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Abstract

Retrieving images from large and varied collections us-
ing image content as a key is a challenging and important
problem. In this paper we present an image representation
which provides a transition from the raw pixel data to a
small set of localized coherent regions in color and texture
space. This so-called “blobworld” image description may
be thought of as a summary representation which captures
the basic compositional features of the image. An important
and unique aspect of the system is that, in the context of
similarity-based querying, the user is allowed to view the
internal representation of the submitted image. Similar sys-
tems do not offer the user this view into the workings of the
system; consequently the outcome of many queries on these
systems can be quite inexplicable, despite the availability of
knobs for adjusting the similarity metric.

1. Introduction
Over the past decade, large image collections have grown

ever more common. From stock photo collections to pro-
prietary databases to the Web, these collections are diverse
and often poorly indexed. Unfortunately, image retrieval
systems have not kept pace with the collections they are
searching: users cannot create meaningful visual queries on
an object level. While image database users would like to
find images containing particular objects (“things”), most
existing image retrieval systems search for images based on
the low-level features (“stuff”) in the images. In addition,
query results are often unintuitiveand give the user littlehelp
in understanding why certain images were returned and how
to refine the query. Often the user knows only that he has
submitted a picture of, say, a bear and retrieved very few
bears in return.

In this paper we present a new image representation,
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“blobworld,” and a retrieval system based on this represen-
tation. While blobworld does not exist completely in the
“thing” domain, queries in blobworld are queries for proto-
objects—regions of coherent stuff—and are more meaning-
ful to the user than simple stuff queries.

Blobworlduses the Expectation-Maximizationalgorithm
to perform automatic segmentation based on image features.
After the image is segmented into regions, a description of
each region’s color, texture, and spatial characteristics is
produced. The user can access the regions directly in order
to see the segmentation of the query image and specify what
aspects of the image are central to the query. When query
results are returned, the user sees the blobworld representa-
tion of the returned images; this assists greatly in refining
the query.

We have shown elsewhere [1] that the blobworld repre-
sentation can be used to learn image categories in order to
provide automatic scene classification.

We begin this paper with a discussion of the blobworld
representation and its associated feature extraction algo-
rithms. Next we use several examples to illustrate the
process of querying in blobworld. We conclude with a
discussion of system limitations and proposed future work.

2. The blobworld image representation
The “blobworld” representation is related to the notion

of photographic or artistic scene composition. In the sense
discussed in [15], the blobworld features constitute an ex-
ample of a summary representation in that they are concise
and relatively easy to process in a querying framework.

The blobworld representation is distinct from color-
layout matching as in QBIC in that it is designed to find
objects or parts of objects. Each image may be visualized
by an ensemble of 2D ellipses, or “blobs,” each of which
possesses a number of attributes. Typically the number of
blobs is less than ten. Each blob represents a region of the
image which is roughly homogeneous with respect to either
color or texture. A blob is represented by the following
attributes:



Figure 1. A sunset image and its segmented regions.

� centroid coordinates

� scatter matrix

� mean color within blob

� mean texture descriptors within blob

These four attributes constitute simple expressions of posi-
tion, shape, color, and texture.

To illustrate a very simple example, consider the image
containing a sunset shown in Fig. 1. The segmentation pro-
cess produces four regions, or, to be exact, four connected
components: one each for the sun, the sky, the water, and the
sun’s reflection in the water. Each pixel in each of the four
regions possesses a color descriptor and a texture descrip-
tor, each of which is three dimensional. These descriptors
are pooled together inside each region and are thereafter
summarized by their means. Each connected component
itself, which represents the spatial extent of a given blob, is
represented by its centroid and scatter matrix.

3. Feature extraction
At the lowest level of our system, grouping is based on

coherent local image descriptors, such as color and texture.
In this section we discuss the color and texture feature space.
We investigate each separately, addressing its contribution
to image segmentation, grouping, and description, as related
to the general content-based retrieval task.

