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Abstract

The lineage of a datum records its processing history.
Because such information can be used to trace the source of
anomalies and errors in processed data sets, it is valuable
to users for a variety of applications including investiga-
tion of anomalies and debugging. Traditional data lineage
approaches rely on metadata. However, metadata does not
scale well to fine-grained lineage, especially in large data
sets. For example, it is not feasible to store all of the in-
formation necessary to trace from a specific floating point
value in a processed data set to a particular satellite image
pixel in a source data set.

In this paper, we propose a novel method to support fine-
grained data lineage. Rather than relying on metadata, our
approach lazily computes lineage using a limited amount
of information about the processing operators and the base
data. We introduce the notions of weak inversion and verifi-
cation. While our system does not perfectly invert the data,
it uses weak inversion and verification to provide a number
of guarantees about the lineage it generates. We propose a
design for the implementation of weak inversion and verifi-
cation in an object-relational database management system.

1. Introduction

Suppose a scientist applies a series of processing steps
to an atmospheric data set and then views the result, a plot
of cyclone tracks, in a database visualization system. The
scientist sees an anomaly and wants to identify the input data
which contributed to the unexpected value. The database
system may be able to trace the lineage of the anomaly at
a coarse level, using metadata. However, tracing from a

�This work was sponsored by NSF under grants IRI-9400773 and IRI-
9411334.

specific cyclone track point in the processed data set to a
particular array element in the source data set is not feasible
using such an approach; the amount of metadata required
would be far too large.

This type of scenario is common in the computational
sciences. In this paper, we present an approach for deriving
the lineage of a datum dynamically and at a fine granularity.
Instead of relying on metadata, our approach combines a
limited amount of knowledge about the processing opera-
tors with analysis of the base data. The approach works best
when integrated into a database server using user-defined
functions, but can be implemented outside of a database
environment as well. In this paper, we describe our ap-
proach in terms of abstract properties and then in terms of
implementation.

In general, the lineage of a datum consists of its en-
tire processing history. This includes its origin (e.g., the
identifier of the base data set, the recording instrument, the
instrument’s operating parameters) as well as all subsequent
processing steps (algorithms and respective parameters) ap-
plied to it. Many applications of lineage become evident if
one considers processing history as a dataflow graph. For
example, lineage information allows the user to trace the im-
pact of faulty source data or buggy programs on derived data
sets. It also allows the user to investigate the source data
or programs that produced an anomalous data set. Such
investigations may be difficult or impossible without data
lineage: the user may not be familiar with processing steps
which were written by an expert programmer. Further, trac-
ing back througha number of processing steps is tedious and
time-consuming, particularly if large data sets are involved.

The perceived importance of data lineage has grown in
step with the increased volume and widened dissemination
of processed data sets. The amount of support for data lin-
eage has grown as well. For example, new scientific data
standards (e.g., the Spatial Data Transfer Standard [9], the
Spatial Archive and Interchange Format [13], and the draft
Content Standard for Digital Spatial Metadata [5]) gener-



ally incorporate some kind of support for lineage. Recent
scientific workflow systems (e.g., GIS databases such as Ge-
olineus [6] and geophysical databases such as BigSur [3])
automate the process of lineage tracking by providing direct
support in the workflow infrastructure. BigSur, for example,
can supply the entire graph of processing steps by which a
given satellite image was produced, or a list of all images
produced using a given processing step.

Thus far, research and development in data lineage has
assumed that the complete history of a datum can and will be
stored as a piece of metadata. A metadata-based approach
to data lineage assumes that relatively coarse-grained in-
formation will suffice. For example, Earth scientists can
easily afford to store, say, 100 bytes of metadata for the
100 6000x6000 raster images they receive in a day. Even
outside of the database field, (e.g., in such areas as dataflow
program debugging [15]), researchers have assumed that the
space/time cost of data tagging will be acceptable.

However, some scientific applications require lineage at
a much finer granularity than previously considered - we
know of applications that require lineage at the level of pix-
els in images [2]. Imagine a scientist who is debugging
an application that uses a regridded (interpolated) compos-
ite of many raster images. This user might need to know
which pixels of which original raster images were used in
the construction of the composite. Because of the nature
of the source data as well as the nature of the image pro-
cessing and regridding algorithms, we may not be able to
normalize much of the data dependency information. Can
we reasonably afford, say, 60 bytes of metadata per pixel?

This paper describes an approach for supporting such
fine-grained data lineage. Our approach uses a limited
amount of information about the processing steps to infer
the necessary lineage information on a lazy basis. In this
way, we avoid computing and storing such information in
advance. Our fine-grained data lineage technique therefore
complements coarse-grained metadata techniques.

In the absence of explicit lineage, the most obvious way
to identify relevant inputs is to invert the processing steps. A
function f is said to be invertible if there exists some function
f�1 such that for each element a input to f , f�1(f(a)) =
a. Unfortunately, only a limited number of functions are
invertible.

We introduce the notion of weak inversion, which ap-
plies to a larger class of functions. Each function which is
weakly invertible has a corresponding function f�w. f�w

attempts to map from the output of f to the input of f , but is
not guaranteed to be perfectly accurate. Instead, the accu-
racy of f�w is described by a number of weaker guarantees.
We also introduce the notion of verification. Verification
functions refine the set identified by f�w .

We propose the implementation of weak inversion and
verification as extensions to an object-relational database
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Figure 1. Cyclone track extraction.

management system (DBMS). We assume that users regis-
ter their data processing functions in the DBMS and that the
DBMS manages the application of these functions. Users
register weak inversion and verification functions in the
DBMS as well. Given a specific datum to invert, an in-
version planner process infers which weak inversion and
verification functions must be invoked, constructs a plan
(function ordering), and then executes the plan by calling
the corresponding sequence of functions within the DBMS.

