
An Experiment in Enhancing
Information Access

by Natural Language Processing*

Isaac Cheng and Robert Wilensky
Division of Computer Science

University of California, Berkeley

* This work was supported as part of the NSF/NASA/DARPA Digital Library Initiative, under NSF IRI 94-

11334.

ii

Contents

ABSTRACT IV

1. MOTIVATION 1

2. DISAMBIGUATION AND TOPIC ASSIGNMENT 2

2.1 THE LEXICAL DISAMBIGUATION ALGORITHM 2
2.1.1 SOME ALGORITHMIC DETAILS 5
2.1.2 EFFICIENCY AND IMPLEMENTATION DETAILS 6

2.2 THE CLASSIFICATION ALGORITHM. 6
2.3 PREPROCESSING 8

2.3.1 DOCUMENT PREPROCESSING 8
2.3.1.1 Stemming. 9

2.3.2 THESAURUS PREPROCESSING 10

3. SOFTWARE DESIGN OF IAGO! 11

3.1 OVERALL DESIGN 11
3.2 THE INTERNET DIRECTORY 12

3.2.1 THE DIRECTORY USER-INTERFACE 12
3.3 SEARCH BY WORD SENSES 14

3.3.1 LEXICAL DISAMBIGUATION FILTER 14

4. EXPERIMENTS 16

4.1 IAGO! 0.1 16
4.1.1 MOTIVATIONS FOR IAGO! 0.1 17
4.1.2 INITIAL RESULTS AND REMEDIAL MEASURES 18

4.2 EVALUATING THE INTERNET DIRECTORY 19
4.2.1 METHODOLOGY 19
4.2.2 RESULTS 21

4.3 EVALUATING DISAMBIGUATION 21

iii

4.3.1 METHODOLOGY 21
4.3.2 RESULTS 22
4.3.3 EVALUATING SEARCH BY WORD SENSES 26

5. LIMITATIONS AND POSSIBLE IMPROVEMENTS 27

5.1 EFFICIENCY 27
5.2 IMPROVING DISAMBIGUATION 28

5.2.1 LIMITS OF THE APPROACH 28
5.2.2 THESAURAL CATEGORIES AS WORD SENSE PROXIES 29
5.2.3 INCOMPLETENESS OF THE THESAURUS 30
5.2.4 MULTI-WORD PHRASES 31
5.2.5 WORD ELEMENTS 32
5.2.6 USING THE WORD SENSE DISTRIBUTION TO IMPROVE DISAMBIGUATION 32

5.3 TOPIC ASSIGNMENT 32
5.3.1 THESAURAL CATEGORIES AS TOPICS 32
5.3.2 MULTIPLE CATEGORIZATION AND RANKING 33
5.3.3 DISAMBIGUATION 33
5.3.4 COMMON WORDS 34
5.3.5 MULTILINGUAL CONSIDERATIONS 34

6. EXTENSIONS AND OTHER APPLICATIONS: 35

6.1 AUTOMATED SUMMARIZATION 35
6.2 QUALITY 36
6.3 INTEGRATING INFORMATION FROM PICTURES 36
6.4 QUERY EXPANSION 37

7. CONCLUSION 37

8. ACKNOWLEDGMENTS 38

9. REFERENCES 39

iv

An Experiment in Enhancing
Information Access

by Natural Language Processing

Isaac Cheng and Robert Wilensky

Abstract

We explore the hypothesis that lexical disambiguation could be applied to provide
useful information access services. Specifically, we refined a lexical
disambiguation method, and used it in a fully automatic categorization algorithm
we developed. We also used this method more directly, to implement a service
that retrieves documents by word sense.

To test these algorithms, we developed an experimental system, IAGO!1, in
which we applied these algorithms to accessing the World Wide Web. IAGO!
comprises both an Web directory (i.e., a classification of articles by topic) and a
Web search service. Unlike most other Web directories, IAGO!’s directory was
generated by a fully automatic process. One experiment shows a cataloging
accuracy of 97%.

1 IAGO /ji°jAág�U/ stands for Isaac’s Automatically Generated Ontology.

v

To improve net searching, IAGO! enables users to refine their queries by
first detecting lexical ambiguities, and then allowing users to select specific word
senses by which to search. IAGO! returns only Web pages in which a given
keyword occurs in the specified sense. To help evaluate these results, we derive
some performance thresholds that a disambiguation algorithm needs to operate
above in order to be useful for retrieval. Our experimental results suggest that
the implemented algorithm is performing well above these needs.
Keywords: natural language processing, World Wide Web, Web, Internet, Net, Intranet, Extranet, client-server, thin client, artificial intelligence, computational linguistics, word sense, sense,
digital libraries, information systems, information technology, information retrieval, text retrieval, text searching, net search, search, index, text classification, Internet directory, Yahoo, IAGO!,
business directory, yellow pages, multimedia, MM, Internet marketing, marketing, advertising, ad, commercial, business, entertainment, IS, MIS, IT

1

1. Motivation

Most information services today, such as those commonly available for the World
Wide Web, provide access to documents via keyword indexing of various sorts, or
by providing hand-generated directories. Such services leave much to be desired,
both in terms of precision (i.e., relevance of the resulting documents) and recall
(completeness of the result). Using natural language processing (NLP) to improve
this situation is of course appealing: Ideally, one would like to express one’s
information need in natural language, and be presented with a result that is
human-like in its precision and machine-like in its recall.

While its potential seems compelling, in practice, it is not clear that NLP
has been of much help: Part of the problem is that natural language understanding
is an “AI-complete” problem. To perform the sorts of semantic analysis necessary
for most interesting natural language tasks requires poorly understood inference
mechanisms and representations for common sense knowledge as well as
knowledge of a given domain, not to mention an extensive lexicon, grammar,
parser and so forth. Much progress needs to be made before robust, domain-
independent, and scalable systems will be deployed that demonstrate mastery of
significant language skills.

While “full” natural language processing is some distance away, we ask
the question of which sub-problems might be addressed so as to offer more
immediate, if more limited, possibilities. Of the many aspects of natural language
understanding that one might try to exploit to help facilitate information access,
lexical disambiguation seemed to us to offer the greatest potential. Some
arguments to this effect are presented in [14]. While one may regard the
experimental results to be inconclusive, we take heart in the finding that the
effectiveness of disambiguation seems proportional to the shortness of a query, as
short queries seem to be the norm (accounting for 40% of the queries on the
World Wide Web [21]). Intuitively, this makes sense: The longer the query, the
greater the chance that the terms will in effect disambiguate each other. With a
single ambiguous term, we are guaranteed a poor result. Of course, in such a

2

situation, we cannot automatically disambiguation the query term either, but it
seems reasonable to request the user to select a word sense in such situations.
Therefore, a “query refinement” model, in which users interactively specify word
senses, which are automatically matched against imputed senses in documents,
seems to be a plausible paradigm.

While we can demonstrate individual cases of lexical disambiguation that
require essentially arbitrary world knowledge, recent progress in statistical natural
language processing suggests that it might be possible to solve this problem
sufficiently well to facilitate the imperfect process of information retrieval. In
particular, some methods for lexical disambiguation, especially [9], [17] and [23],
seem promising enough to attempt to use over large and diverse collections. In
addition, work ([6], [12] and [18]) has shown that related techniques could be
used to perform automatic categorization as well. Automatic categorization is
especially interesting for a collection like the Web, which is large and continually
changing. Existing Web directories are created by hand, and hence, index only
some quite small portion of the Web’s contents. Automating this classification
process could provide considerably enhanced value.

Therefore, it seemed to us that it was worthwhile attempting to see if
large-scale disambiguation and automatic classification could be done. As an
experiment, we attempted to build a more advanced form of Web service that
offers searching and Web directories. In addition to searching by word, we would
provide searching by word sense. We would provide a topical Web directory, but
our directory would be generated fully automatically. IAGO! is the information
access service that resulted from this experiment.

2. Disambiguation and Topic Assignment

2.1 The Lexical Disambiguation Algorithm

The core of IAGO! a lexical disambiguation algorithm. We chose as a basis the
algorithm described by Yarowsky in [23]. This algorithm was appealing to us
because it purports to require no manual intervention, an important feature for a
system that needs to apply to any number of word senses of unrestricted text.