3.1. The color space
Color is an important cue in extracting information from

images. Color histograms provide a global image color
characterization and are commonly used in content-based
retrieval systems [12, 13, 16]. They have proven to be
very useful. Still, the global characterization is poor at, for
example, distinguishing between a field of flowers and a
single large flower, because it lacks information about how
the color is distributed spatially. This example indicates the
importance of grouping color in localized regions and of
fusing color with textural properties.

Our color processing is based on partitioning the color
space into perceptually meaningful channels in order to aid
grouping and recognition. The perceptual channels we use

loosely follow the color naming system of the Inter-Society
ColorCouncil and National Bureau of Standards [10], which
uses six levels of detail to designate colors. These levels
range from broad perceptual color names such as red, blue,
and gray (13 colors) to about five million color designations
defined by spectrophotometric measurements [17]. Only
the first three levels correspond to human color names.

Our perceptual color categories are based on the first
level of this system, slightly modified to better match our
application.1 The final list of colors includes red, orange,
yellow, green, blue-green, light blue, blue, purple, pink,
brown, white, gray, and black.

To determine the location and extent of each color in
hue-saturation-value (HSV) space, the space is broken into
20� 10� 10 grid points (taking into account that hue dif-
ferences are more noticeable than saturation and value dif-
ferences). For each grid point we presented a human ob-
server with a patch of the corresponding synthesized color
on a neutral gray background. For each perceptual color,
the observer indicated how good an example of that color
the patch was. (For any given patch, most perceptual colors
had a matching score of zero.) In this way, we created a
lookup table that allows us to divide any image into 13 color
channels.

Visualizing color data: the color cone

The standard red-green-blue (RGB) color space is not
very useful for color processing, as distances in RGB space
have little meaning and there is no simple (even approx-
imate) mapping from RGB coordinates to human color
names. A hue-based space such as HSV is superior to RGB
in these respects [8].

In order to find distances in HSV space, we treat the space
as a cone (see Fig. 2): for a given point (h; s; v)T , h and s are
the angular and radial coordinates of the point on a disk of
radius v at height v; all coordinates range from 0 to 1. Points
with small v are black, regardless of theirh and s values. The
cone representation maps all such points to the apex of the
cone, so they are close to one another. The Cartesian coor-
dinates of points in the cone, (sv cos(2�h); sv sin(2�h); v),
can now be used to find color differences. This encod-
ing allows us to operationalize the fact that hue differences
are meaningless for very small saturations (those near the
cone’s axis). However, this scheme ignores the fact that
for moderate and large values and saturations, hue is more
perceptually relevant than saturation and value.

1We combined olive, yellow green, and green into one “green” cate-
gory, since we found the distinctions among various greens detrimental in
grouping and labeling vegetation. We added “light blue,” which closely
matches the sky in many images, and “blue-green,” which matches ocean
water.
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Figure 2. The color and texture cones, showing char-
acteristic textures and a few sample color locations.

3.2. The texture space
Texture is a well-researched property of image regions,

and many texture descriptors have been proposed, including
multi-orientationfilter banks [7, 11] and the second-moment
matrix [4, 6]. We will not elaborate here on the classical
approaches to texture segmentation and classification, both
of which are challenging and well-studied tasks. Rather, we
introduce a new perspective related to texture descriptors and
texture grouping motivated by the content-based retrieval
task.

In the framework of unconstrained image understand-
ing, general categorizations become very useful and sig-
nificant. Such is the case of identifying uniform intensity
(non-textured) regions vs. textured regions. This often en-
ables the extraction of foreground vs. background regions
in the image, guiding the search for objects in the scene.
In addition, distinguishing between texture patterns which
are singly oriented (1D texture) and those which are multi-
ply oriented or stochastic in nature (2D texture) can allow
for further categorization of the scene and for the extrac-
tion of higher-level features to aid the recognition process
(e.g., singly-oriented flow is a strong characteristic of water
waves; grass is stochastic; etc.).

We extract texture features based on information obtained
from the windowed image second moment matrix. Let us
denote the image intensity (i.e., the v component) by I =
I(x; y). The first step is to compute the gradient, which
we denote by rI, using the first difference approximation
along each dimension. Then the windowed image second
moment matrix M (x; y) is computed via the expression

M (x; y) = G(x; y) � (rI)(rI)T

where G(x; y) is a 9� 9 separable binomial approximation
to a Gaussian smoothing kernel with variance 2. Note that
at each pixel location,M (x; y) is a 2�2 symmetric positive

semidefinite matrix. The variance of G has been called the
integration scale or artificial scale by various authors [4, 6]
to distinguish it from the scale parameter used in linear
smoothing of raw image intensities.

