
Torrent Architecture Manual

Krste Asanovi�c

David Johnson

Report No. UCB/CSD-97-930

January 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Abstract

This manual contains the speci�cation of the Torrent Instruction

Set Architecture (ISA). Torrent is a vector ISA designed for digital

signal processing applications. Torrent is based on the 32-bit MIPS-II

ISA, and this manual is intended to be read as a supplement to the

book \MIPS RISC Architecture" by Kane and Heinrich. Torrent is the

ISA of the T0 vector microprocessor which is described in the separate

\T0 Engineering Data" technical report.

This work was supported by ONR URI Grant N00014-92-J-1617,

ARPA contract number N0001493-C0249,NSF Grant No. MIP-9311980,

and NSF PYI Award No. MIP-8958568NSF. Additional support was

provided by ICSI.

1

2 Torrent Architecture Manual. Revision: 3.2.

1 Introduction

Torrent is a vector processor instruction set ar-

chitecture (ISA) designed for digital signal pro-

cessing applications. The Torrent ISA allows for

a range of implementations performing di�ering

numbers of operations per clock cycle, depending

on available technology.

Torrent is based on the 32 bit MIPS-II ISA. The

scalar unit is MIPS-compliant, with coprocessor

instruction extensions for the vector unit. This

manual is intended to be read as a supplement

to the book \MIPS RISC Architecture" by Kane

and Heinrich.

To date, the only implementation of Torrent is

T0. T0 is described in detail in the \T0 Engi-

neering Data" document.

Torrent Architecture Manual. Revision: 3.2. 3

2 CPU

The Torrent CPU runs the MIPS-II standard

ISA. Future Torrent implementations may adopt

further extensions to the MIPS ISA standard.

The MIPS-II SYNC instruction forces all previ-

ous memory operations to complete before allow-

ing further memory operations. SYNC instruc-

tions may be required on some Torrent imple-

mentations to synchronize memory references be-

tween the vector and scalar processors, or be-

tween separate vector memory pipelines.

4 Torrent Architecture Manual. Revision: 3.2.

3 System Control Coprocessor (CP0)

The system control coprocessor is the standard

location for registers dealing with memory man-

agement and exception handling. The contents of

CP0 are implementation dependent.

Torrent Architecture Manual. Revision: 3.2. 5

4 Floating Point Coprocessor (CP1)

Torrent employs the standard MIPS oating

point coprocessor instruction set. If an implemen-

tation does not provide hardware oating point,

these instructions cause a trap to software emu-

lation.

6 Torrent Architecture Manual. Revision: 3.2.

5 Vector Unit (CP2)

The Torrent vector unit (VU) is implemented as

coprocessor 2 for the MIPS CPU.

Vector registers

Figure 1 shows the registers contained within the

vector coprocessor. The VU ISA allows up to 32

vector registers, $vr0{$vr311

The �rst implementation, T0, provides only 16

vector registers, $vr0{$vr15. All elements of vec-

tor register $vr0 are de�ned to hold the constant

zero. Writes to $vr0 are ignored, and reads of

$vr0 return 0.

Each vector element is 32b wide. The �rst imple-

mentation, T0, provides 32 elements per vector.

Future implementations may provide longer vec-

tors.

Control registers

Five VU control registers are de�ned in the copro-

cessor control register space. These are accessed

using the standard ctc2/cfc2 instructions.

An implementation will typically include addi-

tional VU control registers to handle exceptions.

These are implementation dependent and will

normally only be accessible from kernel mode.

VU Instructions

The VU extends the MIPS-II instruction set by

adding coprocessor instructions that perform vec-

tor operations. The VU is a load/store vector-

register architecture. Vector instructions are di-

vided into 2 major groups: vector load/store op-

1The Torrent Architecture extends the MIPS register

naming scheme. The vector registers are de�ned by the

assembler as $vr0{$vr31, but are usually referred to by

the aliases vv0{vv31 in user code.

erations, and vector arithmetic operations. Vec-

tor load/store operations move vectors between

vector registers and memory, while vector arith-

metic instructions operate on vectors in registers.

Each vector register holds a vector of 32b values.

A single vector instruction speci�es a sequence of

operations, and may run for many cycles. The

maximum length of a vector is limited by the im-

plementation, but shorter vectors can be speci�ed

using the vector length register.

Scalar operands for vector-scalar operations are

obtained from the CPU general purpose registers.

There are three varieties of vector load/stores:

unit stride, arbitrary stride, and indexed. Unit

stride load/stores can specify a post-increment

for the scalar address register. Arbitrary stride

load/stores transfer elements stored at addresses

that form an arithmetic progression. Indexed

vector load/stores (gather/scatter) allow indirect

memory accesses to be vectorized.

Vector memory operations can transfer bytes,

halfwords, and words. Bytes and halfwords are

optionally sign-extended to 32b when loaded, and

the least signi�cant byte or halfword of a vector

element is used for a byte or halfword store.

Vector 32b integer and 32b logical operations are

de�ned. In addition, �xed point instructions are

de�ned to support scaled �xed-point arithmetic.

These instructions allow the multiple steps re-

quired for a scaled, rounded, �xed-point addition

or multiplication to be performed within a single

vector instruction.

Conditional vector operations are supported with

vector conditional move instructions. A set of

vector ag instructions allow a vector condition

to be represented as a bit vector that can be read

into a scalar register for further processing.

Torrent Architecture Manual. Revision: 3.2. 7

element 0

element 31-511

vv0

vv15-31

32b

Vector Control Registers

vcr4: VU Condition

32b

Vector Registers

vcr8: VU Overflow

vcr12: VU Saturate

vcr0: Implementation/revision

vcr2: Vector Length (vlr)

Figure 1: Vector unit registers.

8 Torrent Architecture Manual. Revision: 3.2.

5.1 Vector Unit Control Registers

The vector unit control registers are listed in Ta-

ble 1.

Number Register Description

vcr0 vrev Implementation/revision

vcr1 vcount Free running counter

vcr2 vlr Vector length

vcr4 vcond Vector condition ags

vcr8 vovf Vector overow ags

vcr12 vsat Vector saturation ags

Table 1: Vector unit control registers.

5.1.1 VU Implementation and Revision

Number (VCR0)

31 16 15 8 7 0

0 Imp Rev

16 8 8

Figure 2: VU Implementation and Revision Reg-

ister Format

The vrev register is a 32b read only register that

contains the implementation and revision number

of the VU. These values can be used by con�gu-

ration and diagnostic software.

The vrev register format is shown in Figure 2.

Bits 15{8 de�ne the implementation number, and

bits 7{0 de�ne the revision number. The imple-

mentation number can be used by user software to

detect changes in instruction set or performance.

The revision number identi�es mask revisions of

a given implementation.

Implementation �eld values are given in Table 2.

Imp. Number Vector Unit

0 T0

1{255 reserved

Table 2: VU Implementation types.

Torrent Architecture Manual. Revision: 3.2. 9

5.1.2 Vector Count Register (VCR1)

31 0

vcount

32

Figure 3: Vector Count Register Format

The vector count register, vcount, is a 32b read

only register formatted as shown in Figure 3.

The value in the vcount register is guaranteed to

increase linearly with time, although the rate of

increase is unspeci�ed. When it reaches a maxi-

mum value of 0x����, the count register will re-

set to 0 and continue incrementing. Its purpose

is to allow relative comparison of small periods of

elapsed time for performance analysis.

5.1.3 Vector Length Register (VCR2)

31 8 7 0

0 vlr

24 8

Figure 4: Vector Length Register Format

The length of a vector operation is speci�ed in

an 8b vector length register, vlr. If a vector in-

struction is issued when the value in vlr is 0, no

operation is performed. If a vector instruction

is issued when the value in vlr is greater than

the implementation's maximum vector length, a

vector operation exception is raised. Implemen-

tations provide at least 32 elements per vector.

Reads or writes of the vector length register do

not a�ect vector instructions in progress.

10 Torrent Architecture Manual. Revision: 3.2.

5.1.4 VU Condition Register (VCR4)

31 30 2 1 0

vcond31 ... vcond1 vcond0

1 ... 1 1

Figure 5: Vector Condition Register Format

The VU condition register, vcond, is a 32b

read/write register formatted as shown in Fig-

ure 5.

The vcond register holds the VU condition ags,

which reect the result of the last conditional ag

instruction. There is one ag bit corresponding

to each vector element, with the least signi�cant

bit representing the condition for vector element

zero. The register is only altered by conditional

ag instructions (set less than, set less than un-

signed, set equal) and writes to vcond.

Reads of vcond are interlocked and are guaran-

teed to return the most recent value. Writes to

vcond are not a�ected by previously issued vector

instructions which may still be executing.

Future implementations with greater than 32 ele-

ments per vector register may provide additional

control registers to hold the extra conditional

bits. Future implementations may also add fur-

ther vcond registers to permit better scheduling

of parallel conditional operations.

5.1.5 VU Overow Register (VCR8)

31 30 2 1 0

vovf31 ... vovf1 vovf0

1 ... 1 1

Figure 6: Vector Overow Register Format

The VU overow register, vovf, is a 32 bit

read/write register formatted as shown in Fig-

ure 6.

The vovf register holds the VU overow ags.

The overow ags are sticky bits which are set

when any vector arithmetic operation causes an

overow. There is one ag bit corresponding

to each vector element, with the least signi�-

cant bit representing the overow status for vec-

tor element zero. The register is only altered by

overowing arithmetic operations (add, sub) and

writes to vovf.

