
A. Chris Long 20

Appendix B : VQ Play Object Commands

Command Option(s) Description
configure Get/set object parameters

-width pixels Width of image (center image if -1 and
squeeze off)

-height pixels Height of image (center image if -1 and
squeeze off)

-xpos pixels x offset of video within window
-ypos y offset of video within window
-squeeze n If nonzero, resize video to fit the window
-xid X window id or InfoPad ID
-device deviceName Specify decoding device (only “default”

supported)
-lts logical time system to use
-maxFrameRate n Maximum number of frames/second to

play. Not yet implemented.
-ctrlCallback procName Procedure to call for flow control. Not yet

implemented.
-ctrlCycleTime seconds How often to do flow control. Not yet

implemented.
destroy Delete object
accept ScatterBufferList Put ScatterBufferList of data in display

queue.
acceptCodebook
ScatterBufferList

Set new codebook

ready Ready the object
unready Unready the object
stats Get decode/playback statistics
refresh Refresh display with current frame
reinit Reset object and device to default state

A. Chris Long 19

Appendix A : VQ File Object Commands

Command Option(s) Description
configure Set/get object parameters

-lts name Logical Time System object to use
-sendAhead seconds Number of seconds worth of video to send

ahead
-bandwidth bps Maximum bandwidth to provide
-cycleTime How often to wake up and send data
-fileName filename Clip file to read data from
-outCmd Command to invoke to send data
-codebookOutCmd Command to invoke to send codebooks
-maxFrameRate Maximum number of frames/second to

send
destroy Delete object
addSegment clipStart
clipEnd

Add a new segment to the segment list.
Returns segmentId.

-start Specify logical start time for segment
(defaults to 0)

-end Specify logical end time for segment
(defaults to length of source)

clearSegments Clear the segment list
segmentInfo segmentId Return data about a segment
ready Make the object ready to send data
unready Make the object unready to send data
info General data about the object

A. Chris Long 18

[Schu96] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications”, 01/25/1996.

[Smith] B.C. Smith, “Implementation Techniques for Continuous Media
Systems and Applications,” Ph.D. Dissertation, Computer Science
Division - EECS, U.C. Berkeley, December 1994,ftp://mm-
ftp.cs.berkeley.edu/pub/multimedia/papers/
bsmith-thesis.ps.gz .

[Stein] R. Steinmetz and C. Engler, “Human Perception of Media
Synchronization,” Technical Report 43.9310, IBM European
Networking Center, Heidelberg, Germany, 1993.

[Tru] T. Truman. Personal communications, April 1996.

A. Chris Long 17

something that can play on the InfoPad and might make a transcoder object
simpler.

More and more video is being stored across the network and in various formats,
none of it VQ. Also, in live video broadcasts, such as videoconferencing, even if the
source is capable of transmitting VQ, it may not desire to if most of the recipients
want a different format. For CMT to provide end-to-end delivery, it needs to be
able to transcode among video formats.

A higher level issue is whether or not VQ is a good choice for a device like the
InfoPad. VQ is expensive to encode, which is a big disadvantage for transcoding.
Advantages of VQ are low cost to decode and tolerance of bit errors. It is possible
that a better format might be one based on DCTs, which would enable easier
scaling, and which had no interframe dependencies.

A still open question is whether or not the current strategy for audio/video
synchronization is sufficient. Under the current system, the audio and video
streams are synchronized by the play object just before they are sent to the InfoNet.
If the streams travel a small number of network hops before being transmitted over
the wireless link to the InfoPad, it is possible that little latency jitter will be
introduced and thus the streams will remain synchronized. However, it is also
possible that these hops will introduce too much latency jitter. If that is the case, it
could be remedied by synchronizing at the machine that transmits the data to the
InfoPad. It could also be solved by synchronizing on the InfoPad itself, but for
power reasons it would be more desirable to synchronize on the gateway.

References
[Barr94] B. Barringer, T. Burd, F. Burghardt, A. Burstein, A. Chandrakasan,

R. Doering, S. Narayanaswamy, T. Pering, B. Richards, T. Truman,
J. Rabaey, R. Brodersen; “Infopad: A System Design for Portable
Multimedia Access”, Calgary Wireless 94 Conference, July 1994.

