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Abstract

We propose a motion segmentation algorithm that aims to break a scene into
its most prominent moving groups. Instead of identifying point correspondences
between the image frames, the idea to �nd what groups of pixels are transformed
from one image frame to another. To do this, we treat the image sequence as
a three dimensional spatiotemporal data set and construct a weighted graph by
taking each pixel as a node, and connecting pixels that are in the spatiotemporal
neighborhood of each other. We de�ne a motion pro�le vector at each image pixel
which captures the probability distribution of the image velocity at that point. By
de�ning a distance between motion pro�le at two pixels, we can assign a weight
on the graph edge connecting them. Using normalized cuts we �nd the most
salient partitions of the spatiotemporal volume formed by the image sequence.
Each partition, which is in the form of a spatiotemporal volume, corresponds to
a group of pixels moving coherently in space and time. Normalized cuts can be
computed e�ciently by solving a generalized eignevalue problem.

For segmenting long image sequences, we have developed a recursive update
procedure that incorporates knowledge of segmentation in previous frames for
e�ciently �nding the group correspondence in the new frame. It speeds up the
segmentation signi�cantly when there is no major scene change, while in the
worst case, when there is major scene change, the algorithm performs correctly
as if no prior knowledge is used. Experimental results on various synthetic and
real image sequences are presented.
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1 Introduction

Grouping based on common motion, or what the Gestaltists[Wer38] called the factor of

\Common Fate", is one of the strongest cues for segmenting an image sequence into separate

objects. However, implementing this perceptual capability has proved to be very challenging

for computer vision systems. Early approaches were based on trying to estimate optical

ow �rst, and then looking for discontinuities. This proved di�cult because of a number of

reasons

1. Optical ow measurement is di�cult in areas of little texture or primarily one-dimensional

texture. Any real image is bound to have large regions with these properties.

2. To deal with di�culty (1) enforcing smoothness constraints to interpolate in the ow

�eld were proposed. However this raises the requirement that one must �rst know the

segmentation so as to avoid smoothing across motion discontinuities!

To cope with these problems, over the last few years a new framework has appeared

based on the idea of simultaneous estimation of multiple global motion models and their

spatial supports (so-called \layers"). This idea has evolved through a number of papers

[AS95, WA96, DP91, WA94, HAP94, JB93]. Perhaps the cleanest current formulations

are based on using the Expectation-Maximization (EM) algorithm[DLR77]. Typically the

motion models are 2D parametric models, translational, a�ne or projective, the E-step is

used to solve for the layers given the motions and their variances, and the M-step for solving

for the motions and variances given the layers.

EM approaches o�er a number of advantages over the previous approaches based on

initial local measurement of optical ow. By combining information over large regions of

the images, the motion estimates found are considerably more robust. Video data can be

quite noisy because of camera jitter and repeated occlusion and discocclusion events, and the

global analysis provides a way to overcome these di�culties. The layers that are extracted

provide the desired scene segmentation. On the other hand, the assumption that image

sequence have to follow a global rigid planar motion is clear too restrictive, and recently

Weiss[Wei97] has developed a variation of EM approach that is based on a non-parametric
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mixture model using a probability distribution over ow �elds that favors smooth ow �elds.

When only sparse point correspondences are sought, Torr and Murray[TM94] have developed

an alternative approach based on characterizing rigid motions using Fundamental matrices.

In our opinion, the principal weakness of the EM approach to layered motion segmen-

tation is in the initialization phase. How many models should one initialize and where and

what should they be, and how can one ensure a global optimal solution have been reached?

A representative approach due to Ayer and Sawhney[AS95] uses the Minimum Description

length principle for selecting the number of models. Initialization is done by dividing up the

image into a �xed number of tiles; estimating the initial motion parameters in these tiles

and then using these as the initial conditions for the EM algorithm. Our experience however

have shown �nding a good initialization remains a nagging problem. Undoubtedly, further

research in this area will provide improvements in this area; however in this paper we have

chosen to develop an alternative approach that incorporates motion information across spa-

tial and temporal neighborhood and �nds a globally optimal segmentation solution without

the di�culty of the initialization that EM approaches need to overcome.

Our approach is to look at the motion segmentation problem as a special instance of

a more general grouping problem. We treat each pixel in the image sequence as a point

living in a large feature space represented by its spatiotemporal position, and other feature

information such as its color and motion information. We then ask the question: given these

points in this large feature space, what is the best way of partitioning them? Our answer

to this question is very similar to a philosophical perspective that could be traced back to

the Gestalt school: image partitioning should be done at the `big picture' level, rather like

a painter �rst marking out the major areas and then �lling in the details.

To that end, we have developed a novel grouping algorithm that takes in points in an

arbitrary feature space, and produce partitions of them in this `big picture' downward way.

To be more speci�c, we construct a weighted graph G = (V ;E), with each point in the

feature space as a node, and the weight associated with each edge connecting two nodes

being a function of their distance in the feature space. To partition this graph into two

disjoint sets V1;V2, V1 [ V2 = V, we propose to use the normalized cut criterion which

measures both the total dissimilarity between the two sets as well as the total similarity
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within the sets. Minimizing the normalized cut criterion leads to �nding the most signi�cant

partition in the feature space, and recursive repartitioning can be used to forming successively

less signi�cant segments in the feature space. We will show that an e�cient computational

technique based on a generalized eigenvalue problem can be used to optimize this criterion.

