
Berkeley CMT Media Playback API

MacDonald Hall Jackson III

U.C. Berkeley

October 4, 1996

Abstract

The Berkeley Continuous Media Toolkit provides low-level, modular tools for developing
distributed continuous media (CM) applications. The programming interface to the toolkit
requires application developers to create and manage objects required to play back audio and
video. These objects are distributed to di�erent processes possibly on di�erent hosts. This
paper presents an application programming interface (API) that frees the application writer
from the details of managing the underlying CM objects. It also provides an easily con�gurable
framework in which CM object developers can place their objects. A simple video editing
application is shown to demonstrate the bene�ts of using the API and framework.

1 Introduction

This paper describes the design and implementation of an application programming interface (API)
for continuous media (CM) application developers. Applications written using the CMT Media
Playback API are presented a simple Tcl/Tk interface that allows them to treat CM streams
as a collection of media clips and timing instructions. All connection and resource management
details are hidden from the application developer. The API is built on the Continuous Media
Toolkit (CMT) which provides an extensible collection of polymorphic objects that can be linked
together to play audio and video over arbitrary networks [MPR96]. Audio and video material can
be captured live or played from storage. Developers who use the toolkit can modify the objects to
meet their needs, and after integrating new objects into the framework, applications will seamlessly
take advantage of new toolkit capabilities.

CMT is an open, portable toolkit that can be used for research experiments. CMT currently
runs on PC's (Windows and UNIX) and UNIX workstations, and it will be ported to the Macintosh.
Source code is available to encourage experimentation. Related work in multimedia toolkits include
a variety of research systems and commercial products. The ViewStation project at MIT [Tea95]
most closely matches the architecture of CMT. It was designed to operate on high-speed local area
networks. The DAVE system developed at Sandia Laboratories [MFY94] provides a high-level ab-
straction to continuous media devices. However, assumes devices are sampled at regular intervals
and does not provide as
exible a time model as CMT. The Multimedia Component Kit [dMG93]
provides a C++ class library as an abstraction to speci�c devices but uses a separate analog trans-
mission network for the delivery of continuous media data. Apple Quicktime Conferencing [App]
(QTC) is a commercial system that provides an API to Quicktime codecs and network modules
for the development of video conferencing applications. InSoft's OpenDVE [Ins] toolkit is another
commercial development system providing an API for application programmers to create collab-
orative and desktop video conferencing applications. Lastly, the ActiveMovie [MSa] architecture

1

"bambi.mpg"
mpegPlay

A CMT Process

mpegSegment

Figure 1: An idealized playchain.

from Microsoft is greater in scope than either Apple QTC or InSoft OpenDVE providing an API
integrated with other development API's such as Direct3D [MSb] (a 3-D graphics API).

The remainder of this paper is organized as follows. Section 2 presents background on the
issues encountered when developing CM applications and describes problems this API is designed
to solve. Section 3 presents a high level introduction to the API software architecture. Section 4
presents a detailed explanation of the API. Two auxiliary functions and an example application
are given in section 5 to demonstrate the power of the API. And section 6 discusses issues to be
addressed and work to be done.

2 Background

CMT is built on several existing tools, including Tcl/Tk [Ous94] and Tcl-DP [SRY93]. Tcl is an
interpreted scripting language that provides a rapid prototyping environment. Tk is a collection
of Tcl commands that implement a graphical user interface development toolkit. Tcl-DP is a
scripting language for distributed application programming. It extends Tcl with remote procedure
calls, unicast and multicast communication support, and a nameserver [LSR95].

CMT supports development of continuous media applications. The system includes abstractions
for various audio and video streams (e.g., �-law audio, MPEG, and MJPEG), �le I/O, a logical
time system (LTS), and objects that send and receive data over a network. These objects are
accessed using Tcl commands, thus CM applications are written as Tcl/Tk scripts. This section
describes fundamental concepts of CMT. Section 2.1 explains how to use the abstractions to play
CM. Section 2.2 discusses how to resolve universal resource locators (URL). And section 2.3 shows
how to create CM objects on remote hosts.

2.1 CMT Introduction

Let us look at an idealized example of how to play a movie. A user who wants to play the movie
bambi.mpeg must read the data from a storage device (e.g., disk), decode it, and display it on
a monitor. CMT provides two objects that can be used together to implement this playback
application. The mpegSegment object reads data from the disk and passes it to an mpegPlay

object. The mpegPlay object decodes the data it receives and displays the reconstructed frames on
the monitor. These objects are created in a CMT process which is a Tcl/Tk process with commands
added to create and control CMT objects. Figure 1 shows a graphical representation of the objects
in this example. The set of objects necessary to play a movie, or any type of media, are called a
playchain.

2

pktSrc pktDest

server CMT process client CMT process

N
etw

ork

mpegPlaympegSegment
"bambi.mpg"

Figure 2: A playchain spanning a network.

A more complicated playchain, shown in Figure 2, illustrates how the addition of two more
CMT objects, named pktSrc and pktDest, allows the movie to be played when the media �le is
stored on a remote server. The pktSrc and pktDest network transport objects �t transparently
between the mpegSegment and mpegPlay objects. The mpegSegment is con�gured and behaves the
same as before, except that it sends the data to the pktSrc instead of to the mpegPlay object.
The pktSrc and pktDest objects work together to transfer data from one host to another over a
network, independent of data format. On the client machine, the pktDest passes the data to the
mpegPlay object, which proceeds as above.

CM data has a time characteristic not found in traditional media such as text and images. Every
movie and sound �le has an associated length in time. Every frame i in a movie, or audio block i

in a sound �le, should be played at a speci�ed time ti. CMT provides a time abstraction, called
the logical time system (LTS), that is essentially a user con�gurable clock. This clock encapsulates
a mapping from real time to playback time. The LTS abstraction has two important properties:
speed and value. An LTS object behaves like a time line, the current time is value, which changes
by speed every second of real time.

The properties of an LTS object can be changed by the con�gure command. For example, the
following commands create an LTS and con�gure it:

set local lts [lts ""]

$local lts configure -speed 2 -value 0

The �rst line creates an LTS and stores its name in the variable local lts. The second line con�g-
ures the LTS to start at value 0 and increment it by 2 every second, essentially \fast forwarding"
at twice real time.

