one described by Gajski et at.

[130][131]) used in high-level synthesis tools combines flowcharts with dataflow graphs.

It is the intermediate format obtained by analyzing a program written in a high-level spec-

43

ification language. The control flow and data dependency (from dataflow analysis) are

used to schedule the operations for execution on the allocated datapath elements in the

control steps [132]. CDFG is also used by optimizing compilers for imperative program

ming languages for similar purposes.

My preferred style of mixing control and dataflow consists of hierarchical nesting of

dataflow graphswith FSMs, as shown in Figure 2.5 [97][133]. The depth and ordering of

the nesting is arbitrary. In that figure, I have schematically illustrated dataflow semantics

with rectangular boxes and FSM semantics with round nodes. Any dataflow actor can

have its functionality specifiedby an FSM. The FSM in tum can have actions associated

with either states or transitions, and these actions can be specified by a dataflow graph.

Either model can form the top level of a design.

What are the motivations for combining control and dataflow this way? And how do

we interpret such a mixture? The interpretation is mode switching. A system may have

several operation modes, in each mode performing a different input-output transformation.

Modes naturally correspond to the states of the control, and the input-output transforma-

A dataflow graph

Some of the dataflow
blocks are defined as
hierarchical FSM.

Invoking datafiow graphs
from within FSM

Figure 2.5 Hierarchical nesting of FSM controliers with dataflow graphs.

44

tions in the various modes can usually be described by dataflow graphs. To highlight the

association between an operation mode and its data transformation, it is natural to embed

the dataflow graphs into their respective control states, as shown in the bottom half of Fig

ure 2.5. A dataflow graph is active when the control is in the state it is embedded in. Then

state transition amounts to switching the operation modes and the input-output transfor

mations of a system.

Pankert et al. of Aachen University of Technology, Germany independently proposed

the same scheme [134][135][136]. A related scheme was proposed by Jourdan et al of

IMAG, France [137], where a textual dataflow synchronous language Lustre [138] and a

visual hierarchical FSM language Argos [117][118] (a synchronous variant of Statecharts)

are nested.

Side Remark: The control theory community uses hybrid automata to describe hybrid

systems [139] [140]. A hybrid system has a discrete-event controller and a continuous-time

controlled process. The discrete-event control is specified as a FSM. The real-valued state

variables of the continuous-time process evolve continuously according to a different set

of differential equations while the discrete-event control is in a different state. Each set of

differential equations is nested in the corresponding control state. Note that the differential

equations inside different states govem the evolution of the same set of state variables.

When a hybrid automaton makes a state transition, the values of the state variables can be

carried over (by default) or changed abruptly. The scheme of Pankert et al achieves a sim

ilar effect by allowing the dataflow graphs inside different states to pass data with mail-

boxes and by allowing dataflow graphs to overlap (thus the actors in the overlapping

portion of the dataflow graphs are carried over when a state transition is made).

45

2.5.3 Dynamic or Boolean Dataflow

The only control flow in a dataflow model is data dependency. An actor cannot fire until

all the data tokens it is waiting on have arrived. Dynamic dataflow (DDF) and Boolean

dataflow (BDF) allow the number of tokens consumed or produced by an actor to depend

on data values [104][105]. Using value-dependent token consumption/production,one can

simulate conunon control flow constructs such as if-then-else (with a matched pair of

switch and select actors) and while loops with DDF or BDF. However, expressing control

flow this way is awkward and can easily turn into a brain-teaser once the control flow gets

a bit more complicated than the simple if-then-else. Another problem with BDF or DDF is

that it is undecidable to determine whether a complete cycle exists, so there is no obvious

definition for a round of execution (see Section 2.3).

2.6 The *charts Model: Hierarchical Nesting of Controi and

Concurrency

In this section, I propose a flexible scheme, called ^charts (pronounced starcharts)^ for

mixing control and concurrency models. The *charts model hierarchically nests state

machine control and concurrency models. An FSM can be nested within a block in a con

currency model, with the meaning that the FSM describes the behavior of the block. Con

versely, a subsystem of some concurrency model can be nested within a state of an FSM,

with the meaning that the subsystem is active if and only if the FSM is in that state.

2.6.1 Mode Switching

There are two motivations for *charts. The first motivation is a generalization of the mode

switching interpretation, shown in Figure 2.5, that I discussed in Section 2.5.2. The *charts

scheme generalizes that model by allowing concurrency models other than dataflow to be

nested with state machine control.

46

2.6.2 Generalizing Statecharts

The second motivationis that *charts are actuallygeneralizationof Statecharts. A problem

with Statecharts is that it is monolithic — the FSM semantics and the concurrency models

for the parallel component FSMs are built-in and fixed. People have their favorite FSM

semantics and concurrency models, thus giving rise to at least 21 variants of Statecharts

[115]. I will show in three steps that *charts generalize Statecharts and subsume all vari

ants. First, I make Statecharts modular by removing noncompositional constructs. After

this preparation step, FSM,hierarchy, and concurrency becomeorthogonal semantic prop

erties and can be fi*eely mixed and matched. (This is another example of the concept of

modular semantics in Ptolemy.) Then I generalize Statecharts by allowing the concurrency

model to be replaced andnot requiring all concurrent components to be FSMs. By substi

tuting various concurrency models, we can obtain models that are essentially variants of

Statecharts, hence the name *charts.* These three steps are detailed below.

2.6.2.1 Modular Semantics of Statecharts

Some Statecharts constructs make the semantics of Statecharts noncompositional. For

example, Statecharts allow transition arcs to cross hierarchy levels. Inter-level transition

arcs can be removed from the Statechart model without losing expressiveness, i.e., they

are just "syntactic sugar." Outgoing inter-level transitions can be easily simulated by self-

termination, as shown in Figure 2.6 [110]. Incoming inter-level transitions are more cum

bersome, yet possible, to simulate. A procedure that translates a hierarchical FSM with

inter-level entry transition arcs to one without is shown in Figure 2.7. Inter-level entry

transition arcs are like the goto statements in structured progranuning languages: they may

1. In the Unix operating system, * is the wildcard character, which stands for an arbitrary number of arbi
trary characters. Many variants of Statecharts have "charts" in their names, e.g., SpecCharts
[141][142][143].

47

be useful, but more often obscure the control flow, and can usually be avoided by a well-

structured program.

Another noncompositional Statechart construct is state reference. A component state

machine in Statecharts can test whether a concurrent machine is in a particular state by

naming that state. I replace state references by what I call Moore outputs^, which are out

puts that do not depend on the inputs and depend only on the current state.

With inter-level arcs and state references removed, Statecharts become modular. The

modular semantics of Statecharts consists of the following three cleanly separated compo

nents:

• FSM: There are different kinds of FSMs, e.g., Moore machines. Mealy machines, and

ASM.

• Hierarchy: This semantic property is concemed with the interaction between an FSM

and the internal subsystems nested within its states. In general, this means selective

activation of the nested intemal subsystems. But there are different nuances, e.g.,

strong or weak preemption, inunediate or next-round start, etc. (Jourdan and Maranin-

chi's paper gave an example of using immediate start of intemal subsystems in Argos

[144].)

a

(D—h—<D (I>^^

Figure 2.6 Self termination simulates an outgoing inter-level transition
(exit from an arbitrary state).

1. The term Moore output is suggested by a Moore FSM, whose output is a function of the current state
only.

48

Concurrency: This semantic property is concerned with the interaction between the

concurrent component FSMs.

Original FSM

A new initial state, Init, is added
to the original FSM. Let A be a
state in the original FSM with a
cross-level entry arc. The cross-
level entry arc now ends on the
hierarchical state, and emits a
new event enter_A\ For each
arc leaving state A, such as the
one going into state B, there is
an arc from Init to the same

destination state, with a new
in_A' conjunctive term in the
arc's input condition.

a/enter A

A in A /c

A new Moore machine is put in
parallel with the original FSM.
Let A be a state in the original
FSM with a cross-level entry arc.
A state A' is created in this new

Moore machine, which emits
event when it is in state A'.

There is an arc triggered by
enter_A' coming from every
other state, i.e., no matter what

the present state is, if enter_A'
occurs, the next state is state A'.

^A': emit in_A^
enter A' enter A'

Figure 2.7 Translating a hierarchical FSM with inter-level entry arcs to one
without.

49

2.6.2.2 Concurrency Models Can Be Replaced

Statecharts hierarchically nest FSMs with a built-in concurrency model, which varies

among the Statechart variants. The concurrent hierarchical state in Statecharts is actually a

syntactic shorthand for an interconnection of state machines operating concurrently, as

shown in Figure 2.8. We can replace the built-in concurrency model by other concurrency

models to obtain essentially variants of Statecharts. For example, if we use the synchro

nous/reactive conununication (SR) model, the concurrency and communication semantics

of the synchronous programming languages [109][110][111], the resulting hierarchical

FSM model is essentially Argos^ We may also use the dataflow models as the concur

rency and communication mechanism for the interconnected state machines, as shown in

the top half of Figure 2.5.

A transition

triggered by
event a

Fiow of

event

bl rb/c

Figure 2.8 The concurrent states in Statecharts is a shorthand for an inter
connection of finite state machines.

1. Mixing hierarchical FSMs with the SR model requires nonstrict execution of FSMs, which is not
addressed by this dissertation (the reasons are given in Section 2.8.3, Item 2 on page 59).

50

2.6.2.3 Concurrent Components Do Not Have to Be FSMs

In fact, we can go one step further. The concurrent components inside a hierarchical state

do not all have to be state machines. For example, they may be a network of dataflow pro

cesses. Sometimes a state evolution may be more naturally described by a dataflow pro

cess network than by a finite state machine. An example is shown in Figure 2.9. The state

machine in this example (Figure 2.9(a)) may start to count until there have been five

occurrences of event e at some point of its behavior. Then we may have a state named

count 5 e that is exited when event e has occurred five times. The details of state

^some_state^
startjcounting

^count_5_e^
donejcounting

(another_stat^

(a)

e/done_counting

Event encoding:
present = 1;
absent = 0.

donejcounting
—•

donejcounting

one unit delay, initial value 0

(c)

Figure 2.9 The behavior of a moduie (a) when it is in a hierarchical state
can be refined by either a FSM (b) or a dataflow process net
work (c).

51

count_5_je can be described equally well by an internal FSM (Figure 2.9(b)) or an internal

dataflow graph (Figure 2.9(c)).

In conclusion, I have shown that we can generalize the Statechartsmodel in two ways.

First, we can substitute a different concurrency and communication semantics for the con

current machines. Second, the concurrent machines do not need to be specified as FSMs.

In particular, the concurrent machines can be a network of dataflow processes. As a result,

♦charts' style of freely nesting FSM with concurrency models is more flexible than State-

charts.

2.7 A Hierarchical Finite State Machine Model

In this section, I propose a hierarchical FSM model. From the conclusion of the previous

section, only its FSM and hierarchy semantics need to be defined; its concurrency seman

tics is provided by mixing it with another model such as SDF or SR. I define its opera

tional semantics by giving a simulation algorithm.

2.7.1 Syntax

The design of my hierarchical state machine model is mainly inspired by Argos. Its main

syntactic constructs are outlined below (see Figure 2.10). We assume that the blocks in a

concurrency model conununicate by events, i.e., not by shared variables.

1. The behavior of a block can be specified as a hierarchical FSM, called the master con

trol FSM, depicted visually as a state transition diagram. One of the states is desig

nated as the initial state, denoted by an entry arrow with no source. A state can be

hierarchical, which contains another block, called a slave process. The slave process

inside the current state, called the current slave process, is active and mns concurrently

with the master control FSM. A slave process may be another hierarchical state

machine, thus achieving the same effect as a sequential hierarchical state in State-

52

charts. A slave process may also be a hierarchical block containing a subsystem of

some concurrency model, thus achieving the sameeffect as a concurrent hierarchical

state in Statecharts.

2. The master control FSM has external inputs, internal status inputs (coming from slave

processes), internal control outputs (going to slave processes), and external output

events. It may have private variables (not shared with other concurrent blocks or the

slave processes), each withan initial value specified. Note that theprivate variables are

also components of the state spaceof the mastercontrol FSM, in addition to the state

component represented by the stateboxesin the state transition diagram.

3. The inputs to an intemal slave process are a subset of the external inputs andinternal

controloutputsof the mastercontrolFSM.The outputs of an intemal slaveprocessare

a subsetof the intemalstatusinputs andextemaloutputs of the master control FSM.In

External
Input

Master control FSM

Internal
control

guard/action

Current slave
process

Internal
status

External
output

Figure 2.10 Main syntactic and semantic features of the proposed hierarchi
cal FSM model. For the convenience of explanation, the current
slave process is extracted from the current state and shown
below the master control FSM.

53

each firing, an external output event may be emitted by either the master control FSM

or the current slave process, but not by both (this is the one-emitter rule).

4. Output events may be emitted in Moore machine style (the outputs of a Moore FSM

depend only on the current state). Moore output events (and for valued events, their

values) are specified with a state. In each firing, Moore outputs of the current state can

be emitted right away without knowledge of the external inputs. Note that the internal

control outputs must be Moore outputs (to break cyclic dependency between the mas

ter control FSM and current slave process).

5. A transition arc is labeled with a guard and an action, separated by a slash /. The guard

component of a label is a predicate (logical expression) in the presence or absence of

events and the values of events and private variables. We allow the usual arithmetic,

logical, and comparison operators on numeric and boolean types available in most pro

gramming languages. The action component (a la Mealy machine) is a piece of code

that computes the values of the output events to be emitted and the next values for the

private variables as a function of the input events and the current values of private vari

ables. The action code can be in an imperative language or a graphical language such

as a dataflow graph (see Figure 2.11). Note that a dataflow graph, when viewed as a

dataflow process network, can also be embedded within a state as a slave process (see

Figure 2.9). Either guard or action may be empty and omitted (an empty guard is

equivalent to the Boolean constant TRUE).

6. Only explicit nondeterminism, such as that shown in Figure 2.12, is allowed. The com

piler can check for such nondeterminism. No nondeterminism is introduced by our

hierarchy operator. Note that the parallel composition operator in some asynchronous

concurrency models such as I/O Automata [145][146] may introduce nondeterminism.

54

7. Hierarchical state entry: A transitionarc ending on a hierarchical state can be either an

initialentryor a history entry. Aninitial entry arc enters the initial stateof the internal

slave process. A history entry arc, labeled withan Hat the arrowhead, enters theprevi

ous stateof the slave process, i.e., the slave process picks up where it left offlast time.

Initial entry corresponds to a start call on a thread or software process. History entry

corresponds to the resume call on a thread or software process after it was previously

suspended.

8. Hierarchical state exit: A transition arc leaving a hierarchical state can be either strong

or weak preemption. If a strong preemption arc (labeled with an S at the base of the

input:

x&&y/

z

Figure 2.11 An SDF graph can be used to specify the action part of an arc
labei. In this example, the dataflow graph is equivalent to the
statement z = 3 * x + y.

Figure 2.12 Explicit non-determinism is allowed.

55

arc) is triggered, the internal slave process is not executed in that firing. Therefore, the

guard on a strong preemption arc must be a predicate in external input events only (the

guard cannot depend on intemal status events, which are generated by the slave). If a

weak preemption arc is triggered, the intemal slave process is executed before the

master control FSM makes the transition. Exit arcs correspond to either the stop or

suspend call on a thread or software process.

2.7.2 Operational Semantics

The operational semantics of this hierarchical state machine model is defined by the fol

lowing simulation algorithm. We assume that a slave process can be initialized and exe

cutedfor a firing, which is trae of all the models of computation in Ptolemy. A firing of a

hierarchical FSM consists of:

1. Emit Moore output events. Note that some of these output events may be intemal con

trol outputs for the slave process.

2. Examine strong preemption arcs of the current state. If any of them are triggered by

the current input events (i.e., the guards of the arcs are tme), choose one nondetermin-

istically and go to Step 5.

