

Copyright © 1996, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A HARDWARE MAPPER FOR THE HYPER

HIGH LEVEL SYNTHESIS SYSTEM

by

Ole Bentz

Memorandum No. UCB/ERL M96/97

15 December 1996

A HARDWARE MAPPER FOR THE HYPER

HIGH LEVEL SYNTHESIS SYSTEM

by

Die Bentz

Memorandum No. UCB/ERL M96/97

15 December 1996

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A HARDWARE MAPPER

FOR THE

HYPER HIGH LEVEL SYNTHESIS SYSTEM

by

Ole Bentz

ABSTRACT

The goal of this project is to develop an interface between a high level synthesis tool
and several layout generators. The interface, called a "Hardware Mapper", is a complete
program which can translate a synthesized design to two different layout generator lan
guages.

The major challenge of the research is to derive a complete application specific inte
grated circuit (ASIC) description from a synthesized design. The description should be
generic and independent of the targeted layout generator language, such that new lan
guages can easily be accommodated. Another challenge is to translate the generic
description to specific languages in a manner that enables layout generators to achieve
area efficient layouts.

The layouts that result from using the Hardware Mapper on a set of benchmarks demonstrate

its capability to generatedesign specifications such that efficient layouts can be generated

automatically.

ACKNOWLEDGEMENTS

First of all, 1 would like to thank my research advisor Jan Rabaey for his

generous support and encouragement of my work. Working on a part of the Hyper high

level synthesis project has been very rewarding. Thank you, Jan, for your advice, your

patience and your guidance.

I would also like to thank Shan-Hsi Sean Huang for all his help, especially

with the control generation, and the many hours of fruitful discussions about various

Hyper related issues.

Also, Brian Richards has been a constant source of help with his in-depth

knowledge of the "features" of the Lager tools. Thank you, Brian.

To all my other colleagues in the "BJGroup": it has been great to work with

you. Thanks for the various ways each one of you has contributed to my academic

growth.

Lastly, I would like to dedicate this thesis to my wife, Kelly, who. I love more

than anything in this world. Kelly, your patience and love for me knows no bounds.

Thank you for hanging in there with me.

TABLE OF CONTENTS

Abstract i

Table of Contents ii

1. Introduction 1

2. Overview 3

2.1. The Hyper System 3

2.2. Hardware Mapper Overview 6

3. Resources 8

3.1. Hardware library 9

3.2. Technology file 11

4. Target Independent Phase 13

4.1. Architecture Model 13

4.2. Register Selection 16

4.3. Flowgraph Translation 19

4.4. Bus Merging 22

4.5. Buffer and Multiplexer Generation 26

4.6. Control Generation 29

5. VHDL Generation 41

5.1. VHDL Headers 42

5.2. The VHDL File Hierarchy 43

5.3. Casts 44

5.4. Simulation Interface 49

6. SDL Generation 51

6.1. Required Transformations 52

6.2. Synthesis Driven Floorplanning 53

6.3. The SDL File Hierarchy 60

6.4. Casts 64

7. Examples 65

7.1. The Wavelet Filter Algorithm 65

7.2. Small Wavelet Filter 67

7.3. Medium Wavelet Filter 71

7.4. Wavelet Filter With A Multiplier 75

8. Conclusions 80

A. Hardware Mapper Usage

References

INTRODUCTION
1

The task of implementing application specific integrated circuits (ASICs) from

behavioral descriptions involves many different areas of expertise. These areas range

from algorithm development and manipulation to chip layout and verification. In recent

years, much effort has been put into capturing the expertise of ASIC designers such as

to automate the bulk of their work. There appears to be a division of the specialty areas

into two main categories. The first category deals with the more abstract tasks of taking

an algorithm, transforming it if needed, assigning operations to suitable units and

developing a schedule for the operations that share units. This category is known as

"high level synthesis". The second category covers the rest of the tasks, namely the

placement of units and the routing of wiring between units. The tools in this category

are known as "layout generators" (or "silicon compilers").

High level synthesis tools and layout generation tools deal with very different

issues of the ASIC design. Consequently, data formats to represent designs are specific

to individual tools and it can be hard to transfer designs from high level tools to layout

tools. Even beyond different data formats, there is often a gap between high level

synthesis tools and layout tools, because the former is considered "finished" when a

design has been "scheduled", but the latter expects a completely specified design.

Hardware Mapping is the process that interfaces high level synthesis tools with

layout generation tools. A Hardware Mapper is a tool that derives a basic

implementation of a design from a high level synthesis data representation, adorns the

implementation with necessary details, and presents a fully specified design to a layout

generator. The format in which a design is presented to a layout generator is normally

called a "hardware description language".

A Hardware Mapper has been implemented for the Hyper high level synthesis

system. The Mapper fills the gap between Hyper and layout generators (see Figure 1.1).

It is capable of mapping Hyper designs to two different hardware description languages.

The two languages supported are VHDL, the IEEE standardized hardware description

language, and SDL, the structural description language used by the Lager layout

generation tools.

The rest of this report will describe the details of the Hardware Mapper.

Chapter 2 gives a brief overview of Hyper, as well as an overview of the Hardware

Mapper. Chapter 3 outlines the resources which the Hardware Mapper uses at run-time.

Chapter 4 explains how the Mapper extracts design information from the Hyper

database, and what further design detail it generates. Chapter 5 presents the mapping to

the VHDL language, and chapter 6 shows the mapping to the SDL language. Chapter 7

gives some examples of Hardware Mapper generated layouts. Chapter 8 offers some

conclusions, and suggestions for future work.

HYPER

Hardware Mapper

Layout Layout
Generator 1 Generator 2

FIGURE 1.1: The Hardware Mapper as an interface

OVERVIEW
2

2.1 The Hyper System

Hyper is an interactive menu-driven design environment for synthesizing high-

performance digital ASICs. It consists of a number of software modules linked under a

common X-windows based management tool called Xhyper. Figure 2.1 shows the

Xhyper window. All Hyper's software modules communicate through a common

database as shown in Figure 2.2.

The input to Hyper is a Silage description of an algorithm. Silage is an

applicative signal-flowgraph language that is well suited for describing digital systems

that have little explicit control.

A Silage description is parsed and translated into a control/data flowgraph.The

flowgraph represents the same information as the original Silage description, but it is

easier to manipulate. Also, a flowgraph can be adorned with various details which can

not be represented in the Silage description.

The selection step assigns a unit (or a group of units) from a hardware library

to each type of node in the flowgraph. The hardware library contains a number of

different implementations of certain blocks in order to trade off performance, area and

power.

tSaisn 10* Tmiifcwrtiaw fitnMft Vl*<r OjitfaM

m

j/* «*••/«* kiu iwMtt w4*t*y
•mtrn I t I1« ^

«« « ' •#ltT|

ft* CM I I lamf

^ • I tl

ft* t W 1

ft* « I < ftfl ft

ftM *1 I *ftn

ft^ M il ft UlftW

ft* ft M I t

*W<t::::;::::::v >::x;:':Vv.':::::->::::::':::S
< Mklt ft 4ft*>

W Iftft M«^ *0*
••• «M •• ft ^ 1 • «ft«

FIGURE 2.1 : The Xhyper window.

The transformation phase consists of algorithmic transformations which can be

performed on the flowgraph in order to achieve some specific result. Some possible

transformations include expansion of fixed-coefficient multiplications into a series of

adds and shifts, algebraic transformations, loop unrolling, retiming and pipelining.

The estimation stage provides the designer with estimated resource

requirements. The resources estimated are: the number of cycles in the critical path, the

number and type of execution units (EXUs), the number of registers associated with

each EXU, and the number of buses connecting execution units to register files.

The assignment/scheduling step assigns each flowgraph node to a specific

hardware unit at a certain time. The number of each type of hardware units that are

needed is derived. Prior to scheduling the clock period and sampling rates must be

specified in order to define the number of cycles available to the system.

/Instruction Set SelectionN

MULT

Memory Managemen

RAM

FIFO

^Allocation /Scheduling

Adder

Mult

iiiiiiiiiiiiiiiititiitiiiitiiiiiitiiiiniiiiiiiiitiiiiNtiiiiiiitiiiiiiiiiiiii

Behavioral Input^

Signal Flow Database

Architecture Mapping

mult I—

\

Silage
Ptolemy
Comdisco
Mentor Graphics

Estimation

Min Bounds:
2 adders
1 multiplier
16 registersJ

r Transformations^

Hyper
illtlltltlltltMlttltlltlllHIIIIimilllllllHItlllltlilltllllill

Layout Generators

Layout Generator ^
VHDL (Synopsys) J

eLayout Generator
SDL (Lager)

FIGURE 12 : The Hyper modules.

The architecture mapping, also called hardware mapping, maps the flowgraph

onto the selected hardware units by generating the interconnect information, placing

multiplexers and buffers where needed, defining the finite state machine and control

logic, and partitioning the datapath. After this step the system is completely defined.

The output of the hardware mapper is a group of hardware description files.

They can be requested in either VHDL format [VHD87], IEEE's standardized hardware

description language, or in the SDL format [Bro92], the Structural Description

Language used for the LagerlV silicon compiler [Lager91].

The focus of this report is the hardware mapping step. The procedures and

methodologies that are used will be discussed in detail.

2.2 Hardware Mapper Overview

The Hardware Mapper has two main phases: a target independent phase and a

target specific phase (Figure 2.3). During the target independent phase, the Mapper

extracts design information from a Hyper generated flowgraph and adds various details.

For example, buffers and multiplexers are added, and the control specification is

derived. This phase is generic and it is used regardless of the targeted hardware

description language. Chapter 4 explains this process in detail. There are two target

specific phases, each of which generates a different format, either VHDL or SDL.

Although these two phases have many similarities, they are different enough to need

Thrget Indenendent

Flowgraph Extraction

Bus Merging

Buffer Generation

Mux Generation

Control Generation

VHDL

Cluster Generation

Controller Generation

Top of Hierarchy Generation

Simulation Interface

FIGURE23 : The Hardware Mapper's mainphases.

SDL

Architectural IVansformations

Cluster Generation

Controller Generation

Top of Hierarchy Generation

separate discussion. Chapter 5 presents the VHDL phase, and Chapter 6 describes the

SDL phase.

RESOURCES
3

High level synthesis involves a phase in which it is decided how all the

operations in an algorithm will be performed. This normally involves a matching

process in which an operation (e.g. an addition) is matched with a pre-designed

hardware unit which is capable of performing that operation. In order to expedite the

matching process, it is common to organize hardware units into libraries. An index that

lists all the units in a library, including which operations they are capable of

performing, can then be used to match operations with hardware units. Within one

library there may be many units that can perform the same operation. In that case, it is

necessary to select which one of the possible choices will be best to use. For example, if

a designer considers speed most important, the fastest unit can be chosen. Otherwise,

the smallest unit or the most power efficient unit can be selected.

There are many aspects of a hardware library that are not important for a high

level synthesis tool to have access to. Therefore, it is beneficial to extract the necessary

information and keep it in a library "data sheet". A library "data sheet" has to be

organized such that units that can perform the same operation are listed together. It

should also have information about size, speed or power consumption to help choosing

the best units. In addition, there needs to be information about how a unit can be

connected with other units. If a unit can do several operations, it is necessary to tell it

when to do one operation and when to do another. That type of information should also

be listed in the data sheet.

