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Abstract

We analyze when it is possible to compute the singular values and singular vectors of a matrix

with high relative accuracy. This means that each computed singular value is guaranteed to

have some correct digits, even if the singular values have widely varying magnitudes. This is in

contrast to the absolute accuracy provided by conventional backward stable algorithms, which in

general only guarantee correct digits in the singular values with large enough magnitudes. It is of

interest to compute the tiniest singular values with several correct digits, because in some cases,

such as �nite element problems and quantum mechanics, it is the smallest singular values that

have physical meaning, and should be determined accurately by the data. Many recent papers

have identi�ed special classes of matrices where high relative accuracy is possible, since it is not

possible in general. The perturbation theory and algorithms for these matrix classes have been

quite di�erent, motivating us to seek a common perturbation theory and common algorithm.

We provide these in this paper, and show that high relative accuracy is possible in many new

cases as well. The briefest way to describe our results is that we can compute the SVD to high

relative accuracy provided we can compute a \high accuracy" pivoted LDU decomposition. We

provide many examples of matrix classes permitting such an LDU decomposition.
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1 Introduction

The singular value decomposition (SVD) of a real matrix G is the factorization G = U�V T where

U and V are orthogonal matrices and � is nonnegative and diagonal. If G is m-by-n, with m � n

(otherwise transpose G), then U is m-by-n, � = diag(�1; :::; �n) with �1 � � � � � �n � 0, and V

is n-by-n. We call the columns ui of U = [u1; :::; un] the left singular vectors, the columns vi of

V = [v1; :::; vn] the right singular vectors, and the �i the singular values.

Our goal is to compute the SVD (i.e. the ui, vi and �i) as accurately as the data deserves, using

conventional 
oating point arithmetic. The phrase \as the data deserves" means that we assume

that there is an unknown but bounded perturbation �G, and that we are given Ĝ = G+�G as input,

not G itself. Thus a properly posed problem includes an input matrix Ĝ, and some information

about how �G is bounded. The inherent uncertainty in the data represented by the bound on �G

will limit the accuracy with which we can compute the SVD of G, independent of any additional

errors introduced by the algorithms.

To explain the higher accuracy to which we aspire to compute the SVD, we will contrast it with

the accuracy provided by conventional SVD algorithms, such as QR iteration, bisection and inverse

iteration, or divide-and-conquer [12, 28, 31]. Their model of uncertainty asserts that �G is bounded

in norm, and that k�Gk=kGk � 1 (k � k is the two-norm). This model of uncertainty is appropriate

because roundo� error in these algorithms means that �G typically satis�es k�G0k=kGk = 
(") (i.e.

at least order ") where " is the machine precision, or maximum relative error in any 
oating point

operation (barring over/under
ow, which we ignore). Thus, including both input and roundo�

error, these conventional algorithms only compute the SVD of Ĝ = G+ �G, where

k�Gk � �kGk where 0 � � � 1 : (1)

This bound may be combined with perturbation theorems [43, 58, 36, 37] to derive the following

conventional error bounds:

Let Û = [û1; :::; ûn], �̂ = diag(�̂1; :::; �̂n), and V̂ = [v̂1; :::; v̂n] be the SVD of

Ĝ = G+ �G where k�Gk � �kGk : (2)

Then the di�erence between the true and perturbed singular values is bounded by

j�i � �̂ij � � � kGk = � � �1 : (3)

Furthermore, the acute angle � between the true and computed left singular vectors ui
and ûi (or between right singular vectors vi and v̂i) is bounded by

sin � � �

abs gap(i; G; Ĝ)
(4)

provided the absolute gap

abs gap(i; G; Ĝ) � min
j 6=i

j�i � �̂j j=�1 (5)

between �i and the nearest other singular value is positive. (This is true when m = n;

when m > n then abs gap(i; G; Ĝ) for the left singular vectors is the minimum of the

above expression and �i=�1.)
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We call this accuracy provided by conventional algorithms absolute accuracy, to contrast it with

the more stringent relative accuracy described in the next paragraph:

Let Û = [û1; :::; ûn], �̂ = diag(�̂1; :::; �̂n), and V̂ = [v̂1; :::; v̂n] be the SVD of

Ĝ = (I + E)G(I + F ) where kEk � �E and kFk � �F : (6)

We call Ĝ in (6) a multiplicative perturbation of G, to contrast it with the additive

perturbation of G in (2). Then we say the SVD of Ĝ approximates the SVD of G with

relative accuracy �0, where � � max(�E; �F ) and �0 = 2�+ �2, since [24, Thm. 3.1] [27,

Lemma 6.4.]
j�i � �̂ij

�i
� �E + �F + �E�F � 2� + �2 = �0 (7)

and the acute angle � between ui and ûi (or between vi and v̂i) satis�es [24, Thm 3.3]

sin � �
p
2

�
1 + �0

1� �0
� �0

rel gap(i; G)� �0
+ �

�
(8)

provided that the relative gap

rel gap(i; G)� min

�
min
j 6=i

j�i � �̂j j
�i

; 2

�
(9)

between �i and the nearest other singular value is at least �0.

To make the di�erence between absolute and relative accuracy concrete, we consider bidiagonal

matrices, which arise from computing the vibrational frequencies of a linear mass-spring system,

as described in section 12.1. In particular, consider the 3-by-3 bidiagonal matrix

G =

2
64 1:2435 � 10�9 5:8978 � 10�9 0

0 �2:0970 � 10�8 :92354

0 0 :38350

3
75

which has singular values �1 � 1, �2 � 10�8 and �3 � 10�9. Suppose we perturb G by multiplying

each gi;j by a factor 1+ �i;j , where j�i;j j � 10�6. As before, call the perturbed matrix Ĝ = G+ �G.

Then we can only assert that k�Gk <� 10�6, and so apply absolute bounds (3) and (4) with

� = 10�6. In contrast, Theorem 8.1 below (as well as theorems in [3, 18, 16]) assert that we can

write G + �G = (I + E)G(I + F ) where E and F are (diagonal) matrices of norm at most about

2:5 � 10�6, so relative bounds (7) and (8) apply with � = 2:5 � 10�6. This leads to the perturbation
bounds in Table 1. The relative error bounds this table guarantee that the two smaller singular

values and their singular vectors are accurate to about 5 decimal digits, whereas the absolute error

bounds guarantee no correct digits at all. Algorithms capable of computing the SVD of bidiagonal

matrices with such high relative accuracy were published in [18, 16, 25].

Our interest in the notion of relative accuracy de�ned by bounds (7) and (8) arises for two

reasons. First, there are a number of physical problems where the smallest singular values (or

eigenvalues) are well-determined by the physical problem being modeled, and we need to compute

them with some relative accuracy. For example, modes of vibration of �nite element problems,
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Absolute Bounds Relative Bounds

Singular Value Bounds

�̂1 = 1� 10�6 �̂1 = 1 � (1� 5 � 10�6)
�̂2 = 10�8 � 10�6 �̂2 = 10�8 � (1� 5 � 10�6)
�̂3 = 10�9 � 10�6 �̂3 = 10�9 � (1� 5 � 10�6)

Gaps

abs gap(1; G) � 1 rel gap(1; G) � 1

abs gap(2; G) � :9 � 10�8 rel gap(2; G) � :9

abs gap(3; G) � :9 � 10�8 rel gap(3; G) � 2

Singular Vector Bounds

�(u1; û1)
<� 10�6 �(u1; û1)

<� 1:1 � 10�5

�(u2; û2)
<� 1:1 � 102 �(u2; û2)

<� 1:1 � 10�5

�(u3; û3)
<� 1:1 � 102 �(u3; û3)

<� 7:1 � 10�6

Table 1: Absolute versus Relative Error Bounds

and energy levels in quantum mechanical systems fall in this class1. The second reason is that a

large number of recent papers describe apparently unrelated classes of matrices G, and classes of

perturbations �G, such that the SVDs of G and Ĝ = G + �G agree to high relative accuracy, as

described by bounds (7) and (8). Many of these papers also provide quite di�erent algorithms that

compute the SVD with these bounds, where � is proportional to machine epsilon ". These matrix

classes include

1. bidiagonal matrices [18, 16, 25]

2. acyclic matrices [17] (see below for a de�nition)

3. scaled diagonally dominant matrices [3]

4. well-scalable symmetric positive de�nite matrices [19], and

5. certain well-scalable symmetric inde�nite matrices [57, 49, 48].

Some of these results depended on the multiplicative perturbation theory stated above, and others

did not. In other words, special techniques were used in each case.

In this paper we present a single perturbation theory that includes all the cases in the above list,

as well as several new ones. We also provide an algorithm, which with some variations computes

the SVD to high relative accuracy in all known cases.

Here is an outline of our results.

1. In section 2 we de�ne a rank-revealing decomposition (RRD) of a matrix G to be any repre-

sentation of the form G = XDY T , where D is diagonal, X and Y have at least as many rows

as columns, and X and Y are \well-conditioned". The SVD itself is such a representation

1In one example communicated to the authors, the smallest eigenvalue of a discretized Schr�odinger operator was

desired to several digits of relative accuracy, though the largest eigenvalue was 1070 times larger [26].
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(X and Y are perfectly conditioned), but there are many others, depending on how large a

condition number for X and Y one will tolerate. For example the factorizations provided by

rank-revealing QR [51, 4, 13, 14, 30, 33, 42] and Gaussian elimination with complete pivoting

(GECP) or other pivoting [41, 44]. GECP (usually) provides an RRD since the unit lower

and upper triangular factors L and U in G = PrLDUPc have o�diagonal entries bounded by

1 in absolute value (here Pr and Pc are permutations
2).

We then show that if we perturb the RRD G = XDY T to get Ĝ = X̂D̂Ŷ T , where

X̂ = X + �X where
k�Xk
kXk � �

D̂ = D + �D where �D is diagonal and
j�Diij
jDiij

� � (10)

Ŷ = Y + �Y where
k�Y k
kY k � �

then relative bounds (7) and (8) hold with � = O(�max(�(X); �(Y ))), where �(Z) =
�max(Z)
�min(Z)

is the condition number of Z; see Theorem 2.1 in section 2. This implies that an approximate

RRD (in the sense of (10) determines the SVD to high relative accuracy �.

2. In section 3, we show that given any RRD G = XDY T , one can compute the SVD of G

with relative error bounds (7) and (8), where � = O("max(�(X); �(Y ))). We actually have

several algorithms for this, of slightly varying complexity and accuracy. The algorithm we

present in detail (Algorithm 3.1 in section 3) uses only QR decomposition with pivoting,

matrix multiplication (twice), and one-sided Jacobi as its ingredients. This implies that any

method for computing any accurate RRD of G (in the sense of (10)) permits us to compute

the SVD of G to high relative accuracy.

3. It remains to ask which classes of matrices permit accurate RRDs to be computed. We

concentrate on the RRD provided by GECP, since this works so widely. These classes depend

on two di�erent characterizations of Gaussian elimination. The �rst characterization expresses

the entries of L, D and U as entries of Schur complements, i.e. expressions of the form

S = G22�G21G
�1
11 G12. By imposing conditions on (scaled) condition numbers of submatrices

like G11, we can guarantee that S is computed accurately. The second characterization

expresses the entries of L, D and U as quotients of minors of G. By imposing conditions

on the sparsity, signs, or algebraic relations among entries of G, we can guarantee that all

minors are determined accurately. Sometimes straightforward GECP does not compute the

LDU factors su�ciently accurately, in which cases we show how to modify it to do so. We

discuss these classes in more detail below.

4. In section 4 we discuss conditions on condition numbers of (scaled) submatrices of G that

guarantee that Schur complements, and so entries of an LDU factorization, can be accurately

computed. In particular, suppose we write G = D1BD2 where D1 and D2 are diagonal. We

consider the case where B is well-conditioned, and D1 and D2 \contain" any ill-conditioning

of G. We provide conditions on B that guarantee that GECP is accurate independently of

2If we ignore factors depending only on dimension, then GECP always computes an RRD; this depends on how

loosely we interpret the meaning of \well-conditioned" in our de�nition of RRD.
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D1 and D2. Since D1, B and D2 are not always known, we also provide a computable a

posteriori error bound that depends only on the computed LDU factors computed by GECP.

This work generalizes earlier work where B was symmetric positive de�nite, and D1 = D2

[19]. In this simpler case, it was enough for B to be well-conditioned to get the singular

values to high relative accuracy. In contrast, the general case considered here requires all

submatrices of B to be well-conditioned, in order that high relative accuracy be attained

independent of D1 and D2. Since an n-by-n matrix has O(4n) submatrices, this is a lot of

conditions to satisfy. But our a posteriori error bound reduces this possibly exponential cost

back to O(n3) by measuring the condition numbers of just the relevant submatrices.

5. Section 5 outlines the combinatorial and algebraic conditions that guarantee that the LDU

factors of G are determined to high relative accuracy. We rely on the fact that entries of

L, D and U are quotients of minors of G, and ask when there are formulas for these minors

that can be evaluated with high relative accuracy. For example, a formula containing only

multiplication, division, and addition of quantities of like signs, is evaluatable to high relative

accuracy; the only dangerous operation of subtractive cancellation is excluded. But we can

in fact permit cancellation, as long as the operands are input 
oating point data, i.e. can be

treated as exact values stored in the machine. If cancellation a� b does occur in such a case,

the result is exact3.

To illustrate the conditions we impose, consider computing the determinant D = g11g22 �
g12g21 of the 2-by-2 matrix G with entries gij . For D to be determined to high relative

accuracy, independent of the magnitudes of the gij , we could impose conditions on the sparsity

pattern of G, for example insisting that at least one entry of G be exactly zero; in this case

either D = g11g22, D = �g12g21, or D = 0, in all of which cases D is determined to high

relative accuracy. Or we could impose conditions on the sign pattern of G, for example

insisting that g12 � 0 and otherwise gij � 0; in this case computing D = g11g22 � g12g21
involves adding positive numbers, and so no cancellation.