3. Execute a firing of the current slave process, which may generate intemal status and

extemal output events.

4. Examine the weak preemption arcs of the current state. If any of them are triggered,

choose one nondeterministically.

5. Execute the action of the chosen transition arc.

6. Check one-emitter rale: if an output event is emitted by both the master control FSM

and the current slave process, flag a run-time error.

56

7. Enter the next state of the chosen transition arc. If it is an initial entry arc, initialize the

internal slave process.

Note that in this simulation algorithm, the executions of the master control and slaves are

tightly synchronized: the ratio of the firings of the master control FSM and the current

slave process is 1:1. Also, the algorithm favors strong preemption arcs because strong pre

emption arcs are examined (and taken) before weak preemption arcs.

2.8 Discussion

In this section, I discuss the strengths, weaknesses (and how to work around them), and

possible extensions to ^charts and the proposed hierarchical FSM model.

2.8.1 Strengths

1. The *charts scheme is "syntactic sugar" for expressing the fact that a process con

trolled by an FSM is active if and only if the control FSM is in a particular state. In

♦charts, the process is nested in that control state. Equivalent "selective activation"

behavior can be achieved in the control/process separation structure by adding an

enable input signal to the controlled process. The control FSM asserts the enable sig

nal when it is in the particular state. However, the visual syntax of *charts conveys the

correspondence between modes (control states) and internal slave processes directly.

One does not need to gather this information by analyzing the system description.

2. The slave processes of a master control FSM run in mutual exclusion, i.e., at any time,

at most one slave process is running. This information, readily available from the

♦charts visual syntax, can be exploited by a synthesis tool for resource allocation

because resources such as functional units (adders, multipliers, etc.) can be shared by

the slave processes.

57

3. The *charts scheme is general because any model ofcomputation whose processes use

events for inter-process communication and can initialize and execute a firing can be

nested within a control state.

2.8.2 Weaknesses

1. Becausea process can only be nested in one state in the control FSM, *charts cannot

easily express the situation where a process P is active in more than one state of the

controlFSM. A standardtrick to workaround this problemis to add a concurrentFSM

with two states, P_on and P_offy and put the process inside the P_on state. The state

transitions of this new FSM are synchronized with the main control FSM — it is in

stateP__on whenever the main control FSMis in anyof thestates theprocess P should

be active, and in state P_offotheTwisQ.

The *charts scheme does not preclude the use of the control/process separation

structure. The *charts scheme is most natural when theperiod of time in which a pro

cess is active can beidentified with a particular state in a control FSM. One can always

fall back to the control/process separation structure when *charts are not the most nat

ural syntax to express the behavior.

2. Completion/teimination of a process: The notion of completion is most useful when

combined withconcurrency - a subsystem of concurrent processes is defined to com

plete if all the component processes have completed. Completion of a parallel state

ment is a common control flow structure (often calledfork-join). With a notion of

completion, many algorithms can be specified more compactly. So some mixed con

currency and control models support the notion of completion, for example, the com

pletion points and transition-on-completion arcs in SpecCharts [141][142][143]. The

notion of completion requires a close coupling between the hierarchy and concurrency

semantic components.

58

3. The amount of concurrency, i.e., the number of concurrent processes, is bounded,

although variable.

2.8.3 Possible Extensions

1. It is possible to perform a simple one-emitter rule check (see Step 6 of our simulation

algorithm) at compile time. We can require that each slave process declare all the

extemal outputs it may possibly emit. Then for each state, we check that the master

control FSM does not emit any of these extemal outputs. This is somewhat overly con

servative because the master control FSM and current slave process may tum out to

emit the same output at different times.

2. The operational semantics in Section 2.7.2 defines a strict execution of the master con

trol FSM, i.e., no outputs are emitted until the status of every input event (both extemal

and intemal status) is known. Zero delay loops such as instantaneous dialogs are not

possible with this strict FSM semantics. Nonstrict execution of FSMs is possible, but

the syntax, such as that of Argos, can be difficult to understand. (An example taken

from an Argos paper [118] is shown in Figure 2.13.) Nonstrict execution of FSMs is

^ X&& lYeslam /
J AreYouOn

CD (p^ AreYouOn /
x && Yeslam / ^ Yeslam
AreYouOn

AreYouOn, Yeslam

Figure 2.13 An example of an Argos program that requires partial evalua
tion of nonstrict functions to reach a fixpolnt. If the program Is
In state (A, ON) and event x occurs, the program goes to state
(B, ON). Note that the FSM on the left has arc labels that seem
to causally reversed, l.e., the question "AreYouOn" appears
after the answer "Yeslam".

59

also computationally expensive (an algorithm for the nonstrict execution of FSMs is

given in Girault's draft paper [147]). Therefore, I do not address general nonstrict exe

cution of FSMs here. However, the hierarchical FSM model that I propose does have

some limited nonstrictness: the Moore outputs in Step 1 of the simulation algorithm

can be emitted right away without knowledge of any input event.

3. Instead of having events as the communication primitive, we may alternatively have

variables as the fundamental primitive, for both communication and representing

state, and define events as changes in the values of Boolean variables. The reactive

modules of Alur and Henzinger take this approach [148].

4. We may want to allow the slave processes to share state (or blocks with state) so that

one slave can "pass the baton" to another slave. Hybrid automata and some other mod

els have this feature (see the side remark in Section 2.5.2).

2.9 Conclusions

In this chapter,I described a heterogeneous approachto the designof networkedmultime

dia applications. The functionality of networked multimedia applications can be parti

tioned into digital signal processing, control, user interface, etc. The heterogeneous

approach combines domain-specific design styles for these diverse application compo

nents. I proposed a hierarchical state machine model called *charts, which is suitable for

describing complex control functionality and is a new way to mix control and numeric

computation. The *charts model hierarchically nests finite state machines with concur

rency models. By mixing with different concurrency models, *charts essentially subsume

all variants of Statecharts, yet remain modular. I defined the operational semantics of

♦charts by giving a simulation algorithm. A visual editor and simulator for *charts have

been implemented in Ptolemy and Tycho. In the nextchapter, I will describe the program-

60

ming interface of the Ptolemy implementationof *charts with a programmingexample of

a digital watch.

61

3

Ptolemy Implementation and Examples

In this chapter, I describe an implementation of *charts and the hierarchical FSM model

proposed in the previous chapterin the Ptolemy designenvironment. The implementation

consists of a visual editor for the state transition diagrams of hierarchical FSMs and a

technique to execute hierarchical FSMs.

Then I describe a programming example of a simple digital watch using *charts, nest

ing hierarchical FSMs with synchronous dataflow (SDF). I comment on the control flow

structure of the digital watch and the effectiveness of *charts for describing the digital

watch's behavior.

3.1 Ptolemy Implementation

3.1.1 Visual Editor for State Transition Diagrams

For schematic capture, Ptolemy has used a visual editor called Vem, developed by the

Computer-Aided Design group at the University of California at Berkeley. Vem was

designed to be a visualeditor for VLSI layouts. Used for purposes not originally intended

for, Vem is a reasonable tool for drawing block diagrams in Ptolemy, but is inconvenient

for drawing the oval state boxes and curvy transition arcs conunon in state transition dia-

62

grams. Therefore, I implemented a new visual editor for state transition diagrams. The

FSM visual editor is written in Itcl [149], an objected-oriented extension to the Tcl/Tk lan

guage [90], and uses the Itcl class library of lycho [150], an extensible user-interface tool

kit designed as part of the Ptolemy project.

In the FSM visual editor, an FSM is intended to be overlaid on top of a programming

language, such as C-H-, C, Java, and Tel. Using this editor, one can draw ovals that repre

sent states and arcs that represent transitions. For a state, one can specify a label, entry

action, exit action, and an internal slave process. The entry action and exit action can be

arbitrary code in the underlying programming language, which is executed when the state

is entered or exited, respectively. For a transition arc, one can specify a label, guard, and

action. The guard is a Boolean expression in the underlying language. The transition is

taken when the guard evaluates to TRUE. The action is a piece of code in the underlying

language, which is executed when the transition is taken.

For execution, an FSM is translated into an implementation in the underlying language

by stitching together the code fragments specified with the states and transition arcs. A

straightforward translation represents the state of the FSM with a variable and the state

transitions with a function containing a switch-case statement, as shown in Figure 3.1.

Using Tel as the underlying language, I have applied this technique to execute hierarchical

FSMs in Ptolemy, which is described below.

3.1.2 Hierarchical FSMs as Dynamic High-Order Functions

The Strategy for implementing hierarchical FSMs in Ptolemy is depicted in Figure 3.2. A

hierarchical FSM block is implemented for each concurrency model, e.g., SDF. A hierar

chical FSM block consists of a master control block (typically a basic FSM obtained by

taking the top level of the hierarchical FSM) and a number of replacement blocks (typi

cally obtained by extracting the intemal slave processes from the top-level states of the

63

hierarchical FSM). The master control selects one of the replacement blocks, and may

optionally initialize them. Themaster control does nothave to be an FSM. Other forms of

control, such as knowledge-based control [151], can be used in place of the FSM to inter

act with the replacement blocks through the same interface. This implementationstrategy

is called adynamic high-orderfunction (HOF).*

FSM name: phone
Input: event
Output: out1, out2

ringing

off_hook / action

active

(a)

proc fsm_phone_react {event} {
global fsm_phone_state
switch $fsm_phone_state {

ringing {

if {$event == off_hook} {
action

set fsm_phone_state active

}

}

)

}
return [list $outl $out2]

(b)

Figure 3.1 Translation of an FSM, shown in (a), into an implementation in
the underlying language (e.g., Tci), shown in (b).

1. A function whose return value is also a function is called a high-orderJunction. The hierarchical FSM
block dynamically selects a replacement block, which can be viewed as a function mapping external
inputs to externaloutputs,hence the name dynamic high-order function.

64

I have implemented the hierarchical FSM block for the SDF domain (a model ofcom

putation is called adomain in Ptolemy). The idea illustrated in Figure 3.2 is realized as a

number ofstars (a C++ class implementing an atomic block inPtolemy is called astar) in

the SDF domain related by the class inheritance hierarchy inFigure 3.3. The base class,

the SDFDynamicHOF star, provides the C++ interface for the master control to switch in,

initialize, and execute a replacement block. The replacement blocks, extemal inputs, exter-

Select: 0,1,2,..., n

Initialize: boolean

External
inputs

Master
control

nternai

Control signals

Status signals

External
outputs

Figure 3.2 Implementation of hierarchical FSMs in Ptolemy. Select Is the
key primitive. An internal slave process is selected dynamically
by the master control, optionally initialized. Select = 0 means
strong preemption.

SDFStar

SDFDynamicHOF

SDFTclDynamicHOF SDFIfThenElse

SDFTclHierFSM

Figure 3.3 Class hierarchy of the hierarchical FSM block in the SDF
domain.

65

nal outputs, and internal events are specified as starparameters. The public method

void switchBlock(const char* blockName)

switches in the replacement block by the given name. If the argumentblockName is an

empty string, no replacement block is switched in. (This can be used when the current

state does not have an internal slave process or to implement strong preemption.) The pub

lic method

void initCurrentBlock()

initializes the current replacement block. The public method

void fireCurrentBlock()

executes a firing of the current replacement block. The protected method

Particle* getlnternalEvent(const char* eventNeone)

returns the internal event by the given name. (An event is called a particle in Ptolemy.)

As an example of the dynamic HOP concept, I implemented the if-then-else control

structure using SDFDynamicHOF. The SDFIfThenElse star, derived from SDFDy-

namicHOF, has a Boolean input named condition. Two blocks, thenBlock and

elseBlock, are specified as star parameters. If condition is TRUE, thenBlock is

fired. If condition is FALSE, elseBlock is fired. A star that implements the switch-

case control structure can be written similarly using SDFDynamicHOF.

The SDFTclDynamicHOF star, derived from SDFDynamicHOF, makes the C++

methods of SDFDynamicHOF available in Tel. In Tel, every Ptolemy star is assigned a

unique ID, denoted $starID below. The Tel command

switchBlock_$starID blockName

switches in the replacement block by the given name for star $starID. The Tel com

mand

initCurrentBlock_$starID

initializes the current replacement block of star $starID. The Tel command

66

f ireCurrentBlock_$s tarID

executes a firing of the current replacement block of star $starID. The Tel command

grabInternalEvents_$starID

returns a list of the values of the internal events. Note that the absence of an event is

denoted by the value 0 (FALSE). This is called the TRUE/FALSE encoding of the pres

ence/absence of events. If an event is absent, a null event, withvalue FALSE, is generated

in its place.

Finally, the SDFTclHierFSM star, derived from SDFTclDynamicHOF, is the hier

archical FSMblock overlaid on top of Tel. A state transition diagram is specified as a star

parameter. The state transition diagram is translated into a Tel procedure that implements

the state transition function, as shown in Figure 3.1. The state transition function invokes

theTel commands of SDFTclDynamicHOF to switch in a replacement block(slave pro

cess), initialize it, or fire it.

3.2 Examples

3.2.1 Digital Watch

The digital watch is perhaps the most common programming example cited by almost

every specialized language or model for specifying control functionality, such as State-

charts [114], Esterel [152][153][154], andArgos [144]. Thedigital watch hascomplicated

mode switching but simple data computation.

I have programmed a simplified version of the digital watch using the *charts imple

mentation in Ptolemy. The function of the watch is simplified, but the essential character

istics of the control flow are kept. The user interface of the watch consists of four buttons,

labeled UL (upper left), UR (upper right), LL (lower left), and LR (lower right), and a

graphic display, as shown in Figure 3.4. The digital watch has five modes: watch mode.

67

set-watch mode, stopwatch mode, alarm mode, and set-alarm mode. The four buttons and

graphic display are shared by the five modes. The watch has a clock signal source that

generates an event every second.

Shown in Figure 3.5 is the top-level Ptolemy system for testing the digital watch. The

top-level system is in the discrete-event (DE) domain. The four buttons and the clock sig

nal are generated by Tcl/Tk code. The button pushes and clock events are the input events

IBPHill
IHU : 12 SEP

|24H,CC,CO) 3)1
I

Figure 3.4 The four buttons and graphic display of the digital watch.

)igital Watch Demo
Author: Wan-Teh Chang

University of California at Berkeley

Buttons Async to sync interface

The digital watch

Clock signal

Figure 3.5 The top-level Ptolemy system for the digital watch.

for the watch. Before going into the watch proper, which is programmed in the SDF

domain, the events first go through an asynchronous-to-synchronous interface, which per

forms TRUE/FALSE encoding of the presence/absence of events.

The watch proper consists of a number of blocks in the SDF domain, as shown in Fig

ure 3.6. Three of the blocks are hierarchical FSMs: the control kernel (button interpreter),

clock status, and alarm status. The control kemel of the digital watch keeps track of mode

switching and interprets the meaning of the buttons according to the current mode. The

top-level FSM of the control kemel is shown inFigure 3.7. It consists of the five modes of

the watch. Button LL cycles through the three main modes: watch, stopwatch, and alarm.

Button UL, if pressed in watch or alarm mode, enters the corresponding set mode, andif

pressed again, leaves the correspondingset mode.

Inside the set-watch mode is another FSM, shown in Figure 3.8. Various components

of the date and time can be set. Button LL cycles throughsecond,hour,minute,month, day

Buttons

UL

Control kernel

Clock signal

Time & date

Tcl
TEBaU

Alarm time

iTOHHtfai

Clock status

Display

Alarm status

Figure3.6 The watch proper Is a number of Interacting blocks in the SDF
domain.

69

(of the month), and day of the week. Button LR increments the current component of the

date and time, except for second, which is reset to 0. Note that if button UL is pressed in

the set-watch mode, the watch switches back to the watch mode.

There are three counters: a date-and-time counter for the watch mode, a counter for the

alarm time, and a counter for the stopwatch. The date-and-time counter for the watch

mode is an SDF galaxy (a subsystem is called a galaxy in Ptolemy), shown in Figure 3.9.