Hyper uses the library "data sheet" approach to organize relevant information

about hardware units. In fact, the data sheet is the only view Hyper has of a library, and

it is often just referred to as "the library". A library (using the Hyper terminology)

typically lists enough different units to allow all common operations to be matched with

at least one of them. In addition to a data sheet. Hyper has a facility for describing

information that relates to all the hardware units that are listed in the library. For

example, if all the hardware units in the library are supposed to be connected to a power

supply of 3 volts (V), then it can be specified just once. In Hyper terminology, the

facility that contains this type of information is called a "technology" file.

The following two sections outline the interactions the Hardware Mapper has

with the library and the technology file.

3.1 Hardware Library

The Hardware Mapper uses a library "data sheet" to get information about

hardware units. For example, the size of a unit is needed when the Mapperpredicts the

size of a chip design. The Mapper also needs to find out how a unit should be connected

with other units. For that task, the names of inputs and outputs have to be determined

from the library.

The Hardware Mapper can access a library through a set of programs. These

programs are also used by other tools in Hyper, so they are not formally a part of the

Mapper's routines. However, they are used frequently enough to warrant some

discussion. Most of the access programs are "question and answer" types, which means

they provide information from the library upon request.

10

Table 3.1 shows the routines that are used to access the library. Each of the

entries in the table have a "question" column that, in plain english, requests

information. The table also lists the actual program names and their arguments.

Question Routine Arguments Description

Where is the cell? HwGetCell Function,
Name

Get a pointer to the unit
which is called Name

and is listed in the group
Function.

What are the input or
output names of a cell?

HwGetData Function,
Name,

Parameters,
Direction

Get the names of the

inputs or outputs of a unit
which is called Name

and is listed in the group
Function.

What are the names of

all the control signals
of a cell?

HwGetControl Cell, Param

eters, Direc

tion

Get all the names of the

input or output control
signals of a unit, includ
ing their values (if any).

On what side of a unit

are the control termi

nals located?

HwGetControlEdge Cell, Param

eters

Get all the control sig
nals' location.

What parameters are
required to configure a
unit?

HwGetHw-

Parameters

Cell, Param

eters

Get all the hardware

parameters that are
required by a cell.

What is the name of

the SDL file for a unit?
HwGetSdlName Function,

Name

Get the name of the

VHDL file for a unit

which is known to Hyper
as Name and is listed in

the group Function.

What is the name of

the VHDL file for a

unit?

HwGetVhdlName Function,

Name

Get the name of the

VHDL file for a unit

which is known to Hyper
as Name and is listed in

the group Function.

What is the smallest

unit that can perform
the operation Fh/ic-
tion?

HwGetCheapestCell Function,

Parameters

Get a pointer to the small
est unit in the group
Function.

Table 3.1: Library Access Routines

11

Question Routine Aiguments Description

What is the size of a

unit?

HwGetArea Function,

Name,
Parameters

Get the area of a unit

called Name which is

listed in the group Func
tion.

What is the value of...? HwGetGeneric Function,

Name,

Parameters,

Keyword

Get the value ofKeyword
for a unit called Name

which is listed in the

group Function.

Is there are unit in the

library that can do
Function?

HwIsFunctionln-

Libraiy
Function

Which layout genera
tion methodology is
used for this unit?

HwGetFunction

Source

Function There are three possible
answers: datapath, array,
standard cell. See below.

Table 3.1: Library Access Routines

Hyper's library indices are split into three separate portions. This is a feature

that was introduced to help discern between units that needed different layout

generation approaches in the Lager layout generation system. Lager has three such

approaches, including: datapath, array and standard cell. It is not important at this stage

to understand these different approaches, but it does explain why the function

"HwGetFunctionSource" is used.

3.2 Technology File

A "technology file" contains information which applies to all the hardware

units listed in a library. Thus, in order to properly understand the information which can

be obtained from the library, it must be combined with the technology file's data. The

parts of the technology file that the Mapper needs to access are listed in table 3.2.

Item Sample Value Description

library low_power This identifies the library.

nr__of_clocks 2 The number of clock phases in a
design.

size_units micron All geometries are given in microns.

size_scale (/6 10) All geometries should be scaled by
6/10 = 0.6. This is specified because
the syntax does not allow floating
point numbers.

state_transition falling The finite state machine in the con
troller changes state on this edge of
the clock.

Table 3.2 : Technology File

12

TARGET

INDEPENDENT

PHASE

The first phase of the Hardware Mapper is the target independent phase.

During this phase the Mapper translates a flowgraph into an intermediate representation

which contains adequate information to allow mapping onto many different target

platforms.

The flow of the target independent phase is shown in Figure 4.1. There are five

steps in this phase, but the middle step (bus merging) may not always be executed.

Before presenting all the details of the five steps, section 4.1 will discuss the underlying

architecture model. Once that foundation has been laid, section 4.2 will explain the

register selection process. Section 4.3 will elaborate on the basic translation process

from a flowgraph to the intermediate representation. Section 4.4 gives details of the bus

merging routines. Section 4.5 explains how buffers and multiplexers are added to the

design. Finally, Section 4.6 describes the way control is generated.

4.1 ARCHITECTURE MODEL

Hyper makes certain assumptions about the architectural style that is used for

design implementations. Design decisions are simplified for all the tools in Hyper, since

some aspects of the architecture are fixed. Before going into details about the mapping

13

4

14

TARGET INDRPKNllKNT PHASE

Register Selection

FInwgranh Evtraptinn

Execution Units

Registers

Buses

BiisM

Fanin/Fan

erffin?

out/Global

Buffer Generation

Multiplexer Generation

Control GpiiPrflfinn

State IVansition Graph

Control Signals

Optimizations

Control Paths

FIGURE 4.1: The target independent phase

process it is useful to describe the model, since many components of the Mapper are

artifacts of the architecture.

The Hyper architecture model contains execution units (EXUs) and register

files, as well as a crossbar interconnect network. The model does not limit the number

of units in the architecture, but physical limitations (such as maximum chip size) will

naturally dictate an upper bound. Figure 4.2 shows the basic architecture. The size of

register files is not limited by the model, but, again, there are physical limits. The

crossbar interconnect network provides connections from any execution unit to any

15

Crossbar Network

iREGOlREGl

REGO

REGl

REGO
REGl

REGO

REG2

REGl

REGO

REG2

REGl

REGO

EXUO EXUl EXU2

FIGURE 4^ : Hyper's basic architecture model

register file. This network may form different connections at different times. All

register files have a single input port, such that only one value can be written at a time.

There is one dedicated bus between the output of a register file and the input of the

execution unit it "belongs" to.

The crossbar network is implemented by a set of dedicated buses, bus drivers

and multiplexers. A bus driver is a buffer that can drive the output of an execution unit

unto a bus. A multiplexer is capable of selecting one bus from a given set of buses. The

crossbar network is configured by choosing which bus drivers are active, and which

multiplexer inputs are selected. Figure 4.3 shows the implementation of a crossbar

network.

Crossbar Network

•fc] To| I I I
re^ster regteter From execution unit

file file

FIGURE 43 : Hyper's implementationof a crossbar network.

16

The refined Hyper architecture model emerges as the basic architecture is

merged with the crossbar implementation. The multiplexers and bus drivers are grouped

with the register files or execution units that they are associated with. This is shown in

Figure 4.4. There are dedicated buses between multiplexers and register files, and

between execution units and bus drivers.

In the rest of this report, the term "cluster" refers to a group of multiplexers,

register files, execution units and buffers that are connected only by dedicated buses.

Clusters can communicate with each other through the global bus network. A cluster

typically has one execution unit, one or two register files and a few muxes and buffers.

However, there is no limit to the number of units that are allowed in a cluster.

Bus Network

\muxjjK \niuxy ^i^ ^
REGO

REGl

REGO

REGl

REGO

REGl

REG2

EXUO

REGO

REGl

REG2

EXUl

FIGURE 4.4 : Hyper's refined architecture model

4.2 REGISTER SELECTION

• •

The first step of the target independent phase is the register selection step.

During this step, the Hardware Mapper selects which registers from the library will be

used for each of the register files in the design. This selection task would naturally be

17

the duty of the module selection routines in Hyper. However, at the time when hardware

module selection is performed, there is not enough information available to make the

optimal choice. Therefore, the Hardware Mapper is entrusted with the task of selecting

the most suitable types of registers. The Mapper considers only area when selecting the

register hardware.

4.2.1 Register Concepts

Hyper has a single concept of foreground storage: register files. In the Hyper

terminology, a register file has a single input and a single output. The bit width can be

specified and it can contain constant values (read-only) or variables (read-write). To

provide proper implementations of this concept, the Mapper has a more differentiated

vision which includes four types of registers. They include register files, single

registers with tri-stated outputs, single registers without tri-stated outputs and flip-

flops. The first three categories are thought of as being parameterizable in the bit width,

while the flip-flop is thought of as a single bit standard cell block. The following

paragraphs outline the assumptions and restrictions inherent to these register

categories.

Register Files

Register files contain one or more registers, which could be either read/write or

read only. It can address one location for reading and one for writing in each clock

cycle. All the registers in the file have the same bit width, which is at least one bit.

Registers with tri-statable outputs

These registers can store one value at a time, and it can be either read/write or

read only. It can both be read and written in a clock cycle. The register must have a

parameterizable bit width, which is at least one bit. Since this register has a tri-stated

18

output, it can be put in parallel with other registers of this type, and thus a register file

can be formed.

Registers without trl-statable outputs

These registers can store one value at a time, and it can be either read/write or

read only. It can both be read and written in a clock cycle. The register must have a

parameterizable bit width, which is at least one bit. Since this register does not have a

tri-stated output, it can not be put in parallel with other registers, and thus this register

can only be used when a Hyper design requires a register file with a single location.

Flip-Flop Registers

Flip-flops are single bit standard cell registers that are thought of as D flip-

flops. These flip-flops are assumed to be rising edge triggered (if a flip-flop latches its

data at the falling edge of the clock, this can be indicated in the library specification).

4.2.2 The Roister Selection Process

The register selection is divided into two separate phases:

1. Detennine the size ofeach Hyper register file, as annotated on the flowgraph.

2. Deteimine which register or combination of registers offers a better solution. This is done

on a per-register-file basis. Use the registers that result in the smallest area.

During the first phase, the flowgraph is used to determine how many registers

there are in each register file. During the second phase, the best (smallest) solution is

determined for each register file. This is accomplished by considering which

combinations of the available hardware offers a viable solution. The smallest viable

solution is chosen as the optimal.

19

4.3 FLOWGRAPH TRANSLATION

The second step in the target independent phase is the flowgraph extraction

step. During this step, the Hardware Mapper takes a scheduled flowgraph

[Chu89][Rab91] and extracts the necessary information from it. Figure 4.5 shows a

simple example of a flowgraph of a third order finite impulse response filter (FIRS).

nOlIN

IN

OUT
not +

FIGURE 4.5 : FIRS block diagram and flowgraph

The information which the Mapper extracts from the flowgraph is shown in

Figure 4.6 and will be outlined in the following sections.

Execution Units

Registers

Buses

FIGURE 4.6 : Information which is extracted from a flowgraph

20

4.3.1 Execution Units

A scheduled flowgraph contains information about how, where and when an

operation should be performed. The "how" is contained in the node attribute

"exu_class". This gives the name of a hardware unit that can be found in the hardware

library. The "where" is contained in the node attribute "exu_instance", and it specifies

the name of an instance of the given hardware unit. The "when" is contained in the node

attribute "control_step", and it specifies the clock cycle during which this operation

will be performed on this instance of the hardware unit.

Example

The node n3 from Figure 4.4 is shown in all its detail below.