It turns out that there are simple necessary and su�cient conditions on the sparsity and sign

patterns, that guarantee that all LDU factors can be computed to high relative accuracy.

Section 6 discusses the sparsity pattern by itself; the condition is that that graph of G be

acyclic [17]. Acyclic matrices include bidiagonal matrices, for example. Section 7 discusses

sign and sparsity patterns; the condition is that G be total signed compound (TSC) [11]. TSC

matrices include acyclic matrices, tridiagonal and \arrow" matrices with the sign patterns2
666664

+ +

+ � +

+ + +

+ � +

+ +

3
777775 and

2
666664

+ + + + +

+ �
+ �
+ �
+ �

3
777775 : (11)

and many others.

It turns out that conventional GECP does not preserve the high relative accuracy inherently

available, but we show how to modify GECP to regain high relative accuracy. Unfortunately,

3This excludes machines with sloppy 
oating point arithmetic, like the Cray T90, and its predecessors and

emulators.
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this modi�cation can cost as much as O(n4) for TSC matrices; �nding an O(n3) implemen-

tation is an open problem.

6. Section 8 considers diagonally scaled totally unimodular (DSTU) matrices. These include

acyclic matrices as special cases, as well as certain �nite element problems considered in

section 12. A totally unimodular (TU) matrix is an integer matrix Z each of whose minors is

�1, 0 or +1, and a DSTU matrix is of the form D1ZD2, where D1 and D2 are diagonal and

Z is TU. DSTU matrices include the reduced node-arc incidence matrices analyzed in [55].

7. Section 9 discusses Cauchy matrices, i.e. matrices whose entries are Ci;j = 1=(xi+ yj), where

x1; :::; xn and y1; :::; ym are given data. There is a classical formula for det(C) that satis�es

our conditions above for being evaluatable to high relative accuracy. The cost of the modi�ed

version of GECP using this formula is O(n5), so faster algorithms would be welcome.

8. Section 10 discusses totally positive (TP) matrices, i.e. matrices all of whose minors are

nonnegative. The Hilbert matrix is an example (it is also Cauchy), and TP matrices arise

elsewhere frequently in applied mathematics [35]. There are many way to parameterize TP

matrices; the parameters xi and yj above for a Cauchy matrix is one example of many.

The existence of high relative accuracy formulas for minors depends on choosing the right

parameterization. There turns out to be a systematic way to develop good parameterizations,

and corresponding high accuracy formulas for minors, for all TP matrices. Unfortunately, the

costs of these formulas are sometimes exponential in n, and we do not know if we can do

better.

9. Section 11 discusses which other linear algebra problems besides the SVD can be solved to

high accuracy, given the combinatorial and algebraic conditions described in earlier sections.

Since solutions of linear systems, and some aspects of least squares problems, can be expressed

in terms of minors, it is no surprise that a matrix whose minors are determined accurately

also determines its inverse accurately.

10. Finite element matrices, which are discussed in Section 12, arise from many problems where

we want to compute the vibrational frequencies of some physical system. Usually the lowest

frequencies (eigenvalues) are of physical interest, so we want to compute them accurately.

The most natural formulation usually leads to a generalized eigenvalue problem of the form

Kx = �Mx, where M is the mass matrix, and K is the sti�ness matrix. Typically we

write K = ZT
KDKZK where ZK is the incidence matrix or assembly matrix, and DK is

the (block)diagonal matrix of individual element sti�nesses. We may similarly write M =

ZT
MDMZM .

We will see that we can sometimes reduce the eigenproblem K � �M to the SVD of a single

matrix G = D1BD2, where D1 and D2 are diagonal, and depend only on the material

properties (masses and spring constants in DK and DM ), and B depends only on the geometry

and meshing of the �nite element model (in ZK and ZM ). The relative accuracy attainable by

our algorithms will depend only on B, i.e. on the geometry and meshing, and be independent

of the material properties in D1 and D2. A similar analysis of linear systems arising in �nite

element problems appears in [46, 55, 54].

To reduce the length of this paper, we will only present one example in detail, a linear mass-

spring system consisting of masses that can move in one dimension only. In this simple case
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the relative accuracy depends only on the relative accuracy with which the individual masses

and spring constants are known. More complicated �nite element problems will be considered

in a future paper.

The last section, section 13, lists open problems. Finally, we note that the sequence of initials

of the last names of the authors, DGESVD, is the name of the most accurate LAPACK [1] routine

currently available for the dense SVD (which only provides high absolute accuracy).

2 Rank Revealing Decompositions (RRDs)

We repeat the following de�nition from the introduction:

De�nition 2.1 Let G be m-by-n with m � n. Let X be m-by-r, D be r-by-r, and Y be n-by-r,

where r � min(m;n). Then G = XDY T is a rank-revealing decomposition (RRD) of G if X and Y

are well-conditioned, and D is diagonal and nonsingular.

The SVD itself is such a decomposition, with X and Y optimally conditioned, i.e. orthogonal.

But there are many other RRDs as well, most importantly the decomposition (usually) provided

by Gaussian elimination with complete pivoting (GECP). The goal of this section and the next is

to show that any RRD is as good as the SVD, in the sense that small changes in the factors of

the RRD determine the SVD to high relative accuracy, and that there are e�cient algorithms for

computing the SVD this accurately, given any RRD.

Theorem 2.1 Let G = XDY T be an RRD with SVD G = U�V T , and let Ĝ = X̂D̂Ŷ T with SVD

Ĝ = Û �̂V̂ T , where X̂, D̂ and Ŷ are de�ned as in equation (10):

X̂ = X + �X where
k�Xk
kXk � �

D̂ = D + �D where �D is diagonal and
j�Diij
jDiij

� �

Ŷ = Y + �Y where
k�Y k
kY k � �

where 0 � � < 1. Let � = �(2+�)max(�(X); �(Y )) and �0 = 2�+�2, where �(Z) = �max(Z)=�min(Z)

is the condition number of Z. Then the di�erence between the singular values of G and Ĝ is bounded

as follows
j�i � �̂ij

�i
� �0 : (12)

Furthermore, the angle � between ui and ûi (or between vi and v̂i) is bounded by

sin � �
p
2

�
1 + �0

1� �0
� �0

rel gap(i; G)� �0
+ �

�
(13)

provided that the relative gap

rel gap(i; G)� min

�
min
j 6=i

j�i � �̂j j
�i

; 2

�

is at least �0.
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The proof is simple. We use the multiplicative perturbation theorems stated in the introduction,

which we repeat here.

Theorem 2.2 [24, Thm. 3.1] Suppose Ĝ = (I +E)G(I + F ), with kEk = �E and kFk = �F . Let

� = max(�E; �F ) and �0 = 2� + �2. Then

j�i � �̂ij
�i

� �E + �F + �E�F � �0 : (14)

Theorem 2.3 [37, Thm. 3.5] Suppose Ĝ = (I + E)G(I + F ), where kEk � �E and kFk � �F .

Let � = max(�E; �F ) and �0 = 2� + �2. Then the acute angle � between ui and ûi (or between vi
and v̂i) is bounded by

sin � �
p
2

�
1 + �0

1� �0
� �0

rel gap(i; G)� �0
+ �

�
(15)

provided that the relative gap

rel gap(i; G)� min

�
min
j 6=i

j�i � �̂j j
�i

; 2

�

between �i and the nearest other singular value is at least �0.

The paper [37] includes similar perturbation theorems for singular subspaces, not just singular

vectors. These are useful when several singular values form a tight cluster, and bounds are desired

for the space spanned by their corresponding singular vectors.

Proof of Theorem 2.1: We write Ĝ in the form (I +E)G(I + F ): First write

Ĝ = X̂D̂Ŷ T

= (X + �X)D̂Ŷ T

= (I + �XX+)XD̂Ŷ T

where X+ is the Moore� Penrose pseudoinverse of X

= (I + E)XD̂Ŷ T

where E = �XX+ :

Note that kEk � k�Xk � kX+k � �kXk � kX+k = ��(X). Now we apply the same technique to the

other two factors D̂ and Ŷ . Note that D̂ = D(I +D�1�D) � D(I +W ), where W is diagonal with

norm bounded by �. Then

Ĝ = (I +E)XD̂Ŷ T

= (I +E)XD(I +W )(Y + �Y )T

= (I +E)XD(Y + Y W + �Y (I +W ))T

= (I +E)XD((I + [YW + �Y (I +W )]Y +)Y )T

= (I +E)XDY T (I + f[YW + �Y (I +W )]Y +gT )
� (I +E)XDY T (I + F )

= (I +E)G(I + F )

where kFk � �(Y )(2� + �2). Applying Theorems 2.2 and 2.3 to Ĝ = (I + E)G(I + F ) yields the

result. 2
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3 Computing the SVD from a Rank Revealing Decomposition

We present an algorithm for computing the SVD to high relative accuracy from an RRD G =

XDY T . After presenting Algorithm 3.1 in detail, we discuss some other algorithms for this problem

brie
y. None of our algorithms yet incorporates all known tricks for accelerating high accuracy

algorithms [48, 39, 21]. Our goal here is simplicity and accuracy. A future paper will address speed

issues.

Algorithm 3.1 Computing the SVD G = U�V T given an RRD G = XDY T .

(1) Perform QR factorization with pivoting on XD to get XD = QRP , where P is a permutation.

Thus G = QRPY T .

(2) Multiply to get W = RPY T . This must be conventional matrix multiplication,

e.g. Strassen's method [32] may not be used. Thus G = QW .

(3) Compute the SVD of W = �U�V T using one-sided Jacobi [19]. Thus G = Q �U�V T .

(4) Multiply U = Q �U . Thus G = U�V T is the desired SVD.

Remark. Algorithm 3.1 actually computes just the nonzero singular values of G and their corre-

sponding singular vectors.

Theorem 3.1 Let D0 be a diagonal matrix, chosen so that R0 = D0�1R is as well conditioned as

possible. We can always choose D0 so that �(R0) is bounded by O(2n), and it is usually much

smaller. Then in 
oating point arithmetic with machine precision ", Algorithm 3.1 computes the

SVD of G with relative accuracy � = O("�(R0) �max(�(X); �(Y ))).

Remark. The factor �(R0) in the error bound depends on how well the pivoting during the QR

decomposition of XD \reveals the rank" of XD. The bound O(2n) comes from the standard

column-pivoting algorithm [28] and choosing D0
ii = Rii, but better alternatives are available [51, 4,

13, 14, 30, 33, 42]. For example, Gu has a pivoting scheme that reduces O(2n) to O(n1+(1=4) log2 n),

analogous to the pivot growth bound for GECP. See also [41].

Proof: We proceed through the algorithm line by line, showing that the backward error introduced

by every step but (3) is of the form (I + E)G(I + F ). The one-sided Jacobi algorithm in step (3)

is described in [19, Alg. 4.1], and was shown to possess high relative accuracy when applied to

matrices like W , which we will see is the product of a diagonal matrix D0 and a well-conditioned

matrix R0PY T (modulo roundo�). The algorithm in step (3) is essentially the version of the

one-sided Jacobi algorithm of Rutishauser in [59], but with a more stringent stopping criterion.

(Later, more elegant proofs by Drma�c [22] and Mathias [39] also use the fact that errors during

one-sided Jacobi are of the form (I+E)G(I+F ), so that the entire error analysis propagates errors

\multiplicatively" rather than \additively".)

Step (1) of Algorithm 3.1 may be written

G = XDY T

= (QRP +E0)Y T

where Q, R and P are the computed results from step (1), and E0 is the backward error. Since QR

operates on columns of the matrix, it is easy to see that we can write

QRP = XD �E0 = (X + �X)D
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where for all i, column i of �X has norm bounded by O(") times the norm of column i of X . Thus

QRP = (I + �XX+)XD = (I +E)XD

where kEk � O(")�(X). In other words, we may write

G = (I +E)�1QRPY T :

Continuing with the algorithm, in Step (2) we multiply RPY T to get the computed product

W , which satis�es W + �W = RPY T , where �W is the roundo� error. Since P is a permutation,

the order in which we perform the two multiplications to formW does not matter. Since R = D0R0

where D0 is diagonal, and we use conventional matrix multiplication, we can bound �W rowwise

as follows (eTi denotes the i-th row of the identity matrix):

keTi �Wk � O(")keTi Rk � kY Tk
= O(")jD0

iij � keTi R0k � kY T k :

De�ning Z = D0�1W , �Z = D0�1�W , and letting Z+ be the pseudoinverse of Z we get

k(Z + �Z)+k � kR0�1k � kY +k ;

k�Zk = O(")kR0k � kY T k
and

W + �W = D0(Z + �Z)

= D0Z(I + Z+�Z)

= W (I + F 0)

where

kF 0k � kZ+k � k�Zk
� k(Z + �Z)+k � k�Zk
� O(") � �(R0) � �(Y ) :

Altogether then, after Step (2), we have

G = (I + E)�1QW (I + F 0) :

Next, in Step (3), we use one-sided Jacobi to compute the SVD of W = D0Z. We let D0Z =
�U 0�0V 0T be the exact SVD, and let �U = �U 0 � � �U , � = �0 � �� and V = V 0 � �V be the

computed quantities returned by one-sided Jacobi. In [19] it is shown that to high relative accuracy

O("�(Z)) = O("�(R0)�(Y )), �U�V T is the SVD of D0Z.

Continuing with the algorithm, we write

G = (I +E)�1Q( �U 0�0V 0T )(I + F 0)

= (I +E)�1Q( �U + � �U)(� + ��)(V + �V )T (I + F 0)

where �U; �; and V are computed in Step (3) with errors � �U; ��; and �V

= (I +E)�1(Q �U +Q� �U)(� + ��)(V + �V )T (I + F 0)

= (I +E)�1(U + �U +Q� �U)(�+ ��)(V + �V )T (I + F 0)

where U is the computed product in Step (4) and �U is the roundo� error:

11



Altogether, we get

(I +E)G(I + F ) = (Q �U 0)�0V 0T = (U +Q� �U + �U)(�+ ��)(V + �V )T

where I +F = (I +F 0)�1, so kEk = O("�(X)) and kFk � kF 0k = O("�(R0)�(Y )). In other words,

(Q �U 0)�0V 0T is the true SVD of almost the right matrix ((I+E)G(I+F )), and the computed SVD

U�V T is almost the right SVD of almost the right matrix. (The fact that Q is not quite orthogonal

does not matter here, since its nonorthogonality could be absorbed in the I +E factor.)

