
A model for speedup of parallel programs

Allen B. Downey

Report No. UCB/CSD-97-933

January 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A model for speedup of parallel programs

Allen B. Downey �

January 1997

Abstract

We propose a new model for parallel speedup that is based

on two parameters, the average parallelism of a program

and its variance in parallelism. We present a way to use

the model to estimate these program characteristics us-

ing only observed speedup curves (as opposed to the more

detailed program knowledge otherwise required). We ap-

ply this method to speedup curves from real programs on

a variety of architectures and show that the model �ts

the observed data well. We propose several applications

for the model, including the selection of cluster sizes for

parallel jobs.

1 Introduction

Speedup models describe the relationship between cluster

size and execution time for a parallel program. These

models are useful for:

Modeling parallel workloads : Many simulation

studies use a speedup model to generate a stochas-

tic workload. Since our model captures the behavior

of many real programs, it lends itself to a realistic

workload model.

Summarizing program behavior : If a program has

run before (maybe on a range of cluster sizes), we

can record past execution times and use a speedup

model to summarize the historical data and estimate

future execution times. These estimates are useful for

scheduling and allocation.

Inference of program characteristics : The parame-

ters of our model correspond to measureable program

characteristics. Thus we hypothesize that we can in-

fer these characteristics by �tting our model to an

�EECS | Computer Science Division, University of California,

Berkeley, CA 94720 and San Diego Supercomputer Center, P.O.

Box 85608, San Diego, CA 92186. Supported by NSF grant ASC-

89-02825 and by Advanced Research Projects Agency/ITO, Dis-

tributed Object Computation Testbed, ARPA order No. D570,

Issued by ESC/ENS under contract #F19628-96-C-0020. email:

downey@sdsc.edu, http://www.sdsc.edu/� downey

observed speedup curve and �nding the parameters

that yield the best �t.

Our speedup model is a non-linear function of two pa-

rameters: A, which is the average parallelism of a job, and

�, which approximates the coe�cient of variation of paral-

lelism. The family of curves described by this model spans

the theoretical space of speedup curves. In [7], Eager, Za-

horjan and Lazowska derive upper and lower bounds for

the speedup of a program on various cluster sizes (subject

to simplifying assumptions about the program's behav-

ior). When � = 0, our model matches the upper bound;

as � approaches in�nity, our model approaches the lower

bound asymptotically.

This model might be used di�erently for di�erent appli-

cations. In [5] and [6] we use it to generate the stochas-

tic workload we use to evaluate allocation strategies for

malleable1 jobs. For that application, we choose the pa-

rameters A and � from distributions and use them to gen-

erate speedup curves. In this paper, we work the other

way around |we use observed speedup curves to estimate

the parameters of real programs. Our goal here is to show

that this model captures the behavior of real programs

running on diverse parallel architectures. This technique

is also useful for summarizing the speedup curve of a job

and interpolating between speedup measurements.

1.1 Related work

In [4], Dowdy proposed a speedup model based on a pro-

gram with a sequential component of length c1 and a

perfectly parallel component of length c2. The execution

time, T (n), of such a program is T (n) = c1+ c2=n, where

n is the number of processors.

Chiang et al. [3] derive from this a model of speedup

with the form S(n) = (1+�)n=(n+�), where the param-

eter � is a program characteristic that varies from 0 for

a sequential program to in�nity for a program with linear

speedup. Several subsequent studies have been based on

1A malleable job is a parallel program that can run on a range

of cluster sizes. The allocation strategy is the part of the scheduler

that chooses the cluster size for each malleable job.

1

this model [10] [14]. Brecht and Guha use a variation of

this model that imposes an upper bound on the speedup

of some jobs [1] [9].

One problem with this model is that the parameter �

has little semantic content. Thus, it is not clear how to

use observations of a real program to �nd the value of �

or how to choose a distribution of values that describes

a real workload. As a result, workload models based on

Dowdy's speedup model have tended to overestimate the

parallelism available in codes executing in supercomput-

ing environments. With our model, we have been able to

use observations of the workload at the San Diego Super-

computer Center to infer the parameters of real workloads

[5] [6].

Sevcik [16] and Ghosal et al. [8] have proposed alter-

native models based on more detailed program informa-

tion. These models have many free parameters, and there-

fore provide no way to infer program characteristics from

observed behavior. Furthermore, it would be di�cult to

specify the range of these parameters in a real workload.