(NODE

(NAME n3)
(MASTER add)
(ATTRIBUTES

(exujnstance adder#0)
(exu_class adder)
(controLstep 3)

)
(IN.EDGES (eO e2))
(OUT.EDGES (e3))

)

4.3.2 Registers

Registers are used to store intermediate results between operations. The

information about registers is associated with edges (the data flow between operations).

As for the execution units, the Mapper can find which hardware units to use and the

names of all the registers that are needed for a design. There is no explicit information

about when a register is written or read, but it can be inferred from the node which

precedes a given edge.

21

Example

The edge "e3" from Figure 4.4 is shown in all its detail below. It is given that

the data that flows between nodes n3 and n6 should be stored temporarily in a register

called adder#0_reg0_l, which is an instance of the hardware unit tspcr (true-single-

phase-clock-register). Furthermore, it can be inferred that adder#0_reg0_l should be

written in the cycle in which its input node (IN_NODE) n3 is operating, namely cycle 3

(control_step 3). It can also be inferred that the register should be read during the cycle

in which its output node (OUT_NODE) n6 is operating, namely cycle 4.

(EDGE

(NAME e3)

(CLASS data)

(ATTRIBUTES

(storage_class tspcr)
(storagejnstance adder#0_reg0_l)

)
(IN.NODES (n3))
(OUT_NODES (n6))

)

4.3.3 Buses

The nodes in a flowgraph contain information about which hardware units are

used in a design. The connections between units is specified implicitly by the edges that

connect nodes. The Hardware Mapper initially creates as many physical buses as there

are unique point-to-point connections between hardware units. The Mapper looks at the

connections that are represented by all the edges in a flowgraph, and finds the data

types of connection, including when data is cast from one type to another. If a user so

desires, the Mapper can subsequently reduce the number of buses by merging them

together, creating time multiplexed buses. The merging of buses is covered in greater

detail in the next section, "Bus Merging".

22

4.4 BUS MERGING

The Hardware Mapper is capable of minimizing the number of physical buses

in a design. This feature is offered as an option, but it is highly recommended if

implementation area is of any concern. The area of a bus-merged implementation is

often only 40 - 60% of the area of one which did not use bus merging.

The bus merging routines are organized as shown in the flowchart below

(Figure 4.7). Fanin and fanout merging are mutually exclusive, while global bus

V y

Fanin Merging Fanout Merging

Global Merging

? = User specified options

FIGURE 4.7 : Bus merging fiowchart

merging can be combined with either of the fanin/fanout merging methods. The merging

can also be bypassed (that is the default). The following three sections will describe

each of the types of bus merging.

23

FIGURE 4.8 :Fanin bus merging.

4.4.1 Fanin Bus Merging

The fanin bus merging joins all the input buses of a register file into a single

bus (See Figure 4.8). The philosophy behind this type of merging is that a register file

can only write one value per cycle, and that value is presented by one of its fanin buses.

Therefore, there is never more than one active input bus in a given clock cycle, and all

the input buses can thus be merged.

The consequence of this type of merging is that there will be no need for

multiplexers, while the need for tri-state buffers will increase.

4.4.2 Fanout Bus Merging

The fanout bus merging joins all the output buses of an execution unit into a

single bus (See Figure 4.9). The philosophy behind this type of merging is that an

execution unit can only generate one value per cycle, and that value is presented to all

24

FIGURE 4.9 :Fanout bus merging.

of its fanout buses. Therefore, the buses always carry the same values in the same clock

cycles, and all the output buses can thus be merged.

The consequence of this type of merging is that there will be no need for tri-

state buffers, while the need for multiplexers will increase.

FIGURE 4.10 :Global bus merging.

V
RegO RegO

Regl Regl

•"V/"

ExuO

25

4.4.3 Global Bus Merging

The global bus merging approaches the issue from a different angle. It

considers all the global buses simultaneously and merges buses that are not active

(transferring useful data from one unit to another) during the same cycles, such that the

number of buses is minimized (See Figure 4.10). The merging procedure first

determines which buses are incompatible (different widths, active in the same cycles

etc.). It then performs a graph coloring to determine the minimal number of buses.

Finally, it performs the actual merging.

Global bus merging normally achieves the best results (as measured in

implementation area) out of the three kinds of merging. However, occasionally a

combination of the three types of merging will yield the smallest area.

Example

A seventh order infinite impulse response filter (IIR7) was generated by Hyper.

It has a critical path of 10 clock cycles and an available time of 16 clock cycles. There

are 2 shifters, one adder and one subtractor in the design. Without any bus

Global Buses Muxes Buffers Rel. Area

No Optimizations 21 8 25 1.00

Merge Inputs 9 0 25 0.61

Merge Outputs 7 8 6 0.55

Global Merging 5 6 13 0.49

Merge Inputs and Global 8 0 25 0.58

Merge Outputs and Global 5 6 6 0.48

optimizations there are 21 buses in the design. The number of muxes and buffers are 8

and 25, respectively. The results of applying fanin, fanout and global bus merging are

shown in the table.

26

4.5 BUFFERS AND MULTIPLEXERS

After bus merging has been applied, buffers and multiplexers are added to the

design. The buffers are primarily needed to drive the relatively large loads of global

buses. However, another important feature of buffers is their capability of being turned

on and off. This is an essential feature when there are many different buffers that need

to drive a single bus. When all the buffers are turned off (tri-state), one buffer can be

turned on and gain full control of the bus. The multiplexers have a different task.

Instead of driving a single bus, they have to select one out of many buses. By selecting

one bus at a time, a multiplexer can ensure that a register file only receives one value at

a time. Thus, multiplexers play an important role in the implementation of a Hyper

architecture.

There is no information available in a Hyperflowgraph concerning buffers and

multiplexers. It is left to the Hardware Mapper to determine how many of these units

are needed and which hardware units to use. The following two sections describe how

the Mapper derives this information.

4.5.1 Buffer Selection

The buffer selection takes place after the global buses have been merged (if

merging is requested by the user). At that point, it is known exactly how many buses

there will be in the final implementation. It is also known which buses connect to each

execution unit.

Buffers are always assumed to be placed at the output of execution units, and

their function is to act as bus drivers. In cases when a bus is driven by different

execution units during different cycles, it is necessary to use buffers that are tri-

statable.

27

The buffer selection routine is very simple. It inserts a simple buffer between

execution units and buses that are driven by only one execution unit. It inserts a tri-

statable buffer between execution units and buses when a bus is driven by more than

one execution unit. The Mapper does not consider the capacitive loading of buses when

assigning buffers, but this could be taken into consideration to determine buffer sizes.

Example

A bus is driven by one execution unit. A simple buffer is inserted.

buf 0

bus 0

bus 0

FIGURE 4.11: Before and after buffer selection

Example

A bus is driven by two execution units. Tri-statable buffers are inserted at the

output of each execution unit. Please see Figure 4.12.

4.5.2 Multiplexer Selection

The multiplexer selection takes place after the global buses have been merged

(if merging is requested by the user). At that point, it is known exactly how many buses

there will be in the final implementation. It is also known which register files the buses

connect to. Multiplexers (muxes) are always assumed to be placed at the input of

28

—7 \—^
EXU / \ EXU

bus 0

FIGURE 4.12 : Before and after buffer selection

EXU / \ EXU

EN Y 7 EN \ /
—\ /buf_0 —\ /bufj

bus 0

register files. Thus a mux serves as a bus selector for the register file with which it is

associated.

The multiplexer selection routines recognize first of all how many buses are

connected to the input of a register file. Then it considers which of the available muxes

is best suited.

Example

A register file has one bus connected to its input. The mux selection will not

assign a mux, since there is no bus selection to be done.

Example

A register file has two buses connected to its input. The mux selection will

assign a two-to-one (2:1) mux. Please see Figure 4.13.

Example

A register file has three buses connected to its input. The mux selection will try

to assign a mux which has three inputs (a 3:1 mux). If a 3:1 mux is not available in the

hardware library, the mux selection will construct a "mux-tree"using smaller muxes, in

inputs

M
REGO

REGl

REG2

output

FIGURE 4.13 : Before and after mux selection

29

inputs

MUX

REGO

REGl

REG2

output

this case 2:1 muxes. The two possible mux selections (a 3:1 mux or two 2:1 muxes in a

mux-tree) are shown in Figure 4.14.

4.6 CONTROL GENERATION

The last step in the target independent phase is control generation. "Control" in

this context encompasses numerous different areas that all somehow are grouped under

this designation. For example, there is global control, which involves synchronization

of the chip as a whole. There is also control signals, which are very specific to

individual hardware units, but have to be coordinated with the global control.

The control generation is partitioned into 4 steps (see Figure 4.15). The

ordering of the first three steps is important as each step depends on the previous step.

Section 4.6.1 explains how the state transition graph is derived. Section 4.6.2 will

outline the control signal initialization. Section 4.6.3 covers the control signal

assignment issues. Section 4.6.4 deals with control tables, while section 4.6.5 discusses

30

inputs

M
3:1 MUX

inputs

III nr
REGO REGO

REGl REGl

REG2 REG2

output output

inputs

II
2:1 MUX

2:1 MUX

REGO

REGl

REG2

output

FIGURE 4.14 : Two different mux selections

signals that are used for synchronization with external circuits. Section 4.6.6 covers the

whole area of data generated control signals.

State TVansition Graph Generation

Control Signal Generation

Control Table Optimizations

l)ata Generated Control

FIGURE 4.15 Flowchart of the control generation routines.

31

4.6.1 State IVansition Graph

The Mapper generates a state transition graph based on the information

available in the flowgraph. It keeps track of all the states and the operations that must

take place during those states. It also determines which control signals will be used to

determine control flow (like branches, jumps etc.). Currently, we only support two types

of control flow: sequential and simple loops. Sequential flow is the simplest form. It

does not require any control signals to flow from the datapath to the controller. In

contrast, simple loops require that the controller can receive feedback from the datapath

to determine when or if to branch.

Since state transition graph generation is not the major focus of the Mapper,

one example will suffice to illustrate the methodology used.

Example

Figure 4.16 shows a small flowgraph. Each of the nodes have been scheduled

to take place during a certain control step. The state transition graph that will be

generated for this example is also shown in the figure. Each state has a list of the

operations that must be performed during that state. Due to the assumption made in

(nO) (State 0

step= 1
(nl, n2)

step = 1

step = 2
(n3) IState 2

FIGURE 4.16 : Flowgraph and state transition graph.

32

Silage that all algorithms are recursive, the last state (State 2) is connected back to the

first state (State 0).

4.6.2 Control Signal Initialization

The Mapper performs three simple steps when generating the control signals.

1. The hardware library is prompted for the names of all the control terminals of a certain

hardware unit

2. The Mapper creates a new control signal and assigns to it a default value. The default

value can be either of these three:

- 0 used forsignals that should bezero when notinuse (e.goutput-enable signals ontri-

stateable buffers)

- 1used forsignals that should beone when notinuse (e.g the write signal ona register)

- X ("don't care") used for signals that can be either zero or one when the unit is not in

use (e.g. multiplexer select signals)

3. In some cases the Mapper annotates the newly created control signal with infoimation

about which values to take under different circumstances.

- Control Signals for Muxes: It isdetermined which values acontrol signal must take on

to make the mux select input zero, one, two...

- Control Signals forShifters: It is determined how a control signal should be asserted

when the unit has to perfonn a given function (right shift or left shift) and a certain

shift amount.

33

- Control Signals ofOther Functional Units: Itis determined which values acontrol sig

nal should take on when the functional unit performs agiven function (e.g. the Carry-

inofan adder should be zero when the unit performs the function "-i-").

Later in the generation process, the control signals are assigned values

depending on when operations in the flowgraph are scheduled. The next section will

outline this process.