A stage of the counter, recording one component (second, minute, hour, etc.) of the date

and time, is defined first. Then the counter is implemented as a series of stages. When not

in the set-watch mode, the counter is incremented on each second event in the clock sig-

lJvlc>Qae24HMode

URAoggleAlarmSlatus

stoimatch mode alarm mode

et-alarm mode

Figure 3.7 The top-level FSM of the control kernel of the digital watch.

nal. When in the set-watch mode, the counter is incremented by the control commands

from the control kernel.

Remark: The main complexity of control in the digital watch is in the control kernel, and

the complexity of the control kernel results from using the same four buttons to invoke dif

ferent operations when in different modes. If the digital watch could have a graphical user

interface, which could create and destroy new buttons (and displays) on demand, the com

plexity due to the control kernel's interpreting the buttons would be gone. Also, the com

munication between the control kernel FSM and the other two concurrent FSMs (clock

status and alarm status) is unidirectional: the button commands interpreted by the control

Elle fdlt-Jflndo*;

set (toy of week

LRAesotScC' inAr-rOayOfWeek

LRAvrHou' LMncrDey

UUncrtllmita LIVIncrfclonth

ti-i

Figure 3.8 The set-watch mode of the digital watch.

kernel are sent to the other concurrent blocks. Therefore, the concurrency model of syn

chronous dataflow, which forbids delay-free loops, is sufficient.

The next two examples, although not implemented, have been studied regarding the

complexity of control and control/dataflow interaction.

3.2.2 Telephone Answering Machine

The telephone answering machine is the example used in a SpecCharts paper [141]. Simi

lar to the digital watch, the control flow in an answering machine is complicated. There is

€>••
Admnj^

second

DIvByInt

X MOD Y

Const ^
(a)

Date and time counter

mnute

(b)

day of week

tJ ^

month

Figure 3.9 (a) One stage of the date-and-tlme counter (b) The date and time
counter as a series of stages.

72

some amount of signal processing, but the control actions on the signal processing tasks

are coarse-grained: start and stop recording a message, start and stop playing a recorded

message, etc. In the reverse direction, DTMF (dual tone multiple frequency, i.e., touch-

tone) digit detection is a signal processing task that generates events to the control.

3.2.3 Video Encoder: MPEG and H.261

A video encoder is an interesting example of signal processing algorithms. The MPEG

encoder has three coding modes for the three kinds of video frames in MPEG: I, P, and B

[78][79]. The I, P, and B frames are encoded differently. H.261, an international standard

for videophone and video conferencing, has two coding modes: intetframe and intraframe

[155]. There is a significant amount of signal processing, e.g., motion compensation, dis

crete cosine transform, quantizer, and run length coding. The control of the signal process

ing tasks is more fine grained, at the block parameterization (e.g., the step size of the

quantizer can be adjusted) and system reconfiguration (e.g., different ways to encode I, P,

and B frames) level.

The selection of the coding modes usually follows a fixed sequence: IPPPBPPPI. But

it is also possible to change that fixed sequence in response to the results of a pre-process

ing stage. In H.261, two switch controls are used to reconfigure the encoder for interframe

and intraframe coding modes.

Feedback control is used on the output buffer to maintain a fixed-rate output. The

buffer control monitors the status of the buffer, such as how full it is, and generates control

parameters such as the quantizer step size.

In conclusion, simple select/switch control together with control parameters should be

sufficient for describing the control/data interaction in these video compression algo

rithms.

73

4

Dynamic Network Deployment

4.1 Introduction

Networked applications (in both peer-to-peer and client-server architectures) inherently

require that their constituent networked components be interoperable. Peer-to-peer appli

cations are far less diverse than client-server applications. I contend that this is primarily

due to the greater hurdle faced by new peer-to-peer applications in achieving interopera

bility. In a nutshell, in a client-server application, theserver is persistent, anda single user

who wants to participate in the application merely has to obtain the interoperable client

software. In a peer-to-peer application, on the other hand, two or more users who wish to

participate in the application have to anticipate that need and install the software. This

makes opportunistic or casual participation in suchapplications unlikely.

The difference is particularly obvious from an economic perspective. When a serveris

established, any client (or rather its associated user) immediately derives full benefit from

that server. On the other hand, a company wanting to establish a peer-to-peer application

faces the obstacle that the first user derives zero benefit; more generally, the benefit

increases with the number of users. Economists call this the problem of network external

ity [91][92][93].

14

The network externality problem can be solved by a speedy mechanism to distribute an

application to a large number of users simultaneously. For software-defined applications,

this is technically feasible, since software can be distributed over the network. In the Inter

net, developers of client-server applications, such as World Wide Web browsers, document

viewers, and audio and video players, are distributing new versions of those applications

over the network. By bypassing traditional slow distribution channels, the velocity of

innovation has been increased dramatically.

The network distribution of applications has the potential to make a much bigger

impact on peer-to-peer applications than client-server ones, since getting those applica

tions to many users simultaneously is the key to overcoming network externality. Never

theless, the current approach in the Intemet, in which the user has to anticipate the need

for an application and execute the relatively sophisticated and manual file transfer and

installation, remains a barrier. Other obstacles are multiple instruction sets and operating

systems (collectively referred to as platforms) and the security problems associated with

downloading binary executables from untrusted sources.

4.2 Dynamic Deployment of Peer-to-Peer Applications

With the ever-increasing speed of microprocessors, applications, including real-time

applications like voice and video, are increasingly implemented in software on high-per

formance progranunable user terminals, such as desktop or portable computers and the

network computers^ that Oracle and Sun Microsystems plan to introduce in the near

future. With high-speed networking, application descriptions can be downloaded quickly

1. A network computer, also called an Intemet appliance. Web PC, etc., is an inexpensive diskless computer
with minimal built-in software (e.g., a Web browser, a Java interpreter, and a word processor) and gets
most other software from the network [156].

75

from some central repository to the terminals as part of session establishment, transpar

ently to the user. This is called the dynamicdeployment of applications.

There are three elements in the infrastructure for dynamic deployment, as illustrated in

Figure 4.1:

• A standardized virtual machine in the programmable terminal. The virtual machine

hides the differencesin the underlying platforms and provides a layer of protection.

• Standardized application description languages.

• A standardized protocol for transferring application descriptions from some central

repository to the terminals as part of session establishment. Altematively, one of the

terminals, such as the terminal on the left in Figure4.1, can serveas its ownrepository,

and the application description could be transferred to the other terminal.

While standardization of some aspects of the infrastructure is presumed, we hope to avoid

standardization of any part of the application itself. Also, interoperability is guaranteed

Transfer of
•*' application descriptions

Virtual Virtual
machine [Network

^ A i
machine

Programmable
terminal

Repository
of applications

A central place
to store application
descriptions

Figure 4.1 Dynamic deployment of peer-to-peer applications.

76

because interoperable peer descriptions are downloaded to the terminals from a common

source.

So far, dynamic deployment has been applied primarily to client-server applications,

such as adding functionality to a WWW browser. It should have a much greater impact on

peer-to-peer applications, since it bypasses the obstacle of network externality. Peer-to-

peer applications interoperable over the network can be established, without prior stan

dardization or even the need for users to obtain the requisite software in advance, to a

community of interest consisting of all networked implementations of the virtual machine.

A peer-to-peer application is not symmetric at session establishment. Rather, one peer

is the originating peer, whose task is to initiate the session, and the other peer is the

responding peer, which participates in the application in response to a session establish

ment request. Roughly, the steps to set up a dynamically-deployed application are as fol

lows:

• The originating peer places a session establishment request.

• The responding peer is alerted of an incoming establishment request.

• If the responding peer accepts the establishment request, the application description in

the form of two peer applicationprograms is transferred to the peer terminals.

• The two peer programs initiate a peer-to-peer session.

The dynamic deployment infrastructure helps the peer programs establish their first con

nection (through a procedure called session coordination^ described in Section 4.6.4).

From that point on, they are on their own to define any application functionality they

choose.

77

4.3 Issues

Despite its many advantages, dynamic deployment has some limitations and critical issues

that must be addressed:

• For network distribution, the applications must be defined in software. Hence the

application functionality is constrained by what can be realized in software.

• High-speed networking is required to make application download time (which contrib

utes to the session establishment delay) reasonably short.

• The security risk due to executing software downloaded from untrusted sources is a

critical issue. Therefore, the downloaded application software should not be native

binary executables, but rather written in application description languages that are

interpreted or compiled by the terminals.

• The same program should run on terminals with different processors, operating sys

tems, and windowing systems. This also requires that the application softwarebe writ

ten in portable application description languages.

• There is run-time or establishment-time performance penalty due to the interpretation

or compilation of application description languages.

• Dynamic deployment is a form of on-line software distribution. Therefore, there must

be protection mechanisms (e.g., using cryptographic techniques) for copyrighted

material. The licensing and pricing of software distributed in this model are also

important issues. Messerschmitt's white paperhas somediscussion on theseemerging

issues [9].

78

4.4 Dynamic Deployment Based on Java and World Wide Web

My work on the dynamic deployment of networked applications was first inspired by an

unpublished manuscript of Messerschmitt's, in which he proposed intelligent signals

(object-oriented signals that contain not only the data streams but also the method code to

manipulate the data) as a means to manage the complexity of setting up flexible connec

tions [157].Wepreviously published the general idea of the dynamic deployment of appli

cation functionality to programmable terminals as a means to deploy telecommunications

applications rapidly [94]. In that work, however, a proprietary environment, Ptolemy, has

to reside within each terminal as the application run-time environment, which still presents

a problem of network externality.

Since our goal is to establish a framework within which arbitrary peer-to-peer applica

tions can be dynamically deployed, ideally this firamework should be a standard commer

cial environment that is widely available to potential participants in peer-to-peer

applications. To this end, I have designed and implemented a prototype with the WWW

envirorunent, using Java as the description language for peer-to-peer applications. (An

extended abstract on this prototype was published earlier this year [95].) However, the cur

rent www/Java environment has been designed for client-server applications. I will show

below that by some clever reorientation of the existing Java-enabled WWW browser

framework, it can serve as an environment for peer-to-peer applications.

Java, developed by Sun Microsystems, is a programming language specially designed

for writing programs that are to be executed by a remote computer [73][74][75]. Java uses

the virtual machine execution model. Java programs are compiled to the instructions

(called bytecode) for the Java virtual machine to achieve platform independence. More

over, Java has built-in support for security. Therefore, Java is well-suited to serve as the

first two elements of the dynamic deployment infrastructure described in Section 4.2, the

79

virtual machine and the application definition language. It is the third element, a session

establishment protocol incorporating the distribution of application descriptions to termi

nals, that is missing. My work adds this missing piece to the standard Java/WWW frame

work.

Java's primary application at present is writing executable programs (called applets)

that are embedded in HyperText Markup Language (HTML) files and executed by Java-

enabled WWW browsers elsewhere on the network. The present WWW browsers use a

"hyperlink following, file pulling" browsing mechanism. This simple browsing mecha

nism can download and run Java applets on just a single WWW browser; it can set up Java

applets that are stand-alone applications or clients in some chent-server networked appli

cations. The current WWW browsing mechanism, however, cannot set up peer-to-peer

applications. In the establishment procedure for peer-to-peer applications, some user inter

action, such as alerting the responding user of an incoming session request, is needed.

Moreover, if the functionality of the two peers are both defined by Java applets, it is neces

sary to download the Java applets to their respective WWW browsers, execute them, and

help them connect to each other. The session establishment procedure requires coordina

tion among the two peers' WWW browsers and Java applets.

I have designed a scheme to deploy Java applets dynamically to two WWW browsers

that together implementa peer-to-peer application. (It would be fairly straightforward to

extend to three or more peer WWW browsers.) I add two helper programs running in con

junction with WWW browsers and a coordination protocol built on top of TCP/IP and

HTTP (HyperText Transfer Protocol). Only standardcommercial software is used, supple

mented by code written in Java. Thus, I have demonstrated that standard WWW browser

applications and server software can support peer-to-peer applications, even though they

were originally defined for a client-server environment. The scheme and a prototype

implementation are outlined next.

80

4.4.1 System Architecture

The systemorganization is illustrated in Figure 4.2. There are two peers: the originating

(local) peer and the responding (remote) peer.

4.4.1.1 Local, Originating Peer

The local, originating peer has the following environment:

• It should have an HTTP server running.

• The local peer may have some Java applets defining the two halves of peer-to-peer

applications (one applet for the local peer and the other for the remote peer) and the

HTML template files in which the applets are embedded. (These HTML files are

called template files because session files are created by inserting some additional

applet parameter tags into the template files. See the explanation on session files in

User

Session
files

Local peer
(originating)

WWW
browser

RDCIient

Session
Coordinator

HTTP
server

Local Remote
applet applet

Java applets

Network

Remote peer
(responding)

WWW
browser

•> RDServer

Figure 4.2 System architecture of the dynamic deployment prototype
based on WWW and Java.

81

User

Section 4.4.2.) In fact, in the prototype described in Section 4.6 I assume that all the

peer-to-peer applets are stored at the local peer. This is the case where the local peer

serves as its own repository of applications, as shown in Figure 4.1.

• The local peer should run a Java-enabledWWW browser such as Netscape Navigator

and a companion helperprogram RDClient. The localpeer shouldhavea startupfile

for RDClient called .rdclientrc, which is a list of the available peer-to-peer

applications and the Uniform Resource Locators (URLs) of their HTML template

files, and a sessions directory that is exported by its HTTP server.

Remark: The prototype described in Section 4.6 does not implement the central reposi

tory case in Figure 4.1 because that case is not allowed by Netscape's stringent applet

security policy. A remote applet running inside Netscape Navigator can only open network

connections back to its originating host (the applet host). This security precaution is meant

to prevent the applet from impersonating the host it is running on and attacking other hosts

on the network. On the other hand, there is no restriction on the networking capabilities of

a local applet. A local applet can open a listening socket or open a network connection to

any host on the network. In a peer-to-peer application, the two peers' applets must connect

to each other. To work around Netscape's applet-host security policy, I therefore require

that the local (originating) peer have an HTTP server and the Java applets that define the

peer-to-peer application. This way, the local peer's applet can open a listening socket, and

the remote peer's applet, coming from the local peer's HTTP server, can connect to the

local peer's applet. In the future, when a signed applet (an applet digitally signed with

cryptographic means by a trusted party) is allowed to open network connections to any

host, my scheme should work for the central repository case too. More information on

Java applet security can be found in Sun's Applet Security Web page [158].

82

4.4.1.2 Remote, Responding Peer

The remote peer should run a Java-enabled WWW browser and a companion helper pro

gram RDServer, which listens at a well-known TCP port for connections.

4.4.2 Session Establishment Procedure

Session establishment takes place in three stages:

• Stage 1: The local, originating user places a call and the remote, responding user is

invited to participate (see Figure 4.3).

• Stage 2: If the responding user accepts the call, session files are generated and down

loaded to the two WWW browsers (see Figure 4.4).

• Stage 3: The two Java applets embedded in the session files start running and connect

to each other through a session coordination procedure (see Figure 4.5).

Figure 4.3 shows the first stage in session establishment. When the local, originating user

wants to initiate a peer-to-peer session (i.e., place a call), the user interacts with the

Originating peer

User RDCiient

Place a call

Responding peer

RDServer User

A ert the user

User accepts
the call

Figure 4.3 Stage 1 in session establishment: peer invitation.

83

RDClient to choose an application and specify the remote, responding peer. Then

RDClient connects to the RDServer on the responding peer, passing it a SETUP mes

sage that contains the originating host name (which RDServer can also obtain from the

TCP connection), user's name (which RDServer has no way to verify), application

name, and optionally a short description of the application. RDServer alerts its user of

an incoming establishment request with a pop-up dialog, giving the information contained

in the SETUP message, and lets the responding user decide whether to accept or reject the

establishment request. RDServer then tells the local RDClient whether the responding

peer accepts or rejects the establishment request, or it timed out (no one answers the estab

lishment request).