Smirni et al. [17] use a speedup model with the fol-

lowing functional form: S(n) = (1 � �n)=(1 � �) with

0 � � � 1. The motivation for this model is to facilitate

analysis. Again, the parameter � has no semantic content.

No prior study has demonstrated that a proposed model

describes the behavior of real programs. Chakrabarti et
al. [2] propose a model for e�ciency of data parallel tasks;

they use measurements of ScaLAPACK programs to vali-

date this model.

Many of the allocation strategies that have been pro-

posed for malleable jobs assume that the scheduler knows

the average parallelism of all jobs [16] [8] [15] [17] [3] [12]

[1]. Thus all of these strategies require that the paral-

lelism pro�le of the program be known, or that A (and

maybe V) can be calculated by other means. Our model

may provide a way to derive these characteristics.

2 The model

The design goal for our speedup model is to �nd a fam-

ily of speedup curves that are parameterized by the av-

erage parallelism of the program, A, and the variance in

parallelism, V . To do this, we construct a hypothetical

parallelism pro�le2 with the desired values of A and V ,

and then use this pro�le to derive speedups. We use two

families of pro�les, one for programs with low variance,

the other for programs with high variance.

2The parallelismpro�le is the distributionof potential parallelism

of a program[16].

a)

σ
2

σ
2

Low
variance
model

1

2A-1

σ1 -

Time

Hypothetical parallelism profile

De
gre

e o
f p

ara
lle

lis
m

A

b)

σ

High
variance
model

A

1

1

Time

Hypothetical parallelism profile

σA+A -

De
gre

e o
f p

ara
lle

lis
m

σ

Figure 1: The parallelism pro�le for (a) the low variance

speedup model and (b) the high variance speedup model.

2.1 Low variance model (� � 1)

Figure 1a shows a hypothetical parallelism pro�le for a

program with low variance in degree of parallelism. The

parallelism is equal to A, the average parallelism, for all

but some fraction � of the duration (0 � � � 1). The re-

maining time is divided between a sequential component

and a high-parallelism component (with parallelism cho-

sen such that the average parallelism is A). The variance

of parallelism is V = �(A � 1)2.

A program with this pro�le would have the following

run time as a function of cluster size:

T (n) =

8>>><
>>>:

A��=2
n

+ �=2 1 � n � A

�(A�1=2)
n

+ 1� �=2 A � n � 2A� 1

1 n � 2A� 1

(1)

where n is the cluster size (number of processors). Thus

T (1) = A and T (1) = 1. The speedup, S(n) =

T (1)=T (n), is

2

S(n) =

8>>><
>>>:

An

A+�=2(n�1) 1 � n � A

An

�(A�1=2)+n(1��=2)
A � n � 2A � 1

A n � 2A� 1

(2)

2.2 High variance model (� � 1)

In the previous section, the parameter � is bounded be-

tween 0 and 1, and thus the variance of the parallelism

pro�le is limited to V = (A�1)2 when � = 1. In this sec-

tion, we propose an extended model in which sigma can

exceed 1 and the variance is unbounded. The two models

can be combined naturally because (1) when the parame-

ter � = 1, the two models are identical, and (2) for both

models the variance of the parallelism pro�le is �(A�1)2.
From this latter property we derive the semantic con-

tent of the parameter � | it is approximately the square

of the coe�cient of variation of parallelism, CV 2. This

approximation follows from the de�nition of coe�cient of

variation, CV =
p
V =A. Thus, CV 2 is �(A � 1)2=A2,

which for large A is approximately �.

Figure 1b shows a hypothetical parallelism pro�le for

a program with high variance in parallelism. The pro�le

consists of a sequential component of duration � and a

parallel component of duration 1 and potential parallelism

A + A� � �. A program with this pro�le would have the

following run time as a function of cluster size:

T (n) =

8<
:
� + A+A���

n
1 � n � A+ A� � �

� + 1 n � A+ A� � �
(3)

Thus T (1) = A(�+1) and T (1) = �+1. The speedup is

S(n) =

8<
:

nA(�+1)
�(n+A�1)+A 1 � n � A +A� � �

A n � A+ A� � �
(4)

Figure 2 shows a set of speedup curves for a range of

values of �. When � = 0 the curve matches the theoretical

upper bound for speedup | bound at �rst by the \hard-

ware limit" (the 45 degree line) and then by the \software

limit" (the average parallelismA). As � approaches in�n-

ity, the curve approaches the theoretical lower bound on

speedup [7]:

slow (n) =
An

A + n� 1
(5)

0 32 64 96 128 160
0

16

32

48

64

80

Number of processors

S
pe

ed
up

Speedup models

σ
0.0

0.5

1.0

σ

1.0

2.0

inf

Figure 2: Speedup curves for a range of values of �.