We have previously demonstrated static image segmentation based on brightness, color or

texture using normalized cuts[SM97].

In this paper, we will show the development of the normalized cuts approach to motion

segmentation (and by restricting to 2 frames, stereopsis based segmentation). Our approach

provides a fresh outlook of the motion segmentation problem. In the segmentation algorithm,

a motion sequence is regarded as a spatiotemporal data set and identi�ed with a graph

G = (V;E) where the nodes of the graph are image triplets, (x; y; t) (a particular pixel in a

particular time frame). The weight on each edge w(i; j) is a function of the similarity between

pair of nodes i and j. Similarity can be estimated on the basis of any of a number of features,

color, brightness, texture, motion, disparity etc. The results in this paper are based on using

only motion features so as to permit a fair comparison with alternative motion segmentation

schemes. By connecting each node to other nodes in its spatiotemporal neighborhood, we

provide an e�ective way for the motion information to be integrated over space and time,

which increase the robustness of the segmentation, without imposing any explicit global

motion constraint. Successful partition of G gives us spatiotemporal volumes corresponding

to di�erent moving objects. By taking time slices of such a volume we can indicate image

groups in each frame as well as identify what their corresponding groups are across time.

This notion of group correspondence is very useful because it leads to a measure of motion

which applies to the group as a whole, not individual pixels as in the case of optical ow.

Such a measure is considerably more robust and could be used for estimating gross measures

such as divergence, deformation, rotation which have been shown to be useful variables for

visual guidance of locomotion and manipulation [Koe86, CB92]. Snakes have been used in

the computer vision literature[CB92] previously for this purpose. They are computationally

e�cient but di�cult to initialize.

The paper is organized as follows. Section 2 explains the details of our graph partition

algorithm based on the normalized cut criterion. This section follows our previous work
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for static image segmentation described in[SM97]. Section 3 describes the development of

motion segmentation using normalized cuts. Section 4 shows how we can e�ciently handle

segmentation of long image sequences. We conclude in section 5.

2 Grouping as graph partitioning

A graph G = (V;E) can be partitioned into two disjoint sets, A;B, A[B = V, A\B = ;,

by simply removing edges connecting the two parts. The degree of dissimilarity between

these two pieces can be computed as total weight of the edges that have been removed. In

graph theoretic language, it is called the cut:

cut(A;B) =
X

u2A;v2B

w(u; v): (1)

The optimal bi-partitioning of a graph is the one that minimizes this cut value. Although

there are exponential number of such partitions, �nding the minimum cut of a graph is a

well studied problem, and there exist e�cient algorithms for solving it.

Wu and Leahy[WL93] proposed a clustering method based on this minimumcut criterion.

In particular, they seek to partition a graph into k-subgraphs, such that the maximum cut

across the subgroups is minimized. This problem can be e�ciently solved by recursively

�nding the minimum cuts that bisect the existing segments. As shown in Wu & Leahy's

work, this globally optimal criterion can be used to produce good segmentation on some of

the images.

However, as Wu and Leahy also noticed in their work, the minimum cut criteria favors

cutting small sets of isolated nodes in the graph. This is not surprising since the cut de�ned

in (1) increases with the number of edges going across the two partitioned parts. Figure

(1) illustrates one such case. Assuming the edge weights are inversely proportional to the

distance between the two nodes, we see the cut that partitions out node n1 or n2 will have a

very small value. In fact, any cut that partitions out individual nodes on the right half will

have smaller cut value than the cut that partitions the nodes into the left and right halves.

To avoid this unnatural bias for partitioning out small sets of points, we propose a new

measure of disassociation between two groups. Instead of looking at the value of total edge
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Min-cut 1n1

n2

better cut

Min-cut 2

Figure 1: A case where minimum cut gives a bad partition.

weight connecting the two partitions, our measure computes the cut cost as a fraction of the

total edge connections to all the nodes in the graph. We call this disassociation measure the

normalized cut (Ncut):

Ncut(A;B) =
cut(A;B)

asso(A;V )
+

cut(A;B)

asso(B;V )
(2)

where asso(A;V ) =
P

u2A;t2V w(u; t) is the total connection from nodes in A to all nodes

in the graph, and asso(B;V ) is similarly de�ned. With this de�nition of the disassociation

between the groups, the cut that partitions out small isolated points will no longer have

small Ncut value, since the cut value will almost certainly be a large percentage of the total

connection from that small set to all other nodes. In the case illustrated in �gure 1, we see

that the cut1 value across node n1 will be 100% of the total connection from that node.

In the same spirit, we can de�ne a measure for total normalized association within groups

for a given partition:

Nasso(A;B) =
asso(A;A)

asso(A;V )
+
asso(B;B)

asso(B;V )
(3)

where asso(A;A) and asso(B;B) are total weights of edges connecting nodes within A and

B respectively. We see again this is an unbiased measure, which reects how tightly on

average nodes within the group are connected to each other. Another important property

of this de�nition of association and disassociation of a partition is that they are naturally

related:

Ncut(A;B) =
cut(A;B)

asso(A;V )
+

cut(A;B)

asso(B;V )
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=
asso(A;V )� asso(A;A)

asso(A;V )

+
asso(B;V )� asso(B;B)

asso(B;V )

= 2� (
asso(A;A)

asso(A;V )
+
asso(B;B)

asso(B;V )
)

= 2�Nasso(A;B)

Hence the two partition criteria that we seek in our grouping algorithm, minimizing the

disassociation between the groups and maximizing the association within the group, are

in fact identical, and can be satis�ed simultaneously. In our algorithm, we will use this

normalized cut as the partition criterion.