In the remainder of this section, we present a sample sce-
nario which is used to illustrate our principles throughout the
paper. Section 2 defines our abstract model of weak inver-
sion and verification. Section 3 describes how this model can
be extended to a database environment and details the pro-
cess by which expert users may register weak inversion and
verification functions in an extensible database. Section 4
describes the inversion planner. Section 5 discusses our
current status and future work. Finally, Section 6 presents
conclusions.

Example scenario

As a real-world application of our techniques, we con-
sider a scenario for extracting cyclone tracks from atmo-
spheric simulation data, based on [8]. In this subsection, we
present the processing steps used in this scenario. Through-
out the paper, to illustrate portions of the model, we discuss
the weak inversion and verification of functions in this ex-
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ample.
Validation of atmospheric simulations involves the com-

parison of model data to observational data. Cyclone tracks
form one type of reference for such comparisons. The cy-
clone track extraction process begins with data generated by
an Atmospheric General Circulation Model (AGCM). Two
functions are applied to that data. The first function extracts
local minima in sea level pressure (SLP), each of which
may be the center of a cyclone. The second function assigns
these minima to cyclone tracks. In the remainder of this
subsection, we describe in detail the two processing steps
(Figure 1a) and the schema of the data (Figure 1b).

The AGCM data consists of a series of multi-dimensional
arrays, each with a time stamp. Each array is indexed by
location and contains a variety of data about atmospheric
conditionsat a given location, e.g., SLP value, wind velocity,
and wind direction (see Figure 1c).

A feature extraction algorithm is applied to this data to
locate minima. It is a neighborhood algorithm (described
in more detail in Section 3.1.2) which outputs the following
data about each minimum (shown in the Minima table in
Figure 1b): time, location, wind velocity, and wind direc-
tion.

Cyclone track identification is performed on the Minima
table. The track identification algorithm attempts to assign
each minimum to the trajectory of some cyclone. To be
assigned to a given track a, the minimum at time t must (1)
have a certain proximity to the minimum in track a at the
previous timestep t � 1 or (2) be consistent with the wind
velocity and direction of such a minimum. Some minima
are not in fact cyclone centers and are not assigned to any
cyclone track. The output of the cyclone track identification
phase is a list of the time, location, and track number of the
minima which were successfully assigned to tracks.

At this point, the user views the results of the data pro-
cessing (see Figure 1d). They may be puzzled by one of the
cyclone tracks because it does not match their expectations
or agree with the observational data. They would like to se-
lect the apparently anomalous track and see all inputs which
contributed to it. 2

2. Abstract model

We begin with a function f which maps from a domain
D to a rangeR. Now suppose the existence of sets Sin � D

and Sout � R such that f(Sin) = Sout (see Figure 2a). We
are interested in inverting some subset of Sout. We call this
subset I (the image of f).

If f is invertible, there exists some function f�1 : R !

D such that f�1(f(A)) = A for any A � D. We say that
I�1 = f�1(I) = fx 2 Sinjf(x) 2 Ig is the inverse image
of I, i.e., the relevant members of Sin which map onto I

(see Figure 2b).
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Figure 2. Weak inversion and verification.

Because not all functions are invertible, we are interested
in a weak inverse function f�w : R! D.1 f�w(I) = F�w

is a set of values in the domain D (f�w generates F�w

without reference to Sin). To find the members of F�w

which actually appear in Sin, we intersect the two sets.
The result is called I�w , i.e., I�w = Sin \ F�w. I�w

approximates I�1 (see Figure 2c2).3

As an example, suppose f is a function which maps from
integers to their squares and that I is the singleton set f9g
in Sout. f�w can conclude without examining any portion
of Sin that F�w = f3;�3g. If Sin contains 3 but not -3,
I�w = f3g.

Because f�w does not find the perfect inverse, it is not
guaranteed that f�w(f(I�1)) = I�1. Similarly, it is not
guaranteed that I�w = I�1. Instead, we specify the re-
lationship between I�w (the set which is identified) and
I�1 (the set which is actually of interest) with the following
properties:

� complete: I�w � I�1. I�w is complete in that it
contains all items of interest. In this case, there are no
false negatives, i.e., f�w does not exclude any items
of I�1 from I�w (see Figure 3a).

� pure: I�w � I�1. I�w is pure in that it contains
only items from I�1. In this case, there are no false
positives, i.e., f�w does not include any items in I�w

which are not in I�1 (see Figure 3b).4

1f�w is, strictly speaking, a relation rather than a function. To avoid
confusion with database relations, we refer to f�w as a function.

2Recall that f�w does not produce I�w directly; rather, I�w results
from the intersection of F�w (the output of f�w) and Sin .

3We use the notation I�1 to describe the set of inputs which maps onto
I even if f is not invertible and no f�1 exists.

4Complete and pure are related to the traditional information retrieval
metrics recall (the fraction of relevant documents which are retrieved)
and precision (the fraction of documents which are retrieved which are
relevant) [4]. Specifically, complete represents perfect recall and pure
represents perfect precision.
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Note that if F�w is both complete and pure, F�w = I�1,
i.e., f�w(I) is I�1.

In general, we use the term closeness to describe the
relationship between the weak inverse and I�1. Note that not
all sets with a given property are equivalent. For example,
if two weak inverses A and B are complete, with jAj <
jBj, A is closer because it contains fewer irrelevant items
and therefore more closely approximates the actual inverse.
Similarly, if two non-equal weak inverses are pure, the larger
one is closer because it contains more relevant items (again,
more closely approximating the actual inverse).5

We next observe that, because there exist functions that
cannot be inverted without reference to the input values,
not all functions have useful f�ws (a useful f�w outputs
F�w 6= D). Therefore, we introduce a verification function,
f�v, which has access to the values in Sin. f�v : R�D !