Now apply multiplicative perturbation theorem 2.2 to see that the relative error in the singular

values � + �� is bounded by O("max(�(X); �(R0)�(Y ))). From the analysis in [19], the relative

di�erence between � + �� and the actual computed output � is also O("�(Z)) = O("�(R0)�(Y )).

This proves that the relative error in the computed singular values is bounded by

O("max(�(X); �(R0)�(Y ))) as desired.

Finally, we consider the singular vectors. Multiplicative perturbation theorem 2.3 bounds the

di�erence between the singular vectors of G and those of (I +E)G(I + F ), namely the columns of

Q �U 0 and V 0 = V + �V , by O("max(�(X); �(R0)�(Y ))) over the relative gaps. The analysis in [19]

further bounds the the di�erence between the columns of V + �V and the actual computed output

V by O("�(Z)) = O("�(R0)�(Y )) over the relative gaps, yielding the desired error bound for the

right singular vectors.

For the left singular vectors, we introduced errors in steps (4) and (5), which we express as

U = Q �U 0 �Q� �U � �U

where Q �U 0 are the true singular vectors of (I + E)G(I + F ). As with the left singular vectors,

the analysis in [19] shows that each column of � �U is bounded in norm by O("�(R0)�(Y )) over the

appropriate relative gap. Multiplying by Q and adding �U (which is bounded in norm by O("))

does not change this norm bound. Therefore, the errors in the columns of U are bounded the same

way. This yields the �nal desired error bound. 2

Three other algorithms deserve mention. The �rst algorithm we discovered for this problem was

based on an algorithm of Veseli�c and Slapni�car. Assuming without loss of generality that Dii > 0,

we can write"
0 G

GT 0

#
=

"
0 XDY T

Y DXT 0

#

=

(
1p
2
�
"
X X

Y �Y

#
�
"
D1=2 0

0 D1=2

#)
�
"
I 0

0 �I

#
�

(
1p
2
�
"
X X

Y �Y

#
�
"
D1=2 0

0 D1=2

#)T

� Z � J � ZT

By construction, the columns of Z can be scaled so that its resulting condition number �(Z ~D) is no

larger than max(�(X); �(Y )). Thus, we can apply Veseli�c's implicit J-orthogonal Jacobi algorithm

[56] to compute the positive eigenvalues of ZJZT (and their eigenvectors), which are the singular

values of G (and their singular vectors). The relative error in this algorithm is O("�(Z ~D)) as

desired, see Slapni�car [48]. Unlike Algorithm 3.1, this algorithm has no �(R0) factor in the error

bound, but it is likely to be slower.
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A very similar algorithm appeared in [45], which essentially applied a Jacobi-like iteration to

the pencil

FTF � �

"
0 I

�I 0

#
; where F =

"
0 XD1=2

Y D1=2 0

#
:

Finally, another algorithm appeared in [21, 22].

3.1 Numerical Experiments

In this section, we present results of numerical experiments with Algorithm 3.1, assuming we that

are given an RRD G = XDY T . We used Sun FORTRAN on a Sun SPARC 20 Workstation,

with IEEE arithmetic. Our single precision procedure, SGEPSV, is implemented as follows. In

step (1) we compute the QR factorization using LAPACK's [1] SGEQPF procedure, which does

QR decomposition with column pivoting. Steps (2) and (4) are implemented using calls to the

BLAS 3 [20] procedure STRMM, where we are careful to use an STRMM based on conventional matrix

multiplication rather than Strassen's method, as required by the error analysis in Theorem 3.1.

Step (3) has several possible implementations; we use the right-handed Jacobi scheme, i.e. the

matrix V is the accumulated product of Jacobi rotations. Since the dimension r of D is less than

the number of columns n of G, we save time by �rst computing the LQ factorization of W and

apply one-sided Jacobi to L. (We note that Algorithm 3.1 has a dual formulation that interchanges

the roles of X and Y . An optimized version would choose between versions depending on the sizes

of the dimensions m, r and n, but we will not pursue this here.)

We also use double precision versions of our routines, which have names beginning with D instead

of S.

This set of experiments was designed to con�rm the error analysis of Algorithm 3.1. We did

this by constructing a set of X , D and Y with known condition numbers, computing the SVD of

XDY T using both single precision and double precision (note that G = XDY T is never formed

explicitly), and seeing whether the di�erences between the single precision and double precision

singular values satis�ed the error bound in Theorem 3.1 (they did). We also monitored the size of

the �(R0) term in the error analysis, and con�rmed that it never grew larger than O(100).

More precisely, here is what we did. We generated test triples (X;D; Y ) with dimensions

m = 200, r = 100 and n = 150, and with speci�ed values of �(X), �(D) and �(Y ). In addition,

X and Y had columns with unit 2-norm. The speci�ed condition numbers were chosen to be

�(X) = 10i for i = 2; 3; :::; 6, �(D) = 10j for j = 2; 4; :::; 16, and �(Y ) = 10k for k = 2; 3; :::; 6. X , D

and Y were computed by the LAPACK [1] test matrix generator DLATM1, with their actual singular

value distribution controlled by the parameter MODE. Two sets of modes where used, (5; 4;�5) and
(3;�4; 5) for (X;D; Y ), respectively. Finally, for each of the 5 � 8 � 5 = 200 values of (i; j; k), and

each of the 2 MODE settings, 4 random triplets (X;D; Y ) were generated, for 200 � 2 � 4 = 1600 tests

in all.

For each test triplet, we computed the singular values in single (yielding �S;i) and in double

(yielding �D;i), and computed the error measure

�(G) =
maxi

j�S;i��D;ij

�D;i

maxf�(X); �(Y )g : (16)

By Theorem 3.1, this ratio can be as large O("S � �(R0)), where "S = 2�24 � 6 � 10�8, and �(R0)

should be O(1). In fact, �(G) never exceeded 6:1 � 10�8 in all 1600 test cases. Furthermore, by
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Figure 1: The values of of log10 �(i; k) for 2 � i; k � 6.

choosing the D0 in Theorem 3.1 so that each row of R0 had unit 1-norm, k(R0)�1k1 never exceeded
111. One can also show that O(")k(R0)�1k1 bounds the overall backward error

k�Xk
kXk +

k�Y k
kY k in the

computed SVD U�V T = (X + �X)D(Y + �Y ), another way to con�rm the accuracy.

As a further accuracy test we computed

�(i; k) = max
�2(X)=10i;�2(Y )=10k

max
j

j�S;j � �D;j j
�D;j

(17)

which should behave like "S � 10max(i;k) � 10max(i;k)�7. This behavior is con�rmed by the plot of

�(i; k) versus i and k in Figure 1.

4 Computing an Accurate RRD: Conditions on Scaled Condi-

tion Numbers

In this section we discuss conditions on the \scaled condition" of G that permit an accurate rank

revealing factorization (RRD) to be computed by straightforward GECP, by GE with other simple

pivoting strategies, or by simply scaling the rows and/or columns of G. In other words, our

conditions will depend only on B, where G = D1B, or G = BD2 or G = D1BD2, and D1 and

D2 can be arbitrary diagonal matrices. We brie
y review the simple case of one-sided scaling

G = BD2 with B full column rank, and then discuss the general problem G = D1BD2, which has

a \combinatorial" analysis.

The simplest example, requiring nearly no computation at all, occurs when B has full column

rank, and we scale the columns G = BD2. Then if B is well-conditioned, the factorization G =

BD2 � XDY T with X = B, D = D2 and Y = I is rank revealing. Thus we see that if B is

well-conditioned and of full-column rank, and we consider perturbations G + �G = (B + �B)D2

where k�Bk � kBk, then G's SVD is determined to high relative accuracy independent of column
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scaling D2. If we are given G but not its factors B and D2, then we can recover nearly the best

conditioned B by simply dividing each column of G by its 2-norm [53]. This discussion also applies

to G = D1B, where B is well-conditioned and has full row rank. Of course for this simple case it is

unnecessary to compute an RRD in order to get an accurate SVD, but rather just apply one-sided

Jacobi, a fact we exploited in step (3) of Algorithm 3.1, and which is further discussed in [19, 39, 21].

(The �rst paper remarking on the high accuracy of Jacobi appears to be [46].)

Extensions of these results to G = D1BD2 (or G = D1B with B full column rank) are un-

avoidably combinatorial in nature, requiring conditions on all submatrices of B, not just B itself.

The �rst result of this kind for the SVD appears in [29], although related results for least squares

problems appear in [50, 40, 55] (see section 4.2). In [29], Gu and Eisenstat show that for the n-by-n

matrices G = D1BD2 and G+�G = D1(B+�B)D2 to have singular values agreeing to high relative

accuracy, independent of D1 and D2, the smallest singular values of all square submatrices of B

must be large enough. In fact, they show that the relative error bound on the singular values is

essentially k�Bk=�1, where �1 is the smallest singular value of any square submatrix of B. There

are exponentially many square submatrices,
nX
i=1

 
n

i

!2

= O(4n) of them. To see that this error

bound is attainable, suppose without loss of generality that the submatrix B̂ of B with the smallest

singular value is the leading k-by-k submatrix of B. Then set the leading k diagonal entries of D1

and D2 to one, and let the rest be very small. Then the k largest singular values of B are essentially

the singular values of B̂, and the k-th singular value is as sensitive as claimed. Note that even

the largest singular value of G may be the worst conditioned; suppose 0 < � � 1 in the following

example:

G =

"
0 1

1 �

#
=

"
1
� 0

0 1

#
�
"
0 1

1 1

#
�
"
1 0

0 �

#

G+ �G =

"
1 1

1 �

#
=

"
1
� 0

0 1

#
�
"
� 1

1 1

#
�
"
1 0

0 �

#
:

Here, G is nearly orthogonal, and k�Gk � kGk. Thus, even a single zero matrix entry means

that with appropriately chosen D1 and D2, the largest singular value can be ill-determined. Note

that D1, D2 and B are not uniquely determined by G; we could have chosen D1 = D2 = I and

B = G in the above example, and concluded that all singular values of G were well-conditioned.

In practice D1 and D2 may be extra information supplied by the user along with G, in which case

they determine the allowable uncertainty in entries of G. But we may also just be given G without

D1 and D2, in which case we would like an error bound corresponding to the \best" D1 and D2.

These observations, and the exponential expense of computing �1, motivates us to �nd a simpler,

easily computable error bound.

Our error bound below will have the three attractive properties of

1. being small when �1 is large,

2. costing just O(n3) to compute, and

3. being small just when n particular submatrices of B are well-conditioned, i.e. those deter-

mining the accuracy of LU decomposition; the choice of submatrices will depend on D1 and

D2.
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To see the connection between well-conditioned submatrices of B and accurate LU decomposition,

recall that all intermediate results in LU decomposition can be expressed as Schur complements

like B22 � B21B
�1
11 B12 below:

B =

"
B11 B12

B21 B22

#
=

"
I 0

B21B
�1
11 I

#
�
"
B11 B12

0 B22 � B21B
�1
11 B12

#

Thus if all leading principal minors B11 are well-conditioned, each Schur complement will be de-

termined accurately. If we permit arbitrary diagonal scaling

G = D1BD2 =

"
D11 0

0 D12

#
�
"
B11 B12

B21 B22

#
�
"
D21 0

0 D22

#

then the diagonal matrices \factor through" the Schur complement in simple ways:

G =

"
I 0

D12(B12B
�1
11 )D

�1
11 I

#
�
"
D11B11D21 D11B12D22

0 D12(B22 �B21B
�1
11 B12)D22

#
:

On the other hand, allowing arbitrary D1 and D2 means that any submatrix of B is a candidate

leading principal submatrix after GECP reorders rows and columns. This is why Gu and Eisenstat

ask that every principal submatrix of B be well-conditioned [29].

However, by assuming D1 and D2 are approximately sorted (with the diagonal entries more

or less decreasing from top to bottom), which can always be achieved with row and/or column

permutations of G, then we need only look at the conditioning of the n leading principal submatrices

of B, rather than all submatrices. This is because the natural pivot order is a good approximation

of the one GECP would choose. This gives us a much cheaper criterion for high relative accuracy

than Gu and Eisenstat, at the cost of a somewhat weaker bound.

In particular, suppose we have already permuted the rows and columns ofG so thatG = D1BD2

has the diagonal entries of D1 and D2 in roughly decreasing order. De�ne

� = max
1�i�j�n

(
D1;j

D1;i

;
D2;j

D2;i

)
: (18)

Then � is 1 exactly when the diagonal entries of D1 and D2 are in decreasing order, and O(1) if

they are more or less decreasing.

Let B = LU be an LU decomposition of B without pivoting, where L and U are lower and

upper triangular, respectively, but not necessarily unit diagonal. The next theorem shows that if L

and U are well-conditioned, which will be true if the smallest singular values of all leading principal

submatrices ofB are large enough, and if � = O(1), then the SVDs ofG and G+�G = D1(B+�B)D2

will agree to high relative accuracy when k�Bk=kBk is small.

Theorem 4.1

j�i (G+ �G)� �i (G) j
max (�i (G+ �G) ; �i (G))

� � f�(L) + �(U)g �max
�
k�L� Ik; k�U � Ik

	
1� � f�(L) + �(U)g �max

�
k�L� Ik; k�U � Ik

	
� � f�(L) + �(U)g � kL�1k � k�Bk � kU�1k+ O(k�Bk2) ;

where I + L�1�BU�1 = �L �U is the LU decomposition without pivoting.