Example

A functional unit capable of performing both additions and subtractions must

have its carry-in signal set to zero when adding and one when subtracting. The Mapper

creates a control signal, associates it with the functional unit, and annotates that it

should be "0" for the function "+" and "1" for the function The Mapper also sets

the default value of the control signal to "X" (don't care), because it does not matter

what the value it when the unit is not used. Later, during the control signal assignment

phase, the control signal will be set to zero when required to do additions, one for

subtractions and "X" when not in use.

4.6.3 Control Signal Assignment

All the control signals that are initialized in the step described above have only

been assigned default values. A default value is essentially an "idle" value, meaning

that a hardware unit remains idle as long as its control signals have default values. If

the design is going to work properly, all units have to be "programmed" to perform their

designated function at the right time. It is during the control signal assignment phase

that all the hardware units in a design are "programmed" to do the right thing.

A scheduled flowgraph contains all the necessary information about when

operations must take place. The Hardware Mapper's job is to extract this information

and assign proper values to the control signals that "program" the behavior of the chip.

34

The assignment process is conceptually simple. The Mapper goes through all

the operations (nodes) in a flowgraph one by one. For each operation, there are a

number of hardware units that have to be "programmed" or enabled. First, the registers

that hold the source operands of the operation have to be accessed. Secondly, the

functional unit that performs the operation may need to be programmed to do so. Third,

the buffers that drive the result of the operation onto a bus, and the multiplexers that

select that bus have to be enabled to do that. Finally, the registers that are going to store

the result have to be readied for writing. These five types of units are shown in Figure

4.17. Figure 4.18 illustrates how the fiow of data passes through the same five types of

units.

Source Register Access The source registers for the operation are set for
reading. If the register file has more than one location
(i.e. when there is more than one register in the file)
all the other registers are set to read (don't read).

Functional Units The functional unit is set to perform the function given
by the operation.

Buffers The buffers which drive data across global buses are
enabled.

Multiplexers The multiplexers at the input to the destination
register file is set to select the proper input bus

Destination Register Access The destination registers are set up for writing.

FIGURE 4.17 : Control signal assignment follows the flow of data.

When a control signal is assigned a value it is inserted in a control table. A

control table can either hold all the control signals in a design orjust the signals from a

group of units. The control tables will be discussed in greater detail in the following

section.

adderO_regO_4 adderO_regl_3
Buj; Network

adderO (^

Control Step 2

shiO_regO_I

FIGURE 4.18: Control signal assignment is analogousto the flow of data.

4. 6. 4 Control Tables

A control table is a medium the Mapper uses to keep track of control signal

assignments as well as control signal partitioning. It may represent just the control

signals needed for one group of units, or it may represent all the control signals in the

chip. A control table is essentially a collection of control signals and their values. It is a

two dimensional structure, with time in the vertical direction (measured in clock cycles

or states) and control signals in the horizontal direction. The next two sections outline

the procedures for initializing and optimizing control tables.

4.6.4.1 Control Table Initialization

When a control signal is assigned a value, an entry is made in the control table

to which the signal "belongs". Whether the table is global or local to a cluster is not an

issue at this stage. The table has one row for each control signal and one column for

each state in the state transition graph.

Example

Figure 4.19 shows a control table.

36

State

src_reg0_0_READ src_regO_l_READ src_regl_0_READ adderO.CARRYIN

UQ

CQ
<
Z

9'
&
s

muxO_SELECT dest_regO_0_WRITE

0 0 0 0 X 0 X 0

1 1 0 1 0 1 0 1

2 0 0 0 X 0 1 0

3 0 1 1 0 1 0 1

FIGURE 4.19 : Sample Control Table.

When src_reg0_0 is being read, all other registers in the same register file are

disabled. The adder performs the function + in states 1 and 3. The carry-in signal is

therefore "0" in those states. The adder is not used in states 0 and 2, and consequently

the carry in is set to "don't care" ("X").

4.6.4.2 Control Table Optimization

After a control table has been initialized, it contains quite some inefficiencies.

The Mapper will optimize a control table to eliminate as much redundancy as possible.

The optimization contains five phases that are ordered such as to not disable the

following steps. The five phases are:

1. Eliminate constant control signals from the table. This includes signals with don't cares

that do not conflict with the assigned values.

2. Eliminateduplicate (identical) signals from the table.

3. Eliminate signals that are the inverse of each other.

4. Eliminate signals that only differ in places where oneof them has a don't care.

37

5. Don't care elimination. This is an option which can be requested when running the Map

per with the flag -x. All don't cares remaining after the above optimizations are setto the

last non-don't care value for that signal. This may help improve the power consumption of

the control logic.

Example

This example shows the effects of control table optimization. Each column has

a column number and a control signal associated with it. Each row represents a state.

State \ Column 0 1 2 3 4 5

0 0 0 1 0 0 X

1 X 1 0 1 X 0

2 0 0 1 0 X 0

3 X 1 0 1 1 1

Control Signals A B C D E F

^ performing the control table optimizations (except the (

the table is reduced to this:

State \ Column 1 5

0 0 X

1 1 0

2 0 0

3 1 1

Control Signals B,inv(C),D,E F

Signal A was removed by constant elimination. Signal C was recognized to be

the inverse of B. Signal D is identical to B. Signal E does not have any conflicts with B

and can thus be merged with B.

38

After don't care resolution (which only is performed upon request) the

resulting table is:

State 1 5

0 0 1

1 1 0

2 0 0

3 1 1

Control Signals B,inv(C),D,E F

Column 5 had an "X" in state 0. It was resolved to a "1" because the "previous

non-don't care value" is "1" in state 3. Notice that "previous" can span across two

different sample periods. In this case column 5 received a "1" since the preceding state

(State 3 from the previous sample period) was "1".

4.6.5 Input and Output Valid Flags

Beyond the necessary control signals, the Mapper also generates signals that

aid the synchronization with external circuits. There are as many of these input and

output valid flags as there are algorithmic inputs and outputs (one flag per input/output

in the Silage algorithm). These flags indicate when an input sample should be valid or

when an output sample is valid. They are essential in any design for synchronization.

Example

A chip has one ioUnit but two "algorithmic" inputs. This can happen when the

Silage description of a design has two inputs, while the allocation phase of the design

only allotted one (time-shared) ioUnit. The input valid flags dictate when each of the

two signals must be presented to the chip. Thus, a designer can easily determine, e.g.

when to switch a mux, or when to "pop" a FIFO.

39

Example

A chip has one output bus and one "algorithmic" output. It is clear that the

output will be presented on the output bus, but when? Using the output valid flag, it is

easy to determine when to latch the output into a FIFO or when to activate another chip

which may be waiting for the output.

4.6.6 Control Paths

A control path is deflned loosely as a network of data-generated signals which

control parts of the datapath. A simple example of a control path is the signal "SEL" in

Figure 4.20. SEL is generated by comparing two data, A and B, and it decides (controls)

whether the data C should take on the value of A or B.

Silage:C = if(A>B)->AIIBfi;

A B

cmp >

mux

Control Path

FIGURE 420 : Example of a Control path

Example

Control paths can be arbitrarily complex, since Silage allows arbitrarily

complex arguments in an i/statement. Figure 4.21 shows the implementation of a piece

of Silage code.

40

Silage: C = if ((A > 1 & B < 2) II (A < B)) -> X II Y fi;

A 1 B 2 A B

cmp > cmp < cmp <

MUX

FIGURE4.21: Example of a complex controlpath

The Mapper scans the flowgraph for edges that belong to the boolean class

(CLASS boolean). These edges will normally originate from comparators (or boolean

nodes), and end at multiplexers (or boolean nodes). The flowgraph does not contain

information about where or how to store intermediate control path signals, so the

Mapper must derive this information. This derivation is based on the assumption that

all inputs to a control path (or a boolean network) should be stored as intermediate

results. In the example above, theMapper would decide to assign single bit registers to

each of the outputs of the comparators. When scanning the boolean edges, the Mapper

also keeps track of the boolean functions applied to each signal. All the boolean

functions are mapped to standard cell blocks found in the library index.

VHDL

GENERATION

5

Hardware mapping was defined in the introduction as the process that

interfaces high level synthesis tools with layout generation tools. Thus, on the input

side of the Hardware Mapper is a realm of conceptual design, where abstractions are

used to model actual hardware implementations. On the output side, the Mapper must

deliver very specific, completely specified design descriptions.

The format in which a design is described is called a "hardware description

language". VHDL [VHD87] is one such language. It was standardized by the IEEE in

1987. Since then, VHDL has gained widespread acceptance among digital hardware

designers. The language is also gaining commercial acceptance, and there are various

products available for simulation or layout generation.

The goal of the Hardware Mapper's VHDL generation is to translate the target

independent information (explained in chapter 4) to a VHDL description. This chapter

outlines the basic methodology used. Section 5.1 describes the concept of VHDL

headers. Section 5.2 explains the VHDL file hierarchy. Section 5.3 shows the way casts

are handled, and section 5.4 discusses the convenient VHDL simulation interface.

(Please see Figure 5.1).

41

42

Generate VHDL for Clusters

Generate VHDL for Global Controller

Generate VHDL for Top Level (inch casts)

Generate Simulation Interface

FIGURE 5.1: VHDL Generation Flow

5.1 VHDL Headers

One requirement posed by VHDL is that all libraries must be declared before

they are referenced. That may not appear to be a problem, but it is impossible for the

mapper to derive this information.

Seen from the Hardware Mapper's perspective, there are two kinds of

libraries: The libraries specified by the designer (containing the VHDL models the

designer wants to use), and the libraries that are required by VHDL (typically

describing data types and defining basic operations). While the designer explicitly

names the first library, the Hardware Mapper has no way of knowing which libraries

define the basic data types and operations in VHDL. In order to allow the designer to

provide this information, the concept of a VHDL header file is introduced.

At the top of each VHDL file generated by the Mapper a header will be

inserted. The header is taken directly from a file called "vhdl.header" which must be

placed in the path given for the library specified on the command line. In most cases,

one VHDL header will suffice for all designs using one particular hardware library.

43

Thus, the VHDL header file will usually only have to be written once for each hardware

library.

Example

The following is an example of a header file used for the VHDL models of

Lager's dpp library.

LIBRARY dpp; —The library of cells
LIBRARY ieee; —The library which defines basic types and operations
USE ieee.logic.all; —Definition of basic types and boolean operations
USE ieee.arithmetic.all; —Definition of basic arithmetic operations
USE std.textio.all; —Definition of basic text capabilities

5.2 The VHDL File Hierarchy

The VHDL file hierarchy consists of three levels, two of which are generated

by the Hardware Mapper. The highest level is called datapath.vhd. Its inputs and

outputs correspond directly to the actual chip I/Os. In cases where I/Os have been

merged together there will be fewer I/Os in the chip than expected from the Silage

description. The file datapath.vhd also has a number of "I/O valid signals". There is one

such signal for each input or output in the Silage description. Please see section 4.6.5

for details about the input/output valid signals.

datapath.vhd

dpO.vhd dpl.vhd dpl.vhd controller.vhd

FIGURE 5.2 ; The VHDL File Hierarchy.

44

The second level of hierarchy consists of multiple files. Their names are

dpO.vhd, dpl.vhd... and there are as many of them as is necessary for the particular

design. Each of these files contain one datapath cluster. A cluster may contain any

number of multiplexers, registers/register files, functional units or buffers.

The second level also includes the global controller description,

controller.vhd. The controller is written in simple procedural VHDL, with two case

statements, one to determine the next state based on the current state and the feedback

from the datapath, and another to assign the control signals based on the current state.