3

Yarowsky’s algorithm, like [9], uses statistical correlations between word senses
and words in a surrounding context to predict the sense of a word in a given
context. However, rather than trying to learn the associations of word senses with
nearby words, the algorithm learns associations of thesaural categories with
nearby words, and uses the prediction of the category to determine a word sense.
Thus we only have to learn the associations of vocabulary items and categories, a
much smaller number than the number of the associations of word senses with
vocabulary items. More importantly, the algorithm avoids the need for hand-
tagging word senses by using the appearance of a word in a category of a
thesaurus as a proxy for a word sense.

For example, suppose the word “bank” occurs in the Finance and the Land
categories of one’s thesaurus. We interpret this fact as there being two senses of
“bank”, one related to Finance and the other to Land. If we could predict which
category were pertinent to a use of “bank” in a given sentence, we would have
disambiguated that occurrence of “bank”. We can make such a prediction by
exploiting data acquired during a training phase, in which we identify the
correlation of terms with categories. For example, during the training phase, we
might have noticed that words like “money”, “loan”, “sale”, etc., tend to co-occur
near words that have a Finance sense. Of course, such words would also occur
near words that have other senses as well. Moreover, the words co-occurring
around these terms are likely to be ambiguous, and, without a corpus tagged for
word senses, we won’t know for sure which category a word is co-occurring with.
For example, “sale” might occur near the term “check”, which has an Inquiry
sense as well as a Finance sense. However, over a sufficient quantity of training
text, we can expect that the correlation of “sale”, etc. with Finance will be
strengthened by its co-occurrence with other terms in the Finance category, but
that its correlation with Inquiry will not be.

The result of training is a matrix of associations of words with categories.
We can think of this matrix as a set of vectors, one for each word, encoding the
association of that word with each thesaural category. When the algorithm is
deployed, the vectors of words surrounding a target word suggest the categories
each word has been found to be associated with, and this evidence is combined to
hypothesize the category of the target word, i.e., to disambiguate it.

4

That is, to disambiguate a given word, we would like to know
p(category | context), i.e., the probability that a thesaural category occurs in a
particular context, for each category of which that word is a member, and then
select the maximum such value. This is equivalent to

)(

)|(
)(

contextp

categorycontextp
categoryp , which, if we assume independence, becomes

∏
∈contextwi i

i

wp

categorywp
categoryp

)(

)|(
)(, where wi is a word in the context. The

training phrase estimates each of the quantities)(categoryp ,)|(categorywp i ,
and)(iwp .

More specifically, the algorithm consists of two phases. During the
training phase, the algorithm computes the frequency of co-occurrence of each
word type with each category. It does so by establishing a moving window of 50
words around a target word, and associating each category to which the target
word belongs with each word in the surrounding window. In Yarowsky’s
algorithm, each category appears to have been counted once, as if the sequence of
101 words occurred once for each sense of the word. In our variation, we
normalized the occurrence of each category by the number of senses of that word.
In effect, we make the assumption that the word senses of each word have a
uniform distribution. (Later on, we will attempt to learn the actual distribution.)

In the deployment phase, the algorithm looks up the categories in which a
potentially ambiguous word appears in the thesaurus. Each word in the context of
the ambiguous word “votes” its category associations learned in the training
phase. By adding up the votes the algorithm decides the most likely category and
claims it as the sense of the ambiguous word.

Figure 1 and Figure 2 show an outline of the algorithm.

5

for each word w in a corpus,
senses ← the thesaurus categories in which w is listed
n ← number of senses
for each category c in senses,

g(c) ← g(c) +
1

n f(w)

context ← 50 words that precede w and 50 words that follow w✥

for each word t in context,

A(t, c) ← A(t, c) +
1

n f(w)

The matrix A represents the co-occurrence frequency between each word and
each category. f(word) is the frequency of the word (computed before training).
g(category) is the estimated frequency of the category.

Figure 1: Disambiguation Algorithm: Training Phase

for each word w in a document,
senses ← the thesaurus categories in which w is listed
for each category c in senses,

context ← 50 words that precede w and 50 words that follow w✥

for each word t in context,

salience ←
A(t, c)
f(t) g(c)

evidence ← log(salience)
Votes[c] ← Votes[c] + evidence

the sense of w ← arg max Votes

Figure 2: Disambiguation Algorithm: Deployment Phase

2.1.1 Some Algorithmic Details

We suspect that such algorithms have not been widely used because of the
difficulty of obtaining a reasonable quality on-line resources. For example, Hearst
had to create a thesaurus automatically from WordNet. That thesaurus was used
in [6] and [12], but was not of sufficient quality for the results to be more than
suggestive. Our own several attempts to create a better thesaurus either
automatically or with a relatively modest degree of user intervention were not
notably successful. Eventually, we secured from HarperCollins an electronic copy
of Roget’s Fifth Edition [1], on which the results described herein are based. The

✥ In the cases where there are less than 50 words on either side of the ambiguous word, the context window

was shrunk in those cases. For example, the first word of a document has a 51-word window, the second
word has a 52-word window, and so on.

6

experiments described in [23] were performed using Roget’s Fourth, so our results
are not directly comparable, although in most cases we believe they would be
quite similar. On the whole, Roget’s Fifth is appears to be of higher quality and
better suited for the task at hand. (However, this is not uniformly the case. See
Section 5.2.3)

Yarowsky smoothed his observed word-category associations taking into
account the probability of the word, using the algorithm described in [8]. We
implemented this algorithm, but found that the simple maximum-likelihood
estimate produced better accuracy (and ran much faster), and so we ultimately use
this approach instead. We can only speculate about why this is the case.

Note that this algorithm was intended only for nouns, a limitation we did
not attempt to overcome.

2.1.2 Efficiency and Implementation Details

For efficiency, the semantic locality in natural-language discourse was mapped
into spatial locality. The word-category co-occurrence frequency matrix was
stored as a B+ tree. Words are mapped to integers according to the order that they
are listed in the thesaurus. Consequently, synonyms are adjacent to each other,
and related words are close to one another. In a well-written document, in which
the topics are localized, the storage access pattern is also likely to be localized.

The algorithm was implemented in C. A training session using about 10
million words took 32.66 hours on a Sun Ultra SparcStation utilizing 100 MB of
physical memory. The co-occurrence frequency matrix occupies 393 MB of disk
space. The system took 76.75 hours to disambiguate about 10 million words on
the same machine.

2.2 The Classification Algorithm.

There has been considerable work on automatic text classification, ranging from
applying conventional information retrieval techniques [15] to hand-crafted rules
[11] to clustering [4]. We will not attempt to survey these systematically here
(although [16] provides a useful collection of approaches). Instead, we note that

7

there is an intuitive relationship between lexical disambiguation and topic. [18]
exploited semantic features from a machine-readable dictionary in just this spirit.
Moreover, given that a disambiguation algorithm of the sort we have described is
available, it should be possible to perform fully automatic categorization into the
thesaural categories, without writing any rules or establishing any hand-tagged
training sets. [12] used the associational vectors from Yarowsky’s algorithm for
each word in a text to suggest a thesaural category as a topic. The approach
appeared promising, although the granularity of category assignment was limited
(to ~100 categories).

Fisher [6] compared several families of algorithms based on disambiguation.
Three families of algorithms survived an initial experiment and were subjected to
more careful measurement. These were as follows:

(i) As in [12], add up the associational vectors, computed by the training
phase of [23], for all the words in a text.

(ii) Use the disambiguation algorithm to establish the frequency of word
senses in a corpus (the word sense “priors”2), and then assign topics by
weighting each word’s contribution to the categories to which it is a
member in proportion to the word sense distribution in the corpus. For
instance, if “bank” referred to a financial institution 90% of the time
and a side of a river 10% of the time, it would cast a 0.9 vote to the
Finance category and a 0.1 vote to the Land category.

(iii) Disambiguate the words of the text, and count only their imputed sense
where possible; weight by sense priors (i.e., method (ii)) otherwise.

From his experiments, Fisher concluded that algorithms that exploited the
word senses performed better than those that used only word-category association
(although he was unable to detect a significant difference between methods (ii)
and (iii)). The result is consistent with the intuition that word senses provide more

2 The term “prior” is used here to mean P(category | word) in order to be consistent with [6]. Notice that it is

a conditional probability and not to be confused with P(category).

8

direct evidence of the main content of documents than pure word-category
associations.

In our experiments, we used method (ii) because, like Fisher, we have the
associational vectors available, and because using word sense priors is much more
efficient than performing disambiguation on the fly, without apparently much loss
of accuracy. That is, we first use the disambiguator described above to estimate
the word sense distribution of the words in a 10,000,000 word sample. To assign
a text to a topic, the automatic topic assignment algorithm computes a vector x =
(x1, x2, ..., x1073) (one element for each of Roget’s) by summing the word sense
distributions of each element in the text. The classifier outputs the index of
largest component, c = arg max{ x1, x2, ..., x1073} , as the category for that
document.