16



Proof: We want to write G+ �G = DLGDR, where DL and DR are close to identity matrices, and

then apply Theorem 2.2. To this end, write

G+ �G = D1 (LU + �B)D2 = D1L
�
I + L�1�BU�1

�
UD2 = D1L(�L �U)UD2 :

Hence

G+ �G =
�
D1L�L

�
� (I) �

�
�UUD2

�
=

�
D1L�L

�
�
�
L�1D�1

1 GD�1
2 U�1

�
�
�
�UUD2

�
=

�
D1L�LL

�1D�1
1

�
�G �

�
D�1

2 U�1 �UUD2

�
� DL �G �DR:

If L and U are well-conditioned, L�1�BU�1 will be small, so �L and �U are close to the identity. In

fact, to �rst order in �B, we can write

�L = I + tril
�
L�1�BU�1

�
and �U = I + triu

�
L�1�BU�1

�
; (19)

where tril(X) is the strict lower triangular part of X , and triu(X) is the upper triangular part of

X , including the diagonal (see also [52]). Thus

k�L� Ik � kL�1k � k�Bk � kU�1k and k �U � Ik � kL�1k � k�Bk � kU�1k;

and it follows that

kDL � Ik = kD1L(�L� I)L�1D�1
1 k � �kL(�L� I)L�1k � ��(L) � k�L� Ik;

which is true in any absolute norm, since the (i; j) entry of the lower triangular matrix L(�L�I)L�1

is multiplied by jD1;i=D1;jj � � . Similarly,

kDU � Ik � ��(U) � k �U � Ik :

Plugging these relations into Theorem 2.2 and simplifying, we obtain Theorem 4.1. 2

One can also use Theorem 2.3 to prove a similar result about the singular vectors of G and

G+ �G, but we will omit this.

We note that the higher order terms we dropped in Theorem 4.1 remain small as long as

� = O(1).

In general we will be given G, but not D1 and D2, so we can not sort them. Instead, we seek

an a posteriori bound, that can be evaluated after GECP on G, that bounds the relative error in

the SVD of G introduced by roundo� during GECP; this bound will implicitly pick \good" D1 and

D2. After stating this bound, we will relate it to the bound in Theorem 4.1.

Theorem 4.2 Let P1GP2 � L̂ � Û be the factorization of G computed by GECP in 
oating point

arithmetic with machine precision ". L̂ is unit lower triangular, and Û is upper triangular. To �rst

order in ", the relative error introduced in the singular values by roundo� during GECP is bounded

by

3n"fk jL̂j � tril(jL̂�1j � jL̂j � jÛ j � jÛ�1j) � jL̂�1j k+ k jÛ�1j � triu(jL̂�1j � jL̂j � jÛ j � jÛ�1j) � jÛ j kg:
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Proof: Assume without loss of generality that the permutations involved in the factorization are

identities. We use the fact that the backward error �G in the decomposition G + �G = L̂ � Û is

bounded component-wise by j�Gj � 3n�jL̂j � jÛ j. Then we factor G = D�1
L (G+ �G)D�1

R as follows:

G = L̂ � Û � �G = L̂ �
�
I � L̂�1 � �G � Û�1

�
� Û = L̂ �

�
�L �U
�
� Û ;

where I � L̂�1�GÛ�1 = �L �U is the LU decomposition without pivoting. It follows that

G =
�
L̂ � �L

�
�
�
L̂�1 (G+ �G) Û�1

�
�
�
�U � Û

�
=

�
L̂ � �L � L̂�1

�
� (G+ �G) �

�
Û�1 � �U � Û

�
� D�1

L (G+ �G)D�1
R :

Taking absolute values, we see that

jDL � I j = j L̂ �
�
�L�1 � I

�
� L̂�1 j:

Similar to (19), we can write to �rst order that

j �L�1 � I j � 3n� � tril( jL̂�1j � jL̂j � jÛ j � jÛ�1j );

and hence

jDL � I j � 3n�jL̂j � tril(jL̂�1j � jL̂j � jÛ j � jÛ�1j) � jL̂�1j :
Similarly,

jDR � I j � 3n�jÛ�1j � triu(jL̂�1j � jL̂j � jÛ j � jÛ�1j) � jÛ j :
The theorem is proved by plugging these relations into Theorem 2.2 and dropping the higher order

terms. 2

Theorem 4.2 provides a computable error bound which can be used in practice. The diagonal

matrices D1 and D2 do not appear explicitly in the expression. The expression in Theorem 4.2

does not change if we replace L̂ and Û by L̂ � D and D�1 � Û , respectively, for any non-singular

diagonal matrix D. Hence there is no need to choose D1, D2, and D \optimally" to compute the

error bound.

To better understand this bound, we now relate it to the bound in Theorem 4.1. We make

the reasonable assumption that the permutations P1 and P2 computed by GECP nearly sort D1

and D2, so that � in equation (18) is O(1). This sorting property is a natural consequence of

complete pivoting: it moves the largest potential pivot into the upper left corner. This lets us write

P1GP2 � L̂Û = D1LUD2, where we can take

L̂ = D1LD
�1
1 and Û = D1UD2 :

Hence L � U is the LU decomposition of the unscaled matrix D�1
1 � (P1GP2) �D�1

2 .

Corollary 4.1 To �rst order, the relative error introduced in the singular values by computing the

decomposition G = L̂ � Û in 
oating point arithmetic with machine precision � is bounded by

3n��f k jLj � tril(jL�1j � jLj � jU j � jU�1j) � jL�1j k+ k jU�1j � triu(jL�1j � jLj � jU j � jU�1j) � jU j k g;

where � is de�ned in (18). In other words, the relative error is small if L and U are well-conditioned,

and � = O(1).
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Proof: Similar to the proof of Theorem 4.1, it is easy to check that

k jL̂j � tril(jL̂�1j � jL̂j � jÛ j � jÛ�1j) � jL̂�1j k = kD1 � jLj � tril(jL�1j � jLj � jU j � jU�1j) � jL�1j �D�1
1 k

� � � k jLj � tril(jL�1j � jLj � jU j � jU�1j) � jL�1j k ;

and

k jÛ�1j � triu(jL̂�1j � jL̂j � jÛ j � jÛ�1j) � jÛ j k � � � k jU�1j � triu(jL�1j � jLj � jU j � jU�1j) � jU j k:

Combining these relations with Theorem 4.2, Corollary 4.1 immediately follows. 2

Similar to Theorem 4.2, the expression in Corollary 4.1 does not change if we replace L and U

by L �D and D�1 �U , respectively, for any non-singular diagonal matrix D. Hence there is no need

to choose D \optimally" to minimize the error bound.

As in Theorem 4.1, the higher order terms we dropped o� in Theorem 4.2 and Corollary 4.1

remain higher order so long as � = O(1).

The cases studied in [3] and [19], where the SVD is determined to high relative accuracy, are

essentially subsumed by this analysis. In [3], scaled diagonally dominant (s.d.d.) matrices were

studied, i.e. symmetric matrices of the form G = D(E+N)D, where D was an arbitrary diagonal

matrix, E was diagonal with diagonal entries �1, and N satis�ed kNk2 � 
 < 1. It is easy to

see that a symmetric permutation that sorts D leaves all principle submatrices of E + N with

singular values between 1 � 
 and 1 + 
, i.e. well conditioned if 
 is small. In [19], symmetric

positive de�nite matrices of the form DAD were studied, where D is any diagonal matrix and A is

symmetric positive de�nite and well-conditioned. Again, a symmetric permutation to sort D leaves

the leading principle submatrices of A no worse conditioned than A itself, by the Cauchy Interlace

Theorem.

One may also ask how Corollary 4.1 is quantitatively related to the results of Gu and Eisen-

stat [29]. Unfortunately, the relation is not so obvious, other than that the expression is not large if

the smallest singular values of all the principal submatrices of B in G = D1BD2 are large enough.

Given G, one can ask which D1 and D2 are \optimal", in the sense of giving a smallest error

or perturbation bound. This can be reduced to linear programming, but since we see no use for it

in practice, we will not present it here.

Finally, we brie
y consider the case G = D1B, where B has full column rank; the interesting

case is when B has more rowsm than columns n. In this case, we can do arbitrary column pivoting

in the pursuit of a good LU decomposition, so that we expect a good decomposition (following Gu

and Eisenstat) when all k-by-n submatrices of B have singular values that are not too small, or

(following Corollary 4.1) when the k-by-n submatrices of B corresponding to the largest n entries

of D1 are well-conditioned. We pursue this in section 4.2 below.

4.1 Numerical Experiments

In this section, we have four goals:

1. We want to assess the accuracy of GECP followed by Algorithm 3.1 in computing the SVD.

2. We want to assess the error bound in Theorem 4.2.

3. We want to show that GECP plays an essential role, by showing that QR with pivoting cannot

be used in its place.
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4. We want to show that the one-sided Jacobi algorithm from [19] is often as accurate as the

more complicated algorithm proposed here (GECP plus Algorithm 3.1), but that it can fail.

We generate square random 200-by-200 matrices G in the form G = D1BD2, where B is a

random matrix with equilibrated column and row norms and with the spectral condition num-

ber 10i, i = 1; 2; : : : ; 7, and D1 and D2 are random diagonal matrices with �(D2) = 10k, k =

2; 4; 8; 10; 12; 14; 16 and �(D1) =
p
�(D2). For each �xed pair of parameters (i; k) we use two dif-

ferent MODEs of singular value distributions for the triple B, D1, D2 (see section 3.1) where for each

choice of the mode we generate 2 test matrices of the type G = D1BD2. This makes a total of 196

test matrices, or 28 for each value of i.

Note that we do not directly control the condition numbers of the LU factors of the (permuted)

B by this process, or the sorting of D1 and D2, which is what the error bounds ultimately depend

on (see Theorem 4.1). Nonetheless, we argue that we roughly control kL�1k and kU�1k, since
B = LU implies

kB�1k1=2 � (kU�1k � kL�1k)1=2

� max(kU�1k; kL�1k)
= max(kB�1Lk; kUB�1k)
� kB�1k �max(kLk; kUk) :

Therefore, we choose the following error measure

�(i) = max
G=D2AD1;�(A)=10i

max
k

j�S;k � �D;kj
�D;k

: (20)

For GECP followed by Algorithm 3.1 we expect �(i)
<� "S10

i � 107�i, for the reasons just discussed.

Table 2 displays the computed results:

� Row 1, Column 2: The expected relative error 10i�7 for GECP and Algorithm 3.1 applied to

the 28 test matrices with �(A) = 10i.

� Row 1, Column 3: The maximum measured relative error �(i) for GECP and Algorithm 3.1

on the same set of matrices.

� Row 1, Column 4: The bound from Theorem 4.2 for �(i) for GECP and Algorithm 3.1 for

the same set of matrices computed in double precision.

� Row 2, Column 2: The maximum measured relative error �(i) for the algorithm consisting of

QR decomposition followed by one-sided Jacobi applied to R for the same set of matrices.

� Row 2, Column 3: The maximum measured relative error �(i) for the one-sided Jacobi algo-

rithm alone for the same set of matrices.

Since columns 2 and 3 in row 1 of Table 2 roughly agree, GECP followed by Algorithm 3.1

is as accurate as predicted. Column 4 of row 1 shows that the error bound from Theorem 4.2

predicts that the double precision algorithm delivers at least about 5 to 8 digits of accuracy, which

is pessimistic, but useful. The corresponding error bounds for the single precision algorithm are

all about "S="D � 5 � 108 times larger, and so all O(1) or larger. In other words, the bound of

20



i Expected �(i) for Measured �(i) for Bound for �(i) for

GECP + Algorithm 3.1 GECP + Algorithm 3.1 GECP + Algorithm 3.1

in single precision in single precision from Theorem 4.2

in double precision

1 10�6 4 � 10�6 2 � 10�8
2 10�5 9 � 10�6 3 � 10�8
3 10�4 1 � 10�4 3 � 10�8
4 10�3 1 � 10�3 4 � 10�8
5 10�2 8 � 10�3 1 � 10�7
6 10�1 1 � 10�1 1 � 10�6
7 1 1 1 � 10�5

i Measured �(i) for Measured �(i) for

QR + Jacobi SVD Jacobi SVD

in single precision in single precision

1 0:7 5 � 10�6
2 0:9 8 � 10�6
3 > 2 1 � 10�4
4 > 50 9 � 10�4
5 > 300 7 � 10�3
6 > 1000 0:2

7 > 1000 1

Table 2: Accuracy of Overall SVD Algorithms
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Theorem 4.2 provides useful bounds in double precision, but is too pessimistic to be useful in single

precision.

Column 2 of row 2 shows that QR combined with one-sided Jacobi is not nearly as accurate

an SVD algorithm. Existing theory [19] guarantees high relative accuracy for the algorithms in

columns 2 and 3 of row 2 only when G is scaled from one side (G = BD1). Therefore, it is

something of a surprise that Column 3 of row 2 shows one-sided Jacobi to be about as accurate as

our more sophisticated algorithm GECP with Algorithm 3.1. This leads us to ask whether there

are examples where GECP with Algorithm 3.1 is signi�cantly more accurate than simple one-sided

Jacobi.

The following 3-by-3 example shows how one-sided Jacobi can fail when the new algorithm

succeeds. Let 
 and � satisfy 1� 
 � � > 0; 
 = 10�20 and � = 10�40 will do in double precision.

Let

G =

2
64 1 
 


�
 
 
2

0 � 0

3
75

= D1 �B �D2

�

2
64 1




�

3
75 �
2
64 1 
 1

�1 1 1

0 1 0

3
75 �
2
64 1

1




3
75 :

Since D1 and D2 are sorted, and the leading principal minors of B are well-conditioned, the SVD

of G is determined to high relative accuracy. GECP applied to G requires no pivot exchanges, and

yields very accurate LDU factors, with L and U nearly identity matrices, so that Algorithm 3.1

computes a very accurate SVD with singular values nearly equal to 1, 
, and 2
�.