If the remote peer accepts the establishment request, RDClient picks a random (but

unique) session number for this session, and generates two session files (one for the local

peer and one for the remote peer) by inserting some applet parameters into the applets'

HTML template files. The inserted applet parameters are used to pass information to the

applets. The inserted applet parameters are:

• session (session number) and coordport (session coordinator's listening port),

for both applets;

• orighost (the local, originating host), for the remote applet only.

The session files are created in the local peer's sessions directory with random file

names so that intruders cannot easily guess the file names. The sessions directory is

made unreadable so that intruders cannot list that directory.*

1.1 tried to make the session establishment procedure secure by using random session numbers and session
file names and making the sessions directory unreadable. However, the communication between
RDClient, RDServer, and the peer applets is not enciypted. A maliciousperson could eavesdrop on
the conversation and do a "denial-of-service" attack. For example, during session coordination, the TCP
port number that the remote applet should connect to is passed in plain text over a TCP connection.
Someone may interceptthis TCP port numberand connectto the port beforethe remoteappletdoes, pre
ventingit from establishinga connection. To be more secure, all conversation should be encrypted.

84

Then the second stage in session establishment begins (see Figure 4.4). RDClient

tells its local companion WWW browser to retrieve (from the local HTTP server) and dis

play the local session file. RDClient passes the URL of the remote session file to the

remote RDServer, which in turn tells its companion WWW browser to retrieve and dis

play the remote session file (therefore downloading and executing the remote Java applet).

Since the order in which the local and remote Java applets are executed is arbitrary, we

need to help them synchronize and coimect to each other. They need to synchronize

because the local applet must open a listening socket before the remote applet connects to

it. Moreover, we do not want to use a fixed, predefined port number for the peer-to-peer

application. So the local applet picks an unused TCP port number, which must be passed

to the remote applet. The local RDClient provides this synchronizationand coordination

service, called the session coordinator. The session coordinator allows the two applets to

Originating peer

WWW , HTTP
browser RDClient server

Show URL

Responding peer

WWW
RDServer browser

URL of remote session file

Show URL

Local se ssion file
GET URL

Remote session file

Figure 4.4 Stage 2 in session establishment: downloading the session
files.

85

synchronize and exchange information, e.g., the TCP port number the local applet is lis

tening on. The local and remote applets identify each other using the session number.

Figure 4.5 shows the session coordination procedure, which is the third stage in ses

sion establishment. After the local applet opens its listening socket, it connects to the ses

sion coordinator (by using the coordport parameter) and gives its TCP port number to

the session coordinator. (The local applet is said to check in.) The remote applet (by using

the orighost and coordport parameters) also connects to the session coordinator

and waits until its local peer has connected to the session coordinator. Then the session

coordinator passes the TCP port number to the remote applet. At this point, the remote

applet knows that the local applet is ready and listening at that port number, so it opens a

network connection to the local applet. The session is considered established from the

point of view of RDClient and RDServer. They are only responsible for helping the

local and remote applets establish this first network connection. If the local and remote

applets need more network connections, they should use the first connection to coordinate

and pass the necessary information.

Originating peer

Local Session Coordinator

applet (part of RDClient)

Check in

(TCP port)

Check in

TCP port

TCP CONNECT

Responding peer

Remote

applet

Figure 4.5 Stage 3 in session establishment: session coordination.

86

4.5 Related Work

The most closely related work is the Promondia project (formerly known as Como) at the

University ofErlangen-Niimberg, Germany [159]. Promondia is a system for dynamically

deploy networked applications implemented in the client-server architecture. The

Promondia servers, usually running in conjunction with HTTP servers, provide a directory

of currently on-line users. A user connects to a Promondia server, looks in the on-line user

directory, and picks a party to communicate with. Promondia servers also provide the

reflector function, i.e., a user does not communicate with another user directly; users com

municate via the Promondia servers. (The reflector function is obviously necessary to

work around the applet-host security policy's constraints on an applet's networking capa

bilities. See the remark on page 82.)

The differences from my peer-to-peer approach are:

• In Promondia's client-server approach, users participate in sessions in the meeting

room model. Users have to connect to the Promondia servers, and only currently con

nected users can be contacted. In my peer-to-peer approach, users participate in ses

sions in the telephone model. A user can directly contact any other user, provided that

the called user's computer is on and running a Web browser and the RDServer helper

program. (A possible solution to this constraint is to have a daemon program running

to accept connection requests and start up the needed Web browser and helper.)

• In Promondia's client-server approach, there needs to be some service provider to run

the Promondia servers, but users do not need any additional software other than the

regular Web browsers. In my peer-to-peer approach, users need to run additional

helper programs in conjunction with their Web browsers, but they do not need to rely

on any service provider to run servers of any kind.

87

4.6 Implementation

I have built a prototype implementation of the dynamic deployment scheme using Sun

SPARCstations running the Solaris 2.5 operating system, Netscape Navigator Version 3.0,

NCSA HTTP/1.0server (httpd), and Sun's Java Developer'sKit (JDK) Version 1.0.2.

Remark: I use HTTP for transferring applets because Netscape Navigator contains a

built-in HTTP client. (SoFTPwould be an equally goodchoice.) Thisway wejust needto

run an HTTP server on the initiating peer. The responding peer does not need to run addi

tional software; it cansimply usetheNetscape browser to download theapplets. Note that

only a small subsetof HTTPis used, so one can write a stripped-down version of HTTP

server for use in the prototype.

The prototype is divided into two helper programs, RDServer and RDClient, that

run in conjunction with the Netscape Navigator. (RD stands for rapid deployment, the

former name of this project.) RDClient lets a user place a call setup request and sees

through the whole call setup procedure. RDServer waits for call setup requests from

RDClients on other computers.

Theprototype is implemented in theJava progranuning language andconsists of mul

tiple threads organized into thread groups. The system resources used by the implementa

tion are listed below:

• Files: RDClient reads a text file . rdclientrc when it starts up. It creates tempo

rarysession HTML files in the sessions directory during call setup.

• TCP ports: RDSeirver listens on the fixed TCP port 9000. The session coordinator

(part of RDClient) listens on an unused TCP port (called the coordport) chosen

at run time.

• Threads: To set up an w-party call, RDClient on the initiating peer starts a

CallSetupThread and n-\ InvitePeerThreads to talk to the RDServers

88

on the n-\ responding peers. For the common special case n = 2, a TwoParty-

CallSetup thread may be used instead. During the session coordination phase, a

SessionCoordHandler thread is started for each peer applet by the Session-

CoordDispatcher thread listening on coordport. RDServer on a responding

peer is itself a thread. It listens on TCP port 9000 and starts a ClientHandler

thread to talk to the InvitePeerThread or TwoPartyCallSetup thread of the

RDClient on an initiating peer.

4.6.1 The Startup File .rdclientrc

RDClient reads a text file named . rdclientrc when it starts up. An example of the

.rdclientrc file is shown in Figure 4.6. The syntax of .rdclientrc is based on

Tel. A # character indicates the beginningof a comment, and a backslash\ at the end of a

line continues the line. The . rdclientrc file specifies the following information:

• sessionsDir: the pathname of the sessions directory, in which temporary ses

sion HTML files are created. On Unix, I suggest using the public_html/ses

sions directory under the user's home directory.

• sessionsURL: the URL of the sessionsDir directory exported by the local

peer's HTTP server. In the example, a user named wtc on a Unix workstation named

markov.eecs .berkeley.edu running an HTTP server on TCP port 8080 uses

the sessionsDir directorysuggestedabove. Then sessionsURL is

http: / /markov. eecs.berkeley. edu: 8080/--wtc/sessions.

• Information about each available application starts with the keywordapplication,

followed by the application name and the configuration information enclosed in curly

braces {}. (The configuration information is used in the "PLACE CALL" dialog in

RDClient's graphical user interface. See Section 4.6.2below.) Each type of party is

89

described. The keyword origPeer specifies the originating party; the templa-

teURL keyword specifies the URL of its session template file (in which its applet is

embedded). For each type of respondingparty, there is a respPeer block that gives a

short description and specifies the numberof instances (one or multiple, e.g., in a

The startup file for RDClient.

sessionsDir /users/wtc/pviblic_htinl/sessions
sessionsURL http;//markov.eecs.berkeley.edu:8080/-wtc/sessions

application MiniApp {

origPeer {
templateURL \

http://markov.eecs.berkeley.edu:8080/-wtc/java/apps/MiniApp/origpeer.html

)

respPeer {

description "Called party"
niimlnstances one

templateURL \

http://markov.eecs.berkeley.edu:8080/~wtc/java/apps/MiniApp/resppeer.html
}

}

application JavaTalk {
origPeer {

templateURL \

http;//markov.eecs.berkeley.edu:80 8 0/-wtc/java/apps/JavaTalk/talkorig.html

}

respPeer {

description "Called party"
numlnstances one

templateURL \

http://markov.eecs.berkeley.edu:8080/-wtc/java/apps/JavaTalk/talkresp.html
}

}

application WhiteBoard {

}

application ChalkBoard {

}

Figure 4.6 The .rdclientrc file for user wtc on Unix workstation
markov.eecs.berkeley.edu running an HTTP server on TCP port
8080.

90

conference, there can be more than one participant who runs the same applet) and the

URL of its session template file. For example, in Figure 4.6, "MiniApp" is the name of

a minimal peer-to-peer application, which will be used as a programming example.

The URL of the session template file for its originating party is given. It has one other

type of party, with the description "Called party." There can be only one instance of

"Called party," and the URL of its session template file is given.

4.6.2 Placing a Call

A user places a call through RDClient. RDClient opens a top-level window called

RDClientFrame (in Java, a stand-alone top-level window is called iLframe), consisting

of four buttons (see Figure 4.7). When a user pushes the "PLACE CALL" button in

RDClientFrame, a "PLACE CALL" dialog window pops up (see Figure 4.8). A list of

available applications (obtained from the .rdclientrc file) is displayed. The user

selects an application from the list. The configuration information of the selected applica

tion is used to construct the entry boxes for the user to fill in the addresses of the other par

ties. In the example, the user selects the application MiniApp. There is only one other

party, with the description "Called party." After the user fills in the address of the called

party and presses the "OK" button, a CallSetupThread is started to carryout the call

setup procedure. Note that multiple sessionscan be in progress simultaneously.

JJJ-"I Rapid Service Depioyment
PLACE CALL HELP INFO EXIT

Figure 4.7 RDClientFrame, the top-level window of RDClient.

4.6.3 Call Setup Procedure

The call setup' procedure is illustrated in Figure 4.9. The CallSetupThread first cre

ates a CallSetupRecord to record the progress of the call setup. Then it starts a num

ber of InvitePeerThreads, which are collectively put in the "Peer invitation threads"

foucauit.eecs.berkeley.ed

MiniA

Figure 4.8 The "PLACE CALL" dialog. The user selects an application
from the list and fills in the addresses of the other parties.

The originating peer

InvitePeerThread

n • 1

CallSetupThread TCP connection

One responding peer

ClientHandler

(part of RDServer)

CallSetupRecord

Figure 4.9 The threads in call setup procedure. The protocol over the TCP
connection is shown In Figure 4.3 and part of Figure 4.4.

l.In the Java code I have used the shorter term call setup to refer to session establishment.

thread group, to invite the other peers to join the session. Each InvitePeerThread is

responsible for talking to the RDServer on one responding peer. The CallSetu-

pRecordis shared by all the threads involved (i.e., CallSetupThread and Invite-

PeerThreads) for communication and synchronization. In the CallSetupRecord,

the status of each peer is recorded as one of unknown, yes, or no (the status no indicates

that either the peer rejects the invitation or times out in responding). The call setup suc

ceeds when all peers say yes. The call setup is aborted when any peer says no or an error

occurs.

Each InvitePeerThread opens a TCP connection to the RDServer on one

responding peer. In response, the RDServer starts a ClientHandler thread to talk to

the InvitePeerThread. (See also Figure 4.3 for the protocol message exchange over

this TCP connection.) In the SETUP message, InvitePeerThread writes the host

name, user name, and application name to the ClientHandler. ClientHandler

pops up a RingingDialog, shown in Figure 4.10, to alert the user of an incoming call

and writes a RINGING message back to the InvitePeerThread to indicate that the

called user is being alerted. The user pushes the "Yes" or "No" button to accept or reject

Someone on |
markov.eec5.berkeley.edu, who j
claims to be wtc, wants to set up a*
"MiniApp" sessionwith you. J
Accept? I

Yes <Ret>

Figure 4.10 The RingingDialog dialog that alerts the user of an incoming
call.

the call, and ClientHandler writes the user's answer back to invitePeerThread.

If the user does not respond within 30 seconds, a TIMEOUT message is written.

When every peer has said yes, the CallSetupThread picks a session number (in

this implementation, the session number is the current time in milliseconds) and creates

the session HTML files. Session HTML files are generated by inserting the following

applet parameters into the HTML template files: orighost, session, and coord-

port. CallSetupThread instructs the local Netscape browser to download and dis

play the local session file (and hence execute the embedded applet), and the

InvitePeerThreads transfer the URLs of the remote session files to the Cli-

entHandlers of the responding peers for them to download and display their session

files. (The details of downloading the session files and the embedded applets are shown in

Figure 4.4.) Then the session coordination phase starts, in which the peer applets

exchange information, synchronize, and interconnect.

In the common special case of two-party calls, there is only one peer to invite, so a sin

gle thread is sufficient. A TwoPartyCallSetup thread is started instead.

9

4.6.4 Session Coordination Procedure

A thread group called the SessionCoordinator providescoordination (i.e., synchro

nization and communication) services to the applets that belong to the same session. The

thread group consists of a SessionCoordDispatcher thread and some Session-

CoordHandler threads. The SessionCoordDispatcher thread listens on a TCP

port (the coordport), which is chosen when RDClient starts up. It sits in an infinite

loop, accepting connectionsfrom the applets and dispatching SessionCoordHandler

threads to handle the connections.

The session coordination protocol allows the peer applets in a session to exchange

information and synchronize, in a single rounds by reading and writing a shared array of

94

(name,value)pairs, wherenames and valuesare text strings.Each applet,when connected

to the SessionCoordinator on the initiatingpeer (the applet is said to checkin), first

identifies the session number. Then it tells the SessionCoordHandler the number of

(name, value) pairs it is going to write and proceeds to write those pairs. Then it tells the

SessionCoordHandler the number of (name, value) pairs it wishes to read and gives

the list of names. The SessionCoordHandler writes the requested (name, value)

pairs to a peer applet as soon as the information becomes available (when written by

another peer applet). Session coordination completes when every applet has checked in.

Example: In this example, I explain in detail how the two-party session coordination

shown in Figure4.5 is carriedout.The twopeerapplets in a two-party call canuse the ses

sion coordination service to establish theirfirst TCPconnection as follows. The applet on

the initiating peer picks an unused TCP port and listens on the port for connection. The

chosen TCP port number, say 3056, is written to the session coordinator as the pair

(''listenPort", '*3056"). The applet on the responding peer needs to connect to

this TCP port on the initiating peer. It obtains the port number by reading the value for

"listenPort" from the session coordinator. In addition, when theTCPportnumber is

available, the applet on the responding peerknows that the applet on the initiating peeris

ready and listening on the port, so that it can connect to the port. This way, the session

coordinator enables the two applets to exchange information (theTCP port number) and

synchronize (the responding peer's applet connects after the initiating peer's applet has

started to listen). Peer applets in an n-party call can use the session coordinator to establish

their connections too.

4.6.5 A Peer-to-Peer Application Exampie

MinlApp is a minimal peer-to-peer application example. The files forMiniApp are placed

under a directory named MiniApp (see Figure 4.11). The directory MiniApp corre-

95

sponds to the Java package MiniApp. Classes in Java are organized intopackages. Pack

ages give the global class name space a hierarchical structure to avoid name conflicts. Java

class bytecodefiles must be placed in a directory hierarchy that reflects the package hier

archy. The root of this directory hierarchyis called the codebase. In the example, the code-

base is the directory /users/wtc/public_html/java/apps, which is exported

by the HTTP server as the URL http: //markov.eecs.berkeley.edu:8080/

-wtc / j ava/apps (see Figure 4.6). The applications MiniApp, JavaTalk, etc. each have

their own directory under the codebase.