Reads of vovf are interlocked and are guaranteed

to return the most recent value. Writes to vovf

are not a�ected by previously issued vector in-

structions which may still be executing.

Implementations that have greater than 32 ele-

ments per vector register have additional overow

registers to hold the extra overow bits.

Torrent Architecture Manual. Revision: 3.2. 11

5.1.6 VU Saturate Register (VCR12)

31 30 2 1 0

vsat31 ... vsat1 vsat0

1 ... 1 1

Figure 7: Vector Saturate Register Format

The VU saturate register, vsat, is a 32 bit

read/write register formatted as shown in Fig-

ure 7.

The vsat register holds the VU saturate ags.

The saturate ags are sticky bits which are set

when any vector arithmetic operation causes a

saturated result value. There is one ag bit cor-

responding to each vector element, with the least

signi�cant bit representing the saturation status

for vector element zero. The register is only al-

tered by vector �xed-point operations and writes

to vsat.

Reads of vsat are interlocked and are guaranteed

to return the most recent value. Writes to vsat

are not a�ected by previously issued vector in-

structions which may still be executing.

Implementations that have greater than 32 ele-

ments per vector register have additional satura-

tion registers to hold the extra saturation bits.

12 Torrent Architecture Manual. Revision: 3.2.

5.2 Instruction Overview

VU Instruction Classes

Instructions a�ecting the vector unit are divided

into several classes:

� Control Register instructions that read

and write VU coprocessor control registers.

� Move instructions that move data between

vector registers, and between the CPU gen-

eral registers and the vector registers.

� Load/Store instructions that move vec-

tors of data between vector registers and

memory.

� Integer Arithmetic instructions that pro-

vide integer arithmetic, shift, logical, com-

pare and conditional operations on vector

register contents.

� Fixed-point instructions that provide

scaled and rounded �xed point arithmetic

operations on vector register contents.

VU Instruction Formats

The VU control register read/write instructions

use the standard MIPS coprocessor instruction

encodings.

The move, load/store, integer, and �xed-point

arithmetic instructions are encoded using the

standard MIPS coprocessor operate instruction.

These all use the base instruction format shown

in Figure 8

The format �eld is encoded as shown in Table 3.

The format �eld encodes the class of instruction

and also the operand sources, either vector-vector

or vector-scalar.

The opers �eld de�nes the order of operands for

non-commutative operations. If opers is zero, the

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 format rt/vt rd opers vw vd

010010 1xxxx

6 5 5 5 1 5 5

Figure 8: Vector unit base instruction format.

Format Operation type Operands

10000 Insert/extract Vector-Vector

10001 Insert/extract Vector-Scalar

10010 Memory Vector-Vector

10011 Memory Vector-Scalar

10100 Integer/logical Vector-Vector

10101 Integer/logical Vector-Scalar

10110 reserved

10111 reserved

11000 Add �xed Vector-Vector

11001 Add �xed Vector-Scalar

11010 Sub �xed Vector-Vector

11011 Sub �xed Vector-Scalar

11100 Multiply �xed Vector-Vector

11101 Multiply �xed Vector-Scalar

11110 reserved

11111 reserved

Table 3: Format �eld decoding.

operands are vector/vector or vector/scalar. If

opers is one, the operands are scalar/vector.

Torrent Architecture Manual. Revision: 3.2. 13

5.3 VU Control Register Instructions

The vector control register instructions move val-

ues between the scalar CPU registers and the vec-

tor control registers. These operations use the

standard MIPS coprocessor control register oper-

ations.

These operations are unpredictable if the copro-

cessor control register �eld is not one of the valid

coprocessor control register numbers as listed in

Table 1.

CFVU Move Control Word From VU

31 26 25 21 20 16 15 11 10 0

COP2 CF rt cs

010010 00010 00000000000

6 5 5 5 11

Format:

CFVU rt, cs

Description:

The contents of vector unit control register cs are

copied into scalar register rt.

This operation is only de�ned when cs is a valid

coprocessor control register.

Operation:

r[rt] = vcr[cs];

Exceptions:

Coprocessor unusable exception.

14 Torrent Architecture Manual. Revision: 3.2.

CTVU Move Control Word To VU

31 26 25 21 20 16 15 11 10 0

COP2 CT rt cs

010010 00110 00000000000

6 5 5 5 11

Format:

CTVU rt, cs

Description:

The contents of scalar register rt are copied into

vector unit control register cs.

This operation is only de�ned when cs is a valid

coprocessor control register.

Operation:

vcr[cs] = r[rt];

Exceptions:

Coprocessor unusable exception.

Torrent Architecture Manual. Revision: 3.2. 15

5.4 Vector Insert/Extract Instructions

The insert and extract instructions are used to

form vectors from scalars, or to break vectors

down into scalars or smaller vectors.

The extract vector instruction transfers elements

from the end of one vector register to the start of

another. A scalar register gives a start index into

the source register. This instruction can be used

to speed reduction operations.

The scalar insert/extract instructions transfer an

element between the scalar register �le and a vec-

tor register. A scalar register gives the index.

The insert/extract instruction encoding is shown

in Table 4.

Format vw Opers Mnemonic Description

10000 01011 0 vext.v Extract from vector into vector.

10001 10011 0 vins.s Insert into vector from scalar.

10001 11011 0 vext.s Extract from vector into scalar.

Table 4: Insert/extract instruction encoding.

VEXT.V Extract Vector To Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IXV vt rd VS EXTV vd

010010 10000 0 01011

6 5 5 5 1 5 5

Format:

vext.v vd, vt, rd

Description:

The vlr register is read to give, n, the number of

elements to be moved. Starting from the index in

scalar register rd, n elements from vector register

vt are copied into the �rst n elements of vector

register vd.

If the lower 8 bits of the sum of vlr and rd are

greater than the maximum vector length, a vector

operation exception is raised.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = v[vt][r[rd]+i];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

16 Torrent Architecture Manual. Revision: 3.2.

VINS.S Insert Into Vector From Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IXS rt rd VS INSS vd

010010 10001 0 10011

6 5 5 5 1 5 5

Format:

vins.s rt, vd, rd

Description:

The value of scalar register rt is copied to element

rd of vector register vd.

If the lower eight bits of scalar register rd are

greater than or equal to the maximum vector

length, a vector operation exception is raised.

Operation:

v[vd][r[rd]] = r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

VEXT.S Extract From Vector To Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IXS rt rd VS EXTS vd

010010 10001 0 11011

6 5 5 5 1 5 5

Format:

vext.s rt, vd, rd

Description:

The value of element rd of vector register vd is

copied to scalar register rt.

If the lower 8 bits of scalar register rd are greater

than or equal to the maximum vector length, a

vector operation exception is raised.

Operation:

r[rt] = v[vd][r[rd]];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 17

5.5 Vector Load/Store Instructions

Vector loads and stores transfer bytes, halfwords,

and words between vector register elements and

memory. Bytes and halfwords are sign-extended

when loaded into vector elements. Stores always

transfer the least signi�cant bits of an element to

memory. Addresses for the memory transfers are

taken from the scalar registers.

There are three classes of vector loads and stores:

unit-stride, arbitrary stride, and vector indexed.

The unit-stride operations transfer vectors whose

elements are held in contiguous locations in mem-

ory. The unit-stride operations allow a post-

increment of the base address register. The arbi-

trary stride operations transfer vectors to or from

memory at addresses that form an arithmetic pro-

gression. The vector indexed operations transfer

vectors whose elements are located at o�sets from

a base address, with the o�sets speci�ed by the

contents of an index vector.

Table 5 shows the encoding for vector load/store

operations.

18 Torrent Architecture Manual. Revision: 3.2.

Format vw Opers Mnemonic Description

10010 0xxxx 0 reserved

10010 10000 0 lbx.v Load signed byte vector indexed.

10010 10001 0 lhx.v Load signed halfword vector indexed.

10010 10010 0 reserved

10010 10011 0 lwx.v Load word vector indexed.

10010 10100 0 lbux.v Load unsigned byte vector indexed.

10010 10101 0 lhux.v Load unsigned halfword vector indexed.

10010 1011x 0 reserved

10010 11000 0 sbx.v Store byte vector indexed.

10010 11001 0 shx.v Store halfword vector indexed.

10010 11010 0 reserved

10010 11011 0 swx.v Store word vector indexed.

10010 111xx 0 reserved

10011 00000 0 lbai.v Load unit-stride signed byte vector with auto-increment.

10011 00001 0 lhai.v Load unit-stride signed halfword vector with auto-increment.

10011 00010 0 reserved

10011 00011 0 lwai.v Load unit-stride word vector with auto-increment.

10011 00100 0 lbuai.v Load unit-stride unsigned byte vector with auto-increment.

10011 00101 0 lhuai.v Load unit-stride unsigned halfword vector with auto-increment.

10011 0011x 0 reserved

10011 01000 0 sbai.v Store unit-stride byte vector with auto-increment.

10011 01001 0 shai.v Store unit-stride halfword vector with auto-increment.

10011 01010 0 reserved

10011 01011 0 swai.v Store unit-stride word vector with auto-increment.

10011 011xx 0 reserved

10011 10000 0 lbst.v Load signed byte vector with stride.

10011 10001 0 lhst.v Load signed halfword vector with stride.

10011 10010 0 reserved

10011 10011 0 lwst.v Load word vector with stride.

10011 10100 0 lbust.v Load unsigned byte vector with stride.

10011 10101 0 lhust.v Load unsigned halfword vector with stride.

10011 1011x 0 reserved

10011 11000 0 sbst.v Store byte vector with stride.

10011 11001 0 shst.v Store halfword vector with stride.