But if we apply one-sided Jacobi to the right of G so that it rotates columns 2 and 3 �rst, then

we lose all accuracy in the smallest singular value 2
�. (In a Matlab experiment with 
 = 10�20

and � = 10�40, we get 5 � 10�57 instead of 2 � 10�60.) This occurs because the �rst Jacobi rotation

angle is O(1) rather than O(
), which does not respect the column scaling, and so causes a large

backward error in B.

4.2 Relationship to Weighted Least Squares Problems

In [50, 40, 55, 54, 34], the weighted least squares problem minx kD1=2(Ax� b)k2 is considered, with
the goal of deriving algorithms and error bounds that hold independent of the diagonal scaling

matrix D. In these papers it is shown that the condition number essentially depends on the

following combinatorial object: Suppose A is full rank and m-by-n, and let xWLS be the unique

solution of the weighted least squares problem. Let Q be anym-by-n unitary matrix with the same

column space as A; the Q from the QR decomposition of A will do. Let � be the smallest nonzero

singular value of any k-by-n submatrix of Q, for 1 � k � m. Then the norm of the \weighted

projector" PD � A(ATDA)�1ATD that maps b to its best approximation AxWLS = PDb is at

most kPDk � ��1, independent of D. It is easy to con�rm that PD does not change if A is

postmultiplied by any nonsingular n-by-n matrix, which is why we can replace A by Q. To see why

the combinatorial de�nition of � is natural, we can let D have k diagonal entries equal to 1 and the

rest very small; this essentially selects a k-by-n submatrix Q̂ of Q, with the large columns of PD
approximately given by Q(Q̂T Q̂)�1Q̂, whose norm is the reciprocal of smallest singular value of Q̂.
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Since we are interested in the whole SVD, not just the pseudoinverse, we cannot replace A by

Q. But suppose that A were unitary (or just well-conditioned). Then the conditions imposed in

[50, 40, 55, 34] are essentially the same as the conditions in the last paragraph of the �rst part of

section 4.

5 Computing an Accurate RRD: Combinatorial and Algebraic

Conditions

In this section we will discuss combinatorial and algebraic conditions on G i.e. conditions on

G's sparsity pattern and sign pattern, or on algebraic relationships among the entries of G, that

guarantee that we can perform Gaussian elimination with pivoting to get an accurate RRD of G.

Then we will use Algorithm 3.1 to compute the SVD of G. In this section we just motivate and

outline these conditions, and leave the details to subsequent sections.

We begin with the fact that every �nal or intermediate value computed by Gaussian elimination,

with any legal pivot order (i.e. not leading to divide-by-zero), is either a minor or quotient of

minors of G. The conditions we impose on G will guarantee that all minors of G can be computed

accurately. Since the quotient of two values known to high relative accuracy is also known to high

relative accuracy, this implies that L, D and U can be computed accurately, for any legal pivot

order.

More speci�cally, we will use the following classical result:

Lemma 5.1 Let G = PrLDUPc be any factorization of G computed by Gaussian elimination with

any pivot order not leading to division by zero. Here Pr and Pc are permutations, L and U are

unit triangular, and D is diagonal. We also write this as G = Pr �L �UPc, where either �L = L and
�U = DU , or �U = U and �L = LD. Let Gs be any Schur complement of G, i.e.

Gs = G22 �G21G
�1
11 G12 where G =

"
G11 G12

G21 G22

#
:

Then

1. Every minor of Gs is a quotient of minors (or just a minor) of G.

2. Every minor of G�1 is plus or minus a quotient of minors of G.

3. Every entry of L, D, U , �L and �U is either zero or a quotient of minors (or just a minor) of G.

4. Every minor of L, D, U , �L and �U consisting of consecutive rows is either zero or a quotient

of minors (or just a minor) of G.

5. Every entry of L�1, D�1, U�1, �L�1 and �U�1 is either zero or a quotient of minors (or just a

minor) of G.

These facts follow from Sylvester's determinant identity [35], or more speci�cally from observations

like

Dn;n =
D1;1 � � �Dn�1;n�1 �Dn;n

D1;1 � � �Dn�1;n�1
=

det(G)

det(G(1 : n� 1; 1 : n � 1))
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(assuming Pr = Pc = I).

To see what conditions we must impose on G to compute its minors accurately, let us consider

a general algebraic expression e(�1; �2; :::; �k), where e(�) is de�ned by a �xed sequence of additions,

subtractions, multiplications and divisions. We assume that each real datum �i is known to high

relative accuracy, and we may also know its sign. For e to be determined to high relative accuracy

by the data �i, independent of the magnitudes of the �i, it is clearly necessary and su�cient for e

to be de�ned by

(1) multiplications and divisions, and

(2) addition of quantities with the same sign.

For example, (�21+�22) ��33=�4 is accurately determined, but �1+�2 is not unless it is also known that

�1�2 > 0. In other words, the only forbidden operation is true subtraction, because cancellation in

leading digits can leave the sum s = �1 + �2 with arbitrarily less relative accuracy than in �1 or in

�2, if �1 and ��2 are close.
Here is a more formal way to describe this property of e: Let ê(�) be another expression which

di�ers from e(�) only by having the result of each operation multiplied by a di�erent 1 + �, where

j�j � "� 1; in other words ê() is the value of e computed in 
oating point with machine precision

". (Here and elsewhere we ignore the possibility of over/under
ow.) Also let j�̂i� �ij � �j�ij for all
i, where 0 < � � 1. Then

jê(�̂1; :::; �̂k)� e(�1; :::; �k)j
je(�1; :::; �k)j

= O(max(�; ")) : (21)

Requirements (1) and (2) leave us enough freedom to �nd accurate expressions e for the minors

of a variety of interesting matrix classes, as we outline below. But we can solve still more problems

if we permit ourselves one more operation, which is only justi�ed in (well-implemented) 
oating

point arithmetic:

(3) addition or subtraction if the operands are original data, i.e. �i and �j .

Here is the justi�cation. Consider an expression e(�1; :::; �k) consisting of operations (1), (2)

and (3), and where the �i are 
oating point numbers, and let ê(�) be the 
oating point version of e

as above. Then
jê(�1; :::; �k)� e(�1; :::; �k)j

je(�1; :::; �k)j
= O(") : (22)

Equation (22) holds because if there is cancellation in computing the sum or di�erence �i � �j of

two 
oating point numbers, then the sum or di�erence is exact 4. Comparing with equation (21),

we see that we compute an approximation ê(�i) of the true value e(�i) to high relative accuracy,

but if the �i themselves are uncertain, there is no bound on the di�erence ê(�̂i)�e(�i). Put another
way, an algorithm based on property (3) will compute accurate minors (and eventually an accurate

SVD) of the problem as stored in the machine, even if the minors and SVD of the problem in the

machine are very sensitive to changes in �i. But if we do not need to use (3), then we have the

further information that small relative changes in the �i would not have signi�cantly changed the

minors or SVD.

4This assumes addition and subtraction are implemented with guard digits, and so excludes the Cray T90 and its

predecessors and emulators, like the NEC SX machines.
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Armed with this understanding of which expressions e can be evaluated accurately, consider

just the determinant of G itself, which we assume to be n-by-n. Its Laplace expansion is

det(G) =
X
p

[sign(p) � g1;p1 � g2;p2 � � �gn;pn ] (23)

where the sum is over all permutations p = (p1; :::; pn) of (1; :::; n), and sign(p) = �1 is the sign

of the permutation p. This is a sum and di�erence of monomials
Q
i gi;pi. We want to know when

an expression e = det(G) exists satisfying requirements (1), (2) and possibly (3). We begin by

assuming that the entries gi;j are themselves the initial data (�is), and each nonzero gi;j is only

known to high relative accuracy. Later we will consider the case when the gi;j are given as algebraic

expression in the initial data.

Think of G as having a �xed sparsity pattern, so some gi;j are known to be zero. Any monomials

containing such a zero factor are identically zero. Any monomial that is a product of n nonzero

terms is determined to high relative accuracy. If we further �x the signs of each gi;j , then each

nonzero monomial will have a �xed sign as well.

So when is the expansion (23) of det(G) determined to high relative accuracy by the initial data

gi;j? There are 3 cases:

1. If all monomials are exactly 0, because each contains a zero gi;j , then det(G) is exactly 0 (to

high relative accuracy!).

2. If exactly one monomial is nonzero, then det(G) is determined to high relative accuracy, since

the monomial is.

3. If two or more monomials are nonzero, and the gi;j have independent small relative errors

and independent signs, then cancellation can destroy relative accuracy in the sum. We can

avoid cancellation and guarantee high relative accuracy if the signs of the gi;j are restricted

so that all nonzero monomials have the same sign.

We claim that those matrices, all of whose minors have 0 or 1 nonzero monomials in their

Laplace expansions, are precisely the matrices whose graphs are acyclic [17]; we de�ne this further

in section 6 below. In other words, there is a simple necessary and su�cient condition for a sparse

matrix to have each minor either zero or equal to a single monomial, and so determined to high

relative accuracy. For these matrices, which have been extensively studied before, there are several

available high accuracy SVD algorithms.

If all the minors of a matrix have Laplace expansions where each nonzero monomial has the

same sign, as described in case 3 above, then the matrix is called total signed compound (TSC) as

de�ned in [11]. We discuss this in detail in section 7 below. In other words, we can completely

characterize which sparsity patterns (the acyclic ones), or which sparsity and sign patterns (the

TSC ones) guarantee accurate minors, and so accurate LDU factors and an accurate SVD.

In both these cases, acyclic matrices and TSC matrices, straightforward GECP will not deter-

mine the entries of L, D and U to high relative accuracy. This is because cancellation may occur.

In other words, we need to modify GECP, based on the special structure of these matrices, that

compute the same LDU factorization but without cancellation. We discuss these algorithms below.

Unfortunately, their complexities can be larger than for GECP (O(n4) instead of O(n3) for TSC

matrices); it is an open problem to �nd faster algorithms.
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Now we consider the case where the matrix entries gi;j are not the initial data, but rather

algebraic expressions in the initial data. In subsequent sections we discuss 3 examples in detail:

1. Suppose G = DLZDR, where DL and DR are diagonal matrices with the initial data on

their diagonals, and Z is any �xed matrix. Then det(G) = det(DL) � det(Z) � det(DR) is the

product of initial data (the diagonal entries of DL and DR) and a �xed constant (det(Z)),

and so determined to high relative accuracy. Clearly, the same is true of any minor of G.

An important special case occurs when Z is an integer matrix with each minor equal to �1,
0, or +1. Such a Z is called totally unimodular (TU) [10], and we correspondingly call G

diagonally scaled totally unimodular (DSTU). DSTU matrices include both acyclic matrices

and �nite element matrices arising from linear mass-spring systems as special cases; these

matrices are discussed in sections 8 and 12.1, respectively. It is particularly easy to modify

Gaussian elimination to attain high relative accuracy on DSTU matrices.

2. Cauchy matrices are matrices of the form gi;j = 1=(xi � yj), where the xi and yj are initial

data. There is a classical formula for any minor of a Cauchy matrix that satis�es requirements

(1), (2) and (3). The modi�cation of GECP required to attain high relative accuracy appears

to cost O(n5). This is discussed in section 9.

3. Totally positive matrices are matrices each of whose minors is positive. They arise in many

situations in applied mathematics [35]. It turns out that one can construct all totally positive

matrices from simpler ones by repeatedly using a set of composition laws. These laws also

turn out to provide high accuracy formulas for all minors in terms of high accuracy formulas

for simpler minors. Many of these formulas turn out to be exponentially expensive, and it

remains an open problem to �nd e�cient (or just polynomially expensive!) formulas for all

minors. This is discussed in section 10.

6 Acyclic Matrices

Some of this material originally appeared in [17]; we summarize it here for completeness. Let G
be the class of matrices with a given sparsity pattern, i.e. the locations of the nonzero entries are

given. We let Gr(G) denote the graph of G, i.e. the bipartite graph with one node for each row,

one node for each column, and an edge (i; j) if and only if entry (i; j) is allowed to be nonzero.

Theorem 6.1 The following three conditions are equivalent:

1. Gr(G) is acyclic.

2. For all matrices G 2 G, and for any pivot sequence that does not divide by zero, small relative

changes in the entries of G cause only small relative changes in the entries of L, D and U

computed by Gaussian elimination.

3. For all matrices G 2 G, small relative changes in G cause only small relative perturbations in

the SVD, in the sense of bounds (7) and (8).

Acyclic matrices include bidiagonal matrices, \broken arrow" matrices (which are nonzero only

on the diagonal and in one row or one column), and exponentially many other permutation-

inequivalent patterns. All acyclic matrices are very sparse, with at most 2n � 1 nonzeros in an

n-by-n acyclic matrix.
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We sketch the proof of Theorem 6.1; details are in [17]. Let Gr(G) be de�ned for a particular

matrix G just as is was de�ned for a class G above: there is one node per row, one node per column,

and an edge (i; j) if and only if gi;j 6= 0. Recall that a perfect matching in a graph with 2n nodes is

a set of n edges where each node is the endpoint of exactly one edge. We depend on the elementary

fact that there is a one-to-one correspondence between the monomials in the determinant expansion

of any matrix G, and perfect matchings in Gr(G): Each monomial corresponds to a unique choice

of n nonzeros in G, one in each row and one in each column; each such set of n nonzeros corresponds

to n edges forming a perfect matching between the n row nodes and n columns nodes. It is a simple

graph theoretic lemma that a bipartite graph is acyclic if and only if each subgraph has at most

one perfect matching (a cycle can be used to construct two perfect matchings, and vice versa).

In other words Gr(G) is acyclic if the determinant expansion of each submatrix of G has at most

one nonzero term, which is equivalent to each minor being determined to high relative accuracy,

which is su�cient for an accurate LDU decomposition, and an accurate SVD. To see that Gr(G)
being acyclic is necessary, note that if there are two or more terms in the determinant expansion

of some k-by-k minor, then we can choose the matrix entries so that the minor is zero because

of cancellation, and the matrix outside the k-by-k submatrix de�ning the minor is exactly zero.

