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Abstract

Many parallel programs are written in SPMD style, i.e. by running the same sequential program on all

processes. SPMD programs include synchronization, but it is easy to write incorrect synchronization patterns.

We propose a system that veri�es a program's synchronization pattern. We also propose language features to

make the synchronization pattern more explicit and easily checked. We have implemented a prototype of our

system for Split-C and successfully veri�ed the synchronization structure of realistic programs.

1 Introduction

Explicitly-parallel programming|where the programmer speci�es the parallelism in a computation|is arguably
the most widely used parallel programming paradigm. Despite many years of practical experience, there has been
little work on the static semantics of explicitly-parallel programming languages. We propose a static semantics for
global synchronization that guarantees an explicitly parallel program has no global synchronization errors. Our
proposal is based on a formalization of widespread programming practices. We have proven the soundness of
our method and implemented a prototype system. Experimental evidence gathered from testing our system on a
benchmark suite supports our hypothesis that the global synchronization structure of realistic programs can be
formalized and automatically veri�ed.

Our system was developed in the context of a distributed memory, shared address space programming language
(Split-C, an SPMD language developed at Berkeley [5]), but we found it equally applicable to checking the synchro-
nization structure of shared memory, shared address space parallel programs; our method can show the synchro-
nization correctness of the SPLASH-2 [25] benchmarks. We expect a similar result should hold for pure message
passing programs as well, but such programs may not rely on global synchronization to the same degree as programs
written using a shared address space. Note, however, that standard message passing libraries such as MPI [20]
include global synchronization primitives.

1.1 Global Synchronization

A simple and popular parallel programmingmodel is SPMD (for Single Program, Multiple Data). SPMD programs
are explicitly-parallel programs written in sequential languages extended with communication and synchronization
primitives. A typical SPMD code skeleton is

work1();

barrier;

work2();

�This material is based in part upon work supported by DARPA contract F30602-95-C-0136.
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if (random()) barrier;

work1(); barrier;

work2();

if (x) barrier else work()

(a) processes left behind (e) correct if processes agree on x's value

while (random()) barrier;

work1(); barrier;

work2(); barrier;

work3();

i <- 0;

while i < 10

(if (i = 1) barrier;

i <- i + 1);

barrier
(b) processes \trapped" in a loop (f) correct loop

if (random()) barrier else broadcast;

if (random())

(barrier; barrier)

else

(work1(); barrier; work2(); barrier)

(c) con
icting barrier/broadcast (g) if with matching barriers

a <- random();

if (a) barrier; (*)

x <- x + 1;

if (not a) barrier; (*)

i <- 0

if (random())

(while (i < 10) (barrier; i <- i + 1))

else

(j <- i + 10;

while (j < 20) (work1(); barrier; j <- j + 1))

(d) correct but not structurally correct (h) structurally correct but not veri�able

Figure 1: Examples

barrier;

work3();

where barrier is an operation that causes a process to block until all other processes have also reached a barrier.
In SPMD execution, all processes execute a copy of the program independently. In this example, the barriers serve
to guarantee that, e.g., all processes are done with work1() before proceeding to work2(). The only synchronization
is at the barriers|processes execute workn() asynchronously.

While conceptually simple, the combination of asynchronous execution and explicit global synchronization intro-
duces subtle issues of program structure and correctness. Figure 1 gives examples illustrating correct and incorrect
synchronization patterns. In these examples, random() returns a di�erent value in every process (causing di�erent
branch decisions in di�erent processes) and workn() is a function call that does no synchronization. In all of the
examples barriers are executed conditionally; we have observed that almost all SPMD programs have conditional
synchronization.

There are two basic forms of incorrect synchronization. In Figure 1a, processes execute di�erent numbers of
barriers, causing the program to \hang" when some processes terminate while others wait at a barrier. The
same problem occurs in loops containing barriers if processes execute di�ering numbers of iterations (Figure 1b).
The second problem is illustrated by Figure 1c, where some processes execute a barrier while others execute a
broadcast. In SPMD languages simultaneously executing di�erent synchronization operations causes a runtime
error (or, in some implementations, unde�ned behavior).

Even correct SPMD synchronization can be subtle. Figure 1e is correct, provided that the values of variable x

(which is a replicated variable, i.e. each process has a variable x local to the process) is the same in all processes.
This pattern|conditional synchronization where the program's design guarantees processes make the same branch
decisions|is ubiquitous in SPMD programs. Figure 1f gives a more complex example illustrating the same point.
However, in correct programs processes need not always make the same branch decisions, as Figures 1d, g, and h
show.
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1.2 Synchronization Veri�cation

Figure 1e shows that an important component of understanding synchronization behavior is knowing which repli-
cated variables must have the same value in all processes: We call such variables single-valued1. Replicated
variables that may have di�erent values in di�erent processes are multi-valued. In practice, SPMD programmers
use synchronization in a highly structured way. All SPMD programs we have seen observe the following notion of
synchronization correctness.

De�nition 1.1 (Structural Correctness) An expression is structurally correct if all subexpressions e satisfy the
following: Let V be the set of single-valued variables on entry to e. If processes begin execution of e in environments
that agree on the values of V and all processes terminate (i.e., no process loops), then all processes execute the
same sequence of synchronization operations.

It is easy to check that Figure 1f, g, and h are all structurally correct and that Figure 1e is structurally correct
assuming x is single-valued. Figure 1d is an example of a program that has no synchronization errors but is not
structurally correct (because of the expressions marked (�)).

1.3 Barrier Inference

We have developed a static semantics that veri�es that a program has structurally correct synchronization. Since
barriers are the most common form of SPMD synchronization, we call this process barrier inference. Statically
checking synchronization behavior guarantees that programs never fail by \hanging" or executing con
icting syn-
chronization operations. SPMD programmers do make such mistakes2, and our techniques eliminate this class of
bugs. Equally important, our method makes explicit the heretofore implicit assumptions about single-valued vari-
ables in SPMD programs. In our experience, this extra information is extremely useful for understanding SPMD
programs written by others.

There are structurally correct programs that our system cannot verify, such as Figure 1h. Intuitively, the problem
with this example is that although both branches execute the same number of barriers, our system can only infer
that the branches each execute some unknown number of barriers and cannot tell that these numbers are the
same. In contrast, our system has no di�culty with Figure 1g, where the system can infer that both branches
execute exactly two barriers. While we have seen examples similar to Figure 1g, we have seen no programs with
the structure of Figure 1h.

We present our barrier inference algorithm, which statically veri�es the correctness of an SPMD program's synchro-
nization behavior (Section 3), along with a proof of its soundness (Section 3.1). We also propose language features
that make the synchronization structure of SPMD programs explicit (Section 4.1). We have implemented a pro-
totype system to validate the algorithm and to empirically study the proposed language features. We tested the
prototype on a substantial number of programs written in Split-C (Section 5). Experience with our implementation
is positive; the system successfully checks the benchmarks with a few minor modi�cations to the programs, includ-
ing one to correct a bug detected by our system. We have also examined the Splash-2 benchmarks [25] by hand
and found that all but one can be checked with our system (Section 5.2). These experiments were for medium-size
programs; we believe that static veri�cation of synchronization is especially important for larger systems because
these are not amenable to manual veri�cation, and also for higher-order languages (e.g. parallel object-oriented
languages) where control-
ow is less explicit.

1A formal de�nition of single-valued variables is subtle; see Section 3.1.
2It is di�cult to provide direct evidence for this claim, but we have committed such programming mistakes ourselves and found

them in existing, presumably debugged, programs.
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2 The Language

We present our system using L, a small procedural language extended with three parallel operations: barrier,
broadcast (which is like barrier except a distinguished value is sent to all processes), and communicate (which
allows asynchronous communication). As our interest is in synchronization operations such as barrier and
broadcast, we leave the semantics of communicate unspeci�ed. The grammar for L is:

Expr ::= i

j id

j barrier

j broadcast

j communicate

j id(Expr; : : : ; Expr)

j id Expr

j if Expr Expr else Expr

j Expr; Expr

j let id in Expr

j letrec id(id; : : : ; id) = Expr in Expr

All values in L are integers and all variables are replicated. A let introduces a new integer variable and a letrec

introduces a potentially recursive function de�nition; the other expressions are also standard. There are some
prede�ned functions, such as +, which are all mathematical functions, i.e. their result depends solely on the value
of their arguments. In examples we write while e1 e2 as shorthand for

letrec f() = if e1 (e2; f()) else 0 in f()

This sparse language is su�cient to illustrate the novel aspects of our techniques. In Section 4.3 we discuss
extensions to the C and FORTRAN-based languages used in practice. Figure 2 gives a simple rewrite semantics
for L in a variation of continuation-passing style (CPS). The computation of a single process is a sequence of steps:

State; State

where a state FunEnv�Env�Cont�Expr consists of an expression e to be evaluated, environments for the variables
and function names in scope at e, and the computation to perform after evaluating e (a continuation). Readers
familiar with CPS semantics will note that this CPS semantics is non-standard, because a continuation is a function
that returns only the next state in the computation, rather than the �nal answer of the entire computation. This
modi�cation exposes intermediate states of the computation, which is needed to de�ne the semantics of barrier
and broadcast.