Every movie or audio �le (a.k.a. clip-�le) has beginning and ending times. The beginning time
is 0 and the ending time is n seconds later. CMT provides a way of specifying which portion of
a clip-�le to play back. Source start (ss) denotes how many seconds of the clip-�le to skip before
playing. Source end (se) speci�es how far into the clip-�le (from the beginning) to stop playing.
For example, the expression

bambi.mpg -ss 10 -se 30

speci�es a clip of the movie bambi that is 20 seconds long, beginning 10 seconds into the movie.
Most objects, such as mpegPlay, pktDest, etc., require an LTS object to operate. CMT objects

use the LTS to schedule events like data decoding and packet transmission. Figure 3 shows how

3

an LTS �ts into the playchain in Figure 2. For example, if the LTS that controls the mpegSegment
object in Figure 3 has speed zero, the mpegSegment will not read data from disk. pktDest and
pktSrc also use the LTS to determine which packets of data to forward and which to drop.

There must be an LTS in every CMT process involved in the playchain. LTSs on di�erent hosts
can be \slaved" to one another to synchronize them. The user or application manipulates the LTS,
and the rest of the objects in the playchain do their best to play the correct frame of video at
the correct time. For example, if the user control in Figure 3 increases the value of the LTS by
thirty, the LTS slave's value will also increase by thirty. Consequently, other CMT objects will
change their behavior: 1) the mpegSegment object will begin sending data from the new time, 2)
the pktSrc and pktDest objects will ignore all data they are supposed to have transmitted at the
old time, and 3) the mpegPlay object will only play frames at this advanced time.

pktSrc pktDest

ltsslave
lts

User
Control

server CMT process client CMT process

N
etw

ork

mpegPlaympegSegment
"bambi.mpg"

Figure 3: A complete playchain, including the LTS.

2.2 URL Resolution

CMT provides a name server that can map a URL into a speci�c CM clip-�le. The URLs introduce
a layer of indirection between the user and CM server processes. This indirection provides the

exibility necessary to use a centralized server which maintains a database of media stored on
di�erent sources [RBB95]. CM sources are speci�ed using URLs similar to:

cmtp://name-server.edu/bambi.mpg

cmtp://name-server.edu:512/video/cinderella.mjpg

The protocol, identi�ed by cmtp, speci�es the name server and �le. The name server returns a
3-tuple of the form:

fhost port �lenameg

where host is the name of the machine that stores the clip-�le �lename, and port is the port to
which the CMT process on host is listening. CMT provides a function CMApp TranslateURL which
contacts the name server and returns the 3-tuple. The function behaves as follows:

CMApp TranslateURL cmtp://name-server.edu/bambi.mpg

4

returns the 3-tuple:

video-server.edu 1490 /video/mpg/bambi.mpg

By decoding the URL, an application can reference the video clip and the system can determine
where the clip is located [RBB95].

2.3 The CMT object

CMT provides a mechanism to create objects on remote hosts. The CM process on a remote host
is represented by an object, named cmt, on the client process. By using the 3-tuple returned by
CMApp TranslateURL, a user can create the objects required on the video server. Here is a set of
commands which create the objects necessary for playback on the server side:

set server process [cmt ""]

$server process open -host video-server.edu 1490

$server process create mpegSegment

$server process create pktDest

$server process create lts

The �rst two lines create the cmt object and connect it to the server process on video-server.edu.
The next three lines create the mpegSegment, pktDest, and lts objects, respectively in the server
process. Each create command returns the name of the newly created object. These objects can
be found in the box labeled \server CMT process" in Figure 3. Note that initialization of these
objects has been left out for simplicity.

The cmt object connected to the server process acts as a communication link between the client
and server CMT processes. As shown above, the cmt object allows the user to create objects on
remote processes. Each remote object has a proxy object with the same name on the client process.
Commands can be executed on remote objects by using the proxy objects instead. Communication
between the proxy objects and the actual objects is maintained through the cmt object. Figure 4
shows a complete playchain including the proxy objects, whose outlines are dotted.

The user must keep track of the objects in order to modify the playchain, to remove portions
of the playchain, and to delete the playchain when �nished. While maintaining this state is not a
complex task, it obviously increases the complexity and size of application code. The next section
introduces an API that manages the necessary state information automatically.

3 API Design

This section introduces the two abstractions that constitue the CMT Media Playback API. It also
presents an example of how to use the abstractions, and a comparison with the code required if the
API was not used.

The API speci�es two new abstractions: Stream and mediaPlayer. A Stream is a media speci�c
sequence of non-overlapping CM segments. Segments can be speci�ed by URLs, and the source
material clip-�les can be located on arbitrary hosts. A mediaPlayer plays a given Stream on a local
host. MediaPlayers are type speci�c. Currently there are two mediaPlayers, one for playing audio
(audioPlayer) and one for playing video (videoPlayer).

Using these two abstractions, a user can write an application to play the video speci�ed by the
URL

5

User
Control

pktSrc

slave
lts

lts

pktDest

mpegSegment
"bambi.mpg"

pktSrc

slave
lts

connected to
server process

client CMT processserver CMT process

mpegSegment
"bambi.mpg" N

etw
ork

mpegPlay

cmt

Figure 4: A playchain showing the proxy objects.

cmtp://name-server.edu:512/bambi.mpg

with the following six lines of code:

Stream create vid stream video

vid stream addclip "cmtp://name-server.edu:512/bambi.mpg"

videoPlayer create vid player -stream vid stream

vid player ready

pack .vid player

vid player speed 1

The �rst line creates a Stream object named vid stream with the type video. The second line
appends a video clip to the Stream. The third line creates the videoPlayer object vid player.
The -stream vid stream option speci�es that vid player will play the contents of vid stream.
The last three lines ready the player, display a window in which the video will be played, and start
the video at speed 1 (normal speed).