Under the directory MiniApp are the following files:

• Java source files: OrigPeerApplet. java (shown in Figure 4.12) defines the

applet for the originating peer, and RespPeerApplet. java (shown in Figure

4.13) defines the applet for the responding peer.

•Java class bytecode files: OrigPeerApplet .class and RespPeerAp

plet . class, generated by a Java compiler from the above source files.

• Session template files: origpeer. html and resppeer. html, one for each peer

(see Figure 4.14).

MiniApp can be used as a template for constructing more sophisticated applications. Most

of the code in MiniApp is generic and can be reused by many applications. In particular.

The "codebase"

I

JavaTalk

Figure 4.11 Files for the MiniApp application.

96

OrigPeerApplet.java

OrigPeerAppiet.class

/users/wtc/public_htmi/java/apps MiniApp " RespPeerAppiet.java
RespPeerAppiet.ciass

origpeer.htmi

resppeer.htmi

/*

* The applet for the originating peer in MiniApp, a minimal
* peer-to-peer application.

*/

package MiniApp;

import java.applet.Applet;
import java.awt.*;
import j ava.io.*;
import java.net.*;

public class OrigPeerApplet extends Applet implements Runnable {
Socket peerSocket;

TextT^ea textArea;

public void initO {
textArea = new TextArea(5,40);

add(textArea);

(new Thread(this)).start();

)

void connectToPeer() {

try {
// Open a listening server socket.

ServerSocket serverSocket = new ServerSocket(0);

// Connect to session coordinator.

int coordport = Integer.parseint(getParameter("coordport"));
Socket socket = new Socket(InetAddress.getLocalHost(), coordport);
DataOutputStream dos =

new DataOutputStream(socket.getOutputStream());

// Session coordination protocol

// Send session number.

long session = Long.parseLong(getParameter("session"));

dos.writeLong(session);

// Will write one (name, value) pair, the listening port.
dos. wri telnt (1);

dos.writeUTF("listenPort");

dos.writeUTF(Integer.toString(serverSocket.getLocalPort()));

// Will read nothing

dos.writelnt(0);

dos.flush();

Figure 4.12 OrigPeerApplet.java (continued on next page).

97

// Done

dos.close();

socket.close();

// Wait for responding peer's applet to connect.
peerSocket = serverSocket.accept{);

// Done, no more connections.

serverSocket.close();

} catch (NxjmberFormatException e) {
System.err.printIn(e.toString());

} catch (UnknownHostException e) {
System.err.println{e.toString());

} catch (lOException e) {
System.err.println(e.toString());

}

}

public void run() {
connectToPeer();

if {peerSocket == null) {
textArea.appendText("Cannot connect to peer. Abort.Xn");
retiim;

}

try {
DatalnputStream dis =

new DatalnputStream(peerSocket.getlnputStreamO);

DataOutputStream dos =

new DataOutputStream(peerSocket.getOutputStreamO);

dos.writeUTF("Hello");

dos.flush();

String ack = dis.readUTF();
textArea.appendText("The peer acknowledges, \"" + ack + ".*\n');

dis.close();

dos.close 0;

peerSocket.close();
} catch (EOFException e) {

System.err.println(e.toString());
} catch (lOException e) {

System.err.println(e.toString0);

}

Figure 4.12, continued.

98

/*

* The applet for the responding peer in MiniApp, a minimal
* peer-to-peer application.

*/

package MiniApp;

import java.applet.Applet;
import j ava.awt.*;
import j ava.io.*;
in^ort java.net.*;

public class RespPeerApplet extends Applet implements Runnsdsle {
Socket peerSocket = null;

TextArea textArea;

piiblic void init () {
textArea = new TextArea(5, 40);

add(textArea);

(new Thread(this)).start();

)

void connectToPeer() {

try {

// Connect to the session coordinator.

String orighost = getParameter("orighost");
int coordport = Integer.parselnt(getParameter("coordport"));
Socket socket = new Socket(orighost, coordport);

DatalnputStream dis =
new DataInputStream(socket.getlnputstream());

DataOutputStream dos =

new DataOutputStream(socket.getOutputStream());

// Session coordination protocol

// Send session number.

long session = Long.parseLong(getParameter("session"));
dos.writeLong(session);

// This applet writes nothing and reads one symbol: listenPort.
dos.writeint(0);

dos.writeint(1);

dos.writeUTF("listenPort");

dos.flush();

String name = dis.readUTFO ;

String value = dis.readUTFO;

Figure 4.13 RespPeerAppletjava (continued on next page).

99

)

dis.close();

dos.close();

socket.close();

i f (name.equals("ERROR")) {
System.err.println(''Session coordination error: " + value) ;
return;

}

int port = Integer.parseint(value);

peerSocket = new Socket(orighost, port);
catch (NumberFormatException e) {

System.err.println(e.toStringO);
catch (UnlcnownHostException e) {

System.err.printIn(e.toString());
catch (EOFException e) {

System.err.println(e.toString());
catch (lOException e) {

System.err.println(e.toStringO);

public void run() {
connectToPeer();

if (peerSocket == null) {

textArea.appendText("Ccuinot connect to peer. Session aborted.Vn")
return;

)

try {

DatalnputStream dis =

new DatalnputStream(peerSocket.getInputstreamO);
DataOutputStream dos =

new DataOutputStream(peerSocket.getOutputStream());

// Wait for message from peer.
String message = dis.readUTFO;

textArea.appendText("The peer says, X"" + message + ".X'Xn");

// Write acknowledgment message to peer,
dos.writeUTF(message + " back at you*);

dis.close();

dos.close();

peerSocket.close();

} catch (EOFException e) {
System.err.println(e.toString());

} catch•(lOException e) {

System.err.println(e.toString());

}

Figure 4.13, continued.

100

<!— origpeer.html —>

<html>

<head>

<title>MiniApp: A Minimal Peer-to-Peer Application</title>
</head>

<body>

<hl>MiniApp: A Minimal Peer-to-Peer Application</hl>

This page contains the applet for the originating peer in
a minimal peer-to-peer application.

<P>

<applet codebase=.. code=MiniApp.OrigPeerApplet.class width=400 height=150>
</applet>

</body>

</html>

(a) origpeer.htmi

<!— resppeer.html —>

<html>

<head>

<title>MiniApp: A Minimal Peer-to-Peer Application</title>
</head>

<body>
<hl>MiniApp: A Minimal Peer-to-Peer Application</hl>

This page contains the applet for the responding peer in
a minimal peer-to-peer application.

<P>

<applet codebase=.. code=MiniApp.RespPeerApplet.class width=400 height=150>
</applet>

</body>

</html>

(b) resppeer.html

Figure 4.14 The session file templates for MiniApp.

101

the connectToPeer () methods of the two peer applets (OrigPeerApplet and

RespPeerApplet) perform the common session coordination procedure to establish a

connection, as described in the example on page 95.

In the following, please refer to the Java source code in Figure 4.12 and Figure 4.13.

Both peer applets are derived from the base class Applet and implement the Runnable

interface. (A class that implements the Runnable interface has a run () method, which

can be the main body of a thread.) When the applets are loaded and started, their init ()

methods are invoked by the Web browsers. In MiniApp, the init () methods of the two

peer applets are the same. They first create the applets' graphical user interface, in this

case just a text area with 5 rows and 40 colunms. Then the init () methods each start a

thread to execute the run () method of the applet. The new thread will carry out the ses

sion coordination procedure. Note that the session coordination procedure must be per

formed by a new thread. Performing the possibly blocking session coordination in the

init () method, which is invoked by a thread of the Web browser, would prevent the

browser's thread from rendering the applet's graphical user interface quickly.

In the run () method, each thread first invokes the connectToPeer () method to

perform session coordination. The connectToPeer () method of the OrigPeerAp

plet opens a listening socket and then connects to the session coordinator, whose port

number is passed in as the applet parameter coordport. OrigPeerApplet sends to

the session coordinator the port number it is listening on as the value of the symbol named

''listenPort". Then it waits for the RespPeerApplet to connect to this port.

The connectToPeer {) method of the RespPeerApplet also connects to the

session coordinator, whose host name and port number are passed in as the applet parame

ters orighost and coordport. RespPeerApplet asks for the value of the symbol

named ''listenPort", and then connects to that port. At this point, the connection

102

between the peer applets has been established. This connection can be accessed using the

applets' class member PeerSocket.

In the rest of the run () method, the peer applets can use their PeerSocket mem

ber to implement the application functionality. In MiniApp, the peer applets simply do one

round of message exchange and close the connection. OrigPeerApplet sends a mes

sage "Hello" to RespPeerApplet. When RespPeerApplet receives the message, it

sends back an acknowledgment, formed by appending "back at you" to the message. Each

applet displays the message it receives from the peer in its text area.

Finally, one has to prepare the session template files iii which the applets are embed

ded (see Figure 4.14). The code applet tag specifies the Java class bytecode file for the

applet. Because the peer applets are in the package MiniApp, their fiill class names are

MiniApp.OrigPeerApplet and MiniApp.RespPeerApplet. The codebase

applet tag is the URL for the wot of the package hierarchy. The codebase URL can be

given relative to the directory of the session template file. Because the session template

files are in the directory MiniApp, the root of the package hierarchy is one level up,

hence the relative URL ".." (see Figure 4.11). Note that the equivalent absolute URL

http: //markov. eecs .berkeley.edu: 8080/-wtc/java/apps/ could have

been used, but a relative URL allows us to move the MiniApp directory to a different

codebase without having to modify the codebase applet tag in the session template files.

The screen shots of the peer applets are shown in Figure 4.15.

4.6.6 Portability issues

Although written in the portable Java language, the prototype implementation has some

code specific to Unix and X Windows and hence only runs on the Unix/X platform.

The two helper programs RDClient and RDServer should ideally be integrated

into the WWW browsers as local Java applets. In my prototype implementation.

103

ree M Weit G« Btoknurfct Mvetor;

A Minimal Peer-to-Peer Application

Thispage contains the applet for theoriginating peer in a minimal peer-to-peer
application.

The peer acknowledges, 'Hello back at you.'

(a) The originating peer

nte ^ Vbm Ot BMioMrta ^tet Mreetw| Wmtam.

A Minimal Peer-to-Peer Application

Thispagecontains the applet for the responding peer in a mimmal peer-to-peer
application.

iThe peer says, 'Hello,'

(b) The responding peer

Figure 4.15 Screen shots of the MinlApp peer applets.

RDServer does run as a local applet in the remote peer's Netscape browser. However,

RDClient cannot run as a local applet. This is because RDClient needs to read a star

tup file and create session files, but Netscape does not allow even local applets to access

the filesystem. Therefore, RDClient has to run as a stand-alone Javaprogram.

On the Unix/X platform, RDClient can control its associated Netscape browser

using the netscape -remote commands. For example, RDClient tells its compan

ion Netscape browser to display the local session file using the netscape -remote

openURL {) command. The netscape -remote commands are specific to the Unix/

X platform. Unfortunately, there are no equivalent remote control mechanisms for

Netscapebrowsers on PC/Windows and Mac platforms.Therefore, currently RDClient

runs only on Unix/X. However, RDSearver and our example applications, all running as

applets within Web browsers, have been tested to run on Unix/X and PC/Windows plat

forms.

When thesignedappletsfeature is introduced in the future, Javaapplets that are digi

tally signed by trusted parties can be granted more file system access privileges. At that

time, we will be able to run RDClient as an applet within the originating peer's Web

browser.

4.6.7 Possible Extensions

The following are some possibleextensions to the prototype implementation:

• Strengthen the security of the session establishment and coordination procedure (see

the footnote on page 84).

• Java class libraries for peer applets: Common connection establishment procedures,

such as the one described in the example in Section 4.6.4, and conmion communica

tionprimitives should be madeavailable asclass libraries for peerapplets. Wecanbor

row general solutions to problems in distributed computing, e.g., the simulation of

105

shared memory [160], but for most networked applications, simpler solutions would

suffice. For example, a fault-tolerant algorithm may not be necessary for a shared

whiteboard application.

• Multi-user applications: Because of the applet-host security policy in Netscape Navi

gator, a multi-user application must be implemented in a star configuration, i.e., the

appletof every responding peer connects back to the initiating peer's applet. Note that

the call setup and session coordination protocols in the prototype are general. They

work for multi-user applications as well as two-user applications, and in fact are not

restricted to those implemented in a star configuration.

4.7 A Security Model

Netscape's applet security policy is rather restrictive for good reasons. However, it also

seriously limits the useful functions that an applet can do. In this section, I propose a

hypothetical securitymodel that gives sufficient flexibility to Java appletswhile maintain

ing safety.

4.7.1 Hypotheses

The security model has the following hypotheses:

1. Applets can be digitally signed.

2. Applets' access to systemresources (e.g.,CPUtime,file system, and networking),

host environment (e.g., a Web browser), and other applets can be controlled by a secu

rity policy.

3. The identityof the communication peers (e.g., the applet repositories, the users, and

the terminals) can be authenticated.

106

4. Communication can be encrypted.

Hypothesis 1 (signed applets) enables us to know who wrote or have examined the

applets and tohave certain trust on reasonable behavior from the applets. Hypothesis 2 is

similar to theprotection offered by an operating system: user processes areisolated from

thekernel and other user processes, and userprocesses access system resources by invok

ingsystem calls into the kemel. Hypothesis 2 is important notonly forprotection against

untrusted applets but also for fair allocation of resources and protection against bugs in

trusted applets.

Hypotheses 3 (authentication) and 4 (encrypted communication) areapplicable to the

security of communication in general, not just the situations involving executing remote

code. The Internet, which started as a network for coUaborating researchers, has largely

ignored such security issues in its early design. Recently, authentication protocols such as

Kerberos [161] and encrypted communication protocols suchas the Secure Socket Layer

(SSL) [162] have been introduced to enhance the security of Internet.

4.7.2 Security PQlicles

Fornetworked applications, the applet security policy should be a function of the trust in

both the downloaded applet and the communication peer. When applets are digitally

signed by a trusted party and the identity of the peer can be authenticated, one can grant

more access privileges totheapplets. Here I consider the case where neither theapplet nor

the conmiunication peer can be trusted.

For peer-to-peer applications, the applet-host security policy must be modified to

allow network connections between the communication peers. The applet-host security

policy is based on theassumption thatthe applet host coincides with oneof theconununi-

cation peers, which is true in mostclient-server applications. In peer-to-peer applications,

however, this assumption breaks down in the third-party applet repository scenario (see

107

Figure 4.1) and rules out this useful possibility. Therefore, the security policy on applets'

networking capabilities should be based on communication peers, not the applet host.

When applets are granted networking privileges, the major security risks are informa

tion leakage and imposture. These two risks can be dealt with as follows (see Figure 4.16).

1. Information leakage: Given that there exists a network connection to a remote peer, the

applet should not be allowed to read arbitrary files or access any other host within the fire

wall.The applet's user interface shouldbe blatantlymarkedas untrusted, so that the user is

alerted when asked to enter any information. Then the applet is prevented from extracting

sensitive information and leaking it through the network connection

The applet may be granted access to a restricted, isolated portion of the local file sys

tem. For example, an applet should be allowed to save the result of a whiteboard or talk

session in a file under a directory designated for the applet.

2. Imposture: When communicating with other hosts on the network, the applet assumes

the identityof the local host and user. Therefore, the applet shouldnot be allowed to com

municate with an arbitrary host or service, even those outside the firewall. This includes

sendinge-mail or postingnewsgroup articles. However, the appletmay be allowedto com-

Anonymous-access
server

Communication

peer

Other hosts within the

firewall and most of the

local file system are out
of the reach of the applet.

