
An Asynchronous Parallel Supernodal Algorithm for

Sparse Gaussian Elimination

James W. Demmel� John R. Gilberty Xiaoye S. Liz

February 27, 1997

Abstract

Although Gaussian elimination with partial pivoting is a robust algorithm to solve unsym-
metric sparse linear systems of equations, it is di�cult to implement e�ciently on parallel
machines, because of its dynamic and somewhat unpredictable way of generating work and in-
termediate results at run time. In this paper, we present an e�cient parallel algorithm that
overcomes this di�culty. The high performance of our algorithm is achieved through (1) using a
graph reduction technique and a supernode-panel computational kernel for high single processor
utilization, and (2) scheduling two types of parallel tasks for a high level of concurrency. One
such task is factoring the independent panels on the disjoint subtrees in the column elimination
tree of A. Another task is updating a panel by previously computed supernodes. A scheduler
assigns tasks to free processors dynamically and facilitates the smooth transition between the
two types of parallel tasks. No global synchronization is used in the algorithm. The algorithm
is well suited for shared memory machines (SMP) with a modest number of processors. We
demonstrate 4{7 fold speedups on a range of 8 processor SMPs, and more on larger SMPs. One
realistic problem arising from a 3-D
ow calculation achieves factorization rates of 1.0, 2.5, 0.8
and 0.8 Giga
ops, on the 12 processor Power Challenge, 8 processor Cray C90, 16 processor
Cray J90, and 8 processor AlphaServer 8400, respectively.

1 Introduction

In earlier work with Eisenstat and Liu, we described a publically released sequential software

library, SuperLU, to solve unsymmetric sparse linear systems using Gaussian elimination with

partial pivoting [5]. This left-looking, blocked algorithm includes symmetric structural reduction

for fast symbolic factorization, and supernode-panel updates to achieve better data reuse in cache

and
oating-point registers.

�Computer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.berkeley.edu). The research
of Demmel and Li was supported in part by NSF grant ASC{9313958, DOE grant DE{FG03{94ER25219, UT

Subcontract No. ORA4466 from ARPA Contract No. DAAL03{91{C0047, DOE grant DE{FG03{94ER25206, and

NSF Infrastructure grants CDA{8722788 and CDA{9401156.
yXerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (gilbert@parc.xerox.com). The

research of this author was supported in part by the Institute for Mathematics and Its Applications at the University of

Minnesota and in part by DARPA Contract No. DABT63-95-C0087. Copyright c
 1994-1997 by Xerox Corporation.

All rights reserved.
zNational Energy Research Scienti�c Computing (NERSC) Center, Lawrence Berkeley National Lab, 1 Cyclotron

Rd, Berkeley, CA 94720 (xiaoye@nersc.gov). This work was supported in part by the Director, O�ce of Compu-

tational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S.

Department of Energy under contract number 76SF00098.

1

In this paper we study an e�cient parallel algorithm based on SuperLU. The primary objective

of this work is to achieve good e�ciency on shared memory systems with a modest number of

processors (for example, between 10 and 20). In addition to measuring the e�ciency of our parallel

algorithm on these machines, we also study a theoretical upper bound on performance of this

algorithm. The e�ciency of the algorithm has been demonstrated on several shared memory parallel

machines. When compared to the best sequential runtime of SuperLU, the parallel algorithm

typically achieved 4 to 7 speedups on 8 processors platforms, for large sparse matrices.

The rest of the paper is organized as follows. In Section 2 we review the sequential SuperLU

algorithm. Section 3 presents the sources and the characteristics of the test matrices. Section 4

presents the parallel machines used in our study. In Section 5 we describe several design choices

we have made in parallelization, including how to �nd parallelism, how to de�ne individual tasks

and memory management for supernodes. Section 6 sketches the high-level parallel scheduling

algorithm. In Section 7, we present the parallel performance achieved with the test matrices on a

number of platforms. Both time and space e�ciency will be illustrated. We also quantify the sources

of the overhead in parallelization, and give a thorough analysis of their impact on performance. In

the end of this section we establish a PRAM (Parallel Random-Access Machine) model to predict

an upper bound on speedups attainable by the proposed algorithm. Finally, Section 8 draws

conclusions and suggests future research.

2 Overview of sequential algorithm in SuperLU

Figure 1 sketches the supernode-panel factorization algorithm used in SuperLU. A supernode is

de�ned to be a range (r: s) of columns of L with the triangular block just below the diagonal being

full, and with the same row structure below this block. We store a supernode as a rectangular

block, including the triangle of U in rows and columns r through s, see Figure 2. This allows us

to address each supernode as a two-dimensional array in calls to BLAS routines [6, 7], and so

get high performance. To increase the average size of supernodes (and hence performance), we

merge groups of consecutive columns (usually no more than 4 columns) at the fringe of the column

elimination tree (Section 5.1) into relaxed supernode regardless of their row structures. A panel is

a block of w consecutive columns in the matrix which are updated simultaneously by a supernode

using calls to the BLAS. The row structures of the columns in a panel may not be correlated in

any fashion, and the boundaries between panels may be di�erent from those between supernodes.

Each panel factorization, outer loop i n Figure 1, consists of three distinct steps: (1) the symbolic

factorization to determine the nonzero structure, (2) the numerical updates by supernodes, and

(3) the factorization of each column in the panel. The pivot selection, detection of the supernode

boundary, and symmetric structure reduction (to reduce the cost of later symbolic factorization

steps) are all performed in the inner factorization step. Both panel and column symbolic steps use

depth-�rst search (DFS). A further re�nement, a two-dimensional supernode partitioning (de�ned

by the blocking parameters t and b in Figure 2), enhances performance for large matrices and

machines with small caches. A more detailed description of SuperLU is in the paper [5].

We conducted extensive performance evaluation for SuperLU on several recent superscalar ar-

chitectures. For large sparse matrices, SuperLU achieves up to 40% of the peak
oating-point

performance on both IBM RS/6000-590 and MIPS R8000. It achieves nearly 25% peak on the

DEC Alpha 21164. More details can be found in [24].

2

for column j = 1 to n step w do

F (:; j : j + w � 1) = A(:; j : j + w � 1);

(1) Predict the nonzero structure of panel F (:; j : j + w � 1):

Determine which supernodes will update any of F (: ; j: j+ w � 1);

(2) Update panel F (:; j : j + w � 1) using previous supernodes:

for each updating supernode (r: s) < j in topological order do

� Triangular solve:

U(r : s; j : j + w � 1) = L(r : s; r : s)nF (r : s; j : j + w � 1);

� Matrix update:

F (s + 1 : n; j : j + w� 1) = F (s + 1 : n; j : j + w � 1)�

L(s+ 1 : n; r : s) � U(r : s; j : j + w � 1);

end for (r : s);

(3) Inner factorization for each column in the panel:

for column jj = j to jj + w � 1 do

� Supernode-column update for column F (j : n; jj);

� Row pivoting for column F (jj : n; jj);

� Determine whether jj belongs to the same supernode as jj � 1;

� Symmetric structure pruning;

end for jj;

end for j;

Figure 1: The supernode-panel factorization algorithm.

W

t

t

b

b

r s

j j+w-1

U

L

JJ

JJ

Lj:n J

PanelSupernode

Figure 2: Illustration of a supernode-panel update. J = 1: j � 1.

3

3 Test matrices

To evaluate our algorithms, we have collected matrices from various sources, with their character-

istics summarized in Table 1.

Some of the matrices are from the Harwell-Boeing collection [8]. Many of the larger matrices

are from the ftp site maintained by Tim Davis of the University of Florida.1 Those matrices are as

follows. Memplus is a circuit simulation matrix from Steve Hamm of Motorola. Rdist1 is a reac-

tive distillation problem in chemical process separation calculations, provided by Stephen Zitney at

Cray Research, Inc. Shyy161 is derived from a direct, fully-coupled method for solving the Navier-

Stokes equations for viscous
ow calculations, provided by Wei Shyy of the University of Florida.

Goodwin is a �nite element matrix in a nonlinear solver for a
uid mechanics problem, provided

by Ralph Goodwin of the University of Illinois at Urbana-Champaign. Venkat01, Inaccura and

Raefsky3/4 were provided by Horst Simon then of NASA and currently at NERSC. Venkat01

comes from an implicit 2-D Euler solver for an unstructured grid in a
ow simulation. Raefsky3

is from a
uid structure interaction turbulence problem. Raefsky4 is from a buckling problem

for a container model. Af23560 is from solving an unsymmetric eigenvalue problem, provided by

Zhaojun Bai of the University of Kentucky. Ex11 is from a 3-D steady
ow calculation in the

SPARSKIT collection maintained by Youcef Saad at the University of Minnesota. Wang3 is from

solving a coupled nonlinear PDE system in a 3-D (30�30�30 uniform mesh) semiconductor device

simulation, as provided by Song Wang of the University of New South Wales, Sydney. Vavasis3 is

an unsymmetric augmented matrix for a 2-D PDE with highly varying coe�cients [31]. Dense1000

is a dense 1000� 1000 random matrix.

This paper does not address the performance of column preordering for sparsity. We simply

use the existing ordering algorithms provided by Matlab [17]. For all matrices except 1, 15 and

21, the columns were permuted by Matlab's minimum degree ordering of ATA, also known as

\column minimum degree" ordering. However, this ordering produces a tremendous amount of �ll

for matrices 1, 15 and 21, because it only attempts to minimize the upper bound on the actual �ll

and the upper bounds are too loose in these cases. We found that when these three matrices were

symmetrically permuted by Matlab's symmetric minimum degree ordering on A+AT , the amount

of �ll is much smaller than using column minimum degree ordering. The last column in Table 1

shows the number of nonzeros in matrix F when using these column preorderings.

The matrices are sorted in increasing order of flops=nnz(F), the ratio of the number of
oating-

point operations to the number of nonzeros nnz(F). This \�gure of merit" gives the maximum

potential data reuse, as described in [5]. Thus, we expect our performance to increase with increas-

ing flops=nnz(F).

4 Shared memory multiprocessor systems used for testing

We evaluated the parallel algorithm on several commercially popular machines, including the

Sun SPARCcenter 2000 [30], SGI Power Challenge [29], DEC AlphaServer 8400 [11], and Cray

C90/J90 [32, 33]. Table 2 summarizes the con�gurations and several key parameters of the �ve

parallel systems. In the column \Bus Bandwidth" we report the e�ective or sustainable bandwidth

to main memory. In \Read Latency" we report the minimum amount of time it takes a processor

to fetch a piece of data from main memory into a register in response to a load instruction.

The last column in the table shows the programming model used to enable multiprocessing.

All the systems provide lightweight multithreading or multitasking libraries. Synchronization and

1URL: http://www.cis.u
.edu/�davis.

4

Matrix s n nnz(A) nnz(A)
n

nnz(F) #
ops/nnz(F)

1 Memplus .983 17758 99147 5.6 140388 12.5
2 Gemat11 .002 4929 33185 6.7 93370 16.3
3 Rdist1 .062 4134 9408 2.3 338624 38.1
4 Orani678 .073 2529 90158 35.6 280788 53.3
5 Mcfe .709 765 24382 31.8 69053 59.9
6 Lnsp3937 .869 3937 25407 6.5 427600 91.1
7 Lns 3937 .869 3937 25407 6.5 449346 99.7
8 Sherman5 .780 3312 20793 6.3 249199 101.3
9 Jpwh 991 .947 991 6027 6.1 140746 127.7
10 Sherman3 1.000 5005 20033 4.0 433376 139.8
11 Orsreg 1 1.000 2205 14133 6.4 402478 148.6
12 Saylr4 1.000 3564 22316 6.3 654908 160.0
13 Shyy161 .769 76480 329762 4.3 7634810 205.8
14 Goodwin .642 7320 324772 44.4 3109585 213.9
15 Venkat01 1.000 62424 1717792 27.5 12987004 247.9
16 Inaccura 1.000 16146 1015156 62.9 9941478 414.3
17 Af23560 .947 23560 460598 19.6 13986992 454.9
18 Dense1000 1.000 1000 1000000 1000 1000000 666.2
19 Raefsky3 1.000 21200 1488768 70.2 17544134 690.7
20 Ex11 1.000 16614 1096948 66.0 26207974 1023.1
21 Wang3 1.000 26064 177168 6.8 13287108 1095.5
22 Raefsky4 1.000 19779 1316789 66.6 26678597 1172.6
23 Vavasis3 .001 41092 1683902 41.0 49192880 1813.5

Table 1: Characteristics of the test matrices. Structural symmetry s is de�ned to be the fraction

of the nonzeros matched by nonzeros in symmetric locations. None of the matrices are numerically

symmetric. nnz(A) is the number of nonzeros in A. F = L + U � I is the �lled matrix, and I is

an identity matrix.