10011 11010 0 reserved

10011 11011 0 swst.v Store word vector with stride.

10011 111xx 0 reserved

1001x xxxxx 1 reserved

Table 5: Vector load/store instruction encoding.

Torrent Architecture Manual. Revision: 3.2. 19

LxAI.V Load Auto-Increment Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LBAI vd

010010 10011 0 00000

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LHAI vd

010010 10011 0 00001

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LWAI vd

010010 10011 0 00011

6 5 5 5 1 5 5

Format:

lbai.v vd, rd, rt

lhai.v vd, rd, rt

lwai.v vd, rd, rt

Description:

The vlr register is read to give, n, the number of

elements to be loaded. Starting from the base

address in scalar register rd, n contiguous ele-

ments are loaded from memory, sign-extended to

32b (if necessary), and placed in the �rst n con-

secutive elements of the vector register vd. The

value of rd is post-incremented by the value of

rt. This post-increment is treated as unsigned

addition and does not generate an overow. The

result of the instruction is unde�ned if rd is the

same as rt.

A vector address exception occurs if the instruc-

tion loads halfwords and the least signi�cant bit

of the rd register is non-zero. A vector address ex-

ception occurs if the instruction loads words and

either of the two least signi�cant bits of the rd reg-

ister are non-zero. A vector operation exception

is raised if vlr is larger than the implementation's

maximum vector length.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = extend(m[r[rd]+i*elsize]);

r[rd] += r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

20 Torrent Architecture Manual. Revision: 3.2.

LxUAI.V Load Unsigned Auto-Increment

Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LBUAI vd

010010 10011 0 00100

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LHUAI vd

010010 10011 0 00101

6 5 5 5 1 5 5

Format:

lbuai.v vd, rd, rt

lhuai.v vd, rd, rt

Description:

The vlr register is read to give, n, the num-

ber of elements to be loaded. Starting from the

base address in scalar register rd, n contiguous

elements are loaded from memory, zero extended

to 32b, and placed in the �rst n consecutive el-

ements of the vector register vd. The value of

rd is post-incremented by the value of rt. This

post-increment is treated as unsigned addition

and does not generate an overow. The result

of the instruction is unde�ned if rd is the same as

rt.

A vector address exception occurs if the instruc-

tion loads halfwords and the least signi�cant bit

of the rd register is non-zero. A vector opera-

tion exception is raised if vlr is larger than the

implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = m[r[rd]+i*elsize];

r[rd] += r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

LxX.V Load Indexed Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS LBX vd

010010 10010 0 10000

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS LHX vd

010010 10010 0 10001

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS LWX vd

010010 10010 0 10011

6 5 5 5 1 5 5

Format:

lbx.v vd, rd, vt

lhx.v vd, rd, vt

lwx.v vd, rd, vt

Description:

This is a gather operation. The vlr register is

read to give, n, the number of elements to be

loaded. The scalar register rd is read to give the

base address. The �rst n elements of vt are then

added to rd to give n e�ective addresses. The

vector of e�ective addresses is used to load n ele-

ments frommemory which are then sign-extended

to 32b, and placed into the �rst n elements of vd.

A vector address exception occurs if the instruc-

tion loads halfwords and the least signi�cant bit

of any e�ective address is zero. A vector address

exception occurs if the instruction loads words

and either of the two least signi�cant bits of any

e�ective address are non-zero. A vector opera-

tion exception is raised if vlr is larger than the

implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = extend(m[r[rd]+v[vt][i]]);

Exceptions:

Torrent Architecture Manual. Revision: 3.2. 21

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

LxUX.V Load Unsigned Indexed Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS LBUX vd

010010 10010 0 10100

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS LHUX vd

010010 10010 0 10101

6 5 5 5 1 5 5

Format:

lbux.v vd, rd, vt

lhux.v vd, rd, vt

Description:

This is a gather operation. The vlr register is

read to give, n, the number of elements to be

loaded. The scalar register rd is read to give the

base address. The �rst n elements of vt are then

added to rd to give n e�ective addresses. The

vector of e�ective addresses is used to load n el-

ements from memory which are zero extended to

32b, and placed into the �rst n elements of vd.

A vector address exception occurs if the instruc-

tion loads halfwords and the least signi�cant bit

of any e�ective address is zero. A vector opera-

tion exception is raised if vlr is larger than the

implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = m[r[rd]+v[vt][i]];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

22 Torrent Architecture Manual. Revision: 3.2.

LxST.V Load Strided Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LBST vd

010010 10011 0 10000

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LHST vd

010010 10011 0 10001

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LWST vd

010010 10011 0 10011

6 5 5 5 1 5 5

Format:

lbst.v vd, rd, rt

lhst.v vd, rd, rt

lwst.v vd, rd, rt

Description:

The vlr register is read to give, n, the number

of elements to be loaded. The scalar register rt is

read to give the byte stride of the accesses. The

�rst operand is loaded from the address given in

rd, sign-extended to the vector element width (if

necessary), and placed in the �rst element of vd.

The kth element of vd is loaded from address

rd+ rt� (k � 1)

A vector address exception occurs if the instruc-

tion loads halfwords and the least signi�cant bit

of any e�ective address is non-zero. A vector

address exception occurs if the instruction loads

words and either of the two least signi�cant bits

of any e�ective address is non-zero. A vector op-

eration exception is raised if vlr is larger than

the implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = extend(m[r[rd]+r[rt]*i]);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

Torrent Architecture Manual. Revision: 3.2. 23

LxUST.V Load Unsigned Strided Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LBUST vd

010010 10011 0 10100

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS LHUST vd

010010 10011 0 10101

6 5 5 5 1 5 5

Format:

lbust.v vd, rd, rt

lhust.v vd, rd, rt

Description:

The vlr register is read to give, n, the number

of elements to be loaded. The scalar register rt is

read to give the byte stride of the accesses. The

�rst operand is loaded from the address given in

rd, zero extended to the vector element width (if

necessary), and placed in the �rst element of vd.

The kth element of vd is loaded from address

rd+ rt� (k � 1)

A vector address error exception occurs if the in-

struction loads halfwords and the least signi�cant

bit of any e�ective address is non-zero. A vector

operation exception is raised if vlr is larger than

the implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

v[vd][i] = m[r[rd]+r[rt]*i];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

SxAI.V Store Auto-Increment Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS SBAI vd

010010 10011 0 01000

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS SHAI vd

010010 10011 0 01001

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS SWAI vd

010010 10011 0 01011

6 5 5 5 1 5 5

Format:

sbai.v vd, rd, rt

shai.v vd, rd, rt

swai.v vd, rd, rt

Description:

The vlr register is read to give, n, the number

of elements to be stored. The �rst n consecu-

tive elements of the vector register vd are stored

in consecutive memory locations starting at the

base address in scalar register rd. The rd register

is post-incremented by the contents of the rt reg-

ister. This post-increment is treated as unsigned

addition and does not generate an overow. The

result of the instruction is unde�ned if rd is the

same as rt. Implementations do not guarantee the

order in which vector elements are written within

a single vector store instruction.

A vector address exception occurs if the instruc-

tion stores halfwords and the least signi�cant bit

of the rd register is non-zero. A vector address ex-

ception occurs if the instruction stores words and

either of the two least signi�cant bits of the rd reg-

ister is non-zero. A vector operation exception is

raised if vlr is larger than the implementation's

maximum vector length.

Operation:

24 Torrent Architecture Manual. Revision: 3.2.

for (i=0; i<vlr; i++)

m[r[rd]+i*elsize] = v[vd][i];

r[rd] += r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

SxX.V Store Indexed Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS SBX vd

010010 10010 0 11000

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS SHX vd

010010 10010 0 11001

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMV vt rd VS SWX vd

010010 10010 0 11011

6 5 5 5 1 5 5

Format:

sbx.v vd, rd, vt

shx.v vd, rd, vt

swx.v vd, rd, vt

Description:

This is a scatter operation. The vlr register is

read to give, n, the number of elements to be

stored. The scalar register rd is read to give the

base address. The �rst n elements of vt are then

added to rd to give n e�ective addresses. The �rst

n elements of vd are written to memory using the

vector of e�ective addresses. Implementations do

not guarantee the order in which individual vector

elements are written within a single vector store

instruction.

A vector address exception occurs if the instruc-

tion stores halfwords and the least signi�cant bit

any e�ective address is non-zero. A vector ad-

dress exception occurs if the instruction stores

words and either of the two least signi�cant bits

of any e�ective address is non-zero. A vector op-

eration exception is raised if vlr is larger than

the implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

m[r[rd]+v[vt][i]] = v[vd][i];

Torrent Architecture Manual. Revision: 3.2. 25

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

SxST.V Store Strided Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS SBST vd

010010 10011 0 11000

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS SHST vd

010010 10011 0 11001

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 MEMS rt rd VS SWST vd

010010 10011 0 11011

6 5 5 5 1 5 5

Format:

sbst.v vd, rd, rt

shst.v vd, rd, rt

swst.v vd, rd, rt

Description:

The vlr register is read to give, n, the number

of elements to be stored. The scalar register rt is

read to give the byte stride of the accesses. The

�rst element of vd is stored to the address given

in the scalar register rd. The kth element of vd is

stored at address

rd+ rt � (k � 1)

Implementations do not guarantee the order in

which vector elements are written within a single

vector store instruction.

A vector address exception occurs if the instruc-

tion stores halfwords and the least signi�cant bit

of any e�ective address is non-zero. A vector ad-

dress exception occurs if the instruction stores

words and either of the two least signi�cant bits

of any e�ective address is non-zero. A vector op-

eration exception is raised if vlr is larger than

the implementation's maximum vector length.