Having de�ned the graph partition criterion that we want to optimize, we will show how

such an optimal partition can be computed e�ciently.

2.1 Computing the optimal partition

Given a partition of nodes of a graph, V, into two sets A and B, let x be an N = jV j

dimensional indicator vector, xi = 1 if node i is in A, and �1 otherwise. Let d(i) =
P

j w(i; j),

be the total connection from node i to all other nodes. With the de�nitions x and d we can

rewrite Ncut(A;B) as:

Ncut(A;B) =
cut(A;B)

asso(A;V )
+

cut(B;A)

asso(B;V )

=

P
(xi>0;xj<0)

�wijxixjP
xi>0

di

+

P
(xi<0;xj>0)�wijxixjP

xi<0 di

Let D be an N �N diagonal matrix with d on its diagonal, W be an N � N symmetrical

matrix with W(i,j) = wij , k =

P
xi>0

diP
i
di

, and 1 be an N � 1 vector of all ones. Using the

fact 1+x
2

and 1�x
2

are indicator vectors for xi > 0 and xi < 0 respectively, we can rewrite

4[Ncut(x)] as:

= (1+x)T (D�W)(1+x)

k1TD1 + (1�x)T (D�W)(1�x)

(1�k)1TD1
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= (xT (D�W)x+1T (D�W)1)
k(1�k)1TD1 + 2(1�2k)1T (D�W)x

k(1�k)1TD1

Let �(x) = xT (D�W)x, �(x) = 1T (D�W)x,  = 1T (D�W)1, and M = 1TD1, we

can then further expand the above equation as:

=
(�(x) + ) + 2(1 � 2k)�(x)

k(1� k)M

=
(�(x) + ) + 2(1 � 2k)�(x)

k(1� k)M
�

2(�(x) + )

M

+
2�(x)

M
+

2

M

dropping the last constant term, which in this case equals 0, we get

=
(1 � 2k + 2k2)(�(x) + ) + 2(1 � 2k)�(x)

k(1 � k)M
+

2�(x)

M

=

(1�2k+2k2)

(1�k)2
(�(x) + ) + 2(1�2k)

(1�k)2
�(x)

k

1�k
M

+
2�(x)

M

Letting b = k

1�k
, and since  = 0, it becomes,

=
(1 + b2)(�(x) + ) + 2(1 � b2)�(x)

bM
+

2b�(x)

bM

=
(1 + b2)(�(x) + )

bM
+

2(1 � b2)�(x)

bM
+

2b�(x)

bM
�

2b

bM

=
(1 + b2)(xT (D�W)x+ 1T (D�W)1)

b1TD1

+
2(1 � b2)1T (D�W)x

b1TD1

+
2bxT (D�W)x

b1TD1
�

2b1T (D�W)1

b1TD1

=
(1+ x)T (D�W)(1+ x)

b1TD1

+
b2(1� x)T (D�W)(1� x)

b1TD1
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�
2b(1� x)T (D�W)(1+ x)

b1TD1

=
[(1+ x)� b(1� x)]T (D�W)[(1+ x)� b(1� x)]

b1TD1

Setting y = (1+ x)� b(1� x), it is easy to see that

yTD1 =
X
xi>0

di � b
X
xi<0

di = 0 (4)

since b = k

1�k
=

P
xi>0

diP
xi<0

di
; and

yTDy =
P

xi>0
di + b2

P
xi<0

di

= b
P

xi<0 di + b2
P

xi<0 di

= b(
P

xi<0
di + b

P
xi<0

di)

= b1TD1:

Putting everything together we have,

minxNcut(x) = miny
yT (D �W )y

yTDy
; (5)

with the condition y
i
2 f1;�bg and yTD1 = 0.

Note that the above expression is the Rayleigh quotient[GL89]. If y is relaxed to take on

real values, we can minimize equation (5) by solving the generalized eigenvalue system,

(D�W)y = �Dy: (6)

However, we have two constraints on y, which come from the condition on the corresponding

indicator vector x. First consider the constraint yTD1 = 0. We can show this constraint

on y is automatically satis�ed by the solution of the generalized eigensystem. We will do so

by �rst transforming equation (6) into a standard eigensystem, and show the corresponding

condition is satis�ed there. Rewrite equation (6) as

D
� 1

2 (D�W)D� 1

2z = �z; (7)

where z = D
1

2y. One can easily verify that z0 = D
1

21 is an eigenvector of equation (7) with

eigenvalue of 0. Furthermore, D�
1

2 (D�W)D�
1

2 is symmetric semi-positive de�nite, since
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(D�W), also called the Laplacian matrix, is known to be semi-positive de�nite[PSL90].

Hence z0 is in fact the smallest eigenvector of equation (7), and all eigenvectors of equation

(7) are perpendicular to each other. In particular, z1 the second smallest eigenvector is

perpendicular to z0. Translating this statement back into the general eigensystem (6), we

have 1) y0 = (0;1) is the smallest eigenvector, and 2) 0 = zT1 z0 =y
T

1 D 1, where y1 is the

second smallest eigenvector of (6).

