

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A STUDY OF SPEECH/AUDIO CODING ON

PACKET SWITCHED NETWORKS

by

Matthew George Podolsky

Memorandum No. UCB/ERL M96/96

19 December 1996

A STUDY OF SPEECH/AUDIO CODING ON

PACKET SWITCHED NETWORKS

Copyright © 1996

by

Matthew George Podolsky

Memorandum No. UCB/ERL M96/96

19 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

in

Acknowledgments

I would like to acknowledge all of the people who helped make this work possible.

I thank my advisor. Martin Vetterli. for his support, advice, and encouragement. I also

gratefully acknowledge the support and help Steven McCanne has given me throughout the

course of my research.

I would like to thank the following people for their invaluable assistance and discussions,

and for making mine an enjoyable working environment: \'ivek Goyal. John Haddon. Mike

Goodwin. Joe Yeh. Grace Chang, and Francis .Ng. I would like to especially thank Mike.

\'ivek. and .Steve for their invaluable feedback and proofreading of this work. I heartily

thank Karl Petty, for answering answering numerous scripting language questions, and for

giving me the software tools to make full utilization of idle workstations everywhere. I also

thank Steve Burgett for his never-ending answers to my never-ending Unix questions.

Lastly. 1 would like to thank my family for their endless love and support over all of

the vears.

IV

Contents

List of Figures vi

List of Tables vii

1 Introduction 1

2 A Pyramid Coder For Audio 3
2.1 Background and Motivation 5
2.2 Coder Structure 8

2.3 SNR as a Performance Measure 10

2.4 Coder De.sign 11
2.4.1 Quantizer Choice 12
2.4.2 Filter Choice 15

2.4.3 Transform Coding of the Coarse.st Layer 18
2.4.4 Entropy Coding 21

2.5 Coder Performance for a Fixed Rate 23

2.6 Future Work 26

3 A Network Model For Simulating Audio Over The Internet 28
3.1 Source Model 28

3.2 Queuing Discipline and Loss Mechanism 31
3.3 Network Simulation and Results 32

3.3.1 Description of the Simulation 32
3.3.2 Simulation Results 33

3.4 Future Work 36

4 Joint Source/Channel Coding of Audio 38
4.1 Pyramid Coder Design and Performance for Lossy Networks 38

4.1.1 Coder Parameters 38

4.1.2 Computing the Distortion 39
4.1.3 Performance Results 40

4.2 Redundancy versus Network Congestion 43
4.3 Future Work 46

5 Conclusions 48

A Glossary of Abbreviations and Variables 50

Bibliography 53

VI

List of Figures

2.1 Structure of a single-stage pyramid coder 6
2.2 Structure of a two-stage pyramid encoder 9
2.3 Structure of a two-stage pyramid decoder 10
2.4 Eifects of quantizer choice on pyramid coder performance 16
2.5 Effects of filter choice on pyramid coder performance 17
2.6 Effects of filter length on pyramid coder performance 18
2.7 Diagram of LPC-ba.sed forward and inverse prediction 20
2.8 Effects of LPC transform coding on pyramid coder performance 22
2.9 Effects of entropy coding on pyramid coder performance 23
2.10 Pyramid coder performance under lossless network conditions 25

3.1 Single source on/off model 29
3.2 Markov chain for A'-source model 29
3.3 Network model illustrating a priority-drop queue and .sources producing three

layers of data 32
3.4 Average percent packet loss rates for twovalues ofG when a priority drop-tail

queue is used 35
3.5 Packet percent loss rates across layers as a function of G' 36

4.1 Pyramid coder performance as a function of o for fixed ') = 0 (2-layer coding). 45
4.2 Effects of data redundancy as the amount of redundancy used and percentage

of total traffic using redundancy varies 47

Vll

List of Tables

3.1 Simulation parameters 33
3.2 Comparison of theoretical and experimental packet loss rates for a purely

random-drop queue 34

4.1 Performance as a function G for a pyramid coder using automatic-a scaling
uniform quantizers 41

4.2 Performance as a function of G for a pyramid coder using maximum range
uniform quantizers 43

4.3 Pyramid coding comparison of priority-drop vs. random-drop transmission 44

Chapter 1

Introduction

It has become increasingly popular to use the Internet to transmit audio in real time.

Recent years have seen an explosion in the number of tools enabling people to use the

Internet for a variety of audio applications, such as person-to-person conversations, voice

conferencing, or radio-like music broadcasts. Though the field of audio processing is fairly

mature, few of the audio compression algorithms used by Internet audio applications were

designed specifically for packet switched networks. The few that were so designed are

generally commercial products u.sing private, proprietary encoding .schemes often providing

questionable quality. Transmission of audio over lossy packet .switched networks is the

unifying theme of this work.

This report is organized as follows. Chapter 2 covers the design of an audio coder

for packet switched networks such as the Internet. It describes the limitations of existing

Internet coding schemes and the benefits of a layered coding scheme. Motivations for our

choice of a pyramid coding system are given. We also describe our choice of the signal-

to-noise ratio as a performance measurement. We study the various individual elements of

a pyramid coding structure and discuss various design choices and their performance in a

rate-distortion sense. We also examine the performance and behavior of the coder under

fixed-rate conditions.

Chapter 3 discusses network issues. A network system model is developed to study-

prioritized transmission of audio, and we use this model to simulate transmission of layered

audio over a priority transmission network under various states of load. Comparisons with

non-priority, random-loss methods are drawn to understand the potential benefits of priority-

transmission.

The larger issue of joint source/channel coding of audio is discussed in Chapter 4.

We combine'the results of our network simulations with the design of our pyramid coder.

Chapter 4 also looks at the use of redundancy to improve the quality of real-time audio

data transmission. Finally, in Chapter 5 we draw conclusions and suggest future directions

for this work.

A glossary of commonly used abbreviations and variables is given in the appendix.

Chapter 2

A Pyramid Coder For Audio

In recent years, the Internet has become increasingly used to transmit audio in "real

time." While the last two decades have produced a wide variety of audio coders, only

some of the more recent coders have been specifically developed for the Internet, Many

traditional coders have been adapted and implemented in Internet audio tools. For exam

ple. the "visual audio tool" rai supports standard coders such as the European cellular

phone standard G.SM. Linear Predictive Coding (LPC). and .Adaptive Differential Pulse

Code Modulation (.ADPCM) [1-4]. The.se coders all use fixed-rate digital speech algorithms

that were previously designed without the Internet in mind. \'arious coders also exist for

encoding general audio. The MU.SIC.AM (Masking-pattern Universal Subband Integrated

Coding and Multiplexing) audio coder used in the MPEG-1 video standard is a high-quality,

high-complexity coder that can provide near-CD quality sound [2. 18]. This coder is widely

u.sed for real-time audio transmissions in digital satellite systems, which use a transmission

medium significantly different than the Internet.

Existing audio coders are typically adapted for Internet transmission by simply pack-

etizing the data produced by encoders. This process is especially simple for speech coders

because they usually segment speech into "frames," commonly lasting about 20 ms. Pack

ets consisting of the data of 1 or more frames can be transmitted across the Internet,

reassembled by the receiver(s). and decoded into audio. This scenario assumes that net

work congestion is low enough that few packets are dropped. If this is not the case, and if

the coder is not designed with any packet error protection, then the receiver must substitute

something for the audio information contained in missing packets. This substitution is com

monly silence, synthetic noise, a repetition of the audio from the last received packet, or an

interpolation of known samples (see [10] or [11] for a discussion of receiver-only techniques).

Though these latter methods reduce the degradation in audio quality as compared to silence

substitution, they are still limited by the lack of any information about the missing packet.

Furthermore, the quality of the reconstructed audio quickly decreases as the number of

packets consecutively lost increases.

To avoid replacing the audio of a lost packet with a substitute based only on the

audio data successfully received (receiver-only techniques), it is necessary to ensure that

some information about the audio corresponding to the packet reaches the receiver. One

way of achieving this is to send extra information about one frame's audio data together

with a nearby frame's data to help the receiver decode a missing packet. Hardman ei al.

[10] used this redundancy-based approach in the Robust-Audio Tool (RAT). Their scheme

starts with frames consisting of either 64 Kbps raw data (PCM) or 32 Kbps encoded data

(ADPCM). In addition to this fundamental data, each data frame also contains information

about a previous frame that is one or more frames behind the current one. This additional

information is produced by encoding the previous frame with a low-rate (4.8 Kbps) LPC

algorithm. The benefit of this scheme is that if the prior frame's packet is lost but the current

frame's packet gets through, the LPC data can be used to reconstruct an approximation

to the lost frame's audio. Disadvantages include the single-packet-delay required to recover

from the redundant information, and the redundancy's bit-rate overhead, which is 7.5% for

PCM- and I5%i for ADPCM-based transmission schemes. The process of adding this extra

information is a rudimentary form of joint source/channel coding, since the redundant LPC

information protecting against channel errors must be coded from the original rather than

coded source data.

Rather than add redundant data about a current frame to a future frame, another joint

source/channel coding technique splits the data within a frame into two or more layers, and

encodes them with different priorities reflecting their relative importance. This priority

encoding can come in many forms, for example: adding error-correcting codes to high

priority layers: increasing the redundancy of a priority layer by decreasing its compression

(for example, if the time samples of one cycle of a sine wave are transmitted instead of only

transmitting its frequency and amplitude, individual bit errors among the time samples

are less catastrophic to a reconstruction than errors in the frequency or amplitude); or

prioritizing the layers and sending them across a network with different qualities of service

(QOS). These areonly a few examples oftypes ofjoint source/channel techniques for layered

data. The first two are better suited for applications where channel errors come in the form

of individual bit errors. The latter method is well suited for packet switched networks in

which channel errors take the form of packet losses. The Internet is such a network, but

unfortunately it currently is not capable of providing different qualities of service.

Even without such a service, layered transmission is still possible. For example, the

Priority Encoding Transmission (PET) system uses a multilevel forward-error-correction

scheme to provide varying degrees of protection to priority-encoded data [1]. By segmenting

the transmission data, as a layered coder automatically does, one can use PET to provide

different degrees of packet protection to the different data segments. Another use for a

layered encoding over the Internet is the receiver-driven layered multica.st (RLM). RLM

combines a layered video compression algorithm with a layered transmission scheme to

allow receivers of a multicast transmission to individually adapt the local transmission rate

according to local network conditions. This scheme could be applied to a layered audio

coder to allow receiver-driven adaptation of audio signals.

• To utilize schemes such as PET or RLM. an audio coder that produces a layered

hierarchy of signals is needed. We consider the application of pyramid coding to audio

signals to produce such a layered hierarchy. Section 2.1 introduces and motivates pyramid

coding. Section 2.2 explains the structure of the pyramid coder we studied. Our choice

of signal-to-noise ratio (SXR) as a performance measurement is discussed in Section 2.3.

Section 2.4 describes the design of the individual components of the pyramid coder and

compares choices for different components under the framework of rate-distortion curves.

Section 2.5 evaluates the coder's performance for a fixed rate as other parameters vary.

Finally, future directions to for improving and implementing a pyramid coding .scheme are

discussed in Section 2.6.