Operation:

for (i=0; i<vlr; i++)

m[r[rd]+r[rt]*i] = v[vd][i];

26 Torrent Architecture Manual. Revision: 3.2.

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Vector address exception.

Torrent Architecture Manual. Revision: 3.2. 27

5.6 Vector Integer ALU Operations

All vector integer and logical computational in-

structions are available in both vector-vector and

vector-scalar forms. The rd �eld is used to encode

the integer function.

The vector-vector instructions specify a vector of

binary operations, with the �rst operand taken

from vector register vd, the second operand from

vector register vt, and the result placed in vector

register vw. Vector-scalar instructions specify a

vector of binary operations, with the �rst operand

taken from vector register vd, the second operand

from scalar register rt, and the result placed in

vector register vd.

A few non-commutative operations have scalar-

vector forms where the �rst operand is rt and the

second operand is vs.

Table 6 shows the encoding of the available inte-

ger computational operations.

Vector arithmetic and logical instructions

The vector unit implements numerous arithmetic

and logical operations, including variable dis-

placement shifts. Signed and unsigned addition

and subtraction are provided | the �xed point

instructions (see Section 5.7) can be used to per-

form signed and unsigned 16 bit multiplication.

An overow status register, vovf, is updated by

integer arithmetic operations and can be accessed

in coprocessor 2. One \sticky" overow bit is pro-

vided for each vector element. Overowing oper-

ations set these bits, but they can only be cleared

by explicit writes to the overow register.

Vector conditional instructions

To compare vectors, there are conditional set in-

structions \set less than" and \set equal". These

instructions produce a vector of boolean results,

and in the set less than case the comparison can

be signed or unsigned. Both are available in

vector-vector and vector-scalar forms, with set

less than also having a scalar-vector form.

To compare vectors and produce results for ma-

nipulation in the scalar unit, there are \ag less

than" and \ag equal" instructions. The vec-

tor unit maintains a condition ag register, with

one condition bit for each vector register element.

This register is updated by the ag instructions,

and is accessed as a coprocessor 2 control register.

To perform conditional branches on vector opera-

tions, this register is copied to a scalar CPU regis-

ter where any MIPS-II conditional branch can be

used. Implementations with greater than 32 ele-

ments per vector register provide additional con-

dition ag registers.

The vector unit implements vector conditional

moves, in both vector-vector and vector-scalar

forms. The �rst operand is compared against

zero; if the comparison succeeds, the destination

element is updated with the second operand, oth-

erwise the destination element is una�ected. Note

that a scalar-vector form is not required, as a

scalar condition can always be replaced with a

branch in the CPU.

The conditional moves can be made unconditional

if the condition vector register is $vr0. In this

way, scalar register values can be broadcast into

a vector register, and vectors of values can be

copied between vector registers.

28 Torrent Architecture Manual. Revision: 3.2.

Format rd Opers Mnemonic Description

1010v 00000 w sub.yy Subtract signed (ag overow).

1010v 00001 w subu.yy Subtract unsigned (no overow).

1010x 00010 x reserved

1010x 00011 x reserved

1010v 00100 w t.yy Flag less than (update condition).

1010v 00101 w tu.yy Flag less than unsigned (update condition).

1010v 00110 0 feq.yy Flag equal (update condition).

1010x 00111 x reserved

1010v 01000 w sllv.yy Shift left logical variable.

1010v 01001 w srlv.yy Shift right logical variable.

1010x 01010 x reserved

1010v 01011 w srav.yy Shift right arithmetic variable.

1010v 01100 w slt.yy Set less than.

1010v 01101 w sltu.yy Set less than unsigned.

1010v 01110 0 seq.yy Set equal.

1010x 01111 x reserved

1010v 10000 0 add.yy Add signed (ag overow).

1010v 10001 0 addu.yy Add unsigned (no overow).

1010x 10010 x reserved

1010x 10011 x reserved

1010v 10100 0 and.yy Bitwise logical AND.

1010v 10101 0 or.yy Bitwise logical OR.

1010v 10110 0 xor.yy Bitwise logical XOR.

1010v 10111 0 nor.yy Bitwise logical NOR.

1010x 11000 x reserved

1010v 11001 0 cmvnez.yy Conditional move not equal zero.

1010v 11010 0 cmvgez.yy Conditional move greater than or equal zero.

1010v 11011 0 cmvlez.yy Conditional move less than or equal zero.

1010x 11100 x reserved

1010v 11101 0 cmveqz.yy Conditional move equal zero.

1010v 11110 0 cmvltz.yy Conditional move less than zero.

1010v 11111 0 cmvgtz.yy Conditional move greater than zero.

Note:

When format is 11110 and opers is 0, yy is \vv"

When format is 11111 and opers is 0, yy is \vs"

When format is 11111 and opers is 1, yy is \sv"

All other encodings are reserved.

Table 6: Field encoding for integer register-register instructions.

Torrent Architecture Manual. Revision: 3.2. 29

AND.VV And Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt AND VS vw vd

010010 10100 10100 0

6 5 5 5 1 5 5

Format:

and.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vt are combined with �rst n el-

ements of vector register vd in a bitwise logical

AND operation. The results are placed in the

�rst n elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] and v[vt][i];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

AND.VS And Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt AND VS vw vd

010010 10101 10100 0

6 5 5 5 1 5 5

Format:

and.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vd are combined with scalar reg-

ister rt in a bitwise logical AND operation. The

results are placed in the �rst n elements of vector

register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] and r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

30 Torrent Architecture Manual. Revision: 3.2.

OR.VV Or Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt OR VS vw vd

010010 10100 10101 0

6 5 5 5 1 5 5

Format:

or.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vd are combined with �rst n ele-

ments of vector register vt in a bitwise logical OR

operation. The results are placed in the �rst n

elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] or v[vt][i];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

OR.VS Or Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt OR VS vw vd

010010 10101 10101 0

6 5 5 5 1 5 5

Format:

or.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vd are combined with scalar reg-

ister rt in a bitwise logical OR operation. The

results are placed in the �rst n elements of vector

register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] or r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 31

XOR.VV Xor Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt XOR VS vw vd

010010 10100 10110 0

6 5 5 5 1 5 5

Format:

xor.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vd are combined with �rst n el-

ements of vector register vt in a bitwise logical

XOR operation. The results are placed in the

�rst n elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] xor v[vt][i];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

XOR.VS Xor Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt XOR VS vw vd

010010 10101 10110 0

6 5 5 5 1 5 5

Format:

xor.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vd are combined with scalar reg-

ister rt in a bitwise logical XOR operation. The

results are placed in the �rst n elements of vector

register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] xor r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

32 Torrent Architecture Manual. Revision: 3.2.

NOR.VV Nor Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt NOR VS vw vd

010010 10100 10111 0

6 5 5 5 1 5 5

Format:

nor.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vd are combined with �rst n el-

ements of vector register vt in a bitwise logical

NOR operation. The results are placed in the

�rst n elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Note: the operation \nor.vv vw, vd, $vr0" per-

forms a vector bitwise NOT operation.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] nor v[vt][i];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

NOR.VS Nor Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt NOR VS vw vd

010010 10101 10111 0

6 5 5 5 1 5 5

Format:

nor.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to compute. The �rst n elements

of vector register vt are combined with scalar reg-

ister rt in a bitwise logical NOR operation. The

results are placed in the �rst n elements of vector

register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] nor r[rt];

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 33

ADD.VV Add Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt ADD VS vw vd

010010 10100 10000 0

6 5 5 5 1 5 5

Format:

add.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be added. The �rst n elements

of vector register vt are added to the �rst n el-

ements of vector register vd and the results are

placed in the �rst n elements of vector register

vw.

The input elements are treated as signed integers.

The appropriate bit in vovf is set for any result

that overows.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] + v[vt][i];

if (overflow_on_add(v[vd][i],v[vt][i]))

vcr[VOVF] |= (1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

ADD.VS Add Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt ADD VS vw vd

010010 10101 10000 0

6 5 5 5 1 5 5

Format:

add.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be added. The �rst n elements

of vector register vd are added to the scalar reg-

ister rt and the results are placed in the �rst n

elements of vector register vw.

The input elements are treated as signed integers.

The appropriate bit of vovf is set for any result

that overows.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] + r[rt];

if (overflow_on_add(v[vd][i],r[rt]))

vcr[VOVF] |= (1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

34 Torrent Architecture Manual. Revision: 3.2.

ADDU.VV Add Unsigned Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt ADDU VS vw vd

010010 10100 10001 0

6 5 5 5 1 5 5

Format:

addu.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be added. The �rst n elements

of vector register vt are added to the �rst n el-

ements of vector register vd and the results are

placed in the �rst n elements of vector register

vw.

The input elements are treated as unsigned inte-

gers. Overows are ignored.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] + v[vt][i];

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

ADDU.VS Add Unsigned Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt ADDU VS vw vd

010010 10101 10001 0

6 5 5 5 1 5 5

Format:

addu.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be added. The �rst n elements

of vector register vd are added to the scalar reg-

ister rt and the results are placed in the �rst n

elements of vector register vw.

The input elements are treated as unsigned inte-

gers. Overows are ignored.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] + r[rt];

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 35

SUB.VV Subtract Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SUB VS vw vd

010010 10100 00000 0

6 5 5 5 1 5 5

Format:

sub.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be subtracted. The �rst n el-

ements of vector register vt are subtracted from

the �rst n elements of vector register vd and the

results are placed in the �rst n elements of vector

register vw.