Now recall a simple fact about the Rayleigh quotient[GL89]:

Let A be a real symmetric matrix. Under the constraint that x is orthogonal to the

j-1 smallest eigenvectors x1,...,xj�1, the quotient x
TAx
xTx is minimized by the next smallest

eigenvector xj , and its minimum value is the corresponding eigenvalue �j.

As a result, we obtain:

z1 = arg:minzTz0=0

zTD�
1

2 (D�W)D�
1

2z

zTz
; (8)

and consequently,

y1 = arg:minyTD1=0
yT (D�W)y

yTDy
; (9)

Thus the second smallest eigenvector of the generalized eigensystem (6) is the real valued

solution to our normalized cut problem. The only reason that it is not necessarily the

solution to our original problem is that the second constraint on y that y
i
takes on two

discrete values is not automatically satis�ed. In fact relaxing this constraint is what makes

this optimization problem tractable in the �rst place. We will show in section (2.2) how this

real valued solution can be transformed into a discrete form.

A similar argument can also be made to show that the eigenvector with the third smallest

eigenvalue is the real valued solution that optimally sub-partitions the �rst two parts. In fact

this line of argument can be extended to show that one can sub-divide the existing graphs,

each time using the eigenvector with the next smallest eigenvalue. However, in practice

because the approximation error from the real valued solution to the discrete valued solution

accumulates with every eigenvector taken, and all eigenvectors have to satisfy a global mutual

orthogonality constraint, solutions based on higher eigenvectors become unreliable. It is best

to restart solving the partitioning problem on each subgraph individually.
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In summary, we propose using the normalized cut criteria for graph partitioning, and we

have shown how this criteria can be computed e�ciently by solving a generalized eigenvalue

problem.

2.2 The grouping algorithm

As we saw above, the generalized eigensystem in (6) can be transformed into a standard

eigenvalue problem. Solving a standard eigenvalue problem for all eigenvectors takes O(n3)

operations, where n is the number of nodes in the graph. This becomes impractical for image

segmentation applications where n related to the number of pixels in an image. Fortunately,

our graph partitioning has the following properties: 1) the graphs often are only locally

connected and the resulting eigensystems are very sparse, 2) only the top few eigenvectors

are needed for graph partitioning, and 3) the precision requirement for the eigenvectors is

low, often only the right sign bit is required. These special properties of our problem can be

fully exploited by an eigensolver called the Lanczos method. The running time of a Lanczos

algorithm is O(mn)+O(mM(n))[GL89], where m is the maximum number of matrix-vector

computations allowed, and M(n) is the cost of a matrix-vector computation. In the case

where (D�W) is sparse, the matrix-vector product can be computed e�ciently. As we

should see in section 3, in the case of motion segmentation it costs only O(n) time. The

number m depends on many factors[GL89]. In our particular problem, m is typically less

than O(n
1

2 ).

Once the eigenvectors are computed, we can partition the graph into two pieces using

the second smallest eigenvector. In the ideal case, the eigenvector should only take on two

discrete values, and the signs of the values can tell us exactly how to partition the graph.

However, our eigenvectors can take on continuous values, and we need to choose a splitting

point to partition it into two parts. There are many di�erent ways of choosing such splitting

point. One can take 0 or the median value as the splitting point, or one can search for the

splitting point such that the resulting partition has the best Ncut(A;B) value. We take the

latter approach in our work. To �nd the best Ncut value partition, one can perform linear

search by checking l evenly spaced possible splitting points, and computing the best Ncut
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among them. 1

After the graph is broken into two pieces, we can recursively run our algorithm on the

two partitioned parts. Or equivalently, we could take advantage of the special properties of

the other top eigenvectors as explained in previous section to subdivide the graph based on

those eigenvectors. The recursion stops once the Ncut value exceeds certain limit.

2.3 Related graph partition algorithms

The idea of using eigenvalue problems for �nding partitions of graphs originated in the work

of Donath & Ho�man[DH73], and Fiedler[Fie75]. Fiedler suggested that the eigenvector

with the second smallest eigenvalue of the system (D�W)x = �x could be used to split a

graph. In fact the second smallest eigenvalue is called the Fiedler value, and corresponding

eigenvector the Fiedler vector. This spectral partitioning idea has been revived and further

developed by several other researchers, and recently popularized by the work of [PSL90],

particularly in the area of parallel scienti�c computing.

In applications to several di�erent areas, many authors have noted that the spectral

partition method indeed provides good partitions of graphs [PSL90]. Most of the theoretical

work done in this area has been focused on the connection between the ratio of cut and the

Fiedler value. A ratio of cut of a partition of V , P = (A;V �A) is de�ned as cut(A;V�A)

min(jAj;jV�Aj)
.

It was shown that if the Fiedler value is small, partitioning graph based on the Fiedler

vector will lead to good ratio of cut[ST96]. Our derivation in section 2.1 can be adapted

(by replacing the matrix D in the denominators by the identity matrix I) to show that the

Fiedler vector is a real valued solution to the problem of minA�V
cut(A;V�A)

jAj
+ cut(V�A;A)

jV�Aj
,

which we can call the average cut.

