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Abstract

HP-LAM: an Implementation of Generic Active Messages for the Hewlett-Packard

9000/J200 Workstation

by

Cedric Krumbein

Master of Science in Computer Science

University of California at Berkeley

Prof. David E. Culler, Chair

This report describes the Myrinet interface card, a card that interfaces the Hewlett-

Packard 9000/J200 workstation to the Myrinet local-area network, and HP-LAM, an

implementation of Generic Active Messages (GAM) on that platform. It describes the

performance of HP-LAM in terms of LogP parameters and in terms of execution time for

the Split-C application radix sort. It shows how HP-LAM's performance is limited by

ine�ciencies in transferring data over the peripheral bus. It compares the performance of

HP-LAM to that of Sun-LAM, a similar implementation of GAM on the Sun Microsystems

SparcStation-20 and Ultra-1 workstations. The comparison shows that the performance of

HP-LAM is comparable to that of Sun-LAM on the SparcStation-20 but is poorer than that

of Sun-LAM on the Ultra-1.
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Chapter 1

Introduction

Until recently parallel processing has been supported primarily by massively par-

allel processors (MPPs). An MPP is essentially a set of processing nodes connected by a

high-speed network, each node executing one thread of the parallel program. MPPs have

traditionally fallen into two groups. (1) In a shared memory machine, every node \sees"

the same memory image. The shared memory may be implemented in hardware as a single

monolithic block, or it may be distributed among the nodes, each node owning a piece of

the total memory. The nodes communicate either by accessing common memory locations

or by passing messages. (2) In a message-passing machine, each node maintains its own

local memory image, and the nodes communicate solely through message-passing.

The performance of the network in an MPP is crucial, whether it is used to support

the shared-memory image or to pass messages. MPP producers have thus pioneered a

number of innovations in high-speed networking, such as the use of fast parallel switches,

topologies such as fat trees and hypercubes, and the use of fast, low-overhead network

protocols. The recent emergence of high-speed commercial networks such as ATM and

Myrinet [24], and of fast network protocols such as Active Messages [30], Fast Messages

[21], Hamlyn [6], and U-Net [5], is due in part to innovations that �rst appeared in MPPs.

Ironically, these same high-speed networks, and the continuing phenomenal growth

in the performance of commodity processors, are helping to bring about the demise of MPPs.

Networks of workstations, or NOWs, are beginning to replace MPPs as the platforms used

to support parallel processing. A NOW is a collection of commodity workstations connected

by a high-speed network using a fast network protocol. Special-purpose software provides

the support for managing parallel programs, such as scheduling the nodes, providing a

common �le system, etc.

In the Network of Workstations project at U. C. Berkeley [2], we have developed

three generations of NOWs. Each version has used a di�erent combination of workstations,

operating systems, and network hardware and protocols. The prototype version, NOW-0,

was built using Hewlett-Packard (HP) 9000/735 workstations. Fiber-Distributed Data In-

terface (FDDI) was used for the high-speed interconnect, and Generic Active Messages

(GAM) [9] was used for the fast network protocol [18]. NOW-1 used Sun SparcStation-10

and -20 workstations, the Myrinet local-area network, and an implementation of GAM for

that platform called Sun-LAM. NOW-2 is currently being built using Sun Ultra worksta-
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tions, Myrinet, and Active Messages-2 (AM-2) [16].

We faced a number of choices in selecting the components for each generation of

NOW. For NOW-1, Myrinet and GAM were selected early for the network hardware and

protocol. The choice for the processing node was narrowed down to the Sun SparcStation

[28] and the HP 9000/J200 [12]. However, at that time no HP workstation supported an

interface to Myrinet. This report describes my e�ort to develop Myrinet interface hardware

and GAM software for the HP 9000/J200.

In this report I describe the Myrinet interface card, a card I developed that

interfaces the Hewlett-Packard 9000/J200 workstation to Myrinet; and HP-LAM, an im-

plementation of Generic Active Messages on that platform. I describe the performance of

HP-LAM using microbenchmarks, LogP parameters, and in absolute execution time for the

Split-C application radix sort. I show how the performance of HP-LAM is limited by

ine�ciencies in transferring data over the 9000/J200's peripheral bus.

Our initial motivation for developing the card and HP-LAM was to make the

9000/J200 a potential platform for NOW. This has become less important since Sun work-

stations were selected as the platforms for NOW-1 and NOW-2. However, another set

of issues that we have yet to tackle in the NOW project involves building a NOW using

heterogeneous workstations. To date each generation of NOW has been built using the

same model of workstation for every processing node. HP-LAM provides the opportunity

to investigate the issues surrounding the building of a heterogeneous NOW, in this case a

network made up of Sun and HP workstations.

This report is organized as follows. The remainder of this chapter provides back-

ground on the Active Messages protocol and the Myrinet local-area network. Chapter 2

describes the hardware design of the Myrinet interface card for the HP 9000/J200, and

chapter 3 describes the design of the HP-LAM software implemented on this platform.

Chapter 4 describes the performancemeasurements done on HP-LAM and compares them

to GAM implementations on other platforms, especially Sun-LAM. Chapters 2{4 each end

with a discussion of the issues faced in each e�ort and the lessons learned. Finally, chapter

5 provides an overall summary of the project.

1.1 Active Messages

Active Messages, or AM [30], is a fast network protocol and API developed to

support fast messing-passing in an MPP or a NOW. AM is able to deliver messages between

nodes with less overhead and latency than can be provided by more traditional network

protocols such as TCP/IP. AM is now also being used to provide more traditional network

services such as Berkeley sockets within a local-area network (LAN), again with greater

performance than provided by TCP/IP [23].

AM is most commonly used as the communication layer of single-program, multiple-

data (SPMD) parallel program. In this setting each node of the parallel program runs on a

separate processor, and the program image is identical on every node. An active message can

be viewed as a restricted, lightweight remote procedure call. Each active message consists

of two parts, a request and a reply, each specifying a handler function and arguments. As an

example, assume one node (the source) sends a message to a second node (the destination).
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This �rst leg of the message is the request. Upon arriving, the destination node executes the

speci�ed request handler using the supplied arguments. The request handler returns a reply

to the source node; when it arrives, the source node executes the speci�ed reply handler.

An active message is considered \delivered" when the reply handler completes executing.

AM achieves high performance and low overhead in a number of ways. A program

using AM sends and receives messages by reading and writing them directly into the network

interface at user-level. An active message does not have to travel through a protocol stack

the way TCP/IP data does. With the operating system and the stack removed from the

message path, a message crosses fewer boundaries and is copied fewer times. (The operating

system may participate, however, in other networking operations such as initializing the

network interface, setting up connections, etc.)

Several versions of AM have been developed. The speci�c version of AM imple-

mented in HP-LAM is Generic Active Messages, or GAM [9]. GAM allows a single user per

node access to the network. It is implemented as a user-level library that is linked into the

parallel program. The GAM speci�cation lists a set of functions that all implementations

must provide, which enables a parallel program to be ported to any platform that sup-

ports GAM. GAM guarantees reliable message delivery, but it does not guarantee in-order

delivery.

GAM is not a general-purpose network protocol like TCP/IP. It is intended to be

used within an MPP or a NOW by a single program.

Beyond these features common to all implementation of GAM, each implementa-

tion may use any policy that best suits the particular hardware and software constraints of

the system. For example:

� Routing. Each node in an n-node parallel program using GAM is identi�ed by

an integer 0..n-1. The nodes send messages using these identi�ers. Every GAM

implementation translates these integers into routes; how this is done depends on the

routing policies of the network.

� Reliability. To provide reliable delivery, GAM implementations fall into three gen-

eral classes: (1) MPP networks such as those of the CM-5 and the Meiko CS-2 are

considered extremely reliable. In these networks errors are so infrequent that when one

actually does occur, the parallel program is considered corrupted and simply aborts.