The semantics of L model synchronization structure, but not the details of the communication primitives. The
synchronization primitives, barrier and broadcast, are the only operations that require global interaction. For
barrier, once all processes reach a barrier each process proceeds with its continuation. The rule for broadcast
is identical. The values returned by the communication operations are predicted by an oracle() function. The only
place where the communicated value is important is in broadcast: it returns the same value in all processes, but
the actual value is not important for synchronization veri�cation. The barrier operation does not communicate
any values, so its result is always 0 (an arbitrary choice).

A few other comments on details of the semantics are necessary. For simplicity, we assume that variables and
functions are given unique names (i.e., no names hide names in outer scopes). This property can always be
enforced by suitably renaming variables. De�ne FF (f) as the set of function names in scope at f 's de�nition; ;
FV (f) is the set of identi�ers (other than f 's formal parameters) in scope at f 's de�nition. Figure 2 uses several
operations on environments. The set dom(E) is the domain of E. The environment EjV is E with the domain
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F FunEnv = FunctionName! FunctionDefinition

E Env = Var!N

C Cont = Env� N ! State

State = FunEnv� Env� Cont� Expression+ Env�N

hF;E;C; ii ; C (E; i)

hF;E;C; xi ; C (E;E(x))

hF;E;C; communicatei ; C (E; oracle())

hF;E;C0; f(Expr1; : : : ; Exprn)i ; hF;E;C1; Expr1i where

F (f) = f(x1; : : : ; xn) = Expr

C1 = �E2; v1:hF;E2; C2; Expr2i

: : :

Cn�1 = �En; vn�1:hF;En; Cn; Exprni

Cn = �En+1; vn:hF j FF (f); E0; C
0; Expri

E0 = (En+1jFV (f))[x1  v1; : : : ; xn  vn]

C0 = �E0; v:C0 ((En+1==FV (f) + E0==fx1; : : : ; xng); v)

hF;E;C0; p(Expr1; : : : ; Exprn)i ; hF;E;C1; Expr1i where

p is a primitive

C1 = �E2; v1:hF;E2; C2; Expr2i

: : :

Cn�1 = �En; vn�1:hF;En; Cn; Exprni

Cn = �En+1; vn:C0(En+1; p (v1; : : : ; vn))

hF;E;C; x Expri ; hF;E; �E0; v:C (E0[x v]; v); Expri

hF;E;C; if Expr1 Expr2 else Expr3i ; hF;E;C0; Expr1i where

C0 = �E0; v:hF;E0; C; if v = 0 then Expr2 else Expr3i

hF;E;C;Expr1;Expr2i ; hF;E; �E0; v:hF;E0; C;Expr2i; Expr1i

hF;E;C; let x in Expri ; hF;E[x 0]; �E0; v:C (E0==fxg; v); Expri

hF;E;C; letrec f(x1; : : : ; xn) = Expr1 in Expr2i ; hF [f  f(x1; : : : ; xn) = Expr1]; E;C;Expr2i

FF (f) = dom(F ); FV (f) = dom(E)

[hF1; E1; C1; barrieri; : : : ; hFn; En; Cn; barrieri] ; [C1 (E1; 0); : : : ; Cn (En; 0)]

[hF1; E1; C1; broadcasti; : : : ; hFn; En; Cn; broadcasti] ; [C1 (E1; v); : : : ; Cn (En; v)] where v = oracle()

Figure 2: Semantics for L
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restricted to variables V . The environment E==V is E with variables V removed; i.e., Ej(dom(E) � V ). The
environment E1 + E2 is the combination of two environments E1 and E2 with disjoint domains.

The result of a (terminating) sequence of rewrites is an environment recording the �nal state of the program and
an integer result. The computation of n processes executing in parallel is a sequence of steps:

Staten ; Staten

The transitions for vectors of states include the synchronization rules for barrier and broadcast, plus a general
rule for interleaving the transitions of individual processes:

[S1; : : : ; Si�1; Si; Si+1; : : :Sn]; [S1; : : : ; Si�1; S
0
i
; Si+1; : : :Sn]

whenever Si ; S0
i
. Let I be the initial continuation �E; v:(E; v). The evaluation of an expression e on n processors

is
[hf;; pid= 1g; I; ei; : : :n times : : : ; hf;; pid= ng; I; ei]

�
; [(E1; i1); : : : ; (En; in)]

The initial environment of each process contains a process id in the variable pid. This value distinguishes one
process from another.

If all processes halt with a �nal environment and integer value then that run is successful. A run is unsuccessful if
(1) processes execute a di�erent number of barriers (Figures 1a and 1b), (2) some processes reach a barrier at
the same time others reach a broadcast (Figure 1c), or (3) one or more processes loop. Our methods are capable
of statically checking realistic programs for (1) and (2).

3 Barrier Inference

The rules of our inference system model two aspects of SPMD computation. The �rst aspect is the sequence of
barriers and broadcasts executed in evaluating an expression e. The rules associate an abstract synchronization
sequence with e:

S = f?; fg [ fb; rg�

A sequence value s 2 fb; rg� means every process executes exactly the sequence s of barriers (b) and broadcasts
(r). A sequence value f means every process executes the same sequence of barriers and broadcasts, but the
exact sequence is unknown. The sequence value ?means no process executes the expression. It is possible to assign
an element of S to every structurally correct expression. There is an ordering on synchronization sequences:

?� s � f for any s 2 fb; rg�

The second aspect of the inference rules tracks single-valued variables. An abstract environment AEnv : Vars !

f+;�g is a mapping from program variables to + (indicating a variable is single-valued) or � (indicating a variable
may be multi-valued). There is an ordering + � �.

Analogous to an abstract environment there is an abstract function environment, which is a mapping

FEnv : FunctionNames! f+;�gn � AEnv� f+;�g � AEnv� S

from function names to function signatures.

De�nition 3.1 A function f satis�es a function signature written

(a1; : : : ; an); A! a; A0; s

if the following hold: f has n arguments and its free variables are those in dom(A) = dom(A0); processes that begin
execution of f in states agreeing on values of the single-valued function arguments in (a1; : : : ; an) and single-valued
variables in A, either diverge or (1) agree on the result if a = +, (2) agree on the value of every single-valued
variable in A0, and (3) have executed the same sequence of synchronization operations s.
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For example, the signature
f : (+;�); ; ! +; ;; �

says that f(a; b) = f(a; c) for all b and c (provided both evaluations terminate) and f executes no synchronization
operations. The inference system proves statements of the form

B; A ` Expr : a; A0; s

which is read: Given functions with abstract function environment B, if all processes begin the execution of Expr
with the same values for variables marked single-valued in A, then all processes that terminate (1) agree on the
values of variables marked single-valued in A0, (2) agree on the result if a = +, and (3) have executed the same
sequence of synchronization operations s. Thus, any such proof shows e's structural correctness (De�nition 1.1).

The inference rules are given in Figure 3. In the remainder of this section we discuss the rules, present a soundness
result, and illustrate barrier inference with some examples. The [Int] rule is simple; evaluating an integer is single-
valued (all processes compute the same integer), does not a�ect the set of single-valued variables in the environment,
and executes no synchronization operations. The [Id] rule is similar; the result is single-valued only if all processes
have the same value for the identi�er in the environment. A communicate is assumed to be multi-valued, as
processes may receive di�erent values. When a process needs to communicate a value to all processes, broadcast
is more e�cient than n communicate operations, and makes explicit that the result is single-valued3. A barrier

and a broadcast are always single-valued and each executes a single synchronization operation. The [Prim] rule
says that primitive, side-e�ect free functions are single-valued if all their arguments are single-valued.

In rule [Fun], actual parameters must be single-valued wherever the function signature requires single-valued argu-
ments (the comparisons ai � a0

i
). Similarly, the environment of the call must be single-valued in all variables the

signature requires be single-valued. We de�ne A1 � A2 if dom(A1) = dom(A2) and for all x 2 dom(A1) we have
A1(x) � A2(x).

The conclusion of [Fun] and several of the other rules combine synchronization sequences. The sequence s1 � s2 is
the best description of s1 followed by s2:

s1 � s2 =

8<
:

s1 � s2 if s1; s2 2 fb; rg
�

? if s1 =? _ s2 =?
s1 t s2 otherwise

where s1 � s2 is the concatenation of strings s1 and s2. The operator � is monotonic in both arguments.

Note the di�erence between the treatment of primitive and user-de�ned functions. The result of a primitive function
is single-valued if all its arguments are single-valued, which can be thought of as a kind of subtyping rule. Thus,

some uses of a primitive function can be single-valued and others not. All the calls to a user-de�ned function
are either single-valued or not, depending on the function's signature in the abstract function environment. This
distinction is necessary, because user-de�ned functions with side-e�ects can modify single-valued state. We have
not found this restriction on user-de�ned functions to be a problem in practice (see Section 5.1).

The [Assign] rule updates the environment based on the new value of the assigned variable; this re
ects the fact
that a variable can be single-valued at some points in the program and not at others. The [Let] rule introduces a
new variable, which is initially single-valued as it is initialised to 0 in all processes. A new function is introduced
into the function environment by the [LetRec] rule. This rule, along with the [Fun] rule, only expresses constraints
on the function's signature, but does not specify how it is found. Section 3.2 outlines a method for computing
function signatures.