On the negative side, this algorithm will only classify text into the categories
given by the thesaurus, which are sometimes of questionable utility. In addition,
we have not yet examined the possibility that variant (iii) might be superior to (ii),
which is certainly possible, given the higher quality of our thesaurus and training
material compared to what as available to Fisher. Finally, like Fisher, we use the
disambiguation algorithm to compute the distribution of word senses. The
disambiguation algorithm itself is only correct some percentage of the time, so
these “priors” are only estimated.

Using this algorithm, it took 20.19 hours to classify 18,614 Web pages on a
Sun Ultra SparcStation.

2.3 Preprocessing

We performable a considerable amount of preprocessing of documents for
disambiguation and for topic assignment; we also preprocess the thesaurus.

2.3.1 Document Preprocessing

The document preprocessor takes documents as input and turns them into a format
that is used for classification and disambiguation.

9

• Convert HTML tags for parts-of-speech tagging. This is the only step of
pre-processing that is specific to the document format details. Mostly,
HTML tags (including comments) are simply removed. Paragraph
markers are translated into a format recognizable to the part-of-speech
tagger, and Javascript elements are eliminated altogether.

• Determine the part of speech of each word using a stochastic parts-of-
speech tagger [3].

• Remove proper nouns. We eliminate proper nouns because of their uneven
coverage in the thesaurus. This problem is discussed further in 4.1.2 and
5.2.3

• Remove punctuation marks.
• Remove common words using a stop-list.
• Convert parts-of-speech tags into a format understood by WordNet [19].

We use our own stemmer, which is WordNet-based, hence this step.
• Stem each word. We used our own stemmer, for the reasons described

below.
• Remove documents that do not have enough words in them. Documents

require a sufficient number of English words for the algorithms to apply to
them. See sections 4.1.1 and 5.3.5 for further discussion.

• Map each word into an integral index.

2.3.1.1 Stemming.

As in most retrieval systems, we required the use of a stemmer. However, as
discussed in [14] and [17], for tasks such as this one, it is desirable to remove
inflectional morphemes but not derivational ones. For example, while the
stemmer should reduce “apples” to “apple”, it should not reduce “glasses” to
“glass” because otherwise the potential (and probably correct) “spectacles” sense
of “glasses” would be lost, while the (highly unlikely) “transparent material”
sense would be introduced.

As the more commonly available stemmers are overzealous in this regard,
we developed our stemmer by modifying the stemmer in WordNet to use Roget’s
Thesaurus as its vocabulary. I.e., when a term is listed explicitly in Roget’s, no

10

stemming is performed; otherwise, the stemmer attempts to remove inflectional
morphemes.

Figure 3 contrasts the performance of the IAGO! stemmer with that of the
SMART retrieval system, and with an implementation of Porter stemming
algorithm, on a number of representative examples.

The SMART stemmer The Porter stemmer The IAGO! stemmer
% tstem ate
ate
% tstem apples
appl
% tstem formulae
formul
% tstem appendices
appendix
% tstem implementation
imple
% tstem glasses
glass
%

% pstemmer ate
at
% pstemmer apples
appl
% pstemmer formulae
formula
% pstemmer appendices
appendic
% pstemmer implementation
implement
% pstemmer glasses
glass
%

% stem
ate|2
eat|2
apples|1
apple|1
formulae|1
formula|1
appendices|1
appendix|1
implementation|1
implementation|1
glasses|1
glasses|1
%

Figure 3: Comparison of Stemmers

Unfortunately, the resulting stemmer incurs a hefty start-up time penalty
(11 seconds on a Sun Ultra SparcStation) because of expensive initialization
procedures that involve both WordNet and Roget’s. Without counting the start-up
time, the IAGO! stemmer takes 1.2 ms to stem a word.3 We have not made any
attempt to optimize the stemmer, which we believe to be a major readily
eliminatable source of inefficiency in our system.

2.3.2 Thesaurus Preprocessing

We modified the source of Roget’s in several ways. The most significant is the
treatment of multi-word entries. While it would be desirable to include these,
doing so generally would require some parsing of thesaural phrases. Our

3 Performance evaluation was measured using 3000 words from Encarta 97. The stemmer utilized 164% of

CPU time of a Sun Ultra SparcStation according to GNU time version 1.6.

11

expeditious solution to this problem was to eliminate multi-word phrases from the
thesaurus altogether. This problem is discussed further in Section 5.2.4

The other modifications to the thesaurus consisted of removing or
translating the internal markup format.

3. Software Design of IAGO!

3.1 Overall Design

To experiment with the ideas and algorithms described above, we developed an
experimental system, IAGO!. IAGO! consists of two parts: a directory and a
searching part (see Figure 4: Software Architecture of IAGO! 1.0).

Thin client

Directory
Front-end

Classification
by Priors

Searching
Front-end

Lexical
Disambiguation

Filter

The Web

Preprocessing

PreprocessingDatabase

Internet Directory

Search by Word Senses

Figure 4: Software Architecture of IAGO! 1.0

A simple thin-client software architecture is adopted so that all the
important processes run on the server. The only assumption on the client is that it

12

runs an HTML Web browser. The prototype was implemented mostly in Perl as a
set of CGI scripts.

3.2 The Internet Directory

An Internet directory is generated as follows. The system obtains HTML
documents from an Internet search engine [13]. The documents are pre-
processed, as described above, and submitted to the classifier. The classifier
produces a numerical value indicating the degree of relevance of the document to
each category in the thesaurus. In the current implementation, the document is
assigned only to the highest ranking category. The results of the classification are
stored in a relational database.

3.2.1 The Directory User-Interface

A simple user interface, implemented as a CGI script, allows the user to navigate
through a hierarchy (taken from the thesaurus), and ultimately sends a query to the
database and returns the results to the user.

For example, if a user is interested in finding documents about animals, he
or she may follow the steps illustrated by Figure 5.

13

Figure 5: Internet Directory

14

In this example, the user selected “LIVING THINGS.” The system looked
up the synopsis of categories of the thesaurus and displayed a list of categories
pertaining to living things, from which the user chose the “Animals, Insects.”
Finally, the system retrieved the URLs of the Web pages in that category from a
database and presented the results to the user.

3.3 Search by Word Senses

3.3.1 Lexical Disambiguation Filter

The lexical disambiguation filter takes documents that match a keyword query as
input, and filters out documents that do not match the senses that a user has
specified. When a user has submitted a keyword query, IAGO! determines the
ambiguity of the query by looking up the index of the thesaurus. If the keyword
has more than one meaning, IAGO! will prompt the user to choose the desired
senses. The keyword query is sent to an Internet search engine, which is asked to
return some fixed number of matching Web pages. The resulting pages are passed
to the preprocessor, and then fed into the lexical disambiguation filter.

Figure 6 shows an example in which a user entered “rock” as the query.
After the user clicked the “Search” button, IAGO! looked up “rock” the index of
the thesaurus. Since the word is listed in multiple categories in the thesaurus,
IAGO! presented the entries from the index to the user, prompting the user to
select the desired senses of “rock”. In Figure 6(a), the “stone” sense was chosen,
and in Figure 6(b), the user chose the “rock-and-roll” sense.

15

Figure 6(a): Search by Word Senses: "Rock" in the "Stone" Sense

16

Figure 6(b): Search by Word Senses: "Rock" in the "Rock-and-Roll" Sense

4. Experiments

4.1 IAGO! 0.1

We began by constructing an initial version of IAGO!, which we will call IAGO!
0.1, both to test the initial feasibility of the idea, and against which to measure
possible improvements. In this preliminary version, we filter out short articles,
and both the training and the collection of the prior probability distribution were
done using 10 million words from AP Newswire stories.

17

4.1.1 Motivations for IAGO! 0.1

We conducted an experiment with a preliminary version of the classifier to test
our hypothesis that our algorithm would not reliably categorize short articles. To
do so, we contrasted forcing the system to classify every Web page with
classifying only those pages that had more than 100 content words. We classified
Web pages using both procedures, and measured the correctness of the
classification of the first 20 Web pages in each of the following categories:
Computer Science; Finance/Investment; Tobacco; and Animals/Insects. Table 1
shows the percent of the first 20 documents that were correctly classified in this
experiment.

All Web pages Long enough Web pages only
Computer Science 75% 100%

Finance/Investment 80% 100%
Tobacco 0% 18%

Animals/Insects 0% 60%

Table 1: IAGO! works better on Web pages that have enough text.