5

Bus Read Memory Programming
Machine Processor CPUs Bandwidth Latency Size Model

Sun SPARCcenter 2000 SuperSPARC 4 500 MB/s 1200 ns 196 MB Solaris thread
SGI Power Challenge MIPS R8000 16 1.2 GB/s 252 ns 2 GB Parallel C
DEC AlphaServer 8400 Alpha 21164 8 1.6 GB/s 260 ns 4 GB pthread
Cray PVP C90 8 245.8 GB/s 96 ns 640 MB microtasking
Cray PVP J90 16 51.2 GB/s 330 ns 640 MB microtasking

Table 2: Characteristics of the parallel machines used in our study.

Clock On-chip External #Flops/ Peak DGEMM DGEMV

MHz Cache Cache 1 cycle M
ops M
ops M
ops

MIPS R8000 90 16 KB 4 MB 4 360 340 210
Alpha 21164 300 8 KB-L1 4 MB 2 600 350 135

96 KB-L2
SuperSPARC 50 16 KB 1 MB 1 50 45� {
C90 240 { { 4 960 900 890
J90 100 { { 2 200 190 167

Table 3: Some characteristics of the processors used in the parallel systems.

context switching of the threads are accomplished rapidly at the user level, without entering

the OS kernel. For P processors, we usually create P (logical) threads for the scheduling loop

Slave worker() (Figure 10). Scheduling these threads on available physical processors is done by

the operating system or runtime library. Thread migration between processors is usually invisible

to us. The program is easily portable to multiple platforms. The source codes on di�erent machines

di�er only in thread spawning and locking primitives.

Table 3 summarizes the characteristics of the individual processors in the parallel machines,

including the clock speed, the cache size, the peak M
op rate, and the DGEMM and DGEMV

peak M
op rate. Most DGEMM and DGEMV M
op rates were measured using vendor-supplied

BLAS libraries. When the vendors do not provide a BLAS library, we report the results from

PHiPAC [4], with an asterisk (�) beside such a number. For some machines, PHiPAC is often faster

than the vendor-supplied DGEMM.

5 Parallel strategies

In this section, we present crucial design choices we have made to parallelize SuperLU, such as,

how we shall exploit both coarse and �ne levels of parallelism, how we shall de�ne the individual

tasks, and how we shall deal with the issue of dynamic memory growth.

In order to make the parallel algorithm e�cient, we need to make non-trivial modi�cations to

serial SuperLU. All these changes are summarized in Table 4 and discussed in the subsections below.

These show that the parallel algorithm is not a straightforward parallelization of the serial one, and

illustrate the program complications arising from parallelization. In the performance evaluation,

we will time various parts of the algorithms. The time notation to be used is listed in Table 5.

6

Construct Parallel algorithm

panel restricted so it does not contain branchings in the etree (Section 5.2)

supernode restricted to be a fundamental supernode in the etree (Section 5.3)

supernode storage use either static or dynamic upper bound (Section 5.3)

pruning & DFS use both G(LT) and pruned G(LT) to avoid locking (Section 5.4)

Table 4: The di�erences of the parallel algorithm from serial SuperLU.

Notation Meaning

Ts SuperLU best serial time

T 0

s
SuperLU serial time with smaller blocking tuned for parallel code

T
1

execution time of the parallel code on one processor

TP parallel execution time on P processors

TI total idle time of all processors

Table 5: The di�erences of the parallel algorithm from serial SuperLU.

5.1 Parallelism

We exploit two sources of parallelism in the sparse LU factorization. The coarse level parallelism

comes from the sparsity of the matrix, and is exposed to us by the column elimination tree (or

column etree for short) of A. The vertices of this tree are the integers 1 through n, representing

the columns of A. The column etree of A is the (symmetric) elimination tree of ATA provided

there is no cancellation in computing ATA. More speci�cally, if Lc denotes the Cholesky factor of

ATA, then the parent of vertex j is the row index i of the �rst nonzero entry below the diagonal

of column Lc(:; j). The column etree can be computed from A in time almost linear in the number

of nonzeros of A by a variation of an algorithm of Liu [25].

Theorem 1 (Column Elimination Tree) [18] Let A be a square, nonsingular, possibly unsym-

metric matrix, and let PA = LU be any factorization of A with pivoting by row interchanges. Let

T be the column elimination tree of A.

1. If vertex i is an ancestor of vertex j in T , then i � j.

2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .

3. If uij 6= 0, then vertex j is an ancestor of vertex i in T .

4. Suppose in addition that A is strong Hall (that is, it cannot be permuted to a nontrivial block

triangular form). If vertex j is the parent of vertex i in T , then there is some choice of values

for the nonzeros of A that makes uij 6= 0 when the factorization PA = LU is computed with

partial pivoting.

Since column i updates column j in LU factorization if and only if uij 6= 0, part 3 of Theorem 1

implies that the columns in di�erent subtrees do not update one another. Furthermore, the columns

in independent subtrees can be computed without referring to any common memory, because the

columns they depend on have completely disjoint row indices [19, Theorem 3.2]. It has been shown

in a series of studies [13, 14, 18, 19] that the column etree gives the information about all potential

dependencies.

7

In general we cannot predict the nonzero structure of U precisely before the factorization,

because the pivoting choice and hence the exact nonzero structure depend on numerical values.

The column etree can overestimate the true column dependencies. An example is

A =

0
BBB@
1 �

� 2 �

� 3 �

� 4

1
CCCA ;

in which the Cholesky factorLc ofA
TA is symbolically full, so the column etree is a single chain. But

if the numerical values are such that row 4 is selected as the pivot row at the �rst step of elimination,

column 1 will update neither column 2 nor column 3. Despite the possible overestimate, part 4 of

Theorem 1 says that if A is strong Hall, this dependency is the strongest information obtainable

from the structure of A alone.

Having studied the parallelism arising from di�erent subtrees, we now turn our attention to

the dependent columns, that is, the columns having ancestor-descendant relations. When the

elimination process proceeds to a stage where there are more processors than independent subtrees,

we need to make sure all processors work cooperatively on dependent columns. Thus the second

level of parallelism comes from pipelining the computations of the dependent columns.

Consider a simple situation with only two processors. Processor 1 gets a task Task 1 containing

column j, processor 2 gets another task Task 2 containing column k, and node j is a descendant of

node k in the etree. The (potential) dependency says only that Task 2 cannot �nish its execution

before Task 1 �nishes. However, processor 2 can start Task 2 right away with the computations not

involving column j; this includes performing the symbolic structure prediction and accumulating

the numeric updates using the �nished columns that are descendants in the etree. After processor

2 has �nished the other part of the computation, it has to wait for Task 1 to �nish. (If Task 1 is

already �nished at this moment, processor 2 does not waste any time waiting.) Then processor 2

will predict the new �lls and perform numeric updates that may result from the �nished columns

in Task 1. In this way, both processors do useful work concurrently while still preserving the

precedence constraint. Note that we assume the updates can be done in any order. This could give

di�erent (indeed, nondeterministic) numerical results from run to run.2

Although this pipelining mechanism is complicated to implement, it is essential to achieve higher

concurrency. This is because, in most problems, a large percentage of the computation occurs at

upper levels of the etree, where there are fewer branches than processors. An extreme example is a

dense matrix, the etree of which is a single chain. In this case, the parallel SuperLU \reduces to"

a pipelined column-oriented dense LU algorithm.

5.2 Panel tasks

As studied in [5], the introduction of supernodes and panels makes the computational kernels highly

e�cient. To retain the serial algorithm's ability to reuse data in cache and registers, we treat the

factorization of one panel as a unit task to be scheduled; it computes the part of U and the part of

L for all columns within this panel. Choosing a panel as scheduling unit a�ords the best granularity

on the SMPs we targeted, and requires only modest changes to the serial code [5]. The alternative,

2In order to guarantee determinism, we must statically assign the tasks to processors. The performance cost we

pay for determinism may be load imbalance and reduced parallelism. We are considering adding a debugging option
to the software that guarantees determinism.

8

(a) (b) (c)

Figure 3: Panel de�nition. (a) a relaxed supernode at the bottom of the column etree; (b) consec-

utive columns from part of one branch of the etree; (c) consecutive columns from more than one

branch of the etree.

blocking the matrix by rows and columns [22, 28], introduces too much synchronization overhead

to make it worthwhile on SMPs with modest parallelism.

A panel task consists of two distinct subtasks. The �rst corresponds to the outer factorization,

which accumulates the updates from the descendant supernodes. The second subtask is to perform

the panel's inner factorization. We exploit parallelism within the �rst subtask, but not the second.

Since the parallel algorithm uses the column etree as the main scheduling tool, it is worth

studying the relationship between the panels and the structure of the column etree. We assume

that the columns of the matrix are ordered according to a postorder on the column etree. We expect

a postorder on the column etree to bring together unsymmetric supernodes, just as a postorder

on the symmetric etree brings together symmetric supernodes. Pictorially, panels can be classi�ed

into three types, depending on where they are located in the etree, as illustrated in Figure 3.

In the pipelining algorithm, panels of type (c) complicates the record-keeping if a processor

owning this panel needs to wait for, and later perform, the updates from the busy panels down

the etree. To simplify this, we imposed two restrictions. We �rst restricted the de�nition of panels

so that type (c) panels do not occur. We will let a panel stop before a node (column) that has

more then one child in the etree. That is, every branching node necessarily starts a new panel.

Secondly, we make sure that all busy descendant panels always form one path in the etree. So the

processor waiting for these busy panels can simply walk up the path in the etree starting from the

most distant busy descendant.

By this restricted de�nition of panels, there will be more panels of smaller sizes. The question

arises whether this will hurt performance. We studied the distribution of
oating-point operations

on di�erent panel sizes for all of our test matrices, and observed that usually more than 95% of the

oating-point operations are performed in the panels of largest size, and these panels tend to occur

at a few topmost levels of the etree. Thus, panels of small sizes normally do not represent much

computation. On uniprocessors, we see almost identical performance using the earlier and the new

de�nitions of panels. Therefore, we believe that this restriction on panels simpli�es and accelerates

the parallel scheduling algorithm with little performance loss on individual processors.

5.3 Supernode storage using nonzero column counts in QR factorization

It is important to store the columns of a supernode consecutively in memory, so that we can call

BLAS routines directly in-place without paying the cost of copying the columns into contiguous

memory. Although this contiguity is easy to achieve in a sequential code, it poses problems in the

parallel algorithm.

9

P1

P2 P3
1

2

3

4

5

6

7

8

Parallel execution:

Processor P1 finishes panel {3, 4} first;

Processor P2 finishes panel {1, 2} second;

Supernode

Panel

Processor P3 finishes panel {5, 6} third.

Figure 4: A snapshot of parallel execution.