For comparison, to achieve the same result without use of the API, the developer must write
27 lines of code to create and con�gure the objects in the playchain. The actual code is given and
explained in Appendix A. The playchain created by the above code is similar to the playchain

shown in Figure 3.
The user can play the audio portion of the bambi movie, speci�ed by

cmtp://name-server.edu:512/bambi.au

with these additional 5 lines of code:

6

Stream create au stream audio

au stream addclip cmtp://name-server.edu:512/bambi.au

audioPlayer create au player -stream au stream

au player configure -lts [vid player cget -lts]

au player ready

The only di�erences between the code that plays video and the code that plays audio are: 1) a
window must be displayed for the video, and 2) the audioPlayer is con�gured to use the LTS that
controls the videoPlayer. The two mediaPlayers are synchronized because the same LTS controls
both players. It is possible to control playback using either the speed and value commands or by
directly controlling the LTS. Both methods have the same e�ect, the �rst allows the application
writer to avoid using the LTS.

Using the API, an application can dynamically add, modify, or delete video segments from a
Stream, and the mediaPlayer will adjust the playchain to match. To play two video segments after
the bambi movie, the application issues three more commands. One for each movie, and one to
signal the vid player object to ready itself to play the additional clips:

vid stream addclip cmtp://name-server.edu/dumbo.mjpg

vid stream addclip cmtp://name-server.edu/beauty.mpg

vid player ready

These commands result in the playchain shown in Figure 5. Without the API, an application must
execute an additional 50 lines of Tcl code.

In order to modify a clip, an application must �rst locate the proper segment object, then
con�gure the object. An application must also destroy all CM objects when �nished with a speci�c
playchain. Some applications need to construct multiple playchains (e.g., a video editor), which
adds more complexity to the application code.

The objects provided by the API keep track of the CM objects in the playchain. Changes to clips
in the stream are made with only two lines of Tcl code, one to make the change and one to ready

the mediaPlayer. A playchain can be destroyed using only one line of Tcl code. The mediaPlayer

objects even conserve resources by reusing CM objects when possible. For example, Figure 5 shows
a pktDest object shared by two pktSrc objects on di�erent server processes. Every CM process in
a playchain has only one LTS, one pktSrc per media format, one pktDest per media format, etc.
In essence, the Stream and mediaPlayer objects represent playchains. Hence, commands on these
objects are transformed into commands on the objects that implement the playchain.

4 API Details

This section describes the Stream and mediaPlayer abstractions, and their implementation. The
�rst two subsections focus on the Stream and mediaPlayer abstractions. The object-oriented frame-
work used to create the abstractions is discussed in the last subsection.

4.1 Stream

A Stream is a media-type speci�c segment. It contains an ordered sequence of media clips. A
stream has a logical time line, and clips are ordered by the logical time at which they are to be
played back. Each clip in a stream has a logical start (ls) and logical end (le) time. Clips in one
stream are not allowed to overlap in logical time. Typically, the �rst clip in the stream begins at

7

lts
slave

pktSrc

pktSrc

slave
lts

pktDest mjpegPlay

pktDest mpegPlay

lts
User
Control

server CMT process

N
etw

ork

server CMT process

mpegSegment

mpegSegment

mjpegSegment

"bambi.mpg"

"dumbo.mpg"

"taxi.mjpg"

client CMT processpktSrc

Figure 5: A complex playchain that plays 3 segments of video.

ls time 0. The clip data is actually stored in a clip-�le. It has a source start (ss) and source end
(se) time that speci�es which portion of the clip-�le should be played. Clips are added to streams
using the addclip command:

stream obj addclip url [time specifiers]

where [time specifiers] is any combination of the options shown in Figure 6.
The ss and se options refer to the portion of the source clip to play. The source start defaults

to 0 (the beginning), and the source end defaults to the length of the clip-�le. The logical start
(ls) and logical end (le) times specify the time to play the clip relative to the other clips in the
stream. Logical start defaults to the logical end of the last clip in the stream. Logical end defaults
to logical start plus the length of the clip to be added. Logical and source start times must be less
than logical and source end times, respectively. Figure 6 shows a summary of the options and their
default values.

Figure 7 shows several commands and a graphical representation of the corresponding time line
for the stream. Assume vidstream initially contains no clips. The �rst command adds the 70
second movie, named movie1.mpeg, at the end of the (empty) clip-list. This clip is scheduled to

8

option mnemonic default value

[-ss time] source start 0
[-se time] source end length of segment
[-ls time] logical start logical end of last segment in the stream
[-le time] logical end ls + actual length of segment in the stream

Figure 6: Timing options for streams.

vidstream addclip movie1.mpeg

vidstream addclip movie2.mpg -ss 10 -se 30

vidstream addclip movie3.mpeg -ls 20 -se 30

100700

movie2movie1movie1 movie3

20 50

0 70 100

movie1 movie2

1000 70

movie1

90

90

Figure 7: Depicts the e�ects of successive addclip commands.

9

play at logical time 0 because it is the �rst clip added to the empty stream. The second command
adds a clip from the movie movie2.mpg, starting 10 seconds into the movie and ending 20 seconds
later. Because no logical start time is speci�ed, the clip is appended to the end of the stream. The
�nal command speci�es that the �rst 30 seconds of movie3.mpeg should be added to the stream
beginning at logical time 20. The stream automatically splits the �rst clip into two smaller clips
(one playing from 0 to 20, the other 50 to 70) and inserts the 30 seconds of movie3.mpg in the
middle. At this point, the stream contains four clips.

After clips have been added to a Stream, they can be referenced by their position in the sequence.
The following commands are supported:

stream obj getcliplist return the list of clips in the stream
stream obj getclip clipNum return clip number clipNum
stream obj deleteclip clipNum delete clip number clipNum
stream obj numclips return the number of clips in the stream

The clips returned by the stream object are in the form:
n

ss se ls le URL format fg fhost port fileg
o

The �rst four elements of the clip are the timing information computed as described above. The
URL is the speci�cation added with addclip. The format speci�es the media type and format
(e.g., video/mpeg). And the last element of the clip is a triple specifying the location of the �le
speci�ed by the URL.

A stream can also be manipulated using logical time as an index. The following commands
manipulate logical time:

stream obj getstart return the ls of the �rst clip in the stream
stream obj getend return the le of the last clip in the stream
stream obj find time return a list of the clip index to played at logical time time

and a non-zero value i� there is a clip scheduled
to play at time

stream obj clear start end remove all clips scheduled to play between start and end

stream obj shift start delta shift all clips after time start by delta seconds

The commands getstart and getend return the logical start and end of the �rst and last clips,
respectively, in the clip-list. find returns a list of two values: the index of the clip that is to be
played at the speci�ed time and a boolean value specifying that the clip is in the stream. clear

removes all media to be played in between the speci�ed start and end times. The shift command
takes two arguments, start and delta, which specify the starting and amount of time by which to
reschedule the stream.