The two rules for if are interesting. The rule [If-Single] applies when the predicate is single-valued. All processes
take the same branch, but we do not know which branch. In this case a conservative upper bound over the results
of both branches su�ces.

The rule [If-Multi] applies when the predicate is multi-valued. It is necessary that the upper-bound of the synchro-
nization sequence of the branches be a known (not f) sequence. A subtle point is determining the single-valued

3Our experience with the Split-C programs of Section 5 shows that this rule is nearly universally followed.
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B; A ` i : +; A; �
[Int]

B; A ` id : A(id); A; �
[Id]

B; A ` communicate : �; A; �
[Comm]

B; A ` barrier : +; A; b
[Barrier]

B; A ` broadcast : +; A; r
[Broadcast]

B; A0 ` Expr1 : a1; A1; s1
: : :

B; An�1 ` Exprn : an; An; sn
B(f) = (a0

1
; : : : ; a0

n
); A! a;A0; s

Anjdom(A) � A

81 � i � n: ai � a0
i

B; A0 ` f(Expr1; : : : ; Exprn) : a; An==dom(A0) + A0; s1 � : : :� sn � s

[Fun]

B; A0 ` Expr1 : a1; A1; s1
: : :

B; An�1 ` Exprn : an; An; sn

B; A0 ` p (Expr1; : : : ; Exprn) : a1 t : : :t an; An; s1 � : : :� sn

[Prim]

B; A ` Expr : a; A0; s

B; A ` x Expr : a; A0[x a]; s
[Assign]

B; A[x +] ` Expr : a; A0; s

B; A ` let x in Expr : a; A0==fxg; s
[Let]

dom(A) = dom(A0) = dom(A0)
S = (a1; : : : ; an); A! a;A0; s

A0 = A00==fx1; : : : ; xng

B[f  S]; A[x1 a1; : : : ; xn an] ` Expr1 : a; A
00; s

B[f  S]; A0 ` Expr2 : a
0
2
; A2; s2

B; A0 ` letrec f(x1; : : : ; xn) = Expr1 in Expr2 : a
0
2; A2; s2

[LetRec]

B; A0 ` Expr1 : +; A1; s1
B; A1 ` Expr2 : a2; A2; s2
B; A1 ` Expr3 : a3; A3; s3

B; A0 ` if Expr1 Expr2 else Expr3 : a2 t a3; A2 tA3; s1 � (s2 t s3)

[If-Single]

B; A0 ` Expr1 : �; A1; s1
B; A1 ` Expr2 : a2; A2; s2
B; A1 ` Expr3 : a3; A3; s3
s2 t s3 � f

A0 = A1 / (AV(Expr2) [AV(Expr3))

B; A0 ` if Expr1 Expr2 else Expr3 : �; A
0; s1 � (s2 t s3)

[If-Multi]

B; A0 ` Expr1 : a1; A1; s1
B; A1 ` Expr2 : a2; A2; s2

B; A0 ` Expr1; Expr2 : a2; A2; s1 � s2

[Sequence]

Figure 3: Inference rules.
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variables of the �nal environment. Any variable that is modi�ed in either branch could have di�erent values in
di�erent processes on exit from the conditional; all of these variables must be marked multi-valued in the �nal
environment. Let AV(e) be the set of variables visible at e that may be assigned in the evaluation of e (including
via function calls in e). A set AV(e) is easily computed. Now de�ne A/ fv1; : : : ; vng to be A[v1  �; : : : ; vn  �].

If the inference system of Figure 3 cannot assign any synchronization value to an expression, then evaluating the
expression may cause processes to execute di�ering numbers of barriers and broadcasts|the program may get \out
of synch". In this case the program is rejected. Of course, the inference system is conservative and may reject
correct programs. We show in Section 5.1 that the system in fact works well on a suite of benchmarks.

3.1 Soundness

A sticky point in trying to prove our system correct is capturing the meaning of single-valued variables. Intuitively,
a variable is single-valued if all processors have the same value for the variable at the same time. However, \at the
same time" is a slippery notion in a setting with asynchronous execution. Only at points of global synchronization
(i.e., barriers, broadcasts, and the start and end of execution) is it possible to assert anything useful about the
state of all processes.

The key to this problem is to observe that the values of single-valued variables depend only on other single-valued
expressions. Using this fact, it can be shown (without referring to time except within a single process) that
if processes begin execution agreeing on single-valued inputs, then they terminate agreeing on the single-valued
outputs.

The proof of soundness has two steps. First, we prove that single-valued outputs are determined solely by single-
valued inputs for a process in isolation. Second, we show that if the inference rules can derive any proof for an
expression, then all processes evaluating that expression execute the same sequence of synchronization operations.

A few de�nitions are required. Environments E1 and E2 are equal with respect to an abstract environment A,
written E1 �A E2, if dom(E1) = dom(E2) = dom(A) and 8x:A(x) = +) E1(x) = E2(x). A function environment
F and an abstract function environment B are compatible, written F : B, if dom(F ) = dom(B) and for all
f 2 dom(F ):

F (f) = f(x1; : : : ; xn) = Expr

B(f) = (a1; : : : ; an); A! a;A0; s

BjFF (f); A[x1 a1; : : : ; xn  an] ` Expr : a;A
00; s

A0 = A00==fx1; : : : ; xng

An execution state1
�
;

t
state2 is an execution with synchronization sequence t, where t is a string with one b for

each barrier and one r for each broadcast executed. The broadcast sequence of an evaluation [S1; : : : ; Sn]
�
;

[S0
1
; : : : ; S0

n
] is the sequence of values returned by successive calls to broadcast during this evaluation.

Lemma 3.2 Let e be any expression and let B;A ` e : a;A0; s. Let E1 �A E2, and F : B. If

[hF;E1; C1; ei]
�
;

t1

[C1(E
0
1; i1)]

[hF;E2; C2; ei]
�
;

t2

[C2(E
0
2
; i2)]

and the broadcast sequences of both evaluations are identical, then the following are all true:

� t1 = t2 and t2 � s

� E01 �A0 E02

� a = +) i1 = i2
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Theorem 3.3 Let e be any expression and let B;A ` e : a;A0; s. Let F : B and Ei �A Ej for i; j = 1::n. Then

[hF;E1; I; ei; : : : ; hF;En; I; ei]
�
; [(E01; v1); : : : ; (E

0
n
; vn)]

or some process diverges.

The proofs of Lemma 3.2 and Theorem 3.3 are in Appendix A.

The semantics of Figure 2 does not handle synchronization errors, i.e. the cases where barriers and broadcasts
are mismatched, or when some processes waits at a barrier while other processes have terminated. In those
cases, the evaluation hangs. Theorem 3.3 shows that this cannot occur with barrier inference: either the program
terminates, or the evaluation sequence is in�nite. Appendix D extends L's semantics with error checking rules
for synchronization errors and then shows that Theorem 3.3 still holds, which proves that barrier inference makes
runtime error checking for synchronization unnecessary.

3.2 Implementation

The only di�culty in translating the inference rules into an inference algorithm is in the determination of the
assumptions to use in function environments. We de�ne G, the global abstract function environment which is
identical to the abstract function environment B, except that it contains the signatures of all functions of a
program instead of those currently in scope. Using a global environment poses no problems as all function names
are assumed to be unique.

A global function environment can be used to attempt to construct a proof:

;; ; ` e : a; ;; s

for an expression e by choosing B = Gjdom(B) at each step of the proof derived from the structure of e: the
other quantities (A;A0; a; s) can easily be computed once B is known. The proof thus constructed may however
be incorrect. The goal of an implementation is to compute G such that a correct proof can be built from G, or to
report that no proof exists, i.e. that program e is incorrect.

A value for G is found by recasting the inference rules as a function

I(G; A; Expr) = (G0; a; A0; s; error) : FEnv� AEnv� Expr! FEnv� f+;�g� AEnv� S � Bool

The de�nition of I is in Figure 4.

A call to I(G;A;Expr) computes the properties of an expression assuming that all the functions behave as described
in G and that A describes the single-valuedness of the free variables of Expr. The function I is total: when the
[If-Multi] rule would fail, I simply returns an error indication in its last argument. This error is propagated back
to the top-level expression. The [Fun] and [LetRec] inference rules express constraints on signatures in the abstract
function environment: [Fun] requires that the single-valuedness of the arguments and free variables match the
signature of the function, the [LetRec] rule requires that the inferred signature of the function's body equals the
signature in the abstract function environment. When these constraints con
ict with the function signatures of the
global function environment G passed to I, I simply returns a new global function environment G0, which satis�es
all these constraints. Because the constraints depend on the assumed environmentG, the computed environment G0

may not satisfy the constraints that are computed by I(G0; A;Expr). However, a �xed point G00 = I(G00; A;Expr)
of I does satisfy all the constraints.

Theorem 3.4 Given a program p, all the following are true:

� The global abstract function environments G of p forms a lattice of �nite height.