Consider a fixed scale and pixel location, let �1 and �2

denote the eigenvalues of M at that location (�1 � �2),
and let � denote the argument of the principal eigenvector.
The relation between the eigenstructure of M and the local
image structure it describes is well known [2, 4]. In particu-
lar, when �1 is large compared to�2, the local neighborhood
possesses a dominant orientation (as specified by�), and can
be characterized as 1D-textured. When both eigenvalues are
comparable, there is no preferred orientation. When both
eigenvalues are negligible in magnitude, the local neighbor-
hood is approximately a constant gray value, and can be
characterized as non-textured. For the case of two signifi-
cant eigenvalues, we characterize the region as 2D-textured.
In these cases, the value of � is irrelevant.

Visualizing texture data: the texture cone

Since M (x; y) possesses three values of interest (for a
fixed scale) at each pixel, it is not immediately obvious how
it should be visualized. Moreover, how do we compare
two different textured regions based on these descriptors?
(In more prosaic terms, this is really a question of how
to compare two symmetric positive semidefinite matrices.)
Several factors need to be taken into account when trying
to arrive at a satisfactory metric for this purpose. Note that
when both eigenvalues are approximately equal, the angle
information is meaningless. Also, the fact that orientation
is a 180-degree periodic measure needs to be accounted for.
Lastly, variations in anisotropy become meaningless when
both eigenvalues are tiny.

In order to address these needs, we have found it ben-
eficial to draw an analogy between the texture values and
hue, saturation, and value as used in the HSV color-cone
definition. In particular, we recast M as the following 3D
vector:

m = (ab cos(2�); ab sin(2�); b)

where a = 1 � �2=�1, and b = �1 + �2. In other words,
the hue is set to be twice the orientation angle, the satura-
tion is assigned the value of the anisotropy, and the value
(or brightness) is associated with the texture contrast. (A
similar color coding was suggested in [2].) In this man-
ner, the “line of grays” associated with the zero-saturation
axis of the HSV-cone corresponds to 2D textures of varying
contrast. Textures possessing a preferred orientation corre-
spond to saturated, colorful regions in color space. We refer
to this representation as the “texture cone” to emphasize its
relationshipwith the HSV cone. Just as the HSV cone tapers
to a point when v is small, the texture cone tapers to a point
when the contrast is small, so as to indicate that when the
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contrast is low, differences in orientation and anisotropy are
irrelevant. (See Fig. 2.)

4. From pixels to blobs
We model the input image as composed of an ensemble of

regions, or blobs. Each blob represents a localized region of
coherent color and texture (e.g., sky is a blue non-textured
blob, usually located at the top of the image; grass is a
green 2D-textured blob, usually located at the bottom of the
image). In this stage of the system we move from the color
and texture features to a blob representation of the image.

In the color domain we have found the need to adapt the
decision boundaries in color space (as above) to the input
image, as groupingbased on color is very context dependent.
The analysis begins with the distribution across the 13 color
channels defined above (see Fig. 3(b)). The channels are
ordered based on the number of pixels that belong to each
and then collected in order of increasing non-overlapping
contribution to image area until 90% of the image pixels are
included. The image is thus reconstructed with the K most
dominant colors which together cover at least 90% of the
image area. K is typically on the order of five.

Upon discarding the weak channels, the means �i and co-
variance matrices Σi (computed in color cone coordinates)
of each of theK dominant color channels are computed. The
initial color labels of each pixel are subsequently dropped,
and the�i’s and Σi’s are used to initialize a parameter search
for a mixture of Gaussians using the Expectation Maxi-
mization (EM) algorithm [3, 14]. An iterative procedure
forms the basis of the algorithm: the Expectation or E-step
computes the expected data log likelihood, and the Max-
imization, or M-step, finds the parameters that maximize
the likelihood. The output of the EM algorithm is a set of
K support maps, together with their Gaussian means and
covariances (see Fig. 3(c)).