Although average cut looks similar to the normalized cut, average cut does not have the

important property of having a simple relationship to the average association, which can be

1 Or alternatively, one can look at the histogram of the eigenvector values, and choose the bins around

the major peaks in the histogram as possible splitting points. The reason to choose those values as splitting

points is that they roughly correspond to the end points for the gaps in the eigenvector values, and therefore

most likely to produce good Ncut values. This is mainly for speeding up the computation, and in the worst

case we can just do the search linearly for all the l possible values, with l usually set to a value less than 20.
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analogously de�ned as asso(A;A)

jAj
+ asso(V�A;V�A)

jV�Aj
: Consequently, one can not simultaneously

minimize the disassociation across the partitions, while maximizing the association within

the groups. When we applied both techniques to the image segmentation problem, we found

that the normalized cut produces better results in practice.

The generalized eigenvalue approach was �rst applied to graph partitioning by [DR95]

for dynamically balancing computational load in a parallel computer. Their algorithm is

motivated by [KYSK84]'s paper on representing a hypergraph in a Euclidean Space.

3 Motion Segmentation

To apply the normalized cut approach to motion segmentation, we treat the image sequence

as a spatiotemporal data set. An associated graph G = (V;E) is constructed by taking each

image pixel (x; y; t) as a node and connecting it to nodes in its spatiotemporal neighborhood.

The weight on each such arc is a measure of the similarity of feature vectors at the two

nodes. In general, feature similarity can be estimated based on brightness, color, texture,

motion, disparity or any combination thereof. In this paper we will use motion information

exclusively.

The next question is to formulate a way to characterize the motion information locally.

One way might be to measure the motion, or optical ow, at each pixel in an image se-

quence. Some of these algorithms are based on using the outputs of spatiotemporal �lters

[AB85, Hee87, FJ90] to estimate image velocity, while others use the brightness constancy

assumption to derive di�erential techniques for computing the optical ow[LK81]. Although

they di�er in the details of their formulation, fundamentally they are equivalent[Sim93]. The

basic limitations of those techniques are also quite similar. One can not determine the im-

age velocity reliably at image patches where the intensity pro�le is at, such as the image

of a featureless wall, or image regions with a one dimensional intensity pro�le, such as an

extended edge. Figure (2) illustrates these di�culties in one typical image sequence.

There have been various attempts to �x these problems in optical ow computation.

Some restrict their algorithms to be run only at the places where velocity can be computed

reliably[ST94], while others impose a smoothness constraint and apply regularization to ob-

12



(a) (b) (c)

Figure 2: Subimage (a) and (b) shows two frames of an image sequence, and optical ow
computed by Lucas-Kanade type of algorithm is shown in (c). Notice that the optical ow
estimates are reasonable in the textured regions, while in constant brightness regions such as
the shirt and the area below the bookshelf, or in regions of repetitive structure, the algorithm
performs poorly.

tain a smooth looking output[HS81, Ana89, NE86, BA91]. Alternatively, one could combine

the process of motion measurement with image segmentation as has been done successfully

in recent layer based approaches to motion analysis in the EM framework.

In our framework, the segmentation is going to emerge as a result of �nding partitions

that minimize the normalized cut, so evidently the feature similarity should be based on

local measures of motion that can be computed before the segmentation is known. Instead

of deciding locally and prematurely on the optical ow vector, we use the motion pro�le,

a measure of the probability distribution of the image velocity at each pixel as our motion

feature vector. Let I t(X) denote a window centered at the pixel at location X 2 R2 at

time t. We denote by Pi(dx) the probability of an image patch at node i, I t(Xi), at time t

corresponding to another image patch I t+1(Xi+dx) at time t+1. Pi(dx) can be computed

by �rst estimating the similarity Si(dx) between I
t(Xi) and I

t+1(Xi+dx), and normalizing

it to get a probability distribution:

Pi(dx) =
Si(dx)P
dx Si(dx)

: (10)

There are many ways one can compute similarity between two image patches; we will use
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Figure 3: (a) outlines 6 image regions with various intensity pro�les. Subimages (1)-(6)
shows the corresponding motion pro�les at pixels centered in the regions shown in (a). Note
these motion vectors have captured the image velocities at those points as well as their
associated uncertainties.

a measure that is based on the SSD di�erence:

Si(dx) = exp(�
X
w

(I t(Xi +w) � I t+1(Xi + dx+w))2=�2
ssd
); (11)

where w 2 R2 is within a local neighborhood of image patch I t(Xi). Figure (3) shows the

motion pro�le computed according to the above de�nition on various image patches on an

image shown in �gure (2).

Now we are ready to assign a weight to the graph edge connecting two image pixels in

the space-time domain based on their motion pro�le vectors. We found cross-correlation of

the two motion pro�les to be a simple, yet e�ective, measure of motion similarity. De�ne

the distance between two image patches i and j as

d(i; j) = 1 �
X

dx

Pi(dx)Pj(dx); (12)

where dx range over possible displacements. The weight on graph edge (i; j) is then given

by wij = exp(�d(i; j)=�2
m
).