— The applet

An isolated, restricted
portion of the local file
system is accessible by
the applet.

Figure 4.16 Security of an applet's networking privileges.

municate with certain well-knownhosts or services that allow anonymous access, such as

anonymous ftp and Web servers.^

4.8 Example: Distributed CAD Environment

In Figure 4.17 I show a typical collaborative application in a computer-aided design

(CAD) environment as a peer-to-peer application example. Suppose two designers are

workingtogetheron a design. A collaborative application that helps the designers to com

municateideas and exchangeinformationmight include the following components:

• Voiceand video conferencing to let the designers see and talk to each other.

• Remote-controlled, coordinated WWW browsing (i.e., one person can control the

other people's WWW browsers so that their browsers are displaying the same docu-

Peer-to-peer

Voice and video

www Control WWW
browser browser

A Java-enabled WWW browser
serves as an Integrated environment
for viewing documents and executing
applications (stand-alone, client-server,
and peer-to-peer).

On-line
documents,
etc.

C ent-server

WWW Design WWW
server database server

Transfer of applets
^ during session

establishment

Network connections
at run time

Repository of
telecommunications
and collaborative
applications (applets)

Figure 4.17 An application of our technique to a typical collaborative
design scenario in CAD.

1. Some Web servers, such as httpd from NCSA, grant access to restricted files based solely on the network
address of the client. This practice is insecure, similar to the infamous .rhosts file on Unix workstations. A
malicious applet may exploit this feature and gain access to restricted files.

109

ments) to let them jointly view documents. A couple of chat applications, e.g.,

Netscape Chat of Netscape, already combine IRC (Internet Relay Chat, a text-based

communication application [6]) and remote-controlled WWW browsing.

• A shared whiteboard on which the designers can draw sketches of design ideas.

• Shared editing of a document, schematic, or design specification.

In general, such an application would be a mixture of graphics and continuous-media

peer-to-peerconununications, remote-controlled, coordinated client-server access to mul

timedia databases, and shared peer-to-peer applications. In my approach, a user can use a

standard WWW browser as a framework for participating in any collaborative design con

text, be it client-server or peer-to-peer.

Every stand-alone application such as a word processor or design editor has a natural

peer-to-peer shared version, which would provide a mirrored view and remote control of

the shared object (document, design, etc.) to the peer. Because my technique allows stan

dard WWW software environments to support peer-to-peer applications, it should attract

more energy and talent to the creation of new, compelling peer-to-peer applications.

4.9 Conclusions

In this chapter, I have explained the general dynamic deployment approach for networked

applications implemented in the peer-to-peer architecture, and described the design of a

prototype implementation based on the WWW and Java framework. The prototype con

sists of two helper programs that run in conjunction with the Netscape browsers and com

municate using a coordination protocol, and is written entirely in Java for portability.

However, because of the constraints imposed by Netscape*s security policy on Java

applets' access to the file system, the originating peer's helper program, RDClient, cur

rently only runs on the Unix/X platform. As soon as Netscape gives file system access to a

110

trusted applet, such as one that is digitally signed by a trusted party, RDClient can be

made to run on other platforms. The responding peer's helper program, RDServer, has

been tested on both Unix/X and PC/Windows platforms.

Currently we have two applications that can be deployed on this infrastructure: a text-

based peer-to-peer communication application (JavaTalk)similar to the Unix talk program

and a shared whiteboard application. New peer-to-peer applications can be developed to

be deployed and executed on this infrastructure. Because Java is platform-independent,

any peer-to-peer Java applets written to work with our coordination protocol should run

transparently across all platforms.

I proposed a security model that takes into account of the needs and risks of peer-to-

peer applications. In general, the security policy should depend on the trust in both the

downloaded applet and the communication peer. The networking privileges should be

granted based on the communication peer, not the applet host. For the common case where

there is no trust in either the applet or the communication peer, I outlined a security policy

regarding networking and file system access privileges that enables the applet to perform

useful functions while not compromising security.

The prototype is dubbed Applet-to-Share, because it allows people to share Java

applets. Source code and documentation of Applet-to-Share are available on the Web at

the URL http://ptolemy.eecs.berkeley.edu/dgm/javatools/applet-to-share/index.html.

Dynamic deployment avoids a major obstacle to user-to-user applications, the require

ment that users have previously obtained and installed the necessary interoperable applica

tion software, and thus will encourage a proliferation of innovative user-to-user

applications. By adding two helper programs and a coordination protocol to Java and

HTTP, I have demonstrated dynamically deployed peer-to-peer applications using two

instances of existing Java-enabled WWW browsers. Thus, I have demonstrated that peer-

to-peer applications can run in a standard widely-deployed commercial software environ-

111

ment originally defined for client-server applications. The community of users equipped

with Java-enabled WWW browsers become candidates for any Java-described peer-to-

peer applications, bypassing the current obstacle that the users have tohave anticipated the

application and obtained and installed the required application software. This dynamic

deployment approach also ensures interoperability between peer programs. I believe the

dynamic deployment approach has the potential to make the peer-to-peer application

spaceas rich and dynamic as the current client-server application space.

112

5

Conclusions

5.1 Conclusions

The goal of this dissertation is to increase the diversity of networked applications, in par

ticular user-to-user multimediaapplications implemented in the peer-to-peerarchitecture.

I have studiedthis problemin both the design and deployment phases. I have proposed a

design methodology tailored to the characteristics of networked multimedia applications,

and a dynamic deployment approach that extends the current use of Java applets in the

World Wide Web to user-to-user applications in the peer-to-peer architecture.

5.1.1 Heterogeneous Design Methodology

The design methodology I proposed takes the heterogeneous approach of the Ptolemy

design environment — using domain-specific models of computation, such as dataflow

and finite state machines (FSMs), to design different portions of the system, and combin

ing them in a precise and unambiguous manner. The models of computation are overlaid

on top of general programming languages. The models of computation describe the high-

level skeleton of an application, while the generalprogramming languagesfill in the low-

level details. The models of computation serve two purposes. First, they provide special-

US

ized constructs that are not available in general programming languages, yet useful and

suitable for particular application domains. Second, their semantics are usually small, so

that some verification problems at the higher abstraction level of these models remain

decidable, and crucial properties can be checked at compile time.

Networked multimedia applications are reactive systems that combine signal process-

ing with sophisticated control, therefore the design methodology particularly addresses the

characteristics of the mixture of numeric computation and intricate control flow. To com

plement the more mature dataflow models in the Ptolemy design environment, which are

suitable for designing signal processing subsystems, I have focused on the models of com

putation for describing complex control functionality and their interfaces to dataflow and

other concurrency models.

The guidelines I have followed when developing the models of computation for con

trol are that the models should be based on the intuitive notions of states and events, and

that they should have constructs for handling large, complex controllers. After studying

past work in this area, most notably Statecharts and its variants, I recognized that the three

components of Statecharts, i.e., hierarchy, FSM, and concurrency, can in fact be cleanly

separated if the noncompositional constructs like inter-level transitions are removed from

Statecharts. I showed that these noncompositional constructs are either not useful or can

be easily emulated. In return for their removal, we obtain a flexible scheme to nest FSM

hierarchically with concurrency models. The mix-and-match of FSM, hierarchy, and con

currency can capture the essential features of many Statecharts variants. I call this scheme

*charts, which can be viewed as a generalization of Statecharts. Then I proposed a hierar

chical FSM model that can be mixed with various concurrency models.

The hierarchical mixing of FSM and concurrency models has been implemented in the

Ptolemy design environment for the synchronous dataflow (SDF) domain. I described the

implementation strategy and illustrated it with a digital watch programming example.

114

5.1.2 Dynamic Network Deployment

The relatively small number of existing user-to-user networked applications is mainly due

to the network externality problem faced by new applications of this class in their deploy

ment. This intrinsic deployment obstacle makes user-to-user applications unattractive to

service providers and application developers. Service providers hesitate to deploy new

user-to-user applications, and application developers are reluctant to devote their effort to

creating compelling user-to-user applications.

To free end users from having to rely on a service provider's decision to offer an appli

cation, user-to-user applications can be implemented in the peer-to-peer architecture,

which does not require centralized servers. To alleviate the effect of network externality, I

have proposed a dynamic network deployment approach to distribute applications to the

hands of end users quickly.

I have designed an infrastructure for the dynamic deployment of peer-to-peer applica

tions based on the WWW/Java framework, and implemented a prototype, consisting of

two helper programs that run in conjunction with a Java-enabled WWW browser (such as

Netscape Navigator) and conununicate using a session establishment protocol. The design

uses standard, widely available sofrware components, and the additional code is written in

Java. There is also a flexible session coordination protocol that assists peer applets within

the same session to exchange information and connect to each other during establishment.

The session establishment and coordination protocols are general enough for setting up

multi-user as well as two-user networked applications.

The current prototype of dynamic deployment does not implement the case where

application descriptions are stored in some central repository because of the restrictive

applet security policy enforced by Netscape Navigator. I proposed a security model that

would allow a full implementation of dynamic deployment.

115

The deployment infrastructure that I designed turns a Java-enabled WWW browser

into an integrated execution environmentfor dynamically deployed peer-to-peer as well as

client-server applications. Dynamic deployment avoids the requirement that the users have

previously obtained and installed the necessary interoperable application software, and

thus will encourage a proliferation of innovative user-to-user applications.

5.2 Open Issues

The design and deployment of networked applications are broad problems. Throughout

this dissertation I have pointed out the issues one can pursue based on my work. For exam

ple, Chapter 1 contains an overview of the issues in designing and deploying a networked

application that can be set up and executed, with low cost and high subjective quality,

under heterogeneous and dynamic network and user terminal conditions. In Chapter 2 and

Chapter 4,1 have listed possible extensions to the proposed approaches and implementa

tion.

The integration of the design methodology and dynamic deployment approach gives

the most leverage, and we have previously demonstrated this using Ptolemy as the design

and run-time environment and the Ptolemy interpreter language, based on Tel, as the

application description language. The current dynamic deployment infrastructure uses the

more widely disseminated WWW and Java. At the present time, the Ptolemy group is

devoting significant effort to developing the Java code generation capabilities in Ptolemy.

When that is finished, applications developed using the models of computation in Ptolemy

will be able to be translated into Java code, and readily deployed over the dynamic deploy

ment infrastructure.

For dynamic deployment, an important research issue is a security model that allows

dynamically deployed code to provide useful functions while not compromising the secu-

116

rity. Netscape's applet security policy is veryrestrictive onwhatanapplet is allowed to do.

Ousterhout et al. have proposed a nice security model forSafe-Tcl, which cleanly isolates

the remote applets and the local host execution environment in multiple Tel interpreters

[72]. It would be interesting to investigate whether Java can emulate Safe-Tcl's security

model.

In the rest of this section, I wouldlike to touchon twoperformance-related issues that

are critical to the success of the dynamic deployment approach, using Java applets as an

example, and speculate on possible solutions.

5.2.1 Downloading Time

The time it takes to download Java applets contributes to the session establishment delay,

and should be kept as short as possible. Broadband networking is the best solution. In

addition, some possible techniques to minimize the download time are:

• Avoid downloading: Java applets downloaded from the network can be cached or

saved permanently in the local storage. A related issue is the versioning of Java

classes, which can be used to determine whether a new copy of a locally cached Java

class needs to be downloaded.

• Download efficiently: All theJava classes and dataused by a Java applet canbe pack

aged intoone archive file, such as theJava Archive (JAR) format that Sun is defining,

anddownloaded in one network transaction to avoid theround-trip delays from down

loading each of them separately. The archive file can be compressed for better band

width efficiency.

• Hide the latency: A Java applet can be structured so that a minimal subset of the Java

classes that implements its core functionality can be downloaded first and started

immediately, while the rest of the classes are being downloaded in the background.

117

Additionally, some optional Java classes may be downloaded only when they are

needed.

5.2.2 Performance of Java for Multimedia Processing

Java source code is compiled into Java bytecode, the instmctions for the Java virtual

machine. The virtual machine layer provides security protection and achieves platform

independence, at the cost of degrading the execution performance. Java bytecode interpre

tation is about 10-15 times slower than compiled C code. Although microprocessors are

becoming faster by Moore's Law, there will always be applications that need every bit of

performance from the processor. Most notable are multimedia applications. High fidelity

audio, video, graphics, and animation all require heavy-duty numeric computation, typi

cally repetitive operations on streams of data at high rate.

Some possible techniques to enhance Java's run-time performance are:

• Just-in-time bytecode compilers: Some Java virtual machines contain a just-in-time

(JIT) compiler, which translates Java bytecode into native code and caches the native

code while the Java program is executing. JTT bytecode compiler can enhance run-time

performance to what is comparable to unoptimized C code. According to a benchmark

test performed by Pendragon Software Corporation [163], JIT compilers are especially

good at optimizing the mathematical operations, achieving a speedup factor of 40-80.

*This acceleration will make computationally intensive animation and 3D modeling

much faster." The findings of this performance report are encouraging.

• Hardware implementation of the Java virtual machines: These dedicated Java proces

sors, such as Sun's Java chips [164], natively understand Java bytecode without the

overhead of a bytecode interpreter or JIT compiler. This approach is mainly useful for

embedded Java applications, such as cellular phones, TV set-top boxes, and network

118

computers. For general-purpose computers, their powerful CPUs with JIT compilers

are likely to offer sufficientperformance without the cost of adding a Java co-proces

sor.

Native multimedia instructions; Recently microprocessors have begun to have special

ized instructions for conunon multimedia processing operations, e.g., the VIS instruc

tions in Sun's UltraSPARC processors and the MMX instructions in Intel's x86

processors [165][166]. These SIMD (single instruction, multiple data) instructions

operate on multiple integer operands packed into a register in parallel. Java's run-time

system should take advantage of these specialized instructions. Java interpreters and

JIT compilers may not be smart enough to exploit the specialized instructions. A pos

sible approach is to define a standard multimedia class library, with native code imple

mentation, of the commonly used components in signal processing.

119

Bibliography

[1] J. Grudin, "On Computer Supported Collaborative Work," Collaborative Comput

ing, Communications ofthe ACM, Vol. 34, No. 12,1991.

[2] J. Grudin, "Computer-Supported Cooperative Work: History and Focus," Com

puter, Vol. 27, No. 5, pp. 19-26, May 1994.

[3] T. Bemers-Lee, A. Caillau, A. Lx)utonen, H. F. Nielsen, and A. Secret, *The World

Wide Web," Communications ofthe ACM, Vol. 37, pp. 76-82, August 1994.

[4] H. L. Berghel, "The Client Side of the Web," Communications ofthe ACM, Vol.

39, pp. 33-40, January 1996.

[5] M. Handley and J. Crowcroft, The World Wide Web — Beneath the Surf, UCL

Press, Lx)ndon, 1994.

[6] S. Harris, The IRC Survival Guide: Talk to the World with Internet Relay Chat,

Addison-Wesley, Reading, Mass., 1995.

[7] C. A. Ellis, S. J. Giggs, and G. L. Rein, "Groupware: Some Issues and Experi

ences," Communications oftheACM, Vol. 34, No. 1, January 1991.

[8] A. S. Tanenbaum, *The Application Layer," Chapter 7 in Computer Networks,

Third Edition, Prentice Hall PTR, Upper Saddle River, New Jersey 07458,1996.

[9] D. G. Messerschmitt, *The Convergence of Telecommunications and Computing:

What are the Implications Today?", Proceedings ofthe IEEE, Vol. 84, No. 8, pp.

1167-1186, August 1996.

[10] D. G. Messerschmitt, *The Future of Computer Telecommunications Integration,"

IEEE Communications Magazine, Vol. 34, No. 4, pp. 66-69, April 1996.

120

[11] F.Fluckiger, Understanding NetworkedMultimedia: Applications and Technologyy

Prentice Hall, Englewood Cliffs, New Jersey, 1995.

[12] National Research Council, Computer Science and Teleconununications Board,

Realizing the Information Future: TheInternet and Beyond^ National Academy

Press, Washington D.C., 1994.