In the process of iterating, the changes that occur in the
�i’s and Σi’s correspond to a relabeling of regions in the
color cone. To illustrate, consider a patch of sky in an
image which initially falls mostly in the light blue bin except
for a few small bits which go into the white bin, causing
fragmentation. Viewed in the color cone, we would see that
the cluster corresponding to sky mostly falls inside the “light
blue” decision region with a minority of points landing in
the “white” decision region. After a modest number of
iterations, the EM algorithm changes the color definitions
so as to offer a “better” explanation of the data in terms of
the mixture model. This explanation manifests itself in a
set of “support maps,” i.e., the K images corresponding to
the most likely color-blob membership for each pixel in the
image.

These support maps, along with the support maps for
the 1D texture channels (see Fig. 3(d-e)), provide an initial
segmentation of the image. In order to spatially localize

(e)

(a)

(c)

(f)

(b) (d)

Figure 3. Finding blobs in an image. (a) Sample im-
age. (b) The color channels; channels that initialize
EM are indicated. (c) Support maps for the EM
results; each gray level represents a di�erent con-
nected component. (d) The texture channels. The
four 1D texture channels are allowed to contribute
blobs to the ensemble. (e) Support maps for the
1D-texture blob. Here, no connected component of
the combined 1D texture channel was large enough
to form a blob. (f) Resulting ensemble of blobs;
ellipses indicate the principal axes of each region's
spatial extent.

the extracted regions, a connected-component algorithm is
utilized. The final output consists of localized, coherent
regions. This output provides us with the desired ensemble
of blobs (see Fig. 3(f) and Figs. 6–9).

4.1. Shape features

In addition to the mean color and texture in each region,
simple spatial information is computed for each blob. As
discussed in Section 2, the geometric descriptors of the blobs
are simply the centroid ci and scatter matrix Si, calculated
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in the blob region Bi as

ci =
1
N

X

x2Bi

x

and

Si =
1
N

X

x2Bi

(x� ci)(x� ci)T

The scatter matrix provides an elementary second-order
shape description, while the centroid provides a notion of
position. In the querying process discussed in Section 5.1,
centroid separations are expressed using Euclidean distance.
The determination of the distance between scatter matrices,
which is slightly more complicated, is based on the three
quantities � = [det(Si)]1=2 =

p
�1�2, � = 1� �2=�1, and

�, again the argument of the principal eigenvector. These
three quantities represent approximate area, anisotropy and
orientation.

These preliminary features clearly do not encode all the
spatial information about the blob. In the future, we plan
to add other shape features, which we expect will provide
better performance.

5. Image retrieval by querying

Anyone who has used a search engine, text-based or
otherwise, is familiar with the reality of unwanted matches.
Often in the case of text searches this results from the use
of ambiguous keywords, such as “bank” or “interest.” [18]
Unfortunately, with image queries it is not always so clear
why things go wrong. Loosely speaking, the word and the
extracted image feature are analogous entities, though as
a community we must agree that there is a long way to
go before this analogy can be considered to be fair to the
word. Unlike text searches, in which the user can see the
words in a document, none of the current content-based
image retrieval systems allows the user to see exactly what
the system is looking for in response to a similarity-based
query. Simply to allow the user to submit an arbitrary image
(or sketch) and set some abstract knobs without knowing
what they mean to the input image in particular is to imply
a degree of complexity in the searching algorithms which is
for the most part not met. As a result, a query for a polar
bear can return just about any object you wish to mention if
the query is not based on image regions, the segmentation
routine fails to “find” the bear in the submitted image, or the
submitted image contains other distinctive objects. Without
realizing that the input image was not properly processed,
the user can only wonder what went wrong. It is therefore
our conviction that alongside the submitted image, the user
should be allowed to inspect a representation of the extracted
features which are used in carrying out the search.