To demonstrate, let us look at vidstream in its state at the end of Figure 7. Below is a table
of commands and the corresponding output that would be returned.

vidstream getstart) 0

vidstream getend) 90

vidstream numclips) 4

vidstream find 54) 2 1

vidstream getclip 1) f0 30 20 50 movie3.mpeg video/mpeg n

fg flocalhost 0 movie3.mpegg g

Figure 8 shows the e�ects of the commands deleteclip, shift, and clear on the stream
vidstream. The deleteclip command removed the �rst clip in the stream. The shift command

10

vidstream deleteclip 0

vidstream clear 45 70

300

movie3

100

vidstream shift 20 -20

50300

movie2movie1movie3

10070

10070

movie2movie1movie3

20 500

45

movie1

90

Figure 8: Depicts the e�ects of various mutative commands.

scheduled every clip to play 20 seconds earlier. The clear command deleted the third clip and
truncated the second.

A complete listing of commands supported by the Stream abstraction are given in Appendix B.

4.2 MediaPlayer

A mediaPlayer plays back the contents of a CM Stream. It manages the playchain necessary to
play the Stream and automatically adjusts the playchain when the stream is modi�ed. Currently,
there are two variants of the mediaPlayer: audioPlayer and videoPlayer. The two abstractions
are classes that share a common abstract parent class, named playerBase. playerBase contains
all media independent code such as setting up network connections (i.e., cmt objects), creating
LTSs, pktDest, pktSrc, segment objects, and so forth. The segment objects are considered \media
independent" because all segment objects are initialized the same way, and the clips contain the
media format (e.g., mpeg, mjpeg, au) necessary to create the correct object. The audioPlayer

similarly con�gures the auPlay object to send the audio to the proper device. Figure 9 shows the
relationship of the three classes.

MediaPlayers also have user con�gurable slots accessed using configure and cget, just as slots
in Tk widgets are accessed. All mediaPlayers require the stream slot to be initialized with an
existing stream of the proper type. The lts slot speci�es which LTS object controls playback. If
an LTS is not speci�ed, one is created automatically. The last slot common to all mediaPlayers

is autoready. If the value in this slot is nonzero, the mediaPlayer will automatically ready itself
whenever the stream is changed. The autoready slot defaults to 0. Setting autoready to 0 allows
an application that wants to make several changes to a stream to defer changes to the playchain

objects until all stream changes are speci�ed.
The audioPlayer has two more con�gurable options: device and gain. device speci�es which

output device to use. It can be set to one of three options: \default," \sparc," and \af." gain

controls the output gain at which sound should be played.

11

The videoPlayer has one additional slot, named frame. By default, a videoPlayer will
automatically create a Tk frame of the same name as the videoPlayer (with a `.' prepended),
and video will be displayed in that window. The application can provide a di�erent Tk frame by
setting the frame slot.

All mediaPlayers support a common set of �ve commands:

mediaPlayer ready readies the playchain for playback
mediaPlayer unready unreadies objects in the playchain
mediaPlayer speed n sets the playback speed to n

mediaPlayer value n sets the playback time to n

mediaPlayer destroy deletes the playchain

MediaPlayer objects do not react to changes to a Stream object until a ready command is given
unless the autoready slot is non-zero. Upon receiving a ready command, the mediaPlayer checks
each of the clips in the Stream. If the clip is new, the mediaPlayer creates and con�gures all CMT
objects necessary to play that clip. If the clip's timing speci�ers have changed, the mediaPlayer

updates the necessary CMT objects. A ready command has no e�ect when the playchain is up to
date.

The speed and value commands have the e�ect of con�guring the object in the mediaPlayer's

LTS slot to have the same value. For example, the following two lines are equivalent:

vid player value 2

[[vid player] cget -lts] configure -value 2

The one exception is that the value command takes arguments of begin and end, which con�gure
the LTS to 0 and the logical end of the Stream respectively.

The unready command causes a media player to issue unready commands to all CM objects
in the playchain, thereby disabling playback. The destroy command causes a mediaPlayer object
to destroy all objects in the playchain and remove itself from the current CMT process.

Appendix C provides complete speci�cations of the playerBase, audioPlayer and videoPlayer
classes.

audioPlayer

playerBase

videoPlayer

Figure 9: API Object Hierarchy

12

4.3 Object Tcl

The CMTMedia Playback API was written using an object-oriented extension to Tcl, called Object
Tcl (OTcl) [WL95]. OTcl provides an object-oriented framework for managing complex data types.
OTcl objects can be de�ned using Tcl or C.

One reason CMT uses a Tcl interface is because it is well-suited for rapid code development.
Nevertheless, many internal objects are written in C for e�ciency. We decided that rapid devel-
opment was more important than speed because the API does not perform time-critical tasks.
Consequently, the di�erence between a Tcl and C implementation was not an important factor.
Since the API is written in Tcl it is easy for others to modify and extend the abstraction to suit
their needs.

The following four features were important criteria for using an object-oriented extension to
implement the Media Playback API:

� Provides data encapsulation.

� Provides inheritance (code reuse).

� Object interface is Tcl-like.

� Easy to integrate into Tcl.

First and foremost the API is designed to make the task of writing CM applications easier. A
primary part of the API's function is to maintain the state of playchains. Tcl does not provide a
convenient mechanism for encapsulating data, but an object-oriented extension does.

An object-oriented system also provides inheritance. All the functionality common to video-

Players and audioPlayers has been placed in the playerBase de�nition. Once the videoPlayer class
had been written and debugged, the audioPlayer was written in 15 minutes. Adding other new
types of media may be just as easy.

Two speci�c object-oriented extensions to Tcl were considered: [incr Tcl][McL93] and OTcl.
While both systems provide the functionality necessary to implement the API, OTcl was chosen
because its interface follows the same conventions as built-in Tcl and Tk objects. And it is easy
to integrate into Tcl. [incr Tcl] requires changing the core of the Tcl interpreter, and that means
CMT would have to ship and support a modi�ed Tcl interpreter. This requirement increases the
overhead for CMT developers, and inhibits application developers. [incr Tcl] also uses a C++ style
interface, which is awkward and looks out of place in Tcl code. Code uniformity was an important
factor in the design.