2.1 Background and Motivation

Pyramid coding is a technique that is frequently employed in image coding and com

puter vision. First introduced by Hurt and ,A.delson [3], pyramid coding consists of an

encoder which derives a "coarse" low-resolution version of a signal, predicts the original

signal based on that coarse signal, and then takes the difference between the prediction and

the original. The coarse approximation and the error residual are the only signals that need

to be transmitted: the decoder reconstructs the signal by generating the prediction from

original
signal

coarse version

D

Encoder

Q,

difference

signal

Decoder

Figure 2.1: Structure of a single-stage pyramid coder. Subscripts refer to layer numbers.

the coarse signal, and adding the residual back to the prediction. Figure 2.1 illustrates a

single-stage pyramid coding structure. D and 7 represent pre-decimation and interpolation

operators, respectively. For purposes of notation, the half-rate coarse approximation c\ is

termed the Layer 1 signal, and the full-rate difference signal do is the Layer 0 signal. The

structure can be iterated an arbitrary number .7 times on the coarsest signal to generate a

1/2'^-rate coarse signal at Layer -7. and J difference signals at Layers .7-1 through 0. The

difference signal of Layer i. i = 0 .7-1. is at 1/2' the rate of the input signal x.

A significant advantage of pyramid coding is that there are no constraints on the inter

polation and decimation operators. Unlike subband coding, where filters must meet strict

orthogonality or bi-orthogonality conditions to achieve perfect reconstruction, operators in

pyramid coding can be linear or non-linear filters, median filters, etc. In practice they are

typically zero-phase FIR anti-aliasing and interpolation filters [25], but as long as the same

interpolation operator is used at the encoder and decoder, perfect reconstruction can be

achieved in the absence of quantization.

Another advantage of pyramid coding is that it automatically encodes the input in a

hierarchy of layers, assuming that D and I are intelligently chosen. For audio, this means

that -the predictions based on the coarse signals should sound better than the difference

signals. Forexample, in Figure 2.1, if D and I are lowpass filters, then the prediction based

on c\ will be a lowpass version of the input x, and hence the difference signal do will be

a high pass version of x. If ar contained more important information in high rather than

low frequencies, then dg would likely sound better than the prediction. However, if D and

/ had been chosen to be highpass filters, the prediction signal would have been a better

approximation to x than the difference signal, and as such c\ would have higher priority

than dg. as we desire. For significantly varying signals we could either use adaptive D and

/ operators to capture the most important information, or use fixed D and J operators

and adapt the layers" relative priorities. Assuming an appropriate choice of the D and

/ operators, for a coder with J iterations the (lowest-rate) coarse signal at Layer J is

the highest-priority for reconstructing the original. The second most critical signal is the

(second-lowe.st rate) difference signal at Layer J —1. which is added to the coarse signal

to produce a new coarse signal at Layer J —1. This process repeats until one produces

the lowest priority, full rate difference signal at Layer 0. No analysis of the input signal

needs to be performed to determine the priorities of the layers—their order always remains

the same. Also, the ability to iterate the coder an arbitrary J times means that various

operating rates can be achieved by only using the signals of Layers J through /. where

/ = 1 0).

Pyramid coders also have the property that if there are no transmis.sion errors, the

only distortion results from the quantization of the final difference signal, dg. In Figure 2.1.

if we let Xp be the signal formed by upsampling and interpolating Ci. then do = x —Xp. If

we let ej = do —do represent the error due to quantizing dg. then the reconstructed signal

is

X= Xp -1- dg = (.T —dg) (dg -f tj) = X-f ej, ('̂ T)

so the only error in the reconst ruction is the quantization error ej. This does not mean that

Qi can be chosen poorly without penalty. Since Qi affects the prediction Xp, a poor choice

for Qi will increase the power of dg, making it more difficult to quantize. Furthermore,

we are interested in using a priority transmission scheme, so that ci has a high chance of

getting through even if dg does not make it: a poor choice of Qi means that Xp will serve

as a poor reconstruction if dg is lost.

One last advantage of pyramid coding lies in its simplicity. Most of its computational

requirements come from the filtering and quantization operations. It can also be recursively

implemented to produce a large number of layers. Therefore, a pyramid coding scheme can

be easily implemented in real-time with low complexity. The performance benefits of more

advanced design elements, such as transform coders or adaptive filters, can be weighed

against their added computational complexity.

The primary drawback of pyramid coding is that it results in an oversampled represen

tation of a signal. A one-stage pyramid encoding of an input signal consistsof a reduced-rate

coarse signal and a full-rate error residual (at the same rate as the original), for a total rate

greater than that of the original. The multiplicative increa.se in rate of this oversampled

repre.sentation is given below for an L-layer pyramid coder operating on N dimensional

signals [25]:

Though this added overhead quickly decrea.ses as the number of dimensions increases, our

interest lies in one-dimensional audio signals, for which the above factor translates to a total

rate oO-lOOVf greater than the original. Note that this rate increa.se refers to the additional

rate in a discrete-time, infinite precision pyramid coder. The actual increa.se in total bit

rate can be made less than .s through quantization and compre.ssion.

2.2 Coder Structure

The structure of a two-stage, three-layer pyramid encoder is shown in Figure 2.2, and

the corresponding decoder is shown in Figure 2.3. The encoder transmits the encoded sig

nals So- Si. and 82- These signals are the outputs of the quantizers: the inverse quantization

blocks are shown to emphasize that these signals can be quantizer indices (possibly entropy

coded), rather than actual quantization output levels. The encoder structure shown decom

poses a signal into a quarter-rate coarse approximation C2 at Layer 2. and half- and full-rate

error residuals. di and do, at Layers 1 and 0, respectively. Qualitatively, Layer 2 is the most

important to reconstruction, so it is the highest priority signal. The encoder includes both

a transform-coding block T which transforms C2 to t/2. and a trio of quantizers Qo, Qi, and

Q2- fot the do. di. and y2 signals, respectively. The purpose of the tran.sform coder is to

make the coarse signal C2 easier to quantize and compress. Note that the difference signals

T .V2 Q2
^2 Q2' .V2 j-1 C2

Figure 2.2: Structure of a two-stage pyramid encoder. Subscripts refer to layer numbers.
The input signal is x. and transmitted encoded signals are Sj. i = 0.1.2.

(I] and do are computed using the quantized signals C2 and d\. respectively. Becau.se of

this, the encoder contains all of the decoding .structure, except for the final addition which

produces .r. The error re.sidual of Layer L thus accounts not only for the imperfection of the

interpolated coarse signal from Layer L + I but also any quantization noise introduced by

Ql+I' -•\.ssuming that all of the encoded signals .sq. si. and S2 reach the decoder, the only

reconstruction error will be due to the quantization of do- If no quantization is performed

on do. perfect reconstruction can still be achieved despite quantization in Layers 1 and 2.

A primary advantage of a pyramid coding scheme is its flexibility. The D. I. Q, and

T blocks may all be freely chosen, and they do not have to be the same across every layer.

If they are the same across layers, the coder can be implemented recursively and thus

easily adapted to produce an arbitrary number of layers. This flexibility, however, hinders

attempts to optimize each block, since the underlying signals are jointly dependent. For

example, the choices of D. T, Q2. and I all affect the difference signal di, and hence what

the optimal Qi should be to quantize it. For simplicity, the coder studied was limited to

two stages as illustrated in Figures 2.2 and 2.3. Our rationale for this design is discussed

10

Q2' T-i

-I
Q-.

di

-1
Qo

do

Figure 2.3: Structure of a t\vo-.stage pyramid decoder. Subscripts refer to layer numbers.
Received signals are s;. i = 0.1.2. and the decoded output signal is .v.

in Section 2.4.

2.3 SNR as a Performance Measure

As mentioned in Chapter 1. we chose to use signal-to-noise ratio (SNR) to design our

coder and measure its performance:

^ Er, •>•(»)' \SNR = 10 logiQ ^„(.r(77) - x{n)yj '

This metric is a log ratio of the original signal's power to the error power (mean squared

error). The resultant quantity is measured in decibels (dB).

The advantages of using SNR as a performance measure are that it is easy to compute

and it provides a quantitative measurement. Consequently, it is well suited when a large

number of experimental trials are performed. Unfortunately, it is a poor estimator of

subjective quality for a broad range of distortions [24]. For example, substituting white

noise instead of silence for the audio of a lost packet will almost certainly increzise the error

MSE. but the result can sound far better to human listeners [27]. Other objective error

measures were considered, including spectral distance, variations of SNR (such as segmental

(2.3)

11

SNR, granular segmental SNR. and frequency weighted segmental SNR), and the Speech

Transmission Index. These were rejected due to their higher complexity [20]. "Segmental

S.XR" measures the SNR over short segments of long audio signal, and sums all constituent

segments:
A/-1 / ^^^^2 \

A'mSEG SNR = -rjY.

N is the segment length and M is the number of segments in the signal. It is not inherently

much more complex than the classical SNR. but it suffers from the problem that if there

are intervals of silence where the signal is of very low level, even a small amount of noise

will produce a large negative SNR in that interval [20]. To effectively use segmental SNR

one needs to identify silent segments and exclude them from the measurement, which leads

to a more complex calculation.

Subjective measures involving human listening, such as mean opinion score (MOS)

tests, provide the ultimately accurate measure of audio quality but are time consuming,

difficult to arrange, and not practical when a large number of experiments are performed.

For our experiments we re.sorted to classical S.NR. Though a suboptimal performance

measure, it is cheap and easy to coin|)ute. Using S.NR allowed us to vary a large number of

parameters in a reasonable amount of time, and thus explore a large number of design issues

and network interactions. In future work we hope to apply more significant performance

measures, such as those mentioned above, to our experimental design.

2.4 Coder Design

This section discusses the experiments and choices made in the design of the coder in

Figures 2.2 and 2.3. Rate-distortion (R-D) curves are used to make comparisons between

different design choices. These curves were generated by picking a set of coder parameters

and varying the number of bits allocated to each quantizer (Qo^ Qit s-nd Q2) between 0

and 8 to vary the total rate. This led to a total of 9"^ = 729 data points per design. All of

these data points were used to create an initial scatter plot of MSE versus bit-rate. The

data points falling on the convex hull of this plot were then transformed into SNR values

and connected to form an R-D curve. Since the performance measure is on a logarithmic

(dB) scale, the R-D curves are not necessarily concave, but they would be on a linear curve.

Though a specific point along the R-D curve might not be achievable, the curves give an

(2.4)

12

idea of the overall performance of the coder. Due to the different sample rates of the levels,

the overall number of bits b spent per input samples is

6=^^ = 60 +61/2 +62/4, (2-5)
j=o

where 6, is the number of bits used quantize Layer i. A choice of 6, = 0 corresponds to

not coding Layer i at all. We considered only the coder's performance on speech signals.

Design issues that would be different for general audio are noted within each section below.

The data used to produce the plots was 22.000 16-bit-linear samples of a speech signal

sampled at 8 Kilo-samples/second (Ksps). so that bit allocations using 6 bits per input

sample correspond to a total rate of 80006 bits/second (bps). This relatively small data

set was cho.sen to capture the relative behavior of different design choices, not to produce

absolute performance numbers. A broader and larger set of data is used to produce more

accurate .SNR numbers in Section 2.5. Because the input data is 16-bit. for 6 < 16 we

always expect some distortion in the output due to quantization.