D takes I�w and I as input and outputs a set I�v � I�w

(see Figure 2d). I�v can be described by the same properties
as I�w, i.e., I�v can be complete or pure. In addition, f�v

can require that the input set I�w be complete or pure. We
term such restrictions apply conditions.

Our basic notation is summarized in Figure 4. Addition-
ally, when necessary for our discussion, we use accents to
distinguish particular functions or images, e.g., f , f̂ , and f̃ .

3. Concrete model

This section applies the concepts of the abstract model to
our environment. Weak inversion and verification are being
implemented in the Tioga database visualizer [11][1]. Tioga
adopts the boxes-and-arrows programming paradigm popu-
larized by AVS [14], Data Explorer [7], and Khoros [10].
Every box is a user-defined function and arrows represent
the flow of data between these functions. Certain boxes are
database browsers which visualize data and display it to the
user. Tioga functions are written by expert users and regis-

5A possible general formulation of closeness involves a unit-cost simi-
larity metric: jA\ I�1j � jAnI�1j < jB \ I�1j � jBnI�1j. However,
for the rest of this paper, we only consider the case in which we compare
two pure or two complete sets.

tered in POSTGRES, an object-relational DBMS [12]. We
are extending this registration mechanism so that the expert
user can register weak inversion and verification functions.

In this section, we show how the set entities of the ab-
stract model presented in Section 2 map onto database tuples
and attributes. The fact that tuples have multiple attributes
complicates the definition and application of the weak in-
version and verification functions; we extend our model to
address this issue. We then extend our model to allow the
weak inversion and verification of portions of attributes,
e.g., an element in an array. Next, we extend the model
from the inversion of single functions to the inversion of
arbitrary dataflow graphs. Finally, we present the procedure
the expert follows to register weak inversion and verification
functions in POSTGRES.

3.1. Extending the abstract model to a database
environment

Each function in Tioga takes as input some table Tin and
yields as output some table Tout. These tables correspond to
the input and output sets Sin and Sout of our abstract model.
In this subsection, we discuss the inversion of attributes as
well as the inversion of elements within complex attributes.

3.1.1 Attributes

We begin with the image I which is to be weakly inverted.
I in general consists of a set of tuples, i.e., a restriction of
Tout. In our discussion, we consider that I consists of a
single tuple. However, it is a straightforward generalization
to consider images which contain multiple tuples or are the
result of applying a restriction to Tout.

We have chosen to support weak inversion and verifi-
cation at attribute-level granularity. This has two primary
advantages over tuple-level granularity. First, the user is
only required to provide weak inversion and verification
functions for attributes in which they are interested or which
they understand. Second, it allows more precise inversion.

The inverse image I�1 consists of the tuples inTin which
contain attributes which affected I. There is a separate weak
inversion and verification process for each attribute within
Tout. Therefore, f�w for a tuple is comprised of a number of
functions f�w1 ...f�wn . Each f�wk weakly inverts a specific
attribute k of Tout (see Figure 5a). We define Ik as the
projection of I on k. F�wk = f�wk (Ik) describes a subset
of the domain which might have contributed to Ik. F�wk is
a Boolean expression containing restrictions on Tin. I�wk

is the result of F�wk applied to Tin. I�wk may be complete
or pure with respect to Ik. Additionally, I�wk may possess
a user-defined property with respect to Ik.

Similarly, f�v for a tuple is comprised of a number of
functionsf�v1 ...f�vn . Each f�vk takes two inputs and verifies
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Relationship to other sets Description Definitions

f f : D ! R Function applied to Sin to yield Sout.

Sin Sin � D Input set.

Sout Sout � R Output set. Sout = f(Sin)

I I � Sout � R Portion of Sout being queried (the image).

I�1 I�1 � Sin � D Inverse image of I.

f�w f�w : R! D Weak inversion function of f .

F�w F�w � D Filter on Sin. F�w = f�w(I)

I�w I�w � Sin � D Weak inverse of I. I�w = Sin \ F�w

f�v f�v : R�D ! D Verification function of f .

I�v I�v � I�w � Sin � D The verified inverse of I. I�v = f�v(I; I�w)

Figure 4. Definitions.

a specific attribute k of Tout. The first input to an f�vk is
Ik. The second input is the weak inverse I�wk . The user
may register requirements (apply conditions) for the weak
inverse, i.e., an f�vk may require that an input I�wk possess a
specific property or properties with respect to Ik. The output
of an f�v

k
is I�v

k
; I�v

k
can be described by the properties

we have previously defined.
The expert user writes and registers each f�wk and f�vk

individually. The user may register zero or more weak inver-
sion or verification functions for each attribute. If the user
does not provide a weak inversion or verification function
for a given attribute, the system provides a trivial default
function (discussed below). Multiple weak inversion or ver-
ification functions for a given attribute may be desirable
when different weak inversion or verification functions for
an attribute have different properties. For example, one can
imagine registering one f�wk

which is complete but not pure
and another which is pure but not complete.

Although the weak and verified inverses consist of entire
tuples in Tin, the user may wish to know which attributes in
Tin are related to some specific attribute inTout. (We assume
the existence of an interface throughwhich the user specifies
the attribute(s) in Tout of interest.) Such information can be
inferred using the registration tables which are described in
Section 3.2 and presented to the user.