5 Helpful Tools

This section describes two auxiliary functions written to assist developers using the CMT Media
Playback API and presents an example application that demonstrates the power of the API.

Two functions, CMApp ReadStream and CMApp WriteStream, save the description of streams.
Each takes the name of a stream and a �lename. CMApp ReadStream creates a stream with the
name stream and initializes it with the stream description from �lename. CMApp WriteStream does
the opposite, it writes the description from stream to �lename. Here are examples:

CMApp WriteStream vid stream /streams/stream1

CMApp ReadStream new stream /streams/stream1

13

Figure 10: Stream File window

Figure 11: Display window

The �rst line creates a plaintext �le named stream1 whose contents describe the sequence of clips
stored in vid stream. The second line creates a Stream object, named new stream, and initializes
it with a clip-list identical to that in vid stream.

To gain some insight into the bene�t of using the API, we wrote a very simple video editor.
The editor allows the user to read and write �les containing descriptions of Streams, add to and
delete from the clip-list, and play the desired stream. The entire program contains 157 lines of Tcl,
26 of which deal directly with CM objects or the API presented here. The code for this application
is available in Appendix D. Section 3 showed that using CMT alone required 27 lines of code to
just create a simple playchain.

The Stream File window, shown in Figure 10, allows the user to specify the name of a �le to
use when loading or saving the Stream description. When the user presses the \Load" button, the
description from the speci�ed �le is loaded into a Stream object. The Stream object is then readied
for play and the contents displayed in the Display window (Figure 11). Pressing the \Save" button

14

Figure 12: Stream Edit window

causes the editor to save the description of the current Stream into the speci�ed �le. The \Clear"
button erases the �le name �eld.

When the user presses the \Edit Current Stream" radiobutton in the Stream File window, as
shown in Figure 12, the window displays a list of clips in the current stream. Using the \Clip to
add" entry �eld, the user can type in the clips s/he wishes to add to the stream. The \Append"
button adds the clip to the end of the list, while the \Insert" button puts the clip in front of the
selected �le. Clips are deleted by selecting one in the list and clicking on the \Delete" key. Pressing
the \Load/Save Stream" radiobutton causes the window revert back to the Stream File window
appearance.

The Display window allows the user to use VCR-like controls to view the contents of the video
stream.

This application required 157 lines of code. It is very simple and lacks features needed for a
non-linear video editor. However, it does show that the API allows an application programmer to
spend little time and e�ort getting the continuous media portion of the application to work. Only
16% of the code manipulates CM objects. Our goal was to develop a high-level interface which
would simplify CM application development. We believe this API succeeded.

Two applications have been written using the API: CMEdit and Ceedit. CMEdit [Bal96] is
a non-linear CM editing application. Ceedit [Bac96] is a shot boundary editor which provides a
mechanism for examining the output of shot detection algorithms.

6 Future Work

This section presents some issues raised by concurrent research, and suggests related problems we
believe need to be addressed.

CMEdit was developed concurrently and raised many important issues addressed by the CMT
Media Playback API. For example, whether to merge the mediaPlayer and Stream class abstrac-
tions into one class, whether mediaPlayers should be Tk widgets, and so forth. More discussion
with application writers is needed to improve the design of the mediaPlayers and Streams. Will

15

the players remain unchanged because most interesting applications will be user-interface related?
Or will new algorithms for frame dropping and network feedback be added to CM objects, thus re-
quiring a more
exible interface to the mediaPlayer objects? Only by developing more applications
will it be possible to determine appropriate choices.

A continuous text CMT object is being developed that will add time sensitive text [Jaf]. It
will be incorporated into the media player framework. However, it is unknown whether the Stream
class will need to be changed to supplement this abstraction or whether a new class will be needed.

Currently, CMT does not have videoSegment or audioSegment objects that understand live
sources, such as camera and microphone. Audio and video capture objects exist, but they cannot
be used in a CMT script. After modifying the segment objects to understand live sources, existing
CM applications will be able to play live sources interchangeably with stored sources. For example,
a CM script can be constructed that speci�es that one window shows 10 seconds from several
cameras in some order. This script can be saved in the Berkeley VOD system [RBB95] like any
other playback object.

The name resolution service needs to allow processes, for example a camera object, to register
a name for themselves. By allowing applications and objects to dynamically add names to a name
service, client applications can resolve a well-known URL to play the live sources, regardless of
where the source originates. The resolution service should also incorporate new formats to allow
processes to register multicast data streams.

The API presented in this paper does not provide any means to send or receive multicast data
streams. A major obstacle to this extension is the lack of name resolution for multicast sessions.
Additionally, a multicast-receive object is conceptually di�erent from the mediaPlayers presented
in this paper. MediaPlayers create playchains from the media source to the output device (terminal
or speaker), but multicast objects only create \half" of a playchain because they either send or
receive data. Does it make sense to fold the functionality of a multicast receive object into the
mediaPlayer class? Is there any bene�t to doing so?

7 Conclusion

This paper introduced the CMT Media Playback API that manages playback of CM streams. The
Stream and mediaPlayer classes were de�ned to simplify program development while at the same
time providing enough
exibility to be useful in a variety of applications. Future media objects
should strongly resemble those already existing CM objects. The similarities will allow Stream and
mediaPlayer classes to be easily changed to incorporate new media objects.

So far, a non-linear video editor and a shot-boundary editor have been implemented using the
API. Both applications focused on manipulating the Stream objects rather than playchains. It is
encouraging to know the Stream abstraction is
exible enough to accommodate the two applications.

The tools described here were built using an object-oriented framework built on top of Tcl. The
OTcl framework provided elegant code reuse, which should be applied to CMT as a whole.

References

[Ack94] Philipp Ackermann. Direct manipulation of temporal structures in a multimedia appli-
cation framework. In Multimedia 94, San Francisco, CA, October 1994.

[App] Apple Corp., Apple Quicktime Conferencing.
http://qtc.quicktime.apple.com/qtc/qtc.faq.tech.html.

16

[Bac96] David Bacher. GUI tools for the Berkeley Distributed Video-on-Demand Database. Mas-
ter's thesis, University of California at Berkeley, 1996.

