
T0 Engineering Data

Krste Asanovi�c

James Beck

Report No. UCB/CSD-97-931

January 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

1

Abstract

T0 (Torrent-0) is a single-chip �xed-point vector microprocessor designed for multimedia,

human-interface, neural network, and other digital signal processing tasks. T0 includes a MIPS-

II compatible 32-bit integer RISC core, a 1 Kbyte instruction cache, a high performance �xed-

point vector coprocessor, a 128-bit wide external memory interface, and a byte-serial host in-

terface. T0 implements the Torrent ISA described in a separate \Torrent Architecture Manual"

technical report. This manual contains detailed information on the T0 vector microprocessor,

including information required to build T0 into a system, instruction execution timings, and

information on low level T0 software interfaces required for operating system support.

This work was supported by ONR URI Grant N00014-92-J-1617, ARPA contract number

N0001493-C0249, NSF Grant No. MIP-9311980, and NSF PYI Award No. MIP-8958568NSF.

Additional support was provided by ICSI.

2 T0 Engineering Data. Version: 1.1.

Contents

1 Introduction 6

2 CPU 8

2.1 Operating Modes : 8

2.2 Emulated instructions : 9

3 System Control Coprocessor (CP0) 10

3.1 Host Communication Registers : 10

3.2 Vector Unit Interrupt Registers : 11

3.3 Counter/Timer Registers : 12

3.4 Exception Processing Registers : 13

3.4.1 Status Register : 13

3.4.2 Cause Register : 14

3.4.3 Exception Program Counter : 15

3.4.4 Bad Virtual Address : 15

3.5 Processor Revision Identi�er : 16

4 Vector Unit Coprocessor 2 17

4.1 Vector registers : 17

4.2 Vector unit control registers : 17

4.2.1 VU Implementation and Revision Number (VCR0) : : : : : : : : : : : : : : : 18

4.2.2 Vector Length Register (VCR2) : 19

4.2.3 VU Counter (VCR1) : 19

4.2.4 VU Condition Register (VCR4) : 19

4.2.5 VU Over
ow Register (VCR8) : 20

4.2.6 VU Saturation Register (VCR12) : 20

T0 Engineering Data. Version: 1.1. 3

5 Instruction Encodings 21

6 Addressing and Memory Protection 25

7 Reset, Interrupt, and Exception Processing 26

7.1 Reset : 27

7.2 Interrupts : 28

7.3 Synchronous Exceptions : 29

8 Pipelines 30

8.1 Instruction Fetch and Decode Pipeline : 32

8.2 CPU Execution Pipeline : 33

8.3 VU Arithmetic Unit Execution Pipeline : 35

8.4 VU Memory Unit Execution Pipeline : 37

9 Instruction Cache 38

9.1 I-cache organization : 38

9.2 I-cache miss processing : 39

10 Instruction Timings 40

10.1 Control Hazards : 40

10.2 Structural Hazards : 40

10.2.1 Memory Pipeline Structural Hazards : 41

10.2.2 Scalar Bus Structural Hazards : 43

10.2.3 Vector Arithmetic Structural Hazards : 43

10.3 Data Hazards : 44

10.3.1 CPU Register Data Hazards : 45

10.3.2 Vector Length Register Data Hazards : 47

10.3.3 Vector Register Data Hazards : 47

4 T0 Engineering Data. Version: 1.1.

10.3.4 Vector Flag Register Data Hazards : 52

10.4 CP0 Timing and Hazards : 54

10.5 Instruction Cache Miss Timings : 55

11 Pin Out 57

12 Clocking 58

13 SIP 59

13.1 Signal Pins : 59

13.2 SIP Protocol : 59

13.3 SIP Shift Registers : 61

13.4 SIP instructions : 62

13.4.1 BYPASS : 62

13.4.2 MEMREAD : 62

13.4.3 MEMWRITE : 64

13.4.4 ICWRITE : 65

13.4.5 TESTIO : 66

13.4.6 SIPIO : 67

13.4.7 INTWRITE : 67

13.4.8 RUNCPU : 67

13.5 SIP Single Step : 68

14 Reset 69

15 External Interrupts 69

16 T0 Hardware Performance Monitor 70

16.1 Scalar Unit HPM information : 70

T0 Engineering Data. Version: 1.1. 5

16.2 Vector Unit HPM information : 71

16.3 Further Sources of HPM Information : 71

17 Memory Interface 72

6 T0 Engineering Data. Version: 1.1.

1 Introduction

T0 1 is a vector microprocessor, the �rst implementation of the Torrent ISA. The Torrent Architec-
ture Manual describes the Torrent ISA. This document is T0 speci�c and provides the engineering
data required to build a T0 chip into a system, timing information for T0 instruction execution,
and information on low level T0 software interfaces required for operating system support.

The overall structure of T0 is shown in Figure 1. The main components are a MIPS-II compatible
RISC CPU, an instruction fetch unit with an instruction cache, a system coprocessor (CP0), a
vector unit coprocessor (CP2), a 128-bit wide single cycle external memory interface, and a system
interface port (SIP). In addition, T0 has two fast external interrupt pins, an internal counter/timer,
and facilities for non-intrusive hardware performance monitoring.

T0 is a single chip microprocessor implemented in a 1:0�m CMOS technology with a maximum
clock frequency of 45 MHz. T0 can be run at lower clock rates to accomodate slower memory
subsystems. The CPU is a MIPS-II compatible 32-bit integer datapath. The CPU is used for
general scalar computation, and to support the vector unit by providing address generation and
loop control. The instruction fetch unit manages a 1 KB instruction cache. The cache is direct-
mapped with 64 lines each holding 4 instructions. The fast external memory interface together with
a prefetching algorithm reduce instruction cache miss penalties. The maximum cache miss penalty
is 3 cycles, and the minimum is 0 cycles. The system coprocessor is implemented as coprocessor 0.
CP0 provides exception handling, a 32-bit counter/timer, instruction cache management, and SIP
I/O registers.

The vector unit (VU) is added to the base MIPS-II architecture as coprocessor 2. The VU is a
vector register machine and contains 16 vector registers. Fifteen of these registers, $vr1{$vr15, are
general purpose and hold 32 elements each 32 bits wide. There is also a zero register, $vr0, that is
hardwired to return the value 0. There are two vector �xed point arithmetic functional units (VP0
and VP1), each with 8 separate datapaths and capable of completing up to 8 32-bit arithmetic or
logical operations per cycle. The datapaths in VP0 can perform up to 8 16-bit�16-bit multiplies
per cycle. VP1 does not include a multiplier, but otherwise the arithmetic units are identical.
The arithmetic functional units can execute \arithmetic pipeline" instructions that chain up to
6 arithmetic and logical operations within a single instruction. There is a single vector memory
functional unit (VMP), capable of sustaining up to 8 operand transfers per cycle. The external
memory interface supports up to 4 GB of single cycle memory over a 128-bit data bus. Although
T0 issues only one instruction per cycle, it overlaps parallel and pipelined execution in multiple
functional units to sustain a computational rate of 720 MOP/s 2 concurrently with a memory
bandwidth of 360 M operands/s (720 MB/s).

The system interface port (SIP) has a single control signal and an 8b data path in each direction.
Functions accessed through SIP include chip testing, interrupt signalling, instruction cache invali-
dation, instruction single step, and DMA. Peak DMA rates over SIP to and from T0 memory are
30 MB/s and 34 MB/s respectively at 45 MHz.

1T0 is an abbreviation of Torrent-0.
2Up to 4.3 GOP/s using \arithmetic pipeline" instructions.

Figure 1: T0 Structure.

Figure 2: T0 CPU registers.

T0 has a fully pipelined CPU that completes up to one instruction per cycle. T0 has the single
MIPS architected branch delay slot. There is a two cycle load-use delay, but both delay slots are
fully interlocked.

A hardware multiplier is provided that takes 18 cycles for a 32-bit�32-bit ! 64-bit integer multiply.
There is a hardware integer divider that takes 33 cycles to perform a 32-bit=32-bit divide returning
both a 32-bit integer quotient and a 32-bit remainder. Integer multiplies and divides can proceed
in parallel with other instructions provided the hi and lo registers are not read.

All other CPU instructions apart from branches, loads, multiplies and divides, have single cycle
latencies and are fully bypassed so that their results may be used in the following cycle.

In the Torrent architecture, vector memory accesses are unordered with respect to the CPU accesses,
and with respect to each other. The MIPS-II SYNC instruction is used to guarantee the order of
memory accesses. T0 processes all memory instructions in order, and the SYNC instruction has the
e�ect of waiting for the current memory instruction to complete. This can be used to synchronize
T0 memory accesses and host memory accesses over SIP, and also to wait for any pending vector
memory address errors.

2.1 Operating Modes

T0 has two operating modes: user mode and kernel mode. The current operating mode is stored
in the KUC bit in the CP0 status register. The CPU normally operates in user mode until an
exception forces a switch into kernel mode. The CPU will then normally execute an exception

T0 Engineering Data. Version: 1.1. 9

handler in kernel mode before executing a Restore From Exception (RFE) instruction to return to
user mode.

2.2 Emulated instructions

Several instructions in the MIPS-II instruction set are not implemented directly by T0. These
instructions are trapped and can be emulated in software by the trap handler.

The misaligned load/store instructions, Load Word Left (LWL), Load Word Right (LWR), Store
Word Left (SWL), and Store Word Right (SWR), are not implemented. A trap handler can
emulate the misaligned access. Compilers for T0 should avoid generating these instructions, and
should instead generate code to perform the misaligned access using multiple aligned accesses.

T0 is not designed to operate as part of a shared memory multiprocessor and so the multiprocessor
synchronisation instructions, Load Linked (LL) and Store Conditional (SC), are not implemented.

The MIPS-II trap instructions, TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU, TLTI,
TLTIU, TEQI, TNEI, are not implemented. The trap handler can perform the comparison and
if the condition is met jump to the appropriate exception routine, otherwise resuming user mode
execution after the trap instruction. Alternatively, these instructions may be synthesized by the
assembler, or simply avoided by the compiler.

The
oating point coprocessor is not present on T0. All MIPS-II coprocessor 1 instructions are
trapped and can be emulated. For higher performance, compilers for T0 can directly generate calls
to software
oating point code libraries rather than emit coprocessor instructions. This will require
a modi�ed MIPS calling convention.

10 T0 Engineering Data. Version: 1.1.

3 System Control Coprocessor (CP0)

The system control coprocessor on T0 contains a number of registers used for host communication,
the counter/timer, and exception handling. These registers are read and written using the MIPS
standard MFC0 and MTC0 instructions respectively. User mode can access the system control
coprocessor only if the cu[0] bit is set in the status register. Kernel mode can always access CP0,
regardless of the setting of the cu[0] bit. CP0 control registers are listed in Table 1.

Number Register Description

0 fromhost SIP input register.
1 tohost SIP output register.
2 vuepc Vector unit exception program counter.
3 vubadvaddr Vector unit bad virtual address.

4{7 unused.

8 badvaddr Bad virtual address.
9 count Counter/timer register.
10 unused.

11 compare Timer compare register.
12 status Status register.
13 cause Cause of last exception.
14 epc Exception program counter.
15 prid Processor revision/implementation register.

16{31 unused.

Table 1: T0 CP0 control registers.

3.1 Host Communication Registers

31 8 7 0

0 fromhost

24 8

31 8 7 0

0 tohost

24 8

Figure 3: Fromhost and Tohost Register Formats.