Weak and verified inverses of the same attribute may be
combined. Further, the weak and verified inverses of differ-
ent attributes in the image can be combined to find the weak
and verified inverses of the entire image. The resulting weak
and verified inverses of the entire image can be described as
having a given property or properties. In Section 4 we dis-
cuss methods of combining weak and verified inverses and
the properties which result from these combinations. We
assume that a small amount of bookkeeping is done during
the combination of weak and verified inverses to preserve in-

formation about which attributes in Tin are related to which
attributes in Tout.

As an additional complication, attributes in an image may
be the result of either aggregate or scalar functions. As an
example of an aggregate function, if an attribute a in Tout is
the maximum value of some attribute inTin, fa is aggregate.
However, if an attribute a in Tout is derived from values in
exactly one tuple in Tin, fa is scalar. In Section 4, we
discuss the different combination methods which pertain to
these two types of functions.

Example of weak inversion and verification of an at-
tribute

We now return to our cyclone extraction scenario. In Fig-
ure 1b, we can write a trivial weak inversion function for the
time field in Minima. Specifically, if ITime consists of the
single value t (recalling that we are assuming for purposes of
this discussion that I is a singleton set), F�wTime is “select
* from AGCM where AGCM.Time = t”. 2

3.1.2 Complex Attributes and Elements

We have assumed above that I consists of simple attributes
within tuples in Tout. However, POSTGRES supports a
variety of complex attributes, e.g., arrays, tuple types (in
which an attribute may be broken down into a number of
other attributes), and user-defined types (which can only
be manipulated using the methods defined for the type).
Observe that any attribute, whether simple or complex, can
be weakly inverted and verified within the model described
in Section 3.1.1.

We define an element to be a member contained in a
complex attribute, e.g., a cell within an array or an attribute
in an instance of a tuple type. The user may wish to query an
element within a complex attribute in Tout. For example, a
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scientist may wish to invert a specific pixel within a satellite
image. In this subsection, we extend our definition of weak
inversion and verification functions to operate on elements
within complex attributes.6 Therefore, the user may register
an f�w

k
for any dimension k in an array. Similarly, the user

may register an f�wk for any attribute k of a tuple type. In
either case, appropriate f�vk s may also be registered. (Note
that each element of a complex attribute may in turn be a
complex attribute. Therefore, weak inversion and verifica-
tion functions may exist for an element within an element.)
We assume the existence of some interface through which
the user can specify some element which they wish to invert.

For example, suppose there exist tables Tin and Tout,
each containing an attribute of the array type. Now imagine
that E is an element within a specific array attribute a and
that we wish to invert dimension x in a. Weak inversion
and verification functions are applied to identify I�va in Tin.

6We do not currently support these operations for subparts of arbitrary
user-defined types which by nature do not have accessors known to the
database.

Then, f�wx s are applied to each member of I�va .7 The result
is E�wx (see Figure 5b).8

Weak inversion and verification functions are not required
to return values at the same level as their arguments. (We
use the term level to describe the degree of containment
of an attribute or element. The top (first) level consists
of the attributes in a given table, the second level consists
of the attributes or dimensions contained by the top level,
etc.). For example, the weak inversion of an element might
yield a simple attribute. Similarly, the weak inversion of an
attribute might yield an element.

Example of weak inversion and verification in the pres-
ence of complex attributes

Suppose we wish to identify the inverse of a specific min-
imum I in Minima in our cyclone track extraction scenario.
The location attribute Minima.Location is directly related to
the location index of the array in AGCM.Array. Recall that
the function which extracts minima from AGCM.Array is
a neighborhood algorithm. Minima at a location (x, y) are
identified if they meet one of two criteria:

1. All immediate neighbors of (x, y) have a higher SLP
than SLP(x, y).

2. The average SLP of the 5x5 neighborhood centered
at (x, y) (but exclusive of (x, y)) is higher than SLP
(x, y).

Therefore, the classification of I as a minimum may
have resulted either from values of its immediate neigh-
bors or from values of the 5x5 neighborhood surrounding it.
Since there is no way to distinguishbetween these two cases
without examining the values in the AGCM table, the weak
inversion of ILocation returns all cells in the 5x5 neighbor-
hood centered at ILocation. This weak inverse is complete
but not pure. The verification function has an apply condi-
tion which specifies that the weak inverse must be complete
(it must be able to examine the entire 5x5 neighborhood).

The verification function examines the contents of the 5x5
neighborhood and determines which criteria applied. If the
first applied, the verified inverse consists of the immediate
neighborhood. If the second applied, the verified inverse
consists of the 5x5 neighborhood. In both cases, the verified
inverse is both complete and pure with respect to ILocation.
2

3.1.3 Dataflow Graphs

Thus far, the model has not addressed multiple inputs or
outputs to functions. However, a general dataflow graph is

7The specific process is discussed in more detail in Section 4.2 below.
8We use I and E in this example to distinguish between the attribute

and the element within the attribute. However, in general, we still consider
the output of an f�w

k
(f�v
k

) to be I�w
k

(I�v
k

).

6



Information Type

name of f�wk string
name of f string
nature of fk aggregate or scalar
image type type of attribute or dimension k within Tout being weakly inverted
inverse image types types of attributes or dimensions within Tin which app ear in I�wk

properties of output I�wk complete and/or pure and/or user-defined

Figure 6. Information to register for weak inversion functions.

Information Type

name of f�vk string

name of f string

nature of fk aggregate or scalar

image type type of attribute or dimension k within Tout being verified

inverse image types types of attributes or dimensions within Tin which appear in I�v
k

properties of output I�vk complete and/or pure and/or user-defined

apply conditions for I�w
k

complete and/or pure and/or user-defined

Figure 7. Information to register for verification functions.

a DAG. We address this issue by restructuring the dataflow
graph into groups of functions with one input and one output.
We invert these groups separately. We then combine the
results of the inversions.