2.4.1 Quantizer Choice

The Problems Posed By Pyramid Coding

The choice of quantizers and the number of bits to allocate to them is perhaps the

trickiest part of pyramid coding. Unlike other schemes, the quantizers used in pyramid

coding cannot be designed independently to achieve minimum distortion. Consequently,

quantizer design methods such as the Lloyd-Max algorithm [8] cannot be easily employed.

The choice of a quantizer at layer L will affect the prediction and thus in turn

the difference signal which is then quantized by Ql-i- This process repeats, and

so the quantizer at layer L affects the signals input to the quantizers at all the layers

below L, namely 0 through L —1. A dependent quantization scheme (such as general

vector quantization (VQ) of all of the signals) might produce the minimum distortion, but

would be undesirable because it eliminates the layered structure inherent in pyramid coding.

Hence, if we want a pyramid scheme that produces separable layers, we are limited to using

individual scalar quantizers for each layer. Note that these quantizers can still be dependent

upon each other, as in hierarchical \'Q. as long as they produce separate symbols for each

laver.

13

Even with the restriction of scalar quantizers, the search for optimal quantizers still

grows exponentially as the number of layers increases. If we have K different quantizers (for

example, uniform quantizers using 1 through K bits) at each layer, and we have L layers,

in the worst case we will need to search through combinations of L-tuples of quantizers.

Even if this total A*^ is not so large as to exclude an exhaustive search, such a search is still

hampered by the need to include the effects of the pyramid coder in the search process. For

example, given the coder of Figure 2.2. it might be desired to find the optimal quantizers

of arbitrary bit allocations (for example, between 1 and 8 bits) for each layer. There are 3

layers, and hence 512 possibilities to explore. If we were to use the Lloyd-Max algorithm,

we would have to go through the following process:

1. Using a .set of training data for .r. create training data for ci and for y2 using the

relevant part of the encoding .structure of Figure 2.2 . Using the 1/2 training data, apply

the Lloyd-Max algorithm to design 8 quantizers Q2,' which correspond to allocating

/ = (1 8) bits to Q2.

2. Quantize the }j2 training data u.sing each of the 8 Q2, to produce 8 training signals y2,.

i = (1 8). Up.sanip]e and interpolate each of the.se .signals and take their difference

with the training data cj to produce 8 training .signals r/i, for the Layer 1 difference

.signal.

3. Using Lloyd-Max. for each training vector r/i,. i = (1 8). design 8 quantizers Qi, j

using j bits, j = (1 8). We now have a set of b-l quantizers for f/j.

4. Quantize each of the r/i, training signals with each of the Qi, j quantizers to produce

64 training signals (li.j - = (1 8)- Upsample and interpolate each of these and

take their difference with the training data for x to obtain 64 training signals do,.j fo'"

do.

5. Using Lloyd-Max. for each training vector i,j = (1.....8). design 8 quantizers

Qi,J using k bits, k = (1.....8). We thus produce a total of512 quantizers Qo, ^^ for

do. i.j.k= (1 8).

We are left with 8 optimal quantizers for y2. 64 for di. and 512 for do. so that for a choice of

{i.j.k) bits to quantize Layers (2.1.0). respectively, we would use (Q2,• Qi. j•Qz. j.a) to op

timally quantize the pyramid coding signals. We therefore conclude that designing optimal

14

quantizers for pyramid coding is a difficult and tedious process, even when other parameters

of the coder are fixed. As the rest of the coder's design parameters {e.g. interpolation filters,

transform coders) are varied, optimality would require the quantizer design procedure above

to be repeated for each variation of a parameter. Due to practical limitations, we restricted

our design search to suboptimal quantizers whose behavior could be easily defined for any

given allocations of bits. This decision led to the use of uniform quantizers for our stud}'.

We also restricted ourselves to using the same quantizer design method across all three

layers {i.e. we did not try combining one type of quantizer for one layer with a different

type for a another layer). A discussion of more efficient ways to select dependent quantizers

in a pyramid coding setting can be found in [22].

Uniform Quantizers Studied

We studied three different types of symmetric uniform midrise quantizers, each em

ploying different methods of determining the maximum range of input values that can be

quantized without overload. The overload region determines the range of values that fall

further than Qstep/^ from an output level, where Qstep is the quantization step size. Fol

lowing is a description of the three types of quantizers studied, and the abbreviations used

to refer to them in figures:

• Maximum scaling quantizers. For each layer, the quantization range is chosen so that

no input level overloads the quantizer. .Abbreviated "Max".

• 4-(j quantizers. The overload regions are determined according to the common "A-a"

rule, which states that the quantization range should be chosen so that input levels

in the range [-4a. 4a] do not overload the quantizer, where a refers to the input

variance. Abbreviated "4-s".

• Automatic-<j scaling quantizers. These quantizers use a simple heuristic to determine

the overload region according to not only a but also bi. the number of quantization

bits used for Layer i. The quantization range is chosen so that input levels in the

range [—abi/'2,abi/2] do not overload the quantizer. .Abbreviated "A-s".

The automatic-<T quantizer overload region rule was chosen after studying data showing

optimal choice of overload regions versus quantization levels for Laplacian. Gamma, and

Gaussian densities. Note that the given formula is equivalent to the 4a rule when 6,- = 8.

15

Figure 2.4 compares the R-D curves obtained when using each of the above quantizers

in conjunction with length-19 windowed sine filters for D and /, in the absenceof transform

coding. The figure shows that for bit rates below 70 Kbps. the automalic-o" scaling quan

tizers perform much better than the the other two quantizers, which have fixed overload

regions independent of the number of bits. It is also notable that the SNRs of these fixed

overload quantizers go negative at low bit-rates, while the automatic-a quantizer s SNRdoes

not. Recall that all three designs are symmetric midrise quantizers, so zero is not an output

value. The fixed overload region quantizers produce negative SNRs because as they use

fewer quantization bits, their quantization step size increases faster than the automatic-cr s

does, and .so their quantizer output levels closest to zero may still be of greater magnitude

than a majority of input .signal values, which lie closer to zero. This coarse quantization

can result in a large increa.se in the energy of the quantized signal, eventually leading to

a reconstruction x with so much more power than x that the error power is greater than

the input power. Hence, a negative SNR results. The automatic-o* quantizers avoid this

by sacrificing a larger maximum possible quantization error for a smaller quantization step

size, which can more accurately quantize values close to the origin. Note that at higher

rates the two fixed-overload quantizers perform better, because their quantization step size

decreases with larger bit allocations and they can better quantize low-level signals, .so that

they can also take advantage of their wider quantization range.

2.4.2 Filter Choice

We performed a brief exploration of different half-band lowpass filters to use for D

and /. To start, we decided to restrict ourselves to using the same filter for D and 7. and

also to use the same filter across layers. This choice makes sense for a high-rate speech

signal for which C2 and ci will consist of the lower quarter and half of the speech spectrum,

respectively. For our test data, which is 4 KHz speech sampled at 8 Ksps. a reconstruction

based solely on C2 only contains the information in the 0-1 KHz band. This is generally

inadequate for intelligibility, but if it is the case that Layer 1 packets are rarely dropped (so

that the reconstructed signal is usually calculated from at least Layers 1 and 2), then a brief

period of reconstruction based on only C2 may not be very disturbing to a listener. This is

akin to the previously mentioned receiver-only reconstruction techniques, except that the

prediction based on C2 is the information inserted between losses of do and dj. and C2 is

16

Bit Rate (bps)
X 10

Figure 2.-4: EfTecls of quantizer choice on pyramid coder performance. Labels refer to choice
of overload regions for uniform quantizers.

successfully transmitted from the source to the receiver. Unlike receiver-only techniques,

however, there is not a complete loss of all data corresponding to a frame of audio because

of the priority encoding of the data.

If we were to encode general audio, the most significant information is not necessarily

limited to the lower half of the bands. For a general audio encoding it may be better to

take the middle of the input spectrum, or to adapt the filters according to the information

content in the signal. For example, we could use a 32-band analysis as in MUSIC.^M to

determine what bands contain the most critical information. We could then determine the

16contiguous bands (taking up half of the input spectrum) containing the most information,

and use a cosine-modulated filter [25] for Do (the decimation filter between Layers 0 and 1)

to extract this portion of the spect rum and form ci. We could then apply the same technique

to determine Di. using a cosine-modulated filter bank that filters the 8 contiguous bands

(of the original 16 band subset) containing the most information.

The filters we studied were all odd-length, zero-phase, symmetric FIR filters. Because

the filters have no phase shift, the prediction signals are aligned with the original signals

to minimize the difference signals. The filters were also scaled to unit norm to take into

account the reduction in power due to downsampling. We studied three types of lowpass

Lagrangtan

interpolation (solid line)

Bit Rate (bps)
X 10

Figure 2.5: Effects of filter choice on pyramid coder performance. Performance of length-19
windowed sine. Lagrangian, and bandlimited interpolation filters is shown.

filters:

• Half-band sine filters windowed by a Hanning window.

• Lagrangian polynomial interpolation filters. The.se filters perform A'th order polyno

mial interpolation on sequences that alternate zeros with samples values (as obtained

by upsampling by 2). For zero-pha.se. .V must be odd: in this ca.se the filter length is

2(.V-hl)-l.

• Bandlimited interpolation filters designed using the intfilt command in MATLAB.

The filters were all tested using automatic-a scaling uniform quantizers and without

using any transform coding of C2. Figure 2.5 compares the performance of the above filters

when they are all length-19. It can be seen that the sine filter performs slightly better

than the bandlimited interpolation filter, which in turns has slightly higher performance

than the Lagrangian polynomial interpolation filter. The relative performance rankings

were consistent across filter lengths. The similarity among the R-D curves is not surprising,

given that all the filters are variations of a halfband lowpass filter.

We also studied the effect of filter length on performance. Figure 2.6 shows the relative

performance of length-7. 11. and 19 Lagrange filters. Performance increases with filter

18

Length 19

Length 7

Length 11 (solid tine)

12

Bit Rate (bps)
X 10

Figure 2.6: Effects of filler length choice on pyramid coder performance. Performance of
length-7. 11. and 19 Lagrangian interpolation filters is shown.

length, as expected. The performance gained by increasing the length from 7 to 11 is

approximately the .sameas that gained between going from length-11 and length-19. Varying

the length of the two other types of filters produced similar results.

2.4.3 Transform Coding of the Coarsest Layer

We explored transform coding the coarse signal C2 with the goal of making it better

suited to quantization. While transform coding could be performed on any of the difference

signals as well, we concentrated on C2 because it has the most direct relationship to the

original signal .r. Unlike do or di. which are dependent on quantized, up-sampled and

filtered signals from higher layers. C2 is formed by twice filtering and downsampling x. The

relationship between C2 and x can be expressed in terms of their Fourier transforms:

C2 (c-'"') =T[d («•'*) +D(^>'7-'')] [d A" (e^?) +D(e-"'?"''') A" •
(2.6)

This relationship is fairly simple: it does not involve any nonlinear effects of quantization.

For instance, if D is a half-band lowpass filter. C2(c-''^) is simply the lower quarter frequency

band of A* Information about the input .r can be used to help determine an appropriate

transform. For example, if the input is an 8 KHz speech signal sampled at 16 Ksps, C2 will

19

consist of the input's lower 0 to 2 KHz band (and its reflection from 2 to 4 KHz). Since there

is a considerable amount of speech information in this band, it is a reasonable assumption

that transform methods that work well on wideband speech signals would work well on

this filtered signal. For example, linear predictive coding is used in many speech coders to

compress speech. The 0 to 2 KHz band of speech still contains a high degree of correlation

between samples, so LPC can be applied to try to remove the correlation and reduce the

signals variance. On the other hand, if .r is 22-KHz bandlimited music sampled at 44 Ksps.