There are two registers used for communicating and synchronizing with an external system over
SIP. The fromhost register is an 8-bit read only register that contains a value written by the host
system over SIP. The tohost register is an 8-bit read/write register that contains a value that can
be read by the host system over SIP. The tohost register is cleared after reset to simplify host{T0
synchronization. Their format is shown in Figure 3.

T0 Engineering Data. Version: 1.1. 11

3.2 Vector Unit Interrupt Registers

31 0

vuepc

32

31 0

vubadvaddr

32

Figure 4: Vector Unit Exception PC and Bad Virtual Address Registers.

The vector memory functional unit can generate an asynchronous interrupt when it encounters an
address error on any element of a vector memory instruction. The ip5 bit of the cause register is
a sticky bit that is set by any vector address error, and can only be cleared by explicitly writing to
the cause register. If both the im5 and iec bits of the status register are set, an interrupt will be
generated whenever ip5 is set. Refer to Section 7 for further details on interrupt handlng.

The vupec register holds the program counter of the last vector memory instruction that had an
address error and the vubadvaddr register holds the e�ective virtual address that caused the fault.
These registers are updated on any vector address error, even if vector address error interrupts are
not enabled. The vuepc register always points to the actual instruction that caused the fault, even
if the instruction was in a branch delay slot.

Any vector address error stops execution of the current vector memory instruction, and leaves the
state of the vector registers and the vector
ag registers unde�ned. Execution cannot be restarted
after a vector address error, and so this interrupt is usually considered fatal to the running process.

12 T0 Engineering Data. Version: 1.1.

3.3 Counter/Timer Registers

31 0

count

32

31 0

compare

32

Figure 5: Count and Compare Registers.

T0 includes a counter/timer facility provided by the two coprocessor 0 registers count and compare.
Both registers are 32 bits wide and are both readable and writeable. Their format is shown in
Figure 5.

The count register contains a value that increments once every clock cycle. The count register is
normally only written for initialization and test purposes. A timer interrupt is
agged in ip7 in
the cause register when the count register reaches the same value as the compare register. The
interrupt will only be taken if both im7 and iec in the status register are set. The timer interrupt

ag in ip7 can only be cleared by writing the compare register. The compare register is usually
only read for test purposes.

The count register is shadowed read-only in coprocessor 2 control register space as the vcount

register.

T0 Engineering Data. Version: 1.1. 13

3.4 Exception Processing Registers

A number of CP0 registers are used for exception processing.

3.4.1 Status Register

31 28 27 16 15 8 7 6 5 4 3 2 1 0

CU 0 IM 0 KUo IEo KUp IEp KUc IEc

4 12 8 2 1 1 1 1 1 1

Figure 6: T0 Status Register Format

The status register is a 32-bit read/write register formatted as shown in Figure 6. The status

register keeps track of the processor's current operating state.

The CU �eld has a single bit for each coprocessor indicating if that coprocessor is usable. Bits 29
and 31, corresponding to coprocessor's 1 and 3, are permanently wired to 0 as these coprocessors
are not available in T0. Coprocessor 0 is always accessible in kernel mode regardless of the setting
of bit 28 of the status register. Both bit 28 and bit 30 may be on simultaneously.

The IM �eld contains interrupt mask bits. Timer interrupts are disabled by clearing im7 in bit 15.
SIP interrupts are disabled by clearing im6 in bit 14. Vector address error interrupts are disabled
by clearing im5 held in bit 13. External interrupt 0 is disabled by clearing im4 in bit 12. External
interrupt 1 is disabled by clearing im3 in bit 11. The other bits within the IM �eld are not used
on T0 and should be written with zeros. Table 7 includes a listing of interrupt bit positions and
descriptions.

The KUc/IEc/KUp/IEp/KUo/IEo bits form a three level stack holding the operating mode (ker-
nel=0/user=1) and global interrupt enable (disabled=0/enabled=1) for the current state, and the
two states before the two previous exceptions.

When an exception is taken, the stack is shifted left 2 bits and zero is written into KUc and IEc.
When a Restore From Exception (RFE) instruction is executed, the stack is shifted right 2 bits,
and the values in KUo/IEo are unchanged.

14 T0 Engineering Data. Version: 1.1.

3.4.2 Cause Register

31 30 29 28 27 16 15 8 7 6 2 1 0

BD 0 CE 0 IP 0 ExcCode 0

1 1 2 12 8 1 5 2

Figure 7: T0 Cause Register Format

The cause register is a 32-bit register formatted as shown in Figure 7. The cause register contains
information about the type of the last exception. Only the ip5 bit can be written, all other bits
are read only.

The ExcCode �eld contains an exception type code. The values for ExcCode are listed in Table 2.
The ExcCode �eld will typically be masked o� and used to index into a table of software exception
handlers.

ExcCode Mnemonic Description

0 Hint Host interrupt over SIP.
1 Vint Vector unit address error interrupt.
2 Tint Timer interrupt.
4 AdEL Address or misalignment error on load.
5 AdES Address or misalignment error on store.
6 AdEF Address or misalignment error on fetch.
8 Sys Syscall exception.
9 Bp Breakpoint exception.
10 RI Reserved instruction exception.
11 CpU Coprocessor Unusable.
12 Ov Arithmetic Over
ow.
18 VUE Vector Unit exception.

Table 2: T0 Exception Types.

If the Branch Delay bit (BD) is set, the instruction that caused the exception was executing in a
branch delay slot and epc points to the immediately preceding branch instruction. Otherwise, epc
points to the faulting instruction itself.

If the exception was a coprocessor unusable exception, then the Coprocessor Error �eld (CE)
contains the coprocessor number. This �eld is unde�ned for any other exception.

The IP �eld indicates which interrupts are pending. Field ip7 in bit 15
ags a timer interrupt.
Field ip6 in bit 14
ags an interrupt from the host over SIP. Flag ip5 in bit 13
ags a vector unit
address error. Flag ip4 in bit 12 follows the external interrupt 0 pin, and
ag ip3 in bit 11 follows
the external interrupt 1 pin. The other IP bits are unused in T0 and should be ignored when read.
Table 7 includes a listing of interrupt bit positions and descriptions.

T0 Engineering Data. Version: 1.1. 15

3.4.3 Exception Program Counter

31 0

epc

32

Figure 8: EPC Register.

Epc is a 32-bit read only register formatted as shown in Figure 8. When an exception occurs, epc is
written with the virtual address of the instruction that caused the exception, or if the instruction
was executing in a branch delay slot, the address of the branch instruction immediately preceding
the branch delay slot.

3.4.4 Bad Virtual Address

31 0

badvaddr

32

Figure 9: BadVAddr Register.

Badvaddr is a 32-bit read only register formatted as shown in Figure 9. When a scalar memory
address error generates an AdEL or AdES exception, badvaddr is written with the faulting virtual
address. The value in badvaddr is unde�ned for other exceptions.

16 T0 Engineering Data. Version: 1.1.

3.5 Processor Revision Identi�er

31 16 15 8 7 0

0 Imp Rev

16 8 8

Figure 10: Processor Revision Identi�er Register Format.

The prid register is a 32-bit read only register that contains the implementation and revision
number of the CPU. These values can be used by con�guration and diagnostic software.

The prid register format is shown in Figure 10. Bits 15{8 de�ne the implementation number, and
bits 7{0 de�ne the revision number. Bits 31{16 are reserved and return 0 on T0. The implementa-
tion number can be used by user software to detect changes in instruction set or performance. The
revision number identi�es mask revisions of T0.

Implementation �eld values are given in Table 3.

Imp. Number CPU

0 T0
1-255 reserved

Table 3: CPU Implementation types.

T0 Engineering Data. Version: 1.1. 17

4 Vector Unit Coprocessor 2

4.1 Vector registers

T0 implements 16 vector registers, $vr0{$vr15. Vector registers $vr1{$vr15 are general purpose
and each contain 32 32b elements. Vector register $vr0 is hardwired to a vector containing 32
elements with value 0. Reads of $vr0 return 0, and writes to $vr0 are ignored. Instructions
that attempt to use the unimplemented vector registers, $vr16{$vr31, cause a reserved instruction
exception.

T0 has two vector arithmetic functional units, VP0 and VP1, and a single vector memory functional
unit, VMP. Each functional unit can produce up to 8 results per clock cycle.

4.2 Vector unit control registers

The vector unit control registers are listed in Table 4. Any CFC2/CTC2 instruction that attempts
to access an unimplemented vector control register will receive an illegal instruction exception.

Number Register Description

vcr0 vrev Implementation/revision
vcr1 vcount Counter
vcr2 vlr Vector length
vcr4 vcond Vector condition
ags
vcr8 vovf Vector over
ow
ags
vcr12 vsat Vector saturation
ags

Table 4: Vector unit control registers.

18 T0 Engineering Data. Version: 1.1.

4.2.1 VU Implementation and Revision Number (VCR0)

31 16 15 8 7 0

0 Imp Rev

16 8 8

Figure 11: VU Implementation and Revision Register Format.

The vrev register is a 32-bit read only register that contains the implementation and revision
number of the VU. These values can be used by con�guration and diagnostic software.

The vrev register format is shown in Figure 11. Bits 15{8 de�ne the implementation number, and
bits 7{0 de�ne the revision number. The implementation number can be used by user software to
detect changes in instruction set or performance. The revision number identi�es mask revisions of
T0.

Implementation �eld values are given in Table 5.

Imp. Number Vector Unit

0 T0
1-255 reserved

Table 5: VU Implementation types.

T0 Engineering Data. Version: 1.1. 19

4.2.2 Vector Length Register (VCR2)

31 8 7 0

0 vlr

24 8

Figure 12: Vector Length Register Format.

The length of a vector operation is speci�ed in an 8-bit vector length register, vlr. If a vector
instruction is issued when the value in vlr is 0, no operations are performed. If a vector instruction
is issued when the value in vlr is greater than 32, a vector length error exception is raised.

Reads or writes of the vector length register do not a�ect vector instructions in progress.

4.2.3 VU Counter (VCR1)

31 0

vcount

32

Figure 13: Vector Count Register Format.

The VU count register, vcount, is a 32-bit read-only register that holds a cycle counter. It shadows
the count register in coprocessor 0. The count value is incremented once per clock cycle regardless
of host SIP activity, instruction cache misses, or interlocks.

4.2.4 VU Condition Register (VCR4)

31 0

vcond

32

Figure 14: Vector Condition Register Format.

The VU condition register, vcond, is a 32-bit read/write register as shown in Figure 14.

The vcond register is only altered by vector set less than instructions, vector set equal instructions,
and CTC2 writes of vcond. After execution of a vector comparison instruction, each bit of vcond
holds the result of the comparison for each element of the destination vector register. Bit x holds
the result of the comparison for element x.

20 T0 Engineering Data. Version: 1.1.

4.2.5 VU Over
ow Register (VCR8)

31 0

vovf

32

Figure 15: Vector Over
ow Register Format.

The VU over
ow register, vovf, is a 32-bit read/write register as shown in Figure 15. The vovf

register contains 32 sticky bits holding the over
ow status for signed integer adds and subtracts.

The vovf register is only altered by vector signed add (ADD.yy) and vector signed subtract
(SUB.yy) instructions, and control to coprocessor writes of vovf. If any result of a ADD.yy or
SUB.yy instruction over
ows, the corresponding bit of vovf is set. Bit x holds the over
ow status
of element x. The over
ow bits can only be reset by a CTC2 write of vovf.