2.3 Calculating the knee

Several authors have proposed the idea that an optimal al-

location for a program is the one the maximizes the power,

�, which is de�ned as the product of the speedup and the

e�ciency, e(n) = s(n)=n. Thus, � = s2=n. We search for

the value of n that maximizes � by �nding local maxima

where d�
dn

= 0:

d�

dn
=

2ns ds
dn
� s2

n2
= 0

2ns
ds

dn
= s2 (6)

The speedup curves proposed in Equations 2 and 4 have

the functional form s(n) = �n=u(n), where � is a con-

stant with respect to n, and u(n) is some function of n.

Substituting this functional form into Equation 6 yields:

2n
�n

u|{z}
s

�
u� ndu

dn

u2| {z }
ds

dn

=
�2n2

u2| {z }
s2

u = 2n
du

dn
(7)

Then, using Equation 2, we can �nd the \knee" of the

low-variance speedup curve:

u = �(A � 1=2) + n(1 � �=2)

du

dn
= 1� �=2

n� =
�(A � 1=2)

1� �=2
(8)

where n� is the optimal cluster size. Using Equation 4 for

the high variance model:

3

0.66 1 2 4 8 16
0

32

64

96

128

Sigma

N
um

be
r

of
 p

ro
ce

ss
or

s

Maximum power allocation vs. variance

Figure 3: The optimal allocation for a range of values of �.
The average parallelism, A, is 64.

u = �n +A(� + 1) � �

du

dn
= �

n� =
A(� + 1)� �

�
(9)

Figure 3 shows the optimal cluster size, n�, as a function

of �, with A �xed at 64. When � is less than 2A=(3A�1),
which is approximately 2=3, the point of maximumpower

is n� = A, which is in accord with the heuristic that the

number of processors allocated to a job should be equal

to its average parallelism [7][8]. It also agrees with the

colloquial interpretation of the \knee" of the curve | a

discontinuity in its slope.

But as the value of � approaches 1, n� increases quickly

to 2A � 1. For larger values of �, it decreases gradually

and approaches A � 1 asymptotically. This result is both

surprising and discouraging: surprising because it violates

the intuition that the optimal allocation for a job should

decline monotonically as the variance in parallelism in-

creases [16], and discouraging because the rapid change in

the point of maximumpower suggests (1) that the \knee"

of the curve is not well-de�ned | small changes in ob-

served speedups might lead to drastically di�erent alloca-

tions, and (2) that the assumption that the point of maxi-

mum power is an optimal allocation is probably wrong. In

[5] we con�rm that scheduling strategies that attempt to

allocate this \optimal" cluster size do not perform as well

as other strategies, including one that simply allocates A

processors to each job.

Figure 4 con�rms that the local maxima from Equa-

tions 8 and 9 are in fact the global maxima over all feasible

48 64 80 96 112 128

25

30

35

40

Number of processors

P
ow

er

Maximum power (speedup * efficiency)

o

o

o

o o

o

o

0.6

0.7

0.8

0.9

1.0

1.2

1.4

σ

Figure 4: Power as a function of cluster size for several values
of �. The small circle on each curve indicates the point of

maximum power. The average parallelism, A, is 64.

cluster sizes.

3 Estimating parameters

Given a set of observed speedups si for cluster sizes ni,

we would like to estimate values of the parameters A and

� that minimize the sum of squared di�erences between

the observed values and the �tted values (calculated by

Equations 2 and 4). In other words, we would like to

minimize

�2(A; �) =
X
i

[si � s(ni;A; �)]
2 (10)

where s(ni;A; �) is the modeled speedup of a program

with average parallelism A and variance �, running on ni
processors.