C2 will contain the 0 to .5.5 KHz band. The type of music .r represents will dictate whether

most. some, or little of the audio information appears within this band. For this case a

subband analysis which splits the 5.5 KHz signal into smaller frequency bands would be a

more appropriate transformation than LPC. Compression could be achieved by determining

the critical bands containing the highest amounts of acou.stic information, similar to the

methods used in Ml'SlC.AM. and spending a majority of the bit budget on quantizing the

high-information bands.

To date, we have studied only linear predictive coding as a transform technique. It is

discus.sed in the following .section.

Linear Predictive Coding

Linear predictive coding is a transform-coding technique employed in many standard

speech coding algorithms, such as GSM [6] and LPC-10 [23]. A //''-order LPC analysis

predicts the current sample of a signal .r based on p previous ones. This involves designing

a />tap filter P{z) = such that the prediction error £'(.:) = A'(2:)[l - P(.r)] is

minimized with respect to some error measurement, usually MSE. Figure 2.7 shows how

the prediction error signal can be used to recreate the input signal by inverting the analysis

filter .4(^) = [1 - P(.i)]. In the diagram, the coefficients pk of P{z) have already been

determined via an LPC analysis technique such as the Levinson or Durbin algorithm [4].

Such a system can be used to whiten the error signal. e(n), so that e(7?) has lower power

than x{n) and is thus better suited for quantization. If there is no quantization of e(n).

perfect reconstruction is achieved.

Most speech coders use LPC for more than simply whitening a speech signal. Instead,

they rely on the common speech production model [21] which represents the composite

20

P(z) P{z)

A{z) = 1 - Piz] A(z)

Figure 2.7: The coefficients of F[z) are computed using LPC analysis of the input data.

effects of radiation, vocal tract, and glottal excitation by a time varying filter of the form

K
H{z) =

1- EL, "A--*-
(2-

where K is a scalar gain parameter. H [z] can be recognized as having the same form as the

inverse prediction filter l/.4(c). Speech coders using LPC analysis estimate .4(::) so that

they can model the speech production sy.stem I\/A{z). Instead of using LPC to determine

a prediction error .signal, they attempt to determine the input excitation signal to H{z)

that produced the speech signal .r. This corresponds to analyzing .r to determine K and

whether r corresponds to a voiced or unvoiced .sound. For unvoiced .sounds, white noi.se is

used to excite l/.4(r). and for voiced sounds the excitation source is a series of impulses

who.se spacing corresponds to the estimated pitch of .r.

One problem with using this type of LPC analysis in our pyramid coder is that it is

a model-based approach that does not attempt to minimize the SNR of the error signal.

SNR measures are appropriate only for coding systems that reproduce an estimate of the

input signal such that the original and estimate signals can be time aligned and the noise

can be accurately calculated [20]. Model-based LPC techniques generally fail to align their

estimate with the original input. Furthermore, most existing LPC algorithms have been

designed for a single input sampling rate: parameters such as the filter order p may not be

appropriate or optimal for other rates. Since our pyramid coding .scheme is applicable to

any rate input signal, we limited ourselves to exploring the benefits of the system shown in

Figure 2.7.

To incorporate this LPC-based whitening system into our coder, we split C2 up into

blocks of length L and computed the p predictor coefficients of F(r) foreach block. The LPC

analysis to determine the coefficients was implemented using the autocorrelation method

21

[21]. For this framework. .4(z) acts as the time-varying transform block T shown in Fig

ure 2.2,and is the time-varying inverse transform T~^. In our experiments we varied

the LPC order p between .3. 5. and 10, and the block length L between 50, 100, and 200. Be

cause C2 is at one fourth the rate of the input signal rate, these block lengths correspond to

25. 50, and 100 ms length segmentsof the original signal x, respectively. Using automatic-a

quantizers and length-19 windowed sine filters, our overall conclusion is that using LPC on

C2 provided negligible performance gain. Performance improvements would require more

advanced quantizer design, and/or implementing an adaptive model-based approach which

could handle different sample rates.

Among the parameter variations we tried, we found that a block length of 200 samples

led to any improvement in SNR. and that this improvement came only at rates above

60 Kbps. For a fixed frame length of 50or 100. the choice offilter order made no difference.

For a frame length of 200. a filter order of 3 provided the best performance gain, followed

by 10 and then 5. The LPC analysis process involves a matrix inversion to obtain the

predictor coefficients. Our results seem to indicate that frame lengths of 100 samples or

less do not provide enough data for the LPC analysis to accurately compute the global

minimum-error filter. Similarly, higher order filters 5 and 10 likely result in more poorly

conditioned coefficient analysis conditions than the smaller order of 3. Figure 2.8 compares

the best combination of values, p = 3 and L = 200. to doing no LPC coding at all. .Note

that in computing the rate for the LPC curve we did not take into account the added

rate of transmitting the filter coefficients every frame. However, given the small number of

coefficients, long frame length, and extensive existing research on efficient quantization of

LPC parameters (see [26] or [17] for examples), we felt any additional rate overhead was

negligible.

2.4.4 Entropy Coding

We explored the effect of adding entropy coding to the quantizers by calculating the

zero-order entropy of the quantized signals, and then substituting this entropy for 6, in

Equation 2.5 to recalculate the rate of a given bit allocation. The zero-order entropy gives

an estimate of the information content of a signal when the exact distribution of the signal

22

no LPC

Bit Rate (bps)
X 10

Figure 2.8: Effects of LPC transform coding on pyramid coder performance. Automatic
fT-scaling uniform quantizers and a windowed lengtli-19 sine filter were used to generate the
data.

is not known. The zero-order entropy of the output of a B-bit quantizer is formulated as

(2.8)
2^-1

«U = - 2^ —log2l —)
1=0 * \ - /

where .V is the length of the signal and ??(/) is the number of times quantizer Level i is

output. The zero-order entropy can be used to give an idea of what the average bit rate

needed to encode the quantized signals w-ould be if arithmetic coding on the quantized data

was performed.

Figure 2.9 shows the difference between plotting R-D curves using zero-order entropy

bit-rate versus raw bit-rate when automatic-c uniform quantizers are used. Because entropy

coding is a lossless process (it does not affect the quantized signals, merely how they are

represented), it does not affect the performance for a given (60.61.62) quantizer allocation.

The average bit rate needed to transmit the coded signals does change with entropy coding,

so that the effect of entropy coding is to compress the rate axis of the R-D curves. Although

an entropy code cannot be designed to exactly achieve the zero-order entropy, the figures

indicate the potential for significant gain from entropy coding a signal. Other types of filters

showed similarly large rate reductions when zero-order entropy rates w-ere calculated.

23

entropy coded

40
no entropy

35

30

25

20

15

10

10 12

Bit Rate (bps)
X 10

Figure 2.9: Effects of entropy coding on pyramid coder performance. Automatic (T-scaiing
uniform quantizers and a windowed lengtli-19 sine filter were used to generate the data.

2.5 Coder Performance for a Fixed Rate

In addition to cliaracterizing our coder's performance across different rates, we also

investigated its performance for a fixed rate budget. In other words, if we fix the total

number of bits b that we allocate to each input sample, we want to know how the coder's

performance changes as we vary the fractions of b allocated to the different layers. For a

fixed value of b. the R-D curves give an upper bound on the best performance possible:

varying the allocation of bits acro.ss the three layers amounts to moving vertically among

different operating points at or below the R-D curve. We denote the fraction of b bits

allocated to Layers 0. 1 and 2 as o. /5 and respectively. For a fixed choice of b we have

the following constraints on q. 3. and

Q 3 "l — 1

> 0

[ab.23b,4-ib) G 2.

(2.9)

(2.10)

(2.11)

The first constraint expresses that we will spend a total of exactly b bits per input sample

on the three quantizers. A result of this is that there are only two free variables: if a and 3

are given, then is completely determined by = 1-(q4-'3). The second constraint simply

24

states thai we cannot allocate a negative number of bits to any layer. The third constraint

says that the number of bits used by each quantizer must integer valued. If we again let 6,

be the number of bits used to quantize Layer i, we have {bo,bi,b2) = (q6,2/96,476). Using

these constraints, we see that for a fixed 6 the possible values for 6, are

6o = q6 G (0.1 6) (2.12)

bi = i3b e (0,1 26) (2.13)

62 = 76 € (0.2,4 46). (2.14)

The rea.son 62 is a multiple of 2 bits is that in terms of total bit rate, spending 1 bit on

Layer 2 is equivalent to spending 0.5 bits on Layer 1 or 0.25 bits on Layer 0. Hence there

is no way to allocate an integer 6 bits among the layers if 62 is odd.' The highest layer of a

pyramid coding structure is always subject to this constraint. If we had a fourth layer then

62 could vary in increments of 1 bit. but 63 would be re.stricted to even bit values.

Figure 2.10 is a three-dimen.sional representation of the coder performance as a function

of Q and 3. for 6 fixed at 8-bits per input sample. 16-bit input is again used, so since 6 = 8

there is no error-free coding for any (60.61.62) allocation. .Since 7 is completely determined

for fixed o. 3. and 6. we do not need a fourth dimension to view its effect on the results.

Different values of 7 correspond to different lines of slope —1 in the o-J plane. Using the

constraint of Equation 2.9. we can see that 7=0 corresponds to the line a -|-.'i = 1 bisecting

the portion of the q-.3 plane shown in Figure 2.10. and corresponds to maximum freedom

for choice of a and J. As we increase 7. we decrea.se the number of jjossible choices for q

and 3. and move parallel to the o -|- J = 1 line in the direction toward the origin. We stop

at the origin, where 7 = 1. The half of the a-;3 plane on the other side of the q -I-/9 = 1 line

(away from the origin) violates the constraint of Equation 2.9 and is not a valid operating

range.

We can ascertain certain coder operating characteristics by examining Figure 2.10.

First, if we fix 3 or 7, as we increase o the performance generally improves. This is

not surprising, since we saw from Equation 2.1 that the reconstruction error (when no

information is lost) is simply the error in quantizing do. Of course the choice of Q\ and Q2

can effect how well do can be quantized, but clearly by adding bits to 60 we generally increase

the SNR. We can also see that there is a tremendous performance increase when moving

'Note that entropy coding could result in fractional (non-integer) rates for the b,.

Figure 2.10: Pyramid coder performance under lossless network conditions. Data calcu
lated for 6 = 8 bits/samples. lengtli-19 windowed sine filters, automatic a-scaling uniform
quantizers, and no transform coding.

from the line o = 0 to a = 0.125. Thi.s corresponds to the gain of using 1-bit to code Layer 0

(o = 0.125) over not coding it at all (n = 0). The performance improves as o increases,

up to a point. This point .stops short of a = 1. which corresponds to direct quantization

of the input x without any pyramid coding producing higher levels. This is indicative of

the reduction in variance due to producing a prediction for x and quantizing a difference

signal (Iq. versus direct quantization of the input x. In fact, the peak of Figure 2.10 occurs

at (a. .3.-j) = (0.875. 0.0625.0.0625). or (6o. 6i. 62) = (7,1.2). not at (q. ';•) = (1. 0. 0). or

direct 8-bit quantization of x. This indicates that there is also a gain to be had by coding

Layer 2. and thus quantizing Layer 1 as a difference signal. We also see a performance gain

in moving from the line J = 0 to 5 = 0.0625. indicating that we do better by quantizing d]

and producing an intermediate coarse signal cj than we do by basing the full-rate prediction

signal for x on the quarter-rate coarse Cq.