[Burg] F. Burghart, “InfoPad Network (IPN) Performance,”http://
infopad.EECS.Berkeley.EDU/research/infonet/
perform.papers/report1/report_ipn1.fm.html .

[Chan] A. P. Chandrakasan. A. Burstein, and R. W. Brodersen, “A Low-
power Chipset for a Portable Multimedia I/O Terminal,” IEEE
Journal of Solid-State Circuits, p. 1415-1428 (December 1994).

[Oust94] J. Ousterhout, “Tcl and the Tk Toolkit.” Addison-Wesley, 1994.

[Pate96] K. Patel, “Introduction to the CM Toolkit,”http://
bmrc.berkeley.edu/projects/cmt/cmtdoc/
CMT_Intro.html .

[Rowe94] L.A. Rowe, “Continuous Media Applications,” Presented at
Multipoint Workshop held in conjunction with ACM Multimedia
‘94, San Francisco, CA, Nov. 1994.

A. Chris Long 16

4.3. Development Environment

The hardest part about developing the VQ objects was the difficulty of usefully
monitoring the state of CMT objects and distributed applications in general. This
problem was exacerbated because the most interesting data is the VQ frame and
codebook data, which cannot be usefully viewed with the usual debugging tools
(e.g. debuggers, text editors).

A test of the complete system had many steps, and problems could occur at each.
The first step in this project was adding metadata to raw VQ files to produce clip
files. The correctness of the added metadata was difficult to test in isolation, since
the only program that could play the output was the CMT VQ objects. The VQ file
object reads VQ clip files and sends frames and codebooks over the network to the
VQ play object, which forwards it to the InfoPad. Either of these objects could be
buggy, and since the output from the file object can only be correctly interpreted
by the play object and the play object can only receive data from the file object, it
was difficult to test them separately. In the end, debugging code had to be added
to both objects to print out frame and codebook indices and raw data, which were
examined by hand.

Another challenge was that it required detailed knowledge of two complex
systems, CMT and InfoNet, which is the network software infrastructure that
supports the InfoPad. At the time this project began, limited CMT documentation
was available. CMT has high level abstractions, which are helpful for application
writers. At the same time, the richness and complexity of CMT increases the
learning curve for programmers wanting to add to the toolkit.

The system design had some good points, also. Both CMT and InfoNet were
developed under UNIX and both were written in C. InfoNet treats all network
traffic as simple bytes, so sending information in any format is easy. The InfoPad
architecture is designed to make it easy to integrate network servers for different
data types.

5. Future Directions

There are both high- and low-level issues that could be addressed in future work.
A useful low-level project would be to add more video and audio source objects
and a transcoder object to CMT. This would enable CMT to capture live video and
audio and sent it to the InfoPad, and live audio to captured on the InfoPad and sent
back. This would enable 1.5-way video conferencing. Software has already been
written that enables similar conferencing, but it is less flexible because it is centered
on the MBONE.

Another low level enhancement would be to extend the file object to read raw VQ
files. Currently, the file object can only read VQ chunk files, that is, files that have
been preprocessed to have index information. There is no reason in principle why
the file object could not construct the index information on the fly. This would
remove one step from the conversion of stored video in another format to

A. Chris Long 15

The raw data from the experiment is shown in Table 1. In wired mode, no frames

were dropped at any of the three speeds, so we know that the hardware functions
properly. The only difference between the wired and wireless tests is that in the
former a serial link is used to connect the InfoPad to the wired network, and in the
latter a radio link is used. Therefore it seems likely that the frame dropping in the
wireless case is due to radio link errors. Also, the running times were very close to
the expected times, which means that the software is sending frames at the right
time.

There are two possible explanations of why the wireless link drops frames. One is
that the bit-clock training sequence is too short, making the radios
unsynchronized. Another is that an error is occurring in the packet header, which
could cause several problems. For example, if the packet length were corrupted
and made much too long, it would tie up the receiver for a long time. [Tru] Work
is being done to make the radio link more robust, which should improve video
performance.