Consider the scenario of parallel execution depicted in Figure 4. According to the order of

the �nishing times speci�ed in the �gure, the panel consisting of columns f3,4g will be stored in

memory �rst, followed by panel f1,2g, and then followed by panel f5,6g. The supernode f3,4,5,6g

is thus separated by the panel f1,2g in memory. The major di�culty comes from the fact that the

supernodal structure emerges dynamically as the factorization proceeds, so we cannot statically

calculate the amount of storage required by each supernode. Another di�culty is that panels and

supernodes can overlap in several di�erent ways.

One immediate solution would be not to allow any supernode to cross the boundary of a panel.

In other words, the leading column of a panel would always be treated as the beginning of a new

supernode. Thus a panel could possibly be subdivided into more than one supernode, but not vice

versa. In such circumstances, the columns of a supernode would always be contiguous in memory

because they would be assigned to a single processor by the scheduler. Each processor would simply

store a (partial) ongoing supernode in its local temporary store, and copy the whole supernode into

the global data structure as soon as it was �nished.

This restriction on supernodes would mean that the maximum size of supernodes would be

bounded by the panel size. As discussed in Section 7.5 (also [24]), for best per-processor e�ciency

and parallelism, we would like to have large supernodes but relatively small panels. These con
icting

demands make it hard to �nd one good size for both supernodes and panels. We conducted

an experiment with this scheme for the sequential algorithm. Figure 5 shows the uniprocessor

performance loss for various panel sizes (i.e., maximum sizes of supernodes). For large matrices,

say matrices 12 { 21, the smaller panels and supernodes result in more performance loss. For

example, when w = 16, the slowdown can be as large as 20% to 68%. Even for large panel sizes,

such as w = 48, the slowdown is still between 5% and 20%. However, in the parallel algorithm,

such large panels give rise to too large a task granularity and severely limit the level of concurrency.

We therefore feel that this simple solution is not satisfactory. Instead, we seek a solution that does

not impose any restriction on the relation between panels and supernodes, and that allows us to

vary the size of panels and supernodes independently in order to better trade o� concurrency and

single-processor e�ciency.

10

1 3 5 7 9 11 13 15 17 19 21 23
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

w = 16

w = 32

w = 48

Matrix

R
un

ni
ng

 ti
m

e
/ S

up
er

LU
 ti

m
e

Figure 5: The sequential runtime penalty for requiring that a leading column of a panel also starts

a new supernode. The times are measured on the RS/6000-590.

Our second and preferred solution is to preallocate space that is an upper bound on the actual

storage needed by each supernode in the L factor, irrespective of the numerical pivoting choice.

Then there will always be space to store supernode columns as they are computed. We now

describe how we preallocate enough (but not too much) space.

After Gaussian elimination with partial pivoting, we can write A = P
1
L
1
P
2
L
2
� � �Pn�1Ln�1 U ,

where Pi is an elementary permutation matrix representing the row interchange at step i, and Li

is a unit lower triangular matrix with its i-th column containing the multipliers at step i. We now

de�ne L as the unit lower triangular matrix whose i-th column is the i-th column of Li, such that

L � I =
P

i
(Li � I).3 We shall make use of the following structure containment property in our

storage scheme. Here we only quote the result without proof.

Theorem 2 [13, 15] Consider the QR factorization A = QR using Householder transformations.

Let H be the symbolic Householder matrix consisting of the sequence of Householder vectors used

to represent the factored form of Q. In other words, we assume no entries of H or R are zero

because of numerical cancellation. If A is a nonsingular matrix with nonzero diagonal, and L

and U are the triangular factors of A represented as above, then Struct(L) � Struct(H), and

Struct(U) � Struct(R).

In what follows, we describe how this upper bound can facilitate our storage management for

the L supernodes. First, we need a notion of fundamental supernode, which was introduced by

Ashcraft and Grimes [3] for symmetric matrices. In a fundamental supernode, every column except

the last (numbered highest) is an only child in the elimination tree. Liu et al. [26] gave several

3This L is di�erent from the L̂ in PA = L̂U . Both L and L̂ contain the same nonzero values, but in di�erent

positions. In this section, L is used as a data structure for storing L̂.

11

r s

Supernode in L

Supernode in H

Figure 6: Bound the L supernode storage using the supernodes in H .

reasons why fundamental supernodes are appropriate, one of which is that the set of fundamental

supernodes is the same regardless of the particular etree postordering. For consistency, we now

also impose this restriction on the supernodes in L and H , respectively. For convenience, let SL
denote the fundamental supernodes in the L factor, and SH denote the fundamental supernodes in

the symbolic Householder matrix H . We shall omit the word \fundamental" when it is clear.

Our code breaks the L supernode at the boundary of an H supernode, forcing the L supernode

to be contained in the H supernode. In fact, if we use fundamental L supernodes and ignore

numerical cancellation (which we must do anyway for symmetric pruning), we can show that an L

supernode is always contained in an H supernode [20].

Our objective is to allocate storage based on number of nonzeros in SH , so that this storage is

su�ciently large to hold SL. Figure 6 illustrates the idea of using SH as a bound. Two supernodes

in SL from di�erent branches of the etree will go to their corresponding memory locations of the

enclosing supernodes in SH . Even if an H supernode breaks into multiple L supernodes, those L

supernodes will all lie on one path in the column etree. Thus an L supernode from a di�erent

subtree cannot interrupt the storage for a supernode as in Figure 4. Since the panels (and hence

the supernodes) within an H supernode are �nished in order of increasing column numbers, the

columns of each SL supernode are contiguous in the storage of the SH supernode.

To determine the storage for SH , we need an e�cient algorithm to compute the column counts

nnz(H�j) for H . We also need to identify the �rst vertex of each supernode in SH . Then the

number of nonzeros in each supernode is simply the product of the column count of the �rst vertex

and the number of columns in the supernode.

Finding the �rst vertex and computing the column count can be done using a variant of the

QR-column-count algorithm by Gilbert et al. [20]. The modi�ed QR-column-count algorithm takes

Struct(A) and the postordered T as inputs, and computes nnz(H�j) and SH . The complexity

of the algorithm is O(m �(m;n)), where m = nnz(A) and �(m;n) is the slowly-growing inverse

of Ackermann's function coming from disjoint set union operations. In practice, it is as fast as

computing the column etree T [24, Table 5.2]. In both the etree and QR-column-count algorithms,

the disjoint set union operations are implemented using path halving and no union by rank (see [21]

for details.)

One remaining issue yet to be addressed is what we should do if the static storage given by

an upper bound structure is much too generous than actually needed. We developed a dynamic

prediction scheme as a fallback for this situation. In this scheme, we still use the supernode

partition SH . Unlike the static scheme, which uses the column counts nnz(H�j), we dynamically

12

Matrix Static Dynamic

1 Memplus .04 .68

2 Gemat11 .85 .90

3 Rdist1 .72 .73

4 Orani678 .56 .90

5 Mcfe .73 .89

6 Lnsp3937 .84 .92

7 Lns 3937 .86 .94

8 Sherman5 .92 .96

9 Jpwh 991 .88 .94

10 Sherman3 .89 .91

11 Orsreg 1 .90 .92

12 Saylr4 .89 .92

13 Shyy161 .91 .92

14 Goodwin .95 .98

15 Venkat01 .11 .74

16 Inaccura .96 .99

17 Af23560 .95 .97

18 Dense1000 1.00 1.00

19 Raefsky3 .99 .99

20 Ex11 .99 1.00

21 Wang3 .14 .89

22 Raefsky4 .99 .99

23 Vavasis3 .95 .98

Table 6: Supernode storage utilization, using static and dynamic upper bounds. The number

tabulated is the ratio of the number of nonzeros in supernodes of L to that in the prediction H .

compute the column count for the �rst column of each supernode in SH as follows. When a

processor obtains a panel that includes the �rst column of some supernode H(:; r : s) in SH , the

processor invokes a search procedure on the directed graph G(L(:; 1 : r � 1)T), using the nonzeros

in A(:; r : s), to determine the union of the row structures in the submatrix (r : n; r : s). We use

the notation D(r : n; r : s) to denote this structure. It is true that

Struct((L̂+ U)(r : n; r : s)) � Struct(D(r : n; r : s)) � Struct(H(r : n; r : s)) : (1)

The search procedure is analogous to (but simpler than) the panel symbolic step (Figure 1, step

(1)); now we only want to determine the count for the column D(r : n; r), without the nonzero

structure or the topological order of the updates. Then we use the product of nnz(D(r : n; r)) and

s � r + 1 to allocate storage for the L supernodes within columns r through s. Since nnz(L(r :

n; r)) � nnz(D(r : n; r)) � nnz(H(r : n; r)), the dynamic storage bound so obtained is usually

tighter than the static bound.

The storage utilizations for the supernodes in SL are tabulated in Table 6. The utilization is

calculated as the ratio of the actual number of nonzeros in the supernodes of L to the number of

nonzeros in the supernodes of H . When collecting this data, the maximum supernode size t was

set to 64. For most matrices, the storage utilizations using the static bound by H are quite high;

they are often greater than 70% and are over 85% for 14 out of the 21 problems. However, in

13

the static scheme, the storage utilizations for matrices 1, 15 and 21 are only 4%, 11% and 14%,

respectively. The dynamic scheme overcomes those low utilizations. For the three matrices above,

the utilizations in the dynamic scheme are 68%, 74% and 89%. These percentage utilizations are

quite satisfactory. For other problems, the dynamic approaches also result in higher utilizations.

The runtime overhead associated with the dynamic scheme is usually between 2% and 15% on

the single processor RS/6000-590. From these experiments, we conclude that the static scheme

using H often gives a tight enough storage bound for SL. For some problems, such as matrices

15 and 21, the dynamic scheme must be employed to achieve better storage utilization. Then the

program will su�er from a certain amount of slowdown. Our code tries the static scheme �rst and

switches to the dynamic scheme only if the static scheme requests more space than is available.

5.4 Nonblocking pruning and depth-�rst search

The idea of symmetric pruning [9, 10] is to use a graph G0 with fewer edges than the graph G of

LT to represent the structure of L. Traversing G0 gives the same reachable set as traversing G, but

is less expensive. As shown in [10], this technique signi�cantly reduces the symbolic factorization

time.

In the sequential algorithm, in addition to the adjacency structure for G, there is another

adjacency structure to represent the reduced graph G0. For each supernode, since the row indices

are the same among the columns, we only store the row indices of the �rst column of G and the

row indices of the last column of G0. (If we use only one adjacency list for each supernode, since

pivoting may have reordered the rows so that the pruned and unpruned rows are intermingled in

the original row order, it is then necessary to reorder all of L and A to account for it.)

Figure 7 illustrates the storage layout for the adjacency lists of G and G0 of a sample matrix.

Array Lsub[*] stores the row subscripts. G ptr[*] points to the beginning of each supernode in

array Lsub[*]. G' ptr[*] points to the pruned location of each supernode in array Lsub[*]. Using

G ptr and G' ptr together can locate the adjacency list for each supernode in G0. This matrix

has four supernodes: f1,2g, f3g, f4,5,6g, and f7,8,9,10g. The adjacency lists for G and G0 are

interleaved by supernodes in the global memory Lsub[*]. The storage for the adjacency structure

of G0 is reclaimed at the end of the factorization.

The pruning procedure works on the adjacency lists for G0. Each adjacency list of a supernode

(actually only the last column in the supernode) is pruned at the position of the �rst symmetric

nonzero pair in the factored matrix F , as indicated by the small \�" in the �gure. Both panel DFS

and column DFS traverse the adjacency structure of G0, as given by G' ptr[*] in Figure 7.