4.2.6 VU Saturation Register (VCR12)

31 0

vsat

32

Figure 16: Vector Saturation Register Format.

The VU saturation register, vsat, is a 32-bit read/write register as shown in Figure 16. The vsat
register contains 32 sticky bits holding the saturation status for �xed point adds (FXADD.yy),
subtracts (FXSUB.yy), and multiplies (FXMUL.yy).

The vsat register is only altered by FXADD.yy, FXSUB.yy, and FXMUL.yy instructions, and
CTC2 writes of vsat. If any result of a FXADD.yy, FXSUB.yy, or FXMUL.yy instruction saturates,
the corresponding bit of vsat is set. Bit x holds the saturation status of element x. The saturation
bits can only be reset by a CTC2 write of vsat.

T0 Engineering Data. Version: 1.1. 21

5 Instruction Encodings

Figures 17, 18, and 19 detail the opcode decoding for T0. A key to the symbols appears below.

* Opcodes marked with an asterisk cause a reserved instruction exception.

� Opcodes marked with a xi are illegal but do not cause a reserved instruction exception.

� Opcodes marked with a phi cause a coprocessor 1 unusable exception.

� Opcodes marked with a delta cause a coprocessor 2 unusable exception if the CpU2 bit in the
status register is clear, otherwise they cause a reserved instruction exception.

� Opcodes marked with a sigma cause a reserved instruction exception if opers (bit 10) is set.

� Opcodes marked with a rho cause a reserved instruction exception if the register number in rd

doesn't match a coprocessor 2 control register as listed in Table 4.

� Opcodes marked with a theta cause a coprocessor 3 unusable exception.

Figure 17: T0 CPU Instruction Encodings.

Figure 18: T0 Coprocessor 0 Instruction Encodings.

Figure 19: T0 Vector Instruction Encodings.

Figure 20: T0 virtual address space.

In kernel mode, the processor can access any address in the entire 4 GB virtual address space.
In user mode, instruction fetches or scalar data accesses to the kseg segment are illegal and cause
a synchronous exception. The AdEF exception is generated for an illegal instruction fetch, and
AdEL and AdES exceptions are generated for illegal scalar loads and stores respectively. In user
mode, vector data memory accesses to the kseg segment cause an asynchronous vector unit address
interrupt to be
agged in ip5 in the cause register. For both scalar and vector stores, no data
memory will be written at the faulting address. A faulting vector memory operation will cause the
state of the vector unit to become unde�ned.

There is no memory translation hardware on T0. Virtual addresses are directly passed as physical
addresses to the external memory system. The external memory system may simply ignore unused
high order address bits, in which case each physical memory address will be shadowed multiple
times in the virtual address space.

On each memory cycle, T0 outputs information regarding the type (instruction/data, kernel/user,
read/write) of each memory access as well as the physical memory address. This information can
be used by an external memory protection system to provide �ner grain memory protection. For
example, user memory access may be restricted to a single shadow of the real physical memory.
The external memory protection system can signal faults by interrupting T0.

26 T0 Engineering Data. Version: 1.1.

7 Reset, Interrupt, and Exception Processing

There are three possible sources of disruption to normal program
ow: reset, interrupts (asyn-
chronous exceptions), and synchronous exceptions. Reset and interrupts occur asynchronously to
the executing program and can be considered to occur between instructions. Synchronous excep-
tions occur during execution of a particular instruction. Synchronous exceptions for an instruction
are checked at the start of the CPU Mp stage.

If more than one of these classes of event occurs on a given cycle, reset has higher priority, and all
interrupts have priority over all synchronous exceptions. The tables below show the priorities of
di�erent types of interrupt and synchronous exception.

The
ow of control is transferred to one of four separate reset, interrupt, and exception vectors, as
shown in Table 6. Reset and the external interrupts have separate vectors. All other exceptions
share a common vector with di�erent exceptions distinguished by di�erent values in the exccode

�eld of the status register.

Vector Address Cause

0x0000 1000 Reset

0x0000 1100 Exceptions and internal interrupts.

0x0000 1200 External interrupt 0.

0x0000 1300 External interrupt 1.

Table 6: T0 Reset, Exception, and Interrupt Vectors.

T0 Engineering Data. Version: 1.1. 27

7.1 Reset

When the external reset is deasserted, the PC is reset to 0x0000 1000 with kuc set to 0, and iec

set to 0. The e�ect is to start execution at the reset vector in kernel mode with interrupts disabled.
The tohost register is also set to zero to allow synchronization with the host system. The vector
unit is idle. All other state is unde�ned.

A typical reset sequence is shown in Figure 21.

reset_vector:

mtc0 zero, $9 # Initialize counter.

mtc0 zero, $11 # Clear any timer interrupt in compare.

mtc0 zero, $13 # Clear any vector interrupt in cause.

Initialize status with desired CU, IM, and KU/IE fields.

li k0, (CU_VAL|IM_VAL|KUIE_VAL)

mtc0 k0, $12 # Write to status register.

j kernel_init # Initialize kernel software.

Figure 21: Example reset sequence.

28 T0 Engineering Data. Version: 1.1.

7.2 Interrupts

The �ve interrupts possible on T0 are listed in Table 7 in order of decreasing priority.

Vector ExcCode Mnemonic IM/IP index Description

Highest Priority

0x0000 1100 0 Hint 6 Host SIP interrupt.
0x0000 1100 1 Vint 5 Vector unit interrupt.
0x0000 1100 2 Tint 7 Timer interrupt.

0x0000 1200 unde�ned 4 External interrupt 0.
0x0000 1300 unde�ned 3 External interrupt 1.

Lowest Priority

Table 7: T0 Interrupts.

All T0 interrupts are level triggered. For each interrupt there is an IP
ag in the cause register
that is set if that interrupt is pending, and an IM
ag in the status register that enables the
interrupt when set. In addition there is a single global interrupt enable bit, iec, that disables all
interrupts if cleared. A particular interrupt can only occur if both IP and IM for that interrupt are
set and iec is set, and there are no higher priority interrupts.

The host SIP
ag IP6 follows the intfromhost bit within the int register in the SIP interface. This
can be written by the host system over the SIP interface using the SIP INTWRITE instruction.
Usually a protocol over the SIPIO registers within the interrupt handler informs the host that it
can clear the interrupt
ag.

The vector unit interrupt
ag IP5 is set by any vector memory instruction address error. The
instruction that caused the vector address error is killed, and the vector unit state becomes unde-
�ned. The
ag bit is sticky and remains set unless explicity cleared by a MTC0 write to the cause
register.

The timer interrupt
ag IP7 is set when the value in the count register matches the value in the
compare register. The
ag can only be cleared as a side-e�ect of a MTC0 write to the compare

register.

The two external interrupt
ags, IP4 and IP3, are inverted clocked copies of the external input
pads extintb[0] and extintb[1]. These provide a fast way to signal interrupts from external
hardware.

When an interrupt is taken, the PC is set to the appropriate vector, and the KU/IE stack in the
status register is pushed two bits to the left, with KUc and IEc both cleared to 0. This starts the
interrupt handler running in kernel mode with further interrupts disabled. For internal interrupts
the exccode �eld in the cause register is set to indicate the type of interrupt. The value in exccode

is unde�ned for external interrupts.

T0 Engineering Data. Version: 1.1. 29

The epc register is loaded with a restart address. If the instruction that took the interrupt was
executing in a branch delay slot, the bd bit will be set and epc will point to the preceding branch,
otherwise bd will be clear and epc will point to the instruction itself. The epc address can be used
to restart execution after servicing the interrupt.

7.3 Synchronous Exceptions

Synchronous exceptions are listed in Table 8 in order of decreasing priority.

ExcCode Mnemonic Description

Highest Priority

6 AdEF Address or misalignment error on fetch.
11 CpU Coprocessor Unusable.
10 RI Reserved instruction exception.
8 Sys Syscall exception.
9 Bp Breakpoint exception.
12 Ov Arithmetic Over
ow.
18 VUE Vector Unit exception.
4 AdEL Address or misalignment error on load.
5 AdES Address or misalignment error on store.

Lowest Priority

Table 8: T0 Synchronous Exceptions.

After a synchronous exception, the PC is set to 0x0000 1100. The stack of kernel/user and interrupt
enable bits held in the status register is pushed left two bits, and both kuc and iec are set to 0.

The epc register is set to point to the instruction that caused the exception, unless that instruction
is in a branch delay slot in which case it points to the preceding branch instruction. The bd bit in
the cause register is set if the exception occured in a branch delay slot. The exccode �eld in the
cause register is set to indicate the type of exception.

If the exception was a coprocessor unusable exception (CpU), the ce �eld in the cause register is
set to the coprocessor number that caused the error. This �eld is unde�ned for other exceptions.

The over
ow exception (Ov) can only occur for scalar ADDI, ADD, and SUB instructions.

The vector unit exception (VUE) only occurs for vector length errors. For VINS.S and VEXT.S
instructions, the index register rd will contain the faulting length. For VEXT.V instructions, it is
necessary to examine both the index register rd and the vlr register to determine the cause of the
fault. For all other instructions, the vlr register will contain the faulting length.

If the exception was an address error on a scalar load or store (AdEL/AdES), the badvaddr register
is set to the faulting address. The value in badvaddr is unde�ned for other exceptions.

30 T0 Engineering Data. Version: 1.1.

8 Pipelines

Each T0 instruction is destined for execution in one of four pipelined execution units: the CPU,
the vector memory functional unit (VMP), or one of the two vector arithmetic functional units
(VP0 and VP1). The CPU pipeline is also used to process exceptions and interrupts for any vector
instruction. Figure 22 illustrates the overall pipeline structure of T0.

All instructions �rst pass through the instruction fetch (F) and instruction decode (D) stages,
before being dispatched to the appropriate execution unit.

The CPU has an additional 4 pipeline stages: execute (X), memory access (M), memory data align
(N), and result write-back (W). The CPU can complete one integer instruction per cycle.

The vector memory functional unit has 8 parallel pipelines, segmented into 3 stages: register read
(R), memory access (M), and register write-back (W). The vector memory unit can complete up
to 8 memory transfers per cycle.

Each of the two vector arithmetic functional units has 8 parallel pipelines, segmented into 4 stages:
register read (R), execute stage 1 (X1), execute stage 2 (X2), and register write-back (W). Each
vector arithmetic unit can produce 8 results per cycle. Within each arithmetic unit pipeline there
are 6 cascaded arithmetic and logical operators. These can be combined in the arithmetic pipeline
instructions to perform up to 6 cascaded arithmetic and logical operations in one cycle down the
pipeline.

Each clock cycle is divided into two phases, p and n (clock low and clock high respectively). Pipe
phases are written as Fp, Fn, Dp, Dn, etc. The following sections describe the actions performed
for each pipe phase in T0.

Figure 22: T0 Pipelines.

32 T0 Engineering Data. Version: 1.1.

8.1 Instruction Fetch and Decode Pipeline

Fp

� New program counter is selected and instruction's physical address is fed into the instruction
cache decoders.

Fn

� Instruction cache returns indexed instruction and generates hit/miss signal.

� If memory port is free, send out instruction physical address to start prefetch of cache line.