4.2. Playback Quality

Currently there are problems with the hardware that limit the playback quality.
The most significant problem is that the hardware is not able to play audio. Also,
the radio link does not yet have any error correction, so the display frequently
shows radio noise.

A systems problem is that of load balancing. One InfoPad is supported by many
processes. Since interactive computer usage is bursty, it is better for many Pads to
share many computers than for each Pad to have a dedicated computer. In the
future the processes for each Pad will be spread across multiple hosts, but now
they are consolidated. Additionally, many of the computers that support the Pads
sit on graduate students desks and are often being used for other purposes. For
these reasons the system is often bursty in video playback and interactive
performance.

At times when the system is lightly loaded and the radio channel is not very noisy,
the video playback is very good. Video frames come through intact and properly
timed, (at least to the naked eye).

Playback Speed Frames played Percent dropped
for wireless

Wired link Wireless link

Normal 89 76 15

Half 89 87 2

One Tenth 89 89 0

Table 1Frames played and dropped on actual InfoPad

A. Chris Long 14

perceptually synchronized [Stein]. The VQ play object synchronizes audio and
video the same way other CMT play objects do, as follows. When a frame arrives
at the destination, it is put in a display queue that is prioritized by display time. An
event is scheduled to occur when it is time for the frame to be displayed. When the
display event occurs, the frame is sent over the network and wireless link to the
InfoPad. The audio object similarly queues and plays audio.
There is some delay from the time the play object sends a frame until the time it is
played, but since the play object runs close to the Pad, in terms of the network, this
delay is small. More importantly, network measurements show that the jitter in the
latency is very small [Burg]. Thus, it is possible to tune the play object so that it
sends corresponding audio and video at any relative time offset. Therefore, by
measuring synchronization on a network, we should be able to calibrate the play
object once to obtain acceptable synchronization. Over time this latency may
change so we will have to monitor it and feedback the skew to the play object.
The VQ play object has commands similar to other play objects. The VQ play object
commands are listed in Appendix B.

4. Experiences

This section describes various experiences we had developing this code and
conducting a performance experiment.

4.1. Frame Dropping

A test video consisting of 90 unique frames was generated to determine how many
frames were being dropped by the network. To test the software and hardware
performance, this video was played on the InfoPad. The video was played on an
InfoPad communicating over a wired serial link and on an InfoPad
communicating over a wireless radio link. For each type of link, the video was
played back at normal speed, half-speed, and one-tenth speed.
Each of these six playbacks on the InfoPad was recorded on a video camcorder.
This video was analyzed by hand with a frame-accurate tape deck to determine
which, if any, frames had been dropped and to see if the overall playing time of the
video was correct.

A. Chris Long 13

on each codebook in a typical video. The third VQ-specific chunk type is a header
that contains the width, height, number of codebooks, device, and subformat.

Since this is a customized format, a program to convert from other video formats
to VQ clip files was needed. Independently from CMT integration, an MPEG to VQ
transcoder was written. However, the output of this program was not intended for
CMT, and as such did not contain any metadata. (That is, it was equivalent to the
data and codebook chunks of a clip file.) It would be possible to modify the VQ file
object to read “raw” VQ files, as other CMT file objects do, but for simplicity the
file object only reads chunk files. Instead, a second transcoder was written to
compute the metadata and produce a VQ clipfile from a raw VQ file.

3.3. VQ File Object

The VQ video format has no interframe dependencies, which makes it similar to
MJPEG. Therefore, the VQ file object was based on the MJPEG file object.

MJPEG does not have anything analogous to VQ codebooks, so some
modifications were required. Separate network channels are used for the frame
data and the codebook data, because the two types of data have different quality
of service characteristics. The only practical benefit of having two channels is that
codebooks will not back up behind frames. One can imagine future network
software that allows quality of service specification for different channels, in which
case this architecture would be significantly better than a single channel.