The GAM software need not include any error-correcting routines. (2) Traditional

workstation networks such as Ethernet are considered unreliable. GAM software im-

plemented on such a network must include error-detecting and -correcting routines;

further, errors are assumed to occur frequently enough that the routines must be

highly optimized. (3) Between these two are nearly reliable networks such as FDDI

and Myrinet. In these networks errors can occur and thus the GAM software must

include error-detecting and -correcting routines, but errors are considered to be infre-

quent enough that the routines need not be highly optimized. (HP-LAM assumes a

nearly reliable network.)

To date GAM has been implemented on the following MPP platforms: the Think-

ing Machines CM-5, the nCUBE/2, the Intel Paragon, the Meiko CS-2, and the Cray T3D.
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GAM has also been implemented on the following commodity workstations and local-area

networks: the Hewlett-Packard 9000/735 workstation using FDDI, and the Sun Microsys-

tems SparcStation and Ultra-1 stations using Myrinet.

1.2 Myrinet

The Myrinet local-area network was developed by Myricom, Inc. [24] Myrinet is

one of an emerging group of high-speed packet-switched data networks. Unlike other such

networks (e.g., ATM), Myrinet switches are connectionless and stateless. All of the state

in the network is in the interfaces.

The Myrinet interface is a general-purpose processor that allows almost any pro-

tocol and API to be supported. The interface includes local memory for bu�ering and a

DMA engine to transfer bulk data between the interface and host memory.

A Myrinet switch is a stateless crossbar. Switches support cut-through message-

forwarding and use relative, source-based routing. Switches are available in several sizes: 4,

8, or 16 link ports.

Myrinet links are full-duplex, parallel electrical cables capable of carrying 80

MB/sec of bandwidth in each direction.

Myrinet uses token-based packet framing and ow control. The maximum size of a

Myrinet packet is unspeci�ed, though the maximum length used by HP-LAM is 4 kilobytes.
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Chapter 2

Hardware Design

This chapter describe the the design of the Myrinet interface card; that is, the

hardware developed to support HP-LAM on the Hewlett-Packard 9000/J200 workstation.

A block diagram of the 9000/J200 is shown in Figure 2.1. For the purposes of

this report, each 9000/J200 consists of one or two HP PA-7200 PA-RISC host processors

[13] and 32{1024 megabytes of main memory connected across a Runway system bus. The

Runway bus is connected to two GSC+ busses [11] by a U2 Bus Adapter chip [29]. Only one

of the two GSC+ busses in the 9000/J200 has card connectors that allow the installation

of optional peripheral cards such as network interfaces. The other GSC+ bus is used to

connect to other peripheral devices such as the console TTY line and the Ethernet adapter.

Two similar Myrinet interface cards were developed for use in the 9000/J200's

GSC+ bus. I developed a card as part of my graduate research at U. C. Berkeley; hereafter

I refer to it as the Berkeley card [15]. The Berkeley card was designed using the Myricom,

Inc., SBus-Myrinet card [24] as a model; most components in the Berkeley card have direct

counterparts in the SBus card. After presenting my proposed design of the Berkeley card

to Myricom and HP Labs, they re�ned the design and jointly developed the GSC/Myrinet

Device Adapter card [17], hereafter referred to as the Myricom card. Unfortunately, the

Berkeley card did not achieve functionality; therefore the Myricom card has been used in

this report for software development and performance measurements. For the remainder of

this report, I refer to either card generically as theMyrinet interface card, and I indicate

features speci�c to either card when relevant.

The Myrinet interface card can only be used in the HP 9000/J200. The card was

designed to install in the 9000/J200 's GSC+ bus. HP uses the GSC+ bus in other systems;

however, the card form factor is unique to each system in which the bus is used. GSC+

cards in the 9000/J200 conform to the modi�ed EISA card form factor. The same card

design could be adapted to any other HP system that uses the GSC+ bus by re-laying the

card using that system's form factor.

In the HP PA-RISC I/O architecture [22], each peripheral device is mapped to a

�xed location in the host processor's physical address space depending on the bus and slot

in which it is installed. This allows the host processor to communicate with any peripheral

device by performing memory-mapped reads and writes to it. In PA-RISC nomenclature

these are called Direct Input/Output or DIO transactions. Peripheral cards may also
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Myrinet
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Figure 2.1: HP 9000/J200 Block Diagram including a Myrinet Interface Card.

The 9000/J200 consists of one or two HP PA-7200 PA-RISC host processors and 32-1024

megabytes of main memory connected by a Runway system bus, two GSC+ busses (one

with card connectors for peripherals), and a U2 Bus Adapter connecting the busses. The

Myrinet interface card installs in a GSC+ card connector.

read and write to the main memory directly; these are called Direct Memory Access or

DMA transactions.

Each peripheral device must also support a set of IODC registers. These are

registers that allow the host processor to detect the presence of a device during system

initialization and perform any device-speci�c con�guration. During initialization the host

processor scans the entire I/O address space for peripheral devices. A device announces its

presence by responding to a read request at its assigned address. The host then reads the

peripheral's IODC registers to identify it, read any con�guration parameters, etc.

Graphics System Connect (GSC+), also known as the HP-HSC bus [11], is a

40-MHz peripheral bus. Address and data are multiplexed onto the same 32 lines. GSC+

devices may perform transactions with each other, or they can send and receive transactions

from the host processor across the U2 Bus Adapter.

GSC+ supports three types of transactions: writes, connected reads, and pended

reads. (1) In a write the address is placed on the bus followed by one or more words of data.

The device that owns the address must return an acknowledgement. (2) In a connected

read the address is placed on the bus, and the device that owns the address must return

data within a �xed number of cycles; the bus is idle until the data is returned. (3) A

pended read is similar to a connected read, except that other transactions may take place

before data is returned. For all three types of transactions, up to eight words of data may

be transferred in a single transaction. (The Myrinet card supports writes and connected

reads, but it does not support pended reads.)

The U2 Bus Adapter chip maps subranges of the two GSC+ busses' address ranges

into the Runway bus' address space, allowing the host processor to perform DIO reads and
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Figure 2.2: Myrinet Interface Card Block Diagram. The LANai is the central pro-

cessor, network transmitter and receiver, and local memory interface for the card. The

Slipstream and glue chips form a two-stage translator between the system's GSC+ bus and

the LANai's EBus. The local memory holds network messages, the LANai control program

(LCP), and routing tables.

writes to GSC+ addresses that fall within those subranges. Similarly, the U2 also maps

subranges of the Runway bus' address range into each GSC+ bus' address range, allowing

GSC+ cards to perform DMA accesses to selected main memory addresses. These mappings

are written into the U2's page tables in main memory by the host processor.

The U2 also performs the GSC+ bus arbitration. A device asserts a Bus Request

signal to obtain control of the bus, and the U2 replies with a Bus Grant when the bus

is available. A device may perform several transactions within a single Bus Request/Bus

Grant cycle; each device is responsible not to abuse this feature to monopolize the bus. The

Myrinet card uses this feature to perform bulk DMA transfers to and from main memory.

A single DMA transfer may move thousands of words of data, but it consists of a series of

eight-word bursts.

The Myrinet interface card is designed to receive commands and data from the host

processor in the form of DIO transactions. The card can also initiate DMA transactions

to transfers data to and from main memory by using an on-card DMA engine. A block

diagram of the card is shown in Figure 2.2.

The LANai processor chip [20] is the card's central processor and network protocol

engine. The card has local memory for holding the LANai Control Program (LCP), network

messages, and data. The card uses a Slipstream chip [26] and a �eld-programmable logic

device (FPGA), or \glue" chip, to form a two-stage translator between the GSC+ bus and

the LANai's EBus. Finally, the card has a set of transceiver chips for transmitting and

receiving from the Myrinet link.

The rest of this chapter describes each of these components in more detail.
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Figure 2.3: LANai Block Diagram. The LANai is a general-purpose processor with

additional features to support network processing.