Dp

� Register speci�ers sent to CPU register �le read port decoders. Note must �rst decode whether
this is a coprocessor operation to mux rd instead of rs into �rst read port decoder.

� Check for reserved instructions. Flag reserved instruction exception if necessary.

� Check for SYSCALL and BREAK instructions and
ag appropriate exception.

� Perform dependency check on register operands. Calculate bypass control for CPU. Interlock
if data hazard on vector operations.

� Check for structural hazard in vector units. Interlock execution if there is no suitable free
vector unit.

� Decode CPU instruction. Calculate control for CPU datapath.

Dn

� Register �le returns CPU registers. Sign-extend immediate and perform register bypassing.

� CPU ALU and address generator starts execution.

� Dispatch instruction to appropriate execution unit.

T0 Engineering Data. Version: 1.1. 33

8.2 CPU Execution Pipeline

Xp

� Check for structural hazard on memory port. Interlock if this is a load/store and memory
port is in use.

� Branch comparator evaluates early. If branch, select program counter in concurrent Fp phase.

� Complete execution of CPU ALU operation and address generator.

� If vector-scalar, or scalar-vector, operation, scalar operand sent to vector unit.

� If vector �xed-point operation, con�guration register passed to vector control unit.

Xn

� If load/store send physical address to external memory.

� Check ALU result for integer over
ow. Flag arithmetic over
ow exception if necessary.

� ALU results forwarded to Dn stage.

� Check for any enabled interrupts, and check all exceptions for this instruction. Raise exception

ags as necessary for this instruction.

Mp

� If any exception
ags raised, take exception by killing instructions following in pipeline,
jamming PC to exception vector in concurrent Fp phase, and updating exception handling
state.

� First phase of external memory access.

Mn

� Second phase of external memory access returns value into vector memory unit latches.

Np

� Load data is aligned, and zero/sign-extended in vector memory unit.

34 T0 Engineering Data. Version: 1.1.

Nn

� Load data is passed over scbus to scalar unit and forwarded to Dn stage for bypassing.

� Register write address passed to register �le write port decoder.

Wp

� Write back result to register �le.

Wn

� This pipe stage intentionally left blank.

T0 Engineering Data. Version: 1.1. 35

8.3 VU Arithmetic Unit Execution Pipeline

Rp

� Register speci�ers passed to vector reg�le address decoders.

Rn

� Vector register �le reads next vector operands.

� Scalar value received from CPU.

� Con�guration register information received from CPU.

� Instruction control lines decoded.

X1p

� Mux vector-vector, vector-scalar, or scalar-vector operands into pipeline.

� Begin multiplier evaluation.

� Begin logic unit evaluation.

� Begin left shifter evaluation.

X1n

� Complete multiplier evaluation.

� Complete logic unit evaluation.

� Complete left shifter evaluation.

� Sign-extend and mux adder inputs.

� Start adder evaluation.

X2p

� Complete adder evaluation.

36 T0 Engineering Data. Version: 1.1.

X2n

� Evaluate conditional move condition.

� Evaluate right shifter and sticky bit logic.

� Mux clipper input.

� Start clipper evaluation.

Wp

� Complete clipper evaluation.

� Write clipper output to vector register �le.

� Pass condition/over
ow/saturation
ags to CPU.

Wn

� Write condition/over
ow/saturation
ags in CPU.

T0 Engineering Data. Version: 1.1. 37

8.4 VU Memory Unit Execution Pipeline

This section only describes scalar, contiguous and strided vector memory pipeline operations. In-
dexed operations have a more complicated pipeline scheme.

Rp

� Register speci�ers passed to vector reg�le address decoders.

� Memory address evaluated in concurrent CPU Xp stage.

Rn

� Vector register �le reads next vector operands.

� Scalar store or scalar insert value received from CPU.

Mp

� Mux store and vector extract operands out to memory crossbar.

Mn

� Complete drive of store data out to memory.

� Receive load data back from memory.

� Mux load data or vector extract data through crossbar.

Wp

� Sign or zero extend load data.

� Write vector load data to vector register �le.

Wn

� Send scalar load data or scalar extract value to CPU.

Figure 23: T0 Instruction Cache Read.

Note that the top four bits of the instruction address are ignored for the purposes of cache tag
matching. To avoid cache aliasing, the maximum program size must be limited to 256 MB. Alterna-
tively, explicit cache invalidate instructions can be issued before moving between aliased instruction
addresses.

T0 Engineering Data. Version: 1.1. 39

9.2 I-cache miss processing

On an I-cache miss a complete 16 byte line is read from external memory. In the worst case, the
I-cache has a miss penalty of 3 cycles. When a miss is detected for an instruction during the F

stage, the cache fetch state machine begins a 3 state miss service loop.

In the �rst miss cycle, the address of the cache line containing the missing instruction is output on
the address bus. During the second miss cycle, the external memory returns the line containing
the missing instruction. The third miss cycle is used to write back the new line into the instruction
cache, and to forward the fetched instruction to the CPU decode stage.

To help reduce miss penalties, T0 also implements a simple prefetching scheme. Whenever the
memory port is not busy with a host SIP access, a CPU load/store, a vector load/store, or a vector
extract, the instruction address being fetched internally from the cache is also prefetched from the
external memory. The prefetch address is output during the normal F cycle. If there is a miss, the
fetch engine can omit the �rst cycle of the normal miss service loop thus reducing the cache miss
penalty to 2 cycles.

To further reduce miss penalties, the fetch stage operates autonomously and can service miss
requests while the D stage is interlocked or stalled on the memory pipeline. If instruction i is
interlocked in the D stage, the F stage can service a miss on the instruction i+ 1. In this case the
miss penalty may be completely hidden behind the interlock stall. If the D stage is stalled waiting
for a vector memory instruction to �nish, the concurrent F stage I-cache miss servicing will only
steal a single memory cycle from the ongoing vector memory access and can hide the rest of the 3
cycle miss latency behind the memory stall.

40 T0 Engineering Data. Version: 1.1.

10 Instruction Timings

This section gives timing information for T0 instruction execution. T0 is fully interlocked with
no architecturally visible hazards, except for the MIPS standard branch delay slot and the MIPS
standard integer multiplier/divider hazards. T0 issues at most one instruction per cycle. All of T0
memory is constructed from pipelined SRAM, and hence there is no data cache, and no DRAM
paging or refresh penalties. T0 has an instruction cache with miss penalties described below.

The timing information is separated into control hazards, structural hazards, and data hazards.

10.1 Control Hazards

The only control hazard on T0 is the single architected branch delay slot. The instruction following
a branch is always executed, except after a not-taken branch likely instruction.

The MIPS-II branch likely instructions ensure that the branch delay slots can always be �lled. If
no independent instruction can be moved down from the preceding basic block to �ll a normal
branch delay slot, the instruction at the target of the branch can be moved into the delay slot and
the branch changed to a branch likely.

10.2 Structural Hazards

A structural hazard occurs when an instruction cannot issue because one of the resources it requires
for execution is in use by a previously issued instruction. There are three sources of such resource
con
icts on T0: the memory pipeline, the two vector arithmetic pipelines, and the internal scalar
bus (scbus). The memory pipeline is also used by the SIP port to read and write T0 memory, and
by the instruction fetch unit for instruction cache re�lls.

Note that there are no structural hazards on the scalar multiplier/divider. There are data hazards
that must be obeyed to correctly retrieve results, see Section 10.3.1.

In the following, the times that instructions occupy a resource are given in cycles. If an instruction
occupies a resource for a single cycle, then a following instruction that requires the same resource
can issue in the next cycle in a fully pipelined manner.

T0 Engineering Data. Version: 1.1. 41

10.2.1 Memory Pipeline Structural Hazards

The memory pipeline handles external SIP memory requests, instruction cache re�lls, as well as
scalar and vector memory operations. SIP memory accesses have highest priority, instruction cache
re�lls have the next highest priority, and scalar and vector memory pipeline operations have the low-
est priority. If there is a memory instruction in progress when a SIP access or instruction cache re�ll
occurs, the complete vector unit will stall (the vector arithmetic units must also stall to preserve
chaining). The CPU will only stall if the memory instruction in progress was a scalar load/store
or a scalar insert/extract. If there are no memory requests on a given cycle, the instruction fetch
unit prefetches the next instruction cache line.

SIP memory requests take one cycle in the memory pipeline. Section 13 contains detailed timing
information of this access relative to SIP state machine activity.

Instruction cache re�lls take one cycle in the memory pipeline. This re�ll cycle is not required if
there was an instruction prefetch during the fetch cycle that missed in the instruction cache.

Scalar load/store and scalar insert/extract instructions take one cycle in the memory pipeline.

Scalar sync instructions take one cycle in the memory pipeline. These are added to perform memory
synchronization, and ordinarily a scheduler should not move other instructions across a sync.

Vector extracts run at di�erent rates depending on the alignment of the extract index. If the
extract index is a multiple of 8 (0, 8, 16, 24), then values can be read and written within the same
datapath over a special bypass path without using the memory crossbar, and so can proceed at
the rate of 8 32-bit elements per cycle. Otherwise, the extract must transfer elements using the
memory crossbar which is limited to moving at most 4 32-bit elements per cycle. If the extract
index is not a multiple of 4 and the vector to be extracted crosses an alignment boundary of 4
elements, then a further misalignment cycle is also required.

Contiguous vector memory instructions transfer up to 16 bytes per cycle between the memory data
bus and 8 ports of the vector register �le. Byte load/stores move up to 8 bytes per cycle; these are
constrained by the number of ports on the vector register �le. Halfword load/stores move 16 bytes
per cycle, as 8 2-byte values. Word load/stores move 16 bytes per cycle, as 4 4-byte values.

Contiguous vector memory stores occupy the vector memory pipeline for a number of cycles equal
to the number of naturally aligned blocks of memory that are written, where a block is 8 bytes for
contiguous byte stores and 16 bytes for contiguous halfword and word stores.

Contiguous vector memory loads have a more complicated behaviour. The number of cycles is at
least the number of naturally aligned blocks of memory that are read. However, the number of
cycles is also bounded by the number cycles taken to write the vector register �le. The vector
register �le can accept up to 8 operands per cycle, but all operands on the same register �le row
must be available before a register row write takes place. Register rows are 8 elements wide for byte
and halfword loads, and 4 elements wide for word loads. For scheduling purposes, a simpler model
for the cycle count can be used, just counting the number of memory blocks read. This �gure will
be at most 1 cycle too small.

42 T0 Engineering Data. Version: 1.1.

The strided vector load/store instructions only load/store one operand per cycle. These take vlr
cycles to complete.

The indexed vector loads load one operand per cycle but incur a 3 cycle latency to read the �rst
address index. Indexed stores incur the same startup latency, but also require an extra cycle to
read a group of 8 indices every 8 operands since there is only one vector register read port in the
memory pipeline.

Table 9 summarizes the number of cycles that each memory pipeline operation occupies the pipeline.