What Figure 2.10 cannot show is how the performance is affected if there are losses

in transmission. Since we plan to use a priority-transmission scheme, we can not see the

gain of allocating more bits to the higher priority Layers 1 and 2. Figure 2.10 only gives

the optimal allocation when no packets are lost. As the network becomes congested and

packets are dropped, we expect to allocate more bits to Layers 1 and 2 (since they have a

26

higher probability of being received), under the constraint that we do not allocate so many

bits that Layers 1 or 2 experience frequent losses. We develop a network simulation in

Chapter .3 so that we can study this very problem, and we apply the simulation's results to

our coder design in Chapter 4.

2.6 Future Work

There is much that can be done to improve the pyramid coder's performance. We

believe the biggest improvement in coder performance will come by using better quantizers.

The next logical step would be to try to design Lloyd-Max quantizers, or closer approxi

mations to them than the various uniform quantizers we used. We could do this via an

exhaustive .search, or by applying some of the techniques explained in [22].

A better distortion measurement should also produce a real-world gain in performance.

One place to .start would be implementing segmental S.N'R with a threshold to ignore silent

regions. This should not only provide a more accurate measure of performance, but should

also better take into account the local di.stortion resulting when a packet is lost. And before

a pyramid coder is implemented in a software application, subjective listening te.sts should

also be conducted.

To implement the coder for general audio or music, we should repeat the testing frame

work of Section 2.2 on these kinds of .signals. In particular, this would likely result in

designing different filters, possibly time-varying, as de.scribed in Section 2.4.2.

To reduce the bit-rate of the coder, we should take advantage of the gains of entropy

coding, which are evident in Figure 2.9. Note that if better quantizers produce higher

entropy signals, we could also explore entropy-constrained quantizer de.signs. A broader

exploration of transform techniques, both for C2 and the two difference signals, should also

lead to bit-rate savings.

Finally, if we are to implement a robust pyramid coder that can operate on speech or

general audio, besides designing the parameters for a speech and audio pyramid coder, we

need to design a signal classification tool which determines if the input is either speech or

general audio. A simple implementation might encode and decode the signal using both

speech- and general audio-pyramid coders, and measure which reconstruction has the lowest

distortion. The obvious penalty is the added complexity of doing two encodings, decodings.

and distortion measurements, so a more advanced speech/audio cla.ssification technique

would be desirable. Also, a silence/inactivity detector should be incorporated, especially

for speech coding, to efficiently utilize the available bandwidth.

28

Chapter 3

A Network Model For Simulating

Audio Over The Internet

This chapter describes our development and simulation of a network model to eval

uate the operation of our priority-transmission scheme under various network conditions.

Specifically, we investigate how priority-encoding of layered audio data affects the packet

loss within each layer. The goal of our simulations was to generate packet loss traces and

statistics for various network congestion schemes and different bit allocations across lay

ered data. This information was then be incorporated into the design process of a layered

coder in order to optimize its performance under lossy network conditions. Specifically, our

simulation determined the packet-loss rates for the three-layer, priority-encoded bit stream

produced by the pyramid coder de.scribed in the previous chapter.

Section 3.1 describes the source description we used to model the generation of network

traffic, which is based on the model used in [7]. The queuing mechanism and loss discipline

of our network model are explained in Section 3.2. In Section 3.3 we discuss the simulations

of our source/network model and the data that resulted. Section 3.4 describes methods to

improve our model and simulation.

3.1 Source Model

To simulate the source traffic of the network, we chose a system which features a variable

total-rate source model. Individual sources are modeled as simple birth-death processes [9],

illustrated in Figure 3.1.

29

Figure 3.1: Single source on/off model.

Ill this model, each source has exponentially distributed alternating periods of activ

ity and inactivity with average durations of I//1 and 1/A. respectively. The stationary

distribution for a single source is

A

NA

Pnti =
A+ //

/'
F'ofT =

A+ //

This overall source model was generated by aggregating .V independent on/off sources. This

leads to the Markov chain shown in Figure 3.2. which describes the total number of active

sources. This Markov chain has often been used to model a group of packet voice .sources

with silence suppression [7. 12]. Note that we implicitly assume that our speech sources

utilize silence suppression. To deal with continuous audio, a different model should be used.

For example, if studying traffic from a real-time music server, one would expect a group

of one-time data streams each of longer duration than the typical alternating exchanges in

2-way voice conversations.

The state variable ;?(/) describes the total number of active sources at time t. When

Underload States Overload States

(N-1) A 2A

(N-l)p Np

(3.1)

(3.2)

Figure 3.2: Markov chain for A*-source model. States are the number of active sources.
n{t).

30

in state n. the transition rate to state n —1 is n/i, and the transition rate to state n + 1 is

(.V - n)X. The stationary distribution of the aggregate source model is binomial since we

have .V independent and identically distributed on/off processes. Each process has "on"

probability p = Pon «tnd "off" probability q = I —p = Ppff- so the stationary probability Tr^

of having ii sources active is given by

'• -(!)(S9-)
The exported number of "on" sources £"[A'] follows from the binomial distribution of the

process and is given by

EM =.V„=^. (3.4)
The capacity C of the channel is defined in terms of Xc the total numt>< of active

sources it ran support without loss. The case of interest to us is when Xc is less than the

total number of sources A". We define the statistical gain C of the network to be X/Xc-

When active, each source produces a total of b bits per input sample .so that for an input

sample rate of H samples/second (sps). the individual source bit-rate B \s B = Rb. The

channel capacity in terms of bit-rate is C = XcB. States {« : n < .Vc } are underload

.states with no packet lo.ss while states {»:/?> .Vc} overload states with packet loss.

Each source u.ses a two-stage, three-layer pyramid coder similar to the one shown in

Figure 2.2. Each source's three layers are packetized individually using fixed-length packets

of size Lp bytes, so each source produces three separate data streams. It is a.ssumed that

each packet contains an identifier specifying what layer of data, and hence what priority

data, it contains. Since the packet size is fixed, the packet rate /?, of Layer i is proportional

to the fraction of b allocated to that layer, and can be calculated as

„ i? • 6 •// bits/second Bfi , , , /«-s
= , . . / I . = packets/second. {3.o)Lp bytes/packet SLp

where /, is the fraction of b allocated to Layer i and is equal to a. J. or for i = 0. 1, or 2.

respectively. We cho.se a constant-packet-length scheme over a constant-packet-rate scheme

because the latter incurs a large packet header overhead for small values of /,• (small values

of fi correspond to small packet sizes). The disadvantage of fixed-length packets is that as

/, decreases, the length of time between transmission of Layer fs packets increases. This

leads to increases in the source packetization delay, which is equal to 1//?,. For real-time

31

audio transmission large delay is undesirable, so for a fixed-packet-length scheme Lp and

/, should be chosen so as to not cause unreasonable delays.

Recall from Chapter 2 that a value of 0 for any /, corresponds to not coding Layer i

at all. For example, with 6 = 8. values of a = 1 and /? = 7 = 0 correspond to 8-bit

quantization (by Qq) of the input signal .r. A choice of d = 0 and 0 = 7 = 0.5 corresponds

to 4-bit quantization of (Iq. 16-bit quantization of C2. and the elimination (zeroing out) of

di from Figure 2.2 so that 62 is directly upsampled and interpolated twice to produce do.

3.2 Queuing Discipline and Loss Mechanism

The network is modeled using a .single-hop. three-priority queue. The A' sources are

completely independent, and since their packet production times are determined solely by

the random times at which each .source turns on. the packets have independent phases across

.sources. Figure 3.2 is a diagram of the network model, and shows .Vsources producing three

layers of data, all connected to a single node. The priority queue at this node is a FIFO-

queue of length Lq packets which employs a priority drop-tail mechanism. Packets from all

three sources arrive at the tail of the queue and are .served when they reach its head. When

the queue fills up due to congestion, the low-priority packet clo.sest to the tail is dropped.

If there are no low-priority packets at all in the queue, the middle-priority packet closest

to the tail is dropped, and if there are no middle-priority packets, the high-priority packet

at the tail of the queue is dropped. Packets thus retain their order not only within each

priority but across priorities as well. This .scheme was chosen in contrast to the multiple-

queue system explored in [7]. which—for a three priority system—employs priority service

of three separate queues and a packet timeout lo.ss mechanism.

For purposes of comparison, we also simulated a network system which ignored packet

priorities and simply dropped a packet at random when the queue filled up. Our simulation

still used the source model described above, so that sources were assumed to be sending

three streams of data from a three-layer pyramid encoder. But since the priorities of the

streams were ignored, each layer experienced the same loss rate. For such a setup, since

we can ignore the individual layers, we can more easily calculate a closed-form expression

estimating the expected packet loss rate for a given value of G. Equation 3.4 gives a

formula for E[k]. the average number of sources active and generating packets. We can also

formulate the average number of sources that are on when Nc other sources are already on

32

N Sources

l-(a+B)

Priority Drop Queue

Length Lq
high priority

middle priority

low priority

Figure 3.3: Network model illustrating a priority-drop queue and .sources producing three
lavers of data.

as

A~Ac + l

(3.6)

If we make the approximation that when + / sources are on. i .sources' packets will be lost

(this approximation ignores packetization effects and the ability of the queue to temporarily

enable transmission of more than AV sources' packets), we can treat E[k] as the expected

number of sources generating packets, and expected number of sources above

capacity whose packets will be dropped. Using Equations 3.4 and 3.6. we can then estimate

the fractional packet loss rate as

El\a,] E[.V„J
Rl = E[k] A'Pn

(3.

Section 3.3 will show that the above is an excellent approximation.

3.3 Network Simulation and Results

3.3.1 Description of the Simulation

The source and network models described in the preceding sections were combined and

simulated using the software tool ns [1.3]. This is an event-driven, packet-level simulator

embedded in the Tool Command Language. Tel [16]. To simulate the priority queue, a new

ns link object was created that implements the priority drop-tail queue behavior described

in Section 3.2. For purposes of comparison, a link object employing a random-drop queue

1/A = 0.6.s
1/^ = 0.4i?
6=8 bits/sample
R = S Ksps

Packet Length Lp = 48 bytes/packet
Queue Length Lq = 50 packets
Nc = 24 equiv. channels
Simulation Time = 1200 s

33

Table 3.1: Simulation parameters.

ignoring packet priorities was also created. The N sources were created and controlled

individually according to the model of Figure 3.1, rather than controlling the total number

of sources as modeled in Figure 3.2. An ns script controls the overall simulation and

schedules events.

The parameters for the simulation are shown in Table 3.1. Values for X and // were

chosen for an average voice activity of A/(A4-//) = 40%. The coder input rate is i? = 8 Ksps

and each source produces 6=8 bits/input sample, so the total output rate of each source

is jB = 64 Kbps. This rate is divided among the three layers according to the values of

Q. 3. and o• Though the simulation can be applied to any source coder producing three

layers of data. a. ;3, and were chosen to comply with the pyramid coding constraints of

Equations 2.9-2.11. The simulation was run over all possible values of (q, ,^.7) satisfying

these constraints, which corresponds to 81 possible 3-tuples when 6=8.