The input elements are treated as signed integers.

The appropriate bit of vovf is set for any result

that overows.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Note: the operation \sub.vv vw, $vr0, vt" per-

forms a vector negate operation.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] - v[vt][i];

if (overflow_on_sub(v[vd][i],v[vt][i]))

vcr[VOVF] |= (1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SUB.VS Subtract Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SUB VS vw vd

010010 10101 00000 0

6 5 5 5 1 5 5

Format:

sub.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be subtracted. The scalar reg-

ister rt is subtracted from the �rst n elements of

vector register vd and the results are placed in the

�rst n elements of vector register vw.

The input elements are treated as signed integers.

The appropriate bit of vovf is set for any result

that overows.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] - r[rt];

if (overflow_on_sub(v[vd][i],r[rt]))

vcr[VOVF] |= (1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

36 Torrent Architecture Manual. Revision: 3.2.

SUB.SV Subtract Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SUB SV vw vd

010010 10101 00000 1

6 5 5 5 1 5 5

Format:

sub.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to be subtracted. The �rst n el-

ements of vector register vd are subtracted from

the scalar register rt and the results are placed in

the �rst n elements of vector register vw.

The input elements are treated as signed integers.

The appropriate bit of vovf is set for any result

that overows.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = r[rt] - v[vd][i];

if (overflow_on_sub(r[rt],v[vd][i]))

vcr[VOVF] |= (1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SUBU.VV Subtract Unsigned

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SUBU VS vw vd

010010 10100 00001 0

6 5 5 5 1 5 5

Format:

subu.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be subtracted. The �rst n el-

ements of vector register vt are subtracted from

the �rst n elements of vector register vd and the

results are placed in the �rst n elements of vector

register vw.

The input elements are treated as unsigned inte-

gers. Overows are ignored.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] - v[vt][i];

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 37

SUBU.VS Subtract Unsigned

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SUBU VS vw vd

010010 10101 00001 0

6 5 5 5 1 5 5

Format:

subu.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be subtracted. The scalar reg-

ister rt is subtracted from the �rst n elements of

vector register vd and the results are placed in the

�rst n elements of vector register vw.

The input elements are treated as unsigned inte-

gers. Overows are ignored.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = v[vd][i] - r[rt];

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SUBU.SV Subtract Unsigned

Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SUBU SV vw vd

010010 10101 00001 1

6 5 5 5 1 5 5

Format:

subu.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to be subtracted. The �rst n el-

ements of vector register vd are subtracted from

the scalar register rt and the results are placed in

the �rst n elements of vector register vw.

The input elements are treated as unsigned inte-

gers. Overows are ignored.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

v[vw][i] = r[rt] - v[vd][i];

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

38 Torrent Architecture Manual. Revision: 3.2.

SLLV.VV Shift Left Logical Variable

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SLLV VS vw vd

010010 10100 01000 0

6 5 5 5 1 5 5

Format:

sllv.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The �rst n elements of

vector register vd are shifted left by the number

of bits given in the least signi�cant 5 bits of the

�rst n elements of vector register vt. Zeros are

inserted into the low order bits. The results are

placed in the �rst n elements of vector register

vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] << (v[vt][i] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SLLV.VS Shift Left Logical Variable

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SLLV VS vw vd

010010 10101 01000 0

6 5 5 5 1 5 5

Format:

sllv.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The �rst n elements of

vector register vd are shifted left by the number

of bits given in the least signi�cant 5 bits of scalar

register rt. Zeros are inserted into the low order

bits. The results are placed in the �rst n elements

of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] << (r[rt] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 39

SLLV.SV Shift Left Logical Variable

Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SLLV SV vw vd

010010 10101 01000 1

6 5 5 5 1 5 5

Format:

sllv.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The scalar register rt is

shifted left by the number of bits given in the

least signi�cant 5 bits of the �rst n elements of

vector register vd. Zeros are inserted into the low

order bits. The results are placed in the �rst n

elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = r[rt] << (v[vd][i] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SRAV.VV Shift RightArithmeticVariable

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SRAV VS vw vd

010010 10100 01011 0

6 5 5 5 1 5 5

Format:

srav.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The �rst n elements of

vector register vd are shifted right by the number

of bits given in the least signi�cant 5 bits of the

�rst n elements of vector register vt. The high or-

der bits are sign-extended. The results are placed

in the �rst n elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] shra (v[vt][i] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

40 Torrent Architecture Manual. Revision: 3.2.

SRAV.VS Shift Right Arithmetic Variable

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SRAV VS vw vd

010010 10101 01011 0

6 5 5 5 1 5 5

Format:

srav.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The �rst n elements of

vector register vd are shifted right by the number

of bits given in the least signi�cant 5 bits of scalar

register rt. The high order bits are sign-extended.

The results are placed in the �rst n elements of

vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] shra (r[rt] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SRAV.SV Shift Right Arithmetic Variable

Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SRAV SV vw vd

010010 10101 01011 1

6 5 5 5 1 5 5

Format:

srav.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The scalar register rt is

shifted right by the number of bits given in the

least signi�cant 5 bits of the �rst n elements of

vector register vd. The high order bits are sign-

extended. The results are placed in the �rst n

elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = r[rt] shra (v[vd][i] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 41

SRLV.VV Shift Right Logical Variable

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SRLV VS vw vd

010010 10100 01001 0

6 5 5 5 1 5 5

Format:

srlv.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The �rst n elements of

vector register vd are shifted right by the number

of bits given in the least signi�cant 5 bits of the

�rst n elements of vector register vt. Zeros are

inserted into the high order bits. The results are

placed in the �rst n elements of vector register

vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] >> (v[vt][i] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SRLV.VS Shift Right Logical Variable

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SRLV VS vw vd

010010 10101 01001 0

6 5 5 5 1 5 5

Format:

srlv.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The �rst n elements of

vector register vd are shifted right by the num-

ber of bits given in the least signi�cant 5 bits of

scalar register rt. Zeros are inserted into the high

order bits. The results are placed in the �rst n

elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = v[vd][i] >> (r[rt] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

42 Torrent Architecture Manual. Revision: 3.2.

SRLV.SV Shift Right Logical Variable

Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SRLV SV vw vd

010010 10101 01001 1

6 5 5 5 1 5 5

Format:

srlv.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to shift. The scalar register rt is

shifted right by the number of bits given in the

least signi�cant 5 bits of the �rst n elements of

vector register vd. Zeros are inserted into the high

order bits. The results are placed in the �rst n

elements of vector register vw.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

v[vw][i] = r[rt] >> (v[vd][i] & 0x1f);

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SLT.VV Set Less Than Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SLT VS vw vd

010010 10100 01100 0

6 5 5 5 1 5 5

Format:

slt.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n el-

ements of vector register vd are compared with

the �rst n elements of vector register vt. If an

element of vd is less than an element of vt, the

corresponding element in vw is set to 1, else it is

set to 0. The elements are considered as signed

integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < v[vt][i])

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 43

SLT.VS Set Less Than Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SLT VS vw vd

010010 10101 01100 0

6 5 5 5 1 5 5

Format:

slt.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If an element of vd is less than

rt, the corresponding element in vw is set to 1,

else it is set to 0. The elements are considered as

signed integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < rt)

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SLT.SV Set Less Than Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SLT SV vw vd

010010 10101 01100 1

6 5 5 5 1 5 5

Format:

slt.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If rt is less than an element of

vd, the corresponding element in vw is set to 1,

else it is set to 0. The elements are considered as

signed 32-bit integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (r[rt] < v[vd][i])

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

44 Torrent Architecture Manual. Revision: 3.2.

SLTU.VV Set Less Than Unsigned

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SLTU VS vw vd

010010 10100 01101 0

6 5 5 5 1 5 5

Format:

sltu.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n el-

ements of vector register vd are compared with

the �rst n elements of vector register vt. If an

element of vd is less than an element of vt, the

corresponding element in vw is set to 1, else it is

set to 0. The elements are considered as unsigned

integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < v[vt][i])

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SLTU.VS Set Less Than Unsigned

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SLTU VS vw vd

010010 10101 01101 0

6 5 5 5 1 5 5

Format:

sltu.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If an element of vd is less than

rt, the corresponding element in vw is set to 1,

else it is set to 0. The elements are considered as

unsigned integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < rt)

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 45

SLTU.SV Set Less Than Unsigned

Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SLTU SV vw vd

010010 10101 01101 1

6 5 5 5 1 5 5

Format:

sltu.sv vw, rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If rt is less than an element of

vd, the corresponding element in vw is set to 1,

else it is set to 0. The elements are considered as

unsigned integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (r[rt] < v[vd][i])

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

SEQ.VV Set Equal Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt SEQ VS vw vd

010010 10100 01110 0

6 5 5 5 1 5 5

Format:

seq.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n el-

ements of vector register vd are compared with

the �rst n elements of vector register vt. If an

element of vd is equal to an element of vt, the

corresponding element in vw is set to 1, else it is

set to 0.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] == v[vt][i])

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

46 Torrent Architecture Manual. Revision: 3.2.

SEQ.VS Set Equal Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt SEQ VS vw vd

010010 10101 01110 0

6 5 5 5 1 5 5

Format:

seq.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If an element of vd is equal to

rt, the corresponding element in vw is set to 1,

else it is set to 0.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] == rt)

v[vw][i] = 1;

else

v[vw][i] = 0;

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 47

FLT.VV Flag Less Than Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt FLT VS vd

010010 10100 00100 0 00000

6 5 5 5 1 5 5

Format:

t.vv vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

�rst n elements of vector register vt. If an element

of vd is less than an element of vt, the correspond-

ing bit in the vector unit condition code is set to

1, else it is set to 0. The elements are considered

as signed integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < v[vt][i])