2.1 LANai

The heart of the Myrinet interface card is Myricom's LANai processor chip. The

LANai is a general-purpose processor with additional functional units to support network

processing. Its purpose is to execute a program (called the LANai Control Program, or

LCP) to perform the functions required to support the desired network protocol; e.g.,

sending and receiving messages, checking message integrity, managing routing tables, and

so on. This general-purpose design of the LANai gives it the exibility to support a wide

range of protocols and APIs. A block diagram of the LANai is shown in Figure 2.3.

The LANai interfaces to three busses. (1) The External Bus, or EBus, is the

LANai's interface for communicating with the rest of the system. The LANai receives

DIO transactions from the host processor via the EBus, and it initiates DMA transactions

across the EBus to access host memory. (2) The Local Bus, or LBus, is the interface to

the card's local memory. The LANai manages all local memory accesses. (3) Finally, the

LANai interfaces to the network link. The LANai sends and receives network messages

using its packet interface and its send and receive DMA engines.

The LANai contains the following functional units:

� The processor core is a general-purpose processor that was derived from the Caltech

Mosaic processor [25]. The core executes the LCP, which allows the designer to
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implement virtually any desired network protocol and API.

� The EBus DIO interface passes host-initiated DIO transactions from the EBus to

the local memory. This makes the local memory look like part of the host processor's

physical memory space, which enables the host processor to use DIO transactions to

download the LCP, download outgoing messages, and read received messages directly

from local memory.

� The EBus DMA engine allows the LANai to initiate DMA transactions to transfer

data directly between main memory and local memory. The DMA engine automati-

cally generates a checksum for transfers from local to main memory, allowing received

messages to be validated.

� The Myrinet Link interface is a full-duplex interface; i.e., it allows messages to be

sent and received at the same time. The link interface contains all of the control needed

to support the Myrinet signalling protocol; the only other hardware needed on-card

are the transceiver chips (sec. 2.5). For outgoing messages, the interface formats the

data into the proper network signalling format and inserts control symbols to frame

the packets and provide ow control. For incoming messages, the interface extracts

the data from the incoming packets. The interface appears to the processor core as

a set of registers that the core can write to to send messages and read to receive

messages.

� Send and Receive DMA engines. These allow the processor core to transfer

large messages between the network links and local memory using only a few setup

commands. The engines can operate simultaneously, their performance limited only

by the links and by contention for the local memory.

� LBus interface: manages all accesses to the local memory. Accesses may originate

from the host processor in the form of DIO transaction across the EBus, from the

EBus DMA engine as it performs LANai-initiated DMA transfers to or from main

memory, from the Send and Receive DMA engines as they perform DMA transfers to

and from the network link, and from the processor core as it fetches instructions, and

loads and stores data. The LBus interface allows two local memory accesses per clock

cycle, and it prioritizes these accesses as follows:

Highest: EBus DIO and DMA

Receive DMA

Send DMA

Lowest: Processor core

The Berkeley card uses LANai ver. 2.3, and the Myricom card uses LANai ver.

4.0. The main di�erences between these two versions are that (1) their processor cores

support di�erence instruction sets; (2) ver. 2.3's processor core is 16-bit, while ver. 4.0's is

32-bit; (3) ver. 2.3 can address 128 kilobytes of local memory, while ver. 4.0 can address

512 kilobytes; (4) ver. 4.0's EBus includes parity with address and data, but ver. 2.3's does
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Berkeley card Myricom card

LANai version 2.3 4.0

LANai word size 16 bits 32 bits

Local memory size 128 kB 512 kB

Network signalling PECL LVDS

Network driver chip(s) 5 AT&T 41MM Myricom-custom

transceivers LVDS transceiver

EBUS parity generator In glue chip In LANai

Interrupt mask registers None 3 in glue chip

Table 2.1: Di�erences between the Berkeley and Myricom Cards.

not; (5) the two versions support di�erent network signalling protocols (sec. 2.5); and (6)

the two versions have di�erent pin layouts. Table 2.1 summarizes the di�erences. Despite

these di�erences, the same LCP can run on both versions after re-compilation, and both

can support HP-LAM.

The EBus is the LANai's interface for communicating with the rest of the system.

Since the �rst generation of Myrinet interface cards were designed to interface to the Sun

SBus, Myricom designed the EBus to be very similar to SBus. EBus and SBus can be

connected together with very little additional hardware. Fortunately, Myricom also designed

EBus to be exible enough that it can be made (with enough e�ort) to interface to other

busses that are similar to SBus. The majority of the e�ort in developing the Myrinet

interface card was in designing this interface.

The following are the main challenges in interfacing EBus to GSC+:

� GSC+ Electrical Requirements. All GSC+ signals operate at 3.3 volts, except

for the clock signals which use di�erential ECL. The LANai and the EBus, however,

operate at 5 volts.

� IODC Registers. Each peripheral device must implement these registers; see [13]

and [11] for a list of the IODC registers required of a GSC+ device.

� Address/Data Parity. GSC+ bus requires parity accompany addresses and data;

however, LANai ver. 2.3 doesn't generate parity. (LANai ver. 4.0 does.)

� Host DMA Engine. In order to make the LANai's EBus-DMA engine adaptable

to busses other than SBus, the engine was left incomplete; that is, the engine lacks

the control logic that makes it speci�c to any particular DMA protocol. Instead, the

LANai exposes a number of control signals that allow the designer to add logic to

control the engine's operation to make it meet the desired DMA protocol.

These requirements make the interface quite complex. Because of this, I decided

to design a two-stage interface consisting of two chips: the Slipstream and an FPLD \glue"

chip.
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2.2 Slipstream

The Slipstream [26] is a custom VLSI chip developed by HP to be the GSC+ bus

interface for the HP Fibrechannel adapter card [27]. The Slipstream interfaces the o�-card

GSC+ bus to an on-card bus called Tachyon System Interconnect, or TSI. TSI is a 5-volt

bus, but otherwise it is almost identical to GSC+. The Slipstream relays DIO and DMA

transactions between GSC+ bus and TSI. The Slipstream also implements the card's IODC

registers. When the card is queried during system initialization, the Slipstream fetches the

card's con�guration parameters from a pre-programmed on-card FLASH EEPROM chip

and returns them to the host processor.

Since the Slipstream was the only chip in existence which supported these features,

it was the obvious choice to be the GSC+ bus interface for the Myrinet card. However, it

was not ideal; it imposed a number of undesired contraints:

� The Slipstream presents only a 16-kilobyte contiguous address space to the GSC+

bus; i.e., it passes DIO transactions from the GSC+ bus to TSI whose addresses fall

within a contiguous 16-kilobyte range. Since the Myrinet card has a 128- or 512-

kilobyte local memory, this means most of the memory couldn't be directly mapped

into the host processor's address space and thus wouldn't be DIO-accessible.

� As with the GSC+ bus, the Slipstream requires TSI addresses and data to include

parity.

� The Slipstream imposes a one-cycle penalty when relaying transactions between the

GSC+ bus and TSI.

Completing the GSC+-EBus interface required working around these limitations,

and also providing the control logic for the LANai's EBus-DMA engine. Providing these

features required adding a second stage to the interface, which is implemented in the FPLD

\glue" chip.

2.3 Glue Chip

The glue chip provides the functions that works around the Slipstream's constraints

and complete the GSC+-EBus interface. The Berkeley card's glue chip is implemented in

an Altera 7256 �eld-programmable logic device (FPLD) [1]. The Myricom card's glue chip

is implemented in AT&T's ORCA FPLD [3]. Both glue chips implement almost exactly the

same functions:

� Local Memory Windowing. The glue chip provides a windowing function that

enables the host processor to access any location in the card's local memory. This win-

dowing function partitions the local memory into 4-kilobyte pages. Three 4-kilobyte

page windows are mapped into the host processor's address space, and each window

has a page map register associated with it that allows the host processor to select

which page is mapped into that window. Figure 2.5 shows how the page windows and
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page map registers are included in the memory image the Myrinet card presents to

the host processor.