The precise percentages in each category are not significant because of the
small size of the sample in this experiment. However, the large differences
between the two columns strongly suggests that the classification algorithm does
indeed do a better job of classifying Web pages that have a threshold amount of
text in them. (I.e., since all the documents that are classified correctly in the “long
enough” procedure will also be classified correctly in the “all pages” procedure,
the reduction in accuracy in the latter case is due to enough shorter documents
being incorrectly classified to preclude these correctly classified pages from
appearing among the top 20 documents.)

Filtering out small pages will produce a reduction in the percent of the
Web we would be able to classify. More accurately classifying a smaller
percentage of the Web seems appropriate for this task, as the competition is
human classification. In addition, we speculate, there may ultimately be other, the
independent motivations for eliminating shorter Web pages. For example, it
maybe that, on the whole, an independent valuation measure would tend to find
very short pages to be of less interest than longer ones.

18

We trained on newswire stories at first because this was the text we had
available to us. (Recall that our classifier exploits word sense distributions,
obtained in a training phase, and that the disambiguator exploits associational
information, also obtained in a training phase.) While it is not hard to obtain a
subset of the Web to impute word sense distributions, it is difficult to obtain a
relatively coherent training set, such as an encyclopedia, which, it has been
observed, is more appropriate for the initial lexical disambiguation training [23].
We thought that the use of newswire stories as training data would be good
enough to be suggestive about whether the approach was plausible, and provide a
useful test of the importance of the type of training data. (It also lowers the
threshold to replication of our results by others.)

4.1.2 Initial Results and Remedial Measures

Impressionistically, our initial trial results for IAGO! 0.1 indicated a reasonable
level of performance for classification, but too low a level of performance for
retrieval-by-word-sense. (We give precise results below.) We proceeded to
analyze these results and determine performance improvements.

Based on the examination of the initial IAGO! 0.1 results, we instituted the
following modifications:

• The training set. We believed this to be the most important factor in
limiting performance. Fortunately, we were able to obtain a copy of the
source of Microsoft Encarta 97 encyclopedia. We used this in place of
newswire text to train the disambiguation algorithm.

• Computing word sense priors. To obtain priors for the distribution of
word senses on the Web, we ran our disambiguation algorithm on 10
million words from documents on the Web, rather than on newswire text.
(These words came from pages that did not overlap with the 18,614 Web
pages we subsequently classified.)

• Proper nouns. IAGO 0.1 performed some bizarre classifications. For
example, many articles were falsely being classified as being about
tobacco. The problem was that the term “Virginia” appeared in Roget’s
only as a type of tobacco. This rather uneven coverage of proper noun
uses was unfortunately the rule rather than the exception. For example,
the thesaurus does not list “Spanish” as a language or as people, but only

19

as an architectural style. Another problem of proper nouns is that the
words in trademarks are often irrelevant to the content of the documents in
which they appear. For example, the home page of the food company
Birds Eye does not talk about birds or vision. Web pages with many such
trademarks usually misled IAGO! 0.1’s classifier. (This problem is
essentially the same as that reported in [17], in that proper nouns are being
mistaken for common nouns.) As an expedient, we simply eliminated
proper nouns. Other solutions that are more attractive, but more effort to
implement, are discussed in 5.2.3.

• The stop-list. The stop-list was augmented with some common content
words, which, while correctly classified, did not seem to contribute to
topicality. For example, in Roget’s Thesaurus, “percent” is listed (only) in
the Mathematics category, and “software” (only) in the Computer Science
category. Most of the Web pages that contain the word “percent” are not
about mathematics, and many Web pages that contained “software” are not
about computer science. As a quick fix, we put those words into the stop-
list and hence ignore them. An alternative solution discussed in Section
5.3.3

We call the system that resulted from these modifications IAGO! version 1.0.

4.2 Evaluating the Internet Directory

4.2.1 Methodology

While a large enough pre-classified test set is desirable, classifying a large number
of Web pages manually is a tedious chore. This dilemma was resolved by getting
a test set from Yahoo!, which provides a manually created the Internet directory.
To make use of Yahoo!’s classification of the Web, we created a partial
correspondence of Roget’s categories to those of Yahoo!. Specially, nine
categories were chosen from Roget’s Thesaurus that had reasonable
correspondence to some categories in Yahoo!. The mapping of the categories is
shown in Table 2.

20

Roget’s categories Yahoo!’s categories
Computer Science http://www.yahoo.com/text/Business_and_Economy/Companies/Computers/Research/

http://www.yahoo.com/text/Computers_and_Internet/Communications_and_Networking/Routing_Technology/R
esearch_Groups/
http://www.yahoo.com/text/Computers_and_Internet/Operating_Systems/Research/
http://www.yahoo.com/text/Computers_and_Internet/Software/Databases/Research_Groups/

Finance, Investment http://www.yahoo.com/text/Business_and_Economy/Companies/Financial_Services/Investment_Services/
http://www.yahoo.com/text/Business_and_Economy/Markets_and_Investments/Personal_Finance/

Fitness, Exercise http://www.yahoo.com/text/Business_and_Economy/Companies/Health/Fitness/
http://www.yahoo.com/text/Health/Fitness/
http://www.yahoo.com/text/Business_and_Economy/Companies/Health/Fitness/Health_Clubs/
http://www.yahoo.com/text/Health/Fitness/Bodybuilding/
http://www.yahoo.com/text/Recreation/Sports/Running/
http://www.yahoo.com/text/Recreation/Outdoors/Walking/

Motion Pictures http://www.yahoo.com/text/Entertainment/Movies_and_Films/
http://www.yahoo.com/text/Business_and_Economy/Companies/Entertainment/Movies/

Music http://www.yahoo.com/text/Business_and_Economy/Classifieds/Music/
http://www.yahoo.com/text/Entertainment/Music/Genres/Classical/
http://www.yahoo.com/text/Entertainment/Music/Genres/Classical/Symphony_Orchestras/
http://www.yahoo.com/text/Entertainment/Music/Genres/Rock/
http://www.yahoo.com/text/Entertainment/Music/Genres/Rock/Metal/

Nutrition http://www.yahoo.com/text/Health/Nutrition/
http://www.yahoo.com/text/Business_and_Economy/Products_and_Services/Health/Nutrition/
http://www.yahoo.com/text/Business_and_Economy/Companies/Health/Nutrition/

Occupation http://www.yahoo.com/text/Business_and_Economy/Employment/Jobs/
http://www.yahoo.com/text/Business_and_Economy/Employment/Careers/

The Environment http://www.yahoo.com/text/Business_and_Economy/Companies/Environment/
http://www.yahoo.com/text/Business_and_Economy/Companies/Environment/Water/

Travel http://www.yahoo.com/text/Business_and_Economy/Companies/Travel/
http://www.yahoo.com/text/Business_and_Economy/Companies/Health/Travel/
http://www.yahoo.com/text/Business_and_Economy/Companies/Newsletters/Travel/

Table 2: The mapping between Yahoo!’s categories and Roget’s

We then extracted from Yahoo! about 1000 Web pages that had more than
32 content words in them. As discussed above, filtering out small Web pages
should give us a more accurate classification of a smaller portion of the Web. We
chose the number 32 as a compromise: About 56% of the Yahoo! pages we
sampled survived this filter, versus 28% that contained a 100 or more content
words. Using the latter probably would have given us better results on the smaller
sample, but the sample would have effectively been cut in half.

The classification of Yahoo! was taken as ground truth, but in certain gray
areas, benefit of the doubt was given to IAGO!. That is, we examined by hand
those pages in which IAGO!’s categorization differed from Yahoo!’s. In some
cases in which the results seemed reasonable, we counted the result as correct.
For instance, a Web page that talked about hiking was classified into the “Fitness,
Exercise” category by Yahoo!, but might be classified into the “Travel” category
by IAGO!. In that case, IAGO! was not counted as wrong.

21

4.2.2 Results

The classifying power of IAGO! was measured using an extended notion of
precision and recall. Again, for the purpose of evaluating a classification system,
we define precision as the number of documents correctly classified into a
category divided by the total number of documents (correctly or mistakenly)
classified into that category; recall is defined as the number of documents
correctly classified into a category divided by the number of documents that
should be classified into that category. The precision and recall of the two
versions of IAGO! are shown in Table 3.