In the parallel algorithm, contention occurs when one processor is performing DFS using G0's

adjacency list of column j (a READ operation), while another processor is pruning the structure of

column j, because pruning will reorder the row indices in the list (a MODIFY operation). There

are two possible solutions to avoid this contention. The �rst solution is to associate one mutually

exclusive (mutex) lock with each adjacency list of G0. A processor acquires the lock before it prunes

the list and releases the lock thereafter. Similarly, a processor uses the lock when performing DFS

on the list. Although the critical section for pruning can be very short, the critical section for

DFS may be very long, because the list must be locked until the entire depth-�rst search starting

from all nodes in the list is completed. During this period, all the other processors attempting to

prune the list or to traverse the list will be blocked. Therefore this approach may incur too much

overhead, and the bene�t of pruning may be completely o�set by the cost of locking.

We now describe a better algorithm that is free from locking. We will use both graphs G0 and G

to facilitate the depth-�rst search. Recall that each adjacency list is pruned only once throughout

14

0
BBBBBBBBBBBBBBBB@

1 � � �

� 2 � � � �

3 � �

4 � � �

� 5 � � �

� � � � � 6 � � �

7 � �

� � � � � � � 8 � �

� � � � � 9 �

� � � � 10

1
CCCCCCCCCCCCCCCCA

=)

0
BBBBBBBBBBBBBBBB@

1

2

3

4

5

� � 6

7

� � � 8

� 9

� 10

1
CCCCCCCCCCCCCCCCA

Factors F = L+ U � I Reduced supernodal G0

2

3 6 8 10

1 3

2

Lsub

G_ptr

1 2 6 8 2 6 8

adjacency list for G

G’_ptr

adjacency list for G’

3 6 8 10

3

4

4 5 6 8 9 7 8 9 10

5,6 7 8, 9, 10

10

106

6 8 9

Figure 7: Storage layout for the adjacency structures of G and G0.

the factorization. We will associate with each list a status bit indicating whether it is pruned or

not. Once a list is pruned, all the subsequent traversals on the list involve only READ operations,

and hence do not require locking. If the search procedure reaches a list of G0 that has not yet been

pruned, we will direct the search procedure to traverse the list of the corresponding column in G,

rather than G0. So, when the search algorithm reaches column j, it does the following:

if column j has been pruned then

continue search from nodes in the G0-list of column j;

else

continue search from nodes in the G-list of column j;

endif

This scheme prevents us from using one minor working-storage optimization from the sequential

algorithm: sequential SuperLU uses separate G and G0 lists for supernodes with two or more

columns, but overlaps the lists for singleton supernodes. The parallel code must use both lists for

every supernode.

Since G0 is generally a subgraph of G, the depth-�rst searches in the parallel code may traverse

more edges than those in the sequential code. This is because in the parallel algorithm, a supernode

may be pruned later than in the sequential algorithm. However, because of the e�ectiveness of

symmetric reduction, very often the search still uses the pruned list in G0. So it is likely that the

time spent in the occasional extra search in the G-lists is much less than that when using the locking

mechanism. Figure 8 shows the relative size of the reduced supernodal graphH , and Figure 9 shows

the fraction of searches that use the G0-lists. The numbers in both �gures are collected on a single

processor Alpha 21164.

15

1 3 5 7 9 11 13 15 17 19 21 23
0

0.2

0.4

0.6

0.8

1

Matrix

#
 e

d
g

e
s

in
 H

 /
 #

 e
d

g
e

s
in

 G

Figure 8: Number of edges in G0 versus num-
ber of edges in G.

1 3 5 7 9 11 13 15 17 19 21 23
0

20

40

60

80

100

Matrix

P
e

rc
e

n
t
D

F
S

 in
 H

−
lis

t
Figure 9: Percent of the depth-�rst search in
adjacency lists in G0.

6 The asynchronous scheduling algorithm

Having described the parallel strategies, we are now in a position to describe the parallel fac-

torization algorithm. Several methods have been proposed to perform sparse Cholesky factoriza-

tion [12, 23, 27] and sparse LU factorization [2, 16, 19] on shared memory machines. A common

practice is to organize the program as a self-scheduling loop, interacting with a global pool of tasks

that are ready to be executed. Each processor repeatedly takes a task from the pool, executes it,

and puts new ready task(s) in the pool. This pool-of-tasks approach has the merit of balancing

work load automatically even for tasks with large variance in granularity. There is no notion of own-

ership of tasks or submatrices by processors { the assignment of tasks to processors is completely

dynamic, depending on the execution speed of the individual processors. Our scheduling algorithm

employs this model as well. This is in contrast to some implementations of sparse Cholesky, which

can schedule work to processors carefully and cheaply ahead of time [22]. The dynamic nature of

partial pivoting prevents us from doing this.

Our scheduling approach used some techniques from the parallel column-oriented algorithm

developed by Gilbert [19]. Figure 10 sketches the top level scheduling loop. Each processor executes

this loop until its termination criterion is met, that is, until all panels have been factorized.

The parallel algorithm maintains a central priority queue of tasks (panels), that are ready to be

executed by any free processor. The content of this task queue can be accessed and altered by any

processor. At any moment during the elimination, a panel is tagged with a certain state, such as

READY, BUSY, or DONE. Every processor repeatedly asks the scheduler (at line 4) for a panel task

in the queue. The Scheduler() routine implements a priority-based scheduling policy described

below. The input argument oldpanel denotes the panel that was just �nished by this processor.

The output argument newpanel is a newly selected panel to be factorized by this processor. The

selection preference is as follows:

(1) The scheduler �rst checks whether all the children of oldpanel's parent panel, say parent, are

DONE. If so, parent now becomes a new leaf and is immediately assigned to newpanel on the

same processor.

(2) If parent still has un�nished children, the scheduler next attempts to take from the queue a

16

Slave worker()

1. newpanel = NULL;

2. while (there are more panels) do

3. oldpanel := newpanel;

4. Scheduler(oldpanel; newpanel; queue);

5. if (newpanel is a relaxed supernode) then

6. relaxed supernode factor(newpanel);

7. else

8. panel symbolic factor(newpanel);

9. � Determine which supernodes will update panel newpanel;

10. � Skip all BUSY panels/supernodes;

11. panel numeric factor(newpanel);

12. � Accumulate updates from the DONE supernodes, updating newpanel;

13. � Wait for the BUSY supernodes to become DONE, then predict

new �lls and accumulate more updates to newpanel;

14. inner factorization(newpanel); /* independent from other processors */

15. � Supernode-column update within the panel;

16. � Row pivoting;

17. � Detect supernode boundary;

18. � Symmetric structure pruning;

19. end if;

20. end while;

Figure 10: The parallel scheduling loop to be executed on each processor.

17

panel which can be computed without pipelining, that is, a leaf panel.

(3) If no more leaf panels exist, the scheduler will take a panel that has some BUSY descendant

panels currently being worked by other processors. Then the new panel must be computed

by this processor in a pipelined fashion.

One might argue that (1) and (2) should be reversed in priority. Choosing to eliminate the imme-

diately available parent �rst is primarily concerned with locality of reference. Since a just-�nished

panel is likely to update its parent or other ancestors in the etree, it is advantageous to schedule

its parent and other ancestors on the same processor.

To implement the above priority scheme, the task queue is initialized with the leaf panels, that

is, the relaxed supernodes, which are marked as READY. Later on, Scheduler() may add more

panels at the tail of the queue. This happens when all the children of newpanel's parent, parent,

are BUSY; parent is then enqueued and is marked as eligible for pipelining. By rule (1), some panel

in the middle of the queue may be taken when all its children are DONE. This may happen even

before all the initial leaf panels are �nished. All the intermediate leaf panels are taken in this way.

By rules (2) and (3), Scheduler() removes tasks from the head of the queue.

It is worth noting that the executions of di�erent processors are completely asynchronous. There

is no global barrier; the only synchronization occurs at line 13 in Figure 10, where a processor stalls

when it waits for some BUSY updating supernode to �nish. As soon as this BUSY supernode

is �nished, all the processors waiting on this supernode are awakened to proceed. This type of

synchronization is commonly referred to as event noti�cation. Since the newly �nished supernode

may produce new �lls to the waiting panels, the symbolic mechanism is needed to discover and

accommodate these new �lls.

7 Parallel performance

We now evaluate the performance of the algorithm. The organization of this section is as follows.

Section 7.1 summarizes the observed speedups on various platforms. The speedup is compared to

that of serial SuperLU. Section 7.2 quanti�es parallel overhead and their impact on performance.

Section 7.3 gives the statistics of load balance. Section 7.4 studies the space e�ciency of the

algorithm.

7.1 Speedup summary

Figures 11 through 15 report the speedups of the parallel algorithm on the �ve platforms, with

number of threads \P" varied. Because of memory limits we could not test all problems on the

SPARCcenter 2000. The speedup is measured against the best sequential runtime achieved by

SuperLU on a single processor of each parallel machine.

In each �gure, the bottom curve labeled \P = 1" illustrates the overhead in the parallel code

when compared to the serial SuperLU, using the same blocking parameters. The structure of

the parallel code, when run on a single processor, does not di�er much from sequential SuperLU,

except that a global task queue and various locks are involved. The extra work in the parallel

code is purely integer arithmetic. In order to achieve a higher degree of concurrency, the panel size

(w) and maximum size of a supernode (maxsup) for \P > 1" are set smaller than those used for

\P = 1".4

4Both w and maxsup denote the size in number of columns.

18

1 2 3 4 5 6 7 8 9 10 11 12 13 15 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U P=1

P=2

P=4

Figure 11: Speedup on a 4-CPU Sun SPARCcenter 2000.

We also tabulate these speedup �gures in the Appendix (Tables 13 through 17), where the last

two columns in each table show the factorization time and Mega
op rate, respectively, correspond-

ing to the largest number of processors used.

7.2 Impact of overhead on parallel e�ciency

The parallel algorithm experiences some overhead, which mainly comes from three sources: the

reduced per-processor e�ciency due to smaller granularity of unit tasks, accessing critical sections

via locks, and orchestrating the dependent tasks via event noti�cation. The purpose of this section

is to understand how much time is spent in each part of the algorithm and explain the speedups

we saw in Section 7.1.

7.2.1 Decreased per-processor performance due to smaller blocking

The �rst overhead is due to the necessity to reduce the blocking parameters in order to achieve

more concurrency. Recall that two blocking parameters a�ect performance: panel size (w) and

maximum size of a supernode (maxsup). For better per-processor performance, we prefer larger

values. On the other hand, the large granularity of unit tasks limits the degree of concurrency.

On the Cray J90, this trade-o� is not so important, because w = 1 is good for the sequential

algorithm. We therefore also use w = 1 in the parallel algorithm. When varying the value of

maxsup, we �nd that performance is quite robust in the range between 16 and 64.

On the Power Challenge and AlphaServer 8400, we observe more dramatic di�erences with

varied blockings. Figure 16 and 17 illustrate this loss of e�ciency for several large problems

on single processors of the two machines. In this experiment, the parallel code is run on single

processors with two di�erent settings of w and maxsup. Figure 16 shows, on a single processor

Power Challenge, the ratio of the runtime with the best blocking for 1 CPU (w = 24; maxsup = 64)

19

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

3

4

5

6

7

8

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1
P=4
P=8
P=12

Figure 12: Speedup on a 12-CPU SGI Power Challenge.

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

3

4

5

6

7

8

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1

P=4

P=8

Figure 13: Speedup on a 8-CPU DEC AlphaServer 8400.

20

1 3 5 7 9 11 13 15 17 19 21
0

1

2

3

4

5

6

7

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1

P=4

P=8

Figure 14: Speedup on a 8-CPU Cray C90.

1 3 5 7 9 11 13 15 17 19 21
0

2

4

6

8

10

12

14

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1

P=4

P=8

P=16

Figure 15: Speedup on a 16-CPU Cray J90.

21

13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

Matrix

F
ra

ct
io

n
 o

f
b

e
st

 1
−

C
P

U
 p

e
rf

o
rm

a
n

ce

Figure 16: Ts
T 0

s

for serial SuperLU on 1-CPU

Power Challenge.