It should be noted that this measure of motion similarity will distinguish between two

pixels which have exactly the same true motion, but where the brightness pro�les are such

that the associated motion uncertainties are very di�erent. If one of the pixels is in a region of

constant brightness and another in a region of rich texture this will happen. We believe that
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this is entirely appropriate given local information; the consequence can be over segmentation

of a single rigidly moving object. This however is trivially handled in a postprocessing step.

For computational complexity reasons, we limit the number of nodes in the graph by

subsampling the image (factor of 3 from the full spatial resolution in our examples), and limit

the number of edges in the graph by having nonzero w(i; j) only for nodes in a spatiotemporal

window of �3 frames, and �5 in x and y. The image patch size used for computing patch{

patch comparisons are 5 � 5 pixels.

To partition the graph, we construct the association matrixW with entryW (i; j) = wij,

and solve for the �rst few eigenvectors of the generalized eigensystem (D�W )x = �Dx. As

we saw earlier, this generalized eigensystem can be transformed into a standard eigenvector

system: Az = �z, where A = D�
1

2 (D �W )D�
1

2 , and z = D
1

2y. The Lanczos method

can be used to obtain the �rst few eigenvectors e�ciently if A is sparse. The running

time of the Lanczos algorithm is dominated by the O(mM) term where m is the maximum

allowed iterations for solving the eigenvectors, and O(M) the cost of computing matrix vector

multiplicationAx = y. To see why this matrix vector multiplication costs only O(n), where

n is the number of nodes in the graph, we will look at the cost of inner product of one row of

A with a vector x. Let yi = Ai �x =
P

j
Aijxj. For a �xed i, Aij is only nonzero if node j is

in a �xed space-time neighborhood of i. Hence there are only a �xed number of operations

required for each Ai � x, and the total cost of computing Ax is O(n). Furthermore, each of

those Ai � x inner product corresponds to a local space-time convolution type of operation,

and therefore can be implemented e�ciently on parallel processors.

To see what those eigenvectors look like, we will take an example of a synthetically

generated image sequence. Figures (4) shows the images and the computed generalized

eigenvectors. As we saw from section 2.1, the eigenvectors are real valued solutions to our

normalized cut problem. Ideally they should take on discrete values, and as we can see from

�gure (4) this is indeed the case for the �rst two smallest eigenvectors. One can see that

using these two eigenvectors we can segment out the two moving patches. However, for the

third smallest eigenvector, the values in that eigenvector are smoothly varying, and are not

close at all to any discrete values. There are many ways of interpreting this phenomena. In

the view of segmentation, the third eigenvector is attempting to subdivide the background
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(a)

(b)

(c)

(d)

(e)

Figure 4: Row (a) of this plot shows the six frames of a synthetic random dot image
sequence. Row (b) shows the outlines of the two moving patches in this image sequence. The
outlines shown here are for illustration purposes only. Row (c) to (e) show the generalized
eigenvectors computed broken into their components in each of the time frame. Only the
smallest eigenvectors with eigenvalue less than 0.05 are shown here.

in the \random dot" image sequence. However, there are no real breaks in the background,

hence no sure way of breaking it. The smoothly varying nature of the eigenvector values

indicates precisely this problem. In fact, if we are forced to partition the image based on

this eigenvector, we will see there are many di�erent splitting points which have similar

Ncut values. Hence the partition will be highly uncertain and unstable. In our current

segmentation scheme, we simply choose to ignore all those eigenvectors which have smoothly

varying eigenvector values. We achieve this by imposing a stability criterion which measure

the degree of smoothness in the eigenvector values. The simplest measure is based on �rst

computing the histogram of the eigenvector values, and then computing the ratio between the
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minimum and maximum values in the bins. When the eigenvector values are continuously

varying, the values in the histogram bin will stay relatively the same, and the ratio will

be relatively high. In our experiments, we �nd that the eigenvector values either have a

distribution with a small number of peaks (4(c), 4(d)) or a continuous one (4(e)). Therefore a

simple thresholding on the ratio described above can be used to exclude unstable eigenvectors.

We have set that value to be 0.06 in all our experiments.

(a)

(b)

(c)

Figure 5: Row (a)-(c) shows the top three partitions of the \random dot" image sequence
that have Ncut values less than 0.05. The same threshold is used in all our image sequences.
The segmentation algorithm produces 3D space-time partitions of the image sequence. Cross-
sections of those partitions are shown here. The original image size is 100 � 100, and the
segmentation is computed using image patches(superpixels) of size 3� 3. Each image patch
is connected to other image patches that are less than 5 superpixels away in spatial distance,
and 3 frames away in temporal distance.

In summary, our grouping algorithm can be described as:

1. Given an image sequence, set up a weighted graph G = (V;E) by taking a subsample

of the image pixels as the node of the graph(A factor of 3 from the full resolution in

our examples). Connect nodes that are less than rs superpixels apart in space, and

rt frames apart in time. For each pair of nodes compute their motion pro�les, and

de�ne the weight of the graph edge connecting them as in equation (12). Summarize

the information into W, and D. In our experiments, rs = 5 and rt = 3.
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(a) (b)

(c) (d) (e) (f) (g)

Figure 6: Subimage (a) and (b) show the left and right image of a stereo image pair, and
segmentation is shown in subimages (c) to (g). Motion pro�les are computed for the image
patches(3 � 3) in left image only, and hence the graph consists of just those nodes from
that image. Each of the image patch is connected to other image patches that are less than
5 superpixel away. Segments in (c) and (d) corresponds to the person in the foreground,
and segments in (e) to (g) corresponds to the background. The reason that the head of the
person is segmented away from the body is that although they have similar motion, their
motion pro�les are di�erent. As we saw in �gure (3) the head region contains 2D textures
and the motion pro�le are more peaked, while in the body region the motion pro�les are
more spread out. Segment (e) is broken away from (f) and (g) for the same reason.