Operation Cycles in VMP

SIP MEMREAD, MEMWRITE, ICWRITE 1

I-cache re�ll 1

Instruction Cycles in VMP

lb, lbu, sb, lh, lhu, sh, lw, sw 1

sync 1

vins.s, vext.s 1

vext.v, index in rd 8-aligned dvlr=8e
vext.v, index in rd 4-aligned dvlr=4e
vext.v, index in rd not 4-aligned 1 + dvlr=4e

lbai.v, lbuai.v, sbai.v brd+(vlr�1)
8

c � brd
8
c+ 1y

lhai.v, lhuai.v, shai.v brd+2�(vlr�1)
16

c � brd
16
c+ 1y

lwai.v, swai.v brd+4�(vlr�1)
16

c � brd
16
c+ 1y

lbst.v, lbust.v, lhst.v, lhust.v, lwst.v, sbst.v,
shst.v, swst.v

vlr

lbx.v, lbux.v, lhx.v, lhux.v, lwx.v 3 + vlr

sbx.v, shx.v, swx.v 2 + dvlr=8e+ vlr

Table 9: Memory pipeline usage for T0 instructions. Vector instruction timing is a�ected by the
vector length vlr, and vector contiguous load/store and vector extract timing is also a�ected by

the alignment of the address or extract index in the rd register. y The model for contiguous loads
has been simpli�ed, and these can take an extra cycle in certain cases. See text for details.

T0 Engineering Data. Version: 1.1. 43

10.2.2 Scalar Bus Structural Hazards

A single on-chip bus carries both coprocessor register values and vector indexed memory operation
indices into the CPU. Indexed vector memory instructions occupy the scalar bus for their entire
duration. Table 10 summarizes the scalar bus structural hazards.

Instruction Cycles on scbus

mfc0, cfc2 1

lbx.v, lbux.v, lhx.v, lhux.v, lwx.v 3 + vlr

sbx.v, shx.v, swx.v 2 + dvlr=8e+ vlr

Table 10: Scalar bus usage for T0 instructions. Vector instruction timing is a�ected by the vector
length vlr.

10.2.3 Vector Arithmetic Structural Hazards

T0 has two vector arithmetic units VP0 and VP1. They are identical except that VP1 does not
have a multiplier. All fxmul instructions must execute in VP0, but all other instructions can be
executed in either pipeline. If both arithmetic units are free and a non-multiply instruction is
decoded it will be issued to VP1 rather than VP0.

Each of the two vector arithmetic units completes 8 element operations per cycle. An arithmetic
unit is busy for dvlr=8e clock cycles when processing an arithmetic operation on a vector of length
vlr.

44 T0 Engineering Data. Version: 1.1.

10.3 Data Hazards

Instructions access memory in order of issue through a single memory pipeline, with memory access
occurring in the same pipeline stage for all instructions, and so T0 has no data hazards on memory
values. The only data hazards that can occur are on register values. Data hazards are of three
types: Read-After-Write, Write-After-Read, and Write-After-Write.

A Read-After-Write (RAW) hazard is a true dependency, whereby an instruction must wait for
one of its source registers to be written by a previous instruction. If the new instruction was not
delayed, it would get an incorrect earlier value for its source operand.

A Write-After-Read (WAR) hazard is a false dependency, whereby an instruction cannot overwrite
one of its destination registers until all previous instructions reading that register have obtained
the original value. If the new instruction was not delayed, the old instructions would incorrectly
get the new value for the register.

A Write-After-Write (WAW) hazard is a false dependency, whereby an instruction cannot overwrite
one of its destination registers until all previous instructions that write the same register have
�nished. If the new instruction was not delayed, the old instructions would eventually �nish and
update the register, thus destroying the correct new value.

The following sections detail the data hazard timings for T0, with each section describing one group
of registers: the CPU scalar registers including hi and lo, the vector length register vlr, the vector
registers $vr0{$vr15, and the vector
ag registers vcond, vovf, and vsat.

Data hazards occur between a pair of instructions, the instruction that �rst accesses a register and
a second instruction that also wants to access the same register. In the tables that summarize
data hazards, the �rst instruction to issue is listed in the rows and the second instruction in the
columns. The values in the tables give the minimum number of delay cycles required between the
two instructions to avoid the given data hazard on the given register. Except for the WAR hazard
on the scalar multiplier/divider registers which must be scheduled, T0 has hardware interlocks that
delay issue of a new instruction until all data hazards are resolved. Instruction scheduling is not
required for correctness but only to improve performance. The number of delay cycles represents
the minimum number of instructions that should be scheduled between dependent instructions to
avoid an interlock. For example, scalar loads have two delay cycles. The sequence:

lw t1, (a0)

addiu t1, 1 # Two hardware interlock cycles.

will incur two hardware interlock cycles. These interlock cycles may be usefully �lled with two
independent instructions as shown below:

lw t1, (a0)

addiu a0, 4 # Schedule other instructions in delay cycles.

slt t2, a0, a1

addiu t1, 1 # No interlock.

T0 Engineering Data. Version: 1.1. 45

10.3.1 CPU Register Data Hazards

The result of most CPU instructions are available to the instruction issued in the next cycle. The
only exceptions that cause RAW hazards are loads, scalar extracts, coprocessor register reads, and
multiplies and divides.

Scalar memory loads (lb/lbu/lh/lhu/lw) have a latency of 3 cycles, and so 2 delay cycles. Reads
from coprocessor registers (mfc0/cfc2) have 2 delay cycles. Scalar extracts from vector registers
(vext.s) have 2 delay cycles. There are 17 delay cycles between the issue of an integer multiply
(mult/multu) and the read of the result (mfhi/mflo). There are 32 delay cycles between the issue
of an integer divide (div/divu) and the read of the result (mfhi/mflo). There is a single delay cycle
between any mthi/mtlo instruction and any mfhi/mflo instruction, e.g., a mthi followed by a mflo
will experience a single delay cycle even though the two instructions reference di�erent registers.

To simplify the implementation, there is a false interlock on the scalar extract instruction vext.s:
The scalar rt destination register of a vext.s instruction is interlocked as though it were a source
register even though its value is not read.

All CPU ALU instructions read the register �le early in the pipeline and write the register �le late
in the pipeline, so there are no WAR hazards for the general purpose registers.

The multiplier/divider registers are written early in the pipeline. A mfhi or mflo in-
struction cannot be followed by any instruction that changes the hi or lo registers
(mthi/mtlo/mult/multu/div/divu). There is no hardware interlock for this WAR hazard, and
there must be an intervening instruction for correct execution. Note there only needs to be a single
instruction separating the read and write, not two as speci�ed in the MIPS architecture.

There are no WAWhazards for the CPU general purpose registers or the multiplier/divider registers.

Tables 11{13 summarize the data hazards in the CPU registers.

46 T0 Engineering Data. Version: 1.1.

Reader Any GPR Read
Writer

lb/lbu/lh/lhu/lw 2

mfc0/cfc2 2

vext.s 2

Table 11: RAW hazards for CPU GPRs. Timings are given as number of delay cycles.

Reader mfhi/mflo
Writer

mthi/mtlo 1

mult/multu 17

div/divu 32

Table 12: RAW hazards for CPU hi/lo registers. Timings are given as number of delay cycles.

Writer mthi mtlo mult/multu/div/divu
Reader

mfhi 1 mandatory 0 1 mandatory

mflo 0 1 mandatory 1 mandatory

Table 13: WAR hazards for CPU hi/lo registers. Timings are given as number of delay cycles.
There is no hardware interlock for these hazards and so the delay cycles are labeled mandatory.
An instruction must be scheduled between the reader and writer for correct execution.

T0 Engineering Data. Version: 1.1. 47

10.3.2 Vector Length Register Data Hazards

The current e�ective length of the vector registers is speci�ed in the vector length register vlr,
which is implemented as coprocessor 2 control register 2 and accessed with the MIPS standard
ctc2/cfc2 instructions. This vector length is an implicit source operand of all vector instructions
(other than scalar insert and extract). There are no RAW hazards on vlr for vector instructions;
a ctc2 write of vlr will take e�ect on the next cycle. Scalar unit reads of vlr incur the same two
cycle delay as any coprocessor register read.

There are no WAR or WAW hazards on vlr. Each vector functional unit copies the vector length
at instruction issue, so the vector length register can be changed at any time without a�ecting
ongoing vector operations.

10.3.3 Vector Register Data Hazards

The vector register �le on T0 provides dedicated read and write ports for each operand of each
vector functional unit, except that the vector memory pipeline uses the same read port for store
indices and store data during indexed store operations. This removes register port access restrictions
and so the only vector register hazards possible are due to RAW, WAR, or WAW dependencies on
element values. T0 provides chaining with a fully multi-ported vector register �le rather than by
bypassing around functional units. This removes the need for a speci�ed chain slot time, and also
allows chaining of WAR and WAW hazards.

All vector arithmetic instructions behave identically as regards vector register data hazards, and so
in the following they are referred to collectively as VALU instructions. All VALU instructions read
vector source registers at the rate of 8 elements per cycle starting at element zero. They also write
results to destination vector registers at the rate of 8 elements per cycle starting at element zero.
Vector arithmetic instructions have a 3 cycle pipeline, with a 1/2 cycle to read vector registers,
2 cycles of execution, then a 1/2 cycle to write back vector register results. Dependent vector
arithmetic instructions can be chained after 2 delay cycles.

Vector memory instructions have a wider range of behaviors depending on instruction class, data
size, and address or extract index alignment. Contiguous vector loads and stores of bytes and
halfwords can proceed at the rate of 8 elements per cycle, and so can be directly chained with
arithmetic operations. Contiguous vector loads of bytes and halfwords have a single delay slot, plus
an extra delay slot if the base address was not aligned.

Contiguous vector loads and stores of words can only transfer 4 elements per cycle. This prevents
direct chaining with subsequent VALU instructions except towards the end of longer vectors. In
this case the dependent VALU instructions can start when it is certain that the contiguous word
memory operation can complete its vector register access before the VALU catches up.

Strided and indexed vector load/stores complete at the rate of one element per cycle. This prevents
subsequent VALU instructions from chaining except for the last few cycles of long vectors when it
is then certain that that strided or indexed operations will complete before the VALU instruction

48 T0 Engineering Data. Version: 1.1.

catches up. Indexed operations have an extra start up penalty due to the time needed to �rst read
index values into the address generator. Indexed stores share a single vector register read port
between indices and store data, and so require an extra cycle every 8 cycles to read out the next
group of 8 indices.

Scalar and vector extracts can read values from any position in a vector register depending on the
value in a scalar index register. The index register value is not known at instruction issue time,
and so the instruction dispatch unit must make the conservative assumption that values could be
read from anywhere in the source vector register. These extract instructions cannot issue until all
pending writes to the source vector register have completed.

Vector extract instructions write values at di�erent rates depending on the extract index (see
structural hazards above). When the extract index is 8-aligned, the vector extract instruction
produces results at the rate of 8 elements per cycle and can be chained to arithmetic operations.
When the extract index is not 8-aligned, values are produced at the rate of 4 elements per cycle
and so direct chaining is not possible, except towards the end of long vectors as for contiguous word
loads.

Scalar inserts into a vector register can potentially write to any location in its vector destination
register depending on the value in a scalar index register. Since the index register value is not known
at issue time, the instruction dispatch unit must make a conservative assumption and assume that
it could write anywhere in the destination register. To prevent WAR and WAW hazards with pre-
vious vector arithmetic instructions, the insert instruction cannot issue until all ongoing arithmetic
instructions have �nished reading and writing their source and destination vector registers. To
simplify the implementation the scalar insert instruction interlock logic does not compare vector
register numbers and so will interlock until all ongoing vector arithmetic instructions complete,
regardless of which vector registers they access.

The vector memory pipeline is one cycle shorter than the vector arithmetic pipelines. To avoid a
WAW hazard, a vector memory pipeline operation cannot write the same destination vector register
as an immediately preceding vector arithmetic instruction and is delayed for one cycle.