[13] D. E. Comer, Internetworking with TCP/IPy Vol. 1, 3rd Ed., Prentice Hall, Engle

wood Cliffs, New Jersey, 1995.

[14] W. R. Stevens, TCP/IP Illustratedy Vol. 1, Addison-Wesley, Reading, Massachu

setts, 1994.

[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTF: A Transport Pro

tocol for Real-Time Applications," RFC 1889, November 1995.

[16] P. A. Bernstein, "Middleware: A Model for Distributed System Services," Commu

nications of the ACMy Vol. 39, No. 2, pp. 86-98, February 1996.

[17] M. De Prycker, Asynchronous Tranter Mode: Solutionfor Broadband ISDNy Sec

ond Edition, Ellis Horwood, New York, 1993.

[18] J.-Y. Le Boudec, *The Asynchronous Transfer Mode: A Hitorial," Computer Net

works and ISDN Systems, Vol. 24, pp. 279-309, May 1992.

[19] K.-Y. Siu and R. Jain, "A Brief Overview of ATM: Protocol Layers, LAN Emula

tion, and Traffic Management," Computer Communication Review, Vol. 25, pp. 6-

20, April 1995.

[20] D. C. Cox, "Wireless Network Access for Personal Communications," IEEE Com

munications Magazine, Vol. 30, No. 12, pp. 96-115, December 1992.

[21] D. J. Goodman, ^Trends in Cellular and Cordless Communications," IEEE Com

munications Magazine, Vol. 29, No. 6, pp. 31-40, June 1991.

121

[22] J. E. Padget, C. G. Gunther, and T. Hattori, "Overview of Wireless Personal Com

munications " IEEE Communications Magazine, Vol. 33, No. 1, pp. 28-41, January

1995.

[23] R. M. Metcalfe and D. R. Boggs, "Ethemet: Distributed Packet Switching for

Local Computer Networks," Communications oftheACM, Vol. 19, No. 7, pp. 395-

404, July 1976.

[24] A. Sinha, "Client-Server Computing: Current Technology Review," Communica

tions ofthe ACM, Vol. 35, No. 7, pp. 77-98, July 1992.

[25] S. Broadhead, "Client-Server: The Past, Present and Future," Network Computing,

Vol. 4, No. 12, pp. 38,40,42-43, December 1995.

[26] Cornell University's CU-SeeMe Page. (URL http://cu-seeme.comell.edu/)

[27] T. Dorcey, 'The CU-SeeMe Desktop Videoconferencing Software," Connexions,

Vol. 9, No. 3, pp. 42-45, March 1995.

[28] M. Sattler, Internet TVwith CU-SeeMe, Sams net, Indianapolis, Indiana, 1995.

[29] P.E. Haskell, Flexibility in the Interactions BetweenHigh-SpeedNetworksand

Communications Applications, Ph.D. Dissertation, University of Californiaat Ber

keley, December 1993.

[30] L. C. Yun and D. G. Messerschmitt, "DigitalVideo in a Fading Interference Wire

less Environment," Proc. IEEE Int. Conf. onAcoustics, Speech, and Signal Pro

cessing, Atlanta, GA, May 1996.

[31] D. G. Messerschmitt, "ComplexityManagement: A Major Issue for Telecommuni

cations," International Conference on Communications, Computing, Control, and

Signal Processing, Stanford University, Palo Alto, CA, June 22-16,1996.

122

[32] J. C. McDonald, Fundamentals ofDigital Switching, Second Edition, Plenum

Press, 1990.

[33] GRINSEC, Electronic Switching, North-Holland, 1983.

[34] A. Cambell, G. Coulson, F. Garcia, and D. Hutchison, "A Continuous Media

Transport and Orchestration Service," Proceedings ofACM SIGCOMM '92 Con

ference. Communications Applications, Architectures and Protocols, Baltimore,

MD, USA, August 17-20,1992.

[35] B. Wolfinger and M. Moran, "A Continuous Media Data Transport Service and

Protocol for Real-Time Communication in High Speed Networks," Network and

Operating System Supportfor Digital Audio and Video. Second International

Workshop Proceedings, Heidelberg, Germany, November 18-19,1991. Edited by:

R. G. Herrtwich, pp. 171-182, Springer-Verlag, Berlin, Germany, 1992.

[36] A. Cambell, G. Coulson, and D. Hutchison, "A Quality of Service Architecture,"

Computer Communication Review, Vol. 24, pp. 6-27, April 1994.

[37] C. Aurrecoechea, A. Campbell, and L. Hauw, "A Review of QoS Architectures," to

appear in Multimedia Systems Journal, 1996, and invited paper in Proc. 4th IFIP

International Workshop on Quality ofService, Paris, March 1996.

[38] J. S. Tumer, "New Directions in Communications (or Which Way to the Informa

tion Age?)," IEEE Communications Magazine, Vol. 24, No. 10, pp. 8-15, October

1986.

[39] A. K. Parekh and R. G. Gallager, "A Generalized Processor Sharing Approach to

Flow Control in Integrated Services Network - the Single-Node Case," lEEE/ACM

Transactions on Networking, Vol. 1, No. 3, pp. 344-357, June 1993.

123

[40] R. Han and D. G. Messerschmitt, "Asymptotically Reliable Transport of Multime

dia/Graphics Over Wireless Channels," Proc. Multimedia Computing and Net

working, San Jose, CA, January 29-31,1996.

[41] A. Y. Lao, J. M. Reason, and D. G. Messerschmitt, "Asynchronous Video Coding

for Wireless Transport," IEEE Workshopon Mobile Computing Systems andAppli

cations, Santa Cruz, CA, Dec. 1994.

[42] J. M. Reason, L. C. Yun, A. Y. Lao and D. G. Messerschmitt, "Asynchronous

Video: Coordinated Video Coding and Transport for Heterogeneous Networks

with Wireless Access," chapter in Mobile Computing, H. F. Korth and T. Imielin-

ski, Eds., Kluwer Academic Press, Boston, MA, 1995.

[43] P. E. Haskell and D. G. Messerschmitt, "In Favor of an Enhanced Network Inter

face for Multimedia Services," submitted to IEEE Multimedia Magazine, 1995.

[44] C. Huitema, IPv6: The New Internet Protocol, Prentice Hall, Englewood Cliffs,

New Jersey, 1996.

[45] S. A. Thomas, IPng and the TCP/IP Protocols: Implementing the Next Generation

Internet, John Wiley & Sons, Inc., 1996.

[46] E. Lyghounis, I. Poretti, and G. Monti, "Speech Interpolation in Digital Transmis

sion Systems," IEEE Transactions on Communications, Vol. COM-22, No. 9, pp.

1179-1189, September 1974.

[47] D. S. Taubman and A. Zakhor, "Rate and Resolution Scalable Subband Coding of

Video," 1994 IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Adelaide, SA, Australia, April 19-22,1994.

[48] D. S. Taubman, Directionality and Scalability in Image and Video Compression,

Ph.D. Dissertation, University of California at Berkeley, 1994.

124

[49] S. McCanne, JointSource/Channel Codingfor Multicast Packet VideOy Ph.D. dis

sertation, Computer Science Division, University of California at Berkeley, sum

mer 1996.

[50] A.A.Lazar andG. Pacifici, "Control of Resources in Broadband Networks with

Quality ofService Guarantees," IEEE Communications Magazine^ Vol. 29,No. 10,

pp. 66-73, October 1991.

[51] A.Demers, S. Keshav, and S.Shenker, "Analysis and Simulation of a Fair Queue-

ing Algorithm," Internetworking: Research andExperience^ Vol. 1, No. 1,pp. 3-

26, September 1990.

[52] A.G.Greenberg and N.Madras, "How Fairis FairQueueing?", Journalofthe

Associationfor Computing Machinery^ Vol. 39,No. 3, pp. 568-598, July 1992.

[53] S. Minzer, "ASignaling Protocol forComplex Multimedia Services," IEEEJour

nal on SelectedAreas in Communications, Vol. 9, No. 9, pp. 1383-1394, December

1991.

[54] J. R. Cox, Jr., M. E. Gaddis, and J. S.Tumer, "Project Zeus," IEEE Network, Vol.

7, No. 2, March 1993.

[55] M. Wakamoto, M. W. Kim, K. Fukuda, and K. Murakami, "A Communication

Network ControlArchitecture to Integrate ServiceControland Management,"

lEICE Trans. Commun., Vol. E77-B, No. 11,pp. 1342-1349, November 1994.

[56] R. Cohen and Y.-H. Chang, "Video-on-Demand Session Management," IEEE

Journal on Selected Areas in Communications, Vol. 14, No. 6, pp. 1151-1161,

August 1996.

[57] P. Moghe and I. Rubin, "Enhanced Call: AParadigm for Applications With

Dynamic Client-Membership and Client-Level Binding in ATM Networks," IEEE/

ACM Transactions on Networking, Vol. 4, No. 4, pp. 615-628, August 1996.

125

[58] D. Ferrari and D. C. Verma, "A Scheme for Real-Time Channel Establishment in

Wide-Area Networks," IEEE Journal on SelectedAreas in Communications, Vol.

8, No. 3, pp. 368-379, April 1990.

[59] T. Nishida and K. Taniguchi, "QOS Controls and Service Models in the Internet,"

lEICE Trans, Commun., Vol. E78-E, No. 4, pp. 447-457, April 1995.

[60] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, "RSVP: A New

Resource ReSerVationProtocol," IEEE Network, Vol. 7, No. 5, pp. 8-18, Septem

ber/October 1993.

[61] M. E. Lukacs and D. G. Boyer, "A UniversalBroadband Multipoint Teleconferenc

ing Service for the 21st Century," IEEE Communications Magazine, Vol. 33, No.

11, pp. 36-43, November 1995.

[62] A. Fox and E. Brewer, "Reducing WWW Latency and Bandwidth Requirements

via Real-Time Distillation," Proceedings ofthe Fifth International World Wide

Web Conference (WWW-5), Paris, France, May 1996.

[63] S.-F. Chang, Compositing and Manipulation of Video Signalsfor Multimedia Net

work Video Services,Ph.D. Dissertation,Departmentof ElectricalEngineeringand

Computer Sciences, University of California at Berkeley, 1993.

[64] M. J. Woodridge and N. R. Jennings, Eds., IntelligentAgents. Proceedings of

ECAI-94Workshop onAgent Theories, Architectures, and Languages, Amsterdam,

The Netherlands, Springer-Verlag, August 1994.

[65] M. J. Woodridge and N. R. Jennings, "Agent Theories, Architectures, and Lan

guages: A Survey," ECAI-94 Workshop on Agent Theories, Architectures, and Lan

guages, Amsterdam, The Netherlands, August 8-9,1994.

[66] D. Chess et al.. Itinerant Agentsfor Mobile Computing, Research Report RC

20010, IBM Research Division, Yorktown Heights, N. Y., 1995.

126

[67] L. F. Bic, M. Fukuda, and M. B. Dillencourt, "Distributed Computing Using

Autonomous Objects," Computer, Vol. 29, No. 8, pp. 55-61, August 1996.

[68] J. E. White, Telescript Technology,Tech. Report, General Magic, Mountain View,

California, 1994.

[69] J. Tardo and L. Valente, "Mobile Agent Security and Telescript," Digest ofPapers,

COMPCON '96, Technologiesfor the Information Superhighway, Forty-First IEEE

Computer Society International Conference, pp. 58-63, IEEE Computer Society

Press, Lx)s Alamitos, California, 1996.

[70] N. S. Borenstein, "E-mail with a Mind of its Own: The Safe-Tcl Language for

Enabled Mail," Upper Layer Protocols, Architectures and Applications, IFIP TC6/

WG6.5 International Conference, Barcelona, Spain, June 1-3,1994. Also in IFIP

Transactions C (Communication Systems), Vol. C-25, pp. 389-402,1994.

[71] J. Y. Levy and J. K. Ousterhout, "A Safe Tel Toolkit for Electronic Meeting

Places," Proceedings ofthe First USENIX Workshop ofElectronic Commerce,

New York, New York, July 11-12,1995, pp. 133-135, USENIX Association, Ber

keley, California, 1995.

[72] J. K. Ousterhout, J. Y. Levy, and B. B. Welch, "The Safe-Tcl Security Model,"

draft paper, Sun Microsystems Laboratories, Mountain View, California, Novem

ber 16,1996.

[73] K. Amold and J. Gosling, The Java Programming Language, Addison-Wesley,

1996.

[74] J. Gosling, B. Joy, and G. Steele, The Java Language Specification, Addison-Wes

ley, Reading, Massachusetts, 1996.

[75] M. A. Hamilton, "Java and the Shift to Net-Centric Computing," Computer, Vol.

29, No. 8, pp. 31-39, August 1996.

127

[76] D.Dean, E. W. Felten, and D.S.Wallach, "Java Security: From HotJava to

Netscape and Beyond," Proc. Symp. Security andPrivacy, pp. 190-200, TF.F.F.

Computer Society Press, Los Alamitos, California, 1996.

[77] W. Li, Agent-Based Signalingfor Service Negotiations on BroadbandNetworks,

Ph.D. Dissertation in preparation, Department ofElectrical Engineering and Com

puter Sciences, University of Califomiaat Berkeley, Berkeley, CA,94720.

[78] D. J. Le Gall, "MPEG: A Video Compression Standard for Multimedia Applica

tions," Communications oftheACM, Vol. 34, No.4, pp. 46-58,April 1991.

[79] D. J. Le Gall, "TheMPEG Video Compression Algorithm," SignalProcessing:

Image Compression, Vol. 4, No. 2, pp. 129-140, April 1992.

[80] M. Grossglauser, S. Keshav, and D. Tse, "The Case Against Variable Bit RateSer

vice," Proceedings of the5th International Workshop on Network and Operating

System Supportfor Digital Audioand Video, pp. 307-310, Durham, NH, USA,

April 18-22,1995.

[81] M. Grossglauser, S. Keshav, and D. Tse, "RCBR: A Simple andEfficient Service

for Multiple Time-Scale Traffic," ACM SIGCOMM '95,Cambridge, MA, USA,

August 28 - September 1,1995. Computer Communication Review, Vol. 25, No. 4,

pp. 219-230, October 1995.

[82] D. J. Reininger, D. Raychaudhuri, and J. Y. Hui, "BandwidthRenegotiation for

VBR Video Over ATM Networks," IEEE Journal on Selected Areas in Communi

cations, Vol. 14, No. 6, pp. 1076-1086, August 1996.

[83] R. K. Berman and J. H. Brewster, "Perspective on the AIN Architecture," IEEE

CommunicationsMagazine, Vol. 31, No. 2, pp. 27-32, February 1992.

[84] J. J. Garrahan, P.A. Russo, K. Kitami, and R. Kung, "Intelligent Network Over

view,"IEEE Communications Magazine, Vol. 31, No. 3, pp. 30-36, March 1993.

128

[85] A. A. Lazar, K.-S. Lim, and F. Marconcini, "Realizing a Foundation for Program-

mability of ATM Networks with the Binding Architecture " IEEE Journal on

SelectedAreas in Communications^ Vol. 14, No. 7, pp. 1214-1227, September

1996.

[86] D. L. Tennenhouse and D. J. Wetherall, "Towards an Active Network Architec

ture," Proc. ofMultimedia Computing and Networking 96, San Jose, California,

January 1996.

[87] A. A. S. Danthine, "Protocol Representation with Finite-State Models," IEEE

Transactions on Communications, Vol. COM-28, pp. 632-643, April 1980.

[88] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems," International Journal of

Computer Simulation, special issue on "Simulation Software Development," Vol.

4, pp. 155-182, April 1994.

[89] B. Stroustrup, The C++ Programming Language, Second Edition, Addison-Wes-

ley, Reading, Massachusetts, 1991.

[90] J. K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley Publishing Company,

Reading, Massachusetts, 1994.