The VQ file object can play all of a clipfile or one or more contiguous parts of it,
which are called segments. The object keeps a list of all segments to be played. The
user may add segments to the list, delete segments from the list, and get
information about segments on the list. Similar to other CMT objects, the file object
has many user-settable parameters. Appendix A lists the commands available for
the VQ file object.

3.4. VQ Play Object

As with the file object, the VQ play object is very similar to the MJPEG play object.
It contains all the information about the InfoPad itself. Since the file format was
chosen to be close to what the InfoPad expects, the play object does not have to
reformat the frame data before sending it to the InfoPad. The play object does
reformat the codebook data before sending it. The InfoPad has exactly one
codebook in memory at any given time, so the play object has to ensure that the
current codebook in the InfoPad matches the frames it sends. The play object relies
on the file object to send each codebook before it is time to play the first frame that
requires it. If the required codebook does not arrive by the time its dependent
frame should be played, the frame is dropped. Since codebooks change
infrequently and are significantly larger than frames, the play object caches them
so the file object does not have to resend them.

The greatest challenge for the play object is timing the audio and video so they are
synchronized on the InfoPad. The audio must arrive no more than 15 ms before or
40 ms after the corresponding video in order for the audio and video to be

A. Chris Long 12

3.2. VQ Clip File Format and Transcoder

VQ clip files include the chunk types of other video formats, as well as three
specific to VQ. Figure 10 shows the layout of a VQ clip file.

The chunks that VQ clipfiles share with other clipfiles are the generic header, frame
data, and index. For simplicity, the frame format stored in the clip file is identical
to the format the InfoPad expects.

One VQ-specific chunk is the codebook chunk that contains VQ codebooks.
Another specialized chunk is the frame dependency table (FDT), which specifies the
codebook for each frame. The FDT allows for more efficient random access.
Codebooks can be used by an arbitrary number of frames, as shown in Figure 11.

Although the figure does not emphasize it, there will be many frames that depend

Codebook 1
Codebook 2
. . .
Codebook m

Media-specific

Frame Data

Index

Figure 10 Example clipfile layout for a VQ clipfile. Only VQ-specific chunks are expanded.

Generic Header

Header

Width
Height
Number of Codebooks
Device
Subformat

Frame 1 codebook dependency
Frame 2 codebook dependency
. . .
Frame n codebook dependency

Codebook Data

Frame-dependency
Table

Frame 1 dependency
Frame 2 dependency
Frame 3 dependency
Frame 4 dependency
Frame 5 dependency
. . .
Frame n dependency

Codebook 1
Codebook 2
. . .
Codebook m

Figure 11 Example Frame Dependency Table (FDT).

A. Chris Long 11

entry, so C[n][m] is the value of the mth pixel in the nth codebook entry. The value
of the ith pixel on the screen is then given by

The InfoPad video display is two-dimensional, using a straightforward extensions
of the above method.
Color spaces are typically described with three independent numbers, frequently
red, green, and blue. The InfoPad also separates VQ color data into three channels:
one luminance (Y) and two chrominance (I and Q). YIQ represents the same
information as RGB, YUV, or CMY, but using different color axes.
The Y, I, and Q planes are stored separately for each frame and each plane has its
own codebook. Each Y value (which is 8 bits) corresponds to a 4x4 block of pixels
and each I and Q value (each 8 bits) to an 8x8 block. All three codebooks contain
256 entries, which have sixteen values each. For Y, each codebook entry
corresponds directly to a 4x4 pixel block. For I and Q, the 4x4 value stored in each
codebook entry is scaled to fill an 8x8 block.

Figure 9 Frame data, codebook, and pixel value relationships, shown by shading. (Shading does
not imply anything about the actual color of the pixels, only their relationship to codebook entries

and frame data.)

Frame data

Pixel values

Codebook

P i[] C F i 3⁄[][] i mod 3[]=

A. Chris Long 10

destination object (PktDest) receives the data and passes it to the VQ play object.
The play object formats the data for display and sends it to the InfoPad, via the
InfoPad network. In the figure, video data paths are shown by dark arrows.
Synchronization messages between LTSs are represented by the light arrows.