13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

Matrix

F
ra

ct
io

n
 o

f
b

e
st

 1
−

C
P

U
 p

e
rf

o
rm

a
n

ce

Figure 17: Ts
T 0

s

for serial SuperLU on 1-CPU Al-

phaServer 8400.

to the runtime with the best blocking for 12 CPUs (w = 12; maxsup = 48). Figure 17 shows the

analogous ratio for the 8-CPU AlphaServer 8400. On the Power Challenge, the blocking used for

best parallel performance achieves only 81% uniprocessor e�ciency for matrices 17 and 19. The

corresponding lowest number on the AlphaServer 8400 is 86% for matrix 22.

7.2.2 Accessing critical sections

Several places in the program must be protected by mutual exclusion. In Table 7, we roughly

count the number of times the program acquires and relinquishes various locks. Note that the total

number of lockings performed is independent of the number of processors. Since we want to allow

di�erent processors to enter di�erent critical sections simultaneously, we use �ve mutex variables

to guard the �ve critical regions.

To see how much cost is associated with locking, in Table 8 we measured the time it takes to

acquire and relinquish a lock on several platforms, with di�erent numbers of threads P . The �gure

in the parenthesis is the number of clock cycles. In this small benchmark code, the critical section

is simply one statement, to increment a counter. The locking and unlocking are placed around this

statement. The measurement is done in a tight loop with many iterations. When there is more

than one thread, the time increases slightly, but not linearly in the number of threads.

The uniprocessor slowdown is partly due to the overhead incurred by using these locks, when

there are no other processors competing for the locks. By multiplying the time for a single

lock/unlock in Table 8 by the number of the lockings performed in Table 7, we can estimate

the locking overhead. As a concrete example, let us consider a medium size matrix 13, on a sin-

gle processor Cray J90. Since the sequential code performance is 26 M
ops, each lock/unlock is

equivalent to roughly 69
oating-point operations. When the factorization is performed with panel

size w = 1, the total number of lock acquisitions is 237004, which, when multiplied by 2.67 mi-

croseconds, results in about 0.64 seconds. This is less than 3% of the entire factorization time

(24.85 seconds). We observe that this percentage is typical for large matrices (also the bottom

curve in Figure 18). The locking overhead also varies with machines. For example, it is higher on

the Cray J90 than on the Power Challenge or the AlphaServer 8400.

22

Critical section Counts

call Scheduler() number of panels (approx.)�

allocate storage for row indices of L (Lsub) number of supernodes
allocate storage for L supernodes (SL) number of supernodes
allocate storage for a column of U (Usub/Uval) number of columns
increment supernode number nsuper number of supernodes

Table 7: Number of lockings performed.
* Here we assume that Scheduler() returns a new panel upon each call.

Machine P = 1 P = 4 P=8

SPARCcenter 2000 1.63 (82) 4.34 (217) 4.36 (218)
Power Challenge 1.13 (102) 1.98 (179) 2.02 (182)
AlphaServer 8400 0.98 (294) 2.26 (678) 2.71 (814)
Cray C90 1.34 (323) 1.09 (261) 1.40 (336)
Cray J90 2.67 (267) 4.17 (417) 4.42 (442)

Table 8: Time in microseconds (cycles) to perform a single lock and unlock.

7.2.3 Coordinating dependent tasks

The third source of overhead is due to insu�cient parallelism in the pipelined executions of the

dependent panels. Dependent panels are those that have an ancestor-descendant relation in the

column etree. When a processor factoring a panel needs an update from a BUSY descendant panel,

this processor simply spins, waiting for that panel to �nish, as shown at line 13 in the scheduling

loop of Figure 10. During the spin wait the processor does nothing useful. The total amount of

spin wait time observed is signi�cant in some cases, especially with larger numbers of processors.

For example, for matrix 16, on the 12-CPU Power Challenge, about 40% of the parallel runtime is

spent spinning. The corresponding number for the dense matrix is about 58%. The dense matrix

is the worst one, because the factorization of all panels must be carried out in pipelined fashion.

Figure 18 depicts the locking overhead (Section 7.2.2) and the spinning due to dependencies

on the 8-CPU Cray J90. The locking overhead also includes the possible contention from the 8

processors. In this �gure, we also plot the ine�ciency (i.e., 1� e�ciency) of the parallel algorithm.

For most matrices, the spinning overhead due to dependencies is much higher than the overhead

from lock acquisition.

7.2.4 Putting all overheads together

In this subsection we evaluate the e�ect of the combined overheads on the parallel e�ciency. In

summary, the overheads include

Overhead (1): reduced uniprocessor performance due to smaller blocking

Overhead (2): accessing critical sections

Overhead (3): idle time (from spin wait in the panel pipeline and in the top-level scheduling loop)

Overhead (1) only a�ects uniprocessor performance. Overhead (2) decreases both uniprocessor

performance of the parallel code and parallel performance. Compared with the serial execution,

the parallel execution experiences more contention for locks. But Table 8 and Figure 18 indicate

that runtime does not increase signi�cantly because of contention. Therefore, we may model (2)

23

1 3 5 7 9 11 13 15 17 19 21
0

10

20

30

40

50

60

70

80

90

100

(1 − Efficiency)

Spin wait

Lock acquisition overhead

Matrix

P
e

rc
e

n
t

o
ve

rh
e

a
d

Figure 18: Parallel overhead in percent on an 8-CPU Cray J90.

as only adding overhead to the uniprocessor execution. Overhead (3) exists only in the parallel

computations.

We now analyze the relations of the various times de�ned in Table 5. All the times are measured

independently. In particular, TI is obtained by timing two kinds of idle periods on each processor

and summing over all processors: one is the spin wait in the panel update pipeline, and the other is

when a processor calls Scheduler() (line 4 in Figure 10) and fails to get a panel from the scheduler.

We found that, for the test matrices and the numbers of processors being considered, failure from

the scheduler rarely occurs. So most of the idle time is due to pipeline waiting. The following

relation holds for the parallel runtime:5

P TP � T
1
+ TI : (2)

We now compute the observed e�ciency (Eactual) as follows:

Eactual =
Ts

P TP
: (3)

Since TP , T1, and TI are obtained from di�erent runs of the program, the left-hand side and the

right-hand side of Equation (2) may not match well. For the purpose of checking, we also compute

the following quantity:

Echeck =
Ts

T
1
+ TI

: (4)

The closeness of Echeck to Eactual indicates the accuracy of the timings, see Tables 9 and 10.

In order to understand the impact of the overheads discussed in previous subsections on the

parallel e�ciency, we introduce two parameters �
1
and �p, which are calculated based on Ts, T1,

5In the absence of errors in the individual time measurement, equality should hold.

24

E�ciency Overhead
Matrix Eactual Eest �1 �p Echeck B

13 Shyy161 .47 .63 .17 .23 .59 .66
14 Goodwin .80 .79 .12 .10 .79 .97
15 Venkat01 .12 .17 .32 .74 .13 .99
16 Inaccura .46 .48 .10 .46 .47 .97
17 Af23560 .53 .57 .13 .34 .55 .93
18 Dense1000 .25 .30 .07 .67 .26 .99
19 Raefsky3 .53 .58 .07 .37 .56 .96
20 Ex11 .64 .73 .05 .23 .70 .98
21 Wang3 .19 .22 .23 .71 .19 .99
22 Raefsky4 .51 .55 .02 .43 .53 .97

Table 9: E�ciencies and overheads on a 16-CPU Cray J90.

TP , and TI as follows:

�
1
=

T
1
� Ts

T
1

= 1�
Ts

T
1

: (5)

�p =
TI

P TP
: (6)

Both �
1
and �p are in the range [0; 1); �

1
measures the overhead that degrades the uniprocessor

performance, while �p measures the overhead in the parallel execution. The smaller �
1
and �

2
are,

the more e�cient is the parallel algorithm. Since

(1� �
1
) � (1� �p) =

Ts

T
1

�
P TP � TI

P TP
�

Ts

T
1

�
T
1

P TP
= Eactual ;

we can use

Eest = (1� �
1
) � (1� �p) : (7)

as an estimate for the actual e�ciency.

In Tables 9 and 10, we report Eactual, Eest, �1, �p and Echeck obtained on the two parallel

machines.

Cray J90

In the �rst two columns of Table 9, we compare the estimated e�ciency Eest in Equation (7) with

the actually observed e�ciency Eactual in Equation (3). The estimated and observed e�ciencies

are very close. Their di�erences are mostly within 5%, except for matrices 13 and 20 which have

15% and 9% di�erence, respectively. For these two matrices, Eactual and Echeck di�er signi�cantly,

indicating that some overhead is not re
ected in T
1
or TI .

As mentioned in Section 7.2.1, the uniprocessor performance on the J90 does not degrade much

with smaller maxsup, that is, Overhead (1) does not exist (T 0

s
= Ts). Therefore,

Ts

T1
can be from

the bottom curve in Figure 15. We gathered the statistics for �p and B on 16 processors, as shown

in Table 9. For most problems, the pipeline spin waiting, as measured by �p, is the primary cause

of ine�ciency. This is particularly evident for matrices 15, 18 and 21, for which 74%, 67% and

71% of the time processors are idle, respectively. This explains the low speedups achieved for these

matrices.

25

E�ciency Overhead
Matrix Eactual Eest �1 �p Echeck B

13 Shyy161 .42 .58 .27 .20 .54 .70
14 Goodwin .49 .61 .18 .25 .57 .87
15 Venkat01 .17 .27 .38 .56 .20 .91
16 Inaccura .42 .47 .21 .40 .45 .88
17 Af23560 .56 .59 .26 .20 .58 .93
18 Dense1000 .35 .34 .18 .58 .35 .92
19 Raefsky3 .58 .63 .25 .16 .62 .95
20 Ex11 .64 .74 .18 .09 .73 .98
21 Wang3 .34 .38 .19 .52 .36 .93
22 Raefsky4 .54 .65 .23 .15 .63 .95
23 Vavasis3 .56 .71 .14 .17 .68 .97

Table 10: E�ciencies and overheads on a 12-CPU Power Challenge.

Power Challenge

On a cache-based machine, the uniprocessor performance loss of the parallel code is a combi-

nation of performing lockings and less e�cient cache utilization. Therefore, Ts

T1
equals the product

of the numbers from the bottom curve in Figure 12 (T
0
s

T1
) and the numbers from Figure 16 (Ts

T 0
s

).

Compared to the J90, we observe that �
1
is much larger, because the cache plays an important

role on the Power Challenge. In fact, for matrices 13, 17, 19, 20 and 22, uniprocessor performance

loss is more severe than the parallel overhead, �p.

Again, for matrices 15, 18 and 21, the spin wait time is the major bottleneck; the processors

are idle more than 50% of the time. We found that Eest and Eactual did not match as well as

they did on the J90. For matrices 13, 14, and 23, the gaps are 16%, 12%, and 15%, respectively.

The corresponding gaps between Echeck and Eactual are large as well. This again indicates some

overhead not accounted for in T
1
or TI . We need further study to fully understand why this is.

7.3 Load balance

As mentioned earlier, our dynamic scheduling approach can automatically balance the workload.

One way to measure the load balance is as follows. Let fi denote the number of
oating-point

operations performed on processor i, and P denote the number of processors. We de�ne the load

balance B as

B =

P
i
(fi)

P maxi(fi)
: (8)

In words, B equals the average work load divided by the maximum work load. It is readily seen that

0 < B � 1, and higher B indicates better load balance. If load imbalance is the sole overhead in a

parallel program, the parallel execution time is simply the execution time of the slowest processor,

whose work load is highest.

We should note that the load balance measured by Equation (8) is an accurate measure of work

distribution only under the condition that each
oating-point operation takes the same amount

of time. This is not the case in practice, but the large values of B shown in the last columns of

Tables 9 and 10 still show that good load balance was achieved in terms of
op counts. Matrix 13

is an exception.