2. Solve (D�W)x = �Dx for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with second smallest eigenvalue to bipartition the graph by �nding

the splitting point such that Ncut is minimized,

4. Decide if the current partition should be sub-divided by checking the stability of the

cut, and make sure Ncut is below pre-speci�ed value,

5. Recursively repartition the segments using the next smallest eigenvectors.

The number of groups segmented by this method is controlled directly by the maximum

allowed Ncut, which is set to 0.05 in all our experiments.

18



(a) (b) (c) (d) (e)

Figure 7: Subplot (a) to (e) shows the 5 smallest generalized eigenvectors with eigenvalue
less than 0.05 computed for segmenting the image squence in �gure (6). Noticing from the
�rst eigenvector in (a), the foreground person is segmented from the background, while later
on using the eigenvector in (d), the head of the person is segmented from the body.

Now we return to our synthetic \random dot" image sequence shown in �gure (4). The

segmentations are shown in �gure (5). As we can see our algorithm produced the correct

segmentations, and along with it the right group correspondences throughout the image

sequence. The slightly jagged object boundaries are mainly due to low image resolution at

which we compute the segmentation.

Figure (6) shows the segmentation result on the two frame image sequence shown in

�gure(2), and the associated generalized eigenvectors are shown in �gure (7).

Figure (8) shows the result of motion segmentation on a seven frame Carl Lewis running

image sequence. The image sequence is used because 1) it has very poor image quality: the

image noise is very high, and image contrast is relatively low, and 2) it contains an articulated

body with di�erent motions on each of the limbs. Note that the camera is panning to keep

Carl Lewis in the center of the frame, this results in a moving background which would make

background subtraction fail.

We want to see if the algorithm is able to �nd the most dominate motion blocks in the

image sequence. As we can see from the �gure (8), we indeed achieve this goal even under

poor image conditions.
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(a)

(b)

(c)

(d)

Figure 8: Row (a) shows an image sequence of Carl Lewis running. Notice that the
background is moving to the left as the camera is panning to keep the runner in the center of
the image, and therefore background subtraction would not work as an image segmentation
technique. The original image size is 200 � 190, and image patches of size 3 � 3 is used to
construct the partition graph. Each of the image patches are connected to others that are less
than 5 superpixels and 3 image frames away. Row (b) to (d) show the motion segmentation
produced by our algorithm. Note these regions found corresponds the runner in (b), moving
background in (c), and the left lower leg in (d). The left lower leg is segmented from the
runner because it undergoes signi�cant upward rotation in these seven image frames. By
recursive cuts and by lowering the maximum allowed Ncut value, the other moving limbs
can be found.

4 Segmenting and Tracking Long Image Sequences

The method described above takes in a �xed number of image frames, and produce a seg-

mentation in a batch type of operation. The advantage of computing segmentation based on

multiple image frames is that one can incorporate information across several frames to pro-

duce the best partition. However, this becomes computationally impractical and ine�cient

if we have to segment a very long image sequence this way.

To solve this problem, we will use only a �xed number of image frames centered around

each incoming image frame in the time domain to compute the segmentation. Figure (9)
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illustrates this idea.

t-k+1

Time

Current frame

next frame

t t+1 t+k t+k+1t-k

Image frames

Figure 9: At any given time step t, only +/- k image frames center around t is used to
construct the partition graph, for computing the segmentation and group correspondence.
At the next time step t+1, image frame t-k is dropped and t+k+1 is incorporated in our
grouping algorithm.

Because there is a signi�cant overlap of the image frames used to compute the seg-

mentation from one time step to another, we can use it to our advantage to speedup our

computation. The place where we can gain most of the speed up is in the step of solving

the generalized eigensystem (D �W )x = �Dx, or its equivalent form Az = �z, where

A = D�
1

2 (D �W )D�
1

2 , and z = D
1

2y. Without going into too much detail, the Lanczos

method of computing eigenvector for a sparse matrix is closely related to the problem of

computing orthonormal bases for the Krylov subspace associated with matrix A. If we have

a good guess of the vectors that spans that subspace, we can arrive at the solution very

quickly. We shall see that this is indeed achieved by our algorithm.

Let At denote the matrix constructed at time t from image frame t� k to t+ k. We can

break At into submatrixes corresponding the connections between each of the image frames:

At =

2
6666666666664

A(t�k)(t�k) A(t�k)(t�k+1) � � � 0 � � �

A(t�k+1)(t�k) A(t�k+1)(t�k+1) A(t�k+1)(t�k+2) � � � 0 � � �

...
...

...