The remainder of this section describes the CMT objects in more detail. The first
subsection describes vector quantization. The subsections that follow describe the
format of VQ clip files, the VQ-to-clipfile transcoder, the VQ file object, and the VQ
play object.

3.1. Vector Quantization

The idea behind VQ is very similar to the idea behind color mapping on traditional
8- and 16-bit color bitmap displays. That is, table lookup is used to achieve greater
flexibility in what can be displayed than could be had with a simple static mapping
of pixel values to color. They are different in that whereas an index for a colormap
is used to look up the color of a single pixel, a single element in a VQ frame is used
to look up the color of multiple pixels. VQ compression arises from the same small-
to-large colorspace mapping used in traditional colormaps and the spatial one-to-
many mapping. Since the dimensions of both mappings are static, VQ gives fixed-
rate compression. VQ lookup tables (i.e. the analog of colormaps) are called
codebooks.[Chan]

Here is an example of how a simple codebook scheme works. Suppose that VQ
frames, codebooks, and screen images are one-dimensional and that each
codebook entry has three pixel values. Then, each frame value corresponds to three
pixel values. Figure 8 shows how the frame data corresponds to pixel values for a
very small image. Logically, each frame data value expands into three pixel values.

The pixel values come from the codebook, which is indexed by the frame data.
Each codebook entry contains values for three pixels. Figure 9 elaborates on
Figure 8 by showing the codebook.

We can also describe the relationships among the frame data, codebook, and pixel
values with equations. Continuing the example above, let F be the array of frame
data, C be the array of codebook entries, and P be the array of pixel values (all with
base index zero). C is indexed first by entry number and then by pixel value within

Frame data

Pixel values

Figure 8 Frame data to pixel value mapping

A. Chris Long 9

headers and trailers might be prepended and appended to a data block before
network transmission. To make copying more efficient, CMT contains two
abstractions: buffers and scatter buffers. A buffer is a contiguous region of
memory. A scatter buffer is an array of pointers to buffers. Since a scatter buffer is
an array of pointers instead of actual data, adding and removing buffers to/from
scatter buffers takes little time. Data is normally passed between CMT objects
within a process by passing the address of a scatter buffer.

3. CMT Objects

This section describes the new VQ objects and how they fit into the CMT
architecture. For details on CMT object creation and usage, consult the CMT
reference book [Pate96].

Figure 7 expands the CMT source and CMT InfoPad proxy processes shown in
Figure 2 to show the CMT objects that read, format, transmit, and play VQ data.

Figure 7 is similar to the generic playback system shown in Figure 4 except that it
shows the LTS objects and it shows InfoPad specific playback. The playback
operation begins when VQ data is read from the disk by the VQ file object and sent
to the packet source object (PktSrc) for transmission across the network. The packet

CMT InfoPad Proxy

InfoPad proxy computerSource computer

VQ File Object

CMT Source Process

PktDestPktSrc

Figure 7 Software modules and dataflow for audio and video playback through CMT on InfoPad.

Disk

LTS

VQ Play Object

InfoPad

InfoPad

Network

LTS

Process

Computer

Data connection

Radio link

Time sync conn.

A. Chris Long 8

play time for a clip may be squeezed or stretched. Below is an example script file,
with annotations (in italics).

The clip files can be referenced as above (with a standard Unix absolute path) if
they are local. Remote files can also be referenced using a Universal Resource
Locator (URL) syntax.

2.3. CMT Scatter Buffer

A CM application manipulates blocks of CM data that may require data copying.
For example, an application might copy CM data blocks to concatenate them. Or,

MJPEG MPEG MJPEG

Clip 1 Clip 2 Clip 3

AU WAV

Clip 1 Clip 2

Stream 1 (video)

Stream 2 (audio)

Figure 6 Logical structure of an example script file.