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

FLT.VS Flag Less Than Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt FLT VS vd

010010 10101 00100 0 00000

6 5 5 5 1 5 5

Format:

t.vs vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n el-

ements of vector register vd are compared with

the scalar register rt. If an element of vd is less

than rt, the corresponding bit in the vector unit

condition code is set to 1, else it is set to 0. The

elements are considered as signed integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < rt)

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

48 Torrent Architecture Manual. Revision: 3.2.

FLT.SV Flag Less Than Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt FLT SV vd

010010 10101 00100 1 00000

6 5 5 5 1 5 5

Format:

t.sv rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If rt is less than an element of

vd, the corresponding bit in the vector unit con-

dition code is set to 1, else it is set to 0. The

elements are considered as signed 32-bit integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (r[rt] < v[vd][i])

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

FLTU.VV Flag Less Than Unsigned

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt FLTU VS vd

010010 10100 00101 0 00000

6 5 5 5 1 5 5

Format:

tu.vv vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

�rst n elements of vector register vt. If an element

of vd is less than an element of vt, the correspond-

ing bit in the vector unit condition code is set to

1, else it is set to 0. The elements are considered

as unsigned integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < v[vt][i])

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 49

FLTU.VS Flag Less Than Unsigned

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt FLTU VS vd

010010 10101 00101 0 00000

6 5 5 5 1 5 5

Format:

tu.vs vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n el-

ements of vector register vd are compared with

the scalar register rt. If an element of vd is less

than rt, the corresponding bit in the vector unit

condition code is set to 1, else it is set to 0. The

elements are considered as unsigned integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] < rt)

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

FLTU.SV Flag Less Than Unsigned

Scalar-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt FLTU SV vd

010010 10101 00101 1 00000

6 5 5 5 1 5 5

Format:

tu.sv rt, vd

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If rt is less than an element of

vd, the corresponding bit in the vector unit con-

dition code is set to 1, else it is set to 0. The

elements are considered as unsigned integers.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (r[rt] < v[vd][i])

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

50 Torrent Architecture Manual. Revision: 3.2.

FEQ.VV Flag Equal Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt FEQ VS vd

010010 10100 00110 0 00000

6 5 5 5 1 5 5

Format:

feq.vv vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

�rst n elements of vector register vt. If an element

of vd is equal to an element of vt, the correspond-

ing bit in the vector unit condition code is set to

1, else it is set to 0.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] == v[vt][i])

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

FEQ.VS Set Equal Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt FEQ VS vd

010010 10101 00110 0 00000

6 5 5 5 1 5 5

Format:

feq.vs vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be compared. The �rst n ele-

ments of vector register vd are compared with the

scalar register rt. If an element of vd is equal to rt,

the corresponding bit in the vector unit condition

code is set to 1, else it is set to 0.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] == rt)

vcr[VCOND] |= (1<<i);

else

vcr[VCOND] &= ~(1<<i);

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 51

CMVccc.VV Conditional Move

Vector-Vector

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt CMVNEZ VS vw vd

010010 10100 11001 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt CMVGEZ VS vw vd

010010 10100 11010 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt CMVLEZ VS vw vd

010010 10100 11011 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt CMVEQZ VS vw vd

010010 10100 11101 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt CMVLTZ VS vw vd

010010 10100 11110 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVV vt CMVGTZ VS vw vd

010010 10100 11111 0

6 5 5 5 1 5 5

Format:

cmvnez.vv vw, vd, vt

cmvgez.vv vw, vd, vt

cmvlez.vv vw, vd, vt

cmveqz.vv vw, vd, vt

cmvltz.vv vw, vd, vt

cmvgtz.vv vw, vd, vt

Description:

The vector register vlr is read to give n the num-

ber of elements to be moved. The �rst n elements

of vector register vd are read. For all those ele-

ments that satisfy the comparison with zero, the

corresponding element of vector vw is updated

with the corresponding element of vt. All other

elements of vw are unchanged.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Note: the operation \cmveqz.vv vw, $vr0, vt"

performs an unconditional vector move.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] condop 0)

{

v[vw][i] = v[vt][i];

}

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

52 Torrent Architecture Manual. Revision: 3.2.

CMVccc.VS Conditional Move

Vector-Scalar

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt CMVNEZ VS vw vd

010010 10101 11001 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt CMVGEZ VS vw vd

010010 10101 11010 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt CMVLEZ VS vw vd

010010 10101 11011 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt CMVEQZ VS vw vd

010010 10101 11101 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt CMVLTZ VS vw vd

010010 10101 11110 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 IVS rt CMVGTZ VS vw vd

010010 10101 11111 0

6 5 5 5 1 5 5

Format:

cmvnez.vs vw, vd, rt

cmvgez.vs vw, vd, rt

cmvlez.vs vw, vd, rt

cmveqz.vs vw, vd, rt

cmvltz.vs vw, vd, rt

cmvgtz.vs vw, vd, rt

Description:

The vector register vlr is read to give n the num-

ber of elements to be moved. The �rst n elements

of vector register vd are read. For all those ele-

ments that satisfy the comparison with zero, the

corresponding element of vector vw is updated

with the value of scalar register rt. All other ele-

ments of vw are unchanged.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Note: the operation \cmveqz.vs vw, $vr0, vt"

performs an unconditional scalar to vector move.

Operation:

for (i=0; i<vlr; i++)

{

if (v[vd][i] condop 0)

{

v[vw][i] = r[rt];

}

}

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 53

5.7 Vector Fixed-Point Arithmetic Oper-

ations

The add, subtract and multiply �xed-point in-

structions are primarily used to implement scaled,

rounded, and clipped �xed-point arithmetic. The

scaling, rounding, and clipping information is

supplied by a normal scalar register speci�ed by

the instruction. This register is termed the \con-

�guration register". The �xed point instructions

can also perform some unsigned arithmetic with

an appropriate value in the con�guration register.

The contents of the con�guration register are in-

terpreted as shown in Figure 9.

31 12 11 10 9 8 7 6 5 4 0

0 shrst shrnr shlnr clipam 0 sham

20 1 1 1 2 2 5

Figure 9: Fixed Point Con�guration Register For-

mat.

A short description of each con�guration register

�eld is given in Table 7. The use of these �elds is

explained in more detail in the description of the

individual instructions that use them (fxadd.yy,

fxsub.yy, and fxmul.yy). Note that unused �elds

may provide additional operations in speci�c Tor-

rent implementations. For execution of the oper-

ations described here, all unused bits must be set

to 0.

Name Description

clipam Clip amount.

shrst Jam sticky bit or round to even.

shrnr Don't alter right shift output.

shlnr Don't add in round bit.

sham Shift amount.

Table 7: Fixed point register �elds.

The clip amount �eld is interpreted as shown in

Table 8.

The three bits shrst, shrnr and shlnr e�ectively

clipam Clip output

00 Clip to 32b.

01 Clip to 8b.

10 Clip to 16b.

11 Unpredictable.

Table 8: Clip amount values.

control the rounding mode used for �xed point

operations. Table 9 describes some useful combi-

nations of these bits.

shrst/shrnr/shlnr Rounding mode

000 Round to even.

X11 Truncation.

X10 Round up.

101 Zero bias jamming.

Table 9: Fixed point rounding modes.

The encoding has been designed such that the

most common operation of performing a scaled,

round-to-even operation with a clip to 32b has

zeros in all bits other than the shift �eld.

A saturation status register, vsat, is accessible in

coprocessor 2. It is updated by �xed point arith-

metic operations, with one \sticky" saturation bit

provided for each vector element. Vector elements

which have modi�ed results due to clipping will

set the appropriated bit in the saturation regis-

ter. Bits in the register can only be cleared by

explicit writes.

54 Torrent Architecture Manual. Revision: 3.2.

FXADD.yy Fixed Point Add

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXAVV vt rd SV vw vd

010010 11000 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXAVS rt rd SV vw vd

010010 11001 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXAVS rt rd VS vw vd

010010 11001 1

6 5 5 5 1 5 5

Format:

fxadd.vv vw, vd, vt, rd

fxadd.vs vw, vd, rt, rd

fxadd.sv vw, rt, vd, rd

Description:

This command is available in vector-vector,

vector-scalar, and scalar-vector forms. The vec-

tor register vlr is read to give n the number of

elements to be operated upon. The following op-

erations are performed under the control of the

scalar con�guration register rd. The con�gura-

tion register is formatted as shown in Figure 9.

First stage | source operand mux. For

a vector-vector operation, the A input to the

pipeline comes from the vd vector register, and

the B input to the pipeline comes from the vt

vector register. For a vector-scalar operation, the

A input to the pipeline comes from the vd vec-

tor register and the B input to the pipeline comes

from the rt scalar register. For a scalar-vector op-

eration, the A input to the pipeline comes from

the rt scalar register and the B input to the

pipeline comes from the vd vector register.

Second stage | left shifter. The A input

is shifted left by the amount given in the sham

�eld of register rd. If the shlnr bit of rd is set,

zeros are shifted in from the right. If the shlnr

bit is clear, a 1 is shifted in from the 1/2 LSB

position with zeros following. Only the low 32b

of the result are kept, and no overow checking is

performed.

Third stage | adder. The B input is added

to the shifted A input in a 33b adder. The extra

bit on the adder ensures there can be no overow

at this stage.