Tables 14{16 summarize the di�erent hazard timings for the vector registers on T0.

T0 Engineering Data. Version: 1.1. 49

Reader

VALU (vt/vd),
s ai.v (vd),
s st.v (vd),
l x.v (vt indices),
s x.v (vt indices)

s x.v

(vd data)
vext.v (vd),
vext.s (vd)

Writer

VALU (vw) 2 0 1 + dvlr=8e

lbai.v (vd) m8 + 1 S.H. m8 + dvlr=8e

lhai.v (vd) m16 + 1 S.H. m16 + dvlr=8e

lwai.v (vd) m16 + min(dvlr=4e; 5) S.H. m16 + dvlr=4e

l st.v (vd) min(vlr; 29) S.H. vlr

l x.v (vd) min(vlr+ 3; 32) S.H. vlr+ 3

vins.s (vd) 1 S.H. 1

vext.v (vd), index in rd 8-aligned 1 S.H. dvlr=8e
vext.v (vd), index in rd 4-aligned min(dvlr=4e; 5) S.H. dvlr=4e
vext.v (vd), index in rd not 4-aligned 1 + min(dvlr=4e; 5) S.H. 1 + dvlr=4e

Table 14: RAW hazards for vector registers. Timings are given as number of delay cycles. The
vlr value represents the vector length of the �rst instruction issued, i.e., the writer. Data hazard
timing after a vector contiguous load is a�ected by whether the base address is misaligned: m8 = 1
if vector misaligned on an 8 byte boundary and vector crosses an 8 byte boundary, 0 otherwise;
m16 = 1 if vector misaligned on a 16 byte boundary and vector crosses a 16 byte boundary, 0
otherwise. Entries labeled S.H. have data hazards that are always dominated by the structural
hazard on the vector memory pipeline.

50 T0 Engineering Data. Version: 1.1.

Writer VALU (vw)

l ai.v (vd),
l st.v (vd),
l x.v (vd data),
vext.v (vd)

vins.s

All
regis-
ters.

Reader

VALU (vt/vd) 0 0 dvlr=8e

sbai.v/shai.v (vd) 0 S.H. S.H.

swai.v (vd) min(dvlr=4e; 3) S.H. S.H.

s st.v (vd) min(vlr; 27) S.H. S.H.

l x.v (vt indices) min(vlr+ 3; 27) S.H. S.H.

s x.v (vt indices) min(2 + dvlr=8e+ vlr; 29) S.H. S.H.

s x.v (vd data) min(2 + dvlr=8e+ vlr; 33) S.H. S.H.

vext.s (vd) 0 S.H. S.H.

vext.v (vt), index in rd 8-aligned 0 S.H. S.H.

vext.v (vt), index in rd 4-aligned min(dvlr=4e; 3) S.H. S.H.

vext.v (vt), index in rd not 4-aligned 1 +min(dvlr=4e; 3) S.H. S.H.

Table 15: WAR hazards for vector registers. Timings are given as number of delay cycles. The
vlr value represents the vector length of the �rst instruction issued, i.e., the reader. The WAR
interlock on vins.s does not distinguish between vector registers and so blocks for any ongoing
arithmetic operations. The entries labeled S.H. have data hazards that are always dominated by
the structural hazard on the vector memory pipeline.

T0 Engineering Data. Version: 1.1. 51

Second Writer VALU (vw)

l ai.v (vd),
l st.v (vd),
l x.v (vd data),
vext.v (vd)

vins.s

All
regis-
ters.

First Writer

VALU (vw) 0 1 dvlr=8e

lbai.v/lhai.v (vd) 0 0 0

lwai.v (vd) min(dvlr=4e; 3) S.H. S.H.

l st.v (vd) min(vlr; 27) S.H. S.H.

l x.v (vd data) min(vlr+ 3; 30) S.H. S.H.

vins.s (vd) 0 S.H. S.H.

vext.v (vt), index in rd 8-aligned 0 S.H. S.H.

vext.v (vt), index in rd 4-aligned min(dvlr=4e; 3) S.H. S.H.

vext.v (vt), index in rd not 4-aligned 1 +min(dvlr=4e; 3) S.H. S.H.

Table 16: WAW hazards for vector registers. Timings are given as number of delay cycles. The vlr
value represents the vector length of the �rst instruction issued. The WAW interlock on vins.s

does not distinguish between vector registers and so blocks for any ongoing arithmetic operations.
The entries labeled S.H. have data hazards that are always dominated by the structural hazard on
the vector memory pipeline.

52 T0 Engineering Data. Version: 1.1.

10.3.4 Vector Flag Register Data Hazards

There are three vector
ag registers implemented as coprocessor 2 control registers: vcond, vovf,
and vsat. These
ag registers are written by the vector arithmetic pipelines, and read and written
by the scalar unit using the MIPS standard cfc2/ctc2 instructions.

The
ag registers have a single bit per vector element, and are written at the rate of 8 bits per
cycle by the vector arithmetic units. Flag register writes happen at the end of the vector arithmetic
pipeline, in the cycle after the corresponding vector register elements are written. The scalar unit
reads
ag registers 32 bits at a time, and so scalar
ag register reads cannot be chained and must
wait for any ongoing vector arithmetic
ag write to complete. Similary, the scalar unit writes 32
bits at a time, and to prevent WAW hazards, a scalar
ag write must wait for any ongoing vector
arithmetic
ag write to complete. The vovf and vsat registers hold sticky bits and new vector
arithmetic
ag values are OR-ed together with the existing values. The OR occurs in the same
cycle as the write and so there are no associated data hazards.

Tables 17{19 summarize the data hazard timings for the vector
ag registers. The timings for each
of the three
ag registers is the same, so only one set of tables is given. The VFLAGW instruc-
tion represents any instruction that writes a particular
ag register. The only vector arithmetic
instructions that write vcond are the vector set
ag instructions: flt. , fltu. , and feq. .
The only vector arithmetic instructions that write vovf are the signed integer add and subtract
instructions: add. and sub. . The only vector arithmetic instructions to write the vsat register
are the �xed-point instructions: fxadd. , fxsub. , and fxmul. .

T0 Engineering Data. Version: 1.1. 53

Reader cfc2

Writer

VFLAGW dvlr=8e

ctc2 0

Table 17: RAW hazards for vector
ag registers. Timings are given as number of delay cycles.

Writer VFLAGW ctc2

Reader

cfc2 0 0

Table 18: WAR hazards for vector
ag registers. Timings are given as number of delay cycles.

Second Writer VFLAGW ctc2

First Writer

VFLAGW 0 dvlr=8e

ctc2 0 0

Table 19: WAW hazards for vector
ag registers. Timings are given as number of delay cycles.

54 T0 Engineering Data. Version: 1.1.

10.4 CP0 Timing and Hazards

A rfe instruction will take e�ect on the cycle immediately following the icinv instruction.

An icinv instruction will cause a cache
ush before the instruction fetch of the fourth cycle
following.

A value written into a CP0 register by a mtc0 can be read on the following cycle by a mfc0.

A mtc0 that changes the cu2, cu0, im[7:3], kuc, or iec �elds in the status register takes e�ect
on the second cycle following the instruction. However, an rfe instruction may follow directly after
a mtc0 write of the KU/IE stack and will use the new values.

A mtc0 that changes the ip5 bit in the cause register takes e�ect on the second cycle following the
instruction.

A mtc0 that writes the compare register clears any pending timer interrupt by the second cycle
following the instruction.

The counter/timer count and compare registers are written at the same point in the pipeline. This
means that if the compare register is written one cycle after the count register with a value that is
larger by 1 then a timer interrupt will be
agged immediately. Note that intervening SIP activity,
interrupts, or cache misses could cause the second register write to be delayed and hence prevent
the interrupt occuring for approximately 232 cycles.

T0 Engineering Data. Version: 1.1. 55

10.5 Instruction Cache Miss Timings

T0 has a 1 KB instruction cache (256 instructions) organized as a direct mapped cache holding 64
lines of 4 instructions (16 bytes) each.

Servicing a cache miss takes 3 cycles if the memory port is busy during the fetch stage of the missed
instruction. The memory port may be busy due to a SIP memory access, a previously issued vector
memory operation, or a scalar memory instruction issued in the last-but-one cycle.

If the memory port is free during the fetch stage, the miss penalty is reduced to 2 cycles.

For example, in the following code sequence the second lw uses the memory port and causes the
instruction cache miss to take 3 cycles.

.align 4 # Next four instructions on one cache line.

lw v1, (a0)

xor a1, a2, a3

lw t1, 4(a0) # This instruction uses memory port.

addiu a1, 1

#----------------- Cache line boundary.

bgtz v1, target # This instruction will have 3 cycle miss penalty.

sw v1, 4(a0)

In the following code, the �rst addiu does not use the memory port so there is only a 2 cycle miss
penalty.

.align 4 # Next four instructions on one cache line.

lw v1, (a0)

xor a1, a2, a3

addiu a1, 1 # This instruction does not use memory port.

lw t1, 4(a0)

#----------------- Cache line boundary.

bgtz v1, target # This will have 2 cycle penalty if not in cache.

sw v1, 4(a0)

56 T0 Engineering Data. Version: 1.1.

Note that branches and jumps never use the memory port, so the target instruction will have a
2 cycle miss penalty if there are no other accesses on the memory port.

jal subroutine # Does not use memory port.

addiu a0, t5, t8

...

...

subroutine:

lw t0, (a0) # 2 cycle miss penalty if not in cache.

...

Instruction cache misses are overlapped with interlocks and stalls. In the following code sequence,
the I-cache miss service time of the add is completely hidden by the interlock on the mfhi instruction.

mult t0, t1

b target

mfhi t0 # Interlocked for 17 cycles.

...

target:

addu t0, t3 # Any cache miss time hidden.

The cache miss still needs to steal a single cycle from the memory port for the re�ll.

T0 Engineering Data. Version: 1.1. 57

11 Pin Out

Table 20 lists the signal names of all active pads for T0.

Name Direction Number Description

System Clock

clk2xin I 1 2x clock input.
clkout O 1 clock output.

Reset

rstb I 1 System Reset.

External Interrupts

extintb[1:0] I 2 External interrupts.

SIP Port

tms I 1 Test mode select.
tdi[7:0] I 8 Test data in.
tdo[7:0] O 8 Test data out.

Hardware Performance Monitoring

hpm[7:0] O 8 Hardware performance monitor port.

Memory Interface

a[31:4] O 28 Address.
nkrwb O 1 Not killed read/write.
id O 1 Instruction/data access.
ku O 1 Kernel/user access.

d[127:0] I/O 128 Data bus.
weninb[1:0] I 2 Write enable pulse (1 per 8 bytes).

rw O 1 Global read/write.
bwenb[15:0] O 16 Byte write enables.

Total 208

Table 20: T0 Signal Pads.

58 T0 Engineering Data. Version: 1.1.

12 Clocking

T0 takes a double frequency input clock, clk2xin, that is divided down by 2 internally to ensure
a 50% duty cycle. This divided down clock is bu�ered to form the on-chip clock phi. To allow
synchronization of external circuitry, phi is inverted and sent o� chip via the low skew clkout pad.