As an example, say the host processor wishes to access address 0x5678 in local memory.

It �rst determines the page number and o�set within the window as follows:

Page number = Addr DIV 0x1000 = 0x5678 DIV 0x1000 = 5

Window o�set = Addr MOD 0x1000 = 0x5678 MOD 0x1000 = 0x678

Address 0x5678 is in page 5 at o�set 0x678. The host sets one of the page map

registers (e.g., register 1) to 5. The host can then access address 0x5678 in local

memory by using DIO transactions to access o�set 0x678 within window 1.

� Interrupt Mask. (Myricom card only.) The glue chip provides an interrupt-on-

DIO-write function. When enabled, this function issues a wake-up interrupt signal

to the LANai whenever the host processor does a DIO write to local memory whose

address falls on a spec�ed alignment boundary. For example, the interrupt mask can

be set to issue a wake-up interrupt to the LANai when the host does a DIO write to

local memory using an address equal to zero MOD 0x2000.

This feature was implemented in the Myricom card to support HP's Hamlyn network

protocol [6]. The HP-LAM software does not use LANai wake-up interrupts; therefore

the interrupt mask registers were not implemented in the Berkeley card.

� Host DMA. The glue chip implements control logic in the form of a state machine

that directs the LANai's host-DMA engine to perform GSC+-compliant DMA trans-

actions. The GSC+ speci�cation requires DMA transfers to consist of a series of

32-bit-word reads or writes, and that transfers be partitioned into bursts of no more

than eight words each.

The LANai processor core requests a host-DMA transfer by writing to a set of memory-

mapped registers. Requesting a DMA transfer causes the following events to occur:

1. The LANai's host-DMA engine outputs signals indicating the length, alignment,

and direction (local-to-main-memory, or main-to-local-memory) of the transfer.

The DMA state machine in the glue chip responds by issuing a Bus Request

signal to TSI, which the Slipstream relays to the GSC+ bus.

2. The U2 returns a Bus Grant signal, which the Slipstream relays to TSI and the

the DMA state machine. The state machine signals the host-DMA engine to

output to EBus the address of the �rst burst of the DMA transfer.

3. If this is a local-to-main-memory DMA transfer, the state machine then pulses

the host-DMA engine to read from local memory and output to EBus each data

word in the burst. If this is a main-to-local-memory transfer, the state machine

waits for the data to arrive from main memory; when it does, the state machine

pulses the host-DMA engine to accept each word of the burst and write it to local

memory. With each pulse, the state machine also signals the host-DMA engine

to increment the address counter, decrement the length counter, and include the

current data word in the running CRC value.
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4. After �nishing the burst, the state machine checks if the host-DMA engine's

length register has reached zero. If it has, the state machine removes Bus Re-

quest, releasing the GSC+ bus. Otherwise, the state machine keeps control of

the bus and begins another burst. It repeats this cycle until the entire transfer

is completed.

� EBus Parity Generator. (Berkeley card only.) The Slipstream's TSI requires that

parity accompany address and data, but LANai ver. 2.3's EBus does not include a

parity signal. The glue chip generates parity for addresses and data originating from

the LANai.

An EBus parity generator was added to the LANai in ver. 4.0, the version used in the

Myricom card. The Myricom card's glue chip therefore did not need to implement

this function.

Figure 2.4 shows a block diagram of both cards' glue chips. The memory image

that the cards present to the host processor is shown in Figure 2.5.

2.4 Local Memory

The local memory is a high-speed (6-nanosecond access time) static random-access

memory (SRAM). The Berkeley card contains 128 kilobytes of SRAM; the Myricom card

contains 512 kilobytes. The exact use of the local memory is up to the LCP, but all network

messages must pass through it. The local memory also holds the LCP code itself and any

other needed data or state. The design of the local memory was taken verbatim from

Myricom's SBus-Myrinet card.

2.5 Transceiver

The Berkeley and Myricom cards support di�erent network link signalling pro-

tocols, and they therefore di�er substantially in the design of their network transceivers.

Myricom initially used Partial Emitter-Coupled Logic (PECL) signalling in their network

links, but they are replacing it with Low-Voltage Di�erential Signalling (LVDS).

The Berkeley card uses LANai ver. 2.3 which contains a PECL transmitter and

receiver. Ver. 2.3 requires o�-chip ampli�ers to drive the network link. The Berkeley card

uses �ve AT&T 41MM ampli�er chips [4] for this purpose. The design was taken verbatim

from the SBus-Myrinet card.

The Myricom card uses LANai ver. 4.0 which does not contain its own network

signalling transceiver. Instead, ver. 4.0 is designed to be used with a separate transceiver

that implements the signalling protocol. The Myricom card uses a single LVDS transceiver

chip custom-designed by Myricom.
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Figure 2.4: Glue Chip Block Diagram. The reset register allows the host processor

to toggle the LANai's reset signal. The page windows and page map registers form the

windowing function that enable DIO access to the entire local memory. The interrupt mask

registers (Myricom card only) form the interrupt function that wakes up the LANai when

the host processor does aligned DIO writes to the card's local memory. The DMA state

machine guides the LANai's host-DMA engine in performing DMA transactions that are

GSC+-compliant. The EBus parity generator (Berkeley card only) generates parity for

LANai-sourced EBus addresses and data.
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Figure 2.5: Myrinet Interface Card Memory Image. Together the Slipstream and

the glue chip create this memory image in the host processor's address space. The PA-

RISC I/O speci�cation requires IODC registers in all peripherals for identi�cation and

initialization. The reset register enables the host processor to reset the LANai. The three

windows and three page map registers make up the windowing function that enables the

host processor to access any location in the card's local memory. The Berkeley card also

includes a Page window 0 which is hard-wired to the upper portion of local memory page 0.

The three interrupt mask registers (Myricom card only) cause a LANai wake-up interrupt

to be triggered when the host processor does a DIO-write to local memory whose address

falls on the spec�ed alignment boundary.
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2.6 Discussion

A number of alternatives were considered during the design of the Myrinet interface

card:

� Because of the Slipstream's limitations, I originally considered not using it at all,

instead implementing the GSC+-EBus interface in a set of FPLDs. Because of the

complexity of the interface (sec. 2.1), I decided this was too risky, that using the

Slipstream was the safest way to achieve functionality.

� It would have been possible to design a usable card without implementing the local

memory windowing scheme (sec. 2.3). The host processor could have been constrained

to accessing only the �rst 16 kilobytes of the local memory. The HP-LAM data

structures that the host processor must access would have been mapped into this

space. The rest of local memory would be accessed only through the host-DMA

engine. Despite the greater complexity, I decided to implement the register windowing

function anyway to give the card greater exibility.

� In designing the Berkeley card, I considered a number of FPLD vendors before se-

lecting Altera: various 22V10 PAL suppliers, Cypress Semiconductor, and others. I

chose Altera because I felt they o�ered the best package of FPLD sizes, advertized

performance, and development tools.

My biggest regret in this project is not being able to complete the development

of the Berkeley card. The card never did achieve functionality. At the time we suspended

the development e�ort, the card had been fabricated and assembled, DIO access to the

Slipstream and the glue chip was working correctly, and I had completed programming

and debugging the glue chip's DIO control logic and data path. I was in the process of

debugging the glue chip-LANai interface when we decided to suspend the development

e�ort and instead use the Myricom card for HP-LAM software development and testing,

since by this time the Myricom card had been available for several months.

There are several reasons why development of the Berkeley card took longer than

expected. The biggest mistake I made in developing the card was neglecting the EBus

parity generator until well into the design. In early versions of the design, the TSI and

EBus address/data lines were tied directly together. I expected to use an o�-the-shelf parity

generator chip to generate parity. Unfortunately, this approach assumed that a commodity

chip could generate parity within a single TSI/EBus clock cycle (under 20 nanoseconds).