� I is monotonic in its G argument.
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I(G;A; i) = (G;+; A; �; false)

I(G;A; id) = (G;A(id); A; �; false)

I(G;A; communicate) = (G;�; A; �; false)

I(G;A; barrier) = (G;+; A; b; false)

I(G;A; broadcast) = (G;+; A; r; false)

I(G;A0; f(Expr1; : : : ; Exprn)) = let (G1; a1; A1; s1; e1) = I(G;A0; Expr1)
and : : :

and (Gn; an; An; sn; en) = I(G;An�1; Exprn)
and G0 = G1 t : : :tGn

and (a0
1
; : : :a0

n
); A! a;A0; s = G(f)

and (a0
1
; : : :a0

n
); A! a;A0; s = G0(f)

in ( G0[f  (a0
1
t a1; : : : ; a0n t an); A t (Anjdom(A))! a;A0; s];

a; An==dom(A0) + A0; s1 � : : :� sn � s; e1 _ : : : _ en)

I(G;A0; p (Expr1; : : : ; Exprn)) = let (G1; a1; A1; s1; e1) = I(G;A0; Expr1)
and : : :

and (Gn; an; An; sn; en) = I(G;An�1; Exprn)
and G0 = G1 t : : :tGn

in ( G0; a1 t : : :t an; An; s1 � : : :� sn; e1 _ : : : _ en)

I(G;A; x Expr) = let (G0; a; A0; s; e) = I(G;A;Expr) in (G0; a; A0[x a]; s; e)

I(G;A; let x in Expr) = let (G0; a; A0; s; e) = I(G;A[x +]; Expr) in (G0; a; A0==fxg; s; e)

I(G;A0; letrec f(x1; : : : ; xm) = Expr1 = let (a1; : : : ; am); A! a;A0; s = G(f)
in Expr2) and (G1; a

0
1; A1; s1; e1) = I(G;A[x1 a1; : : : ; xm  am]; Expr1)

and (G2; a
0
2; A2; s2; e2) = I(G;A0; Expr2)

and G0 = G1 tG2

and (a1; : : : ; am); A! a;A0; s = G0(f)

in ( G0[f  (a1; : : : ; am); A! a01; A1==fx1; : : : ; xmg; s1];
a02; A2; s2; e1 _ e2)

I(G;A0; if Expr1 Expr2 else Expr3) = let (G1; a1; A1; s1; e1) = I(G;A0; Expr1)
and (G2; a2; A2; s2; e2) = I(G;A1; Expr2)
and (G3; a3; A3; s3; e3) = I(G;A1; Expr3)
and G0 = G1 tG2 tG3

and e0 = e1 _ e2 _ e3
and A0 = A2 tA3

and s0 = s1 � (s2 t s3)
in if e1 = + then (G0; a2 t a3; A

0; s0; e0)
else (G0;�; A0 / (AV(Expr2) [AV(Expr3)); s

0; e0 _ (s2 t s3) = f)

I(G;A0; Expr1;Expr2) = let (G1; a1; A1; s1; e1) = I(G;A0; Expr1)
and (G2; a2; A2; s2; e2) = I(G;A1; Expr2)
in (G1 tG2; a2; A2; s1 � s2; e1 _ e2)

Figure 4: Inference Function
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� A �xed point I(G; ;; p) = (G; a;A; s; false) exists i� a proof can be built with the inference rules of Figure 3.

� Any proof built from the inference rules de�nes a global abstract environment G0 such that G � G0, where G
is the least �xed-point of I. Conversely, if there is any proof, then a proof can be constructed using G.

A proof is outlined in Appendix B.

The inference algorithm is thus:

1. Set G to the bottom element of the abstract function environment lattice.

2. Iterate (G; a;A0; s; error) = I(G; ;; p) until G converges.

3. If error is true, then report that p is erroneous.

In practice, we believe that a checking algorithm based on the language extensions of Section 4.1 is more important,
and also easier to implement. We discuss our implementation of such a system in Section 5.1.

3.3 Examples

We conclude with example applications of the inference rules to Figures 1a and 1e. Other worked examples are
included in Appendix C for the interested reader. The functions random() and work() do not contain barriers or
modify visible variables.

Figure 1a fails the [If-Multi] rule - the alternatives of the if have di�erent synchronization sequences.

;; ; ` random() : �; ;; �
;; ; ` barrier : +; ;; b
;; ; ` 0 : +; ;; �
b t � = f 6� f The rule fails

;; ; ` if random() barrier else 0 :?

[If-Multi]

Figure 1e successfully passes the inference rules, assuming x is single-valued:

;; fx : +g ` x : +; fx : +g; �
;; fx : +g ` barrier : +; fx : +g; b
;; fx : +g ` work() : �; fx : +g; �

;; fx : +g ` if (x) barrier else work() : �; fx : +g; �� (b t �) = f

[If-Single]

4 Realistic Languages

We now turn to the use of our techniques in realistic programming languages. Section 4.1 presents features we
believe every SPMD language design should include. Section 4.2 applies barrier inference to heterogeneous parallel
computing, while Section 4.3 discusses modi�cations needed to incorporate our techniques in programs written in
C or FORTRAN-based languages.

4.1 SPMD Language Design

Current SPMD languages have few ways of indicating the synchronization structure of an application. Even
with barrier inference, this makes SPMD programs unnecessarily di�cult to read and maintain. We propose

12



two language features that make this structure more explicit: named barriers and a single keyword to declare
single-valued variables and functions.

Some SPMD languages provide named barriers, with the semantics that a runtime error results if processes simul-
taneously execute barriers with di�erent names. Using named barriers indicates which syntactic barriers may
participate in a synchronization. Named barriers also make the di�erence between [If-Multi] and [If-Single] explicit:
an [If-Multi] must use the same barrier names in both branches, while an [If-Single] should use di�erent names.
Usually named barriers are implemented using a broadcast (so the names can be compared) which is much slower
than special-purpose barrier hardware (e.g., on the CM5 [17] and T3D [4]). But L already e�ectively has two
barrier names: barrier and broadcast. Adding more names increases the alphabet of synchronization strings
but has no impact on inference complexity. Our system thus allows named barriers to be checked at compile-time,
allowing their implementation with the more e�cient anonymous barriers. In a language with barrier inference
there are only advantages to using named barriers.

Our inference system makes clear that knowing the single-valued variables is crucial to understanding an SPMD
program's synchronization structure. We believe programmers ought to declare single-valued variables, formal
parameters, and function results. These declarations are checked by a revised inference system. We propose a
keyword single used as a type modi�er (e.g., single int x;). The modi�cations to the language de�nition are:

Expr ::= : : :

j let Decl in Expr

j letrec Decl(Decl; : : : ; Decl) = Expr in Expr

Decl ::= id

j single id

Declaring single-valuedness has two advantages. First, the program is clearer as the common parts of the data-
ow
are explicit. Second, barrier inference is simpli�ed. Because abstract environments can be built directly from
single declarations instead of computed, proofs

B; A ` Expr : a; s

no longer need a result environment. Function signatures

(a1; : : : ; an)! a; s

do not include environments either and can also be built from the declarations. Figure 5 shows the new inference
rules.

4.2 Heterogeneous Computing

An interesting, though somewhat speculative, extension is to verify SPMD programs written for a heterogeneous
environment, i.e. an environment that includes computers with di�erent processor architectures and hence di�erent
data formats. A new problem arises: values that appear single-valued to the programmermay turn out to be slightly
di�erent at runtime because of di�erences between the architectures involved. For instance, they may be using
slightly di�erent precisions to compute intermediate results in 
oating point computations. Thus the innocuous
loop

t = 0.0;
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B; A ` i : +; �
[Int]

B; A ` id : A(id); �
[Id]

B; A ` communicate : �; �
[Comm]

B; A ` barrier : +; b
[Barrier]

B; A ` broadcast x : +; r
[Broadcast]

B; A ` Expr1 : a1; s1
: : :

B; A ` Exprn : an; sn
B(f) = (a0

1
; : : : ; a0

n
)! a; s

81 � i � n: ai � a0i
B; A ` f(Expr1; : : : ; Exprn) : a; s1 � : : :� sn � s

[Fun]

B; A ` Expr1 : a1; s1
: : :

B; A ` Exprn : an; sn
B; A ` p (Expr1; : : : ; Exprn) : a1 t : : :t an; s1 � : : :� sn

[Prim]

B; A ` Expr : a; s
a � A(x)

B; A ` x Expr : a; s

[Assign]

B; A[x a] ` Expr : a0; s

B; A ` let a x in Expr : a0; s
[Let]

S = (a1; : : : ; am)! a0; s

B[f  S]; A[x1 a1; : : : ; xm  am] ` Expr1 : a0; s
B[f  S]; A ` Expr2 : a

0
2; s2

B; A ` letrec a0 f(a1 x1; : : : ; am xm) = Expr1 in Expr2 : a
0
2; s2

[LetRec]

B; A ` Expr1 : +; s1
B; A ` Expr2 : a2; s2
B; A ` Expr3 : a3; s3

B; A ` if Expr1 Expr2 else Expr3 : a2 t a3; s1 � (s2 t s3)

[If-Single]

B; A ` Expr1 : �; s1
B; A ` Expr2 : a2; s2
B; A ` Expr3 : a3; s3
s2 t s3 � f

8x:A(x) = +) x 62 (AV (Expr2) [AV (Expr3))

B; A ` if Expr1 Expr2 else Expr3 : �; s1 � (s2 t s3)

[If-Multi]

B; A ` Expr1 : a1; s1
B; A ` Expr2 : a2; s2

B; A ` Expr1; Expr2 : a2; s1 � s2

[Sequence]

Figure 5: Inference rules with a single keyword.
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while (t < final_t) {

t += d1 * d2;

...

barrier();

}

might be executed a di�erent number of times on di�erent processors, even if they all have the same values for d1,
d2 and final t.