The Levenberg-Marquardt method [11] performs this

minimization by a variation of the conjugate gradient

method that takes advantage of the form of the object

function, �2.

Starting with an initial estimate for the parameters A

and �, we iteratively calculate improved estimates based

on the value of �2 and its derivatives with respect to A

and �. These derivatives are

��2

�A
= �2

X
i

[si � s(ni;A; �)]
�s(ni;A; �)

�A
(11)

��2

��
= �2

X
i

[si � s(ni;A; �)]
�s(ni;A; �)

��
(12)

4

where the partial derivatives �s

�A
and �s

��
are derived from

Equations 2 and 4.

The Levenberg-Marquardt method chooses adaptively

between the conjugate gradient method (which converges

quickly in the vicinity of the minimum) and the method

of steepest descent (which is robust when the object func-

tion is ill-behaved). In practice, we have found that this

method is robust and converges quickly for a variety of

speedup curves. We have used this method to estimate

parameters for many speedup curves reported from real

programs on a variety of architectures. The next section

discusses these results.

4 Fitting observed speedups

We developed our speedup model with two applications

in mind:

Workload modeling : We would like to know whether

our model captures the behavior of parallel scienti�c

applications, and if so, what values of the parameters

A and � are typical of the workloads in supercomput-

ing environments.

Summarizing program behavior : For purposes of

scheduling parallel jobs, we can use a database of past

execution times to predict future execution times. If

our model �ts observed speedup curves well, then we

can greatly compress this database by recording, for

each program and problem size, only the two param-

eters A and �.

In order to evaluate the usefulness of our model, we have

collected reported speedup curves from numerous scien-

ti�c applications running on a variety of parallel architec-

tures. In general, we have found that our model is capable

of summarizing the behavior of most real programs. In the

next two sections, we present some of this data, point out

cases in which our model fails, and suggest ways of dealing

with these failures.

4.1 NAS benchmarks

The Numerical Aerospace Simulation Facility (NAS) at

NASA Ames Research Center has compiled a suite of

benchmarks intended to be representative of computa-

tional
uid-dynamic codes. The original NAS Parallel

Benchmarks (NPB 1) were algorithmic speci�cations of

eight computations. NPB 2 consists of implementations

of four of those computations in Fortran 77 with MPI.

NAS has reported timings of these codes on four di�erent

distributed-memory computers with three di�erent prob-

lem sizes. The programs are:

LU : Solves Navier-Stokes equations in 3-D using LU de-

composition and successive over-relaxation (SSOR).

Due to the internal structure of the code, it requires

power-of-two cluster sizes.

SP and BT : Both solve Navier-Stokes equations in 3-

D, based on a Beam-Warming factorization. In SP,

the resulting system is scalar pentadiagonal; in BT,

it is block triangular. In both cases, the system

is solved by Gaussian elimination without pivoting.

The decomposition used (3-D multipartitioning) re-

quires cluster sizes that are perfect squares.

MG : Solves Poisson's equation using a V-cycle multigrid

algorithm. This code requires power-of-two cluster

sizes.

The codes were run on an IBM SP2, an SGI Power Chal-

lenge Array, a Cray Research T3D and an Intel Paragon.

The three problem sizes are named Class A (the small-

est), Class B and Class C (the largest). For more details

about the benchmarks and test architectures, see [13] and

http://www.nas.nasa.gov/NAS/NPB.

Figure 5 shows the speedups observed on the SP2 and

our estimated parameters and speedup curves. In all

cases, the �tted curve matches the observed data well.

The only exception is the surprisingly bad performance

of the SP class C benchmark on 36 processors. This da-

tum may be in error, or it may be a consequence of a

memory-system phenomenon like a cache collision.

Memory requirements prevent some Class C bench-

marks from running on small cluster sizes. In these cases

we normalize the observed speedup values before estimat-

ing parameters | in e�ect, we treat the smallest feasible

cluster size as a single processing unit. Thus, the e�-

ciency on the smallest cluster size is de�ned to be 1. We

have observed that this normalization does not degrade

the goodness of �t of the model.