It turned out that no such chip existed that was fast enough. This forced me to redesign

the card with a data latch in the glue chip to give the parity generator an extra cycle to

generate parity. No longer being able to tie the TSI and EBus lines directly together greatly

increased the complexity of the glue chip, causing the development to be delayed by months.

Myricom was aware that I had run into the parity generation problem when they

began designing their card. Myricom solved this problem by simply adding a parity gener-

ator to the LANai in ver. 4.0. (After all, they produce the LANai.) At Berkeley, however,

we were too far along with the design of our card to change to using the LANai ver. 4.0. In

retrospect, we should have worked more closely with Myricom to solve this problem.
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Chapter 3

Software Design

HP-LAM is the software implementation of Generic Active Messages (GAM) on the

HP 9000/J200 workstation, the HP-UX operating system ver. 10.00 [14], and the Myrinet

interface card. The acronym HP-LAM stands for Hewlett-Packard LANai Active Messages.

It is so named because it is largely derived from Sun-LAM, the GAM implementation on

the Sun Microsystems SparcStation and Ultra workstations and Myrinet [19].

HP-LAM consists of several components. The components were derived from

various sources: from Sun-LAM, from HP Hamlyn, and from Myricom. The task of imple-

menting HP-LAM was primarily one of importing these pieces of software, modifying them

as necessary, and integrating them. Figure 3.1 shows the HP-LAM software architecture,

and the components are listed below:

� The GAM library includes all of the functions that each node of the parallel program

calls to communicate with the other nodes. The GAM library is linked into the

program and thus resides in the user's virtual address space.

� The Myrinet library includes the low-level functions that the GAM library calls to

communicate with the Myrinet network interface. This library is also linked into the

parallel program and resides in user-space. The GAM and Myrinet library functions

are in separate libraries to separate functions used in other GAM implementations

from functions speci�c to the Myrinet network interface. This allows the same GAM

library source code to be used for multiple platforms.

� The iomap device driver is a standard HP-UX device driver that the GAM and

Myrinet libraries use to establish access to the Myrinet interface card. iomap is the

generic mechanism used to access all peripheral devices. An application or another

device driver may call it to map a device's memory image into its address space.

As with all HP-UX device drivers, iomap is linked into the kernel and resides in the

kernel's virtual address space.

� The LAM device driver is used by the Myrinet library to manage the DMA copy

block. The DMA copy block is an area reserved in main memory from which the

Myrinet card fetches and stores bulk data using its host-DMA engine. The LAM
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Figure 3.1: HP-LAM Software Architecture. The program calls GAM library functions

to send and receive messages. To send a message, the GAM library copies bulk data (if any)

to the DMA copy block, then enqueues the message in the out-queue. The LCP dequeues

the message, grabs the bulk data, and writes it into the network. At the receiving node, the

LCP reads the message out of the network, copies the data to the DMA copy block, and

enqueues the message in the in-queue. The GAM library dequeues the message and grabs

the data from the copy block. The Myrinet library, the iomap device driver, and the LAM

device driver are used to set up the mechanism.
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device driver provides three functions: (1) it \wires down" the copy block; i.e., it dis-

ables the HP-UX virtual memory system from paging the block out of main memory;

(2) it maps the block into the GSC+ bus' address space in order to make it accessible

to the Myrinet card; and (3) it makes the program non-swappable; i.e., it prevents the

HP-UX scheduler from swapping in another user process while the program is active.

The LAM device driver also resides in kernel-space.

� The LANai Control Program (LCP) runs in the LANai processor core. It consists

of two separate, independent threads. The send-thread fetches bulk data from the

DMA copy block and injects outgoing messages into the network. The receive-thread

reads incoming messages from the network and stores bulk data to the copy block.

The following paragraphs give an overview of HP-LAM's operation by following

an active message sent between two nodes.

Early in the execution of the parallel program, each node calls am enable() to ini-

tialize its local Myrinet interface card. am enable() reads local con�guration information,

establishes unshared access to the card, creates the DMA copy block, downloads the LCP

to the card's local memory, and sets up data structures.

To send a message to another node, the source node calls a GAM library function

such as am request(). The GAM function formats the request on the node's host processor

and copies it to the out-queue in the card's local memory. For bulk transfers, the GAM

function also copies the transfer data into the DMA copy block in main memory to make

it accessible to the card.

The LCP executing in the LANai processor core consists of two threads: a send-

thread for handling outgoing messages, and a receive-thread for incoming messages. The

send-thread continuously polls the out-queue. When it �nds a message in the queue ready

to be sent, it �rst checks if the message transfers bulk data. If it does, the send-thread

copies the data from the DMA copy block in main memory to the bulk send bu�er in local

memory using the LANai's EBus-DMA engine. It then copies into the network the route

to the destination node from the routing table in local memory, followed by the message

from the out-queue. For a bulk transfer the send-thread then uses the send-DMA engine to

copy into the network the transfer data from the bulk send bu�er. Finally, it tells the link

interface that the message is completed, which causes the interface to append a CRC byte

to the message to mark its end.

At the destination node, the receive-thread continuously polls the network interface

for incoming messages. When one arrives, the receive-thread �rst copies the message header

into the in-queue, but for the momemt it leaves the queue entry marked as invalid. Next it

then checks if the message is a bulk transfer. If it is, the receive-thread uses the receive-DMA

engine to copy the data from the network into the bulk receive bu�er in local memory, then

the EBus-DMA engine to copy the data to the DMA copy block in main memory. Finally,

the receive-thread marks the message in the in-queue as valid.

Each node in the parallel program is required to regularly poll the in-queue in the

card's local memory for received messages. Calling any GAM function implicitily does this.

If a node would otherwise not call any GAM functions for an extended time, it must call the

function am poll() to explicitely check the in-queue. When a received message is found,
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Component Origin Adaptation to HP-LAM

GAM Library Sun-LAM Modi�ed access to card

Myrinet Library HP-Myrinet Library Modi�ed access to

card and device driver

iomap Device Driver HP-UX Unchanged

LAM Device Driver HP Hamlyn Used only selected parts

LANai Control Sun-LAM Aligned in- & out-queues

Program (LCP)

Table 3.1: HP-LAM Software Components. HP-LAM consists of several components,

each component derived from an outside source.

the GAM library calls the handler function identi�ed by that message. If this is a request,

the handler is expected to return a reply to the source; if it doesn't, the AM library will

return a reply itself. If this is a reply, the message is considered delivered once the handler

�nishes executing.

Table 3.1 lists each component in the HP-LAM software and identi�es its origin.

The rest of this chapter describes each component in more detail.

3.1 GAM Library

The GAM library includes the functions that the nodes in a parallel program use

to communicate with each other. Nodes send and receive messages solely by calling GAM

library functions. A list of GAM functions appears in [9].

The parallel program must provide the handlers used by the GAM functions. The

GAM library and the handlers are linked into the program at compile-time; thus the GAM

functions and handlers are executed as part of the program image in user-space.

An active message consists of two parts, a request and a reply. In HP-LAM

requests and replies come in three sizes, short, medium, and bulk. Short messages

contain the source and destination node numbers, a pointer to the handler to be called

at the destination, and the handler arguments. Bulk messages contain in addition two

pointers, one pointing to data on the source node to be transferred to the destination, the

other pointing to where to deposit the data on the destination node. Medium messages

are similar to bulk messages except that they contain only a single pointer that points to

the data on the source node to be transferred. A medium message deposits the data in

the destination node's DMA copy block and gives the handler a pointer to the data. The

handler is expected to read the data from there.