Clip files

Clip files

Logical Time
0

Version number
CMT-Movie-1.0

Specify tracks and title (tracks numbered from 0 based on order here)
movie video audio -tags {{title {Creatures}}}

Specify path of a clip for the first (video) track
Format is “clip trackNumber clipFileName”
clip 0 /vid6/creatures.mpg
Specify paths of two clips for the second (audio) track. The -le and -ls options are for logical end
logical start. In this case, they cause the audio to play backwards.
clip 1 /vid6/wonderful-world.au
clip 1 /vid6/wonderful-world.au -le 0 -ls 38

A. Chris Long 7

A movie is composed of one or more type-specific streams. A stream is a sequence
of format-specific clips. A movie is represented by a script, which is stored in a
separate file that contains references to media sequences (i.e. subsequences of clip
files). The logical structure of a movie is shown in Figure 6.
A script file is composed of a header that lists the number of streams and the media
type of each stream followed by descriptions of each stream. A stream may be
composed of any number of clips that do not overlap in time. For each clip, the
script file may specify the start and end times of the clip in the source material (i.e.,
clip file) and the logical start and end times where the clip should be positioned in
the movie script. The source start and end times control which parts of the clip file
are used when playing the script, so a subsequence of a clip file may be included
in a script. The logical start and end times specify when in the LTS the clip should
play (see §2.1. Time). By setting the logical start and end times appropriately, the

Frame 1 byte offset
Frame 1 byte length
. . .
Frame n byte offset
Frame n byte length

Frame Data

Index

Figure 5 Example generic clipfile layout.

Header

Media type
Media encoding
Device
Version
Number of frames
Length
Frame 1
Frame 2
. . .
Frame n
Frame 1 start time
Frame 2 start time
. . .
Frame n start time
Frame n end time

A. Chris Long 6

and clock is the current real-time clock, the current LTS value valuec is given by the
formula

For example, a speed of one results in normal forward playback while negative
five results in fast reverse.

CMT applications typically are composed of multiple processes running on
multiple hosts. A CMT application running across multiple hosts has a master LTS
object and one or more slave LTS objects. To provide proper synchronization of
different CM streams across hosts, LTS objects are synchronized as follows. When
the application changes the master LTS object, the master LTS object tells the
slaves. To account for clock drift, each slave periodically queries the master and
resets itself if it is too far off.

CMT file and play objects use LTS objects to determine when to perform their
functions. That is, LTS tells a file object how long it will be in system time until the
next frame needs to be sent across the network. The file object queues itself to wake
up slightly before then so it can read the frame from the disk and send it on time.
Similarly, a play object uses an LTS to determine when the play object should
schedule itself to play each frame. If the speed of the LTS is changed (e.g., when
play starts or stops) or its value is explicitly changed (e.g., when the user randomly
jumps to a new position in the media sequence), the LTS notifies the play and file
objects that depend upon it. Those dependent objects then reset their timers to
values appropriate for the new LTS speed and value.

2.2. CM Storage Representation

Many standard file formats exist for storing audio and video data. However, it is
difficult to perform certain operations on these files, such as jump quickly from one
part of a video sequence to another. To simplify these operations and to enable
reuse of video sequences without copying them, CMT defines a file format, called
a clip file, that includes CM data and indexes into that data.

A clip file stores a single clip, which is a contiguous sequence of source material
stored in media-specific units (e.g., video frames or audio blocks). A clip file
contains media in a single format (e.g., MPEG or MJPEG). It is organized internally
as a sequence of chunks, each of which is typed. A chunk may contain a clip file
header, media data, or indexes into the media data. An example clip file is shown
in Figure 5. All clip files have a generic header chunk that has information about
the file as a whole: media type (e.g., video or audio), format (e.g., MPEG, VQ),
version number, device (e.g., Parallax, InfoPad), number of media units, and
temporal length. In addition, most types also have a media-specific header that
contains information specific to that type. Video clip files contain index chunks to
support random access.

One might want to play a single video or audio clip. However, it is more likely that
a user wants to play a synchronized sequence of audio and video clips. To allow
this operation, CMT defines a movie file type, identified by the file extension cmt .

valuec speed clock clock0–()×=

A. Chris Long 5

a file object of the appropriate type. The file object passes the data to the packet
source object, which prepares the data for transmission across the network and
transmits it. The data is received by the packet destination object, which passes it
to a play object of the appropriate type. The play object sends the data to the X
server, which displays it on the monitor. The CMT play process shares memory
with the X server because this obviates the need for the X server to copy each video
frame which significantly improves performance.