Then both Dkk and �k are exactly zero, but become nonzero with arbitrarily small perturbations

of any matrix entry that makes the minor nonzero. In other words, if the graph is cyclic, neither

the SVD nor LU decomposition may be determined to high relative accuracy, for certain values of

the matrix entries.

See Theorem 8.2 below for quantitative bounds on the accuracy with which the SVD is deter-

mined.

We can sometimes take advantage of the acyclic structure to compute the SVD quickly. For

example, if the matrix is bidiagonal, various algorithms based on QR [18, 16] and QD [25] are

available. For singular values of general acyclic matrices, bisection [17] is available, but until now

no relatively accurate algorithm for the singular vectors was available.

We defer discussion of the algorithm for high accuracy LDU factorization of an acyclic matrix

to section 8, where we present it as a special case of a more general algorithm.

7 Total Signed Compound (TSC) Matrices

The following de�nitions are taken from [11]. Let S be the set of all matrices with a given sparsity

and sign pattern, i.e. the locations and signs of the nonzero entries are given. For example S could

be the set of all square matrices with positive numbers on the main diagonal, negative numbers

on the �rst superdiagonal, and zeros elsewhere. S is called sign nonsingular (SNS) if it contains

only square matrices, and the Laplace expansion (23) of the determinant of each G 2 S is the sum

of monomials of like-sign, with at least one nonzero monomial. S is called total signed compound

(TSC) if every square submatrix of any G 2 S is either SNS, or structurally singular (i.e. no

nonzero monomials appear in its determinant expansion).

Another, constructive de�nition of TSC matrices is as follows [11, 47]. We will need it later for

our algorithm. Every TSC matrix can be obtained by starting with a 1-by-1 nonzero matrix and

applying the following four construction rules repeatedly in some order:

1. If G is TSC then permuting the rows, permuting the columns, or multiplying a row or column

by �1 leaves G TSC.
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2. If G1 and G2 are TSC, so is the direct sum G =

"
G1 0

0 G2

#
.

3. If G1 =

"
G0
1

xT1

#
and G2 =

"
xT2
G0
2

#
are TSC, where xT1 is the last row of G1 and x

T
2 is the �rst

row of G2, then then so is the weak direct sum G =

2
64 G0

1 0

xT1 xT2
0 G0

2

3
75. Weak direct sums can also

be formed by having G1 and G2 overlap in one column.

4. If them-by-n matrix G0 is TSC, with G0
ij 6= 0, then so is the m+1-by-n+1 matrix G obtained

as follows:

G =

2
666666666666664

G0

0
...

0

Gi;n+1

0
...

0

0; � � �0; Gm+1;j; 0; � � �0 Gm+1;n+1

3
777777777777775

(24)

where we can also set G0
i;j to zero. The new possibly nonzero entries Gm+1;n+1, Gm+1;j and

Gi;n+1 must be chosen so that the two monomials in the minor Gm+1;n+1 �G0
i;j�Gi;n+1 �Gm+1;j

have the same sign (or are zero).

It is easy to con�rm that the examples in (11) are obtained by repeated application of construction

(4) above.

TSC matrices are quite sparse, as the following lemma shows:

Lemma 7.1 An m-by-n TSC matrix has at most 1:5(m+ n)� 2 nonzero entries.

Proof: We use induction on m + n, and the fact that a large TSC matrix is built from smaller

TSC matrices according to construction rules 2, 3 and 4 (rule 1 does not change the nonzero

count). The formula is obviously true when m = n = 1. In rule 2, suppose Gi is mi-by-ni. By

induction Gi has at most 1:5(mi + ni)� 2 nonzeros, and it is easy to con�rm that G has at most

[1:5(m1 + n1) � 2] + [1:5(m2 + n2) � 2] = 1:5(m+ n) � 4 < 1:5(m+ n) � 2 nonzeros, as desired.

Rule 3 is similar. For rule 4 we use the fact that G has at most 3 more nonzeros than G0. 2

Theorem 7.1 The following three conditions are equivalent:

1. S is TSC.

2. For all matrices G 2 S, and for any pivot sequence that does not divide by zero, small relative

changes in the entries of G cause only small relative changes in the entries of L, D and U

computed by Gaussian elimination.

3. For all matrices G 2 S, small relative changes in G cause only small relative perturbations

in the SVD, in the sense of bounds (7) and (8).

28



Proof: The proof is entirely analogous to that of Theorem 6.1. We use the lack of cancellation in

all minors to conclude that all entries of L, D and U are determined to high relative accuracy, and

hence that the SVD is determined to high accuracy. Similarly, If G is not TSC, we can construct

a matrix where a minor vanishes by cancellation, so that some entry of D, or some singular value,

is \accidentally" zero. 2

To show how to modify the standard Gaussian elimination algorithm to factor TSC matrices

with high relative accuracy, we need the following lemma:

Lemma 7.2 There is an algorithm for computing the determinant of an n-by-n TSC matrix to

high relative accuracy, that requires at most 4n� 1 
oating point operations.

Proof: As in the last lemma, we will use induction on n, exploiting the constructibility of any

TSC matrix using the 4 rules above. A practical algorithm would represent a TSC matrix as a

tree whose nodes represent applications of the 4 rules, processing the tree in topological order, but

we will omit these details. In particular, we will not discuss the complexity of building this tree

(which could possibly exceed the cost of the 
oating point operations).

Rule 1 has a trivial e�ect on the determinant, either leaving it unchanged or negating it.

If G is constructed by Rule 2, then there are two cases, depending on whether G1 and G2 are

both square or not. If they are not square, det(G) is clearly 0. Otherwise, det(G) = det(G1)det(G2),

which computes det(G) to high relative accuracy from det(G1) and det(G2), at the cost of 1 
op

plus the costs of det(G1) and det(G2).

Now suppose G is constructed by Rule 3, where Gi is mi-by-ni. Since G is square, n1 + n2 =

m1 + m2 � 1 � n. For det(G) to be nonzero, the two zero blocks in G can not be too big; in

particular we need m1 � 1 + n2 � n and m2 � 1 + n1 � n. There are only two solutions of these

simultaneous inequalities and equations: m1 = n1 and m2 � 1 = n2, or m1 � 1 = n1 and m2 = n2.

In the �rst case det(G) = det(G1)det(G
0
2), and in the second case det(G) = det(G0

1)det(G2), either

of which costs 1 
op plus the costs of det(G1) and det(G0
2) (or det(G

0
1) and det(G2)).

Finally, consider Rule 4. If Gm+1;n+1 6= 0, then we can do one step of Gaussian elimination

starting from the bottom of the matrix in equation (24) to get

G =

2
666666666666664

I

0
...

0

Gi;n+1=Gm+1;n+1

0
...

0

0 1

3
777777777777775

�
"

G00 0

0; � � �0; Gm+1;j; 0; � � �0 Gm+1;n+1

#

where G00 = G0 except that G0
i;j has been changed to G00

i;j = G0
i;j � G0

i;n+1G
0
m+1;j=G

0
m+1;n+1;

there is no cancellation in this formula because of the TSC property, so G00
i;j is computed to high

relative accuracy, and G00 is still TSC. Then det(G) = Gm+1;n+1 � det(G00), which costs 4 
ops

plus the cost of det(G00). If Gm+1;n+1 = 0, we expand by minors in the last column, so det(G) =

�Gi;n+1 �Gm+1;j �det(G000), where G000 is the n� 2-by-n� 2 submatrix of G0 lying outside row i and

column j. This costs 2 
ops plus the cost of det(G000).
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If Cn is the maximum cost of det(G) when G is n-by-n, then combining the above 4 rules yields

Cn � max( max
n1+n2=n

(1 + Cn1 + Cn2); 3 + Cn�1; 2 + Cn�2)

which has solution Cn = 4n� 1. 2

Here is a simple version of Gaussian elimination with pivoting for TSC matrices, that computes

all entries of L, D and U to high relative accuracy:

Algorithm 7.1 Performing Gaussian elimination with pivoting G = PrLDUPc in a forward stable

manner on an m-by-n TSC matrix G, where m � n.

for i = 1 to min(m� 1; n)

pivot so that Gii is nonzero

Dii = Gii

for j = i+ 1 to m

Lji = Gji=Dii

endfor

for j = i+ 1 to m

for k = i+ 1 to n

(*) Gjk = Gjk � Lji �Gik

(**) If the last subtraction has two nonzero operands with the same sign, then

recompute Gjk as the quotient of two minors, each computed using Lemma 7.2

endfor

endfor

for k = i+ 1 to n

Uik = Gik=Dii

endfor

The above algorithm is essentially identical to conventional Gaussian elimination, except for

line (**).

Theorem 7.2 Algorithm 7.1 computes all the entries of the L, D and U factors of a TSC matrix

G to high relative accuracy, for any pivot sequence not dividing by zero. The cost of the algorithm

is O(mn3).

Proof: The only possible source of forward instability in Algorithm 7.1 is the subtraction in line

(*), and line (**) is a \brute force" way to recompute the result of line (*) so as to guarantee

high relative accuracy. The complexity bound follows since line (**) can cost as much as O(n) by

Lemma 7.2. 2

If the pivot sequence is given in advance, the complexity drops from O(n4) to O(n3), because we

do not need to compute all entries of all Schur complements in order to choose the maximum pivot

at each step. For an example illustrating how the complexity can be as large as O(n4), consider

G =

"
1 yT

x DP

#

where x and y have positive entries just less than 1, D is a negative de�nite diagonal matrix with

entries of tiny but widely varying magnitudes, and P is a permutation matrix. In this case L and
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U can be dense, with Lemma 7.2 always invoked in line (**). Note that we need to recompute the

entries of intermediate Schur complements accurately enough to choose the correct pivot sequence.

One could probably modify the test in line (**) to invoke Lemma 7.2 less frequently, for example,

only when cancellation is severe enough.

We have not developed bounds on the condition numbers of the L and U factors, but we suspect

that they can only grow polynomially, rather than exponentially, with dimension.

8 Diagonally Scaled Totally Unimodular (DSTU) matrices

The following de�nition is taken from [10]. A matrix Z with integer entries is called totally uni-

modular (TU) if all of its minors are �1, 0 or +1. In particular, the entries of Z must be �1, 0 or
+1. We further de�ne a matrix G to be diagonally scaled totally unimodular (DSTU) if it can be

written G = DLZDR, where Z is TU, and DL and DR are diagonal. In our applications Z will be

known exactly, but the diagonal entries of DL and DR will only be known to high relative accuracy.

The determinant det(G) = det(DL) �det(Z) �det(DR) is determined to high relative accuracy since

det(Z) is known exactly, and the other two determinants are products of numbers known to high

relative accuracy. Since any submatrix of a DSTU matrix is DSTU, all minors are determined to

high relative accuracy, so all entries of the L, D and U factors of G are determined to high relative

accuracy.

A variety of characterizations of TU matrices are given in [10, sec. 2.3]. We limit ourselves

to two examples: the acyclic matrices discussed in section 6, and the �nite element matrices from

linear mass-spring systems in section 12.1, which we discuss in that section. We also note that the

reduced note-arc incidence (RNAI) matrices of [55] are a special case of TU matrices. In [17], we

characterized acyclic sparsity patterns as follows:

Theorem 8.1 Let G be the class of matrices with a given sparsity pattern. Let Z 2 G be the

unique matrix with all entries equal to 0 or 1. Then G is acyclic if and only if all matrices G 2 G
can be written G = DLZDR for some diagonal matrices DL and DR.

Since Z is acyclic too, each minor of Z consists of at most one monomial, and so is �1, 0 or

+1. Thus, Z is TU and G = DLZDR is DSTU.

It remains to give an algorithm for performing GECP on a DSTU matrix, and to show that the

L and U factors it computes are well-conditioned.

Algorithm 8.1 Performing Gaussian elimination with pivoting G = PrLDUPc in a forward stable

manner on an m-by-n DSTU matrix G = DLZDR, where m � n.

for i = 1 to min(m� 1; n)

pivot so that Gii is nonzero

Dii = Gii

for j = i+ 1 to m

Lji = Gji=Dii

endfor

for j = i+ 1 to m

for k = i+ 1 to n

(*) Gjk = Gjk � Lji �Gik
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(***) If the last subtraction has two nonzero operands, set Gjk = 0

endfor

endfor

for k = i+ 1 to n

Uik = Gik=Dii

endfor

The above algorithm is essentially identical to conventional Gaussian elimination, except for

line (***).

Theorem 8.2 Algorithm 8.1 computes all the entries of the L, D and U factors of a DSTU

matrix G to high relative accuracy, for any pivot sequence not dividing by zero. If we use complete

pivoting, and m = n, then the entries of L�1 and U�1 are bounded by 1 in absolute value, so that

�(L) = O(n2) and �(U) = O(n2). If m > n, so L is m-by-n, then �(L) = O(mn). These bounds

are attainable. In other words, L and U have condition numbers that grow at most quadratically

with dimension.

Proof: First we show that Algorithm 8.1 is forward stable for any pivot sequence not dividing

by zero. Since 
oating point multiplication and division are forward stable (i.e. they compute

the result to high relative accuracy if the operands are known to high relative accuracy), the only

potential source of inaccuracy is the subtraction in line (*). We claim that the only situation in

which Gjk and Lji �Gik are both nonzero is when they are equal (in exact arithmetic), so the result

is exactly zero; this situation is accounted for in line (***).

To see that line (***) in Algorithm 8.1 computes Gjk exactly if the if-test is satis�ed, we note

that Gij before executing (*), Gjk after executing (*), and Lji �Gik are all quotients of minors of

G (or products of quotients of minors of G), i.e. quotients of monomials in the variables DL;ii and

DR;jj , with coe�cients �1, or zero. (We call a monomial with coe�cient �1 a �1-monomial for

short.) Now think of (*) as a polynomial identity m1 = m2 +m3 among �1-monomials (or zero)

mi in the variables DL;ii, D
�1
L;ii, DR;ii and D�1

R;ii. Then since all coe�cients can only be 0 or �1,
the only way both m2 and m3 can be nonzero is if their sum m1 cancels exactly to zero. Thus m1

must be zero if m2 and m3 are nonzero. This completes the proof that Algorithm 8.1 is forward

stable.