Table 21 gives speci�cations for the clocking circuitry on T0, and the timing is shown in Figure 24.

clk2xin

Minimum cycle time (ns) 11.2

Table 21: T0 Clock Pad Speci�cations.

clk2xin

clkout

10 ns (min)

Unspecified

Figure 24: T0 Clock Timing.

T0 Engineering Data. Version: 1.1. 59

13 SIP

The SIP port on T0 is used for chip and board testing, and for data I/O. The SIP port is based
on the JTAG standard, with �ve di�erences:

� There is no separate test clock (TCLK). T0 SIP uses the internal clock, available on clkout.

� No boundary scan instructions are implemented (no EXTEST and no SAMPLE/PRELOAD).

� Data is shifted eight bits per cycle (instead of one bit per cycle) through the scan chain shift
registers.

� All data in and data out timing is with respect to the rising edge of clkout. (In the JTAG
standard, tdo is clocked on the falling edge of clkout.)

� The port is reset by holding tms high for six clock cycles whereupon the TAP state machine
enters the Test-Logic-Reset state and BYPASS is loaded into the instruction register. This
takes one cycle longer than the JTAG standard because T0 SIP has a synchronous reset of
the instruction register in the BYPASS state.

13.1 Signal Pins

The T0 SIP signal pins are listed in Table 22. Note the system reset pin, rstb, does not a�ect the
SIP port.

Pin name Direction Description

tms I Mode select.
tdi[7:0] I Data in.
tdo[7:0] O Data out.

Table 22: T0 SIP signal pins.

13.2 SIP Protocol

The SIP state machine is shown in Figure 25. The transitions are controlled by the value of the
tms input, indicated by the width of the transition line.

60 T0 Engineering Data. Version: 1.1.

Test-Logic-Reset & Load Bypass

Run-Test-Idle Select-DR

Shift-DR

Exit1-DR

Pause-DR

Exit1-IR

Select-IR

Capture-IR

Shift-IR

Exit2-DR

Update-DR Update-IR

Pause-IR

Exit2-IR

TMS=0 TMS=1

Capture-DR

DATA Loop INSTRUCTION Loop

Figure 25: SIP TAP controller states.

The SIP protocol is similar to the JTAG standard, except that eight bits are shifted every cycle
in the Shift-IR and Shift-DR states. Also di�erent is that tms, tdo[7:0] and tdi[7:0] are all
speci�ed with respect to the rising edge of clkout, as shown in Figure 26.

clkout

tms

Tmsu

tdi[7:0] data in data in data in

Tdsu

tdo[7:0] data out data out data out data out

Tdly

Figure 26: T0 SIP TAP controller timing.

T0 Engineering Data. Version: 1.1. 61

13.3 SIP Shift Registers

SIP shift registers transport data in an 8-bit-serial fashion between tdi[7:0] and tdo[7:0] and
have parallel inputs and outputs. The parallel inputs capture data from within T0, and the parallel
outputs are used to write state within T0.

There are only two shift registers in T0, an 8-bit shift register named regio and a 160-bit shift
register named memio, shown in Figure 27. The 8-bit regio shift register is used to load the
instruction register, and to load various other control registers. The memio shift register contains a
32-bit address �eld and a 128-bit data �eld and is used to read and write T0 external memory, to
write the T0 instruction cache, and to read back the T0 program counter for debugging purposes.

There are two kinds of registers read and written from regio, the JTAG instruction register and a
number of T0 control registers. The instruction register is loaded from regio on the Scan-IR loop
of the TAP state machine. The other registers are loaded from the regio register on the Scan-DR
loop of the TAP state machine.

tdi[7:0]
tdo[7:0]

memio

regio

Address

P.C.

0x01 0x01 0x01 0x01

Instruction int fromhost

tohost

testcntl

testresult

(runcpu) (bypass)

ICWRITE - Instruction Cache Write (0x03)

MEMWRITE - Memory Data Write (0x01)

MEMREAD - Memory Data Read (0x00)

tmsTAP

Controller

TESTIO INTWRITE SIPIO RUNCPU BYPASS

16 Bytes 4 Bytes

1 Byte (each)

b31.........b0

lowest address - - - - - - highest address

Control Registers

0x08 0x09 0x0A 0x0B 0x0F

JTAG

Figure 27: T0 SIP Data Paths.

62 T0 Engineering Data. Version: 1.1.

13.4 SIP instructions

T0 has a 4-bit SIP instruction register, used to specify one of 8 instructions, listed in Table 23 and
detailed in the following sections. The upper four bits of the instruction byte are don't-cares.

Each instruction speci�es which of the two shift registers is used during a Scan-DR loop, as well as
the operation performed. The low four bits of the value shifted into regio appear in the instruction
register during the Update-IR state. The hex value 0x01 is loaded into regio as the TAP controller
leaves Capture-IR.

Name Value[3:0] Shift Register Description

MEMREAD 0000 memio Read memory.
MEMWRITE 0001 memio Write memory.
ICWRITE 0011 memio Write instruction cache.
TESTIO 1000 regio Read/write test registers.

INTWRITE 1001 regio Write int register.
SIPIO 1010 regio Access fromhost/tohost registers.

RUNCPU 1011 regio Run a suspended T0.
BYPASS 1111 regio Bypass.

Table 23: T0 SIP instructions.

13.4.1 BYPASS

The BYPASS instruction connects the regio shift register between tdi[7:0] and tdo[7:0]. On
entering Capture-DR, the hex value 0x01 is loaded into regio. No registers are changed on entering
Update-DR.

13.4.2 MEMREAD

The MEMREAD instruction allows T0 external memory to be read from SIP. The memio shift
register is connected between tdi[7:0] and tdo[7:0]. During the Shift-DR state, a 32-bit memory
read address is shifted into the address �eld of memio. The address �eld is the �rst 4 bytes (most
signi�cant byte �rst) of memio to be loaded from tdi[7:0]. Only bits 31{4 are used to form the
external memory address. Entering the Update-DR state triggers a memory read cycle from the
external memory. The T0 CPU will stall if it attempts a memory access during this SIP memory
read cycle. The memory access puts out the read address in the cycle following Update-DR, and
reads the 16 byte data block from external memory on the next cycle. The timing is shown in
Figure 28.

The read block is loaded into the last 128 bits of memio on the cycle following the external memory
access. At the same time, the current program counter value is loaded into the 32-bit address �eld

T0 Engineering Data. Version: 1.1. 63

of memio. A further data scan is needed to retrieve the read data from memio. The �rst byte to
appear from tdo[7:0] during Shift-DR is the byte with the lowest address. The data is followed
by the 32 bits of program counter with the most signi�cant byte shifted out �rst. The shift out of
the program counter value can be omitted if the value is not required.

clkout

tms

STATE

tdo[7:0]

tdi[7:0]

ADDRESS

Exit Update R-T-I Select Capture Shift Exit UpdateShift

MemReadFlag

DATA

Shift Shift Shift Shift Shift

Memory Read

SIP Register Update

ADDRESS

Shift

21 Cycle Pipelined Read

31:24 23:16 15:8 7:0

0x0 0x1 0xe 0xf

15:8 7:0

Figure 28: T0 SIP MEMREAD timing.

An isolated memory read will require two scans of memio. One to load the 32-bit read address,
and a second to retrieve the read data. The second memio scan will trigger a second spurious (but
harmless) memory read cycle.

Reads of multiple memory blocks can be pipelined, with the next read address shifted into memio

as the last 32 bits of the previous read cycle's data is shifted out. The fastest block reads are
performed in the loop Select-DR-Scan, Capture-DR, multiple Shift-DRs, Exit1-DR, Update-DR,
Run-Test-Idle, Select-DR-Scan. Note that this gives the required three cycles (in states Run-Test-
Idle, Select-DR-Scan and Capture-DR) between Update-DR and Shift-DR so that the data shifted
out is valid. Using this loop, the peak memory read bandwidth is 34 MB/s at 45 MHz. This
memory activity can slow the T0 processor down by 4.8% at most.

64 T0 Engineering Data. Version: 1.1.

13.4.3 MEMWRITE

The MEMWRITE instruction allows T0 external memory to be written from the SIP port. The
memio shift register is connected between tdi[7:0] and tdo[7:0]. During the Shift-DR state,
16 bytes of data (byte at lowest address �rst) followed by the 32-bit memory write address (most
signi�cant byte �rst) is shifted into memio. Entering the Update-DR state triggers a memory write
cycle from the external memory. The T0 CPU will stall if it attempts a memory access during
this SIP memory write cycle. The memory access puts out the write address in the cycle following
Update-DR, and then writes the 128-bit data value to external memory on the next cycle. The
timing of a MEMWRITE access is shown in Figure 29.

clkout

tms

STATE

tdo[7:0]

tdi[7:0]
ADDRESS

Exit 1 Update Select

MemWriteFlag

Shift

Memory Write

Shift ShiftShiftCpture Cpture

DATA

24 Cycle Pipelined Write

Shift Shift Shift Shift Shift

31:24 23:16 15:8 7:00x0 0x1 0xf

Figure 29: T0 SIP MEMWRITE timing.

The peak memory write speed is given by following the loop Select-DR-Scan, Capture-DR, multiple
Shift-DRs, Exit1-DR, Update-DR, Select-DR-Scan. Note that this gives the required two cycles (in
states Select-DR-Scan and Capture-DR) between Update-DR and Shift-DR so that the data to be
written remains valid. Using this loop the peak memory write bandwidth is 30 MB/s at 45 MHz.
This memory activity can slow the T0 processor by 4.2% at most.

T0 Engineering Data. Version: 1.1. 65

13.4.4 ICWRITE

The ICWRITE instruction allows the T0 instruction cache to be written from the SIP port. This
instruction is used for testing the instruction cache and will destroy the control
ow of any executing
program. Normally, this instruction (or a sequence of these instructions) will be performed while
T0 is held in reset. Note that while T0 is suspended, the next instruction to execute is stalled in the
decode stage. Writing the instruction cache while T0 is suspended will not change the instruction
that will execute in the �rst run cycle. In particular, if the �rst line of the instruction cache is
written while T0 is suspended and reset, T0 will execute the old instruction at the reset vector
when reset and suspend are deasserted rather than the newly written instruction. To avoid this
problem, the instruction cache should be written �rst with reset asserted but suspend deasserted.
Suspend can then be safely asserted before deasserting reset if it is required to single step from the
reset vector in a program loaded into the instruction cache.

clkout

tms

STATE

tdo[7:0]

tdi[7:0]
ADDRESS

Exit 1 Update Select

ICWriteFlag

Shift

Instruction Cache Write

Shift ShiftShiftCpture Cpture

DATA

24 Cycle Pipelined Write

Shift Shift Shift Shift Shift

Memory Address Out

31:24 23:16 15:8 7:00x0 0x1 0xf

Figure 30: T0 SIP ICWRITE timing.

The memio shift register is connected between tdi[7:0] and tdo[7:0]. During the Shift-DR state,
16 bytes of data (byte at lowest address �rst) followed by the 32-bit cache write address (most
signi�cant byte �rst) is shifted into memio. The least signi�cant 4 bits and the most signi�cant
4 bits of the cache write address are ignored. The next least signi�cant 6 bits of the cache write
address select the cache line to be written, and the next 18 bits of the address are written to the
cache tag �eld. Entering the Update-DR state triggers the cache write cycle. The memio address
and data values are transferred to the cache on the cycle following Update-DR, and written to the
cache on the cycle thereafter. The cache write address is output on the T0 address pins on the
following cycle.