[Bal96] J. Eric Baldeschwieler. Editing extensions to the Berkeley Continuous Media Toolkit.
Master's thesis, University of California at Berkeley, 1996.

[dMG93] V. de Mey and S Gibbs. A multimedia component kit. In ACM Multimedia 93 Proceed-

ings, pages 291{300, Anaheim, CA, June 1993.

[Ins] InSoft Corp., OpenDVE Home Page.
http://www.insoft.com/products/OpenDVE/OpenDVE.html.

[Jaf] Fiesal mahmood nawaz ja�er, personal conversations, 1996.

[LSR95] P. Liu, B.C. Smith, and L.A. Rowe. Tcl-DP name server. In Proceedings of 9th Interna-

tional Conference on Distributed Computing Systems, Toronto, Canada, July 1995.

[McL93] Michael J. McLennan. Object Oriented Programming in TCL. In Proceedings of the

Tcl/Tk Workshop 1993, Berkeley, California, May 1993.

[MFY94] Robert F. Mines, Jerrold A. Friesen, and Christine L. Yang. Dave: A plug and play model
for distributed multimedia application development. In Multimedia 94, San Francisco,
CA, October 1994.

[MPR96] Ketan Mayer-Patel and Lawrence A. Rowe. Design and performance of the continuous
media toolkit.
http://bmrc.berkeley.edu/projects/cmt/index.html, 1996.

[MSa] Microsoft Corp., ActiveMovie streaming format - product information.
http://www.microsoft.com/advtech/activemovie/productinfo.htm.

[MSb] Microsoft Corp., Interactive Media Technologies: Direct3D.
http://www.microsoft.com/imedia/direct3d/direct3d.htm.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Co., 1994.

[RBB95] Lawrence A. Rowe, David A. Berger, and J. Eric Baldeschwieler. The Berkeley Dis-
tributed Video-on-Demand System. In T. Ishiguro, editor, Multimedia Computing, Proc.

6th NEC Research Symposium, 1995.

[SRY93] B.C. Smith, L.A. Rowe, and S. Yen. Tcl Distributed Programming. In Proceedings Tcl

1993 Workshop, Berkeley, CA, 1993.

[Tea95] D. Tennenhouse and et. al. The ViewStation: a software-intensive approach to media
processing and distribution. Multimedia Systems, 3:104{15, 1995.

[WL95] David Wetherall and Christopher J. Lindblad. Extending Tcl for dynamic object-oriented
programming. In Proceedings of the Tcl/Tk Workshop 1995, Toronto, Ontario, July 1995.

17

A Tcl script not using the API

This appendix contains the Tcl code required to play the movie speci�ed by
cmtp://name-server.edu:512/bambi.mpg without using the API.

% create local objects

set frame [frame .vp]

set local_lts [lts ""]

set mpeg_play [mpegPlay ""]

set pkt_dest [pktDest ""]

set remote_cmt [cmt ""]

% open connection

$remote_cmt open -host video-server.edu 1490

% create remote objects

set pkt_src [$remote_cmt create pktSrc]

set remote_seg [$remote_cmt create mpegSegment]

set remote_lts [$remote_cmt create lts]

% connect LTSs

$local_lts addSlave $remote_lts

% configure network objects

% NOTE: the `@' tells the object to use the C function call

% corresponding to the given Tcl command

$pkt_src configure -dest [$pkt_dest address]

$pkt_dest configure -outCmd @$mpeg_play.accept

% configure segment object

$remote_seg configure -outCmd @$pkt_src.accept -lts $remote_lts \

-filename /video/bambi.mpg -clipStart 0 -clipEnd 100 \

-logicalStart 0 -logicalEnd 100

% configure play object

$mpeg_play configure -lts $local_lts -device software -squeeze 0\

-xpos -1 -ypos -1 -xid [winfo id $frame]

$mpeg_play configure -width [$remote_seg width] -height [$remote_seg height]

% ready objects

$mpeg_play ready; $remote_seg ready

% configure and display window

$frame configure -width [$remote_seg width] -height [$remote_seg height]

pack $frame

% start video

$local_lts configure -speed 1

18

B Stream speci�cation

This appendix contains two subsections. The �rst describes the interface to the Stream class as
it pertains to application programmers who use the API. The second subsection presents details
of the Stream class interface that may be useful for programmers wishing to extend or modify the
mediaPlayer classes.

B.1 Stream API details

Stream create stream type

creates a Stream named stream of type type
type must be either video or audio

stream destroy

causes stream become unde�ned

stream gettype

returns the type speci�ed upon creation

stream getstart

returns the logical start of the �rst clip

stream getend

returns the logical end of the last clip

stream getnumclips

returns the number of clips

stream getclip clipNum

returns clip number clipNum in the form:

ss se ls le URL format fg f host port �leg

The �rst four elements of the clip are the timing information
which is computed as described in (see addclip). The URL is
the speci�cation added with addclip. The format speci�es the
media type and format (e.g., video/mpeg). And the last element
of the clip is a triple specifying the location of the �le speci�ed
by the URL.

stream getcliplist

return a list of the clips in the stream
see getclip for clip format

stream addclip url [time specifiers]
add the clip speci�ed by the URL to the cliplist
the optional time speci�ers default to

19

option mnemonic default value
[-ss time] source start 0
[-se time] source end length of segment
[-ls time] logical start logical end of last segment
[-le time] logical end ls + actual length of segment

stream setcliplist resolved cliplist

set the cliplist to be resolved cliplist

each clip in the resolved cliplist must be fully speci�ed

stream deleteclip clipNum

remove clip number clipNum from the cliplist

stream shift start delta

move all clips on or after start time by delta time units
if delta is positive, a clip that spans start will be split in two
if delta is negative, all clips existing entirely in the region [start + delta, start]
will be deleted, a clip that spans (start + delta) will be truncated

stream clear start end

truncate clips that span either start or end
remove all clips in the range [start, end]
start can be \start", end can be \end" (in which case they default to the logical
start of the �rst clip and the logical end of the last clip respectively)

stream find time

return a list of two values:
the index of the clip that is to be played at time time

and a boolean value specifying that a clip exists at time time

stream snap time dist

return the time of the closest clip boundy within dist of time
If there is none, then time is returned
dist is allowed to be negative (takes absolute value)