Next we show that with complete pivoting, the entries of U�1 and L�1 are bounded by one in

absolute value ifm = n. It su�ces to consider U . We use the fact that any entry U�1
ij is both a quo-

tient of minors of G, and a quotient of minors of U . Since G is DSTU, its minors are �1-monomials

in the diagonal entries of DL and DR, so we can write U�1
ij = monon(DL; DR)=monod(DL; DR).

Since U is a unit triangular matrix, its determinant is 1, so U�1
ij is really just a minor of U , which in

turn is a sum
P

kmonok(U), of �1-monomials in the entries of U . Since all jUklj � 1 by complete

pivoting, jmonok(U)j � 1 too. We will show that at most one term monok(U) in the sum for

U�1
ij =

P
kmonok(U) is nonzero, implying that jU�1

ij j � 1 as desired.

To this end, note that each monok(U) = monon;k;U(DL; DR)=monod;k;U (DL; DR) is the quotient

of �1-monomials of diagonal entries of DL and DR, since each entry of U is the quotient of minors

of G, each of which is a �1-monomial in DL and DR. This implies

monon(DL; DR)

monod(DL; DR)
= U�1

ij =
X
k

monon;k;U (DL; DR)

monod;k;U (DL; DR)
:
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Now think of this as a polynomial identity in the variables DL;ii, D
�1
L;ii, DR;ii and D�1

R;ii. This

algebraic identity can only hold if there is exact cancellation among the monomials in the sum

on the right, so that at most one term remains after cancellation. This completes the proof that

jU�1
ij j � 1. Thus kUk � n and kU�1k � n (in the 1, 2, or 1 norm), and �(U) � n2.

The same argument applies to L when L is square, and may be modi�ed easily when L is

rectangular.

To see that the condition number O(n2) can be attained, consider the acyclic matrix G de�ned

by the following Matlab program:

G = eye(4 � n+ 1);

G(1; 2 : n + 1) = ones(1; n);

G(n+ 2 : 2 � n+ 1; 1) = ones(n; 1);

G(n+ 2 : 3 � n+ 2; 4 � n+ 1) = ones(1; n);

G(2 � n + 2 : 3 � n + 1; n+ 2) = ones(n; 1);

Then L, U , L�1 and U�1 all contain n-by-n blocks of +1s (or �1s). 2
To illustrate the phenomenon of exact cancellation, consider the (singular) acyclic matrix

G =

2
64 1 1 1

1 0 0

1 0 0

3
75 :

If we choose G11 as the pivot, then after one step the trailing 2-by-2 submatrix has each entry equal

to �1. Choosing any of these entries as the next pivot causes exact cancellation in the third and

�nal pivot, which is zero. This phenomenon can also occur with nonsingular acyclic matrices, such

as

G =

2
666664

1 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

3
777775 : (25)

It is probably possible to implement Algorithm 8.1 in o(n3) time, but since the subsequent Al-

gorithm 3.1 for computing the SVD itself takes �(n3) operations, we have not pursued this. It

remains to design a high accuracy algorithm for the singular vectors of an acyclic matrix taking

o(n3) time.

We present numerical examples in section 12.2.

8.1 Accurate SVDs of other matrices of the form G = DLZDR

In the last section we considered the case where Z was TU, i.e. each minor of the integer matrix

Z was bounded by 1 in absolute value. It is natural to ask what happens when the bound on

each minor is �k > 1. In this case one can still compute an accurate LDU decomposition of G,

by performing GECP on Z in rational arithmetic, and using DL and DR only for pivot selection

(diagonally scaling each Schur complement of Z just in order to choose the largest entry, but

performing the actual elimination on Z itself). The bound �k on minors of Z implies that any

rational number s=r in lowest terms appearing during Gaussian elimination on Z has s and r
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bounded in magnitude by �k; this is why the TU case of �k = 1 was so easy. The argument that

showed jU�1
ij j � 1 may be extended to show that jU�1

ij j � �k2, whence �(U) � (�kn)2. We do not

know if this is attainable for �k > 1.

9 Cauchy Matrices

In this section and the next we consider matrices whose entries are rational functions of a number of

parameters. These matrices will have the property that expressions for their minors exist, that can

be evaluated to high relative accuracy when the parameters are given 
oating point numbers. This

then determines their LDU factors to high relative accuracy, and so their SVDs to high relative

accuracy.

Cauchy matrices are de�ned to have entries Ci;j = 1=(xi + yj), where the xi and yj are the

initial data. Every submatrix of a Cauchy matrix is Cauchy. The well-known formula for det(C) is

det(C) =

Q
1�i<j�n(xj � xi)(yj � yi)Q

1�i;j�n(xi + yj)
(26)

Every factor xj � xi, yj � yi, or xi+ yj is computed to high relative accuracy, as are their products

and quotients, for the reasons discussed in section 5.

For example, consider the Hilbert matrix, where xi = i and yj = j � 1. When n = 13, the

determinant as computed by Gaussian elimination with no pivoting, partial pivoting or complete

pivoting has lost all relative accuracy compared to the true value of the above formula, of about

1:44 � 10�92.
Note that small relative changes in the xi and yj do not necessarily guarantee small relative

changes in det(C), as the 1-by-1 example with x1 = �1 and y1 = 1 + � shows. But since formulas

like (26) can be evaluated to high relative accuracy, they simply give the right answer, independent

of conditioning; all signi�cant errors occur when xi and yj are rounded to 
oating point numbers.

But if there is little cancellation in the factors xj � xi, yj � yi and xi + yj (i.e. they are close

enough in magnitude to jxjj+ jxij, jyj j+ jyij and jxij+ jyj j, respectively), then one can assert that

small relative changes in the xi and yj cause small relative changes in the SVD. This is true for the

Hilbert matrix, for example. (The Hilbert matrix is also totally positive, as discussed in the next

section.)

The amount of work required to compute the LDU factorization with formula (26) is much

larger than the work required for straightforward Gaussian elimination. Its most straightforward

use would cost O(n5), although a dynamic programming approach could probably reduce this. So

�nding a really practical way to do high accuracy GECP remains open. Still, formula (26) shows

that high accuracy GECP is achievable in principle.

10 Totally Positive Matrices

A matrix is totally positive (TP) if all of its minors are nonnegative [35]. This suggests that there

should be formulas for minors that somehow automatically guarantee positivity, and so high relative

accuracy. However, total positivity alone is not enough to guarantee that GECP can be performed

accurately. For example, the Hilbert matrix is TP, but unless we exploit further information about

the matrix, such as it being Cauchy, we do not expect straightforward GECP to be accurate enough.
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Similarly, a symmetric tridiagonal matrix T with positive o�diagonal entries is totally positive if

and only if it is positive de�nite [35, Thm. 3.2]. Simply knowing the entries of T to high relative

accuracy does not determine the SVD to high relative accuracy, but knowing the entries of T 's

bidiagonal Cholesky factor to high relative accuracy does. So achieving high relative accuracy

requires not just total positivity but an appropriate parameterization that permits minors to be

evaluated to high relative accuracy. We give many examples of this below.

The rest of this section is organized as follows. First, we give several examples of TP matrices

and their parameterizations where high accuracy formulas for their minors exist [2, 9, 8, 35]. Indeed,

it was recently shown [9] that there is a universal parameterization of all totally positive matrices

with this property, although this parameterization is not always convenient to use. Second, we

show that well known composition laws for producing new TP matrices from previous ones also

produce new high accuracy formulas from previous ones. This can be used to generate many

matrices for which high accuracy formulas exist. Unfortunately, the formulas we present are often

combinatorially expensive, so they are not always practical for large problems. Still, they show

that high relative accuracy is achievable, and motivate us to seek more economical formulas for

problems of particular interest.

10.1 Examples of Totally Positive Matrices with High Accuracy Formulas for

their Minors

1. Cauchy matrices are TP, provided the xi and yj in Cij = 1=(xi + yj) satisfy 0 < x1 < x2 <

� � � < xn and 0 < y1 < y2 < � � � < yn. Formula (26) can be used to compute minors to high

relative accuracy.

2. An n-by-n generalized Vandermonde matrix has entries Vi;j = zeij , where 0 � e1 < e2 < � � � <
en are given integers. The usual Vandermonde matrix is given by ei = i�1. Every submatrix

of a generalized Vandermonde matrix is also generalized Vandermonde. The formula for

det(V ) is [38, eqn. 3.1]

det(V ) = [
Y

1�i<j�n

(zj � zi)] � s�(z1; :::; zn) (27)

where s� is the so-called Schur function, and � is the partition � = (en� (n� 1); en�1� (n�
2); :::; e2� 1; e1). A great deal is known about Schur functions [38], but for the purposes of

showing that GECP can in principle be implemented very accurately, all we need to know is

that if we write s� as a sum of monomials [38, p. 73]

s� =
X
i

[�iz
�i1
1 z

�i2
2 � � �z�inn ] (28)

then all its nonzero coe�cients �i are positive integers (see [38, p. 73] for a combinatorial

formula for the �i and �i;j). Therefore, if the zj satisfy 0 < z1 < z2 < � � �< zn, equations (27)

and (28) tell us that V is TP, and provide us a formula for det(V ) that can be evaluated to

high relative accuracy. Unfortunately, the number of monomials in the Schur function grows

very quickly as a function of �, so this is not a practical formulas for large matrices. There are

alternate formulas for Schur functions, as Jacobi-Trudi determinants [38], but these appear

to be no easier to evaluate to high relative accuracy than the original problem.
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3. Upper triangular Toeplitz matrices T with certain special forms are TP. The most basic ones

(from which we build others below) are bidiagonal matrices with 1 on the diagonal and �rst

superdiagonal (each minor is 0 or 1), matrices with 1 on and everywhere above the diagonal

(each minor is 0 or 1), and the Taylor matrix Tij = 1=(j � i)! (each minor is rational, and

can in principle be evaluated exactly using rational Gaussian elimination).

4. Brenti [9, Thm. 3.1.] [8] has recently shown that there is a one-to-one correspondence

between totally positive matrices T and planar, �nite, nonnegatively edge-labeled directed

graphs, with certain distinguished row nodes and column nodes. Given such a graph, Tij is

given as a sum, over all paths � from row node i to column node j, of the product of the

edge weights along �. If the edge weights are known to high relative accuracy, this sum is

determined to high relative accuracy. Furthermore, any r-by-r minor of T can also be de�ned

as a sum over certain r-tuples of nonintersecting paths of products of edge weights, which

again is determined to high relative accuracy.

The proof of Brenti's theorem involves the construction of an appropriate graph given a

TP matrix T . This construction is nothing other than Gaussian elimination [15], with the

restriction of eliminating using only adjacent rows or columns, thus expressing T as a product

of (TP) Gauss transforms, which di�er from a diagonal matrix by only one entry of the �rst

super- or subdiagonal, and (TP) shifts. In other words, the problem of building the desired

graph to high relative accuracy is equivalent to the problem we wanted to solve in the �rst

place, Gaussian elimination to high relative accuracy5.

Brenti [9, Thm. 3.3.] also showed that there is a \universal graph" for all n-by-n TP matrices,

where the edge weights are arbitrary nonnegative reals. In other words, these nonnegative

reals parameterize the set of all n-by-n TP matrices. And given these parameters to high

relative accuracy, the graph provides a way to compute any minor to high relative accuracy.

Again, computing these parameters from a TP matrix T is done with a variation of Gaussian

elimination.

10.2 Composition Laws for Totally Positive Matrices

1. If A is TP with high accuracy formulas for all minors, then the same is true of AT .

2. If A and B are m-by-r and r-by-n TP matrices, respectively, their m-by-n product AB is

also TP. This follows from the Cauchy-Binet Theorem, which expresses each k-by-k minor of

AB as a sum of

 
r

k

!
products of minors of A and of B. If we have high accuracy formulas

for all minors of A and B, Cauchy-Binet also gives us a high accuracy formula for all minors

of AB, as a sum of products of positive minors, each of which is computable to high relative

accuracy.

Example 10.1 Suppose X and Y are TP Vandermonde with entries Xji = xi�1j and Yji =

yi�1j respectively, and D = diag(d1; :::; dn) with di > 0, then P = XTDY is TP, with entries

Pij =
Pn

k=1 dkx
k�1
i yk�1j . In particular, suppose 0 < x0 < x1, 0 < y0 < y1, and dk = 1=(k�1)!;

5This is yet another example of the \no free lunch" principle in getting error bounds.
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then

det(P ) � det

"
ex0y0 ex0y1

ex1y0 ex1y1

#

= det

0
@
"
1 x0 x20 � � �
1 x1 x21 � � �

#
� diag

�
1

0!
;
1

1!
;
1

2!
; � � �

�
�
"
1 y0 y20 � � �
1 y1 y21 � � �

#T1A

=
X

0�i<j

det

0
@
"
xi0 x

j
0

xi1 x
j
1

#
� diag

�
1

i!
;
1

j!

�
�
"
yi0 y

j
0

yi1 y
j
1

#T1A

= (x1 � x0) � (y1 � y0) �
X

0�i<j

0
@(x0x1y0y1)

i

i! � j! �
j�i�1X
k=0

xk0x
j�i�1�k
1 �

j�i�1X
k=0

yk0y
j�i�1�k
1

1
A ;

all of whose factors are evaluatable to high relative accuracy, for the reasons discussed in

section 5.

Example 10.2 As another example, consider D1AD2, where A is TP and Toeplitz, and D1

and D2 are positive de�nite diagonal with D1;ii = �1�i, and D2;ii = �i�1. Then D1AD2 is

also a TP Toeplitz matrix, with the i-th diagonal multiplied by �i. Any minor of D1AD2 is

equal to the corresponding minor of A times an appropriate power of �.

3. Let A be TP and S = diag(+1;�1;+1;�1; :::). Then SA�1S is also TP, and every minor of

SA�1S is a quotient of minors of A. In other words, A�1 has a checkerboard sign pattern.