66 T0 Engineering Data. Version: 1.1.

13.4.5 TESTIO

The TESTIO instruction is used to write the 8-bit testcntl register and to read the 8-bit
testresult register. This instruction connects the regio shift register between tdi[7:0] and
tdo[7:0]. On entering Capture-DR the value in the testresult register is loaded into regio.
The testcntl register is updated with the value of regio on entering Update-DR.

The format of the testcntl register is shown in Figure 31.

7 3 2 1 0

0 icinv icfrz suspend

5 1 1 1

Figure 31: T0 testcntl register format.

The suspend bit stalls the T0 processor by preventing further instructions from issuing. Instructions
that have already been issued complete execution, and any pending instruction cache misses are
serviced. T0 requires up to 43 cycles from when suspend is asserted in the Update-DR state until
the processor is guaranteed to be in a quiescent state.

The icfrz (instruction cache freeze) bit, is used to lock the current contents of the instruction
cache. When this bit is set, the instruction cache always hits regardless of fetch address, and hence
acts as an instruction RAM.

The icinv (instruction cache invalidate) bit, is used to invalidate the instruction cache. When this
bit is set, the instruction cache invalid bits are cleared every cycle and so the instruction cache
always misses, causing all instruction fetches to read external memory.

icfrz overrides icinv if both are asserted.

The format of the testresult register is shown in Figure 32.

7 6 5 0

0 hit opcode

1 1 6

Figure 32: T0 testresult register format.

The opcode[5:0] and hit bits are loaded from the instruction cache after every CPU cycle, except
when suspend is asserted and the RUNCPU command is not active. This allows the opcode portion
of the cache RAM and the output of the tags comparator to be tested.

T0 Engineering Data. Version: 1.1. 67

13.4.6 SIPIO

The SIPIO instruction is used to read and write the 8-bit tohost and fromhost registers in copro-
cessor 0. This instruction connects the regio shift register between tdi[7:0] and tdo[7:0]. On
entering Capture-DR, the value held in the tohost register is copied into regio. The fromhost

register is updated with the value of regio on entering Update-DR.

13.4.7 INTWRITE

The INTWRITE instruction is used to write the 8-bit int register. This instruction connects the
regio shift register between tdi[7:0] and tdo[7:0]. On entering Capture-DR the hex value 0x01
is loaded into regio. The int register is updated with the value of regio on entering Update-DR.

The format of the int register is shown in Figure 33.

7 1 0

0 intfromhost

7 1

Figure 33: T0 int register format.

The intfromhost bit is mirrored in the ip6 bit of the cause register and
ags a host interrupt to
the T0 processor.

13.4.8 RUNCPU

The RUNCPU instruction is only valid when the suspend bit is set in the testcntl register and is
used to temporarily re-enable the issue of further instructions. The RUNCPU instruction connects
regio shift register between tdi[7:0] and tdo[7:0]. On entering Capture-DR, the hex value 0x01
is loaded into regio. No registers are updated with the value of regio on entering Update-DR.

While RUNCPU is present in the instruction register, for every cycle the TAP state machine is in
the Run-Test-Idle state the CPU is allowed to issue one more instruction. The issue occurs one
cycle after the corresponding Run-Test-Idle state. The CPU will not issue an instruction if other
interlock conditions would prevent its correct execution.

The RUNCPU instruction also re-enables sampling of the opcode and instruction cache hit signal
into the testresult register.

68 T0 Engineering Data. Version: 1.1.

13.5 SIP Single Step

T0 allows both the control
ow of a program and its e�ect on memory contents to be examined
one instruction at a time over SIP.

While the processor is halted using the suspend bit in the testcntl register, the RUNCPU in-
struction can be used to enable instruction issue one cycle at a time. Inbetween each issue cycle, the
MEMREAD instruction can be used to read the program counter. If the program counter changes,
then the instruction was issued, otherwise some other condition prevented issue. While the CPU
is suspended the program counter value that is read is that of the next instruction to be executed,
not that of the instruction that is interlocked. The MEMREAD and MEMWRITE instructions
can be used to examine and modify values in memory inbetween issue cycles.

T0 Engineering Data. Version: 1.1. 69

14 Reset

T0 has a single active low CPU reset signal, rstb. This reset is synchronous to the system clock
with timings as shown in Table 24.

The reset signal only a�ects the processor core, SIP is una�ected. This allows the processor to
be held in reset mode while program code is downloaded to T0 external memory. Reset must be
asserted for at least 6 system clock cycles. While reset the CPU will only execute memory read
cycles.

rstb

Setup time 10
Hold time 0

Table 24: T0 Reset Pad Speci�cations.

When reset is deasserted, the CPU begins execution at the reset vector in kernel mode with inter-
rupts disabled. Refer to Section 7 for further details.

15 External Interrupts

T0 has two synchronous active-low, external interrupt inputs, extintb[1:0]. These are sampled
with the system clock and must meet the timing speci�cations shown in Table 25.

extintb[1:0]

Setup time 10
Hold time 0

Table 25: T0 External Interrupt Pad Speci�cations.

The external interrupts are level triggered and the external interrupt source must wait for a hand-
shake from T0 before deasserting the interrupt signal to ensure the interrupt has been received.

Both external interrupts have lower priority than internal interrupts and extintb[0] has higher
priority than extintb[1]. Each external interrupt has a separate interrupt vector to allow fast
custom interrupt handlers. Refer to Section 7 for further details.

70 T0 Engineering Data. Version: 1.1.

16 T0 Hardware Performance Monitor

The T0 HPM facility allows non-intrusive monitoring of T0 activity. The HPM facility provides 8
output pads, hpm[7:0], driven from T0 internal signals. Table 26 lists the information output on
the hpm[7:0] pads.

Pad Name Pipestage

hpm[0] exception (Xn/Mp)
hpm[1] cpumemstall (Xn/Mp)
hpm[2] interlock (Dn/Xp)
hpm[3] miss (Fn/Dp)
hpm[4] vp0busy (X1n/X2p)
hpm[5] vp1busy (X1n/X2p)
hpm[6] vmpbusy (Mn/Wp)
hpm[7] vumemstall (Mn/Wp)

Table 26: T0 HPM outputs.

16.1 Scalar Unit HPM information

Pads hpm[3:0] provide scalar unit information. This information is time aligned and contains
pipeline signals for three di�erent instructions in execution. In each case, a set bit indicates that
the instruction will be killed in that cycle.

hpm[0] reports whether the instruction entering the M stage is taking an exception (including
reset).

hpm[1] reports whether the instruction entering the M stage took a cpumemstall last cycle.
Cpumemstalls are caused when a scalar memory instruction is stalled because of a host SIP
access or an instruction cache re�ll. A instruction may still take an asynchronous exception
(reset or interrupt) even if stalled last cycle.

hpm[2] reports whether the instruction entering the X stage was interlocked in the D stage.

hpm[3] reports if the instruction entering the D stage was invalid due to a cache miss.

These signals can be used directly to determine what action the processor will take in the next
cycle. For example, the interlock signal only causes a processor stall if there were no exception or
cpumemstall signalled on the previous instruction, otherwise the interlock is \hidden". Similarly,
the miss signal only causes a processor stall if there was no interlock signalled on the previous
instruction, and no cpumemstall or exception on the instruction before that.

T0 Engineering Data. Version: 1.1. 71

If external hardware delays miss two cycles (call this miss'), and interlock one cycle (interlock'),
then miss', interlock', cpumemstall, and exception will give the
ags for one instruction
running down the pipeline. Together with information on previous instructions' signals, this can
be used to get per instruction statistics.

16.2 Vector Unit HPM information

Pads hpm[7:4] provide vector unit information.

The vp0busy, vp1busy, and vmpbusy signals indicate if the corresponding functional unit was
performing useful work that cycle. It does not signal stalled cycles, cycles killed for reset or other
exceptions, or instructions that change no state.

The vumemstall signal indicates that this cycle experienced a memory stall and so no vector
functional unit could make progress. VU memory stalls occur due to host SIP activity or instruction
cache re�lls.

The four bits are aligned to correspond to the same issue cycle, with values output on theMn/Wp

edge of the VMP pipeline, and X1n/X2p edge of the VP pipelines. For example, hpm[6:4] will
be zero if hpm[7] is set.

16.3 Further Sources of HPM Information

The T0 memory interface id, ku, and rw signals can also be employed to give more information
on memory access type. The external rstb and extintb[1:0] signals can be tapped. External
hardware controlling the SIP port can provide further HPM signals corresponding to the SIP
activity the processor is currently experiencing. Together with the HPM port it is thus possible to
garner the most important dynamic execution statistics in a non-intrusive manner.

72 T0 Engineering Data. Version: 1.1.

17 Memory Interface

T0 has a 128-bit wide pipelined memory interface that supports up to 4 GB of single cycle SRAM.
Table 27 lists the signals in the T0 memory interface.

Name Direction Number Description

a[31:4] O 28 Address.
nkrwb O 1 Not killed read/write.
id O 1 Instruction/data access.
ku O 1 Kernel/user access.

d[127:0] I/O 128 Data bus.
weninb[1:0] I 2 Write enable pulse (1 per 8 bytes).

rw O 1 Global read/write.
bwenb[15:0] O 16 Byte write enables.

Table 27: T0 memory interface signals.

Each T0 memory access is pipelined over two cycle, as shown in Figure 34. The address, a[31:4],
and access type information, nkrwb, id, and ku, are output on the �rst cycle. On the second cycle,
the write enable signals, rw and bwenb[15:0], and the data, d[127:0], are transmitted.

T0 Address N

Internal Clock

tTAO

Address N+1 Address N+2

Externally Registered Address

READ data N+1READ Data

tTDS tTDH

NKRW

tCY

WRITE Data

tTDO

Address N+1Address N

WRITE data N

tTDOX

tTAOX

tTDOZtTDZO

tTAOX

Figure 34: T0 Memory Timing.

The access type information is encoded as shown in Table 28. Note that instruction cache re�lls
occur early in the pipeline before it is known whether the instruction will be executed in kernel or
user mode, and so the ku value is unde�ned during instruction cache re�lls.

T0 Engineering Data. Version: 1.1. 73

nkrwb id ku Access Type

0 0 0 Kernel mode data read
0 0 1 User mode data read
0 1 - Instruction cache re�ll
1 0 0 Kernel mode data write
1 0 1 User mode data write
1 1 - Impossible

Table 28: Memory Access Type Encoding.

The nkrwb (Not Killed Read Write Bar) signal indicates if the data access may be a write and is
produced early in the T0 pipeline. If low, the associated data access in the next cycle will be a
read and T0 will have tristated its data output bu�ers. If high, the associated access may be a
write and the external memory should have tristated output bu�ers. If the write is killed later in
the pipeline due to an exception, T0 will tristate its output drivers and the external data bus will
be allowed to
oat for that cycle. T0 will ignore the value on the data bus for that cycle.

The rw signal is output on the second cycle of the memory pipeline, and contains a resolved
read/write signal that is high for a read or aborted write, and low for a non-aborted write.

The bwenb[15:0] signals active low byte write enables for each of the 16 bytes in the data bus.
The weninb[1:0] input signals shape these byte write enable pulses with weninb[0] controlling
bwenb[7:0] and weninb[1] controlling bwenb[15:8]. The same pulse will usually be driven to
both weninb[1] and weninb[0]; two copies exist to reduce on chip propagation delays.