Version 0.1 Version 1.0
Category Name Precision Recall
------------- --------- ------
ComputerScience 31.6% 17.1%
FinanceInvestment 94.4% 22.0%
FitnessExercise 100.0% 4.3%
MotionPictures 100.0% 57.1%
Music 97.5% 58.3%
Nutrition 80.3% 35.6%
Occupation 100.0% 13.1%
TheEnvironment n/a 0.0%
Travel 50.0% 5.7%

Overall precision = 88%

Overall recall = 23%

Category Name Precision Recall
------------- --------- ------
ComputerScience 87.5% 19.4%
FinanceInvestment 100.0% 13.4%
FitnessExercise 100.0% 1.8%
MotionPictures 100.0% 54.8%
Music 98.2% 42.4%
Nutrition 97.9% 29.9%
Occupation 97.8% 30.3%
TheEnvironment n/a 0.0%
Travel 75.0% 15.4%

Overall precision = 97%

Overall recall = 21%

Table 3: Classification accuracy of IAGO!

These are figures giving IAGO! the benefit of the doubt in those cases in
which it produces a different, but, we think, plausible, classification. Without any
adjustment of the raw numbers, the overall precision and recall for IAGO! 1.0 are
92.3% and 20.4%, respectively. Therefore, if we are subjectively biased toward
our own system, this bias is not so great as to distort the qualitative significance of
the results.

4.3 Evaluating Disambiguation

4.3.1 Methodology

We first tested the quality of the disambiguation algorithm, separate from its use
as a Web search engine. For the ground truth of the experiment, we judged and
hand-labeled the senses of 100 word tokens from a corpus of AP newswire text

22

for each of the following word types: “interest”, “issue”, “sentence”, and “star.”
(On the average, there were 1.5 test word tokens per document.) Since Roget’s
categories often gratuitously subdivide intuitive word senses into multiple
categories, we grouped the categorical senses into more intuitive senses as shown
in Table 4. The number of occurrences of each resulting word sense is given in
parentheses.

Word Sense Roget’s category
“interest” Curiosity (46) Curiosity; Allurement; Event; Relation; Attention;

Motivation; Importance; Prerogative; Undertaking;
Selfishness; Injustice; Influence; Reasoning; Cause;
Occupation; Use; Goodness; Association; Aid

Finance (46) Lending; Debt; Securities
Share (8) Apportionment; Property; Acquisition

“issue” Topic (58) Topic; Politics; Cause; Importance; Inquiry
Periodical (9) Book; Publication

Stock (33) Securities; Quantity
Outcome (0) Product; Solution; Effect; Posterity; Event;

Relationship by Blood
Escape (0) Escape; Emergence

“sentence” Punishment (96) Legal Action; Condemnation; Judgment
Syntactic unit (4) Phrase; Wise Saying; Part; Speech

“star” Space object (7) The Universe/Astronomy; Rock
Celebrity (82) Superiority; Success; Skill; Repute; Honor; Motion

Pictures; Entertainer; Importance; Goodness
Star shaped symbol (0) Insignia; Grammar

Table 4: Mapping Roget’s categories into senses

In the case of the word “star”, the part-of-speech tagger we used produced 11
errors. (It was correct for all the tokens of the other word types.) Since the
disambiguation algorithm only operates on nouns, we eliminated the mis-
categorized tokens from consideration. We ran the disambiguation algorithm on
the remaining tokens; if it output a category that is a member of the tagged sense,
it was marked as correct. Otherwise, it was marked as an error.

4.3.2 Results

We compared the disambiguation algorithms of IAGO 1.0 with IAGO 0.1 and
with a baseline algorithm, which always picks the most common sense of a word.

23

We measured the accuracy of the algorithms, i.e., the percent of word occurrences
correctly disambiguated. The results of the experiment are shown in Figure 7:
Disambiguation Accuracy.

78

58

93
100

0
10
20
30
40
50
60
70
80

90
100

Accuracy (%)

"interest" "issue" "sentence" "star"

Baseline

Version 0.1
Version 1.0

Figure 7: Disambiguation Accuracy

For this particular test suite, the difference between versions 0.1 and 1.0 is
undoubtedly the value of training using Microsoft Encarta 97 encyclopedia. The
results show that the quality of the disambiguation algorithm depends heavily on
the training data. While this was what we anticipated, it is worth emphasizing
that the improvement is due to a training set that is more coherent, not one that
more closely resembles the target corpora. Moreover, the resulting improvement
is the difference between the algorithm performing worse than the baseline and
generally beating the baseline.

While comparison to such a baseline has been used elsewhere to evaluate
the effectiveness of a disambiguation algorithm [9], the baseline understates the
utility of a real disambiguation algorithm for retrieval. First, the most frequent
sense of a term generally isn’t known, so an algorithm exploiting the baseline may
not be feasible to implement. However, even if the data were available, such a
baseline-based algorithm cannot be used to make an effective retrieval algorithm,
as the resulting algorithm could only return either all the documents containing a
word, or none of them. If the resulting retrieval algorithm returns all documents

24

in which the word occurs when searching for the most frequent sense, and none
when searching for a less frequent sense, then such algorithm would have no
obvious utility.

Note further that a disambiguation algorithm that performs worse than the
baseline is may still be useful for retrieval by word sense. While it is senseless to
use the baseline method as a basis for retrieval by word sense, it may be
reasonable to use a “real” method with the same, or even lower, accuracy.
Assume a given word occurs in two senses, with r being the fraction of word
instances in a corpus that are used in the more frequent sense. Assume for
simplicity that the multiple word senses do not occur in the same document.
Ordinary keyword retrieval is, in effect, equivalent to a disambiguation-based
method that produces r precision and 100% recall when asked for the more
frequent sense, and (1-r) precision and 100% recall when asked for the less
frequent sense. A disambiguation method that was correct p of the time would

have precision and recall values of
)1)(1(prrp

rp

−−+
 and p, respectively, for a

word sense with frequently r in a corpus. Hence, an actual disambiguation
algorithm operating at baseline efficiently would have precision and recall values

of
22

2

)1(rr

r

−+
 and r, respectively, when the goal is to find documents with the

more common word sense, and .5 and r, respectively, when asked for the less
common sense.

When r is large, these results compare favorably to those imputed for
ordinary keyword retrieval, for retrieval by either word sense. Specifically, let us

use the composite measure E, defined as

recallprecision

1
)1(

1
1

1
αα −+

− , where

1

1
2 +

=
β

α , the parameter β being the preference of weighting towards recall or

precision. Assuming a β of .5, a disambiguation method with comparable
accuracy to the baseline is revealed as superior for retrieval by the more common
word sense when r is larger than .57, and superior for retrieval by the less

25

common word sense when r is larger than .55. For example, with a 90/10
distribution of two word senses, a true disambiguation-based algorithm with a
90% accuracy would produce a 99/90 precision/recall for retrieval by the more
frequent sense, and 50/90 for the less frequent sense, compared to 90/100 and
10/100, respectively, imputed for word sense retrieval obtained by using ordinary
keyword search. E confirms the intuition that these are better overall results.

Indeed, a disambiguation algorithm can operate considerably below the
“baseline” and still be useful. For example, again assuming a 90/10 distribution
of word senses, then, for the more common word sense case, E, with a β of .5, is
better for a disambiguation algorithm with an accuracy over 77% than for
keyword retrieval. (For the less common word sense, a “disambiguation”
algorithm that is completely random gives a superior result.)

Consider now the cases in which r is small, i.e., when there are more
senses per word, these having a relatively uniform distribution. In such a case, the
disambiguation algorithm performing at baseline levels would be wrong most of
the time, even if it is performing better than random, and hence considerably
underperforms keyword search as a retrieval method. Let us use E to determine
how good p has to be to make disambiguation worthwhile. As noted above, for a
word sense of frequency r, and a disambiguation accuracy of p, precision and

recall are
)1)(1(prrp

rp

−−+
 and p, respectively; using a keyword search as a

proxy for finding the most common sense has the imputed precision and recall of

r and 1, respectively. E is

recallprecision

1
)1(

1
1

1
αα −+

− , from which we can

determine that, for the disambiguation algorithm to perform comparably to just

doing a keyword search, p must be at least
)23(2

)12(

−−
−−

αα
αα

r

r
. Or, as r becomes

small, p needs to be at least .5.

In other words, a disambiguation algorithm needs to be correct better than
50% of the time to be useful for retrieval, increasing in accuracy as the value of r
increases beyond this point, although it can trail this value by some degree. As

26

the results above suggest, IAGO! 1.0 (and, for the most part, even IAGO! 0.1)
performs well above the required figures.

In addition, we note that it is possible that the ranking given by a
disambiguation algorithm may provide added value as well.