26

LU storage Fraction of LU storage
Matrix (MB) P = 1 P = 8

1 Memplus 16.27 .23 1.51
2 Gemat11 1.15 .89 5.92
3 Rdist1 3.70 .23 1.54
4 Orani678 4.77 .11 .73
5 Mcfe 0.88 .18 1.26
6 Lnsp3937 4.93 .16 1.10
7 Lns 3937 7.04 .12 .77
8 Sherman5 2.75 .25 1.66
9 Jpwh 991 1.58 .13 .88
10 Sherman3 4.68 .22 1.47
11 Orsreg 1 4.23 .11 .72
12 Saylr4 6.98 .10 .70
13 Shyy161 80.01 .19 1.31
14 Goodwin 34.25 .04 .30
15 Venkat01 566.09 .02 .15
16 Inaccura 106.06 .03 .21
17 Af23560 145.02 .03 .22
18 Dense1000 9.90 .02 .14
19 Raefsky3 183.65 .02 .16
20 Ex11 277.59 .01 .08
21 Wang3 459.14 .01 .07
22 Raefsky4 271.28 .02 .10
23 Vavasis3 521.75 .02 .11

Table 11: Working storage requirement as compared with the storage needed for L and U . The

blocking parameter settings are: w = 8, t = 100, and b = 200.

7.4 Working storage requirement

The parallel algorithm may require more working storage than the sequential one. Multiple

threads share heap storage, static storage, and code, all residing in main memory. Each thread,

upon execution, is allocated a private stack and has its own register set. Our program does not use

many stack variables, so the stack size for each thread need not be very large. All working storage

is allocated via malloc() from the heap. The working storage consists of two parts, where one part

is shared among all threads, and another part is local to each thread. The shared working storage

is mainly used to facilitate the central scheduling activity and memory management. It includes:

� one integer array of size p used as the task queue, where p is the total number of panels;

� one bit vector of size n to mark whether a column is busy;

� four integer arrays of size n to record the status of each panel;

� one integer array of size n to record a column's most distant busy column down the etree

during pipelining;

� three integer arrays of size n to implement storage layout for supernodes (Section 5.3).

The local working storage used by each thread is very similar to that used by sequential SuperLU,

that is, all that is necessary to factorize one single panel. It includes:

27

� eight integer arrays of size n to perform the panel and column depth-�rst search;

� one n-by-w integer array to keep track of the position of the �rst nonzero of each supernodal

segment in U ;

� one n-by-w integer array to temporarily store the row subscripts of the nonzeros �lled in the

panel;

� one n-by-w real array used as the SPA.

� one scratch space of size (t+ b)� w to help BLAS calls. See Figure 1 for the de�nition of t,

b and w.

This amount of local storage should be multiplied by P , where P is the number of threads created.

Thus the working storage grows a�nely with respect to P , and this algorithm, albeit e�cient, is

hard to scale up from a memory point of view.

To put this in perspective, Table 11 compares the working storage requirement with the actual

LU storage. The last two columns report the amount of working storage as a fraction of the total

LU storage in Megabytes, for 1 and 8 threads, respectively. It is clear that for P = 8, the working

storage requirement can be comparable to the LU storage for small problems. For large problems,

working storage is typically 10% to 20% of the LU storage. Matrix 13 is exceptionally bad: it is

a matrix of medium size for which the required working storage is more than LU storage. Since

we would not use multiple processors on the small problems anyway, the overall working storage

requirement is quite small.

7.5 A PRAM model to predict optimal speedup

Given a matrix with a �xed column ordering, we want to establish a performance model to estimate

the maximum speedup attainable by our algorithm, and indeed to determine the limitations of

algorithms based on partitioning a matrix by columns, and using a column as a scheduling unit.

Because of various precedence constraints in the algorithm, some parts of the work must be

�nished before other parts can start. Thus, the completion time of the parallel algorithm is con-

strained by the amount of work that must be done serially, i.e., the critical path. Our objective

here is to give a lower bound on parallel completion time.

In the model we make the following simplifying assumptions: (1) The work only includes

oating-point operations, and each
oating-point operation takes one unit of time. (2) There

is an in�nite number of processors. Whenever a task is ready, there will be a free processor to

execute this task immediately. (3) Accessing memory and communication are free. (4) We ignore

various overheads associated with the actual implementation of the scheduling algorithm and the

synchronizations. This model gives an optimistic estimate; therefore, we can use it to prove upper

bounds on the performance of the parallel algorithm on a real machine.

The left-looking LU factorization algorithm can be modeled by a data structure called a directed

acyclic graph (DAG), in which edges are directed from groups of the etree vertices representing

supernodes to groups of the etree vertices representing panels. (Panels and supernodes can overlap

in arbitrary fashion.) Each node in the DAG corresponds to the computation of a panel. An edge

directed from s to p corresponds to an update of panel p by supernode s. The edges also repre-

sent precedence relations between the updating supernodes and the destination panels. Figure 19

illustrates such a DAG for a 10-by-10 matrix.

In presenting our model, we employ the following notation:

28

0
BBBBBBBBBBBBBBBB@

1 �

� 2 � �

3 � �

4 � �

� � �

� � 6 �

7 � �

�

� � � 9

� 10

1
CCCCCCCCCCCCCCCCA

=)

0
BBBBBBBBBBBBBBBB@

1 �

� 2 � �

3 � �

4 � �

� 5 � �

� � 6 �

7 � �

� � � � 8 � �

� � � � � 9 �

� � � � 10

1
CCCCCCCCCCCCCCCCA

Original A Factors F = L+ U � I

Update from supernode to panel

(panel size is 2)

Supernodes {1, 2}, {3}, {4, 5, 6}, {7, 8, 9, 10}

Panels {1, 2}, {3}, {4, 5}, {6}, {7, 8}, {9, 10}

Tmod(9, 6)

10

9

8

7

3

4

5

6

1

2

Tmod(7, 3)

Tmod(3, 2)

Tmod(7, 6)

Figure 19: An example of computational DAG to model the factorization.

29

pd1 d2 dk

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��
��
��
��
��
�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

Tdiv(p)

d1 dk

d2

Tmod(p, d1)

Tmod(p, d2)
Tmod(p, dk)

Figure 20: Tasks associated with panel p.

� Tmod(p; d) := the task of updating panel p by a descendant supernode d

� Tdiv(p) := the task of performing the inner factorization of panel p

� tmod(p; d) := time taken by task Tmod(p; d)

� tdiv(p) := time taken by task Tdiv(p)

� EST (p) := earliest possible starting time of Tdiv(p)

� EFT (p) := earliest possible �nishing time of Tdiv(p)

All times are expressed in units of
oating-point operations. It is clear that for any panel p the

following relation holds: EFT (p) = EST (p) + tdiv(p).

According to our scheduling algorithm, each panel task is assigned to a single processor. A

panel task for panel p consists of the following two types of subtasks:

Tpanel(p) := fTmod(p; d) j d 2 Dg [fTdiv(p)g ;

where D is the set of descendant supernodes that update the destination panel p. Figure 20 shows

the part of the DAG associated with a particular panel p.

Each Tmod and Tdiv is the indivisible task, and is carried out sequentially on one processor.

Clearly, Tdiv cannot start until all the Tmod's have �nished. By looking at the precedence relations

of these two types of tasks, we can determine the runtime of Tpanel(p) on processor P . We will

try to schedule these tasks as early as possible, in order to derive the minimum parallel execution

time.

We �rst look at the tasks associated with one particular panel p, as shown in Figure 20. Suppose

there are k descendant supernodes to update panel p, and that all the times fEFT (d); d 2 Dg

have been computed. We schedule the tasks fTmod(p; d); d 2 Dg to processor P in the order of

Tmod(p; 1); : : : ; Tmod(p; k), such that:

EFT (1) � EFT (2) � : : : � EFT (k) :

Here, EFT (i) is the �nishing time of the last column of supernode i, because a supernode i cannot

update any ancestor panel before its last column is completed. We call this scheduling policy

Sched-A. Then we can compute EST (p) and EFT (p) as follows.

1. Run the following recurrence to get the completion times of the Tmod's:

30

t = 0;

for i = 1 to k

t = max f t; EFT (i) g+ tmod(i);

endfor;

2. Set EST (p) = t and EFT (p) = t+ tdiv(p) .

Now we will give an informal argument for the optimality of the parallel runtime resulting from

Sched-A.

Theorem 3 For panel p, scheduling the Tmod's by Sched-A gives the shortest completion time.

Proof: Processor P requires at least
P

k

i=1
tmod(p; i) units of time to �nish all the updates to

panel p. Now suppose another scheduling strategy Sched-B starts with a task Tmod(p; i); i 6= 1. Due

to the precedence constraint, Tmod(p; i) cannot start until after time EFT (i) (� EFT (1)). That

means processor P will be idle during the period of LAG := EFT (i)�EFT (1). Thus the amount

of time to �nish all the Tmod s will be at least LAG+
P

k

i=1
tmod(p; i).

On the other hand, in Sched-A, at least some Tmod(p; j); j < i have been scheduled in the time

period LAG. Hence the amount of work left after time EFT (i) is less than the work left when

using Sched-B. Sched-A will give shorter �nishing time than Sched-B. 2

We are now ready to simulate parallel computation for the whole factorization. To begin

with, the EST s of the leaf panels in the column etree are initialized to zero. Various times can

be computed successively from the bottom of the etree to the top. By applying the argument

above inductively to all the panels in the DAG, with leaf panels as the basis, we can show that

EFT (root panel) gives the minimum execution time. The (predicted) optimal speedup can then

be computed by

Predicted speedup =
Total
ops

EFT (root panel)
:

There are several points worth noting in this model. First, because of numerical pivoting, we

do not know the computational DAG in advance of the factorization; rather, the DAG is built

incrementally as the factorization proceeds. Also, the
oating-point operations associated with

all the tasks are calculated on the
y. So this model gives an a posteriori estimate. Secondly,

for each panel computation, the scheduling method of Sched-A requires sorting the EFT 's of all

the descendant supernodes that will update this panel. The cost associated with this sorting

is prohibitively high, and so this method cannot be used to schedule panel updates in practice.

Nevertheless, this gives us an upper bound on the theoretically attainable speedup.

In our algorithm, two parameters control task granularity: The panel size w determines the

amount of work in a Tdiv task, and both w and the maximum supernode size maxsup determine

the amount of work in a Tmod task. Any large supernode of size exceeding maxsup (such as in a

dense matrix) is divided into smaller ones so that they �t in cache.

Table 12 reports the predicted speedups when varying w and maxsup. For a �xed value of

maxsup, the simulated speedups decrease with increasing w. For sequential SuperLU we �nd

empirically that the best choice for w is between 8 and 16, depending on matrices and architectures.

In the parallel setting, a smaller w, say between 4 and 8, seems to give the best overall performance.

This embodies an interesting trade-o� between available concurrency and per-processor e�ciency.