Fourth stage | right shifter. The 33b adder

result is shifted right by the number of bits given

in the sham �eld of rd. Sign bits are shifted in to

the high order bits. The bits which are shifted o�

to the right are OR-ed together to form a sticky

bit. If the shrnr bit in rd is clear, then the right

shifted output is altered depending on the sticky

bit. If both shrnr and shrst are 0 and sham

is not 0, the LSB of the right shifted output is

cleared if the sticky bit is 0. If shrnr is clear and

shrst is set, the LSB of the right shifted output is

OR-ed together with the sticky bit | e�ectively

forming a new sticky bit over sham+1 bits. If

shrnr is set, then the right shifted result is not

altered.

Fifth stage | clipper. The right shifted re-

sult is then clipped according to the value in the

clipam �eld of rd. If the result is changed by clip-

ping, the corresponding bit in the vsat register is

set.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 55

FXSUB.yy Fixed Point Subtract

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXSVV vt rd SV vw vd

010010 11010 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXSVS rt rd SV vw vd

010010 11011 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXSVS rt rd VS vw vd

010010 11011 1

6 5 5 5 1 5 5

Format:

fxsub.vv vw, vd, vt, rd

fxsub.vs vw, vd, rt, rd

fxsub.sv vw, rt, vd, rd

Description:

This command is available in vector-vector,

vector-scalar, and scalar-vector forms. The vec-

tor register vlr is read to give n the number of

elements to be operated upon. The following op-

erations are performed under the control of the

scalar con�guration register rd. The con�gura-

tion register is formatted as shown in Figure 9.

First stage | source operand mux. For

a vector-vector operation, the A input to the

pipeline comes from the vd vector register, and

the B input to the pipeline comes from the vt

vector register. For a vector-scalar operation, the

A input to the pipeline comes from the vd vec-

tor register and the B input to the pipeline comes

from the rt scalar register. For a scalar-vector op-

eration, the A input to the pipeline comes from

the rt scalar register and the B input to the

pipeline comes from the vd vector register.

Second stage | left shifter. The A input is

shifted left by the amount given in the sham �eld

of rd. If the shlnr bit of rd is set, zeros are shifted

in from the right. If the shlnr bit is clear, a 1 is

shifted in from the 1/2 LSB position with zeros

following. Only the low 32b of the result are kept,

and no overow checking is performed.

Third stage | subtractor. The B input is

subtracted from the shifted A input in a 33b sub-

tractor. The extra bit on the result ensures there

can be no overow at this stage.

Fourth stage | right shifter. The 33b sub-

tractor result is shifted right by the number of

bits given in the sham �eld of rd. Sign bits are

shifted in to the high order bits. The bits which

are shifted o� to the right are OR-ed together to

form a sticky bit. If the shrnr bit of rd is clear,

then the right shifted output is altered depending

on the sticky bit. If both shrnr and shrst are

0 and sham is not 0, the LSB of the right shifted

output is cleared if the sticky bit is 0. If shrnr is

clear and shrst is set, the LSB of the right shifted

output is OR-ed together with the sticky bit |

e�ectively forming a new sticky bit over sham+1

bits. If shrnr is set, then the right shifted result

is not altered.

Fifth stage | clipper. The right shifted re-

sult is then clipped according to the value in the

clipam �eld of rd. If the result is changed by clip-

ping, the corresponding bit in the vsat register is

set.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

56 Torrent Architecture Manual. Revision: 3.2.

FXMUL.yy Fixed Point Multiply

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXMVV vt rd VS vw vd

010010 11100 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXMVS rt rd VS vw vd

010010 11101 0

6 5 5 5 1 5 5

31 26 25 21 20 16 15 11 10 9 5 4 0

COP2 FXMVS rt rd SV vw vd

010010 11101 1

6 5 5 5 1 5 5

Format:

fxmul.vv vw, vd, vt, rd

fxmul.vs vw, vd, rt, rd

fxmul.sv vw, rt, vd, rd

Description:

This command is available in vector-vector,

vector-scalar and scalar-vector forms. For nor-

mal use of the instruction as described below, the

vector-scalar and scalar-vector forms are identi-

cal. The vector register vlr is read to give n the

number of elements to be operated upon. The fol-

lowing operations are performed under the con-

trol of the scalar con�guration register rd. The

con�guration register is formatted as shown in

Figure 9.

First stage | source operand mux. For

a vector-vector operation, the A input to the

pipeline comes from the vd vector register, and

the B input to the pipeline comes from the vt

vector register. For a vector-scalar operation, the

A input to the pipeline comes from the vd vector

register and the B input to the pipeline comes

from the rt scalar register.

Second stage | sign extension. The low 16

bits of both the A and B operands are sign ex-

tended to 32 bits.

Third stage | multiplier. The sign extended

A operand is multiplied by the sign extended B

operand. The multiplier produces an exact 32b

signed result.

Fourth stage | round. If the shlnr bit in rd is

clear, a single 1 is added into the multiplier result

at a position given by the sham �eld in rd. The

sham �eld contains a bit index one greater than

the position where the round bit is added. E.g.

when sham is zero no bit is added, when sham is

one, a 1 is added into the least signi�cant bit of

the multiplier result. The rounding bit is added

in a 33b adder so no overows can occur. If the

shlnr bit is set, no rounding bit is added in.

Fifth stage | right shifter. The 33b multi-

plier result is shifted right by the number of bits

given in the sham of rd. Sign bits are shifted in to

the high order bits. The bits which are shifted o�

to the right are OR-ed together to form a sticky

bit. If the shrnr bit of rd is clear, then the right

shifted output is altered depending on the sticky

bit to help implement di�erent rounding schemes.

If both shrnr and shrst are 0 and sham is not 0,

the LSB of the right shifted output is cleared if

the sticky bit is 0. If shrnr is clear and shrst is

set, the LSB of the right shifted output is OR-ed

together with the sticky bit | e�ectively form-

ing a sticky bit over sham+1 bits. If shrnr is set,

then the right shifted result is not altered.

Sixth stage | clipper. The right shifted re-

sult is then clipped according to the value in the

clipam �eld of rd. If the result is changed by clip-

ping, the corresponding bit in the vsat register is

set.

A vector operation exception is raised if vlr is

larger than the implementation's maximum vec-

tor length.

Exceptions:

Reserved instruction exception.

Coprocessor unusable exception.

Vector operation exception.

Torrent Architecture Manual. Revision: 3.2. 57

6 Future Extensions

There are several areas where Torrent could be

extended.

� The CPU may adopt the MIPS-III (64b)

ISA extensions.

� The vector coprocessor may add vector

oating-point, or further assist for oating-

point operations.

� The vector coprocessor may add vector 64b

integer and �xed-point operations.

� The vector coprocessor may add further

vector move instructions to better support

certain common operations, such as sorting,

FFTs, and convolutions.

� The vector coprocessor may add segmented

operations that provide higher throughput

for low precision arithmetic.

58 Torrent Architecture Manual. Revision: 3.2.

A T0 Fixed Point Pipe Operations

A.1 Overview

The Torrent �xed point add, �xed point subtract

and �xed point multiply instructions (fxadd, fx-

sub and fxmul) use a general purpose scalar reg-

ister as a \con�guration register" to control their

operation. The architecture manual section for

these instructions describes the \fully support-

ed" bits within these con�guration words | i.e.

bits that are guaranteed to function identically

in all processors that implement the Torrent ar-

chitecture. However, T0 (the �rst Torrent pro-

cessor) also assigns functions to many other bits

in the con�guration register (although these func-

tions are disabled when the corresponding bits are

zero). This appendix describes the operation of

the �xed point pipe and the e�ect of the bits in

the con�guration register on its operation.

Figure 10 details the useful bits within the con�g-

uration register | all unused bits should be set

to 0.

A.2 Fixed Point Add/Subtract Pipeline

The T0 �xed point add/subtract pipeline con-

tains 9 stages controlled by a scalar register spec-

i�ed in the rd �eld of the instruction. Figure 11

shows the logical structure of the �xed point

add/subtract pipeline.

First stage | Operand Mux.

For a vector-vector operation, the A input to the

pipeline comes from the vd vector register, and

the B input to the pipeline comes from the vt

vector register. For a vector-scalar operation, the

A input to the pipeline comes from the vd vector

register and the B input to the pipeline comes

from the rt scalar register. For a scalar-vector op-

eration, the A input to the pipeline comes from

the rt scalar register and the B input to the

pipeline comes from the vd vector register.

Second stage | Logic Unit

The logic unit can perform any of the 16 possible

bitwise logical operations on A and B under con-

trol of the lufunc �eld, and produces a 32b result

LUOUT . The default when lufunc is zero is to

pass the B input unchanged. See Table 10 for bit

encodings.

Third stage | Left shifter

If shlza is clear, the left shifter takes A as the

input, otherwise it takes zero as input.

If shlv is clear, the shift amount is taken from the

shlam �eld, otherwise the shift amount is taken

from the low 5 bits of LUOUT .

If shlnr is clear, a single 1 bit (followed by zeros)

is shifted in from the right in the LSB � 1 po-

sition. This bit e�ectively adds in 1=2 LSB for

the rounding modes. If shlnr is set, all zeros are

shifted in from the right.

The left shifter output, SHLOUT , is 32b wide.

Fourth stage | Sign Extenders

The fourth stage extends SHLOUT and LUOUT

to 33b to form the ADDA and ADDB adder in-

puts respectively.

Figure 10: T0 con�guration register bits

lufunc LUOUT

0000 B

0001 B | ~A

0010 A & B

0011 ~(A ^ B)

0100 A | B

0101 ~0

0110 A

0111 A | ~B

1000 B & ~A

1001 ~A

1010 0

1011 ~(A | B)

1100 A & B

1101 ~(A & B)

1110 A & ~B

1111 ~B

Table 10: lufunc operations.