More specifically, we define a chain in a dataflow graph
to be a linear sequence of functions from an input to an
output. Each function in the chain is called a step. An arbi-
trary dataflow graph may be broken down into a number of
such chains. Each chain is inverted separately (the specific
process for inverting a chain is discussed in Section 4). The
results of the inversions of each chain are unioned to find
the inversion of the entire dataflow graph.

3.2. Registration procedure

The expert user must register several pieces of informa-
tion about weak inversion and verification functions. This
information is used by the inversion planner described in
Section 4 to infer which functions should be used for weak
inversion and verification.

The user begins by identifying the name of the function
which will perform the weak inversion or verification. The
user next identifies the function f which is being weakly
inverted and verified. The user also specifies whether the
attribute being inverted results from an aggregate or scalar
function, i.e., fk is described as aggregate or scalar.

The user must also register information which allows
the inversion planner to infer which weak inversion and
verification functions apply to a given attribute. Therefore,
for each inversion function, the user specifies the types of the
relevant attributes (or dimensions) in the image and in the
inverse image. The inversion planner searches for attributes
(or dimensions) inTin and Tout which match these specified
types.9

Finally, the user enters information about the properties
of the sets output by the weak inversion and verification
functions. Note that if a property is specified for an output
set, it is guaranteed to be true. However, if it is not specified,
it might or might not pertain. The information the expert user
enters to register to register an f�wk or an f�vk is summarized
in Figure 6 and Figure 6.

As mentioned in Section 3.1.1, in addition to the f�wk s
or f�vk s registered by the user, every attribute or element
resulting from every function has a defaultf�wk and a default
f�vk . The default f�wk outputs a filter consisting of no

9This typing system may lead to ambiguities, e.g., if two attributes of the
same type appear inTinand the registered information forf does not permit
us to infer which function produces which attribute. In an alternative design,
the user might specify the precise names of the attributes in the image and
inverse image. However, such a design limits the degree to which weak
inversion and verification functions may be easily reused, forcing the user
to explicitly register weak inversion and verification functions for every
attribute which is to be inverted.
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restrictions, i.e., I�wk = Tin. The default I�wk is therefore
guaranteed to be complete, but it is not guaranteed to be
pure or to possess any user-defined properties. The default
f
�v
k outputs I�wk . Therefore, the default I�vk has precisely

the same properties as the I�wk it takes as input. Note that
if both defaults are used, I�wk = I�vk = Tin.

User-defined properties are registered in a separate mech-
anism in which the user specifies the name of the property
and the combination rules which apply to it (either complete
or pure rules as described in Section 4.1).

4. Inversion planner

The inversion planner is responsible for devising a plan to
weakly invert and verify the image selected by the user. The
result of the execution of this plan must match the user’s
specification of properties as closely as possible (e.g., the
user may specify that they wish the verified inverse image
to be complete or pure). The plan specifies which weak
inversion and verification functions will be applied to which
tables in what order.

In this section, we discuss how properties of weak and
verified inverses can be preserved during the combination of
weak inversion and verification functions. We then present
the algorithm the inversion planner follows to invert a chain.

We make several simplifying assumptions. In Sec-
tion sec:implementation we consider further optimizations
which may be made if these assumptions are relaxed.

� We assume all tables (including intermediate results)
are materialized.

� We assume there is a per-tuple cost of applying an
f�w
k

or an f�v
k

(as opposed to a fixed or per-byte
cost).

� We assume that the planner is trying to find the closest
possible verified inverse.

� We assume that the desired properties as specified by
the user are the same for all verified inverses in a
chain.

4.1. Preservation of properties

We have already discussed several properties of sets
(complete, pure, user-defined). Some combinations of sets
preserve such properties and some do not. We begin our
discussion of the preservation of properties by detailing in-
version of a single function (simple attributes and complex
attributes). Next, we discuss inversion of multiplefunctions.

4.1.1 Preservation of properties during the inversion of
simple attributes

This subsection covers two primary types of combinations.
First, for a given dimension k, I�wk s or I�vk s may be com-
bined to improve the closeness of the inversion of k.10 Sec-
ond, to this point, we have only considered weak inversion
and verification of attributes in the image. However, after
all individual attributes have been fully inverted, a higher-
level combination may also be performed. Specifically, the
results of the inversion of multiple attributes may be com-
bined to assemble the inverse of an entire tuple. (Similarly,
the results of the inversion of multiple dimensions within a
complex attribute may be combined to assemble the inverse
of the complex attribute.) In the latter part of this subsection,
we describe how such combinations may be advantageous.

We begin by considering the case in which Tout contains
exactly one attribute, y. Recall that multiple weak inversion
functions f�wy may be registered for a single attribute (i.e.,
the inversion planner may have the choice of several weak
inversion functions). We have already observed that it is
desirable to have different weak inversion functions which
have different properties. However, it is also desirable to
have multiple weak inversion functions with the same prop-
erty to increase the closeness of the weak inversion. There
are two interesting cases. First, suppose we have two weak
inversion functions, each of which returns a pure set (call
them A and B).11 If A 6= B, the union of A and B yields
a strictly larger pure set (the larger a pure set, the more ac-
curate it is). Second, if the weak inversion functions yield
complete sets, the intersection of A and B yields a strictly
smaller complete set (the smaller a complete set, the more
accurate it is). Observe that these rules of combination apply
whether fy is scalar or aggregate. Figures 4.1.1a and 4.1.1b
illustrate the combination of A and B in this case.