A major problem in evaluating our particular algorithm (and of the
algorithm itself) is that the thesaural categories are not always a good
representation of word senses. For example, out of the 42 errors in the above
results on “issue”, 18 errors was made by the algorithm assigning “issue” (in the
topic sense) to the Event category. It is not completely clear whether the Event
category should be regarded as the “topic” or the “outcome” sense of “issue.” We
subjectively chose the latter (see Table 4: Mapping Roget's categories into senses).
If the former were chosen, the result would be 76% instead of 58%.

4.3.3 Evaluating Search by Word Senses

Since we have not pre-computed a word-sense index of the Web, IAGO!
retrieves some number of Web pages using a keyword search engine, and then
filter these for the desired word sense. Since, on the average, only a fraction of
the pages that match the keyword will survive the filter, this number must be set
large enough to produce some meaningful yield. On the other hand, processing
time is proportion to the size of the keyword result set, and is substantial, as it
requires waiting for the full text of the page to be returned by a server, and
running our disambiguation algorithm on the result. After some experimentation,
we determined that the underlying keyword search engine needed to retrieve about
500 pages, which is the number we used here. Note, though, that the Web crawler
attempt to retrieve pages in batch, and times out after an interval, so that different
sets of candidate documents are likely to be retrieved on repeated retrievals of the
same word, depending on the vagaries of the network and server loads.

We evaluated several IAGO! retrieval-by-word-sense result sets by hand.
The results appear quite promising. For instance, the query “‘rock’ in the ‘stone’
sense” returns four URLs; all four are correct. The query “‘rock’ in the ‘rock-and-
roll’ sense” returns 16 URLs; all 16 were correct. I.e., IAGO! has 100% accuracy
for both senses of “rock.” The query “‘chair’ in the ‘chairperson’ sense returned

27

50 URLs, of which the top 10 were examined; only last one was incorrect. The
query “‘chair’ in the ‘seat’ sense’’ returned 26 URLs, of which the top 10 were
examined; only the last two were wrong. These samples are consistent with the
analysis performed above suggesting that disambiguation in IAGO! is operating
well enough to be useful.

In addition, it appears to us that the documents ranked at the top (by the
number of occurrences of matching word senses) are often the most relevant ones.

In many cases, though, the user must select a number of Roget’s categories
in order to submit the equivalent of a search by an intuitive word sense. For
example, in our examples used above to test the disambiguation algorithm, we
merge nineteen Roget’s categories to get one intuitive sense of the word
“interest”, and three for each of the other senses of “interest”. Requiring the user
to make such a selection clearly limits usability4. We discuss this drawback in
section 5.2.2.

5. Limitations and Possible Improvements

5.1 Efficiency

Efficiency enhancement would be necessary to convert IAGO! from an
experimental prototype to a real system. Fortunately, there is room for much
improvement in this regard. IAGO! 1.0 currently runs on a single-workstation.
Classification takes about two seconds per Web page; search by word senses takes
about eight minutes per query. However, the natural language processing
algorithms are very simple and easily parallelizable. In particular, the
classification processes of different documents are independent of each other;

4 IAGO!’s retrieval-by-word-sense interface presents the user with only those categories for which the word

is listed in Roget’s index. Words may appear in additional categories in the thesaurus. For example, the
“rock” and “grammar” senses of “star” given in Table 4 are not listed in Roget’s index, even though “star”
does indeed occur in these categories. Presumably, the thesaurus considers these unhelpful to list, and we
follow their example. It was still necessary to include these senses during training, however.

28

documents can be disambiguated on different machines with no inter-machine
communication

A large and avoidable performance hit is due to the stemmer. The
performance of this module should be easy to improve. In addition, we suspect
there are significant performance gains to be had by coding in C various portions
of the algorithm that are stitched together now with scripting language code.

In performing search-by-word sense, we must retrieve the actual text of
Web documents, and then filter them. About half the time is spent simply
crawling the Web. Also, since a large percent of indexed documents are short, or
ultimately are found to contain unrequested senses, this “retrieval and filtering”
paradigm produces a rather low yield (hence the small numbers reported in the
evaluation above). To make a practical system, one would prefer to create a word
sense index. To do so, it would be desirable to have the disambiguation algorithm
operate at or near web-crawler/indexer speeds. We are far from this point at the
moment, but believe it is achievable just by determined performance tuning.

5.2 Improving Disambiguation

5.2.1 Limits of the Approach

The approach to lexical disambiguation we have used is limited in several
respects. First, it is intended primarily for nouns. We have not tested it on other
parts of speech.

The algorithm, like other statistical algorithms, is sometimes simply
wrong. Consider the following example:

Copy desks were asked whether “gibe” or “jibe” was correct in
the following sentence: “Three suspects were taken to police
headquarters but detectives announced later that their stories
didn't gibe.” The verdict was almost unanimous that “jibe” was
correct.

29

Here the algorithm picked the judicial sense instead of the grammatical
sense of “sentence”, presumably because of the confusing contexts words like
“police”, “detectives”, and “verdict.” We do not see any hope that a simple
statistical algorithm can be made to correctly disambiguate such cases.

On the other hand, we note that there are some additional benefits to a
purely statistical approach. Many documents in the Web contain useful terms that
do not occur in recognizable sentences. For example, the terms may appear in
tables or other structures that are generally not considered by more elaborate
natural language processing algorithms. The purely associational nature of the
disambiguation method applies directly and profitably to these cases.

5.2.2 Thesaural Categories as Word Sense Proxies

One of the major problems of the disambiguation algorithm used in IAGO! is that
thesaurus categories are not always good representations for word senses. For
example, the word “interest” appears in 25 of Roget’s categories, giving us 25
ostensibly distinct senses. Generally, a number of such categories represent the
same sense, in more or less direct ways. For retrieval-by-word-sense, the user can
select multiple “senses” to approximate the intuitive sense, but this is a tiresome
and unintuitive chore. In many cases, it is very difficult to guess which sense is
intended by category membership.

[23] seems to have grouped categories together by hand to arrive a
reasonable approximations to word senses; we did the same for the purposes of
evaluation. However, it would be a large task to establish such grouping for each
lexical item. We do not see a simple way to automatically establish the proper
sense groups. Performing this task is an interesting research topic.

[17] used the Subject Field Codes from Longman’s Dictionary of
Contemporary English (LDOCE) for statistical word-sense disambiguation. Since
these are labelings of actual word senses, they would no doubt be superior to
using thesaural categories. The only reason we did not attempt to use these is
incompleteness. According to [17], while 95% of the entries in LDOCE have
Subject Codes, over half of these are the label “General”, i.e., provide no
semantic information. However, the algorithms we use are completely

30

independent of the source of the labelings. Therefore, the availability of such a set
would provide an immediate large improvement in the quality and usability of
these algorithms.

5.2.3 Incompleteness of the Thesaurus

In addition to the fragmentation of single senses among multiple categories, there
is the problem of thesaurus gaps, in which a particular sense of a word is not listed
in the thesaurus. Frequently, a word is missing entirely from the thesaurus. This
is especially true for technical terms and abbreviations, which seem to enter the
language rapidly. For example, the abbreviation “PC” is now widely used to
mean both “personal computer” and “politically correct”5; “NOW” is both the
“National Organization of Women” and “Network of Workstations”. None of
these senses are in our thesaurus.

The complete omission of words is not as damaging as omitted word
senses: The omitted term contributes no evidence, but it does not mislead. The
problem of proper nouns mentioned above is an example of the more pernicious
problem of omitted senses. Fortunately, it is relatively straightforward to convert
this problem into the lesser evil of omitted words simply by eliminating proper
nouns from consideration altogether. A more edifying solution would be to merge
in collections of proper nouns. Considerable work would be involved to enter
these into the right thesaural categories.

Thesaural gaps exist for ordinary lexical items, where no immediate fix is
evidence. For example, in Roget’s Fifth, “crane” is not the Animal/Insects
category, nor is “bass”, so their respective bird and fish senses are missing. (Both
gaps appear in the 5th edition of Roget’s International Thesaurus but not the 4th
edition, which contains useful lists of many animal types.6)

 [23] suggests an algorithm for filling thesaural gaps automatically, but
only appears to have applied it in one case. In addition, it is unclear how to

5 The later phrase is not a noun phrase, so it is not directly relevant to the algorithms being described.

6 The 4th edition has other gaps. For instance, the card playing sense of “suit” is missing, as mention in
[23].

31

implement the algorithm efficiently. Thus, whether such gaps can be filled
automatically, or a human thesaurus builder aided in finding and correcting such
gaps, still remains to be seen.