For each benchmark, we expect the estimated average

parallelism, A, to increase with problem size. In fact, this

is true of LU, MG and SP, but not true of BT. The es-

timated value of A for class C is smaller than that for

class B. This example illustrates one failure mode of our

model: if the observed timings exhibit linear or near-linear

speedup, then our model has no way of inferring the aver-

age parallelism of the code. Any value of A (greater than

the largest observed speedup) would yield the same good-

ness of �t. It happens that the curve-�tting technique

we use converges on A = smax, where smax is the largest

observed speedup.

Figure 6 shows the speedups observed on the T3D. Be-

cause the amount of memory per node is smaller on this

machine than on the SP2, none of the benchmarks were

5

able to run on a single processor. Thus all of our curve

�ts are based on normalized data.

Unlike the SP2, which can allocate arbitrary cluster

sizes, the T3D can only allocate power-of-two cluster sizes.

As a result, the performance of BT and SP, which require

square cluster sizes, is erratic. For example, SP class B

runs signi�cantly slower on 196 processors than on 144. In
both cases, the actual allocated cluster size is 256 proces-

sors, so it is not clear why using fewer of the allocated pro-

cessors results in better performance. Because our model

does not capture the behavior of these programs, it may

not be an appropriate choice for modeling a power-of-two

machine.

The MG benchmark exhibits another behavior that our

model does not capture: superlinear speedup. Many

programs perform poorly on small cluster sizes because

the performance of the memory system degrades as the

amount of data per processor increases. For these pro-

grams, the speedup curve exceeds the theoretical upper

bound of our model.

Fortunately, we can detect this behavior easily: a nega-

tive estimated � indicates superlinear speedup. Thus, our

model can be used to set a lower bound on the cluster size

for a job: if � is negative, we discard observations from

the low end of the range until it is positive. It is probably

not desireable to allocate a smaller cluster size, since the

job would run ine�ciently.

There is one other behavior that our model does not

capture: non-monotonic speedup curves. On large clus-

ter sizes, the communication overhead for some programs

eventually overwhelms the bene�ts of additional paral-

lelism and the speedup curve begins to decline. Of course,

there is little value in modeling this behavior, since it is

never desireable for an job to allocate a large cluster if

it runs faster on a smaller one. If we observe declining

speedups, we can discard observations from the upper end

of the range until the curve is monotonic, and impose an

upper bound on the cluster size that many be allocated.

4.2 SPLASH-2 programs

We obtained speedup curves for the SPLASH-2 programs

running on a simulated shared-memory computer [19] [18].

The Stanford Parallel Applications for Shared memory

(SPLASH) suite consists of 8 complete programs and 4

computation kernels that are intended to span a wide

range of scienti�c applications. These include LU de-

composition, a ray-tracing program, an ocean model, an

n-body solver, and more. For details, see http://www-

ash.stanford.edu.

For each program, we obtained the measured speedup

on 6 cluster sizes (2, 4, 8, 16, 32 and 64 processors). The

speedup on one processor is de�ned to be one. Figure 7

shows these observed speedups and the speedup model we

estimated for each program. In each case, we observe that

the �tted model is a good match for the observed data.

Each graph is labeled with the name of the benchmark

and the estimated parameters A and �. Two of the pro-

grams exhibit nearly linear speedup. Others have much

more limited parallelism; the lowest value is A is 20.3. The

value of � is generally less than 1, although two programs

yielded estimates of � = 1:7 and � = 2:7. The distribution

of � is similar on the NAS benchmarks.

5 Conclusions

� Our proposed speedup model captures the behavior of

numerous scienti�c applications running on a variety

of parallel computers, both shared- and distributed-

memory. Thus, we feel that this model is a realistic

choice for modeling parallel workloads.

� The parameters of our model correspond to measure-

able program charactericstics. Thus, our observations

of these benchmarks give us some insight into the

values and distibutions of these parameters in a real

workload.

5.1 Future work

We have suggested that we can infer the program char-

acteristics A and � of a program by �tting our model to

observed speedups. We have shown that our model �ts ob-

served speedups well; thus it would be appropriate to use

these estimated parameters for allocation and scheduling.

But we have not demonstrated that the estimated param-

eters necessarily re
ect the actual program characteristics
as they might be derived from a known parallelism pro�le.

We have identi�ed cases in which they do not, and these

cases suggest restrictions on when and how this approach

will be successful. In future work, we plan to clarify these

restrictions and determine how meaningful the estimated

parameters really are.