The third level of the hierarchy is not generated by the Mapper. This is the

level at which the library models reside. These models are kept in libraries for

maximum reusability and minimum maintenance, and they often correspond directly to

actual hardware units.

5.3 Casts

Silage [Hil85], the input language of Hyper, has a construct called a "cast". It

allows a designer to convert from one data type to another or to force a specific data

type on a variable. It is similar to the casts used in the C programming language, but

Silage adds the capability of specifying the number of bits used to represent a variable.

Figure 5.3 shows examples of casts in both C and Silage.

The implementation of casts is a very complicated task. We have chosen to

implement casts in a static fashion, i.e. casts are hard-wired. This strategy is flexible

enough to handle very complicated cases without needing additional hardware (like

shifters and multiplexers) to align bits properly. In some cases, however, there will be a

greater number of buses needed in a design.

Casts in C

unsigned u;

char c;

int i;

i = (int) c;

u = (unsigned) i;

FIGURE 53 : Cast examples

Casts in Silage

a = fix<6,3> (1.0);

b = unsigned<8,4> (a);

45

When there are casts in a design, they are handled at the highest level of the

hierarchy, i.e. the in the datapath.vhd file. The philosophy is to not worry about bit

manipulations inside a cluster, but rather take care of all of them in one place. Thus, all

signals in a cluster have the same bit widths as the hardware units that they are

connected to. This includes the inputs and outputs of a cluster.

There are a few terms in the Mapper's cast handling that will be explained

here. Figures 5.4. and 5.5 illustrate these terms.

1. Bit Selection: A number of bits from an output are selected and connected to a bus.

2. Zero Padding: A number of bits at the LSB end of an input are connected to a logic '0\

3. Sign Extension: A number of bits at the MSB end of an input are connected to a the sign

bit of a bus that is also connected to this input.

4. Zero Extension: A number of bits at the MSB end of an input are connected to a logic '0\

decimal point

zero extension

0'

zero padding

unsigned<10,5>

FIGURE 5.4: Casting from unsigned<8,4> to unsigned<10^> showszeropadding and zero
extension.

46

fix<8,4>

sign extension
bit selection

ggn

fix<8,3>

FIGURE 5S : Casting from fix<8,4> to fix<8y3> showsbit selection and sign extension.

To handle some obscure cases the following terminology was introduced.

Figure 5.6 illustrates these concepts.

1. Width: The number of bits of a bus.

2. Terminal Base: The bit number of the lowest order bit on a terminal that is connected to a

bus.

3. Net Base: The bit number of the lowest order bit on a bus that is connected to a temiinal.

Example

This example shows a case where two different casts are used between an

adder and a subtracter. The silage code of such a case is shown below, and the

flowgraph is shown in Figure 5.7.

sign extension/
zero extension

OUTPUT

width

Bus

width

INPUT

terminal base

bit selection

net base

zero padding

FIGURE 5.6 : Illustration of width, terminal base and net base.

47

Silage:

/* A is fix<8,7> */

/* E is fix<8,l> */

B = A + 0.25;

C = fix<8,l>(B);
D = C-1.0;

F = E + 2.0;

G = fix<8,7>(F);

H = G - 0.25;

A and B have the same data type, fix<8,7>. The value of B is assigned to C

through a cast which changes the data type to fix<8,l>. Similarly, E and F have the data

type fix<8,l>, and the value of F is assigned to G through a data type conversion to

make it fix<8,7>. There are two 8 bit additions, and two 8 bit subtractions. If the

additions and subtractions all are scheduled on different units, we have the situation

depicted in Figure 5.8. If the two addition nodes are scheduled on the same adder but

the two subtractions are scheduled on two different subtracters, then we have the case

shown in Figure 5.9. Finally, if the additions are performed on one adder, and the

nx<8,7> nx<8,7> nx<8,l> iix<8,l>

nx<8,7> iix<8,l>

fix<8,l> nx<8,l> nx<8,7> nx<8,7>

fix<8,l> fix<8,7>

FIGURE 5.7 : Flowgraph for theSilage code in theexample above.

48

subtractions on one subtractor, then we have the case shown in Figure 5.10. This

"cross" transfer will be implemented as shown in Figure 5.11.

SUBTRACTER

ADDER

fix<8,7>

iix<8,l>

fix<8,l>

B 1 7

C7
^

1
I—

7 |1 F

G 1 7

fix<8,7>

ADDER

SUBTRACTER

FIGURE 5.8 : Two adders and two subtracters.

8 ADDER

SUBTRACTER
-2-^ — 2-^

SUBTRACTER
8 8

FIGURE 5.9 : One adder, two subtracters.

8 1ADDER

2-^
8 ISUBTRACTER

FIGURE 5.10 : One adder, one subtracter.

8 ADDER

BU$

Sign Extension 2 Zero Padding

8 8

MULTIPLEXER

SUBTRACTER

FIGURE 5.11: Implementation using a multiplexer.

49

The implementation of the situation shown in figure 5.11 is to connect the full

width of the adder's output to the bus. Temporary signals have to be declared with the

width of the input of the subtractor. These signals are assigned the proper bits from the

bus, and then sign extended or zero padded as shown in the figure.

5.4 Simulation Interface

Besides generating all the VHDL files representing a design, the Hardware

Mapper adds a convenient simulation interface which automates VHDL simulation. The

interface relies on three VHDL units. A "generator" converts simulation stimuli from an

input file to VHDL signals. A "logger" converts simulation results to numbers and

stores them in a file (in xgraph format). A "clock generator" (clkgen) generates the

initial chip reset as well as the clocks.

50

In addition to generating a "wrapper" layer for simulation purposes, the

Mapper generates a Makefile which completely automates the compilation and

simulation of a design.

Once the Hardware Mapper completes, a Synopsys VHDL simulation can be

done simply by going into the vhdl directory, and typing "make" (the only prerequisite

is that the path and the environment variables must be set for the simulator, and a

library mapping file must be present (for Synopsys it is $HOME/vhdl.uof)). Once the

make completes (after compilation and simulation), there should be as many log files as

there are outputs in the Silage description (if there are two outputs, A and B, then there

will be two files called A.xg and B.xg)

SDL

GENERATION

6

The acronym SDL stands for Structural Description Language [Bro92]. It is a

netlist language that allows structural description of designs, including designs that are

composed hierarchically. SDL is the input language for the Lager layout synthesis tools

[Lager91]. Lager, under the control of an automated "design manager" (DMoct

[Lager91]), can generate a layout from an SDL description of a design.

SDL was chosen as one of the output languages supported by the Hardware

Mapper to provide a complete flow from algorithm to layout, using only public domain

software. Hyper performs the synthesis from algorithm to structural representation, and

Lager completes the path by generating layouts.

The Mapper's SDL generation consists of two separate phases (see Figure 6.1).

First, the target independent data structure is transformed such that it can be directly

mapped to SDL without violating any of the rules of that language. Also, the design

may be conditioned in an attempt to help Lager produce good, area efficient layouts.

Secondly, the transformed design is mapped to the SDL format.

This chapter first explains the transformations that are necessary, and some

that are desirable, before mapping to SDL. The mapping process is then described,

including sections on the file hierarchy, the controllers and cast issues.

51

52

Required lyansformations

Synthesis Driven TVansformations

Cluster Generation

Controller Generation

Top of Hierarchy Generation

FIGURE 6.1: SDL Generation Flow

6.1 Required iransformations

There are two types of design transformations that must be completed before a

design can be successfully mapped to SDL. The first is to separate components by type

and the second is to separate components by width. These two transformations will be

described in detail below.

6.1.1 Separation by Type

The first transformation that must be performed before generating SDL is to

separate array-type components from datapath-type components. This transformation is

required because SDL handles the two types in very different ways, and thus is not able

to mix components of the different types in one file.

In SDL an "array-type" component is normally one which is tileable in two

dimensions, typically the bit width and some other dimension. Examples of array

components are multipliers (tileable in the bit widths of the two inputs) and memories

(tileable in the bit width and the number of words). A"datapath-type" component is one

53

which is tileable in one dimension, namely the bit width. Examples of datapath

components are adders, shifters, registers.

The hardware library is capable of indicating the type of a component. This

ability is derived from the fact that all units must be presented to the library in either of

the files rb-dp, rb-array or rb-std. If a component is found in rb-dp it is considered to be

a "datapath-type", and it can only be grouped with other datapath components in an

SDL file. Likewise, if a component is found in rb-array it is considered to be a "array-

type". For array types, however, the mapper never groups array components together.

Normally, array components are significantly larger and/or have irregular dimensions.

By keeping each array component by itself, the final (manual) placement will typically

yield smaller layouts than if grouping is performed.

6.1.2 Separation By Width

Once the arrays and the datapaths have been separated from each other, the

Mapper has to separate datapath components that have different bit widths. This

transformation is required by dpp (the Lager tool which handles datapath components).

After this separation is complete, all hardware units within a cluster will have the same

bit widths.

6.2 Synthesis Driven Floorplanning

Beyond the required transformations, the Mapper can perform some

transformations which can assist Lager in achieving respectable layouts. These

transformations are closely connected with the floorplanning issues, and I will therefore

consider the two together.

There is an automatic and a manual mode of operation. In the automatic mode

the Mapper performs the cluster grouping and floorplan generation according to its

54

understanding of a Hyper floorplan model. This is described in detail in section 6.2.2.

In the manual mode, a file must be supplied which guides the Mapper in which units to

group (if any), and the relative ordering of units in the floorplan. The manual mode is

described in detail in section 6.2.3.

6.2.1 Hyper Floorplan Model

The underlying assumption in the merging and fioorplanning routines is the

floorplan model shown in Figure 6.2. This model may have any number of units, and it

can be expanded arbitrarily to the right. Each of the clusters in the model may contain

any number of execution units, multiplexers, registers, and buffers. In addition to the

clusters, there may also be any number of control blocks. The idea behind this plan is to

have one central communication channel in which all global buses are routed from

source to destination. The clusters of hardware units are placed in one row below and

one row above, with input and output connections facing the central channel. Each

cluster may or may not have its own control block, or two clusters may share a control

block which lies between them.

Figure 6.2 illustrates some of the combinations mentioned. ClusterO has no

control block next to it. Clusterl and Cluster2 each have their own control blocks, but

they are both located between the clusters. Clusters and Cluster4 share one controller

and Clusters has its own controller.

6.2.1.1 Motivation

The motivation behind the cluster merging comes from the fact that most

clusters are differently shaped. Figure 6.2 shows all clusters as being equally sized, but

that is rarely the case. A more typical case is shown in Figure 6.3. There is one (or a

few) units that are tall, and the rest of the units have various heights. In pursuit of area

efficient layouts, we can merge the small units, thus obtaining an architecture with

55

Cluster 0 Cluster 1 Cluster 2

GLOBAL ROUTING CHANNEL

CtlD

Cluster 3
CtlC Cluster 4 Cluster 5

FIGURE 6.2 : Generic Hyper Floorplan

fewer units that are more evenly shaped. The result of merging some of the small units

from Figure 6.3 is shown in Figure 6.4.

Cluster 0
Cluster 1

Cluster 2

GLOBAL ROUTING CHANNEL

Cluster 3 CtlB Cluster 4 Cluster 5

FIGURE 63 : Topical set of clusters in a design

56

CtlC

Cluster 4
CtlA

Cluster 5

Cluster 2

GLOBAL ROUTING CHANNEL

Cluster 1

Cluster 3

Cluster 0

FIGURE6.4 : l^^pical set of clustersafter merging

6.2.2 Automatic Mode

In the automatic mode, the Mapper's merging and floorplanning routines are

closely intertwined. The merging occurs first, but it is based on an estimate of the shape

and size of the resulting floorplan.