We now compare the results when �xing w but varying maxsup. In relatively sparser matrices,

such as matrices 1 { 10, the actual sizes of supernodes may be much smaller than maxsup. The

31

maxsup = 32 maxsup = 64
Matrix w = 4 w = 8 w = 16 w = 4 w = 8 w = 16 height=n

1 Memplus 4.8 3.6 2.8 2.9 2.5 2.1 0.95
2 Gemat11 7.3 5.3 4.1 6.4 4.9 3.6 0.06
3 Rdist1 4.6 3.2 2.1 4.6 3.2 2.1 0.99
4 Orani678 42.2 28.4 16.6 42.2 28.4 16.6 0.64
5 Mcfe 6.6 4.3 2.6 6.6 4.3 2.6 0.67
6 Lnsp3937 23.2 15.4 9.7 23.2 15.4 9.7 0.25
7 Lns 3937 24.1 15.8 9.6 22.9 15.3 9.6 0.27
8 Sherman5 15.8 11.4 7.5 14.0 10.7 7.2 0.20
9 Jpwh 991 13.4 9.7 6.4 11.3 8.3 6.0 0.46
10 Sherman3 12.7 9.7 7.0 8.2 6.9 5.5 0.20
11 Orsreg 1 14.4 11.0 7.5 9.2 7.8 5.9 0.34
12 Saylr4 19.8 16.1 11.0 13.1 11.4 8.6 0.29
13 Shyy161 47.9 36.2 24.1 28.1 23.8 18.1 0.04
14 Goodwin 97.4 71.3 43.6 83.4 63.4 40.1 0.19
15 Venkat01 22.0 20.2 17.0 14.3 14.2 13.1 0.73
16 Inaccura 62.6 43.5 26.0 44.5 33.6 22.2 0.45
17 Af23560 70.9 55.3 37.2 41.4 35.7 27.4 0.20
18 Dense1000 33.1 23.7 18.4 18.2 14.9 12.7 1.00
19 Raefsky3 140.2 110.6 80.8 80.4 69.6 56.5 0.21
20 Ex11 106.7 83.5 58.2 61.6 53.2 41.7 0.35
21 Wang3 57.6 43.4 29.4 34.3 28.9 22.1 0.94
22 Raefsky4 99.1 77.1 52.0 56.3 48.5 37.3 0.33
23 Vavasis3 176.5 133.9 90.7 106.2 89.5 68.2 0.18

Table 12: Optimal speedup predicted by the model, and the column etree height.

performance for such matrices are not so sensitive to maxsup. However, for larger and denser

matrices, larger value of maxsup results in poorer speedup.

Finally we note that the speedups for small matrices are very low, even with small values of w

and maxsup. Fortunately, for large matrices such as 13 { 21, the predicted speedups are greater

than 20 when w = 8 and maxsup = 32. These matrices perform more than one billion
oating-

point operations in the factorization. It is these matrices that require parallel processing power.

The current column-oriented algorithm is well suited for most of the commercially popular SMPs,

because the number of processors on these systems is usually below 20.

The height of the column etree can also be used as a crude prediction of the parallel performance.

The height of a node i is de�ned as

height(i) =

(
0; if i is a leaf node

1 +maxf height(j) j j 2 child(i)g otherwise

The height of the etree is the height of the root, which represents the longes path in the etree.

The computation of all the nodes along this path must be performed in succession. Therefore,

the length of the critical path constrains performance. The last column of Table 12 shows the

height of the etree over total numbers of nodes n in the etree. The larger height=n is, the larger

the fraction of panels will be factorized in pipelined manner, resulting in poor parallelism and

more synchronizations. For example, height=n for matrices 1, 3, 15 and 21 is rather large. This

is consistent with the relatively lower predicted speedups. However, we must note that the etree

32

height alone is not an accurate measure of parallelism. For example, both dense matrix (18) and

a tridiagonal matrix have height=n = 1:00, but the former possesses much more concurrency than

the later.

The actual speedups achieved are much lower than the upper bounds predicted by the PRAM

model (Figures 11 through 15). This is because the model does not capture the details of the

machines and the implementation, such as cache behavior, synchronization, etc. However, we do

see a similar shape of speedup curves. For example, the model predicts that matrices 15 and 21

have lower speedups compared with the other large matrices. In reality, these two matrices perform

worse than the others. The poor performance is primarily due to two factors: (1) The column etree

is tall, and contains substantial false dependencies. (2) The dynamic algorithm is needed to allocate

memory for the supernodes (Section 5.3), because the static upper bound on the supernodes storage

is too large for these two problems (Table 6).

8 Conclusions

We have designed and implemented a parallel algorithm for shared memory multiprocessors of

modest size. The e�ciency of the algorithm has been demonstrated on several parallel machines.

Figure 21 shows the speedups on 8 processors of three parallel machines. Figures 22 through 25

summarize the factorization rate in Mega
ops for six large matrices, with increasing number of

processors. We believe these large problems are the primary candidates to be solved on parallel

machines. In fact, the largest one in our test suite takes a little more than 0.5 GBytes memory,

far less than most parallel machines o�er. Our algorithm is expected to work well for even larger

problems.

For a realistic problem arising from a 3-D
ow calculation (matrix 20), on the 12-CPU Power

Challenge, the 8-CPU Cray C90, the 16-CPU J90, and the 8-CPU AlphaServer 8400, our parallel

algorithm achieves 23%, 33%, 25%, and 17% peak
oating-point performance. The respective M
op

rates are 1002, 2583, 831 and 781. These are the fastest results for the unsymmetric LU factorization

on these powerful high-performance machines. Previous results showed much lower factorization

rates because the machines used were relatively slow and the computational kernel in the earlier

parallel algorithms was based on Level 1 BLAS. The closest work is the parallel symmetric pattern

multifrontal factorization by Amestoy and Du� [1], also on shared memory machines. However,

that approach may result in too many nonzeros and so be ine�cient for unsymmetric pattern sparse

matrices.

Another contribution was to provide detailed performance analysis and modeling for the under-

lying algorithm. In particular, we identi�ed the three main factors limiting parallel performance:

(1) contention for accessing critical sections, (2) processors sitting idle due to pipeline waiting, and

(3) the need to sacri�ce some per-processor e�ciency in order to gain more concurrency. Which fac-

tor plays the most signi�cant role depends on the relative performance of integer and
oating-point

arithmetic in the underlying architecture.

We have developed a theoretical model to analyze our parallel algorithm and predict the opti-

mally attainable speedup. When comparing the theoretical prediction (Table 12) with the actual

speedups (Figure 21), we �nd that there exists a discrepancy between the two. This is because

our hypothetical machine and the optimal scheduling used in the model do not capture all the

details of a real machine with real scheduling. Nevertheless, we do see a similar behavior in the

predicted and actual speedups. That is, for the matrices predicted lower speedups, such as 11, 15,

18 and 21, the actual speedups are also lower. The model is a useful tool to help identify the inher-

ently sequential problems with bad column orderings. The model also suggests that the panel-wise

33

11 12 13 14 15 16 17 18 19 20 21 22
1

2

3

4

5

6

7

8

Power Challenge
Cray J90
AlphaServer 8400

Matrix

S
pe

ed
up

Figure 21: Speedups on 8 processors of the Power Challenge, the AlphaServer 8400 and the Cray

J90.

parallel algorithm, although e�cient on small scale SMPs, cannot e�ectively utilize more than 50

processors.

We plan to expand this research in several directions. We will study a more scalable algorithm

for larger parallel machines. This algorithm is likely to partition the matrix by both rows and

columns, and schedule blocks of submatrices onto processors. This will potentially increase par-

allelism, and reduce the panel update pipeline waiting time. In the framework of SuperLU, both

serial and parallel, we will investigate incomplete LU factorizations, which can be used as a class

of preconditioners for unsymmetric sparse iterative solvers.

9 Acknowledgements

Ed Rothberg of Silicon Graphics not only provided us access to the SGI Power Challenge, but

also helped improve performance of our algorithm. We thank Esmond Ng of Oak Ridge National

Lab for correspondences on the issues of nonzero structure prediction, which helped design the

memory management scheme discussed in Section 5.3. We thank Kathy Yelick for suggestions on

the presentation of the performance analysis section. We thank Osni Marques and Peter Tang for

suggestions on improving the presentation of the material.

References

[1] P. R. Amestoy and I.S. Du�. MUPS: a parallel package for solving sparse unsymmetric sets

of linear equations. Technical report, CERFACS, Toulouse, France, 1994.

34

1 4 8 12
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 22: M
op rate on a SGI Power Chal-

lenge.

1 2 4 8
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 23: M
op rate on a DEC Al-

phaServer 8400.

1 2 4 8
0

500

1000

1500

2000

2500

3000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 24: M
op rate on a Cray C90.

1 4 8 16
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 25: M
op rate on a Cray J90.

35

[2] Patrick R. Amestoy. Factorization of large unsymmetric sparse matrices based on a multi-

frontal approach in a multiprocessor environment. Technical Report TH/PA/91/2, CERFACS,

Toulouse, France, February 1991. Ph.D thesis.

[3] C. Ashcraft and R. Grimes. The in
uence of relaxed supernode partitions on the multifrontal

method. ACM Trans. Mathematical Software, 15:291{309, 1989.

[4] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W. Chin. Optimizing matrix multiply

using PHiPAC: a portable, high-performance, ANSI C coding methodology. Computer Science

Dept. Technical Report CS-96-326, University of Tennessee, Knoxville, May 1996. (LAPACK

Working Note #111).

[5] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W.H.

Liu. A supernodal approach to sparse partial pivoting. Technical Report UCB//CSD-95-

883, Computer Science Division, U.C. Berkeley, July 1995. (Xerox PARC report CSL-95-03,

LAPACK Working Note #103).

[6] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An Extended Set of FOR-

TRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14(1):1{17, March 1988.

[7] J. Dongarra, J. Du Croz, Du� I., and S. Hammarling. A Set of Level 3 Basic Linear Algebra

Subprograms. ACM Trans. Math. Soft., 16:1{17, 1990.

[8] I. S. Du�, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans. Mathematical

Software, 15:1{14, 1989.

[9] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in sparse unsymmetric

symbolic factorization. SIAM J. Matrix Analysis and Applications, 13:202{211, 1992.

[10] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial pivoting

code. SIAM J. Scienti�c and Statistical Computing, 14:253{257, 1993.

[11] David M. Fenwick, Denis J. Foley, William B. Gist, Stephen R. VanDoren, and Daniel Wissel.

The AlphaServer 8000 series: High-end server platform development. Digital Technical Journal,

7(1):43{65, 1995.

[12] Alan George, Michael T. Heath, Joseph Liu, and Esmond Ng. Solution of sparse positive

de�nitive systems on a shared-memory multiprocessor. International Journal of Parallel Pro-

gramming, 15(4):309{325, 1986.

[13] Alan George, Joseph Liu, and Esmond Ng. A data structure for sparse QR and LU factoriza-

tions. SIAM J. Sci. Stat. Comput., 9:100{121, 1988.

[14] Alan George and Esmond Ng. An implementation of Gaussian elimination with partial pivoting

for sparse systems. SIAM J. Sci. Stat. Comput., 6(2):390{409, 1985.

[15] Alan George and Esmond Ng. Symbolic factorization for sparse Gaussian elimination with

partial pivoting. SIAM J. Sci. Stat. Comput., 8(6):877{898, 1987.

[16] Alan George and Esmond Ng. Parallel sparse Gaussian elimination with partial pivoting.

Annals of Operation Research, 22:219{240, 1990.

36

[17] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab: Design and implemen-

tation. SIAM J. Matrix Analysis and Applications, 13:333{356, 1992.

[18] J. R. Gilbert and E. Ng. Predicting structure in nonsymmetric sparse matrix factorizations.

In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse

Matrix Computation. Springer-Verlag, 1993.

[19] John R. Gilbert. An e�cient parallel sparse partial pivoting algorithm. Technical Report CMI

No. 88/45052-1, Computer Science Department, University of Bergen, Norway, 8 1988.

[20] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. Computing row and column counts

for sparse QR factorization. Talk presented at SIAM Symposium on Applied Linear Algebra,

June 1994. Journal version in preparation.

[21] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. An e�cient algorithm to compute row

and column counts for sparse Cholesky factorization. SIAM J. Matrix Anal. Appl., 15:1075{

1091, 1994.

[22] A. Gupta and V. Kumar. Optimally scalable parallel sparse Cholesky factorization. In Proceed-

ings of the Seventh SIAM Conference on Parallel Proceesing for Scienti�c Computing, pages

442{447. SIAM, 1995.