[91] N. Economides, *The Economics of Networks," International Journal ofIndus

trial Organization, Vol. 14, No. 6, pp. 673-700, October 1996.

(URL http://edgar.stem.nyu.edu/networks/top.html)

[92] C. Antonelli, *The Economic Theory of Information Networks," in The Economics

ofInformation Networks, C. Antonelli (Ed.), North Holland, Amsterdam, 1992.

[93] C. Antonelli, "Externalities and Complementarities in Telecommunications

Dynamics," International Journal ofIndustrial Organization, Vol. 11, No. 3, pp.

437-447, September 1993.

129

[94] W.-T. Chang, W.-Y. Li, D. G. Messerschmitt, and N. Chang, "RapidDeployment

of CPE-Based Telecommunications Services," Proceedings ofGLOBECOM'94^

Vol. 2, pp. 876-880, SanFrancisco, California, USA, November 28 - December 2,

1994. (URLhttp://ptolemy.eecs.berkeley.edu/dgm/PAPERS/94/Globecoml/)

[95] W.-T. Chang and D. G. Messerschmitt, "DynamicDeployment of Peer-to-Peer

Networked Applications to Existing World-Wide Web Browsers," Proceedings of

the Telecommunications Information NetworkArchitecture(TINA) '96 Conference,

Heidelberg, Germany, September 3-5,1996.

(URL http://ptolemy.eecs.berkeley.edu/dgm/PAPERS/96/TINA1/)

[96] W.-T. Chang, S. Ha, and E. A. Lee, "Heterogeneous Simulation- Mixing Discrete-

Event Models with Dataflow," invited paper, RASSP special issue of the Journal

on VLSI Signal Processing, to appear, 1997.

(URL http://ptolemy.eecs.berkeley.edu/papers/96/heterogeneity/)

[97] W.-T. Chang, A. Kalavade, and E. A. Lee, "EffectiveHeterogeneous Design and

Co-simulation," NATOAdvanced Study Institute Workshop on Hardware/Software

Co-design, Lake Como, Italy, June 18-30,1995.

(URL http://ptolemy.eecs.berkeley.edu/papers/effective/)

[98] D. Harel and A. Pnueli, "On the Development of Reactive Systems," Logics and

Models ofConcurrent Systems, K. R. Apt, editor, volume F13 ofNATO ASI Series,

pp. 477-498, Springer Verlag, 1985.

[99] G. Berry, "Real Time Programming: Special Purpose or General Purpose Lan

guages," Information Processing, G. Ritter, Ed., Elsevier Science Publishers B.V.

(North Holland), Vol. 89, pp. 11-17,1989.

[100] J. B. Dennis, First Version Data Flow Procedural Language, Technical Memo

MAC TM61, MTTLaboratory for Computer Science, May 1975.

130

[101] E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous Data flow

Programsfor DigitalSignal Processing," IEEE Transactions on Computers, Vol.

C-36, No. 1, pp. 24-35, January 1987.

[102] E. A. Lee and D. 0. Messerschmitt,"Synchronous Data How," Proceedings ofthe

IEEE, Vol. 75, No. 9, pp. 1235-1245, September 1987.

[103] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesisfrom Syn

chronous Dataflow Graphs, KluwerAcademic Press,Norwell, Mass., 1996.

[104] E. A. Lee, "Consistency in Dataflow Graphs," IEEE Transactions on Parallel and

Distributed Systems, Vol. 2, No. 2, April 1991.

[105] J. T. Buck, SchedulingDynamicDataflow Graphs withBoundedMemory Using

the Token Flow Model, Technical Report UCB/ERL93/69, Ph.D. Dissertation,

Department of EECS, University of California at Berkeley, Berkeley, California

94720,1993.

[106] R. Lauwereins, P. Wauters, M. Ade,J. A. Peperstraete, "Geometric Parallelism and

Cyclo-Static Dataflow in GRAPE-II," Proc. 5th Int. Workshop on RapidSystem

Prototyping, Grenoble, France, June 1994.

[107] E. A. Lee and T. M. Parks, "Dataflow ProcessNetworks," Proceedingsof the

IEEE, Vol. 83, No. 5, pp. 773-801, May 1995.

[108] T.M. Parks, Bounded Scheduling ofProcessNetworks, Technical Report UCB/

ERL-95-105. Ph.D. Dissertation.EECS Department, University of California at

Berkeley, Berkeley,California 94720, December 1995.

[109] A. Benveniste and G. Berry, 'The Synchronous Approach to Reactiveand Real-

Time Systems," Proceedings of theIEEE, Vol. 79,No. 9, pp. 1270-1282, Septem

ber 1991.

131

[110] N. Halbwachs, Synchronous ProgrammingofReactive Systems, KluwerAcademic

Publishers, Dordrecht, The Netherlands, 1993.

[111] S. A. Edwards, The Specification and Execution ofHeterogeneous Synchronous

ReactiveSystems, Ph.D. dissertation in preparation,Departmentof EECS, Univer

sity of California at Berkeley,Berkeley, CA 94720 USA.

[112] J. E. Hopcroft and J. D. UUman, Introduction toAutomata Theory, Languages, and

Computation, Addison-Wesley,Reading, Mass., 1979.

[113] B. W. Kemighan and D. M. Ritchie, The C Programming Language, Second Edi

tion, Prentice-Hall, 1988.

[114] D. Harel, "Statecharts: A \^sual Formalism for Complex Systems," Science of

Computer Programming, Vol. 8, No. 3, pp. 231-274, June 1987.

[115] M. von der Beeck, "A Comparison of Statecharts Variants," Proc. ofFormal Tech

niques in Real Timeand Fault Tolerant Systems, LNCS 863, pp. 128-148, Springer-

Verlag, Berlin, 1994.

[116] A. C. Uselton and S. A. Smolka, "A Compositional Semantics for Statecharts

Using Labeled Transition Systems," CONCUR '94: Concurrency Theory, 5th

International Conference, Uppsala, Sweden, August 22-25,1994. Springer-Verlag

LNCS 836, pp. 2-17.

[117] F. Maraninchi, "The Argos Language: Graphical Representation of Automata and

Description of Reactive Systems," Proceedings ofthe IEEE Workshop on Visual

Languages, Kobe, Japan, October 1991.

[118] F. Maraninchi, "Operational and Compositional Semantics of Synchronous

Automaton Compositions," Proceedings ofCONCUR '92, Third International

Conference on Concurrency Theory, LNCS 630, pp. 550-564, Springer Verlag,

August 1992.

132

[119] G. Kahn, "The Semantics of a Simple Language for Parallel Programming," Pro

ceedings ofthe IFIP Congress 74^ North-HoUand Publishing Co., 1974.

[120] G. Kahn and D. B. MacQueen, "Coroutines and Networks of Parallel Processes,"

Information Processing 77, B. Gilchrist, editor, North-HollandPublishing Co.,

1977.

[121] R. M. Karpand R. E. Miller, "Properties of a Model for Parallel Computations:

Determinacy, Termination, Queueing," SIAM Journal^ Vol. 14,pp. 1390-1411,

November 1966.

[122] G. S. Fishman, Principles ofDiscrete EventSimulation^ John Wiley, New York,

1978.

[123] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, SecondEdition,

McGraw-Hill, Inc., 1991.

[124] J. Banks,J. S. Carson, 11, and B. L. Nelson, Discrete-Event System Simulation,

Second Edition, Prentice Hall, Upper Saddle River, New Jersey, 1996.

[125] R. H. Katz, Contemporary Logic Design, TheBenjamin/Cummings Publishing

Company, Inc., Redwood City, Califomia, 1994.

[126] F. Belina, D. Hogrefe, and A. Sarma, SDL with Applicationsfrom Protocol Specifi

cation, Prentice Hall International (UK), Hemel Hempstead, Herfordshire, 1991.

[127] O. Faergemand and A. Olsen, "Introduction toSDL-92," Computer Networks and

ISDNSystems, Vol. 26, No. 9, pp. 1143-1167, May 1994.

[128] D. A. Patterson andJ. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, Morgan Kaufmann Publishers, Inc., SanMateo,

Califomia, 1994.

133

[129] D. Harel, H. Lachover, A. Naamad, A. Pnueli,M. Politi, R. Sherman, A. Shtull-

Trauring, andM. Trakhtenbrot, "STATEMATE: A Working Environment for the

Development of Complex Reactive Systems," IEEE Transactions on Software

Engineering, Vol. 16, No. 4, pp. 403-414, April 1990.

[130] A. Orailoglu and D. D. Gajski, "Flow Graph Representation," Proceedings ofthe

Design Automation Conference, 1986.

[131] J. Lis and D. D. Gajski, "Synthesis from VHDL," Proceedings ofthe International

Conference on Computer Design, 1988.

[132] M. C. McFarland, A. C. Parker, and R. Camposano, "The High-Level Synthesis of

Digital Systems," Proceedings of the IEEE, Vol.78, No. 2, pp. 301-318, February

1990.

[133] B. Lee, Fusing Dataflow with Finite State Machines, M.S. Report, Dept. of EECS,

University of California, Berkeley, CA 94720 USA, 1996.

[134] M. Pankert and S. Ritz, "Event Handling in Signal Flow Oriented Simulation and

Synthesis," Proc. Summer Computer Simulation Conference, pp. 269-273, Reno,

Nevada, July 1992.

[135] S. Ritz, M. Pankert, and H. Meyr, "High Level Software Synthesis for Signal Pro

cessing Systems," in Proc. of the Int. Conf. on Application Specific Array Proces

sors, IEEE Computer Society Press, August 1992.

[136] M. Pankert, O. Mauss, S. Ritz, and H. Meyr, "Dynamic Data Flow and Control

Flow in High Level DSP Code Synthesis," Proceedings ofthe 1994 IEEE Interna

tional Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 449-

452, Adelaide, Australia, April 19-22, 1994.

[137] M. Jourdan, F. Lagnier, F. Maraninchi, and P. Raymond, "A Multiparadigm Lan

guage for Reactive Systems," Proceedings ofthe 1994 IEEE International Confer-

134

ence on Computer Languages (ICCL '94), pp. 211-218, Toulouse, France, May 16-

19,1994.

[138] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, *The Synchronous Data Flow

Programming Language LUSTRE," Proceedings ofthe IEEE, Vol. 79, No. 9, pp.

1305-1320, September 1991.

[139] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine, "The Algorithmic Analysis of Hybrid Sys

tems," Theoretical ComputerScience, Vol. 138, No. 1, pp. 3-34, February 1995.

[140] T. A. Henzinger, "The Theory of Hybrid Automata," Proceedings ofthe Ilth

Annual IEEE Symposium on Logic in ComputerScience (UCS1996), pp. 278-292.

[141] S. Narayan, F. Vahid, and D. D. Gajski,Modeling with SpecCharts, Technical

Report 90-20, Department of Information and Computer Science, University of

California, Irvine, July 25,1990.

[142] S. Narayan, F. Vahid, and D. D. Gajski, "SpecCharts: A Language for System

Level Specificationand Synthesis,"Proc. of the lOth Intl. Symp. on Computer

Hardware Description Languages, Marseille, France, April 1991.

[143] S. Narayan, F. Vahid, and D, D. Gajski,"SystemLevelSpecification andSynthesis

with the SpecCharts Language,"Proc. ofthe International Conference on Com

puterAided Design (ICCAD), November 1991.

[144] M. Jourdan and F. Maraninchi, "A Modular State/Transition Approach for Pro

gramming Reactive Systems," ACM SIGPLAN Workshop on Language, Compiler

and ToolSupportfor Real-Time Systems,Orlando, Florida, 1994.

(URLhttp://www.imag.frA^RIMAG/SYNCHRONE/ACM-sigplan94.html)

[145] N. Lynch and M. Tuttle, Hierarchical Correctness Proofsfor Distributed Algo

rithms, Master's thesis. Department of Electrical Engineering and Computer Sci-

135

ence, Massachusetts Institute ofTechnology, Cambridge, MA, April 1987.

Technical Report MIT/LCS/TR-387. Abbreviated version in Proceedings ofthe
Sixth Annual ACM Symposium on Principles ofDistributed Computing, pp. 137-

151, Vancouver, BritishColumbia, Canada, August 1987.

[146] N. Lynch and M. Tuttle, "An Introduction to Input/Output Automata," CWI-Quar-
terly. Vol. 2, No. 3,pp. 219-246, September 1989. Centrum voor Wiskunde en
Informatica, Amsterdam. Also, inTechnical Memo MIT/LCS/TM-373, Labora

tory for Computer Science, Massachusetts Institute ofTechnology, Cambridge,
MA, November, 1988.

[147] A. Girault, "Semantics ofHierarchical Finite State Machines," draft paper.

[148] R. Alur and T. A. Henzinger, "Reactive Modules," Proceedings ofthe 11th Annual
IEEE Symposium on Logic in Computer Science (UCS 96), pp. 207-218, IEEE

Computer SocietyPress, 1996.

[149] M. J.McLennan, "The New [incr Tel]: Objects, Mega-Widgets, Namespaces and

More," Proceedings ofthe Tcl/Tk Workshop 95, pp. 151-159, Toronto, Ontario,

Canada, July 6-8,1995. USENIX Assoc., Berkeley, CA, USA, 1995.

[150] Tycho, the Syntax Manager. (URL http://ptolemy.eecs.berkeley.edu/tycho/)

[151] V. R. Lesser, S. H. Hawab, and F. I.Klassner, "IPUS: An Architecture for the Inte

grated Processing and Understanding ofSignals," Artificial Intelligence, Vol. 77,

No. 1, pp. 129-171, August 1995.

[152] G. Berry and G. Gonthier, *The ESTEREL Synchronous Programming Language:

Design, Semantics, Implementation," Science ofComputer Programming, Vol. 19,

No. 2, pp. 87-152, November 1992.

[153] F. Boussinot and R. De Simone, *The ESTEREL Language," Proceedings ofthe

IEEE, Vol. 79, No. 9, pp. 1293-1304, September 1991.

136

[154] G. Berry, Programming a Digital Wristwatch inEsterel v3.2^ Rapport de recherche

n®8. Centre deMathematiques Appliquees, Ecole des Mines deParis, 1991.
(URL http://cma.cma.fr/flp/esterel/wristwatch.ps.gz)

[155] M. Lion, "Overview ofthe px64 kbit/s Video Coding Standard," Communications

oftheACM, Vol. 34,No. 4, pp. 59-63, April 1991.

[156] P. Wayner, "Inside the NC," BYTE, Vol. 21, No. 11, pp. 105-110, November 1996.

[157] D. G. Messerschmitt, 'The Flexible Connection," unpublished manuscript, 1992.

[158] Frequently Asked Questions —Applet Security. (URL http://java.sun.com/sfaq/)

[159] Promondia —Java-Based Interactive Communication.
(URL http://www4.informatik.uni-erlangen.de/Projects/promondia/)

[160] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

[161] B. C. Neuman and T. Ts'o, "Kerberos: An Authentication Service for Computer
Networks," IEEE Communications Magazine, Vol. 32, No. 9,pp. 33-38, Septem

ber 1994.

[162] A. O. Freier, P. L. Karlton, and P. C. Kocher, The SSL Protocol, Version 3.0, Inter
net Draft, March 1996. (URL http://home.netscape.com/eng/ssl3/index.html)

[163] Pendragon Software Corporation, "Battle of the Browsers", The Java Performance
Report, July 1996. (URL http://www.webfayre.com/battle.html)

[164] P. Wayner, "Sun Gambles on Java Chips," BYTE, Vol. 21, No. 11, pp. 79-88,
November 1996.

[165] T. R. Halfhill, "x86 Enters the Multimedia Era," BYTE, Vol. 21, No. 7, pp. 59-60,
July 1996.

137

[166] J. Khazam andB. Bachmayer, "Programming Strategies forIntel's MMX " BYTE,

Vol. 21, No. 8, pp. 63-64, August 1996.

138

	Copyright notice 1996
	ERL-96-95 (1)
	ERL-96-95 (2)