6.2.2.1 Initial solution

An initial solution is derived simply by forming a list of all the units in the

design. The units are ordered according to their height, beginning with the tallest. The

list is then broken in two at the mid-point, which is determined by the widths of the

units. The initial solution typically looks similar to Figure 6.3.

6.2.2.2 The "Merging Factor"

The "Merging Factor" can be specified on the command line when the

Hardware Mapper is run from a UNIX prompt. It is a real number with a value normally

57

in the range [1.00 - 1.25]. The Mapper uses this factor when deciding which units are

candidates for merging. This is further described in the next section.

6.2.2.3 Merging of Clusters

The merging process is simple. It does not always produce optimal results, but

it shows that the merging can be done with great improvement in area efficiency. It

iterates the following process until the overall chip height-to-width ratio is somewhere

in the 50:50 or 40:60 range:

1. Generatean initial solutionof an ordered-by-height list of clusters

2. Traverse the list. At each cluster, look forward in the list to find the tallest cluster which, if

meiged with thecurrent onewill notexceed thetallest unit bymore than theMeiging Fac

tor times the greatestheight. If no units are found to satisfythis requirement, continue the

traversal of the list. If a unit is found to satisfy the requirement, merge it with the current

one and go back to step 1.

6.2.2.4 Automatic Floorplan Generation

Once the merging has been completed the floorplan generation follows

naturally. The units are lined up according to their heights, and the line-up is broken at

the mid-point as determined by the width of the units. The first half of the line-up is

assigned to the lower row of the floorplan (shown in Figure 6.1). The second half of the

line-up is assigned to the upper row of the floorplan. Controllers are added to the upper

and lower rows and the floorplan is generated in the language fdl, the floorplan

description language understood by Flint.

6.2.3 Manual Mode

The manual mode has three aspects that need to be understood in order to use

this Mapper feature to the full extent. They include the requirements, the limitations

and the specifications.

58

6.2.3.1 Manual Mode Requirements

The requirements of the manual mode are quite simple. All it requires is that a

file name be specified on the command line using the -f fiieoname format. The named

file must contain merge and/or floorplan commands in the format described in section

6.2.2.3 below.

6.2.3.2 Manual Mode Limitations

The limitations of the manual mode are numerous. First of all, it does not offer

any error checking. If a designerhas an error in the command file, the Mapper is likely

to produce erroneous results. Secondly, the ordering of the merge commands are

important. Cluster merging must take place before control block merging. If this is not

the case, the results of the merging are unpredictable.

When using the floorplan commands, the designer must take great care to

include all units in either the upper list or the lower list. All clusters and control blocks

that remain after merging must be listed, and the global controller (named controller)

must be included as well.

6.2.3.3 Manual Mode Specifications

The command language is very simple. An example will serve to explain the

syntax of the language.

Example

The following is the command file for the design shown in Figure 6.5.

((merge dp5 dp2)
(merge dpi dpO)
(merge Ctl4 Ctl5)

(merge Ctll CtlB)
(upper dp4 Ctl4 dp5)
(lower dp3 Ctll controller dpi)

)

Cluster 0
Cluster 1

Cluster 2

Cluster 3 Cluster 4 Cluster 5

FIGURE 6^ : Example of blocks for a design

Ctl4

Cluster 4
(cm)

Cluster 5

(Cm) (Cluster 2)

(cm)

Ctll
(Cluster 0)

Cluster 3

Cluster 1

FIGURE 6.6 : The same blocksafter applying manual merging.

There are a few points to notice:

59

Icontroller

CtIS

1. Notice the three keywords merge, upper and lower. They represent the commands and

they must be followed by some arguments.

2. The first command meiges dp2 into dp5. After that command executes, dp2 no longer

exists in thedesign. Notice also thatthe first meige command, even though it only explic

itly references the clusters (dp5 and dp2), the controllers that belong to those clusters are

60

meiiged together as well. Therefore, after the first meige command has executed, dp2 and

Ctl2 are gone, and dp5 and Ctl5 contains the units that used to be in dp2 and Ctl2. Conse

quently, the names dp2 and Ctl2 can not be used in any subsequentcommands.

3. The commands used to meige controllers are printed after the meige commands used for

the clusters. This is the prescribed order. If this orderis not obeyed, the results are unpre

dictable.

4. All theclusters and control blocks that remain afterthemeigecommands are listed in the

upper and lower lists. Notice that the global controller (controller) is included.

6.3 The SDL File Hierarchy

The SDL file hierarchy differs from the VHDL file hierarchy in a significant

way. The differences stem mostly from implementation considerations or from

limitations/features of the Lager tools. This section outlines the elements of the

hierarchy, including sections that describe datapaths, arrays, control logic and the

global controller. Figure 6.7 shows the hierarchy.

datapath.vhd

dp0.sdl

dpl.sdl
dp2.sdl

Ctl0.sdl

Ctl2^dl

controllensdl

FSM

StateRe

mhijmAm
^ddei^sidl sntoaclohisd! regM«r*s(il tsniilipltenssdi bidltehtsnil ^andard ceils

FIGURE 6.7 : The SDL File Hierarchy.

61

6.3.1 The top level

The highest level in the hierarchy is contained in the file datapath.sdl. This file

instantiates all the datapath and array clusters, as well as the global controller and the

distributed control logic blocks.

All casting is done at this level. The way casts are handled is described in

section 6.4.

6.3.2 Datapaths and Arrays

There is one file for each of the datapaths and arrays in the design. These files

are named dpO, dpi, dp2... When cluster merging or control block merging has been

performed (as described in section 6.2), the list of names will not be sequential (as in

dpO, dpi, dp2), since some of the clusters have "disappeared" by being merged with

other units.

In some cases there will be as many clusters as there are execution units in the

design. In other cases, e.g. when there are array components in a design, there will be

additional clusters added to allow for the separation of arrays and datapaths (see section

6.1.1). Also, if there are various widths in one datapath, extra clusters will be added to

allow for the separation of widths (see section 6.1.2). Merging, in contrast, reduces the

number of clusters in a design.

The main difference between the SDL files for datapaths and arrays is that

datapaths have an implied bit width (so the data buses should not be given a bit width),

while the arrays must have the bit width stated explicitly.

62

6.3.3 Control Logic

The control logic is a two level structure. At its highest level the files are

called CtlO, Ctll, Ctl2... Each of these files may instantiate one or more sub-controllers.

There are three different groups of sub-controllers, each designated for a specific task.

The three groups are "control tables" (CT), "glue logic" (GL) and "other logic" (CS, for

Control Structure), and they are described below.

When the layout is generated, the control logic is flattened such that it appears

to be a single unit. Thus, the separation of the three groups is only seen in their SDL

files, not in the final layout.

6.3.3.1 Control Tables

A control table contains information about how control signals should be

asserted in all possible control states. The control table generation is described in

section 4.6.4. The implementation of control tables exploits the capabilities of the

Lager tool called Bds2stdcelL It accepts a BDS description [Cas91] (a hardware

behavioral language), performs a multiple-level logic optimization with the OCTTOOL

misll [Cas91], then maps it to a standard-cell library.

The Mapper provides two files for each control table. An SDL file describes

the terminal of the block, and a BDS file describes the behavior of the control block.

The two files are named e.g. CtllCT.sdl and CtllCT.bds (where CT is an acronym for

Control Table).

6.3.3.2 Glue Logic

The Mapper uses glue logic to perform some boolean functions on control

signals. One example is when a cell requires both a signal and its inverse (e.g. READ

and READ) then the control table would typically only represent one of them, and the

63

glue logic would derive the other(e.g. if the control table contains READ, then the glue

logic would have use an inverter to generate READ).

As was done for control tables, glue logic is implemented through the tool

Bds2stdcell. Consequently, the Mapper provides two files for each glue logic block, one

for the SDL representation and one for the BDS representation.

6.3.3.3 Other Control Logic

Bdslstdcell is limited to pure combinatorial circuits. It can not represent any

type of latch or register. The category of "Other Control Logic" was introduced to

handle registers and other control logic used in the implementation of control paths.

Section 4.5.6 describes the origin of control paths. The Mapper generates one SDL file

for each "other logic" block, which instantiates the standard cells that were selected

during the derivation of the control path.

6.3.4 Global Controller

The global controller in the SDL mapped design has two functions. Its primary

function is to be the global state counter which synchronizes all the clusters in the

design. It also generates the input/output valid flags that help external circuits

synchronize with the Hyper generated processor.

The implementation of the global controller has two parts: a control table and a

state register. The control table resembles those described in section 6.3.3.1 and it is

implemented in a similar way using the SDL/BDS combination. The files that describe

the table are FSM.sdl and FSM.bds. The logic that is synthesized from these files

generate both the next state and the input/output valid flags.

The state register is made up of standard cell D flip-flops. There are as many

flip-flops as ceiling(log2(number-of-states)).

64

The two components of the global controller are flattened in the layout

generation, such that the controller appears to be a single unit.

6.4 Casts

All casting is handled in the top level of the file hierarchy, in the file called

datapath.sdl. The concept of cast handling is the same in both SDL and VHDL, but the

implementations are quite dissimilar, mainly due to the differing language syntaxes. It

is recommended to read section 5.3 before continuing this section.

The cast implementation in SDL is actually more straight forward than in

VHDL. The reason for this is that in VHDL new temporary signals have to be made that

can accept zero padding or sign/zero extension before being presented to the input

terminal of a cluster. In SDL it is allowed to connect the terminal of a cluster with a

group of data bits, and then request that some other bits of the terminal be grounded

(for zero padding or zero extension) or tied to a sign bit (for sign extension). This is

much more convenient than the VHDL method.

sign extension

X

bus 1

.'t£ a'S a**"^ ^ ^ ^
© !q ifi 2 Iq lo *,5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
INPUT TERMINAL

FIGURE 6.8: Example of a cast in SDL.

zero padding

'0' (Ground)

EXAMPLES
7

This chapter illustrates some of the functions and features of the Hardware

Mapper. I will use various implementations for a wavelet filter (a high pass and low

pass finite impulse response filter) to highlight various issues. A small implementation

is used to show the effects of bus merging. A medium sized implementation is used to

show the effects of cluster merging. A version that uses a multiplier instead of constant

multiplication expansion is also shown to illustrate the datapath versus array type

components.

7.1 The Wavelet Filter Algorithm

This wavelet filter contains a high pass and a low pass FIR filter. The high and

low pass sections share their constant coefficients for their 14 taps, but use different

addition and subtraction chains. The algorithm shown below, is used for all the

examples in this chapter. Figure 7.1 shows a block diagram of the filter, and Figure 7.2

shows its impulse response.