5.2.4 Multi-word Phrases

We have not made any effort to exploit multi-words terms in IAGO! Knowledge
of phrases would of course be useful in non-compositional cases, in which a
category or meaning might be available that would not otherwise be suggested at
all. In other cases, knowledge of multi-word phrases would appear to be useful
for disambiguation and topic assignment involving those term’s constituents. For
example, knowledge of the phrase “space station” would allow one to conclude
that with high probability that “space” is occurring in the astronomical and not the
typographic sense.

Since many phrases are listed in Roget’s Thesaurus, IAGO! could be
extended to exploit them. The primary problem with doing so is that it would
entail parsing thesaurus entries. For instance, in Section 184.10 of the thesaurus is
a phrase “nonscheduled airline or nonsked.” It should be parsed into
“nonscheduled airline” and “nonsked.” On the other hand, in Section 184.31 is
the entry “sonic barrier or wall”, which should be parsed into “sonic barrier” and
“sonic wall”, not “sonic barrier” and “wall.” In general, determining the intended
parse of such phrases is not straightforward, although perhaps it would be possible
to parse them with the aid of another phrasal knowledge source.

Using phrases to aid disambiguation is one of a large number of ways in
which IAGO! might be extended to take additional types of context information
into account. E.g., exploiting knowledge of the phrase “space station” is
equivalent to saying that the occurrence of “station” immediately after the word
“space” should be weighted differently from its occurrence anywhere within a
window of 100 words. While doing so is intuitively appealing, testing this
hypothesis would be a worthwhile experiment.

32

5.2.5 Word Elements

Bound morphemes are sometimes listed in Roget’s. For example, “contra-” and
“counter-” are listed in the Disagreement (788) category. IAGO! currently does
not take advantage of such morphemes. Handling bound morphemes may be of
some utility, but their number is probably too small to be significant.

5.2.6 Using the Word Sense Distribution to Improve Disambiguation

IAGO! 1.0 exploits the probability distribution we compute for word senses for
topic assignment, but not for disambiguation. In effect, we make the assumption
of uniform distribution of word senses at the initial training, and later compute a
distribution of word senses in our corpus. It seems reasonable that the computed
distribution should be helpful in improving disambiguation. That is, given
p(category), p(category | word) (i.e. the computer sense distribution), and
p(category | context), compute p(category | word, context), instead of just using
p(category | context).

Given that p(category | word, context) is better than p(category | context),
it should be possible to iterate as per various expectation-maximization
algorithms, i.e., use the better disambiguator to improve the estimate of word
sense priors. We can readily compute p(category | word, context) if the word and
context are independent enough for simple Bayesian updating would work. We
tried this approach in IAGO! 0.1 without success. We suspect that it failed
because of strong dependencies between a word and its local context, but have not
tested this hypothesis by attempting the experiment again with IAGO! 1.0.
Performing such experiments may require further optimization of the system for
efficiency. Currently, it takes a few days to train and a few days to collect priors.

5.3 Topic Assignment

5.3.1 Thesaural Categories as Topics

As with any other set of fixed vocabulary items, our specific results are limited to
the utility of that set. Roget’s is not without its peculiarities. Along with
categories such as Materials, Mathematics and Minerals are Meaninglessness,
Mediocrity, and Misteaching. In our particular implementation, having

33

undesirable categories is especially damaging, as we only assign a document to a
single category, so that assigning a document to a low-utility category precludes a
more useful assignment. Fortunately, the categories we intuitively regard as
uninteresting are rarely assigned a documents. For example, in our experiment,
Materials, Mathematics and Minerals were assigned 18, 564, and 19 Web pages;
Meaninglessness, Mediocrity, and Misteaching were all assigned no pages. The
category The Environment, which has the scientific interpretation, was assigned
several articles; the category Environment, which has the abstract interpretation,
was assigned no articles. And, of course, it would be a simple matter to put
undesirable categories on a stoplist, and preclude their use altogether.

Roget’s categories comprise a relatively high-level classification. This is
useful as a general index, but not for finer-grain distinctions that might be useful
within a specialty. (For example, it is certainly much coarser than the categories
used by Yahoo!.) One way to produce more specific classifications would be to
use a thesaurus specifically tailored to a particular domain. [2] describes a
method for just such thesaurus construction. A useful experiment would be to
apply the topic assignment algorithm described here to classify a collection from
which such a thesaurus was generated.

5.3.2 Multiple Categorization and Ranking

IAGO! currently assigns at most one category per Web page. However, the
underlying technology allows much more flexibility than the existing prototype
offers. The automatic topic assignment engine outputs a topic vector x = (x1, x2,
..., xn) for each Web page, where n is the number of conceptual categories (n =
1073 for Roget’s). The current classifier outputs the index of strongest
component, c = arg max{ x1, x2, ..., xn} , as the category for the Web page, and its
value, xc, as the rank. It certainly seems plausible to find a principled way to use
this output to assign multiple categories to a document, and, perhaps, to find
better ranking criteria.

5.3.3 Disambiguation

The prior probability distribution of word senses is currently used for topic
assignment to avoid the expensive disambiguation procedure during topic
assignment. This was done only because of efficiency considerations. However,

34

we left an open question of whether using disambiguation in addition to priors can
significantly improve topic assignment. With a faster implementation of the
disambiguation algorithm and/or better hardware, one might explore the question
empirically.

5.3.4 Common Words

Above we noted that some words do not seem to contribute to topicality.
Examples are “percent” and “software”, which belong to the Mathematics and
Computer Science categories, respectively, but are arguably generally not
evidence of the relevance of these categories. Terms naming numerical quantities
and times also appear to have this property.

Our current solution to this problem is to put such terms on a stoplist. This
approach worked very effectively.7 However, it requires manual intervention.
Rather than using a manually-constructed stoplist, an alternative might be to use
the standard inverse document frequency (IDF) measure to generally attenuate the
topicalization evidence of a word in proportion to the number of Web pages in
which that word appears. Some experimentation would be required to assess the
value of IDF for automatic topic assignment generally, and as an alternative to
using a stoplist for problematic terms.

5.3.5 Multilingual Considerations

Pages on the Web are frequently contain languages other than English. IAGO!
discards pages that do not have enough English terms in them, where “English
term” is defined as being found in Roget’s. On the other hand, IAGO! will
attempt to categorize predominately non-English pages by their English contents,
provided these are substantial enough.

7 Putting such words on our stoplist does not interfere with retrieval by word sense, since the terms are

unambiguous, and hence, IAGO! just passes them through to the underlying search engine. In the case of
“software”, though, no result is returned, as the term is on AltaVista’s stoplist, presumably for a similar
reason.

35

This approach seems to work well for languages such as Japanese and
Chinese, which do not overlap much with English. (We have not measured how
well IAGO! performs in these cases, but our impression, for the languages that we
know, is that performance is good. Perhaps this is not surprising, as the heavy use
of foreign words seems to occur in technical subjects, and hence these provide
reasonable topic indications.)

European languages are more troublesome because they sometimes
coincidently share a commonly used term with English. For example, in Swedish,
the second person pronoun man (“you”) and the third person pronoun hon (“she”)
are common terms. IAGO! would mistake these as the English words for a male
adult person and the abbreviated form of the endearment “honey”. Moreover,
these would be common enough in Swedish to comprise a sufficient amount of
“English” text in many documents for IAGO! to perform completely erroneous
classifications. The Dutch terms “op” and “van” would cause similar difficulties.

IAGO! is prevented from making these errors because we put such
problematic terms on the stop-list. A more principled solution may be to set up a
separate foreign-language stop-list and ignore those terms only when they appear
in a non-English page. A possible heuristic for detecting non-English pages is to
examine the ratio of the number of words that pass through the preprocessing to
the size of the Web page in bytes. A low ratio indicates that the page is probably
not written in English.

6. Extensions and Other Applications:

6.1 Automated Summarization

In addition to classification and retrieval-by-word-sense, we suspect that
the fundamental algorithms in IAGO! could also be used to generate summaries of
Web pages. In particular, some systems now produce summaries by picking out
sentences that are “close” to the topic of the document in which they appear.
Closeness generally appears to be measured in “lexical space”, in which each
word type constitutes a dimension. This approach exploits a weak notion of

36

semantics, and involves dealing with a very large number of dimensions,
essentially the number of words in the English vocabulary.