Now we consider the combination of the weak inverses
of multiple dimensions. First, we discuss the case in which
the fks are scalar. If a tuple in I�1 is relevant to a tuple in
I, it must be relevant to each attribute of I, i.e., for all k, it
must be a member of I�1

k . Therefore, in general, if multiple
attributes are scalar, the weak inverses of these should be
intersected to find the weak inverse of the entire tuple (or
if multiple dimensions are contained in a complex attribute,
the intersection of the weak inverses of each dimension finds
the weak inverse of that complex attribute).

As a concrete example, consider the case in which Tout
contains precisely two attributesx and y. Suppose the image
I consists of exactly one tuple which we wish to invert.

Now suppose that I�wx is complete in relation to x. (This

10In general, we use the term dimension to refer to either an attribute
which is being weakly inverted and verified or a dimension within an array
which is being weakly inverted or verified.

11Examples in this section refer to the combination of I�w
k

s. The same

rules apply to F�w
k

s and I�v
k

s.

8



does not guarantee that it is complete in relation to y.) Also
assume that I�wy is complete in relation to y. (Again, this
does not guarantee that it is complete in relation to x). We
see that any tuple which is relevant to I must be relevant
to both the x and y values in I; since both I�wx and I�wy

are complete, all relevant tuples must appear in both sets.
Therefore, I�wx \ I�wy contains all possible tuples which
may be relevant to I, i.e., I�wx \ I�wy is complete in terms
of I. However, some of the tuples in the intersection may
not be relevant. The combination of a complete I�wx and a
complete I�wy is illustrated in Figure 4.1.1c.

Pure sets follow the same combination rules, although
the logic is slightly different. Suppose that I�wx is pure
in relation to x and I�wy is pure in relation to y. Any tuple
which appears in both sets is guaranteed to be relevant to both
x and y. The intersection therefore contains only relevant
tuples, although it may not contain all relevant tuples.

Next, we discuss the case in which fks are aggregate.
Suppose Tout contains two attributes x and y. In this situa-
tion, there is no guarantee that a single tuple in Tin must be
relevant to I. For example, suppose x is the maximum of
an attribute a in Tin and y is the maximum of an attribute b
in Tin. The weak inverses of x and y may be disjoint; how-
ever, both are relevant to I. Therefore, all weak inverses
associated with aggregate fks (whether complete or pure)
should be unioned.

Finally, we consider the case in which some fks are scalar
and some are aggregate. All weak inverses associated with
scalar fks should be intersected as specified. Then, all weak
inverses associated with aggregate fks should be unioned.
As the last step, both of the resulting sets should be unioned.
Observe that whether we are combining sets within one
attribute or combining sets for multiple attributes, there is
no case in which it is desirable to combine a pure set with a
complete set.

In some cases, we may invert a subset of the attributes
in an image (either because the user has specified that only
those attributes are of interest or because interesting weak
inversion and verification functions are not available for all
attributes). Notationally, if a set has certain properties with
respect to multiple attributes 1...k in the image, we say that
it has those properties with respect to I1:::k.

Example of weak inversion and verification of multiple
scalar attributes

Returning to our cyclone track extraction example, con-
sider the weak inversion and verification of an image in the
Tracks table. We suppose that weak inversion and verifica-
tion functions have been registered for the attributes Time
and Location. Observe that fTime and fLocation are scalar.
Also note that each of these attributes has trivial weak inver-
sion and verification functions which yield sets which are
complete and pure with respect to the individual attributes
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T
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(a) Inversion of an attribute.
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(c) Combination of a complete I�wx and a complete I�wy .

Figure 8. Combination of weak inverses.
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Time and Location (the values in Minima are identical to
those in Tracks). Therefore, since the forward functions
are scalar, we intersect I�vTime and I

�v
Location. The result is

complete and pure with respect to ITime; Location. 2

4.1.2 Preservation of properties during the inversion of
complex attributes

Recall from Section 3.1.2 that the weak and verified inverses
of an image can exist at multiple levels. In this subsection,
we consider the properties of these different levels in the
weak and verified inverses. First, we discuss the properties
of a single level in the weak and verified inverses. Second,
we discuss the properties of multiple levels in the weak and
verified inverses.

In Section 4.2, we present the specific process by which
the weak and verified inverses are identified. For now, it
is sufficient to understand that each level in the weak and
verified inverses is calculated by a set of independent weak
inversion and verification functions. The weak inversion
and verification functions for a single level in the inverse
may invert different levels in the image. For example, one
function may weakly invert an attribute in the image to
tuples in the weak inverse; another function may weakly
invert an element in the image to tuples in the weak inverse
as well. In general, the resulting weak or verified inverses
are combined according to the combination rules described
in Section 4.1.1 above.

Since each level in the inverse is computed separately,
each level in the inverse can have different properties with
respect to the various levels in the image. However, the
properties of a level in the inverse affect the properties of all
levels below it. Specifically, the weak or verified inverse of
a lower level can only have a given property with respect to
a level in the image if all higher levels in the inverse have
that same property. This implies that levels in the inverse
are computed in a top-down manner, which in turn implies
that each level in the inverse is a subset of the higher levels.

For example, suppose that in Figure 5b, f�va identifies
tuples containing satellite images which contributed to an
aggregate satellite image Ia and that the output of f�va is
complete with respect to Ia. Now suppose that f�wx iden-
tifies the region of each satellite image which contributed
to Ex and that its output E�wx is pure with respect to Ex.
Observe that f�wx might be applied to a member of I�va

which is not relevant to Ia; the resulting E�wx is therefore
not relevant to Ia. Consequently, E�wx is not pure with
respect to Ia (it would be pure only if I�va were pure).

Example of preservation of properties during inversion
of complex attributes

Consider the inversion of an image I in the Minimum
table of the cyclone track extraction example. We perform

T
in

f

II -1 f -1f -1
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(a) Inversion of two functions.
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Tout / Tin ToutTin

(b) Weak inversion of two functions.