HP-LAM uses credit-based ow control to prevent bu�er overow: each node in

the parallel program may have no more than n messages outstanding at a time. Each node

begins with n credits. When a source node issues a request, it grabs a credit; when a reply

is received, the credit is released. If all of the credits on a node are in use when it issues

a request, the request must wait until a credit becomes available. Thus the credit count

on a source node is modi�ed only when it sends a request or receives a reply. Requests are
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received and replies are sent by request handlers on the destination node, and they do not

modify the credit count.

The GAM library functions pass requests and replies to the Myrinet card by en-

queuing them in the out-queue in the card's local memory. To send a bulk message, the

data is �rst copied to the DMA copy block. The DMA copy block is divided into send-

and receive-partitions, and these partitions are divided into 4-kilobyte pages. Each page

in the send-partition is associated with one entry in the out-queue, and each page in the

receive-partition is associated with one entry in the in-queue. In a bulk send the GAM

function determines which is the next available entry in the out-queue, and it copies the

bulk data to the corresponding page in the send-partition. To send bulk data greater than

4 kilobytes, the GAM function divides the data into 4-kilobyte segments and sends each

segment using a separate request-reply pair.

The following procedure is used to send a message:

IF (medium or bulk message) AND (sizeof(transfer-data) > maximum allowed) THEN BEGIN

Break the transfer-data into several smaller blocks.
Transfer each block using a separate message, the last message calling the handler.

END IF

IF (request) THEN BEGIN

IF (no credits are currently available) THEN BEGIN
Wait until a credit becomes available; if none becomes available

after a speci�ed period, give up and return an error.
END IF

Decrement the credit count; i.e., grab a credit for this message.
END IF

IF (medium or bulk message) THEN BEGIN
Copy the transfer-data to the DMA copy block.

(Each out-queue entry has an address associated with it in the copy block.
The LCP will grab the data from this address after the message is enqueued.)

END IF

Enqueue the source and destination node numbers, the handler pointer, and the

handler arguments in the out-queue in the interface's local memory.

To receive messages, each node in the parallel program must regularly call any

GAM library function. All GAM functions implicitely poll the in-queue. If a node would not

otherwise call any GAM function for an extended time, it must call the function am poll()

to explicitely check the in-queue. When any received messages are found, they are delivered

as follows:

BEGIN LOOP
Check the in-queue in the interface's local memory for any received messages.
IF (no received messages) THEN RETURN.

Dequeue a message from the in-queue.

IF (message has a CRC error) THEN BEGIN

Report the CRC error.
Discard the message.

END
ELSE BEGIN
IF (bulk message) THEN BEGIN
Copy the transfer-data from the DMA copy block to
the destination address indicated in the message.
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(As with the out-queue, each entry in the in-queue has an address associated
with it in the copy block|the LCP will have already put the data there.)

END IF

Call the handler.
(If this is a medium message, the handler is expected to read the transfer-data directly out
of the copy block. The message is considered delivered once the handler �nishes executing.)

IF (request) THEN BEGIN
IF (request handler didn't return a reply) THEN
Send a reply to the source.

END IF
END
ELSE IF (reply) THEN BEGIN
Increment the credit count; i.e., release the credit associated with this message.

END IF
END IF

END LOOP

Note that this procedure drains all of the messages in the in-queue before returning.

In a bulk message the bulk data is deposited in the DMA copy block receive-

partition page that is associated with the in-queue entry that holds the message. The

GAM function copies the bulk data from this page to the address indicated in the message

before it calls the handler. In a medium message the GAM function passes a pointer to the

receive-partition page to the handler, and the handler is expected to read the data from

there.

The GAM library used in HP-LAM was derived from the library used in Sun-LAM.

In adapting the Sun-LAM GAM library to HP-LAM, the library needed to be substantially

rewritten to accomodate the Myrinet interface's local memory windowing mechanism (sec.

2.3). Since there are three Page Map registers, each register is dedicated to a particular

type of access:

� Page window 1 is used to access the in-queue. Since the GAM library delivers messages

serially, only one in-queue entry is accessed at a time. After each message is read from

the in-queue, the in-queue pointer is incremented and Page Map register 1 is updated.

� Page window 2 is used to access the out-queue in the same manner as the in-queue.

After each message is written to the out-queue, the out-queue pointer is incremented

and Page Map register 2 is updated.

� Page window 3 is used for all other Myrinet card accesses, none of which are on the

critical path of sending and receiving messages. Page Map register 3 is updated with

every read and write to the local memory.

3.2 Myrinet Library

The Myrinet library contains low-level functions for accessing and controlling the

Myrinet interface card. These functions allow the user to reset and initialize the card, read

and write to the Slipstream and glue chip registers, access local memory, and enable and

disable interrupts (not used by HP-LAM). The library also provides functions for creating
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and managing the DMA copy block. The Myrinet library is linked into the parallel program

at compile-time and is thus executed in user-space.

It isn't necessary to use the Myrinet library for all accesses to the interface card.

Once access is �rst established, the card can be accessed directly using memory-mapped

I/O. The GAM library calls the Myrinet library to initialize the card and download the

LCP. The Myrinet library isn't used, however, for sending and receiving messages.

The Myrinet library was derived from the HP library that Myricom provides with

their interface card. In adapting the library for HP-LAM, I changed it substantially in the

way it creates and manages the DMA copy block. The original library allocated the copy

block by calling mmap() on the /dev/kmem device special �le. This is the method used in

Sun-LAM; it is a simple, elegant hack that allows the user to access a memory block in

kernel virtual address space. HP-UX, however, doesn't allow mmap() to be called on device

special �les. Instead, it was necessary for me to create a device driver (sec. 3.4) to manage

the copy block. The Myrinet library now calls brk() to create the copy block in user-space

and then calls the LAM device driver to wire down the copy block and map a GSC+ address

range to it.

3.3 iomap Device Driver

The iomap device driver is a standard HP-UX driver that the GAM and Myrinet

libraries use to establish access the Myrinet interface card. iomap is the generic mechanism

used to access all peripheral devices; it maps the device's memory image into the kernel or

an application's virtual address space.

The Myrinet library establishes access to the interface card by calling the open()

and ioctl() system functions. These calls are routed to the iomap driver; it grants non-

shared access to the card and maps the card's memory image (see Figure 2.5) into the

program's address space.

The iomap driver used by HP-LAM is the standard HP-UX ver. 10.00 driver; it

required no modi�cation.

3.4 LAM Device Driver

The sole purpose of the LAM device driver is to manage the DMA copy block. In

order to make the copy block accessible to the interface card's host-DMA engine, it must be

\wired down;" that is, the block must be made non-pageable so that physical memory will

always be assigned to the block for the card's DMA engine to access. The block must also be

mapped into GSC+ address space to make it accessible by the card. Finally, the program

must not be swapped out of main memory. In HP-UX, these are privileged operations

available only to the kernel. The LAM device driver was created to make them available to

HP-LAM.

After the Myrinet library creates the DMA copy block in user-space, it opens a

connection to the LAM driver by calling open() on a device special �le linked to the driver.

The library then passes a pointer to the block to the driver using ioctl().
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The driver �rst checks the validity of the block: that the block is contained in

the program's data segment, that the block is read/write-accessible by the program, and

that the program hasn't already opened another block. Once satis�ed, the driver makes the

program non-swappable. Next, the driver touches each page in the copy block to associate

it with a page of physical memory, and it then calls the kernel function mlockpreg() to

wire down the pages (i.e., make them non-pageable). Finally, the driver maps the block

into GSC+ address space by adding entries to the U2 bus adapter's [29] page tables (these

are a subset of the system's page tables).

After completing this there are four addresses for the DMA copy block: in user

virtual address space, in kernel virtual address space, the physical memory address, and in

GSC+ address space. The driver returns the GSC+ address to the Myrinet library for it

to pass on to the LCP.

The LAM device driver wouldn't be needed at all if host-LANai DMAweren't used.

Early versions of HP-LAM didn't use DMA, but it was added to improve the performance

of bulk transfers.