For example, if A is upper bidiagonal Toeplitz with 1 on the diagonal and �rst superdiagonal,

then SA�1S is upper triangular Toeplitz with all ones on and above the diagonal.

4. Theorems of Aissen, Schoenberg, Whitney; Whitney; and Erdrei [2, p. 215] show that all

totally positive Toeplitz matrices can be assembled from the above operations applied to the

basic TP Toeplitz matrices mentioned earlier. A row of an upper triangular totally positive

Toeplitz matrix is called a P�olya frequency sequence [35, 2].

5. If A is TP, so is any Schur complement of A. Since any minor of the Schur complement is a

quotient of minors of A, high accuracy formulas for minors of A yield high accuracy formulas

for minors of the Schur complement.

6. Let A(x1; x2; :::xp) be a TP matrix, when 0 < x1 < x2 < � � � < xp. Then if �(x) is a

nonnegative strictly increasing function, B = A(�(x1); �(x2); :::; �(xp)) is also TP. To get

a high accuracy formula for minors of B from the corresponding formula for minors of A,

we require (1) that �(x) can be evaluated to high relative accuracy if x is given to high

relative accuracy, and (2) that �(x) � �(y) can be evaluated to high relative accuracy, if x

and y are 
oating point numbers. For example, if �(x) is a polynomial in x with nonnegative

coe�cients, it satis�es these conditions.
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11 Solving other linear algebra problems with high relative ac-

curacy

It is natural to ask when other linear algebra problems have solutions determined to high relative

accuracy, given the combinatorial and algebraic properties of previous sections. We consider matrix

inversion, computing the QR factorization, and (more generally) solving least squares problems.

First we consider computing G�1. Since each entry of G�1 is �1 times a quotient of an n�1-by-
n�1 minor of G and det(G), we only need these n2+1 largest minors to be determined accurately.

Then it is immediate that all our earlier conditions that imply that all minors are determined

accurately also imply that all entries of the inverse are determined accurately.

For example, previous authors have noted that a linear system with a Vandermonde coe�cient

matrix V can be solved quite accurately precisely when it is TP, although only some authors used

this language [32, 5, 7, 6]. This high accuracy phenomenon is now understandable, since linear

system solving can also be expressed in terms of minors, and should apply to all linear systems

with TP coe�cient matrices. It is worth noting that the standard fast algorithm for Vandermonde

systems can be described as providing a factorization of a TP Vandermonde into a product of simpler

TP matrices, each of which has simple high accuracy formulas for all its minors (this factorization,

which applies to non-TP Vandermondes, appears in [28]), thus providing another high accuracy

way to evaluate Schur functions [38]. But fast algorithms remain hard to design. Perhaps the

successes in divide and conquer algorithms for TP linear system solving can be translated into

similar algorithms for the pivoted LDU decomposition and so SVD.

Since linear equation requires only that the n2 + 1 largest minors be determined accurately,

it is possible to compute an accurate inverse more often than an accurate SVD. If the Laplace

expansions of the n2 + 1 largest minors of G are sums of monomials of like sign, so that each

entry of G�1 is determined to high relative accuracy, then Brualdi and Shader call G strongly sign

nonsingular, or S2NS [11]. To see that these matrices form a strictly larger class than either acyclic

or TSC matrices, consider

G =

"
D1 X

0 D2

#
; G�1 =

"
D�1

1 �D�1
1 XD�1

2

0 D�1
2

#

where D1 and D2 are nonsingular diagonal matrices, and X is arbitrary. G�1 is determined to

high relative accuracy, even though G may be neither acyclic nor TSC, depending on X . In other

words, determining the inverse to high relative accuracy is strictly \easier" than computing either

the LU decomposition or SVD to high relative accuracy. See [11] for further discussion.

Now we consider the QR factorization G = QR and least squares problems minx kGx� bk2. It
is natural to expect similar high accuracy results as before, because of the following well-known

facts:

� RTR is the Cholesky factorization of GTG, so that each entry of R is a (quotient of) square

root(s) of minor(s) of GTG.

� QQT = G(GTG)�1GT , so if GTG is accurately invertible, we expect that Q might be deter-

mined accurately.

� The pseudoinverse G+ = (GTG)�1GT , so again we expect this might be accurate if GTG is

accurately invertible.
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For example, it is natural to conjecture that a theorem like Theorem 6.1 is true for the QR

decomposition. Indeed, we believe that the entries of R in G = QR are determined to high relative

accuracy for all G 2 G if and only if Gr(G) is acyclic, but we have not been able to prove this. It

also seems likely that the Householder vectors determining Q are determined to high accuracy.

On the other hand, being TSC is de�nitely not enough to guarantee an accurate QR decompo-

sition. For example, consider G =

"
1 1

1 �1� �

#
; there is unavoidable cancellation in computing

R12. However, the diagonal entries of R are determined to high relative accuracy if G is TSC. This

follows from thinking of R as the Cholesky factor of GTG, and the diagonal entries of R as square

roots of quotients of principal minors of GTG. By the Cauchy-Binet theorem, a principal minor of

GTG can be written as a sum of squares of minors of G, each of which is determined to high relative

accuracy. This also implies that GTG is accurately invertible if G is TP, although there will be

cancellation in the products de�ning QQT and G+ above, since (GTG)�1 will have a checkerboard

sign pattern.

It remains to characterize those matrices whose QR factorization, and associated least squares

problems, can be solved to high relative accuracy.

12 Finite Element Problems

As described earlier, the most natural �nite element formulation leads to a generalized eigenproblem

of the form Kx = �Mx, where M is the mass matrix, and K is the sti�ness matrix. Typically

we write K = ZT
KDKZK where ZK is the incidence matrix or assembly matrix, and DK is the

(block) diagonal matrix of individual element sti�nesses. We may similarly write M = ZT
MDMZM .

Assume �rst for simplicity that ZM is square and invertible, and that DM and DK are positive

de�nite diagonal. Then we can pre- and postmultiply the eigenproblem K��M by D
�1=2
M Z�T

M and

Z�1
M D

�1=2
M , respectively, to get the eigenproblem GTG� �I , where

G = D
1=2
K (ZKZ

�1
M )D

�1=2
M � D1BD2 :

Thus, the problem reduces to �nding the SVD of G = D1BD2.

We can think of G as the \unassembled" �nite element problem. The diagonal matrices D1 =

D
1=2
K and D2 = D

�1=2
M depend only on the material properties of the �nite element problem (such

as masses and spring constants in the example below), whereas B = ZKZ
�1
M depends only on the

geometry and meshing. In the examples we have studied, the (worst case) relative accuracy of the

SVD of G depends only on B, i.e. the geometry and meshing, not on the material properties in D1

and D2. This is because D1 and D2 a�ect the pivot choice during GECP, but the accuracy depends

only on the conditioning of submatrices of B. In contrast, we will show that the conventional

assembled problem K��M may unavoidably destroy high relative accuracy. A similar phenomenon

in the case of linear systems was analyzed in [55, 54].

In the more general case where ZM is not square and invertible, we would need to compute

the generalized SVD (GSVD) of the pair (D
1=2
K ZK ; D

1=2
M ZM ). Many of the perturbation theorems

and algorithms of this paper may be extended to this case. For example, we can show that a

conventional piecewise linear discretization of the Sturm-Liouville problem �(a(x)y0)0 = ��(x)y on

0 < x < 1 with rather general boundary conditions leads to a GSVD formulation that determines

its small modes of vibration to high relative accuracy [23], and for which we have an algorithm that
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depends on material in this paper and in [22]. We will report on these and other �nite element

problems in more detail in a future paper.

12.1 Linear Mass Spring Systems

A linear mass spring system consists of masses mi that may move only horizontally, and springs

with spring constants kl connecting arbitrary pairs of masses mi and mj . Each mass may also be

connected by a spring to an immovable wall, as shown below:

k1 k2 i+1ki kn
m1 mi mn

x x i x1 n

mi = mass of i-th mass
ki = spring constant of i-th spring

x i = position of i-th mass  (0 = equilibrium)

k

Newton's Law applied to the system in the �gure yields M �x(t) = �Kx(t), where x(t) =

[x1(t); :::; xn(t)]
T , M = diag(m1; :::; mn), and

K =

2
6666664

k1 + k2 �k2
�k2 k2 + k3 �k3

. . .
. . .

. . .

�kn�1 kn�1 + kn �kn
�kn kn

3
7777775

:

Seeking solutions of the form x(t) = e�tx leads to the usual generalized eigenproblem Kx =

�2Mx � �Mx. We will see below that this formulation does not preserve high relative accuracy in

the eigenvalues.

To reformulate the problem so that high relative accuracy is preserved, we write K = ZT
KDKZK

where DK = diag(k1; :::; kn) and ZK is the bidiagonal incidence matrix

ZK =

2
666664

1

�1 .. .

. . .
. . .

�1 1

3
777775 (29)

where the nonzero zK;ij indicates that spring i is connected to mass j. Furthermore, M =

ZT
MDMZM where DM = diag(m1; :::; mn) and ZM = I , so our problem reduces to �nding the

SVD of G = D
1=2
K ZKD

�1=2
M , which is a bidiagonal matrix with entries Gi;i =

p
ki=mi and

Gi+1;i = �
p
ki+1=mi. The singular values of G are the square roots of the eigenvalues. Each

entry of G is determined to about as many decimal places as the spring constants ki and masses

mi. G is bidiagonal, and so acyclic, and so its singular values are determined to about as many

decimal places as the data, which is as accurate an answer as the data deserves.

More generally, when there are springs between arbitrary pairs of masses, or arbitrary masses

and the wall, ZK will have the following structure. Row i will have �1 and +1 in columns j and
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k, respectively, if spring i connects masses j and k. Row i will have �1 in column j if spring i

connects mass j to the wall. It was shown by Ho�man and Kruskal that ZK is totally unimodular

(TU) [10, Thm. 2.3.3.], although if no masses are connected to a wall then ZK is called an oriented

incidence matrix and the result goes back to Poincar�e. Thus, G = D
1=2
K ZKD

�1=2
M is a diagonally

scaled unimodular matrix (DSTU), and its SVD can be computed to high relative accuracy as

described in section 8.

Now we show that the conventional assembled formulation Kx = �Mx does not necessarily

preserve high relative accuracy, when the ki andmi have widely varying magnitudes. First, accuracy

can be lost by a conventional algorithm like divide-and-conquer that only guarantees high absolute

accuracy in the computed eigenvalues. Second, and independently of the algorithm used to solve

the eigenproblem, accuracy can be lost simply by forming and rounding K from the data ki. For

example, Suppose n = 3, M = I , k1 = k3 = 1, and k2 = "=2 (so 
(k1 + k2) = k1). Then the

correctly rounded K is


(K) =

2
64 1 �"=2 0

�"=2 1 �1
0 �1 1

3
75

This matrix is easily seen to have a tiny negative eigenvalue near �"2=8, whereas its true tiniest
eigenvalue must be positive, in fact near "=4 (Matlab returns 0 in place of �"2=8).

12.2 Numerical Examples

In this example, we apply Algorithm 8.1, GECP for DSTU matrices, followed by Algorithm 3.1,

to several linear mass-spring systems, and compare the results to several other algorithms. These

examples will be rank de�cient.

We generate test matrices of the type G = D1BD2, where

B =

2
66666664

1 �1
1 �1

1 �1
1 �1

1 �1
1 �1

3
77777775

and D1 and D2 are diagonal with �(D1) = 10i, �(D2) = 10j , 1 � i; j � 8. For each �xed (i; j) we

generate 90 test matrices, using 9 di�erent types of distributions of the singular values of D1 and

D2, for a total of 8 � 8 � 90 = 5760 test matrices.

The algorithms tested are as follows:

� Algorithm 8.1 (GECP on DSTU matrices) followed by Algorithm 3.1. We call the combined

algorithm SLUSVD in single precision and DLUSVD in double precision).

� One-sided Jacobi in single precision (SGSVDJ) and double precision (DGSVDJ).

� QR based SVD in single precision from LAPACK SGESVD.

Since in this case only the �rst, LU based method can determine the rank exactly, we measure

the relative error only in the rank(G) = 5 nonzero singular values. We use "(i; j) to denote the
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Figure 2: The values of of log10 "(i; j) for 1 � i; j � 8.

maximal relative error in nonzero singular values of all test matrices with �xed �(D1) = 10i and

�(D2) = 10j . As a reference, we use the singular values computed by DLUSVD.

The measured values of "(i; j) for various algorithms are given in Figure 2. This �gure shows

that the single precision algorithm SLUSVD delivers at least 5 correct digits in all cases, whereas

one-sided Jacobi or QR in single precision can lose all relative accuracy. One-sided Jacobi in double

precision always delivers at least 13 decimal digits, although theory does not guarantee this.

13 Open Problems

We listed a number of open problems throughout the paper. We reiterate the most important ones

here.

1. Several matrix classes we introduced required expensive variations on GECP to compute

accurate LDU factorizations: TSC matrices cost O(n4), Cauchy matrices cost O(n5), and

totally positive matrices could be exponential in n. It is desirable to have faster algorithms in

all these cases. A natural question is the \subtraction-free" complexity of computing a Schur

function, as discussed in section 10.1.

2. We only discussed �nite element problems that could be reduced to the SVD of a single

matrix. But the most general case involves the generalized SVD of two matrices. We have

studied this for two-dimensional trusses, Sturm-Liouville problems, and have made some

progress with more general cases. But a complete analysis remains to be done. Such an

analysis would start with any continuous problem that determined its smallest eigenvalues

to high relative accuracy, and then describe the �nite element discretizations preserving this

accuracy, along with algorithms to compute them this accurately.
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3. We have described mostly dense matrix algorithms in this paper, costing O(n3) and sometimes

more. Large eigenproblems typically require iterative methods (such as Lanczos) to compute

a few eigenvalues at a reasonable cost. It would be desirable to identify matrix classes and

inexpensive iterative algorithms that preserve high relative accuracy.
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