B.2 Stream low-level details

This subsection demonstrates Stream commands that may be useful to a programmer who wishes
to extend or modify the API. Let us assume we have created stream vid stream with two clips by
evaluating the following:

Stream create vid stream video

vid stream addclip cmtp://name-server.edu/bambi.mpg

vid stream addclip cmtp://name-server.edu/dumbo.mjpg

In order to help determine when a clip has been modi�ed, the Stream object maintains a set of
32
ags for each clip. Typically an application will need only one
ag per clip. The allocflag

command returns an unused
ag index. The application can now reference and modify that
ag on

20

any clip in the Stream using that index. For example, the following stores a newly allocated
ag
index for the stream vid stream in the variable flagI.

set flagI [vid stream allocflag]

On all clips in vid stream,
ag number $flagI has now been reserved for that application. All

ags are initialized to 1, and when a clip is created or modi�ed its
ags are reset to 1.

The command clipflag can be used to test and set the value of clip
ags in a Stream.

vid stream clipflag 0 $flagI) 1

vid stream clipflag 0 $flagI 0) 0

vid stream clipflag 0 $flagI) 0

vid stream shift 0 10

vid stream clipflag 0 $flagI) 1

The �rst line tests the value of $flagI on clip 0, the value is 1. The second line sets the value of
$flagI on clip 0 to be 0. The third line tests that the
ag is 0. The fourth line causes clip 0 to be
modi�ed, and the �fth line shows that the
ag $flagI has in fact been reset to 1.

Application writers may also want to associate a piece of data with each of the clips in a Stream.
The clipprop command allows an application to associate a value with a name for each clip. This
command works just like clip
ag, except that the value does not change when the clip is modi�ed.

vid stream clipprop 0 test prop 3) ftest prop 3g

vid stream clipprop 0 test prop) 3

vid stream clipprop 0 test prop2 12) ftest prop2 12g ftest prop 3g

vid stream clipprop 1 test prop) fg

The �rst line creates a property with the name test prop and the associated value of 3. When
assigning a value to a clip property, a list of all the property names and corresponding values is
returned. The second line queries vid stream for the value associated with test prop and a 3 is
returned. The third line demonstrates the result when a second property is added to the same clip.
The fourth line shows that the properties are maintained on a per-clip basis.

Stream objects have a built in looping mechanism. The format of the foreach command is as
follows:

stream foreach start end sName index script

The start and end are specify which clips start and end the loop. sName is a name of a variable
that will be assigned the name of the Stream inside the script. index is a name of the loop variable.
And script is the script to run.

The Stream class also provides callback hooks for applications. A hook is a list of scripts that
will be executed when a speci�c event occurs. Streams have four hooks: addclip, deleteclip,
copyclip, and destroystream. Hooks are manipulated with the following commands:

stream gethooks hookName

stream addhook hookName script

stream removehook hookName script

21

The gethook takes the name of the hook and returns a list of the scripts to be called. addhook

adds script to the event speci�ed by hookName. removehook removes the speci�ed script from
the event hookName.

The scripts in each hook are called with arguments. The destroystream hook is called with
the name of the Stream when it has been given a destroy command. The addclip hook is called
with the name of the Stream and the index of the clip that has been added. When an existing clip
is split in two (by a shift command for example), the copyclip hook is called with the name of
the Stream and the index of one of the copies.

The following code creates a Stream and adds a script that will print the arguments each time
a hook is called.

Stream create foo video

proc sa args {puts "sa - '\$args'"}

foo addhook addclip {sa clipadd}

foo addhook deleteclip {sa deleteclip}

foo addhook copyclip {sa copyclip}

foo addhook destroystream {sa destroy}

22

C videoPlayer and audioPlayer speci�cations

This appendix contains the API speci�cations for themediaPlayers videoPlayer and audioPlayer.
Section C.1 describes the behavior of the playerBase class, from which the videoPlayer and
audioPlayer both inherit most of their behavior. The attributes found only in the videoPlayer

and audioPlayer classes are described in sections C.2 and C.3 respectively.
The classes are speci�ed by listing the commands that each class supports as well as user

con�gurable slots. Commands are uses as messages passed to the object, for example:

player command arg1 arg2 arg3 : : :

The arguments arg1 arg2 arg3 : : : are necessary only when speci�ed.
The mediaPlayer objects have slots just like those of Tk widgets. The slots are set by using the

configure command and slots are read by using the cget command, for example:

player con�gure -slot1 value player cget -slot1) value

C.1 playerBase

The playerBase class contains functionality common to both the videoPlayer and audioPlayer

classes.

Commands:

ready

creates CM objects required to play clips in the stream

unready

sends an unready command to all segment and play objects

destroy

deletes the player object
causes the player object to destroy all CM objects it created

speed n

con�gures the -speed slot of LTS that controls playback to be n

value n

con�gures the -value slot of LTS that controls playback to be n

Slots:

lts

contains the name of the lts that controls playback

stream

contains the name of the Stream to play

23

autoready

when non-zero stream automatically readies itself every time
the stream is modi�ed

C.2 videoPlayer

The videoPlayer class adds one more slot and modi�es the behavior of the destroy command.

Commands:

destroy

if the user uses the frame created by default
this command destroys the frame used to display video

Slots:

frame

frame in which to display video

C.3 audioPlayer

The audioPlayer adds new slots to the playerBase class.