Another problem in a heterogeneous environment is that di�erent compilers are used to produce the executables.
Thus any implementation-de�ned characteristics, such as order of evaluation in C, may vary. This could easily
cause problems in code like:

a = f() + g();

where both f and g use barriers.

Our system can easily detect the former problem by supplying appropriate abstract signatures for primitive func-
tions, re
ecting whether those primitives are guaranteed to produce the same value in all processes. The second
issue can be checked for by requiring that any set of statements whose order of evaluation is unde�ned have a
synchronization sequence of �, and that none of these statements modify any single-valued variables.

4.3 Application to Existing Languages

Some features of C and FORTRAN, which are popular starting points for SPMD languages, complicate barrier
inference. Unstructured control-
ow, aliasing, function pointers, and unitialised data structures are problematic.
In this section we discuss how these language features can be handled. We have also extended these concepts to
handle object-oriented programming and exception handling, but we do not report on this work here for lack of
space.

4.3.1 Unstructured Control-Flow

Supporting unstructured control-
ow (i.e., goto) requires the replacement of the [If-Single] and [If-Multi] rules
by more complex mechanisms, though the inter-procedural aspects of the inference system remain unchanged.
The problem can be divided into three parts: �nding the single-valued variables, computing the synchronization
sequence of a function, and verifying multi-valued branches do not cause synchronization problems.

The inference of single-valued variables is very similar to the problem of binding-time analysis in partial evalua-
tion [12]: Given a set of variables whose value is assumed known (or single-valued in our case), determine which
expressions and variables have a value that depends solely on these variables. The following algorithm is similar
to [1], a binding-time analysis for C.

Finding single-valued variables

Outline: To �nd the single-valued variables of a function f :

1. Build the static, single-assignment (SSA) form [6] for function f . This has two advantages:

(a) Each SSA variable is either single-valued or not. The status of variables at particular statements of the
function is of no concern.

(b) The points where di�erent values of variables merge are explicit.
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2. Build the branch dependences for each statement, i.e. the list of branch outcomes that determine whether a
statement is executed. The branch dependences are computed from the control-dependence relation.

3. From the branch dependences associated with each assignment, determine for each �-function in the SSA form
which branches must be taken in a single-valued fashion for the value of the �-function to be single-valued.

4. Determine for each SSA variable v its dependence set : All the variables that must be single-valued for v to
be single-valued.

5. Build & solve a set of constraints whose solution gives the single-valued variables.

Appendix E details each step of this algorithm.

Computing the synchronization sequence is straightforward given a control-
ow graph for a function: The abstract
synchronization sequence fromnode n is de�ned to be the synchronization sequence executed fromn to the function's
exit-point. This sequence respects the control-
ow equation:

syncseq(n) = local-syncseq(n) �
G

s2succ(n)

syncseq(s)

where local-syncseq(n) is the abstract synchronization sequence executed at node n. The value of syncseq(n) can
be found by �xed-point iteration.

The �nal step is to verify that all the branches in the function are either single-valued (and correspond to [If-
Single]) or that they obey the same restriction as the [If-Multi] rule, i.e. both paths have executed the same explicit
synchronization sequence when they rejoin. The veri�cation proceeds as follows for each multi-valued branch b of
the control-
ow graph:

� If b is branch-dependent on itself then it must form part of a loop. This loop cannot contain any synchro-
nization statements, so local-syncseq(n) must be � for all statements branch-dependent on b.

� Otherwise, b controls an if-like statement, and both paths must execute the same, known, synchronization
statement. This is veri�ed by computing the syncseq function de�ned above, restricted to b and all statements
branch-dependent on b. The values of local-syncseq(n) for all other nodes n are temporarily considered to be
?. If syncseq(b) = f then branch b is invalid.

4.3.2 Other Language Features

The other language features mentioned above do not require such complex changes. In the presence of pointer
values, detecting single-valued variables can require alias analysis, a well-known hard problem [15]. We have found
that very conservative assumptions su�ce in practice (see Section 5.1): a variable whose address is taken is multi-
valued; any pointer dereference is multi-valued. Similar problems arise with function pointers, so we require that
all functions whose address is computed have synchronization sequence �, and we require that all visible variables
they assign are multi-valued.

When a data structure is initialised with a single-valued expression at creation, it remains single-valued so long
as all modi�cations are single-valued. Without initialization, detecting when all elements of a data structure are
single-valued is much harder. Therefore we mark uninitialized data structures as multi-valued.

In practice we have found that pointers and complex data structures are rarely used in conjunction with syn-
chronization. There are a few exceptions; in particular, in C programs command-line arguments are single-valued
pointers and strings in argv. Many programs parse argv to initialize some single-valued variables. For these
situations a mechanism is needed for the programmer to assert that a particular expression is single-valued. In the
tradition of C, we call this a single-valued cast. Use of this feature should of course be minimized.
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4.3.3 Single keyword in C

The single keyword proposed in Section 4.1 can be added to a C-based SPMD language. This keyword is a type
quali�er, like const or volatile, that can be applied to any part of a type.

There is however one important restriction: if any component of a type t is declared single, then t must be
implicitly considered to be single also. There are several reasons for this situation: �rst, a type such as \pointer
to single int" is not useful, as the results of dereferencing it are not single-valued, and modi�cations made via such
a pointer would violate the single-valuedness of the object pointed to. Secondly, a struct with a single �eld must
obey the single restrictions when used as the destination of an assignment. The name equivalence used by C for
struct types means that it is not possible to copy a structure with a single �eld to a structure that is identical
except that that �eld is not single. Finally, it is not possible to copy arrays. Hence there are no useful types with
a single component that are not themselves single.

We assume that all pointers are local and non-communicable: single is used to denote store whose computation
is replicated across all processors, a remote pointer to single storage would allow this assumption to be violated.
In a language that has remote pointers, the type referred to must not have any single components.

L has only integer variables, so all the copies of a single variable have equal values. When only some �elds of a
variable are single-valued it is inappropriate to talk of equality. Instead, we say that two variables are consistent if
they agree on the values of those parts that are declared single. Formally, we say that two values of a type t are
consistent if t is not single or:

� t is a base type and the values are equal (this is the only case addressed in L).

� t is an array and all corresponding elements are consistent.

� t is a struct type and all single �elds are consistent.

� t is an union type and the last assigned �eld is the same in both unions, and the values of that �eld are
consistent.

� t is a function pointer and both values are null or point to the same function.

� t is a pointer and both values are null or refer to an object of the same size, these objects are consistent, and
both pointers are at the same o�set in this object.

The checking rules of Figure 5 extend naturally in this context. The � relation is replaced by the general rule that

type single t � t. Casts involving single are allowed, but are unchecked. Similarly, there can be no check that
only the last assigned �eld of an union is read. Finally, all variables declared single must be initialised by single
values, to guarantee that such variables are initially consistent across processes.

5 Experiments

We implemented a prototype of our inference system for Split-C [5], an explicitly parallel extension to C. We tested
our prototype on Split-C kernels and applications. The empirical question we sought to answer is: How well does
barrier inference integrate with real SPMD programming ? Our measure is the number of changes to preexisting
programs required to conform to our system. The results were promising: the checks were all successful with
minor changes, except for the exception handling aspects of one application. We also hand-examined the Splash-2
benchmarks and found that all but one would be checkable with our approach.
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5.1 Split-C Prototype

For our purposes, the important features of Split-C are the barrier() and all bcast() functions, which correspond
to the barrier and broadcast primitives of L.

The prototype is a cross between a pure inference system and the language extensions proposed in Section 4.1: It
relies on a speci�cation of the signatures of the functions and a list of the single-valued global variables, but infers
the single-valued local variables. It veri�es that all speci�cations are correct.

Our implementation follows the guidelines outlined in Section 4.3 for supporting C, except that we have not yet
implemented the analysis of data structures (which was only needed by one of the Split-C programs). The algorithm
for inferring single-valued variables is similar to [1].

Table 5.1 presents the programs and summarizes the results of the checking process. The second column counts
the static occurrences of barriers in the program, while the third column reports the number of branches that
controlled the execution of a barrier and whose condition was single-valued. The function signature and single-
valued globals columns report the number of annotations that were necessary to check the program. The cases
that required modi�cations to the code are summarized in the `single-valued casts' and `other changes' columns.
Except for `svd', all the casts are for values computed by parsing the program's arguments (see Section 4.3). The
`svd' algorithm uses single-valued arrays (not supported by our prototype), this accounts for 18 of the 19 casts.
The last cast is due to a single-valued result being returned by reference, in C this implies taking the address of a
variable: our system assumes that any variable whose address is taken is not single-valued.

The `barnes' application includes exception handling (via setjmp), which is unchecked by our system4. This appli-
cation also required one small, local change: It broadcasts values without using the Split-C broadcast primitives;
we replaced this code with explicit broadcasts. One-line changes were needed in three programs, `mm', `wator' and
`nbody'. In these programs it was necessary to avoid taking the address of single-valued variables which were read
with scanf. The second change in `nbody' was to correct a minor bug detected by our prototype: when unexpected
arguments were supplied only some processes exited.