The rest of this section describes the CMT abstractions in more detail. The first
subsection discusses how CMT manages time. The next subsection describes the
CM storage representation. The last subsection discusses the scatter buffer, which is
an abstraction for media stream data.

2.1. Time

Because CM data is time-sensitive, CMT has a time management abstraction called
a Logical Time System (LTS) object. LTS has two properties that are to be controlled
by an application: value and speed. Value specifies the logical time, and speed
specifies the rate and direction at which logical time moves with respect to real
time (positive speeds being forward and negative ones being backwards). If clock0

is the value of the real-time clock at logical time zero, speed is the speed of the LTS,

Play Object

CMT Play Process

X Server

Destination computerSource computer

File Object

CMT Source Process

Packet DestPacket Source

Figure 4 Typical CMT playback.

Disk

Monitor

CMT object

Computer

Data connection

Process

Shared memory

A. Chris Long 4

2. CMT Architecture

This section describes the architecture of CMT. CMT defines object-oriented
abstractions for audio and video devices (e.g., audio boards, video CODECS, and
video capture and overlay boards), time systems, CM sources and sinks (e.g.,
cameras, microphones, files, displays, and speakers), and network transport
protocols (e.g., cyclic-UDP and RTP).

CMT is implemented in Tcl/Tk, Tcl-DP, and C. Tcl/Tk is a scripting language and
graphical user interface toolkit [Oust94]. The interface to CMT objects is similar to
the interface to Tk widgets. Tcl-DP provides blocking and non-blocking remote
procedure calls, TCP/IP connection management, and a simple distributed object
system. Using Tcl-DP, it is easy to write applications composed of multiple
processes on different hosts exchanging data and commands.

The CMPlayer application, written using CMT, plays synchronized audio and
video across a TCP/IP network. It supports full-function VCR commands
including pause, fast-forward and rewind, plus additional features like random
access. The CMPlayer can play movies composed of several streams with different
media types and formats. It uses hardware to decode data if present; otherwise,
software decoding is used. Figure 3 shows the CMPlayer control panel.

A CMT application is composed of multiple communicating objects. There are file
objects that read CM data from files, packet source and destination objects that
send and receive data to/from the network, and play objects that decode streams
and display them on output devices. Figure 4 shows the software architecture of a
typical, non-InfoPad, playback application. It expands on Figure 2 by showing
some of the objects contained in the CMT processes. CM data is read from disk by

Figure 3 CMPlayer control panel

A. Chris Long 3

This report describes the VQ extensions added to CMT to support the InfoPad.
CMT provides objects to read and write files and encode and decode media
streams with many different formats (e.g., MJPEG, MPEG, and H.261). Objects
were needed to read files stored in VQ format and to receive a VQ stream and send
it to the InfoPad. CMT already supplied objects to transmit and receive media
streams over a TCP/IP network using a protocol named Cyclic UDP, implemented
on the user datagram interface to IP [Smith] or the RTP real-time protocol
implemented on IP-multicast [Schu96]. Figure 2 shows the general CMT playback
architecture. CM data is read from disk by the CMT source process. The source

process sends the CM data to the CMT InfoPad proxy process, which schedules the
data for play at the appropriate time. When the time comes to play the data, the
proxy forwards the data to the InfoPad network, which delivers the data to the
InfoPad via the radio link. The proxy computer is assumed to be a small number
of network hops away from the host with a radio interface communicating directly
with the InfoPad. The source computer may be an arbitrary number of network
hops from the proxy computer.
Since the available video source material was not in VQ format, a transcoder
program also had to be written to create VQ files. Transcoding to the format
required by CMT applications entailed both changing the format of the data and
adding indexing information to the file.
This report is organized as follows. Section 2 describes the overall CMT
architecture. Section 3 describes the relevant file formats and CMT objects. Section
4 describes the results of performance experiments on video playback on the
InfoPad and experiences using and developing the code. The last section suggests
possible future research.