5.1. Retrieval in blobworld
In our system, the user composes a query by submitting

an image to the feature extraction/segmentation algorithm
in order to see its blobworld representation, selecting the
blobs to match, and specifying the relative importance of
the blob features. The user may also submit blobs from
several different images. (For example, a query might be
the disjunction of the blobs corresponding to airplanes in
several images, in order to provide a query that looks for
airplanes of several shades.)

Another way to compose queries would be to paint sev-
eral blobs on the screen, specifying their color and texture.
This would allow the user to search for images without first
finding an image that contains the desired object.

We define an “atomic query” as one which specifies a
particular blob to match, e.g., “like-blob-1.” A “compound
query” is defined as either an atomic query or a conjunction
or disjunction of compound queries, e.g., “like-blob-1 and
like-blob-2.” We could expand this definition to allow com-
pound queries to include negation, e.g., “not-like-blob-1,”
and to allow the user to specify two blobs with a particular
spatial relationship as an atomic query, e.g., “like-blob-1-
left-of-blob-2.”

Once a compound query is specified, we rank the database
images based on how closely they satisfy the compound
query. For each image, a score is calculated by the following
procedure:

� For each atomic query (like-blob-i):

� Find the feature vector vi for the desired blob.
This vector consists of the three color cone co-
ordinates, three texture cone coordinates, two
centroid coordinates, and three shape descrip-
tors.

� For each blob bj in the image:

� Find the feature vector vj for the image
blob.

� Find the Mahalanobis distance between
blob i and blob j using the diagonal co-
variance matrix (feature weights) set by the
user: dij = (vi � vj)TΣ�1(vi � vj).

� Measure the similarity between bi and bj

using scoreij = e�
dij

2 . This score is 1 if
bi and bj are identical in all relevant fea-
tures; it decreases as the match becomes
less perfect.

� Take scorei = maxj scoreij.

� Combine the scores using fuzzy-logic operations [9]
for each atomic query as specified in the compound
query. For example, if the query is “like-blob-1 and
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Figure 4. Sample images from the Corel database.

(like-blob-2 or like-blob-3),” the overall score for the
image is minfscore1;maxfscore2; score3gg.

We then rank the images according to overall score and
return the top matches, indicating for each image which
set of blobs provided the highest score; this information
will help the user refine the query. After reviewing the
query results, the user may change the weighting of the blob
features or may specify new blobs to match.

6. Results

We have performed a variety of queries using a database
of 1600 images from the commercial Corel stock photo col-
lection. The categories we used for these experiments in-
clude airplanes, flowers, eagles, people, mountains, deserts,
fields, sunsets, night scenes, and a wide variety of animals.
(See Fig. 4.) Sample queries are shown in Figs. 6–9. The
performance for these and other queries is shown numeri-
cally in Fig. 5.

Figure 5. Precision (fraction correct) vs. number of
images retrieved for several queries. The downward
slope indicates that highly ranked images tend to be
correct; for most queries more than half of the top
ten images are correct, but the percentage drops as
we include more (lower-ranked) images. Note the
poor results for the bear query.

7. Conclusions
We make two primary contributions in this paper:

1. A new segmentation procedure for finding regions
of coherent color and texture using the EM algorithm.
The procedure simultaneously returns a set of descrip-
tors for the color, texture, position, and shape of each
region.

2. An implemented procedure for composing queries
where an atomic query looks for a region of desired
color, texture, position, and shape. The user can spec-
ify the tolerance for each specified feature.

We have found that this approach works very well when
looking for certain classes of objects—those that have dis-
tinctive color or texture. When the color/texture description
of an object is not very specific, for example brown regions
when searching for brown bears, the approach is less useful.
This is not a very surprising conclusion, but it does point
out the most important problems for future work. Char-
acterizing shape is perhaps the most important; associated
with that is the problem of improved image segmentation.
A promising start on shape characterization has been made
by Forsyth and Fleck [5] in their work on finding people and
horses using body plans.
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Figure 6. Query for airplane images, using a sky blob
(blue) and an airplane blob (gray/black).

Figure 7. Query for eagle images. (Compare to the
airplane query results.)

Figure 8. Query for tiger images, using a tiger blob
(orange) and a grass blob (green).

Figure 9. Query for sunset images, using a sky blob
(red-orange) and a sun blob.
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