These results show that our system is successful in verifying existing Split-C applications, with few changes and
annotations. All but one of the programs depend on single-valued branches, which implies that conditional syn-
chronization is the rule and not the exception in SPMD programs, and therefore that analysis of single-valued
variables is necessary. The analysis time is low enough that our system can be integrated into an existing compiler
without a large impact on execution time (the times, measured on an HP 715/80, represent the time spent in our
system, they do not include the time to build the standard SSA representation used by our prototype).

5.2 The SPLASH-2 Benchmarks

As a further validation of our approach, we examined the synchronization structure of the SPLASH-2 bench-
marks [25], which are written in C extended with macros for writing parallel programs. The facilities provided by
the macros include named barrier synchronization. Process management is with a fork/join model, but all but one
of the programs are e�ectively written in an SPMD style with all processes executing the same code (except for
initialization). The exception is the `radiosity' application; as it is outside our model we cannot check it.

Our implementation is written for Split-C and therefore does not check the SPLASH-2 programs. We examined
the SPLASH-2 programs by hand to see if a suitably modi�ed system would be able to check these programs.
The results of this examination are given in Table 2. The four kernels and all but one of the applications pose no
particular problems for our inference system.

4Checking use of setjmp and longjmp in C is almost impossible in any program analysis. In the `barnes' application, when an

exception arises in one process, the whole program is terminated.
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Program Lines Number of Single-valued Function Single-valued Single-valued Other Analysis
barriers branches signatures globals casts changes time

cannon 501 17 1 1 - - - 0.3s
cg 453 18 2 3 - - - 0.1s
cholesky 1542 38 16 4 - 2 - 2.3s
column 651 7 3 1 - - - 0.1s
�t3d 1181 12 5 1 - 1 - 0.1s
mm 508 23 1 1 - - 1 0.2s
radix 379 7 3 - - 2 - 0.1s
sample 302 9 0 - - - - 0.1s
svd 1395 1 23 13 9 19 (or 1)a - 0.2s
wator 348 10 5 - 3 - 2 0.1s
nbody 546 7 6 - 2 3 2 0.3s
em3d 1080 16 1 - - - - 0.3s
barnes 2804 73 17 2 6 7 2 0.6s

a18 of the 19 casts are required because of the lack of support of single-valued arrays.

Kernels:

� column, sample, radix: Sorting programs.

� cannon: Matrix multiplication using Cannons algorithm.

� cg: Solves a set of equations using the conjugent gradient method.

� cholesky: Seven di�erent implementations of Cholesky decomposition.

� �t3d: A 3-dimensional fast fourier transform.

� mm: Matrix-multiply, blocked or unblocked.

� svd: Singular-value decomposition, using the Lanczos algorithm.

Applications:

� wator: Simulation of particle-like �sh under current.

� nbody: A simple n body simulation code.

� em3d: 3-dimensional electro-magnetic simulation, described in [13].

� barnes: Simulate the interaction of a system of n bodies using the Barnes-Hut hierarchical method.

Table 1: Results of checking Split-C programs

6 Related Work

There are four strands of related work: SIMD (Single Instruction, Multiple Data) languages, synchronization
analysis, binding-time analysis, and e�ect systems.

SIMD Languages divide variables into control unit and processing unit variables. Control unit variables resemble
our single-valued variables: they are variables that have only one value. Unlike single-valued variables, control unit
variables are stored in only one location. Control unit variables are declared with a CU keyword in the Illiac IV
programming language Glypnir [16]. The Connection Machine language C* [23] calls these variables scalar. There
is no equivalent of our inference system for these languages, as the properties we are inferring are guaranteed by
SIMD semantics. Our proposed single keyword provides similar advantages for SPMD languages.

The ELP language [21] [24], a joint SIMD/SPMD programming language where both \modes" have the same
semantics, allows declaration of single-valued variables with a mono keyword. When in SPMD mode the compiler
guarantees that the single-valued property is preserved, presumably using rules similar to ours (the paper does not
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Program Lines Number of barriers Can be checked

ocean 2954 19 yes - needs single-valued array
4703 20 inference (both versions)

barnes 2078 6 yes
fmm 3800 13 yes
radiosity 11319 5 no - not pure SPMD
raytrace 10020 1 yes
water 1744 9 yes

2971 9 (both versions)
volrend 3704 13 yes
kernel cholesky 5050 4 yes
kernel �t 1005 7 yes
kernel lu 988 5 yes

763 5 (both versions)
kernel radix 879 7 yes

Table 2: Results of examining the SPLASH-2 benchmarks

give many details on the checking strategy). ELP does not include explicit barriers or language-level broadcast, so
there is no equivalent to our veri�cation of synchronization. The programming model is also very di�erent.

Analysis of the synchronization of parallel programs has been extensively studied for the purposes of deadlock and
data-race detection as well as for optimisation. Our survey of this work is necessarily partial, and covers only static
techniques.

Jeremiassen and Eggers [11] analyse barrier synchronization for SPMD programs to improve the precision of optimi-
sation. They do not attempt to verify the correctness of the synchronization. Their analysis relies on named barriers
for precision and does not consider single-valued variables, though they do consider dependencies on multi-valued
constants like pid [10].

A number of papers analyse 2-way synchronization, such as post/wait or the accept/call mechanism of Ada, between
explicitly speci�ed tasks. As each task is speci�ed with di�erent code, there is no real analogue of single-valued
variables. Analyzing synchronization in this context is similar to analyzing the synchronization between the two
branches in the [If-Multi] case, for which we only allow very simple synchronization sequences. None of the following
papers present exact solutions for more general situations.

One technique is to build a concurrency graph where nodes represent parallel program states, and edges represent
synchronization or other state modi�cations. Taylor [22] considers only control-
ow and the resulting graph can
be exponential in the number of tasks. Young and Taylor [26] attempt to increase the precision of the concurrency
graph by employing symbolic execution. Helmbold and McDowell [9] and McDowell [19] include data values in the
concurrency states, and discuss a number of techniques for reducing the number of nodes.

A di�erent approach is to determine which statements are executed before others, based on the synchronization
statements. Callahan and Subhlok [2] and Callahan, Kennedy and Subhlok [3] compute an approximation of this
relation and extend it with dependence distance information for loops. Masticola and Ryder [18] employ this
information, along with other techniques, to compute a \can't happen together" relation for statements.

As mentioned in Section 4.3, inference of single-valued variables is similar to binding-time analysis [12]. The main
di�erence is that we do not require that these values be directly computable from the initial set. Our single-valued
variable inference algorithm is close to that presented by Auslander et al [1]. There is a di�erence in the handling
of control-
ow dependencies, and of course the purpose is unrelated.

Barrier Inference is an example of an e�ect system [7], where the e�ects are synchronization sequences and the type
of a variable represents its single-valuedness.
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7 Conclusion

We have identi�ed an important property of SPMD programs that current languages do not explicitly support:
The portion of control and data 
ow governing global synchronization is identical across all the processes. This
synchronization kernel structures the entire application. We have developed an inference system that both detects
this structure and veri�es that global synchronization is correct. An implementation of this system for Split-C
successfully checks a number of programs.

The synchronization kernel is su�ciently important that it should be explicitly visible in source code. We propose
language features that make SPMD programs clearer and easier to check.

We are integrating these language extensions into a successor of Split-C based on Java [8], Titanium. This requires
extending the application of the single-valued concept to more complex data structures, including references and
objects, and to handle language features such as exception handling. We are also working on an algorithm that
uses the results of our inference system to represent the portions of the code that may be executing simultaneously
so that SPMD optimisations, e.g. [14], may be more precise.
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A Soundness

A.1 Proof of Lemma 3.2

The proof uses three simple lemmas. The �rst lemma states that all the continuations introduced by the rewrite
rules are eventually applied. The second lemma asserts that if two evaluations have identical broadcast sequences,
and that a pre�x of both evaluations has the same the same synchronization sequence, then the remaining steps of
both evaluations have the same broadcast sequence. Taken together, these two lemmas allow the rewrite rules to
be broken into pieces so that an induction on the length of a rewrite sequence can be applied to all evaluations.

Lemma A.1 Let e be any expression. If [hF;E;C; ei];
�

[hF;E;C0; e0i]
�
;

t
[C(E0; i)] then [hF;E;C0; e0i]

�
;

t1

[C0(E00; i0)],

[C0(E00; i0)]
�
;

t2

[C(E0; i)], and t = t1 � t2.

Lemma A.2 If the broadcast sequences of

[hF;E1; C1; e1i]
�
;

t
[hF;E01; C

0
1; e
0
1i]

�
;

t1

[hF;E001 ; C
00
1 ; e
00
1i]

[hF;E2; C2; e2i]
�
;

t
[hF;E02; C

0
2; e
0
2i]

�
;

t2

[hF;E002 ; C
00
2 ; e
00
2i]

are identical, then the broadcast sequences of

[hF;E01; C
0
1; e
0i]
�
;

t1

[hF;E001 ; C
00
1 ; e
00i]

[hF;E02; C
0
2; e
0i]
�
;

t2

[hF;E002 ; C
00
2 ; e
00i]

are also identical.