� � � 0 � � � A(t+k�1)(t+k�2) A(t+k�1)(t+k�1) A(t+k�1)(t+k)

� � � � � � 0 � � � A(t+k)(t+k�1) A(t+k)(t+k)

3
7777777777775

;

(13)
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where each Aij is related to the connections from nodes in frame i to nodes in frame j. Let

z
t be an eigenvector for At. zt can also be broken into sub-vectors corresponding to each of

the frames:

z
t =

2
666666664

z
t

t�k

z
t

t�k+1

...

z
t

t+k

3
777777775

(14)

When the time step is advanced by one frame, the new At+1 is related to the previous At

by,

At+1 =

2
666666664

At(2 : 2k + 1; 2 : 2k + 1)

0
...

A(t+k)(t+k+1)

0 � � � A(t+k+1)(t+k) At+k+1t+ k + 1

3
777777775
: (15)

Let zt+1 be the eigenvector for At+1,

z
t+1 =

2
666666664

z
t+1
t�k+1

...

z
t+1
t+k

z
t+1
t+k+1

3
777777775
: (16)

Unless there is a major scene change at time t + 1, we expect the �rst 2k frames of zt+1

to stay relatively the same. To initialize the component corresponding to the new frame,

we can compute zt+1� = At+1
z, where z = [zt

t�k+1; � � � ; z
t

t+k; 0]
t. Intuitively this amounts

to interpolating from the eigenvectors from the previous frames to obtain a guess at the

eigenvector for the frame t + k + 1. zt+1� is then input to the Lanczos eigenvector solver to

speed up the computation.

To test our method, we used the standard \ower garden" sequences as used by[AS95].

In this experiment, we set the half-width of the time window, k, to 2 frames. Figure (10)

shows the �rst �ve frames of the image sequence along with the motion segmentation. The

generalized eigenvectors are shown in �gure (11). With the sliding time window updating

mode, we see the cost of computing the generalized eigenvectors at the each of the new time
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step amounts to only 20% of cost we would incur if we had done it in the batch mode. Figure

(12) shows the 15th to the 18th image frame along with the motion segmentation. Their

generalized eigenvectors computed by methods described above are shown in �gure (13).

(a)

(b)

(c)

(d)

(e)

Figure 10: Row (a) shows six frames of the \ower garden" sequence. The original image
size is 120 � 175, and image patch of size 3 � 3 is used to construct the partition graph.
Each of the image patches are connected to others that are less than 5 superpixels and 3
image frames away. Row (b) to (e) shows the segmentation produced by our algorithm.
Parts (b) and (e) are consistent with the same global motion model and can be merged in a
postprocessing step if so desired.

5 Conclusion

In this paper, we have developed a motion segmentation algorithm based on the normalized

cuts graph partitioning method. We treat the image sequence as a three dimensional spa-
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(a)

(b)

(c)

(d)

Figure 11: Row (a) to (d) shows �rst four generalized eigenvectors computed for segment-
ing the \ower garden" image sequence. Those eigenvectors are broken into components
corresponding to each of the image frames seen in �gure (10).

tiotemporal data set and construct a weighted graph by taking each pixel as a node, and

connecting pixels that are in the spatiotemporal neighborhood of each other. We de�ne a

motion pro�le vector at each image pixel which captures the probability distribution of the

image velocity at that point. By de�ning a distance between motion pro�le at two pixels, we

can assign a weight on the graph edge connecting them. Using normalized cuts we �nd the

most salient partitions of the spatiotemporal volume formed by the image sequence. Each

partition, which is in the form of a spatiotemporal volume, corresponds to a group of pixels

moving coherently in space and time. We have also developed a recursive technique for

segmenting and tracking long image sequences. Experimental results on various synthetic

and real image sequences are presented.

There are also various extensions to this work which we are currently working on:

1. Re�ning segmentation to a �ner resolution. In our experiments, we have subsampled

the image sequence spatially to reduce the computational cost. By projecting our
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(a)

(b)

(c)

(d)

(e)

Figure 12: Row (a) shows the 15th to the 18th frame of the \ower garden" sequence. Row
(b) to (e) show the motion segmentation computed by our algorithm with the sliding time
window method. The eigenvectors from which this segmentation is produced are shown in
�gure (13).

segmentation back into the full resolution image space, we can use simple local search

algorithms from the graph partitioning community such as the Kernighan and Lin

algorithm[KL70] to re�ne the boundaries in our segmentation.

2. Incorporating multiple cues. Our grouping framework permits us to de�ne the weight

of a graph edge connecting two pixels in the image sequence using color or texture

similarity[SM97] in addition to motion pro�le similarity. We have demonstrated the

e�ectiveness of segmentation algorithms based on each of those cues in isolation. Com-

bining them is a natural next step.
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(a)

(b)

(c)

(e)

Figure 13: Row (a) to (d) shows �rst four generalized eigenvectors computed for frame 15
to 18 of the image sequence using the sliding window updating method. Those eigenvectors
are broken into components corresponding to each of the image frames. Notice that there are
changes in the eigenvectors as well as their ordering due the scene change, and our algorithm
correctly handles this situation.

3. Measuring group motion explicitly. Given the group correspondence, we can estimate

the image velocity more reliably for image patches within each the groups, using the

knowledge of where the motion boundaries are located. Those measurements can then

be used to reason about occlusion and disocclusion. Furthermore, our way of de�ning

motion segments from the \big picture" downwards can provide a natural framework

for describing articulated body motions in which the main motion of the whole body

will be �rst extracted, and then the relative motions of the limbs could be computed by

recursively subpartitioning the body. This should prove to be a great asset in human

activity recognition.
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