Figure 11: T0 �xed point add/subtract pipeline

Torrent Architecture Manual. Revision: 3.2. 61

If au is clear, SHLOUT is sign-extended to form

ADDA, else SHLOUT is zero-extended to form

ADDA.

If bu is clear, LUOUT is sign-extended to form

ADDB , else LUOUT is zero-extended to form

ADDB .

Fifth stage | Adder

The �fth stage is a 33b adder. If the operation

is a �xed point add, ADDA is added to ADDB

to give a full 33b result, ADDOUT . If the opera-

tion is a �xed point subtract, ADDB is subtracted

from ADDA to give a 33b result, ADDOUT . If

either shlv or shrv is set, then the ADDB input

is ignored and the adder passes ADDA through

unchanged.

Sixth stage | Right Shifter

The right shifter takes the 33b adder output,

ADDOUT , and shifts it right by up to 31 places

giving a 33b output SHROUT . It also includes

sticky bit logic for round-to-nearest-even round-

ing.

If shrv is clear then the right shift amount is

a constant given in the con�guration register.

If sepsham is clear, shlam gives the constant

shift amount, otherwise the separate shram shift

amount is used. The default is to have shrv and

sepsham clear, so that both left and right shift

amounts are speci�ed by the shlam �eld. If shrv

is set, then the low 5 bits of ADDB (same as

low 5 bits of LUOUT) are used to give the shift

amount.

If shrl is clear, the right shift is an arithmetic

right shift with sign bits shifted in from the left,

otherwise it is a logical right shift with zero bits

shifted in form the left.

If shrnr is set, no rounding is applied to the right

shift output. If shrnr is clear, shrst controls the

type of rounding adjustment. A sticky bit value

is calculated by OR-ing together all the bits that

are shifted o� to the right. If shrnr is clear and

shrst is true, this sticky bit value is OR-ed into

the least signi�cant bit of the output.

If both shrnr and shrst are clear, then the least

signi�cant bit of the shifter output is AND-ed

with the sticky bit value. This last, default, case

implements the adjustment required for round-to-

even rounding if the left shifter added in a round

bit in the 1=2 LSB position and both left and

right shift amounts are the same. When the shift

amount is zero, the sticky bit must be zero but no

modi�cation should be made to the right shifter

output. The hardware includes a check for con-

stant right shift amounts (shrv = 0) and turns o�

rounding in this case, however variable right shifts

(shrv = 1) of zero places (ADDB[4 : 0] = 0) with

shrnr and shrst clear will always reset the low bit

of the right shifter output.

Seventh stage | Result Mux

If the lures bit is clear, the 33b right shifter output

SHROUT is passed to the clipper input CLIPIN ,

otherwise the ADDB value (sign-extended logic

unit value) is passed to CLIPIN .

Eighth stage | Clipper

The clipper converts the 33b input CLIPIN to a

32b result CLIPOUT . It also generates a single

bit FLAG which is OR-ed into the appropriate

bit of the vsat register.

If noclip is clear, the clipper clips the 33b value to

an 8b, 16b, or 32b value according to the clipam

�eld. CLIPIN values larger than can be repre-

sented in the required number of bits are satu-

rated at the most positive or most negative val-

ues possible. The FLAG bit is set if a saturation

occurs. This is the normal usage where vsat indi-

cates saturations. See Table 11 for details.

If noclip is set, the clipper performs alternate

functions { see Table 12 for details. Note that

these generate FLAG values which may alter vsat.

The \pass" function passes the low 32b of

CLIPIN unchanged and always generates a zero

FLAG so that vsat is unchanged.

The \overow" function passes the low 32b of

CLIPIN unchanged and generates FLAG if there

is a signed overow when truncating CLIPIN

62 Torrent Architecture Manual. Revision: 3.2.

from 33b to the 32b CLIPOUT .

The \set if less than" function returns 1 if

CLIPIN is negative (MSB = 1) or 0 if CLIPIN

is positive (MSB = 0). FLAG is set in the same

manner.

The \set if equal" function returns 1 if ADDOUT

equals zero, 0 otherwise (note this function does

not depend on SHROUT). FLAG is set in the

same manner.

Ninth stage | Conditional Write

The last stage decides whether to write

CLIPOUT to the vector register dependent on

the value of ADDOUT and the setting in the

wcond �eld. See Table 13 for details.

Torrent Architecture Manual. Revision: 3.2. 63

noclip clipam clip amount

0 00 32b

0 01 8b

0 10 16b

0 11 reserved (16b on T0)

Table 11: Clip amounts with noclip clear

noclip clipam Mnemonic CLIPOUT FLAG

1 00 pass CLIPIN [31 : 0] 0

1 01 overow CLIPIN [31 : 0] CLIPIN [32] 6= CLIPIN [31]

1 10 set if less than CLIPIN [32] CLIPIN [32]

1 11 set if equal ADDOUT = 0 ADDOUT = 0

Table 12: Set operations with noclip set

wcond mnemonic write enable

000 always 1

001 nez ADDOUT 6= 0

010 gez ADDOUT � 0

011 lez ADDOUT � 0

100 never 0

101 eqz ADDOUT = 0

110 ltz ADDOUT < 0

111 gtz ADDOUT > 0

Table 13: Conditional write operations

64 Torrent Architecture Manual. Revision: 3.2.

A.3 Fixed Point Multiply Pipeline

The T0 �xed point multiply pipeline contains 8

stages controlled by a 32b CPU register speci�ed

in the rd �eld of the instruction. Figure 12 shows

the logical structure of the �xed point multiply

pipeline.

First stage | Operand Mux

For a vector-vector operation, the A input to the

pipeline comes from the vd vector register, and

the B input to the pipeline comes from the vt

vector register. For a vector-scalar operation, the

A input to the pipeline comes from the vd vector

register and the B input to the pipeline comes

from the rt scalar register.

Second stage | Sign Extenders

The second stage treats the least signi�cant 16b

of the A and B inputs as integers and then sign-

or zero-extends them to form signed 17b inputs

to the multiplier.

If au is clear, MULA[16:0] is A[15:0] sign-

extended, else MULA is A[15:0] zero-extended.

If bu is clear, MULB [16:0] is B [15:0] sign-

extended, else MULB is B [15:0] zero-extended.

Third stage | Multiplier

The multiplier performs a signed 17b by 17b mul-

tiply ofMULA andMULB giving an exact signed

33b result MULOUT (note only 32b required to

represent product).

Fourth stage | Round bit

The fourth stage uses the left shifter to generate

a rounding bit, ROUND , to be added into the

product.

If shlnr is clear, shlam selects the bit position

where the round bit will be placed. If shlam con-

tains 1, the round bit will be in bit 0. If shlam

contains 31, the round bit will be in bit 30.

If shlnr is set or if shlam is zero, no round bit is

generated.

The shlza and shlv bits must be zero.

Fifth stage | Adder

The �fth stage is a 33b adder. The ROUND bit is

added to the multipler output MULOUT to give

a 33b signed result ADDOUT .

Sixth stage | Right Shifter

The right shifter takes the 33b adder output,

ADDOUT and shifts it right by up to 32 places

giving a 33b output SHROUT . It also includes

sticky bit logic for round-to-even rounding.

The �eld shrv must be clear in the multiply

pipeline. If sepsham is clear, shlam gives the con-

stant shift amount, otherwise the separate shram

shift amount is used. The default is to have

sepsham clear, so that both left and right shift

amounts are the speci�ed by the shlam �eld.

If shrl is clear, the right shift is an arithmetic

right shift with sign bits shifted in from the left,

otherwise it is a logical right shift with zero bits

shifted in form the left.

If shrnr is set, no rounding is applied to the right

shift output. If shrnr is clear, shrst controls the

type of rounding adjustment. A sticky bit value

is calculated by OR-ing together all the bits that

are shifted o� to the right. If shrnr is clear and

shrst is set, this sticky bit value is OR-ed into the

least signi�cant bit of the output.

If both shrnr and shrst are clear, then the least

signi�cant bit of the shifter output is AND-ed

with the sticky bit value. This last, default, case

implements the adjustment required for round-to-

even rounding if the left shifter added in a round

bit in the 1=2 LSB position and both left and

right shift amounts are the same. When the shift

amount is zero, the sticky bit must be zero but no

modi�cation should be made to the right shifter

output. The hardware includes a check for zero

right shift amounts and turns o� rounding in this

case.

Seventh stage | Clipper

The clipper converts the 33b SHROUT value to

a 32b result CLIPOUT . It also generates a single

bit FLAG which is OR-ed into the appropriate

Figure 12: T0 �xed point multiply pipeline

66 Torrent Architecture Manual. Revision: 3.2.

bit of the vsat register.

If noclip is clear, the clipper clips the 33b value

to an 8b, 16b, or 32b value according to the cli-

pam �eld. SHROUT values larger than can be

represented in the required number of bits are

saturated at the most positive or most negative

values possible. The FLAG bit is set if a satura-

tion occurs. This is the normal usage where vsat

indicates saturations. Table 11 for details of clip

amounts.

If noclip is set, the clipper performs alternate

functions | see Table 12 for detals. Note that

these generate FLAG values which may alter vsat.

The lures �eld must be zero.

Eighth stage | Conditional Write

The last stage decides whether to write

CLIPOUT to the vector register dependent on

the value of ADDOUT and the setting in the

wcond �eld. See Table 13 for details.