I wrote the LAM device driver myrself using similar functions in HP Labs' Hamlyn

[6] device driver as reference.

3.5 LANai Control Program (LCP)

The LCP runs in the LANai processor core. It marshalls the LANai's resources to

send and receive messages. In essence the LCP makes the LANai acts as two queues, one

outbound to the network, the other inbound.

The LCP consists of two separate, independently running threads: the send-

thread and the receive-thread. Both threads essentially act as producer-consumer queues

for messages passing between the GAM library and the network. The two threads are time-

shared in the LANai processor core, and the receive-thread is given higher priority to ensure

that the network drains properly and remains deadlock-free.

The send-thread executes the following algorithm:

BEGIN LOOP
IF (message is in the out-queue) THEN BEGIN
Dequeue the message from the out-queue.

Fetch the destination route from the routing table in local memory.
Write the route and the message to the network link using the send-DMA engine.

IF (bulk or medium message) THEN BEGIN
IF (this message's transfer data hasn't already been prefetched) THEN
Copy the transfer data from the DMA copy block to
the bulk send bu�er using the host-DMA engine.

Check the next message in the out-queue.

IF (bulk or medium message)
Prefetch the next message's transfer data from
the DMA copy block using the host-DMA engine.

Copy the transfer data to the network link using the send-DMA engine.
END IF

Mark the end-of-message in order to add a CRC byte to the message.
END IF



25

END LOOP

Note that the send-thread tries to prefetch the next message's transfer data in

order to increase throughput.

The receive-thread executes a similar algorithm:

BEGIN LOOP
IF (incoming message pending) THEN BEGIN
IF (in-queue is full) THEN
Drop the message.

ELSE BEGIN
Use the receive-DMA engine to copy the message header
in from the network link to the in-queue.

IF (short message) THEN BEGIN
IF (CRC error) THEN
Drop the message.

ELSE
Mark the message in the in-queue as received.

END

ELSE IF (bulk or medium message) THEN BEGIN
IF (transfer data would overow the bulk receive bu�er in local memory) THEN

Drop the message.
ELSE BEGIN

Use the receive-DMA engine to read the transfer data
in from the network link to the bulk receive bu�er.

IF (CRC error) THEN
Drop the message and the transfer data.

ELSE BEGIN
Use the host-DMA engine to write the transfer data

from the bulk receive bu�er to the DMA copy block.
Mark the message header in the in-queue as received.

END IF

END IF
END IF

END IF
END IF

END LOOP

Note that the receive-thread will drop messages if either the in-queue or the bulk

receive bu�er in local memory are full. The GAM library implements a credit-based ow

control mechanism that should prevent this from ever happening (sec. 3.1), but it was still

included to make sure the network won't deadlock.

The HP-LAM LCP was taken from the Sun-LAM LCP for LANai ver. 4.0 (L4LCP).

The only change needed was to accomodate the new windowing scheme (sec. 3.1). In order

to allow every word in a queue entry to be accessed without having to set the Page Map

register for each one, the queues were aligned so that individual entries don't straddle page

boundaries. This allows the Page Map register to be set once to access the entire queue

entry.

3.6 Discussion

Despite GAM's complexity and interdependence with other software layers, it is

mature enough that porting it to a new platform was relatively easy. I had HP-LAM
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without DMA support working on the 9000/J200 after a few weeks' e�ort. Supporting DMA

transfers between the Myrinet card and main memory, however, was a major challenge. The

HP-UX operating system presented several obstacles:

� HP-UX doesn't provide any user-level functions for wiring down memory pages or for

mapping pages into GSC+-bus address space. I had to write my own device driver

to do it. Moreover, there is no assurance that the method I used will be upward-

compatible; HP-LAM is guaranteed to work only with HP-UX ver. 10.00.

� HP-UX doesn't support the dynamic installation of device drivers. After being recom-

piled, a driver must be linked into the kernel and the system rebooted. This turned

out to be quite a nuisance during debug.

� The mmap() function can't be called on device special �les such as /dev/kmem (see

sec. 3.2).

I present these to the HP-UX operating system development group as suggestions

for future enhancements.

During development I tried several methods of accomodating the local mem-

ory windowing mechanism. The �rst working version used the Myrinet library functions

lanai read word() and lanai write word() for all accesses to local memory. Each call to

these functions sets Page Map register 3 to the desired page of local meory and accesses the

desired o�set through Page window 3. The overhead of setting the Page Map register with

each access caused the performance of this version to be poor, which led me to develop the

present method (sec. 3.1).
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Chapter 4

Performance

This section describes the functionality and performance tests done on HP-LAM.

It gives interpretations on the results, and it compares the performance of HP-LAM to that

of other GAM implementations.

There are three groups of tests: the GAM basic benchmarks, the LogP tests,

and several split-C applications. Every GAM implementation mentioned in this report,

including HP-LAM, passes every test described.

4.1 GAM Basic Benchmarks

The GAM basic benchmarks verify that the GAM software is functioning correctly.

They are the �rst software tests applied to any GAM implementation. The benchmarks

also yield the average round-trip time (RTT) for small messages and the average bandwidth

(BW) for bulk messages. The benchmark suite contains the following tests:

� The ping pong test sends a number of messages between two nodes and measures the

average RTT. The �rst node sends an am request() to the second node; the second

node's request handler sends an am reply() back to the �rst node. This is repeated

n times; average RTT = total time / n.

� The ping bulk and thru bulk tests measure the average BW between two nodes. In

ping bulk, the �rst node calls am store() to do a bulk transfer to the second node.

The second node's request handler then calls am reply xfer() to do a bulk transfer

back to the �rst node. This is repeated n times; average BW = 2n * packet size /

total time. thru bulk works slightly di�erently: the source node calls am store() to

the destination node n times without waiting for each transfer to complete. thru bulk

exposes the network BW by �lling the network to its capacity, e�ectively causing each

am store() to block until the network can absorb another bulk message. Average BW

= n * packet size / total time.

� test xfer and test med are torture tests for the GAM software and network hard-

ware. test xfer performs the following sequence of tests:
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Write Time, nsec Read Time, nsec

Main Memory 20 20

Slipstream 133 595

Glue Chip 183 627

Local Memory 183 691

Table 4.1: Myrinet Interface Card Access Times. These are average times for the

host processor to perform reads and writes to various components on the card. The time

for the host processor to access main memory is given for comparison.

1. 1-to-1. Two nodes perform a number of am get()s and am store()s between

themselves. The transferred data is checked for correctness. Surrounding mem-

ory regions are checked that no data was written outside of the destination blocks.

2. All-to-1. All nodes perform a number of am get()s and am store()s to node

0. Again, all of the transferred data is checked for correctness.

3. All-to-all. All of the nodes perform a number of am get()s and am store()s

to each other. The transferred data is checked as before.

test med is identical to test xfer except that it uses medium instead of bulk mes-

sages.

These tests show that the RTT for HP-LAM is 28.1 �sec, and the BW is 24.0

MB/sec. One may �nd these disappointing, given that the nominal BW for the GSC+

bus is 160 MB/sec and for Myrinet is 80 MB/sec.

A study of the RTT is revealing. Table 4.1 shows the times to read and write

various components on the Myrinet interface card. The values show that the time for

performing the simplest access to the card, a write to a Slipstream register, is 113 nsec

greater than the time to access main memory. This is clearly a result of the write transaction

having to cross from the system bus to the GSC+ bus. More surprising is the time for the

host processor to read from the card. The fastest read, a read from a Slipstream register,

takes 575 nsec longer than a read from main memory. This is caused by the double-penalty

of the read transaction crossing from the system bus to the GSC+ bus and the data having

to cross back.