CMT InfoPad Proxy

InfoPad proxy computerSource computer

CMT Source Process

Figure 2 Overview of audio and video playback through CMT on InfoPad.

Disk

InfoPad
InfoPad

Network

Process

Computer

Wired network

Radio link

A. Chris Long 2

the presence of bit errors. InfoPad VQ video requires a bandwidth of 675 kbps for
a playback rate of 30 frames/second. Other types of data use the following
amounts of bandwidth.

Audio input and output require 64 kbps (8 kHz, 8-bit samples) each. The text and
graphics bandwidth vary greatly among applications and due to user activity. The
most expensive operation is a complete screen refresh, which requires that 300
kbits be transmitted. Currently, the InfoPad uses commercial radios with a
maximum bandwidth of about 600 kbps, so it cannot support full-motion, 30
frame/second video. The InfoPad project is developing a custom radio that will
have much higher bandwidth (1 Mbit/s) which can simultaneously support audio
and 30 frame/second video.

The relevant part of the InfoPad software infrastructure is that dealing with video.
Although software for sending video to the InfoPad existed when this project
started, it had a primitive interface and limited capabilities. For example, the
interface was based on a command line with flags, it could only play video from a
single file on a local host at normal speed, and did not synchronize audio with
video. Software was needed to remedy these deficiencies. It was decided to take
advantage of an existing toolkit designed for writing distributed multimedia
applications, the Berkeley Continuous Media Toolkit (CMT)[Rowe94], rather than
write code from scratch. However, CMT did not support VQ video required by the
InfoPad.

Figure 1 The InfoPad

A. Chris Long 1

Full-motion Video for Portable Multimedia
Terminals

Allan Christian Long, Jr.

Abstract
Digital video and mobile computing are two increasingly important technologies,
as evidenced by the ubiquity of desktop digital video and the rising popularity of
portable computing devices. The InfoPad is a mobile terminal that uniquely
combines these two technologies.

This report describes the development of software infrastructure and a user
interface to video playback on the InfoPad. It is based on the Berkeley Continuous
Media Toolkit.

1. Introduction

Digital video and mobile computing are increasingly important technologies.
There are many computer peripherals for playing digital video on the desktop.
Similarly, there are a growing number of portable computing devices, ranging
from personal digital assistants (e.g., Apple Newton) to portable workstation-class
computers (e.g., Intel Pentium and Apple PowerBook laptops).

This report describes software infrastructure that enables video playback on a
portable, wireless computer terminal called the InfoPad, shown in Figure 1.
[Barr94] The InfoPad is a low-power and light weight dumb terminal.
Consequently, it does not have enough computing power to run applications, but
only enough for primitive input and output. The InfoPad displays applications
and allows the user to interact with them, but the applications run on hosts
connected to a wired network. The InfoPad communicates with the wired network
using a high-speed radio link (1 Mbps).

Instead of the conventional keyboard and mouse input devices, the InfoPad has a
pen and a microphone. The InfoPad output devices are a large (10 inch diagonal)
black and white LCD panel for text and graphics, a smaller (3 inch) detachable full-
color display for video, and an earphone for sound.1 The resolution of the text/
graphics display is 640x480 (horizontal x vertical) pixels and the video display
resolution is 128x240. The microphone and earphone are part of a combined
headset that plugs into the Pad.

To reduce bandwidth requirements for video, the InfoPad has custom hardware to
decode vector quantized (VQ) video. Although the InfoPad VQ implementation
does not compress video as much as some other encoding algorithms, such as
MPEG, it was chosen because it is easy to decode in hardware and it is robust in

1. The next generation InfoPad will integrate the video display into a large color LCD panel.

Full-motion Video for Portable Multimedia
Terminals

by
Allan Christian Long, Jr.

B.S. (University of Virginia) 1992

A project report submitted in partial satisfaction of the requirements for the degree of
Master of Science

in
Computer Science

in the
GRADUATE DIVISION

of the
UNIVERSITY of CALIFORNIA at BERKELEY

Readers:

Professor Lawrence Rowe

Professor Robert Brodersen

1996