We suggest that IAGO! may overcome these drawbacks. The topic-
assignment algorithm maps text into a 1073-dimensional vector, which can be
used to compare documents with each sentence. It is possible that this method
will introduce a somewhat richer notion of semantics. An experiment can easily
be devised to test this hypothesis.

6.2 Quality

Services such as Yahoo! also filter for quality as well as topicality. One drawback
of IAGO!’s automatic directory construction algorithm is that it makes no attempt
to distinguish important documents from unimportant ones. Recent attempts at
automatically making such distinctions seem promising, however. Such attempts
generally use the structure of a Web region around a document to determine its
importance, for example, the number of links pointing to a document. For
example, [20] describes a technique that ranks pages on the web, using the link
structure of the web to approximate the citation importance of a page. Filtering
the Web first for importance would be probably be a large step in making IAGO!
competitive with handmade directories.

6.3 Integrating Information from Pictures

IAGO! 1.0 understands only the text on Web pages. It ignores all pictures during
the classification and searching processes. The technology of analyzing images
automatically is still in too rudimentary a stage to help at present [7]. However,
should we be able to hypothesize the objects in images with some reliability, one
possibility is to substitute terms for images, perhaps repeating the term in
proportion to the size of the image. Such terms could then be integrated together
with the pre-existing text for the purposes of classification.

37

6.4 Query Expansion

Query expansion is an alternative means to interactively improving searches.
Query expansion encourages users to lengthen their queries by picking additional
keywords. As longer queries tend to disambiguate their constitute words, the two
approaches might be viewed as competitive. Much would depend on the user’s
information need: Adding “guitar” to the query “rock” would help to
disambiguate it somewhat, but may unduly limit the recall more than restricting
word senses. Some more empirical study is required to better understand the
relationship between the two techniques, and when each can be most productively
exploited. Our suspicion is that the two approaches can be productively
combined.

7. Conclusion

We believe these experiments demonstrate that automating directory generation
and search by word senses are promising ways to enhance information access on
large-scale information resources, such as the Internet. With only performance
improvements, IAGO! would probably be a useful system now. We have
demonstrated that, at the current point in time, lexical disambiguation can be done
sufficiently well to be a useful addition to one’s arsenal of information retrieval
techniques. Combining IAGO! with other techniques, such as value filtering,
would produce a system that may compete with hand-created document
directories.

Many straightforward improvements are possible both to IAGO!’s
algorithms as well as to the data sources it exploits. We improved performance
by using a coherent training set; a better set of semantic codes in place of
thesaural categories would likely yield very substantial additional improvements.

 A number of avenues for further research and development have been
suggested by this exercise. Based on our experience, we believe such research
would be worth pursuing.

38

8. Acknowledgments

HarperCollins Publisher provided us with the full-text of Roget’s International
Thesaurus Fifth Edition. We are indebted to Ms. Carol Cohen of HarperCollins
for her invaluable help in obtaining this resource. None of the work described
herein could have occurred without it.

Microsoft Corporation contributed the full-text of Encarta 97. This
training data was hugely importance to the success of this project. Microsoft was
the only encyclopedia vendor that was reasonable to deal with. Special thanks to
Bill Dolan for his persistent efforts not to take yes for an answer.

Professor Eric Brewer and Inktomi Corporation contributed the 2 GB of
Web text that we used for computing sense distributions.

David Fisher helped us understand details of his previous work. Aitao
Chen provided us with the source code of popular stemmers. Ginger Ogle and
Joyce Gross gave us help on the Digital Library server. Ray Larson and Marti
hearst provided us with useful comments on versions of this paper. Professor
Richard Fateman, Professor Joe Hellerstein, Ginger Ogle, and Loretta Willis
helped evaluate IAGO! 0.1 and gave us constructive comments.

Special thanks are due to Albert Tan and Timotius Tjahjadi. Albert built
the B+-tree nodes and disk cache for storing the word-category association data,
and worked closely with us in making significant efficiency enhancements. Tim
implemented most of the front-end work of IAGO! 1.0 and a Web crawler for
searching.

This research was funded as part of the NSF/NASA/DARPA Digital
Library Initiative, under National Science Foundation grant number IRI-94-41286.

39

9. References
[1] Chapman, R., ed. Roget’s International Thesaurus. 5th ed.

HarperCollins, 1992.

[2] Chen, H. Yim, T., Fye, D., and Schatz, B. Automatic Thesaurus
Generation for an Electronic Library Community System. In Jornal of the
American Society for Information Science, 46(3); pp. 173-193, 1995.

[3] Church, K. “A Stochastic Parts Program and Noun Phrase Parser for
Unrestricted Text.” Proceedings of the Second Conference on Applied
Natural Language Processing. Austin, Texas, 1989.

[4] Cutting, D., Karger, D., Pederson, J., and Tukey, J. W. Scatter/Gather: A
Cluster-based Approach to Browsing Large Document Collections. In the
Proceedings of the 15th Annual International ACM/SIGIR Conference,
Copenhagen, 1992.

[5] Fisher, D. and Riloff, E. “Applying Statistical Techniques to Small
Corpora: Benefiting from a Limited Domain.” Proceedings of the AAAI
Fall Symposium on Probabilistic Approaches to Natural Language, 1992.

[6] Fisher, D. “Topic Characterization of Full Length Texts Using Direct and
Indirect Term Evidence.” Technical Report UCB/CSD 94-809. Computer
Science Division, University of California, Berkeley, May 1994.

[7] Forsyth, D. A., Malik, J., and Wilensky, R. Searching for Digital Pictures.
Scientific American, June 1997.

[8] Gale, W., Church, K., and Yarowsky, D. “Discrimination Decisions for
100,000-Dimensional Spaces”. AT&T Statistical Research Report No.
103, 1992.

[9] Gale, W., Church, K., and Yarowsky, D. “A Method for Disambiguating
Word Senses in a Large Corpus.” Computers and the Humanities, 5-6, pp.
415-439. 1992.

[10] Gale, W., Church, K., and Yarowsky, D. “Estimating Upper and Lower
Bounds on the Performance of Word-Sense Disambiguation Programs.”
Proceedings of the 30th meeting of the Association for Computational
Linguistics, pp. 249-256. 1992.

[11] Hayes, Philip J. and Weinstein, Steven P. CONSTRUE/TIS: A System for
Content-Based Indexing of a Database of News Stories. In A. Rappaport
and R. Smith, Innovative Applications of Artificial Intelligence 2, AAAI

40

Press/The MIT Press, 1990.
[12] Hearst, M. “Context and Structure in Automated Full-Text Information

Access.” Doctoral Dissertation. University of California, Berkeley, 1994.
[13] Inktomi Corporation. “The Inktomi Technology behind Hotbot: A White

Paper.” http://www.inktomi.com/whitepap.html, 1996.

[14] Krovetz, R. “Viewing Morphology as an Inference Process”. In the
Proceedings of the ACM-SIGIR Conference on Research and Development
in Information Retrieval, pp. 191-202, 1993.

[15] Larson, R. “Experiments in Automatic Library of Congress
Classification.” Journal of the American Society for Information Science,
43(2), pp. 130-148, 1992

[16] Lewis, David D. and Hayes. Philip J. (eds.) ACM Transactions on
Information Systems, Vol. 12, No. 3, July 1994. Special Issue on Text
Categorization.

[17] Liddy, E. D. and Paik, W. “Statistically-Guided Word Sense
Disambiguation.” Proceedings of the AAAI Fall Symposium on
Probabilistic Approaches to Natural Language, 1992.

[18] Liddy, E. D., Paik, W., and Yu, E. S. Text Categorization for Multiple
Users Based on Semantic Features from a Machine-Readable Dictionary.
In Lewis, David D. and Hayes. Philip J. (eds.) ACM Transactions on
Information Systems, Vol. 12, No. 3, July 1994, pp. 278-295.

[19] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J.
“Introduction to WordNet: An On-line Lexical Data Base.” Journal of
Lexicography, vol. 3, no. 4, pp. 235-244, 1990.

[20] Page, L. http://www-pcd.stanford.edu/~page/papers/citeimport.html

[21] Pedersen, J. O. “Search: the Next Killer App?” Digital Information
Systems Seminar, University of California, Berkeley, Oct. 14, 1996.

[22] Porter, M.F. “An Algorithm for Suffix Stripping”. Program 14 (3), July
1980, pp. 130-137.

[23] Yarowsky, D. “Word Sense Disambiguation Using Statistical Models of
Roget’s Categories Trained on Large Corpora.” Proceedings of the
Fourteenth International Conference on Computational Linguistics, pp.
454-460, Nantes, France, 1992.