From this it is easy to see how the RTT accumulates so quickly. Each in-queue

and out-queue entry contains eight words. Accessing a queue entry requires one write to

set the Page Map register followed by eight reads or writes to the card's local memory. The

round time for an active messages entails enqueuing the request at the source, dequeuing

the request and enqueuing the reply at the destination, and dequeuing the reply at the

source. The time for these accesses alone adds up to 14.7 �sec. Add in the time spent

formatting the messages, polling the queues, and executing the handlers, it isn't surprising

that the RTT is 28.1 �sec.

The low BW is also a result of the overhead of crossing between busses. Recall

that a DMA transfer consists of a series of eight-word bursts. In a host-to-local-memory
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Figure 4.1: HP-LAM LogP Performance Plots.

DMA transfer, the read request from the LANai's host-DMA engine must cross the card's

EBus and TSI bus and the system's GSC+ bus and system bus to reach memory. Data

must return across this path before being stored in the local memory. Even with each burst

moving eight words of data, it is apparent that a high percentage of bus cycles will be spent

passing transactions and waiting for replies, not actually moving data.

4.2 LogP

The LogP network performance model [8] breaks down the RTT for small mes-

sages into four components. Send overhead os and receive overhead or are the amount of

processing time the source and destination host processors devote to sending and receiving

each message, respectively. Latency L is the time a message spends traversing the network

without occupying either the source or destination processor. The fourth parameter, the

gap g, indicates the capacity of the network and is inversely proportional to the bandwidth.

g indicates the minimum amount of time between the sending of adjacent messages. The

LogP parameters are especially useful for comparing the performance of analogous compo-

nents in di�erent GAM implementations. For example, if the send overhead for a particular

implementation were found to be especially low, it would encourage investigation into how

such performance was achieved.

Figure 4.1 shows the LogP signature plot for HP-LAM. From these we derive

the LogP parameters which are given in Table 4.2. Table 4.2 also compares HP-LAM's

RTT, BW, and LogP parameters to those of four other GAM platforms: Sun-LAM on the

SparcStation-20 and the Ultra-1, the Intel Paragon, and the Meiko CS-2 [10].

Figure 4.1 illustrates how the LogP parameters are extracted from the plot. The
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HP-LAM Sun-LAM Sun-LAM Intel Meiko

on SS-20 on Ultra-1 Paragon CS-2

Round-trip time (RTT, �sec) 28.1 31.0 25.0 20.0 20.9

Bandwidth (BW, MB/sec) 24 20 38 145 45

Latency (L, �sec) 5.3 11.2 5.5 6.5 7.5

Send overhead (os, �sec) 2.9 2.0 2.0 1.4 1.7

Receive overhead (or, �sec) 5.8 2.6 5.0 2.2 1.6

Gap (g, �sec) 8.7 12.4 7.0 7.6 13.6

Table 4.2: RTT, BW, and LogP Parameters for Five GAM Platforms.

send overhead os is the time between sending adjacent minimum-sized messages, as is seen

on the left side of the plot. The gap g is the time between sending adjacent maximum-size

messages, as seen on the right side of the plot. The receive overhead or is found by adding

an interval called delta-time between the sending of each message until the gap g begins

increasing. In this plot the gap begins increasing with the addition of any delta-time, which

indicates the gap consists entirely of send and receive overhead as shown. The latency L is

calculated from the other parameters. The time for a one-way trip RTT/2 is made up of

os, or, and L, L: os + or + L = RTT/2. (A complete explanation of how LogP parameters

are obtained is given in [10].)

The comparison of HP-LAM's and Sun-LAM's performance is signi�cant, since the

platforms are so similar. Send and receive overheads are higher for HP-LAM than for either

version of Sun-LAM. This is most likely because transactions between the host processor

and the Myrinet card must pass through more interfaces in the 9000/J200 than in either

Sun platform. HP-LAM's latency is half that of Sun-LAM's on the SparcStation-20 and

about equal to that on the Ultra-1. This is most likely due to the fact that the 9000/J200's

LANai is clocked at 40 MHz, the SparcStation-20's at 25 MHz, and the Ultra-1's at 37.5

MHz.

4.3 Split-C Applications

Split-C [7] is a parallel extension of the C programming language developed at

U. C. Berkeley. Split-C creates the image of a global address space in an MPP or a cluster

of workstations. It provides global access primitives and simple parallel storage layout

declarations. Split-C uses message-passing to create this global image: each node in the

cluster implements a fraction of the global address space in its local memory, and a node

accesses global addresses by passing messages to the nodes that own each address.

Split-C uses GAM as its message-passing layer, which means it can be used on any

platform that supports GAM. Running Split-C programs on a GAM platform is a major

proof of the implementation's correctness and performance.

Table 4.3 shows the performance values obtained running the Split-C application

radix sort on three platforms: the HP 9000/J200 and HP-LAM, and Sun SparcStation-20
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HP-LAM Sun-LAM Sun-LAM

on SS-20 on Ultra-1

Fill (sec) 0.14 0.56 0.13

Pass 1 Wave-scan (sec) 1.04 0.88 0.95

Coalesce (sec) 9.84 8.99 7.78

Fill (sec) 0.12 0.25 0.09

Pass 2 Wave-scan (sec) 1.03 0.80 0.93

Coalesce (sec) 0.65 1.18 0.27

TOTAL (sec) 12.82 12.66 10.14

Table 4.3: Performance of radix sort on HP-LAM and Sun-LAM. Radix sort

is run in two passes, each pass consisting of a compute-intensive phase, �ll, and two

communication-intensive phases, wave-scan and coalesce.

and Sun-LAM. Radix sort is run in two passes. Each pass consists of one compute-intensive

phase, �ll, and two communication-intensive phases, wave-scan and coalesce.

Table 4.3 shows that HP-LAM's performance of the compute-intensive �ll phase

is between 2 and 4 times faster than Sun-LAM's on the SparcStation-20, and it is com-

parable to Sun-LAM's performance on the Ultra-1. This is not surprising given that the

9000/J200 uses a 120-MHz PA-7200 processor, the SparcStation-20 a 50-MHz SuperSparc

processor, and the Ultra-1 a 167-MHz UltraSparc processor. What is surprising is that

the performance of the communication-intensive wave-scan and coalesce phases is actually

slower for the 9000/J200 than for either Sun workstation. This is no doubt due in part

to the 9000/J200's high overhead of transferring data between the host processor and the

Myrinet card. However, this result was unexpected and deserves further investigation.

4.4 Discussion

In this chapter we have seen that the Myrinet interface card and HP-LAM work

correctly and achieve performance comparable to that of other GAM implementations. We

have also seen, however, that the performance is less than it could be. It is clear that the

9000/J200's I/O architecture limits a peripheral's performance, and that the multi-stage

interface design of the Myrinet interface card limits performance further. The GSC+ bus

advertizes potential bandwidth of 160 MB/sec, the Myrinet links 80 MB/sec, yet HP-LAM

is able to achieve 24 MB/sec. In order for a network interface to begin approaching these

performance values, a way must be found to remove these layers of ine�ciency and integrate

the network interface closer to the host processor.
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Chapter 5

Summary

In this report I described the design of the Myrinet interface card hardware and the

HP-LAM software. I measured the performance of HP-LAM in terms of LogP parameters

and in terms of execution time for a Split-C application, and I compared these performance

values to those of other GAM implementations. I showed how HP-LAM's performance is

comparable to those of the other implementations, but it is nonetheless limited by ine�-

ciencies in transferring data over the peripheral bus and through the card's multi-layer bus

interface.

I cited the di�culties encountered in this project because of the challenges in in-

terfacing HP's GSC+ bus to Myricom's EBus. Both are proprietary busses, and interfacing

them turned out to be a major challenge that required designing a cumbersome two-layer

translator. I also cited the challenges caused by features lacking from the HP-UX operating

system that I feel it should include.

Finally, I pointed to the directions that future work in this area should take: that

in order for high-speed networks to begin realizing their potential performance, the network

interface must be more tightly integrated into the system architecture to remove the current

layers of ine�ciency.
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