The third lemma says that if e does not assign to x directly or via a function call, then x's value is unchanged by
evaluation of e.

Lemma A.3 Let e be any expression, E any environment and F the free functions at e. If [hF;E;C; ei]
�
; [C(E0; i)]

then 8x 2 dom(E):x 62 AV(e)) E(x) = E0(x).

The proof of Lemma 3.2 proceeds by induction on the length of the rewrite sequence representing the evaluation
of e. For each expression e, we can assume that B;A ` e : a;A0; s, that E1 �A E2, F : B, that

[hF;E1; C1; ei]
�
;

t1

[C1(E
0
1
; i1)]

[hF;E2; C2; ei]
�
;

t2

[C2(E
0
2; i2)]

and that the broadcast sequences of both evaluations are identical. We must show that

� t1 = t2 and t2 � s

� E01 �A0 E02

� a = +) i1 = i2

We consider each rewrite rule in turn.
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� i: From the semantics and inference rules, we know

B; A ` i : +; A; �

[hF;E1; C1; ii];
�

[C1(E1; i)]

[hF;E2; C2; ii];
�

[C2(E2; i)]

� id: From the semantics and inference rules, we know

B; A ` id : A(id); A; �

[hF;E1; C1; idi];
�

[C(E1; E1(id))]

[hF;E2; C2; idi];
�

[C(E2; E2(id))]

So A(id) = +) E1(id) = E2(id).

� communicate: From the semantics and inference rules, we know

B; A ` communicate : �; A; �

[hF;E1; C1; communicatei];
�

[C1(E1; oracle())]

[hF;E2; C2; communicatei];
�

[C2(E2; oracle())]

The two di�erent calls to oracle() may return di�erent values, but a = �.

� barrier: From the semantics and inference rules, we know

B; A ` barrier : +; A; b

[hF;E1; C1; communicatei];
b

[C1(E1; 0)]

[hF;E2; C2; communicatei];
b

[C2(E2; 0)]

� broadcast: From the semantics, inference rules and the fact that the broadcast sequences of both evaluations
are identical, we know

B; A ` broadcast : +; A; r

[hF;E1; C1; broadcasti];
r

[C1(E1; x)]

[hF;E2; C2; broadcasti];
r

[C2(E2; x)]

where x = oracle().

� x  Expr: From the semantics, by hypothesis and Lemmas A.1 and A.2

[hF;E1; C1; x Expri]
;

�

[hF;E1; C
0
1; Expri]

�
;

t1

[C01(E
0
1; i1)] = [C1(E

0
1[x i1]; i1)]

[hF;E2; C2; x Expri];
�

[hF;E2; C
0
2; Expri]

�
;

t2

[C02(E
0
2; i2)] = [C2(E

0
2[x i2]; i2)]

with C01 = �(E0; v):C1(E
0[x v]; v) and C02 = �(E0; v):C2(E

0[x v]; v)
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The inference rule states
B; A ` Expr : a; A0; s

B; A ` x Expr : a; A0[x a]; s

By induction, we know that: t1 = t2, t2 � s, E0
1
�A0 E0

2
and a = + ) i1 = i2. It follows that E0

1
[x  

i1] �A0[x a] E
0
2
[x i2].

� let x in Expr: From the semantics, by hypothesis and Lemmas A.1 and A.2

[hF;E1; C1; let x in Expri];
�

[hF;E1[x 0]; C01; Expri]
�
;

t1

[C01(E
0
1
; i1)] = [C1(E

0
1
==fxg; i1)]

[hF;E2; C2; let x in Expri];
�

[hF;E2[x 0]; C02; Expri]
�
;

t2

[C02(E
0
2
; i2)] = [C2(E

0
2
==fxg; i2)]

with C01 = �(E0; v):C1(E
0==fxg; v) and C02 = �(E0; v):C2(E

0==fxg; v)

The inference rule states
B; A[x +] ` Expr : a; A0; s

B; A ` let x in Expr : a; A0==fxg; s

By induction, we know that: t1 = t2, t2 � s, E01 �A0 E02 and a = + ) i1 = i2. It follows that
E0
1
==fxg �A0==fxg E

0
2
==fxg.

� Expr1; Expr2: From the semantics, by hypothesis and Lemmas A.1 and A.2

[hF;E1; C1; Expr1; Expr2i];
�

[hF;E1; C
0
1
; Expr1i]

�
;

t
1

1

[C0
1
(E0

1
; i1)] = [hF;E0

1
; C1; Expr2i]

�
;

t
1

2

[C1(E
00
1
; j1)]

[hF;E2; C2; Expr1; Expr2i];
�

[hF;E2; C
0
2; Expr1i]

�
;

t
2

1

[C02(E
0
2; i2)] = [hF;E02; C2; Expr2i]

�
;

t
2

2

[C2(E
00
2 ; j2)]

with C01 = �(E0; v):hF;E0; C1; Expr2i and C02 = �(E0; v):hF;E0; C2; Expr2i

The inference rule states
B; A0 ` Expr1 : a1; A1; s1
B; A1 ` Expr2 : a2; A2; s2

B; A0 ` Expr1; Expr2 : a2; A2; s1 � s2

Applying the induction hypothesis to Expr1, we know that: t11 = t21, t
2
1 � s1, E01 �A1

E02. The last
fact completes the hypotheses of the induction for Expr2 so we can also conclude that: t12 = t22, t

2
2 � s2,

E001 �A2
E002 and a2 = +) j1 = j2. So t11 � t12 = t21 � t22 and t21 � t22 � s1 � s2.

� f(Expr1, . . . , Exprn): The arguments are evaluated in sequence, so the same inductive reasoning as for
Expr1; Expr2 gives

[hF;E1; C
1

0 ; f(Expr1; : : : ; Exprn)];
�

[hF;E1; C
1

1 ; Expr1i]
�
;

t
1

1

[C1

1(E
1

2 ; v
1

1)]
�
;

t
1

2

: : :
�
;

t
1

n

[C1

n(E
1

n+1; v
1

n)]
�
;

t
1

0

[C1

0(E
00
1 ; v1)]

[hF;E2; C
2
0; f(Expr1; : : : ; Exprn)];

�

[hF;E2; C
2
1 ; Expr1i]

�
;

t
2

1

[C2
1(E

2
2 ; v

2
1)]

�
;

t
2

2

: : :
�
; t2n[C

2
n(E

2
n+1; v

2
n)]

�
;

t
2

0

[C2
0(E

00
2 ; v2)]

with F (f) = f(x1; : : : ; xn) = Expr

and C1

1
= �(E2; v):hF;E2; C

1

2
; Expr2i; : : : ; C

1

n
= �(En+1; vn):hF jFF (f); E

1

0
; C0

1
; Expri

E1
0 = (En+1jFV (f))[x1  v1; : : : ; xn  vn]

C01 = �E0; v:C1
0 ((En+1==FV (f) + E0==fx1; : : : ; xng); v)

and C2
1 = �(E2; v):hF;E2; C

2
2 ; Expr2i; : : : ; C

2
n = �(En+1; vn):hF jFF (f); E

2
0; C

0
2; Expri

E2

0 = (En+1jFV (f))[x1  v1; : : : ; xn  vn]
C0
2
= �E0; v:C2

0
((En+1==FV (f) + E0==fx1; : : : ; xng); v)
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The inference rule states

B; A0 ` Expr1 : a1; A1; s1
: : :

B; An�1 ` Exprn : an; An; sn
B(f) = (a0

1
; : : : ; a0

n
); A! a;A0; s

Anjdom(A) � A

81 � i � n: ai � a0
i

B; A0 ` f(Expr1; : : : ; Exprn) : a; An==dom(A0) + A0; s1 � : : :� sn � s

Applying the induction hypothesis n times, we conclude: t1
i
= t2

i
, t2

i
� si, ai = +) v1

i
= v2

i
, E1

n+1
�An E2

n+1
.

We also know that F : B, i.e. BjFF (f); A[x1 a01; : : : ; xn a0n] ` Expr : a;A
00; s andA0 = A00==fx1; : : : ; xng.

As all function names in L are unique, F jFF (f) : BjFF (f). From above

[C1

n
(E1

n+1
; v1n)] = [hF jFF (f); E1

0
; C01; Expri]

�
;

t
1

0

[C01(E
0
1
; v1)] = [C1

0
(E001 ; v1)]

[C2

n(E
2

n+1; v
2

n)] = [hF jFF (f); E2

0; C
0
2; Expri]

�
;

t
2

0

[C0
2(E

0
2; v2)] = [C2

0(E
00
2 ; v2)]

with E00
1
= E1

n+1
==FV (f) + E0

1
==fx1; : : : ; xng and E00

2
= E2

n+1
==FV (f) + E0

2
==fx1; : : : ; xng

The hypothesis of the induction is thus veri�ed, so t10 = t20, t
2
0 � s, a = +) v1 = v2, E

0
1 �A00 E02.