References

[1] Timothy B. Brecht and Kaushik Guha. Using paral-

lel program characteristics in dynamic processor al-

location policies. In Proceedings of Performance '96,
October 1996.

[2] Soumen Chakrabarti, James Demmel, and Katherine

Yelick. Modeling the bene�ts of mixed data and task

parallelism. In Seventh Annual ACM Symposium on

6

Parallel Algorithms and Architectures (SPAA '95),
July 1995.

[3] Su-Hui Chiang, Rajesh K. Mansharamani, and

Mary K. Vernon. Use of application characteristics

and limited preemption for run-to-completion paral-

lel processor scheduling policies. In Proceedings of
the ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, 1994.

[4] Lawrence W. Dowdy. On the partitioning of multi-

processor systems. Technical Report 88-06, Vander-

bilt University, March 1988.

[5] Allen B. Downey. A parallel workload model and its

implications for processor allocation. Technical Re-

port CSD-96-922, University of California at Berke-

ley, 1996.

[6] Allen B. Downey. Using queue time predictions for

processor allocation. Technical Report CSD-97-929,

University of California at Berkeley, 1997.

[7] Derek L. Eager, John Zahorjan, and Edward L. La-

zowska. Speedup versus e�ciency in parallel sys-

tems. IEEE Transactions on Computers, 38(3):408{
423, March 1989.

[8] Dipak Ghosal, Giuseppe Serazzi, and Satish K. Tri-

pathi. The processor working set and its use in

scheduling multiprocessor systems. IEEE Transac-
tions on Software Engineering, 17(5):443{453, May

1991.

[9] Kaushik Guha. Using parallel program character-

istics in dynamic multiprocessor allocation policies.

Technical Report CS-95-03, York University, May

1995.

[10] Cathy McCann and John Zahorjan. Scheduling mem-

ory constrined jobs on distributed memory paral-

lel computers. Technical Report UW-CSE-94-10-05,

University of Washington, 1994.

[11] William H. Press, Brian P. Flannery, Saul A Teukol-

sky, and Willian T. Vetterling. Numerical Recipes
in C. Cambridge University Press, Cambridge, MA,

1988.

[12] Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi,

and Lawrence W. Dowdy. Analysis of non-work-

conserving processor partitioning policies. In IPPS
'95 Workshop on Job Scheduling Strategies for Par-
allel Processing, pages 101{111, 1995.

[13] Willian Saphir, Alex Woo, and Maurice Yarrow. The

NAS parallel benchmarks 2.1 results. Technical Re-

port NAS-96-010, Numerical Aerospace Simulation

Facility, NASA Ames Research Center, 1996.

[14] Sanjeev. K Setia. The interaction between mem-

ory allocation and adaptive partitioning in message-

passing multicomputers. In IPPS '95 Workshop
on Job Scheduling Strategies for Parallel Processing,
pages 89{99, 1995.

[15] Sanjeev K. Setia and Satish K. Tripathi. A compar-

ative analysis of static processor partitioning policies

for parallel computers. In Proceedings of the Inter-
nationsal Workshop on Modeling and Simulation of
Computer and Telecommunications Systems (MAS-
COTS), January 1993.

[16] Kenneth C. Sevcik. Characterizations of parallelism

in applications and their use in scheduling. Perfor-
mance Evaluation Review, 17(1):171{180, May 1989.

[17] Evgenia Smirni, Emilia Rosti, Lawrence W. Dowdy,

and Giuseppe Serazzi. Evaluation of multiprocessor

allocation policies. Technical report, Vanderbilt Uni-

versity, 1993.

[18] Steven C. Woo. Personal correspondence. 1996.

[19] Steven C. Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta. The

SPLASH-2 programs: Characterization and method-

ological considerations. In 22nd Annual International
Symposium on Computer Architecture, pages 24{36,
June 1995.