Figure 9. Weak inversion of a chain.

this inversion in two steps.
First, we weakly invert and verify the top level of AGCM.

We assume weak inversion and verification functions are
available for Minima.Time and Minima.Location. We apply
weak inversion and verification functions to identify Î�vTime

(both F̂�wTime and f̂�vTime restrict AGCM.Time). Î�vTime is
complete and pure. Applying the weak inversion function
to ÎLocation yields a complete set Î�wLocation which consists
of all tuples in AGCM. Applying the verification function to
Î�wLocation yields a complete and pure set Î�vLocationwhich also
consists of all tuples in AGCM (the verification function is
able to verify that the array in each tuple contains ÎLocation).
At this point we use our combination rules: we intersect
Î�vTime and Î�vLocation to find a verified inverse Î�v which is
complete and pure with respect to ÎTime; Location.

Next, we weakly invert and verify the second level of
AGCM. We use the weak inversion function described in
Section 3.1.2 to generate a filter F̃�wLocation. We apply this
filter to every member of Î�v. The result Ẽ�wLocation is
complete with respect to ÎLocation. We then apply the ver-
ification function f̃�vLocation to Ẽ�wLocation, which yields a
complete and pure set Ẽ�vLocation. Since the weak inversion
and verification of both levels is complete and pure, the re-
sult of the second level inversion is complete and pure with
respect to ÎTime; Location. 2

4.1.3 Preservation of properties during the inversion of
multiple functions

In this section, we show how our abstract model general-
izes to chains. We observe that the properties of weak and
verified inverses are transitive.

For example, consider a chain with two functions f̂ and f
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in which the output of f̂ is input to f . Suppose that an expert
user has registered functions which provide weak inversion
and verification of each of these functions.

Now suppose an end user wishes to find the inverse of
an image in Tout (see Figure 9a). The user would like to
identify the relevant inputs in both Tin and T̂in. Ideally, the
system would use f�1 to invert the image and identify I�1

in Tin. Then, it would treat I�1 in Tin as an image in T̂out
and find its inverse Î�1 in T̂in.

We apply our weak inversion functions in this situation
as follows (we assume these weak inversion functions are
complete). We begin by finding a weak inverse in Tin.12

However, the user wishes to see the relevant inputs from T̂in
as well. This is accomplished by using I�w as an image
in T̂out. Recall that the weak inverse can differ from the
actual inverse image. Chaining weak inversion functions
together amplifies this inaccuracy. In Figure 9b, we see that
f̂�w(I�w) yields a larger (and more inaccurate) set than
f̂�w(I�1).

Despite this loss of accuracy, we can still make certain
guarantees about the relationshipof weak inverses to inverse
images in these situations. The key observation is that com-
plete and pure are both transitive properties. Specifically,
if both f�w and f̂�w are complete, so are their outputs.
In Figure 9b, therefore, both f̂�w(I�1) and f̂�w(I�w) are
complete, though neither is pure.

Example of preservation of properties during inversion
of multiple functions

Consider the dataflow diagram in Figure 1a. We saw
in Section 4.1.1 that the weak inversion and verification of
certain attributes in Tracks yields a complete and pure ver-
ified inverse in Minima. Similarly, we saw in Section 4.1.2
that the weak inversion and verification of certain attributes
in Minima yields a complete and pure verified inverse in
AGCM. Therefore, the weak inversion and verification of
an image in Tracks yields complete and pure verified in-
verses in both Minima and AGCM. 2

4.2. Inversion planner algorithm

In this subsection, we first discuss ordering constraints
for weak inversion and verification. We then present an
algorithm which follows these constraints as well as those
presented in Section 4.1.

We have discussed several stages of weak inversion and
verification of a chain. If weakly inverting or verifying some
part of the chain impacts the weak inversion or verification
of some other part, we say the former part affects the latter.

12It would also be possible to find a filter or a verified inverse and use it
as the image. Each of these cases has different performance implications,
as discussed in Section 5.1. For simplicity, we assume that we are using
the weak inverse for the remainder of this section.

for each step num steps to 1
for each left level 1 to num left levels

for each right level
for each dimension k in 1 to num attributes

find all f�v
k

s which have the desired property
find all f�w

k
s with matching apply conditions

remove the f
�v

k
s which can’t be satisfied

end;
end;

end;
for each left level 1 to num left levels

for each right level k in 1 to num attributes
for each dimension

apply all f�w
k

s
apply the filters to get the I�w

k
s

combine the I
�w

k
s for the dimension

for each right level
apply all f�v

k
s

combine the I
�v

k
s within each dimension

end;
combine the I�v

k
s across dimensions

end;
end;

Figure 10. Algorithm for inverting a chain.

For example, consider Figure 9b. If the weak inversion
and verification of f were more accurate, then I�w would
be more accurate. The improved I�w could be used as
an image input to f̂�w resulting in a more accurate Î�w.
Therefore, we say that the weak inversion and verification
of f affects the weak inversion and verification of f̂ .

There are two critical observations about which parts of
the chain can affect others:

1. The inversion of a step can affect the inversion of any
step to its left (although it can not affect the inversion
of steps to its right).

2. Within a step, one inversion can affect another inver-
sion which yields a lower level in the inverse (since the
lower levels in the inverse are a subset of the higher
levels). Conversely, one inversion can not affect an-
other inversion which yields a higher level in the weak
or verified inverse.

These observations suggest a natural ordering of the in-
version process.