3.3.2 Simulation Results

The priority-drop network simulation was run for 8 values of G (ranging between 1.5

and 5). each testing all 81 values of (0.^^.7). For purpo.ses of comparison, another set of

simulations was run using the same source model and parameters, but with a random-drop

queuing mechanism that ignored packet priorities. For a fixed G we expected the random-

queue loss rate to be close to constant across layers and independent of the values (a, 0,7).

and we ran the simulations to verify Equation 3.7 and to ensure that our simulation was

well-behaved. We thus ended up with a total of 2 x 8 x 81 = 1296 simulations. To run

these in a reasonable amount of time, the Xdistribute [19] program was used to distribute

individual ns simulations across a large number of workstations.

Table 3.2 compares the theoretical and experimental average packet loss rates for the

random-drop case. Theoretical loss rates were calculated using Equation 3.7. Experimental

loss rates were calculated using the total number of packets generated and dropped across

all values of (0. ^1,7). The theoretical estimate compares quite well to the experimental

3-4

G

Packet Loss % Maximum

DeviationTheoretical Experimental
1.5 0.001 0.003 0.004

2.0 0.430 0.641 0.123

2.5 6.295 6.280 0.512

3.0 18.561 17.511 0.898

3.5 29.987 28.637 0.929

4.0 38.671 37.503 1.021

4.5 45.490 44.445 0.738

5.0 50.977 .50.000 0.645

Table 3.2: Comparison of theoretical and experimental packet loss rates for a purely random-
drop queue. Maximum deviation indicates the largest deviation over the individual (a. ^3. q)-
combination's loss rates from the average experimental loss rate shown.

results. Also, since the experimental loss rate shown was computed by averaging the results

of all of the individual (q. J.experiments. Table 3.2 also shows the maximum deviation

of an individual (o./i.')) loss-rate from the experimental average.

Figure 3.4 shows the loss rates of each layer for G = 3 and G = o for a priority queue.

The .same techniques for determining the value and effectsof '• given in Section 2.5 are valid

here as well (note that the viewing angle of Figure 3.4 is the exact opposite of the viewing

angle of Figure 2.10). It is clear from Figure 3.4 that Layer 2 enjoys the highest priority and

has smaller loss than the other two layers. As the value of o. 3. orapproaches 1, the coding

scheme moves to a single-priority source, and hence the loss rate of the corresponding layer

approaches the random-drop queue loss rate found in Table 3.2. This is easiest to see in the

graph of Layer 2 for G = 5, which shows the loss rate approaching approximately 50% as 7

approaches 1 (a and 3 approach 0). By themselves, these graphs indicate how packet loss

rates change across each layer as (q. J. 7) changes, but do not indicate an optimal operating

point. That point depends on the source coder producing the layered data.

Finally, Figure 3.5 shows how the loss rates across layers vary as a function of G, for

a fixed value of (q,/?.7). Note that even though 7 was fixed at 0.5. which is a relatively

high fraction that corresponds to 16-bit quantization of C2. Layer 2 experiences no loss for

G < 3.5 and only a maximum of 5% loss at G = 5. The graph also shows how as G increases.

Layer O's loss rate increases faster than the other layers' loss rates, until it saturates at 100%

loss.

CO

o 100

Figure 3.4: A
queue is used
G = 3 fleft CO

36

lOOr

SO-

SO

70

" i(0 I
CE 60 '

50-

"5 40CO
Q.

30

20

10

(alpha, beta, gamma) - (0.25. 0.25. 0.5)
^

Layer 0
/

/

a

Layer 1 ,

P'

Layer 2

Figure 3.5: Packet percent loss rates across layers as a function of G. Bit-rate allocations
-;) were fixed at (0.25.0.25.0.5).

3.4 Future Work

One aspect to improve in the future is the network traffic model. Currently, the simu

lation traffic is homogeneous—it all comesfrom the .V source audio model. To better reflect

the true nature of the Internet, other types of traffic could be included in the simulation,

including email, ftp. and http activity. A model that takes this background traffic into

account should be developed so that congestion in our simulation does not ari.se only from

audio sources.

We could also explore the transmission of layered audio over the MBone via diflferent

multicast groups. Using the framework for layered multicast transmission described in

[15]. we can allow receiver-based adaptation to local-network conditions by transmitting

the audio layers across different multicast groups. Receivers can then adapt to network

conditions by subscribing to as many groups as their local networks capacity allows.

The current Internet is not capable of providing different qualities of service. If we

wish to take advantage of the benefits priority transmission can provide, weshould explore

the application of techniques like Priority Encoding Transmission [1] to the transmission of

layered audio over the Internet.

Finally, the impact of /, and Lp on end-to-end delay should be taken into account.

37

A minimal value restriction could be placed on /, so that there is an upper bound on the

packetization delay. We could instead allow variable packet lengths Lp across the layers

and/or time.

38

Chapter 4

Joint Source/Channel Coding of

Audio

chapter explores the design of audio coders wlien the effects of the transmission

channel are considered. The channel of interest is a packet switched, priority network. The

separation principle states that the source and channel codings can be performed indepen

dently. but it holds only for a set of idealized circumstances [5] which are violated in the net

works of interest. Therefore, we should be able to improve performance by employing joint

source/channel coding design techniques. We have already taken the priority-transmission

characteri.stics of the channel characteristics into account by choosing a layered, redundant-

expansion coding scheme. Section -1.1 describes the further refinement of our design through

incorporation of the network loss effects. Our goal was to match the bit allocations of our

source to the conditions of the network. Section 4.2 discusses the broader issue of de

termining the optimal redundancy that should be added for error protection over a lossy

channel.

4.1 Pyramid Coder Design and Performance for Lossy Net

works

4.1.1 Coder Parameters

We tested our pyramid coder's performance over all po.ssible bit allocations when a

total of 8 bits were allocated per input sample. We used the network model and parameters

39

discussed in Section 3.3. The value of the statistical gain G was varied between 1.5 and 5.0

to simulate different levelsof network load. We chose the following parameters for our coder:

length-19 windowed sine filters for D and /; automatic-<T scaling uniform quantizers for Qq.

Qi. and Q2; no transform coding: and no entropy coding. Because we wanted to explore

the performance of different bit layer allocations constrained to a constant total bit rate,

we chose not to entropy-code the quantized signals. Length-19 windowed sine filters were

chosen for their superior performance to other designs studied in Section 2.4.2. And though

all three uniform quantizer designs we studied in Section 2.4.1 had near equal performance

at 64 Kbps (the rate of our test data), we are interested in the coder's performance when

packets are lost and the average data rate reaching the receiver is less than 64 Kbps. .As

such, we chose automatic-<T quantization over the other two schemes because of its superior

performance at lower rates.

4.1.2 Computing the Distortion

Our goal in combining our pyramid coder design with network loss information was

to determine how a given design performed under lossy conditions. For a given bit budget

b and network load repre.sented by G. we want to .see how the loss rates across the layers

affect the performance of the possible (o. J.-,) bit allocations. We have already seen how

the coder performs under lo.s.sless network conditions in Section 2.5: now we want to see how

(and if) the best choice for (q. J.";) varies as we introduce loss. A significant difficulty in

computing the performance of pyramid coding under lo.ss arises from the signal dependencies

inherent in the coder's structure. Due to each layer's strong dependencies on the quantized

signals of higher layers, it is very difficult to determine how each individual layer affects the

MSE of the reconstruction. Given a specific G and bit allocation choice of (a,/?.7), and

the corresponding layer loss percentages {Pq.Pi. P2). there is no easy way to formulate the

expected SNR of the reconstruction. .As a result, we determined performance by encoding

a set of data, distributing loss probabilities across each layer's packets, and decoding the

resulting lossy signal in order to calculate the MSE.

For a set of test data, we used 21.5 seconds of a 16-bit linear. 8000 sps speech signal

consisting of 9 different speakers each speaking one .sentence. Silence between speakers was

removed, since the source activity probability of 40% used in our network model is based

on a speech coder with silence suppression. For each value of (q, /3,7). we encoded the data

40

and packetized each of the signals in fixed length packets of 48-bytes. Then, for each G'. we

dropped packets with the probability determined by our network simulations. The lossy s,

signals were decoded to calculate .f and the resulting MSE.

Note that for a fixed bit-rate, our pyramid coder does not have a fixed performance

when no data is lost. The fact that Figure 2.10 is not flat is clear evidence of this. As

an example of a coder that does have a flxed performance, consider a simple two-layered

coding scheme that directly quantizes an input signal and sends the ab most significant bits

in high priority packets and the (1 —q)6 least significant bits in low priority packets. When

no packets are lost we get all b bits regardle.ss of the value of q. Only when simulating for

network loss would the value of q take on any significance. On the other hand, our pyramid

coder has a specific (q. J. -) combination that results in the best performance under lossless

network conditions. As a result, our coder is predispo.sed to a specific operating point before

network lo.ss is taken into account.

4.1.3 Performance Results

Table 4.1 summarizes the performance of our coder as G varies. For each G it shows

the best .S.NR achieved, the values of (o. J.-) that achieved it. and the corresponding layer

loss rates. For all but two values of G. the best choice of (a. i.'/) remains constant at

(0.875.0.0625.0.0625). corresponding to spending (7.1.2) bits on Layers 0. 1. and 2. This

result is somewhat counterintuitive because as overall loss rates increa.sed. we expected to

see a greater portion of the bit budget allocated to Layers 1 and 2. which have a higher

possibility of being transmitted due to their higher priority. This behavior is due to the

automatic-a scaling uniform quantizers.

The data underlying the rate-distortion performance curves of the quantizers shows

similar trends for all three types of quantizers. First and foremost, if the rate is increased

by increasing 6o while keeping bi and b^ fixed, the performance always improves. This

makes intuitive sense: since the total distortion depends only on the quantization error of

Layer 0. increasing the resolution of the quantizer should improve the coder's performance.

But it is not always true that when either 6i or 62 is increased, and the other two layers' bit

allocations are kept constant, performance improves. For example, for many fixed values

of bo and 61. the coder using automatic-cr quantizers exhibits the following behavior. As

62 is increased from 0 (no coding) to 1. there is a positive jump in SNR. This corresponds

Best Corresponding Values Corres ponding Loss %
G SNR Q 3 1 Layer 0 Layer 1 Layer2

1.5 47.05 0.875 0.062 0.062 0.00 0.00 0.00

2.0 38.22 0.750 0.062 0.188 0.48 0.00 0.00

2.5 26.32 0.625 0.375 0.000 9.30 0.00 NaN

3.0 21.88 0.875 0.062 0.062 21.76 0.00 0.00

3.5 19.67 0.875 0.062 0.062 34.97 0.01 0.00

4.0 18.80 0.875 0.062 0.062 44.92 0.01 0.00

4.5 17.89 0.875 0.062 0.062 52.94 0.01 0.00

5.0 17.23 0.875 0.062 0.062 59.33 0.02 0.00

41

Table 4.1: Performance as a function G for a pyramid coder using automatic-cr scaling
uniform quantizers. For each value of G. the values of o. 3. and "/ that achieved the best
SNR are shown, as well as the corresponding layer packet loss rates for these choices.

to the prediction gain due to coding di as the diiference between the prediction ba.sed on

Layer 2. But as 62 increases further, performance may increase slightly, but eventually it

either levels off or even drops. The same behavior is seen when bo and 62 are fixed and 61

is increased. The variance of f/j. the unquantized Layer 1 signal, is a function of 62- the

number of bits spent quantizing the coarse signal C2 upon which c/i is dependent. Inspection

of d]'s variance as a function of 62 showed that its greatest reduction came as 61 went from 0

to 1. and only incremental reductions were achieved by further increasing 61. This indicates

that for the automatic-cr quantizers, encoding C2 or do with a .small number of bits produces

a significant performance gain over not encoding them at all. W'e also observed a similar yet

slightly different "leveling-off" behavior in the other two types of uniform quantizers. There

was often an initial performance drop when going from 61 = 0 to 61 = 1. or from 62 = 0 \o

62 = 1. This was due to the very coarse low-bit quantization that tended to increase the

power of the next layer's difference signal. After 61 or 62 reached 3-4 bits and the quantizer

resolution increased, the performance was better than not quantizing the signal at all.