[23] A. Gupta, E. Rothberg, E. Ng, and B. W. Peyton. Parallel sparse Cholesky factorization

algorithms for shared-memory multiprocessor systems. In R. Vichnevetsky, D. Knight, and

G. Richter, editors, Advances in Computer Methods for Partial Di�erential Equations{VII.

IMACS, 1992.

[24] Xiaoye S. Li. Sparse Gaussian elimination on high performance computers. Technical Re-

port UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, September 1996. Ph.D

dissertation.

[25] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Analysis

and Applications, 11:134{172, 1990.

[26] Joseph W.H. Liu, Esmond G. Ng, and Barry W. Peyton. On �nding supernodes for sparse

matrix computations. SIAM J. Matrix Anal. Appl., 14(1):242{252, January 1993.

[27] Esmond G. Ng and Barry W. Peyton. A supernodal Cholesky factorization algorithm for

shared-memory multiprocessors. SIAM J. Sci. Comput., 14(4):761{769, July 1993.

[28] Edward Rothberg. Performance of panel and block approaches to sparse Cholesky factorization

on the iPSC/860 and Paragon multicomputers. SIAM J. Scienti�c Computing, 17(3):699{713,

May 1996.

[29] SGI Power Challenge. Silicon Graphics, 1995. Technical Report.

[30] SPARCcenter 2000 architecture and implementation. Sun Microsystems, Inc., November 1993.

Technical White Paper.

[31] S. A. Vavasis. Stable �nite elements for problems with wild coe�cients. Technical Report

93{1364, Department of Computer Science, Cornell University, Ithaca, NY, 1993. To appear

in SIAM J. Numerical Analysis.

37

[32] The Cray C90 series. http://www.cray.com/PUBLIC/product-info/C90/. Cray Research, Inc.

[33] The Cray J90 series. http://www.cray.com/PUBLIC/product-info/J90/. Cray Research, Inc.

38

A Performance of the parallel algorithm

A.1 On the Sun SPARCcenter 2000

Matrix P = 1 P = 2 P = 4 Seconds M
ops

1 Memplus 0.44 0.82 0.74 2.35 1
2 Gemat11 0.77 1.25 1.51 0.47 3
3 Rdist1 0.86 1.92 1.82 1.71 8
4 Orani678 0.71 1.24 2.08 1.98 8
5 Mcfe 0.79 1.38 2.00 0.45 9
6 Lnsp3937 0.96 1.85 2.03 2.26 18
7 Lns3937 0.92 1.73 3.09 2.41 19
8 Sherman5 0.83 1.70 2.81 1.26 20
9 Jpwh991 0.77 1.56 2.77 0.84 22
10 Sherman3 0.90 1.74 2.92 2.77 22
11 Orsreg1 0.89 1.75 3.17 2.27 27
12 Saylr4 0.88 1.76 3.10 4.17 25

13 Shyy161 0.90 1.82 3.25 59.55 26
15 Goodwin 0.92 1.86 3.61 20.50 33
18 Dense1000 0.97 1.96 3.64 16.39 41

Mean speedup 0.83 1.62 2.64
Std deviation 0.13 0.32 0.83

Table 13: Speedup, factorization time and M
op rate on a 4-CPU SPARCcenter 2000.

39

A.2 On the SGI Power Challenge

Matrix P = 1 P = 4 P = 8 P = 12 Seconds M
ops

1 Memplus 0.72 1.73 1.73 1.69 0.42 4
2 Gemat11 0.89 1.86 2.36 3.71 0.07 22
3 Rdist1 0.89 1.66 1.56 2.23 0.44 32
4 Orani678 0.68 1.72 2.40 2.56 0.45 33
5 Mcfe 0.68 1.92 2.09 3.29 0.07 59
6 Lnsp3937 0.97 3.00 3.65 3.86 0.35 122
7 Lns3937 0.98 2.98 3.92 3.73 0.40 117
8 Sherman5 0.86 2.29 3.09 3.09 0.23 111
9 Jpwh991 0.83 2.40 3.43 5.33 0.09 205
10 Sherman3 0.87 2.36 2.78 2.78 0.40 157
11 Orsreg1 0.88 2.67 2.73 2.97 0.34 180
12 Saylr4 0.90 2.81 3.48 4.58 0.38 284
13 Shyy161 0.86 2.71 3.54 5.06 4.64 332
14 Goodwin 0.89 3.45 5.17 5.90 1.56 433
15 Venkat01 0.65 1.72 2.00 1.98 15.37 209
16 Inaccura 0.85 2.77 4.14 5.00 9.53 438
17 Af23560 0.91 2.98 5.10 6.70 8.87 722
18 Dense1000 0.85 2.64 3.32 4.17 0.90 740
19 Raefsky3 0.92 3.07 5.62 6.91 11.35 1070
20 Ex11 0.94 3.23 5.96 7.64 26.95 1046
21 Wang3 0.85 2.20 3.39 4.03 21.37 681
22 Raefsky4 0.94 3.05 5.17 6.52 33.57 936
23 Vavasis3 0.91 3.58 6.06 6.69 105.06 862

Mean speedup 0.86 2.56 3.59 4.37
Std deviation 0.09 0.59 1.36 1.73

Table 14: Speedup, factorization time and M
op rate on a 12-CPU SGI Power Challenge.

40

A.3 On the DEC AlphaServer 8400

Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds M
ops

1 Memplus 0.46 0.79 0.79 0.78 0.64 0.59 3
2 Gemat11 0.83 1.63 1.88 1.88 1.88 0.08 20
3 Rdist1 0.90 1.98 2.10 1.77 1.77 0.31 40
4 Orani678 0.83 1.29 2.00 2.33 2.42 0.26 57
5 Mcfe 0.72 1.80 3.00 2.17 2.17 0.06 66
6 Lnsp3937 0.93 1.94 3.19 3.68 3.68 0.25 159
7 Lns3937 0.95 1.83 3.08 3.81 4.12 0.25 187
8 Sherman5 0.91 1.89 2.89 2.94 2.94 0.17 151
9 Jpwh991 0.92 1.89 3.00 3.30 3.00 0.11 178
10 Sherman3 0.88 1.83 2.72 2.74 2.74 0.34 180
11 Orsreg1 0.93 1.88 2.93 3.35 3.35 0.26 231
12 Saylr4 0.91 1.98 3.20 3.78 4.08 0.38 276
13 Shyy161 0.95 1.93 3.23 4.21 4.79 4.66 334
14 Goodwin 0.99 1.98 3.68 5.39 6.33 1.49 453
15 Venkat01 0.89 1.92 2.95 3.04 3.16 10.62 303
16 Inaccura 0.99 1.83 3.08 4.15 5.02 10.94 380
17 Af23560 0.95 1.98 3.72 5.03 5.77 11.58 553
18 Dense1000 0.98 1.86 3.35 4.32 4.80 0.99 675
19 Raefsky3 0.98 1.98 3.81 3.16 3.61 28.65 422
20 Ex11 0.99 1.98 3.76 5.56 7.06 34.23 781
21 Wang3 0.93 1.98 3.69 4.75 5.61 21.36 682
22 Raefsky4 0.98 1.98 3.81 5.44 6.63 42.79 734
23 Vavasis3 0.96 1.97 3.69 5.28 6.64 124.24 724

Mean speedup 0.92 1.74 2.89 3.59 4.01
Std deviation 0.13 0.28 0.81 1.31 1.77

Table 15: Speedup, factorization time and M
op rate on an 8-CPU DEC AlphaServer 8400.

41

A.4 On the Cray C90

Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds M
ops

1 Memplus 0.66 0.75 0.74 0.72 0.71 1.24 2
2 Gemat11 0.76 1.36 2.27 3.09 3.40 0.10 15
3 Rdist1 0.71 1.98 2.41 2.41 2.31 0.48 34
4 Orani678 0.72 1.24 2.22 2.91 3.20 0.41 37
5 Mcfe 0.69 1.25 1.82 2.00 2.00 0.10 43
6 Lnsp3937 0.78 1.51 2.77 2.84 4.41 0.27 151
7 Lns3937 0.78 1.51 2.95 3.97 4.23 0.30 156
8 Sherman5 0.77 1.49 2.90 3.59 4.07 0.15 170
9 Jpwh991 0.78 1.52 2.50 3.18 2.92 0.12 164
10 Sherman3 0.79 1.48 2.53 2.97 2.97 0.29 214
11 Orsreg1 0.80 1.53 2.69 3.25 3.55 0.22 278
12 Saylr4 0.83 1.58 3.05 3.85 3.97 0.33 318
13 Shyy161 0.80 1.50 2.87 3.87 4.86 3.29 477
14 Goodwin 0.84 1.65 3.31 4.83 6.59 0.99 682
15 Venkat01 0.70 1.28 1.65 1.73 1.74 14.04 229
16 Inaccura 0.86 1.70 3.19 4.38 5.21 5.18 807
17 Af23560 0.84 1.63 3.22 4.56 4.89 6.24 1035
18 Dense1000 0.95 1.86 2.95 3.30 3.55 0.71 943
19 Raefsky3 0.91 1.74 3.45 4.77 5.83 6.17 1977
20 Ex11 0.90 1.65 3.21 5.02 6.53 10.37 2583
21 Wang3 0.78 1.48 1.82 2.31 2.32 14.62 996
22 Raefsky4 0.92 1.80 3.43 4.60 5.46 13.13 2399

Mean speedup 0.80 1.53 2.63 3.42 3.85
Std deviation 0.08 0.27 0.67 1.11 1.55

Table 16: Speedup, factorization time and M
op rate on an 8-CPU Cray C90.

42

A.5 On the Cray J90

Matrix P = 1 P = 4 P = 8 P = 12 P = 16 Seconds M
ops

1 Memplus 0.65 0.94 0.98 0.97 0.76 3.67 1
2 Gemat11 0.71 2.44 4.38 5.25 5.83 0.18 8
3 Rdist1 0.71 2.86 2.88 2.71 2.39 1.53 10
4 Orani678 0.71 2.07 3.11 3.82 3.85 1.13 13
5 Mcfe 0.77 2.21 2.70 2.70 2.52 0.29 15
6 Lnsp3937 0.75 2.87 4.91 6.21 6.39 0.66 62
7 Lns3937 0.79 2.75 4.63 5.41 5.41 0.83 58
8 Sherman5 0.80 2.91 4.64 5.07 5.32 0.41 63
9 Jpwh991 0.78 2.72 3.57 3.68 3.38 0.37 49
10 Sherman3 0.80 2.63 3.49 3.42 3.31 0.96 66
11 Orsreg1 0.83 2.83 3.88 4.22 4.16 0.70 89
12 Saylr4 0.81 2.91 4.26 4.82 4.82 0.99 108
13 Shyy161 0.83 2.92 5.30 6.94 7.47 8.06 196
14 Goodwin 0.88 3.32 6.66 10.02 12.81 1.94 354
15 Venkat01 0.68 1.84 1.96 1.98 1.90 47.34 68
16 Inaccura 0.90 3.26 5.55 6.64 7.39 15.09 277
17 Af23560 0.87 3.22 5.98 7.55 8.49 15.05 431
18 Dense1000 0.93 2.84 3.79 3.92 3.91 2.61 256
19 Raefsky3 0.93 3.38 6.20 7.69 8.43 19.03 641
20 Ex11 0.95 3.56 6.53 9.47 10.17 32.48 831
21 Wang3 0.77 2.53 3.21 3.14 3.06 50.42 288
22 Raefsky4 0.98 3.54 5.87 7.36 8.12 43.54 723

Mean speedup 0.81 2.75 4.29 5.13 5.45
Std deviation 0.09 0.60 1.51 2.38 2.97

Table 17: Speedup, factorization time and M
op rate on a 16-CPU Cray J90.

43