1. Steps should be weakly inverted and verified proceed-
ing from right to left.

2. Within a step, each level in the inverse should be
computed (weakly inverted, verified, and combined)
before the levels below it are computed.
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(c) Identifying the second-level verified inverse of the minima extraction.

Figure 11. Inversion of cyclone track extraction.

Combining the constraints of Section 4.1 (preservation
of properties) and Section 4.2 (ordering) we arrive at the
algorithm presented in Figure 10.

Example application of algorithm

We have discussed all the weak inversions and verifica-
tions necessary to trace the relevant inputs of the cyclone
track extraction scenario presented in Section 1. Accord-
ing to the algorithm for the inversion planner, the complete
weak inversion and verification of an image I in Tracks
would consist of the following steps:

� Weakly invert and verify I, yielding a complete and
pure verified inverse I�v in Minima (as described in
Sections 3.1.1 and 4.1.1). Specifically, the system

will:

1. Weakly invert and verify the attributes
Tracks.Time and Tracks.Location.

2. Intersect I�vTime and I�vLocation (see Figure 11a13).

� Weakly invert and verify I�v yielding a complete
and verified inverse Î�v in AGCM (as described in
Sections 3.1.2 and 4.1.2). Specifically, the system
will:

3. Weakly invert and verify the attributes Min-

13For clarity, in Figure 11, we illustrate only attributes which are in the
weak and verified inverses rather than the entire tuple. As mentioned in
Section 3.1.1, a small amount of bookkeeping is done to facilitate such a
presentation to the user.
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ima.Time and Minima.Location, finding the top
level of the verified inverse.

4. Intersect Î�vTime and Î
�v
Location. The result is

Î�v in AGCM. Î�v is the set of the members
of AGCM which are relevant to I�v (see Fig-
ure 11b).

5. Weakly invert the attribute Minima.Location,
finding the second level of the weak inverse.
The result is Ẽ�wLocation which is complete but
not pure.

6. Verify Ẽ�wLocation yielding Ẽ�vLocation (see Fig-
ure 11c). Ẽ�vLocation is both complete and pure
(as discussed in Section 4.1.3). 2

5. Implementation and future work

We are in the process of implementing weak inversion
and verification (as described in Section ??) in the POST-
GRES DBMS. We are also implementing a number of weak
inversion and verification functions.

5.1. Efficient rematerialization of intermediate re-
sults

In this paper, we assumed that all intermediate results in
a given chain of dataflow operators had been materialized.
However, many dataflow systems cache their intermediate
results (e.g., Data Explorer [7]). Suppose the user of a
caching system finds an anomaly and attempts to view an
intermediate datum that contributed to it. In the worst case,
the system must rematerialize all intermediate results simply
to recreate one datum in one intermediate step.

Weak inversion enables us to recreate lost intermediate
results efficiently. Previously, we invoked f�ws on either
user-specified attribute values of interest (i.e., the original
image) or attribute values that contributed to the computation
of those interesting values (i.e., the verified inverses in the
intermediate results). However, we can also invoke f�ws
on the constant values found in ourF�w filters (which were
generated by f�ws operating on images to their right in
the dataflow diagram). Using this fact, we can generate a
sequence of F�w filters all the way to the base table of our
dataflow chain. We can then apply these F�w filters as
additional restrictions at each intermediate step in the chain,
reducing the amount of data that must be processed.

5.2. Efficient materialization of partial results

The technique described above extends trivially to the
efficient materialization of partial results. For example, if we
allow the user to specify bounds on the (end result) regions
to be visualized, the coordinates of that bounded region

become another set of constants to which we can apply
f�ws. This implies that we can generate a chain of weak-
inverse restrictions similar to that described in Section 5.1,
again reducing the amount of data that must be processed.

5.3. Extended semantic query optimization

A related idea can be used for semantic query optimiza-
tion in databases that support user-defined functions. Con-
sider the following query:

SELECT name
FROM Employees E
WHERE tax(E.salary) > 30000

If we know that the lowest tax rate is 15constant through
the call to the tax function and produce a direct filter on
salary. This is useful if salary is indexed, or even if salary is
not indexed but tax is expensive to compute. For example,
we could transform the query above to read as follows:

SELECT name
FROM Employees E
WHERE tax(E.salary) > 30000

AND E.salary > 200000

This technique can be applied to conventional functions
and operators. In addition, it can be combined with tech-
niques taken from previous work in semantic query opti-
mization. For example, inferences can be made using join
clauses that enable us to push down weakly inverted versions
of one tables restrictions onto other tables.

5.4. Reuse of common subexpressions

The process of breaking dataflow graphs into linear com-
ponents may produce components with shared steps. This
is undesirable because I�ws and I�vs may be computed re-
dundantly. However, the problem is not as simple as finding
overlapping steps because we can only share inverses be-
tween two components if, for example, the inverses would
result from applying the same f�w . The problem is further
complicated if components require different properties. If
we allow the user to specify that one dataflow graph source
must be pure and another must be complete, then overlap-
ping components may require I�ws and I�vs that have been
produced using different properties. Sharing then becomes
more difficult, if not impossible.

6. Conclusions

We have proposed a method to support fine-grained data
lineage. Rather than relying on metadata, our approach
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lazily computes lineage using a limited amount of informa-
tion about the processing steps. This approach incorporates
weak inversion and verification. While the system does not
perfectly invert the data, it provides a number of guarantees
about the lineage it generates on the fly.

We have proposed a design for the implementation
of weak inversion and verification in an object-relational
DBMS. This functionality has a number of interesting ap-
plications. We have discussed how it can help users track
the lineage of specific data.

We are currently exploring several ways in which weak
inversion and verification can be applied to optimization
problems such as view maintenance, efficient materializa-
tion of partial results, and enhanced semantic query opti-
mization.
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