With the above in mind, we can begin to understand the static nature of the optimal

(q./?, 7) of Table 4.1. Though priority coding cannot effect any change in the total amount

of data lost in a congested network, it can give us control over what data is lost. It might

seem that as the loss increases, we should decrease o and thereby increase our allocations

to Layers 1 and 2, knowing that a greater percentage of their packets will get through than

Layer O's. However, there is negligible performance gain by increasing 61 or 62 above 1 or 2

bits when bo is constant. Thus, when operating under a fixed total-rate constraint, there is

42

even less gain to be had by increasing 6i or 62. because doing so would force a decrease in

60. We therefore do best by fixing with (60,61,62) at (7,1,2), the combination that provides

the benefits of both predictive coding and accurate quantization of d^. Increasing 61 or

&2 beyond these values would result in production of more high priority traffic having a

better chance of successfully being transmitted, but the resulting decrease in the amount

of low-priority traffic would cause an even higher loss rate for Layer 0. Since there is little

performance gain to be had by increasing 61 or 62 beyond a couple of bits, keeping them

minimal and maximizing 60 is more efficient.

For comparison, the results of maximum-range uniform quantizers are shown in Ta

ble 4.2. We see a similar consistency in the optimal (o.i.';) choice. Under conditions of

practically no loss (G = 1.5), this coder does best by direct, single-layer quantization of

the input. However, as the load increases, more loss ensues and we see benefits of layering

the data and getting a high-priority signal consistently through. The recurring choice of

(a. J.';) = (0.625,0.375.0) corresponds to (60^ ^1-^2) = (5,6.0). The jump from 61 = 0

to 61 = 6 is again indicative of the poor performance that maximum scale uniform quan

tizers have at low bit levels. After reaching bi = 6. there is little gain to be had by finer

quantization of ci. so the choice remains the same as G increases. The coarseness of the

maximum-range quantizers at small bit allocations is also the likely reason that 62 = 0 for

tlie optimal bit allocation. The minimum number of quantization bits for C2 needed to im

prove performance over not coding Layer 2 at all does not appear to be worth the expense

of the nece.ssary decrease in bo or bi. Preliminary results with Lloyd-Max quantizers also

indicate a similar consistency independent of network load. They also show a more equal

distribution of bits for each layer for the optimal (q, 7) choice.

The fact that the optimal bit allocation for mo.st network load conditions is identical to

the optimal lossless allocation does not imply that the priority-encoding and transmission

of the layers is unimportant. Table 4.3 compares the best priority transmission performance

from Table 4.1 with what happens when a pyramid encoding scheme is still used but packets

are dropped randomly, regardless of priority. It shows that priority transmission gains as

much as 17 dB over random-drop.

Finally, in Figure 4.1 we show the performance of a two-layer pyramid coder using

automatic-<7 scaling quantizers as a function of G. As G increcises. the maximum perfor

mance is achieved at a smaller value of o. In other words, in this case we do gain by

matching the high priority bit allocation to the network loss conditions. However, this is

Best Corresponding Values Corresponding Loss %
G SNR Q 3 7 Layer 0 Layer 1 Layer2

1.5 35.66 1.000 0.000 0.000 0.00 NaN NaN

2.0 28.92 0.875 0.000 0.125 0.33 NaN 0.00

2.5 23.26 0.625 0.375 0.000 9.30 0.00 NaN

3.0 19.27 0.625 0.375 0.000 29.16 0.00 NaN

3.5 17.05 0.625 0.375 0.000 47.54 0.00 NaN

4.0 16.32 0.625 0.375 0.000 62.07 0.00 NaN

4.5 15.38 0.625 0.375 0.000 72.85 0.00 NaN

5.0 14.77 0.625 0.375 0.000 81.48 0.07 NaN

43

Table 4.2: Performance as a function of G for a pyramid coder using maximum range
uniform quantizers.

most closely related to the fact that in the two-layer ca.se. increasing bi past a few bits

continues to increa.se the SNR. The same graph for = 0.062 is not shown, for it simply

illiLstrates an increase in performance for all G as o varies from 0 to its maximum possible

value of 0.875.

4.2 Redundancy versus Network Congestion

An important issue in the transmi.ssion of real-time data over lossy networks is the

use of redundancy to protect against channel loss. To .study this que.stion. we used a

simple protection scheme and te.sted a wide range of redundancies. In similar fashion to

the Robust .Audio Tool discussed in Chapter 2. we added protection for each frame to the

frame immediately following it. While R.AT adds only a fixed-rate amount of data protection

coming in the form of a 4.8 Kbps LPC encoding, we instead added the r most significant

bits (MSB's) of the current frame's samples to the following frame. This scheme allowed

us to try a range of redundancies between the extreme cases of no redundancy (/' = 0).

and 100% redundancy [r = 6). Note that this MSB scheme is certainly not the optimal

redundancy possible for a given percentage. .At the very least, we could take advantage of

the correlation present in the r MSB's and use vector quantization with entropy coding to

reduce the average bit rate. Or we could use lossy compression of the original signal for our

redundancy, as R.AT does. However, many existing compression .schemeseither operate at a

few rates or have complex implementations. Using them would make it difficult to study a

44

G

Priority
SNR

Equivalent
Random SNR

Best Random

SNR

Corresponding Values
Q 0 7

1.5 47.05 47.05 47.05 0.875 0.062 0.062

2.0 38.22 28.01 34.22 0.750 0.188 0.062

2.5 26.32 12.68 13.29 0.375 0.500 0.125

3.0 21.88 5.32 8.11 1.000 0.000 0.000

3.5 19.67 4.19 5.33 1.000 0.000 0.000

4.0 18.80 3.62 4.31 0.250 0.688 0.062

4.5 17.89 3.36 3.51 1.000 0.000 0.000

5.0 17.23 2.16 3.01 1.000 0.000 0.000

Table 4.3: Pyramid coding comparison of priority-drop vs. random-drop transmission Pri
ority SNR refers to the best priority-drop performance. "Equivalent Random SNR refers
to the performance when the same layer allocations giving the best priority-drop perfor
mance are used in a random-drop transmission scheme. The la.st four columns give the best
random-drop performance and the values of q. .3, and 7 used to achieve them.

wide variety of redundancies. We are thus introducing this MSB scheme as a tool to study

the general behavior of adding redundancy for error protection, and not as an optimal error

protection scheme for the Internet.

We begin by developing signal and noise models for our propo.sed system. We treat the

input .r as a sequence of samples representable by 6 bits, x € (—(2''"' —1),....0 2''"^).
We a.ssume a silence suppression scheme at the source and a uniform distribution pr- which

is a good approximation for companded voice samples during periods of speaker activity

[7]. We calculate the source power as:

96—] o2b 1
X = j- ~.

2«» -V, 12 6
(4.1)

Lost packets correspond to either partial or total losses of data. Total losses occur when

two consecutive packets are lost, so that the redundancy information in the second cannot

be used to reconstruct the first. Partial losses occur when a packet is lost but its successor

arrives successfully. In this case we can reconstruct the lost packet using the redundancy

of the r MSB's of the samples stored in the second packet. Replacing the 6 —r lost LSB s

with their mean value of the noise energy of the error given a partial loss is

2^—1

> Tt —rt = 1- ^,= ^ H (.r - .r) - -f12
(4.2)

50

45

40

35

30

00
•o

£"25
z
CO

20

1i

107

- *

t

/

-o-

-o-5!f - -:
4 b. = = —; = = =8^

0.1

H - 0 '

gamma fixed at 0

"1, 0

>- - -

5.5
4.5

- •€>

, -xr

- e •

1.5^q

2.5©^^2.

,© '

,cr

_ - - ® - - -

-1-8: = --
-O.

-o-

^ 3 '

-•-I;

0.2 0.3 0.4 0.5 0.6

alpha
0.7 0.8 0.9

V -

N ^
5.'' N *'

45

Figure 4.1: Pyramid coder performance as a function of a for fixed o = 0 (2-layer coding).
.Automatic cr-scaling uniform quantizers were used in the coder. Values of G are indicated
by the labels on the plot lines.

while the noise energy given a total loss is just .7s. the energy of the signal. The overall

expected noise energy is given by a weighted average over these two types of loss:

Jn —PilJs 4" PplJph (-1.3)

where Pn is the total loss probability and Ppi is the partial loss probability. The signal-to-

noise ratio is

5A 7? = 10 logio(7s/.7n). (4.4)

To determine P// and Pp{. we ran simulations based upon our existing network model,

with the following changes. We only used single-layer sources and random-drop queues

since we were not simulating a priority encoding or transmission. Our sources operated on

16-bit audio data at 8000 sps, for a base rate of 128 Kbps. Data was split up into frames

of 20 ms, so the base packet size was 320 bytes.

The network capacity was again defined in terms of Nc> the number of these sources

that could simultaneously transmit at the base rate without loss. For our simulations, we

set Nc = 24 and looked at the case of a statistical gain of G = 2.5. This corresponds to a

total of A' = 60 sources and an average of 24 users actively producing data. We then chose

46

.V,- of these 60 sources to use redundancy such that their packets carried the r MSB's of the

samples of the previous packet. These sources transmitted at a rate of 128(1 4- r/b) Kbps.

Tocalculate Pu and Fp/, we kept track of the total number of packets each source employing

redundancy sent, how many were dropped, and whether the next packet after a dropped

packet was successfully transmitted. We varied r between 0 and b. the extreme values

corresponding to no redundancy and 1009^ redundancy (data repetition), respectively.

Figure 4.2 shows the results of our simulations. Each curve represents the performance

for a specific Av/A' percentage of users employing redundancy. Performance is not identical

for all curves at 0% redundancy due to statistical variations in our simulations. The results

agree with our intuition: when only a small percentage of users add any amount of redun

dancy to their data, they always do better than they would have without it. However, as

the percentage of redundancy-adding u.sers increases, the benefits decrease. This is a clear

example of how the best choice for the individual is not the best choice for the group. If

the network is in a lossy state and then everyone adds redundancy to their data, the result

is even more congestion, greater loss rates, and poorer performance. On the other hand, if

the network is hovering around capacity so that packet drops are infrequent, and a single

individual adds redundancy to her data, she will do better because her increased data rate

has little overall effect on the network. To be fair, we would never expect the Internet to be

flooded with 100',^ of its users adding redundancy to their data. Besides the obvious fact

that this would result in poorer performance for everyone, the redundancy is most beneficial

for real-time data, for which packet re-transmission is not an option. Though our model is

simple and simulates all network sources as audio sources, for intermediate choices of A,.,

we can consider the (.V —A',) sources not employing redundancy as representative of other

non-real-time traffic sources.