7

0

30

60

90

120

14 9 16 25 36 49 64 81 100 121

speedup

number of processors

 BT class A

A = 93.14, sigma = 1.06

0

30

60

90

120

14 16 25 36 49 64 81 100 121

speedup

number of processors

 BT class B

A = 144.84, sigma = 0.94

0

30

60

90

120

49 64 81 100 121

speedup

number of processors

 BT class C

A = 119.28, sigma = 0.02

0

32

64

96

128

1248 16 32 64 128

speedup

number of processors

 LU class A

A = 75.93, sigma = 1.07

0

32

64

96

128

1248 16 32 64 128

speedup

number of processors

 LU class B

A = 87.73, sigma = 0.62

0

32

64

96

128

8 16 32 64 128

speedup

number of processors

 LU class C

A = 124.14, sigma = 0.73

0

32

64

96

128

1248 16 32 64 128

speedup

number of processors

 MG class A

A = 63.78, sigma = 1.32

0

32

64

96

128

1248 16 32 64 128

speedup

number of processors

 MG class B

A = 73.62, sigma = 2.14

0

32

64

96

128

64 128

speedup

number of processors

 MG class C

A = 110.26, sigma = 0.00

0

30

60

90

120

14 9 16 25 36 49 64 81 100 121

speedup

number of processors

 SP class A

A = 51.10, sigma = 1.43

0

30

60

90

120

14 9 16 25 36 49 64 81 100 121

speedup

number of processors

 SP class B

A = 103.74, sigma = 0.91

0

30

60

90

120

14 16 25 36 49 64 81 100 121

speedup

number of processors

 SP class C

A = 121.20, sigma = 0.29

Figure 5: Speedup curves for the NAS benchmarks run on the IBM SP2 at NAS. Each row reports the results of one

benchmark on three di�erence problem sizes. Class A is the smallest problem size; Class C is the largest. The gray lines

show the theoretical upper limit (� = 0) and lower limit (� =1) for a program with the given average parallelism, A.

8

0

64

128

192

256

253649 64 100 121 144 169 196 225 256

speedup

number of processors

 BT class A

A = 261.16, sigma = 0.48

0

64

128

192

256

64 81 100 121 144 169 196 225 256

speedup

number of processors

 BT class B

A = 266.08, sigma = 0.19

0

30

60

90

120

49 64 81 100 121

speedup

number of processors

 BT class C

A = 119.28, sigma = 0.02

0

64

128

192

256

24816 32 64 128 256

speedup

number of processors

 LU class A

A = 177.54, sigma = 0.87

0

64

128

192

256

4816 32 64 128 256

speedup

number of processors

 U class B

A = 222.21, sigma = 1.07

0

64

128

192

256

64 128 256

speedup

number of processors

 LU class C

A = 289.40, sigma = 0.44

0

64

128

192

256

816 32 64 128 256

speedup

number of processors

 MG class A

A = 217.57, sigma = −0.31

0

64

128

192

256

16 32 64 128 256

speedup

number of processors

 MG class B

A = 215.57, sigma = −0.41

0

64

128

192

256

64 128 256

speedup

number of processors

 MG class C

A = 329.70, sigma = 0.05

0

64

128

192

256

162536 64 81 100 121 144 169 196 225 256

speedup

number of processors

 SP class A

A = 265.02, sigma = 1.05

0

64

128

192

256

64 81 100 121 144 169 196 225 256

speedup

number of processors

 SP class B

A = 258.63, sigma = 0.70

0

64

128

192

256

81 100 121 144 169 196 225 256

speedup

number of processors

 SP class C

A = 297.24, sigma = 0.10

Figure 6: Speedup curves for the NAS benchmarks run on the Cray T3D at NAS. Each row reports the results of one

benchmark on three di�erence problem sizes. Class A is the smallest problem size; Class C is the largest.

9

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Barnes

A = 64.23, sigma = 0.06

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Cholesky

A = 20.29, sigma = 2.65

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
FFT

A = 62.56, sigma = 0.12

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
FMM

A = 65.45, sigma = 0.48

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
LU decomposition

A = 41.86, sigma = 1.72

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Ocean

A = 69.35, sigma = 0.23

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Radiosity

A = 37.22, sigma = 0.82

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Radix

A = 48.41, sigma = 0.71

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Ray tracing

A = 48.72, sigma = 0.12

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Volume rendering

A = 63.98, sigma = 0.04

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH−2 Benchmark on ideal machine
Water−Nsquared

A = 68.31, sigma = 0.42

0

16

32

48

64

124 8 16 32 64

speedup

number of processors

SPLASH2 Benchmark, Water−Spatial
on ideal machine

A = 68.40, sigma = 0.13

Figure 7: Speedup curves for the SPLASH-2 benchmark run on a simulated shared-memory machine.

10