#define word fix<17,16>

#define aO 0.015625

#define al 0.015625

#define a2 -0.046875

#define a3 -0.031250

65

66

#define a4 0.093750

#define a5 0.109375

#define a6 -0.468750

#define a7 0.468750

#define a8 -0.109375

#define a9 -0.093750

#define alO 0.031250

#define all 0.046875

#define al2 -0.015625

#defineal3 -0.015625

func main(ln : word) Outhigh, Outlow : word =
begin

/* Define the high pass filter */
Accl3 = word(In@13 * al3);
Accl2 = Accl3 + word(In@12 * al2);
Accl 1 = Accl2 + word(In@ll * all);
AcclO = Accll + word(In@10 * alO);
Acc9 = AcclO + word(In@9 * a9);
Acc8 = Acc9 + word(In@8 * a8);
Acc7 = Acc8 + word(In@7 * a7);
Acc6 = Acc7 + word(ln@6 * a6);
Acc5 = Acc6 + word(In@5 * a5);
Acc4 = Acc5 + word(In(a)4 * a4);
Acc3 = Acc4 + word(In(a)3 * a3);
Acc2 = Acc3 + word(In@2 * a2);
Accl = Acc2 + word(In@l * al);
Outhigh = Accl + word(In * aO);

/* Define the low pass filter */
Acclowl3 = word(In@13 * a 13);
Acclowl2 = Acclowl3 - word(In@12 * al2);
Acclowll = Acclowl2 + word(In@ll * all);
AcclowlO = Acclowll - word(In@10 * alO);
Acclow9 = AcclowlO + word(In@9 * a9);
Acclow8 = Acclow9 - word(In@8 * a8);
Acclow7 = Acclow8 + word(In@7 * a7);
Acclow6 = Acclow7 - word(In@6 * a6);
Acclow5 = Acclow6 + word(In@5 * a5);
Acclow4 = Acclow5 - word(In@4 * a4);
Acclow3 = Acclow4 + word(In@3 * a3);
Acclow2 = Acclow3 - word(In@2 * a2);
Acclowl = Acclow2 + word(In(2)l * al);
Outlow = Acclowl - word(In * aO);

end;

OUT
LOW-0=-G>-0-&-G>-G>—0-0=0

—G)oE)^Kio
l^-G)^"G)^"G)^"G)^"G)^"0^

FIGURE 7.1 Block diagram of the wavelet filter.

Amplitude

0.5

Impulse Response

Outhlgh

Outlow

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

/ /

Samples
0.00 5.00 10.00

FIGURE 12 Impulse response of the wavelet filter.

67

7.2 Small Wavelet Filter

This implementation has a sample period of 22 clocks/sample. It was generated

by Hyper using the following steps:

• parse

68

constant multiplication expansion

module selection

retiming for speed

module selection

estimation

allocation and scheduling

The estimation of the implementation area calculated by the estimator is

Minimal Active Area : 1.31 mm^
Total chip area : 6.03mm^

The scheduler calculated the active area to be 1.88 mm^.

The schedule of this design is:

EXECUTION UNIT REFERENCE TABLE

1. add#170

2.sub#170

3. ioUnit#170

4.shr#170

5. transfer#!70

SCHEDULE

Time 1 2 3 4 5

0 X X X

1 X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X X X

7 X X X

8 X X X X

9 X X X X

10 X X

11 X X X

12 X X

13 X X X

14 XXX

15 X X X

16 X XX

17 XX

18 XX XX

19 X XX

20 X X X

21 X XX

69

The first layout (Figure 7.3) shows this design without any bus merging. There

are 15 buses, 5 muxes, 18 buffers and 56 registers in addition to the execution units

mentioned above. The Hardware Mapper predicted the chip area to be 2729 Xx 5245 X

= 5.2 mm^ (in a 1.2 pm technology). The actual layout dimensions are 4156 Xx 4703 X

= 7.0 mm^.

The second layout (Figure 7.4) shows this design with global bus merging

applied. There are now 5 buses, 4 muxes, 6 buffers (the number of registers is the

same). The Hardware Mapper predicted the chip area to be 2729 Xx 3658 X= 3.6 mm^

(in a 1.2 pm technology). The actual layout dimensions are 3454 Xx 3660 X= 4.6 mm^.

The Mapper's area predictions are too small, because the area of control logic

and control wiring is not known at the time the prediction is made.

The effect of bus merging is clearly desirable when chip area is a concern. In

this example, a savings of 2.4 mm^ was realized.

insai

I: 't ri»-S' »-J T'T J.J

T *.! .1 s i f <r i •
s : It ii B I."- • -

m

iiiBinuiigiaMi a^illi] ig •• aiigaiit iii. ai l ii imn

fills imii II fx

;!8|S!1!!!!!!!I!!S !S9!1 •viihi i s:55i —

<1 1 i lltIM 001 It <10 .

<n|| mil
s==iBSijias 1.1! I:: 111 j i|i<| n

i ij III Bi

lliiiIII!! B!iliiitiij£jiiiiiiflfiiis ;!ll;;iaj-iL'*ria!pii!B«nBaBBim«Miaiiiiim liO lllllil llill
111 I r iii M iiii II IT! ne sst tm

I mrsi
I !|!l!

III

i» II z.z::.:

niNii
I

•••V««a00«000

i I I i i i i i i i i i I 3 1 ! S!
iilliilllilll ^1 ilinsli
• a - - KTji I'il, bL'
----••aiiaa«SBa ,Ji I 1:1 =a: i-.-i • '*!JII l|i; • . i , i i i I i i I I I ! I

•ifiisisi a. ilji'lli Sll ^ • I T••«•••• •

£ s M ! s::::

— SSIU Il.lj

f s-,

ii i XXXX.' 1.X' X.'X. X. X. X. X^ X. X^ X.'
j'BBg • A •••••••••••••«. 1^1

7 7 -rrr77 777 77 77 77 '
« t .« 4 « 4 * 4 4 » » ¥

i t b t s t i .i I i i t I i e

.4X** .XX T'T T'*'* T'TXiT"'"* '

SVr^iLilii S 5 J
XS: '•iXi!! !!!i-5 i 5
P •!! A iHi iftS. • * *

< I I I I I I I I I I I I I I I I

FIGURE 73 Small implementation ofthe wavelet filter without bus merging.

9

; rr si

!S!!i!£l!ai!!!l!S!ll!ii|)J!l

wmmmism

7.3 Medium Wavelet Filter

This implementation has a sample period of 13 clocks/sample. It was generated

by Hyper using the following steps:

parse

constant multiplication expansion

module selection

retiming for speed

72

• module selection

• estimation

• allocation and scheduling

The estimation of the implementation area calculated by the estimator is

Minimal Active Area : 1.58 mm^
Total chip area : 7.72 mm^

The scheduler calculated the active area to be 2.70 mm^.

The schedule of this design is:

EXECUTION UNIT REFERENCE TABLE

1. add#170

2. add#171

3.sub#170

4. sub#171

5. ioUnit#170

6.shr#170

7.shr#171

8. transfer#170

SCHEDULE

Time 1 2 3 4 5 6 7 8

0 X X X X X X

1 X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X

5 X X X X X X

6 X X X X X

7 X X X X X X

8 X X X

9 X X X X X X

10 X X X X X

11 X X X X

12 X X X

73

The first layout (Figure 7.5) shows this design without any cluster merging.

There are 8 clusters plus 8 control blocks. In addition to the execution units mentioned

above there are 7 buses, 10 muxes, 18 buffers and 61 registers. The Hardware Mapper

predicted the chip area to be 6258 x 3310 A. = 7.5 mm^ (in a 1.2 pm technology). The

actual layout dimensions are 7082 Xx 3640 X= 9.3 mm^.

The second layout (Figure 7.6) shows this design with automatic cluster

merging applied. There are now 7 clusters and 4 control blocks. The Hardware Mapper

predicted the chip area to be 5384 Xx 3447 X- 6.7 mm^ (in a 1.2 pm technology). The

actual layout dimensions are 6394 A. x 3814 A, = 8.8 mm^. With some small floorplan

adjustments using Flint, the layout area was reduced to 6115 A. x 3745 A, = 8.2 mm^.

The Mapper's area predictions are too small, mainly because the area of

control logic and control wiring is not known at the time the prediction is made.

The effect of merging clusters together is clearly desirable when chip area is a

concern. In this example, a savings of 1.1 mm^ was realized.

mm

H
il

si
li

il
l:

<
'V

.
n

tr
j:

r:
r

c
r

;;
i:

::
i:

ii
tr

Jt

'.
/r

f
.^

r/
..
ii

t.
f
/
,
/

i'
if

y

4
'«

'|
;
|'
(
'|
-
|-

t
i

4
-
t'

»
'4

-
*

-
4

't

T
r
-
r
r
-
f
-
i
-

-
r
-
r

<
•

;•
!•

fi
l-

-i
r
f-

'i
-i

-
(•

f-
i-

it
I

t-
l-

:
;
:
i
:
!
=

;
II
S

I
'S

'•"
'ri

lN
I

li
lM

il
T

ri
rr

ii
fi

ii
M

lll
ili

l
lil

U
ili

N
.I

).
n

il
'lljl

J..V
!)<

-|
!>•>

•;.J
y;,

:l:ji
r,v

iSj
:

.^
4

•.
V

•.4
1

m
II

76

7.4 Wavelet Filter With A Multiplier

This implementation has a sample period of 21 clocks/sample. It was generated

by Hyper using the following steps:

• parse

• module selection

• retiming for speed

• module selection

• estimation

• allocation and scheduling

The estimation of the implementation area calculated by the estimator is

Minimal Active Area : 4.65 mm^
Total chip area : 19.10 mm^

The scheduler calculated the active area to be 5.57 mm^.

The schedule of this design is:

EXECUTION UNIT REFERENCE TABLE

1. mult#340

2. add#170

3. sub#170

4. ioUnit#170

5. transfer#170

SCHEDULE

Time 1 2 3 4 5

0 XXX

1 X X

2 X

3 XX

4 XX

5 X X X

6 X X X

7 X X X

8 XXX

9 XXX

10 X X X

11 X X X

12 XXX X

13 XXX

14 XX

15 XX

16 XX

17 X

18 X

19 X

20 X

77

The layout in Figure 7.7 shows this design. There are 6 clusters plus 5 control

blocks. In addition to the execution units mentioned above there are 8 buses, 2 muxes, 6

buffers and 57 registers. The Hardware Mapper did not predict the chip area because

there is an array component in the design. The layout dimensions are 6603 X x 3548 X =

8.4 mm^.

This example illustrates the way array components are handled. The multiplier

in the design is an array component, and as such it is placed in its own cluster. It is

evident from Figure 7.7 that the multiplier is much larger than the other clusters. That is

the reason the Hardware Mapper does not attempt to estimate the area or generate a

floorplan.

With cluster merging applied, based on a merge file, the layout area can be

reduced to 6274 Xx 3465 X= 7.8 mm^. This is shown in Figure 7.8.

.'.''.Tiiiiiii

myam'm

'7'.liV^'tr".'f-'r-~-r-'•

'r-'^ I..I..i•.

..3.'iff^r-'"—•r-"-^'—'r-"r^"-

•>;•••-••••'Jrfr"
:jii'"'r-'-•rrV••-

•=;|!i*"r'̂-^i-;---r~-:•••.-
..•»'
13jifIT"—r*r*•"^. ,.,)f''

•?••"-•r-r-r'r-•»:'--i-T'-

I:"'
3;,.r=r-v^^V;VV"/VV-:

S'---r--,-••,"•.:•:•:• R_........

at''•n*'"

»..f.
"»••r"••

•"--r--.-r-

.1....

•'^-'I:''-•••-•—••'•-•'̂-'J-'—'•••••
t^.....jI
i.3."{ir^*—iir—WTH—n—B-^n—«—if I,.if.!.J..!..!.!.1.J.i.1.•.1.I,i.III»•

.nmnmniiiminnnm^ninaiti)nnimiiiiiiiiilininiiiiimiiiiiii^m.iiiiininananmii
jii^niiniiHiiiuiMiwmmiuiiiiiiiiiinununmiuiinitiiHiiHirnimiMiitiii-*

ittSaitiji'i2|iaiiitaijj^jil|

1

Ijili'iiiljiiiII:
II'iiJiiii:!:I!<;.