Anot her important aspect of Figure 4.2 lies in the shape of the individual Av/A' curves.

For each curve, there is an initial gain for small amounts of redundancy, but eventually the

performance peaks and then declines. At this point, we achieve optimal performance—the

best tradeoff between error recovery ability and increased loss rates is achieved.

4.3 Future Work

There is still much that can be done to improve our pyramid coder and produce a

practical implementation. The results of our combined source/channel coding experiments

20

18

16

c^14

DC
Z
CO 12

10

/ x~~

I I 1

\ ®

20

•

50

-

X..^^^80

^ ^

10 20 30 40 50 60
% redundancy

70 80 90 100

Figure 4.2: Effects of data redundancy as the aniount of redundancy used and percentage of
total traffic using redundancy varies. The x-axis measures how much redundancy is being
added to the base data. The number on each plot line indicates what percentage of users
are adding this level of redundancy to their data.

re-emphasize the need for better quantizers and a better distortion measurement. We can

also improve the accuracy of our distortion calculations by reflecting the actual times of

packet drops into the encoded data. Currently, we use only the total drop percentage to

randomly distribute los.se.s. If we instead used the packet-level traces produced by our

simulation, we could better asse.ss performance under bursty loss conditions.

Our redundancy experiments point to the existence of an optimal redundancy level for

a given network configuration and load level. Though our simulations were for a simple

model and redundancy scheme, we believe a more advanced simulation would show the

same effects. This remains an open area of research, and we believe its exploration and

application to real-time coding designs has the potential to produce meaningful benefits.

48

Chapter 5

Conclusions

This report has explored the design and performance of a pyramid coding scheme

under Internet-like conditions. We studied the advantages a layered coder can exhibit for

priority-transmission schemes. .After discussing the benefits and limitations of SNR as a

performance measurement, we applied it towards the design of the elements of a pyramid

coder. We saw how the interdependencies of the coder elements complicated the design

process, and how practical considerations force a study of a subset of possibilities. We

looked at the performance of a three-layer pyramid coder in terms of both rate-distortion

and fixed-rate, variable bit-allocations.

In Section .3.3.2 we saw that priority encoding of a layered signal can yield excellent

control over how the network loss is distributed across layers. Even though the current

Internet is incapable of providing priority transmission, we discu.ssed how the application

of techniques like PET could allow us to emulate priority transmission, and how schemes

like RLM can take advantage of a hierarchically layered coder.

When we combined our priority-transmission network simulations with our pyramid

coder design, wesaw the performance advantages inherent in our layered pyramid coder. We

also saw our coder's insensitivity to the network load in terms of the optimal bit allocations.

This implies that an intelligent coder design should be able to provide good performance at

low loss rates, and a graceful degradation as the loss increases without the need for adaptive

bit allocation techniques.

Finally, we studied the effects of adding redundancy for packet-error protection. We

saw evidence indicating that for a given network condition, there is an optimal amount

of redundancy to use. and that adding too much redundancy can actually reduce overall

49

performance.

There is still much to be done to turn our pyramid coding schemeinto an actual Internet

audio coder, and we have only scratched the surface of the design process. However, we

have obtained a clear idea of where to go and what elements to concentrate on. Pyramid

coding produces a naturally hierarchical layering that lends itself to priority transmission

and unequal error protection techniques. It has low-complexity and is simple to implement.

While it is not the optimal layered audio encoding method, we believe it is worthy of further

study and refinement, and has the potential to become a useful approach to Internet audio

transmission.

50

Appendix A

Glossary of Abbreviations and

Variables

Abbreviations

ADPCM Adaptive DifTerential Pulse Code Modulation

bps bits per second

dB decibels

Kbps Kilobits per second

Ksps Kilo-samples per second

LPC Linear Predictive Coding

LSB Least Significant Bits

MBone (Internet) Multicast Backbone

MSB Most Significant Bits

MSE Mean Squared Error

PCM Pulse Code Modulation

QOS Quality of Service

51

R-D Rate-Distortion

RAT Robust-Audio Tool

RLM Receiver-driven Layered Multicast

SNR Signal-to-Noise Ratio

sps samples per second

vaf visual audio tool

Variables

o For a three-layer coder, o is the fraction of the total bit budget spent on the lowest-

priority layer. For a pyramid coder, this corresponds to Layer 0.

3 For a three-layer coder, q is the fraction of the total bit budget spent on the middle-

priority layer. For a pyramid coder, this corresponds to Layer 1.

For a three-layer coder, a is the fraction of the total bit budget spent on the highest-

priority layer. For a pyramid coder, this corresponds to Layer 2.

A Rate at which an inactive audio source turns on. expressed in . 1/A is the average

time length of inactivity.

fj Rate at which an active audio source turns off. expressed in . 1/fi is the average time

length of activity.

7r„ Stationary probability of having rt sources active, 0 < 7? < A'.

B Total bit-rate output by the coder of a single audio source.

6 Number of bits output by a coder for each input sample.

b{ Number of bits used to quantize Layer i.

C Network capacity expressed in bps.

fi Fraction of the total bit budget spent on Layer i. For a three-layer pyramid coder. /, = q.

i. or 7. for / = 0. 1. or 2. respectively.

52

G Statistical gain. G = A7-Vc-

Lp Fixed packet length, in bytes, of all packets produced by each of the layers of the

pyramid audio coder.

Lq Length of the priority-drop queue, in terms of number of packets.

Layer i For an J-step pyramid coder. J -H 1 layers are produced. The l/2*^-rate coarse

signal is labeled Layer .7. and the difference signal of rates 1/2' is labeled Layer i,

?• = 0 J - 1.

.V Total number of sources in ihe network.

.V„e Number of sources above the capacity of the network that are active, if there are «(/)

sources active. .Vgc = niax(0. n{1) —.V) .

\c Network capacity expressed in terms of the number of sources that can transmit without

packet loss.

Poll Stationary probability of an audio source being on.

PoflT Stationary probability of an audio source being off.

R The rate of input samples going into the pyramid audio coder.

P, The packet rate of Layer i. expressed in packet.s/second.

Ri Packet loss rate expre.ssed as the ratio of total packets lost versus total packets sent.

53

Bibliography

[1] A. Albanese. J. Blomer. J. Edmonds, and IM. Luby. Priority encoding transmission.

Technical Report TR-94-039. International Computer Science Institute. Berkeley. C.A.

.August 1994. .Available on-lineC

[2] K. Brandenburg and G. Stoll. ISO-MPEG-1 audio: .A generic standard for coding of

high-quality digital audio. J. Audio Engr. Sac., 42(10):780-92. October 1994.

[3] P. J. Burl and E. H. .Adelson. The Laplacian pyramid as a compact image code. IEEE

Tran.s. Comm.. 31(4):532-540. .April 1983.

[4] P. Clarkson. Optima! and .Adaptive Signal Proce.i.^ing. CRC Press. Boca Raton. FL.

1993.

[5] T. Cover and J. Thomas. Elements of Information Theory. John Wiley k. Sons. 1991.

[6] ETSI/GSM. GSM full rate transcoding. In GS.M 06.10. July 1989.

[7] M. Garret!. Contributions Toward Real-Time Services on Packet Switched JKetwoi'ks.

PhD thesis. Columbia University. New York. NY. 1993.

[8] .A. Gersho and R. M. Gray. Vector Quantizaiion and Signal Compression. Kluwer

.Acad. Pub., Boston. M.A. 1992.

[9] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University

Press, Oxford. 2nd edition, 1992.

[10] V. Hardman. M. A. Sasse. M. Handley. and A. Watson. Reliable audio for use over the

Internet. In Proc. INET'95. 1995. Proceedings^ and paper^ available on-line.

'ftp://ftp.icsi.berkeley.edu/pub/techreports/1994/tr-94-039.ps.Z
^http://info.isoc.org/HMP/index.html
'http: //www-mice. cs. ucl. ac. uk/mice/publicat ions/ inet954)aper/

54

[11] \'. Hardman. M. A. Sasse. and A. Watson. Successful voice reconstruction for packet
network's using redundancy. Research Note, Dept. of Computer Science, University

College of London. April 1995.

[12] S.-Q. Li. A new performance measurement for packet voice transmission in burst and

packet switching. IEEE Trans. Comm., 35(10):1083-94, October 1987.

[13] S. McCanne and S. Floyd. The LBNL Network Simulator. Lawrence Berkeley Labo

ratory. Software on-line"^.

[14] S. McCanne and Jacobson. The LBNL Visual Audio Tool. Lawrence Berkeley

Laboratory. Software on-line".

[1-5] S. McCanne. Jacobson. and M. Vetterli. Receiver-driven layered multicast. In Proc.

AC.M SIGCOMM '96. pages 26-30. Stanford. CA. August 1996. ACM.

[16] J. Ousterhout. Tel and the Tk Toolkit. Addison-We.sley. 1994.

[17] K. K. Paliwal and B. S. .Atal. Efficient vector quantization of LPC parameters at 24

bits/frame. IEEE Trans. .Speech Audio Five.. 1(1):3-14. January 1993.

[18] D. Pan. An overview of the MPEG/audio compression algorithm. Proc. SPIE.

2187:260-73. 1994.

[19] K. Petty and N. McKeown. Xdistribute: A proce.ss distribution system. Technical

Report M96/67. UC-Berkeley/ERL. November 1996.

[20] S. Quackenbush. T. Barnwell III. and M. Clements. Objective Measures of .Speech

Quality. Prentice-Hall, Englewood Cliffs. NJ. 1988.

[21] L. Rabiner and R. Schafer. Digital Processing of .Speech .Signals. Prentice-Hall, Engle

wood Cliffs, NJ, 1978.

[22] K. Ramchandran, A. Ortega, and M. Vetterli. Bit allocation for dependent quantization

with applications to multiresolution and MPEG video coders. IEEE Trans. Image

Proc.. 3(5):533-545. September 1994.

^http://www-nrg.ee.Ibl.gov/ns/
^http://www-nrg.ee.Ibl.gov/vat/

00

[23] T. Tremain. The government standard linear predictive coding algorithm: LPC-10.

Speech Technology, pages 40-49, April 1982.

[24] J. Tribolet, P. Noll, B. McDermott, and R. Crochiere. A study of complexity and

quality of speech waveform coders. In Proc. IEEE Int. Conf. Acoust., Speech, and

Signal Proc., pages 586-90, Tulsa, OK, April 1978.

[25] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall, Englewood

Cliffs, NJ, 1995.

[26] R. Viswanathan and .1. .Vlakhoul. Quantization properties of transmission parameters

in linear predictive .systems. IEEE Trails. Acoust. Speech Signal Proc,. 23(3):309-321.

.June 1975.

[27] R. Warren. Auditory Perception: .4 .\ew Synthesis. Pergamon Press, New York. NY,

1982.

	Copyright notice 1996
	ERL-96-96