Slots:

device

speci�es which output device to use
must be one of: \default," \sparc," or \af"

gain

speci�es output gain at which sound is to be played
must be a value between 0 and 1

24

D Example application code

This appendix contains the code for the application described and shown in section 5.

utility function to read stream description into a newly

created stream

proc CMApp_ReadStream {filename stream} {

set result [CMApp_ResolveMovie [CMApp_ReadMovie $filename]]

if already exist, destroy it

if { [catch {$stream getcliplist}] == 0 } {

$stream destroy

}

Stream create $stream [lindex [lindex $result 1] 0]

$stream setcliplist [lrange [lindex $result 1] 1 end]

}

utility function to write stream description to file

proc CMApp_WriteStream {stream filename} {

CMApp_WriteMovie [list "" [lappend [$stream gettype] \

[$stream getcliplist]]] $filename

}

setup load/save stream file window

proc setup_file_menu {win} {

global streamFile

frame $win

frame $win.input

pack $win.input -side top -expand 1 -fill x

label $win.input.label -text "Stream file:"

entry $win.input.entry -width 30 -relief sunken -bd 2 \

-textvariable streamFile

pack $win.input.label -side left -pady 10

pack $win.input.entry -side left -expand 1 -fill x

frame $win.group

pack $win.group -side bottom

set win $win.group

button $win.load -command "load_file" -text Load

button $win.save -command "save_file" -text Save

button $win.clear -command "set streamFile {}" -text Clear

25

pack $win.load $win.save $win.clear -side left -pady 5 -padx 5

}

load Stream description

proc load_file {} {

global streamFile curP

CMApp_ReadStream $streamFile curStream

$curP config -stream curStream

$curP ready

}

save Stream description

proc save_file {} {

global streamFile

CMApp_WriteStream curStream $streamFile

}

create VCR-like controls

proc vid_controls { win } {

frame $win.f

pack $win.f -side bottom -padx 2 -pady 2

set win $win.f

button $win.play -text Play -command {$glts config -speed .8}

button $win.pause -text Pause -command {$glts config -speed 0}

button $win.ff -text FastForward -command {$glts config -speed 2}

button $win.rw -text Rewind -command {$glts config -speed -2}

pack $win.play $win.pause $win.ff $win.rw -side left

}

setup edit stream window

proc setup_edit_menu {win} {

global sourceURL

frame $win

entering info frame

frame $win.enter

pack $win.enter -side bottom -expand 1 -fill x

set WE $win.enter

26

entering info buttons

frame $WE.buts

pack $WE.buts -side bottom -fill x -pady 5 -expand 1

button $WE.buts.del -text Delete -command "delete_clip $win.clips"

button $WE.buts.app -text Append -command "append_clip $win.clips"

button $WE.buts.ins -text Insert -command "insert_clip $win.clips"

pack $WE.buts.ins $WE.buts.app $WE.buts.del -side left -expand 1 -padx 20

entering info label/entry

frame $WE.data

pack $WE.data -side top -expand 1 -fill x -padx 5

label $WE.data.label -text "Clip to add:"

entry $WE.data.entry -width 30 -relief sunken -bd 2 \

-textvariable sourceURL

pack $WE.data.label -side left

pack $WE.data.entry -side left -expand 1 -fill x

listbox to display clips in stream

listbox $win.clips -relief sunken -borderwidth 2 -yscrollcommand \

"$win.scroll set" -highlightthickness 0

pack $win.clips -side left -fill x -expand 1

scrollbar $win.scroll -command "$win.clips yview" -relief sunken \

-highlightthickness 0

pack $win.scroll -side right -fill y

}

delete clip from stream & listbox

proc delete_clip {lbox} {

global curP

adjust the Stream and Player

set clipnum [$lbox curselection]

if { $clipnum == {} } {

return

}

set ls [lindex [curStream getclip $clipnum] 0]

set le [lindex [curStream getclip $clipnum] 1]

set neglen [expr $ls - $le]

curStream deleteclip $clipnum

curStream shift $le $neglen

$curP ready

27

update list

update_edit_menu

}

append clip to stream & listbox

proc append_clip {lbox} {

global curP sourceURL

adjust Stream and Player

curStream addclip $sourceURL

$curP ready

update list

update_edit_menu

}

insert clip before the clip selected in the listbox

proc insert_clip {lbox} {

global curP sourceURL

adjust Stream and Player

set clip [CMApp_ResolveClip [CMApp_ParseClipLine $sourceURL] 0]

set clipnum [$lbox curselection]

if {[curStream getnumclips] == 0} {

curStream addclip $sourceURL

update_edit_menu

$curP ready

return

}

if {$clipnum == {}} {

set clipnum [expr [curStream getnumclips] - 1]

}

set oldclip [curStream getclip $clipnum]

shift by length of new clip, and insert new clip

curStream shift [lindex $oldclip 0] [expr [lindex $clip 1] - [lindex $clip 0]]

curStream addclip $sourceURL -ls [lindex $oldclip 0]

$curP ready

update_edit_menu

}

display list of clips in listbox

proc update_edit_menu {} {

28

global editWin

$editWin.clips delete 0 end

foreach i [curStream getcliplist] {

$editWin.clips insert end [lindex $i 4]

}

}

create two windows, one for display, one for load/edit/save stream

proc setup_gui_menu {win} {

global which_menu editWin fileWin

buttons for toggling stream manipulation

frame $win.buts -relief groove

pack $win.buts -padx 5 -pady 5 -expand 1

radiobutton $win.buts.fileBut -text "Load/Save Stream" \

-variable which_menu -value 1

radiobutton $win.buts.editBut -text "Edit Current Stream" \

-variable which_menu -value 0

pack $win.buts.fileBut $win.buts.editBut -side left -expand 1

bind $win.buts.fileBut <ButtonRelease-1> {update_gui_menu}

bind $win.buts.editBut <ButtonRelease-1> {update_gui_menu}

divider

frame $win.seperate -relief sunken -height 3 -borderwidth 2

pack $win.seperate -padx 5 -expand 1 -fill x

set up the two windows

set editWin $win.editWin

set fileWin $win.fileWin

setup_edit_menu $editWin

setup_file_menu $fileWin

pack $fileWin -side bottom -expand 1 -fill x -padx 5

}

called to switch which frame is displayed

proc update_gui_menu {} {

global which_menu editWin fileWin

if { $which_menu } {

pack forget $editWin

pack $fileWin -side bottom -expand 1 -fill x -padx 5

} else {

pack forget $fileWin

pack $editWin -side bottom -expand 1 -fill x -padx 5

29

update_edit_menu

}

}

set up playback window

toplevel .display;

playback obj

videoMaster create display.curPlayer

pack .display.curPlayer;

VCR controls

vid_controls .display

shorter name

set curP display.curPlayer

for use by VCR controls and upate_gui_menu

set glts [$curP cget -lts]

set which_menu 1

global vars

set streamFile {}

set sourceURL {}

set editWin {}

set fileWin {}

Stream create curStream video

$curP config -stream curStream

start the application

toplevel .gui

setup_gui_menu .gui

30