.11:lllNsislitiJ!-•-

.-II
-IIIi.::s:::silii;>-•
-Is-.

IlllltllllliiilU»
Illllllllliiliiiiiis>.
liSSfS:•••iiiiiISli.iSi'«.
llllllliliMiiuM:-•.

IU!::iU;i:ii:iiSls:;s
si..sr-

i-..

'Ill|(iiiiiiiiiiiiriij"-siii=
'll|iiiIiiiiiiiiiiiiiii(iiiiBi<>ni-'
'jiliiiiiiiiii)iiiiiiHii|a'>

'"Hipir.,
iliuiiiiiimiiiinii

I
I
I
I
I

\»m

IMIMlllMMIMIIHMIM

mOlillilimMiiMliiiin

nil'(iiaiiiiMiiiiiiiiiiii

IIMinillHIIIM

HIIIIII'jIMIIIINlllMI
iMIMMIIMMI

IIIIM

Mjiiiiiiiiiiiimiim

mm.

H9IMtl

iiafiiiMtiiiiiniia

iiiiiiiiiiiiriuna
iiiiMiifiMtii'h«
iiiiliiiiiiinit•
iiMMMiniiiMij
itiiiiiiiiiiiiiiI•
jiMtjtMiinitiiM]•

=
.,

:i
'-i

•;
r;

i'
.r

::

i'
..

i

i_i
yj

VI
".j

,'
.i;

•'.•
i.'i

i

'•i
";

!
y.

':i
".5

•;
!

•;
£

•:
»

•
i

;;

:i
.

I.

<
S

*
'•

t: iJ
V

i,
...

•!"-
V

l/
i'.

!:
Vi

•;!
-'U

•;!
'.

t
'.

i

|i;
jr

"fi
':i

".j
.";

!
"r

;,
/-

!
•:[

/"
'n

'•

if
«,

r»
,

•!
,

!•
».

4
'.

f
,

$

•

iii

|.,
:.j

..
..

i-
i

Jl
ll

ll
ll

ll
l

.
•

n
i
i
.
i

i-
i'

x
'

••
••

'
-

=
.=

.
«

.
i
5

;
.
j
.
,
i
u

:
.
?
t
;
i
i
.
.
i
:
,
^

!
a
.
:

S
ls

iS
S

IS
S

Is
iS

iS
U

S
S

S
S

iS
:;

S
•

M
*

?
.
•
•
•

-I
•

-•

CONCLUSIONS
8

A Hardware Mapper has been implemented for the Hyper high level synthesis

system. The Mapper is capable of mapping Hyper designs to two different hardware

description languages. The two languages are VHDL, which gives access to commercial

layout generators and simulators, and SDL, which gives access to a public domain

layout generator.

The Mapper has two phases, one that is independent of the targeted hardware

description language, and one that is specific to the target. The target independent phase

generates a generic design specification based on a Hyper generated flowgraph. The

target specific phase translates the generic design to a hardware description.

The Hardware Mapper thus completes the automated ASIC design flow, by

providing an interface between Hyper and two layout generators.

8.1 Future Work

There are a number of areas in which the Hardware Mapper can be extended in

the future. As Hyper is extended and gets more and more features the Mapper will need

to be updated to support them. However, the areas that may need attention in the near

term are listed below.

80

81

1. The buffer selection routines (section 4.5.1) can be extended to consider the fanout of a bus

when determining the sizes of buffers.

2. The automatic modeof the synthesis drivendooiplanning (section 6.3) can be extended to

considertotal chip area including buses, as opposed to just activearea.

3. TheMapper does notsupport memories (RAM, ROM etc.) Once Hyper's memory routines are

in place, the Mapper will need to be updated.

4. Control paths (section 4.6.6) canonly have onefanout inthecurrent version of theMapper.

Also, only one control path is allowed to control a mux. These limitations can be removed in

the future.

5. The Mapper has some rudimentary support for "macro nodes". Once Hyper develops full sup

portfor thistype of node, theMapper will need to be updated.

6. The register selection routines (section 4.2) can beextended to consider power consumption or

speed instead of only area. Likewise for themultiplexer and buffer selection routines (section

4.5).

7. The control table optimization (section4.6.4.2) can be extended to resolvedon't cares such as

tominimize theboolean equations describing the table. Currently, don'tcares can be resolved

to the "previous active value".

8. The Mapper could be extended togenerate chip pads.

Appendix A

USAGE

This appendix will describe how to use the Hardware Mapper. The main focus

will be on usage of the Mapper when invoked from a UNIX command line. Usage from

within Hyper's X interface will also be briefly discussed, mainly to outline the subset of

features that are available.

1.1 UNIX Command Line

The Mapper can be invoked from a UNIX command line. In this mode, the full

set of command options are available to the user.

By typing

HwMupper

at a UNIX prompt, the following will appear (if your path includes the Hyper

binary directory ($FLOWBIN)):

Usage : HwMapper [-abCdDefFiLomMstvw] FlowGraphFile

Arguments :

-a : ascii input mode

82

83

-b : alternative bus terminal placement

-C : number of clocks (default: 2)

-d : debug mode

-D : subdirectory (default: vhdl (or sdl with -s)

-e : edge to trigger state (rising/falling)

-f : floorplan/merge command file

-F : manual Flint placement of final layout

-i : dump internal data structures

-L : cell library

-o : output file (log)

-m : initial bus merging mode

-M : global bus merging

-s : dump sdl file

-t : merging tolerance

-V : verbose mode

-w : warnings

Each of these flags are explained in detail below.

-a : The flowgraph file is in ASCII format. The default is the OCT database format
[Har86].

-b : Alternative bus terminal placement. This flag can only be used with the -s flag.
The input and output buses of a cluster are placed on opposite sides. The default is to
have both input and output buses on the same side.

-C n : Specify the number of clocks. This option is rarely used, since it can be speci
fied for a given library in the technology file. However, if the number of clocks are
specified on the command line, then that is the value which is used. Otherwise, if a
technology file is available, and if it specifies the number of clocks, then that number is
used. Otherwise, there will be two clocks, CKl and CK2. q.> 1.

-d : Debug mode. This mode produces information helpful for debugging.

-D directorv : Specify a sub-directory. All the generated files are stored in directorv.
except the log file (.hw). The default when using the -s flag is "sdl". The default when
not using the -s flag is "vhdl".

-e n : Specify which edge of CKl should trigger the state transitions. This option is
rarely used since it can be specified for a given library in the technology file. If a= K
the state will change on the rising edge of CKl. The default is to change state on the
falling edge of CKl.

84

-f file-name : Specify the file in which to find floorplan and/or merge commands. See
section 6.2.2.

-F : Request manual Flint placement of final layout. This disables the automatic
floorplanning routines (described in section 6.2.1) while the auto-merging remains
enabled.

-i : Dump the complete internal data structure. This option creates a file (with the
extension .ids) which contains the complete data structure used for the target dependent
phases (SDL or VHDL). This is used only when the mapped result will be showed in an
Architectural Drawing (DrawArch, not yet released) or in the stochastic power analysis
tool SPA.

-L library : Specify which cell library to use. See below for examples of usage.

-o logfile : Specify the name of the output log file. The default name is to append .hw
to FlowGraphFile

-m a : Initial bus merging mode. If a= 1, global buses will be merge at the input of
register files. This may eliminate the need for muxes. If n = 2, global buses will be
merged at the output of execution units. This may eliminate the need for more than one
buffer per execution unit. Only the last -m n on the command line is used. See sections
4.3.1 and 4.3.2.

-M : Perform global bus merging. This can be used with either -m 1 or -m 2. See sec
tion 4.3.2.

-s : Generate SDL. The default is to generate VHDL.

-t f : Merging tolerance. When the Mapper performs automatic merging of units, it
uses a merging tolerance as a guide towards a user's desired layout width-to-length
ratios. This option only works when all hardware cells in rb-dp have the properties
"HEIGHT" and "WIDTH" in some geometric units (e.g. lambdas or microns are
accepted but gates are not). The value for f is typically in the range [1.00 - 1.25].

-V : Verbose mode produces information mainly useful for debugging.

-w : Enable warnings that are non-fatal.

A typical invocation of the Hardware Mapper^s VHDL mapping is to use the

command

HwMupper -uML dpp fir^S

if a design which has been scheduled (by Hyper) is in the file fir#3.afl. This

command reads the design fir#3 from the file fir#3.afl which is assumed to be in ASCII

format. It accesses the library specified as dpp. It then performs global bus merging,

and dumps all the generated VHDL files in a directory called "vhdl". It leaves a log file

85

in fir#3.hw which contains information about the design, including which buses were

left after bus merging, which muxes and buffers were added, which type of hardware

units were selected for the register files etc.

A similar command used to generate SDL is

HwMapper -asML dpp fir#3

The difference here is that a directory called "sdl" is created instead of

"vhdl", and SDL is generated instead of VHDL.

1.2 Usage within Hyper

The Hardware Mapper is accessible from the Hyper window through the button

"Map". The Map button pops up a window which shows a few options which

correspond directly to some of the command line options mentioned above. There are

also a number of options which are passed to the mapper from the general Hyper

Options menu. All these options are described below.

1.2.1 General HYPER Options

The options that are passed to the Mapper from the general Hyper options

menu are:

-a : the ascii flag

-L library : the hardware library

1.2.2 Specific Mapper Options

The options that are passed to the Mapper from the Hyper Map menu are:

86

-F : manual Flint placement of the top level hierachy.

-b : alternate bus terminal placement. This flag has no effect when used without the -
s flag.

-m n : Initial Bus merging mode: Merge buses at the input of registers (n = 1), or
merge buses at the output of execution units (n = 2).

-M : Global bus merging

All the other options are not available from the Hyper window. For the novice

Mapper user, the options Hyper passes to the Mapper are very adequate. For the expert

user, the other options are still accessible through command line invocation, and will

allow expert judgment to override some of the Mapper's decisions or guide the Mapper

with regards to certain aspects.

REFERENCES

[Bro92] R. W. Brodersen, editor, "Anatomy of a Silicon Compiler," Kluwer Academic

Publishers, Boston, 1992.

[Cas91] A. Casotto, editor, "Octtools 5.1," Electronics Research Laboratory, University

of California, Berkeley, 1991.

[Chu89] C. Chu, et all., "Hyper: An Interactive Synthesis Environment for High

Performance Real Time Applications", Proc. Int'l Conf. Computer Design,

IEEE Computer Society Press, Los Alamitos, Calif., 1989, pp. 432-435.

[Har86] D. Harrison, "Data Management and Graphics Editing in the Berkeley Design

Environment," Proc. IEEE Int'l Conf. Computer Aided Design, November

1986.

[Hil85] P. Hilfinger, "SILAGE, A High Level Language and Silicon Compiler for

Digital Signal Processing," Proc. IEEE CICC Conf., Portland, May 1985.

[Ker88] B. W. Kemighan, D. M. Ritchie, "The C Programming Language," Prentice

Hall, New Jersey, 1988.

[Rab91] J. Rabaey, C. Chu, P. Hoang, M. Potkonjak: "Fast Prototyping of Data Path

Intensive Architecture," IEEE Design and Test, vol. 8, no. 2, pp. 40-51, 1991.

87

88

[VHD87] "IEEE Standard VHDL Language Reference Manual," Institute of Electrical

and Electronics Engineers, Inc., New York, 1987.

[Lager91] "Volume 2: Lager Tool Set," U.C. Berkeley, U.C. Los Angeles, Mississippi

State University, Institute for Technology Development, June 1991.

	Copyright notice 1996
	ERL-96-97