As

{ t11 � : : : t1n � t10 = t21 � : : : t2n � t20 � s1 � : : :� sn � s

{ a = +) v1 = v2

{ By de�nition of the abstract function environment B, FV (f) = dom(A) = dom(A0). So, given that
E01 �A00 E02, E

1
n+1 �An E2

n+1, it follows that E
00
1 �An==dom(A0)+A0 E002 .

the lemma is veri�ed for this case.

� p(Expr1, . . . , Exprn): The arguments are evaluated in sequence, so the same inductive reasoning as above
gives

[hF;E1; C
1
0 ; p(Expr1; : : : ; Exprn)];

�

[hF;E1; C
1
1; Expr1i]

�
;

t
1

1

: : :
�
;

t
1

n

[C1
n(E

1
n+1; v

1
n)] = [C1

0(E
1
n+1; p(v

1
1; : : : ; v

1
n))]

[hF;E2; C
2
0; p(Expr1; : : : ; Exprn)];

�

[hF;E2; C
2
1 ; Expr1i]

�
;

t
2

1

: : :
�
;

t
2

n

[C2
n(E

2
n+1; v

2
n)] = [C2

0(E
2
n+1; p (v

2
1; : : : ; v

2
n))]

with C1
1 = �(E2; v):hF;E2; C

1
2; Expr2i; : : : ; C

1
n = �(En+1; vn):C

1
0(En+1; p (v1; : : : ; vn))

and C2
1 = �(E2; v):hF;E2; C

2
2; Expr2i; : : : ; C

2
n = �(En+1; vn):C

2
0(En+1; p (v1; : : : ; vn))

The inference rule states

B; A0 ` Expr1 : a1; A1; s1
: : :

B; An�1 ` Exprn : an; An; sn

B; A0 ` p (Expr1; : : : ; Exprn) : a1 t : : :t an; An; s1 � : : :� sn

By induction, t1
i
= t2

i
, t2

i
� si, ai = + ) v1

i
= v2

i
, E1

n+1 �An E2
n+1. As the value of p depends only on its

arguments, a1 t : : :t an = +) p(v11 ; : : : ; v
1
n) = p(v21; : : : ; v

2
n).
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� letrec f(x1, . . . , xn) = Expr1 in Expr2: From the semantics, by hypothesis and Lemmas A.1 and A.2

[hF;E1; C1; letrec f(x1; : : : ; xn) = Expr1 in Expr2i];
�

[hG;E1; C1; Expr2i]
�
;

t1

[C1(E
0
1
; v1)]

[hF;E2; C2; letrec f(x1; : : : ; xn) = Expr1 in Expr2i];
�

[hG;E2; C2; Expr2i]
�
;

t2

[C2(E
0
2
; v2)]

with G = F [f  f(x1; : : : ; xn) = Expr1]

The inference rule states

dom(A) = dom(A0) = dom(A0)
S = (a1; : : : ; am); A! a;A0; s

A0 = A00==fx1; : : : ; xng

B[f  S]; A[x1  a1; : : : ; xn an] ` Expr1 : a; A
00; s

B[f  S]; A0 ` Expr2 : a
0
2
; A2; s2

B; A0 ` letrec f(x1; : : : ; xn) = Expr1 in Expr2 : a
0
2
; A2; s2

So G : B[f  S], therefore the induction hypothesis applies, and t1 = t2, t2 � s2, a
0
2 = + ) v1 = v2,

E0
1
�A2

E0
2
.

� if Expr1 Expr2 else Expr3: From the semantics, by hypothesis and Lemmas A.1 and A.2

[hF;E1; C1; if Expr1 Expr2 else Expr3i];
�

[hF;E;C1
0; Expr1i]

�
;

t
1

1

[C1
0(E

0
1; v1)]

�
;

t
1

2

[C1(E
00
1 ; v
0
1)]

[hF;E2; C2; if Expr1 Expr2 else Expr3i];
�

[hF;E;C2
0; Expr1i]

�
;

t
2

1

[C2
0(E

0
2; v2)]

�
;

t
2

2

[C2(E
00
2 ; v
0
2)]

with C1
0 = �(E0; v):hF;E0; C1; if v = 0 then Expr2 else Expr3i

and C2
0 = �(E0; v):hF;E0; C2; if v = 0 then Expr2 else Expr3i

The inference rule applied to this construction is either [If-Single] or [If-Multi]. If the rule is [If-Single]

B; A0 ` Expr1 : +; A1; s1
B; A1 ` Expr2 : a2; A2; s2
B; A1 ` Expr3 : a3; A3; s3

B; A0 ` if Expr1 Expr2 else Expr3 : a2 t a3; A2 tA3; s1 � (s2 t s3)

By induction, v1 = v2, t
1
1 = t21 � s1 and E01 �A1

E02, so the applications of C1
0 and C2

0 return states that
evaluate the same expression. If v1 = v2 = 0, we get

[[C1
0(E

0
1; 0)] = [hF;E01; C1; Expr2i]

�
;

t
1

2

[C1(E
00
1 ; v
0
1)]

[C2

0
(E0

2
; 0)] = [hF;E0

2
; C2; Expr2i]

�
;

t
2

2

[C2(E
00
2
; v0

2
)]

The hypothesis of the induction is satis�ed, so t12 = t22 � s2, E
00
1 �A2

E002 and a2 = +) v01 = v02.

The case for v1 = v2 6= 0 is similar. It therefore follows that t11 � t12 = t21 � t22 � s1 � (s2 t s3), a2 t a3 = +)
v01 = v02 and E001 �A2tA3

E002 , so the lemma is veri�ed for this case.

If the inference rule is [If-Multi]

B; A0 ` Expr1 : �; A1; s1
B; A1 ` Expr2 : a2; A2; s2
B; A1 ` Expr3 : a3; A3; s3
s2 t s3 � f

A0 = A1 / (AV(Expr2) [AV(Expr3))

B; A0 ` if Expr1 Expr2 else Expr3 : �; A
0; s1 � (s2 t s3)
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If v1 and v2 are both equal to or di�erent from 0, then the [If-Multi] behaves like the [If-Single] case, and the
lemma is easily veri�ed as the / operator only weakens the requirements.

Assuming, with no loss of generality, that v1 = 0 and v2 6= 0 the lemma is applied independently to each
expression

[C1
0
(E0

1
; v1)] = [hF;E0

1
; C1; Expr2i]

�
;

t
1

2

[C1(E
00
1
; v0

1
)]

[C2

0
(E02; v2)] = [hF;E01; C1; Expr3i]

�
;

t
2

2

[C2(E
00
2
; v02)]

By induction, we get: t1
2
� s2 and t2

2
� s3. Also t1

2
and t2

2
are strings in fb; rg�, so ?� t1

2
� s2, ?� t2

2
� s3,

and s2 t s3 � f ) t1
2
= s2 = s3 = t2

2
= s2 t s3.

We have E0
1
�A1

E0
2
. By Lemma A.3

8x 62 AV (Expr2):E
0
1
(x) = E00

1
(x)

8x 62 AV (Expr3):E
0
2
(x) = E00

2
(x)

) 8x 62 (AV (Expr2) [AV (Expr3)):E
0
1
(x) = E0

2
(x)) E00

1
(x) = E00

2
(x)

) E001 �A1/(AV (Expr2)[AV (Expr3))
E002

so the lemma is veri�ed for this case.

A.2 Proof of Theorem 3.3

The following simple lemma asserts that if an evaluation terminates, then the special continuation I must have
been evaluated:

Lemma A.4 Let e be any expression, E any environment and F any function environment. If

[hF;E; I; ei]
�
;

t
[(E0; v)]

then
[hF;E; I; ei]

�
;

t
[I(E0; v)]

To prove Theorem 3.3 we must show that given an expression e, a proof B;A ` e : a;A0; s, and environments
F;E1; : : : ; En such that F : B and Ei �A Ej for i; j = 1::n, that:

[hF;E1; I; ei; : : : ; hF;En; I; ei]
�
; [(E01; v1); : : : ; (E

0
n; vn)]

or some process diverges.

The proof is simple. Lemma A.4 and the assumption that no process diverges implies that for all i

[hF;Ei; I; ei]
�
;

ti

[I(E0i; vi)] = [(E0i; vi)]

We assume, with no loss of generality, that the sequence of values returned by broadcast is the same for all
evaluations. It then follows from Lemma 3.2 that t1 = t2 = : : : = tn.

The i evaluation sequences can therefore be combined into one common evaluation sequence as they all have
the same synchronization sequence: denoting the k'th element of ti by tk

i
, each individual evaluation sequence

can be decomposed as (tki used as an expression stands for the synchronization operation corresponding to the
synchronization letter)

[hF;Ei; I; ei]
�
;

�
[hF;E1

i ; C
1

i ; t
1

i i];
t
1

i

[C1

i (E
1

i ; v
1

i )]
�
;

�
[hF;E2

i ; C
2

i ; t
2

i i];
t
2

i

: : : ;
t
m

i

[hCm

i (E
m

i ; vmi )i]
�
;

�
[(E0i; vi)]
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As tk
i
= tk

j
for all i; j; k these individual evaluations can be combined into a global evaluation using the general

interleaving rule for individual processes and the barrier and broadcast rules as follows

[hF;E1; I; ei; : : : ; hF;En; I; ei]
�
;

�
[hF;E1

1
; C1

1
; t1

1
i; : : : ; hF;E1

n
; C1

n
; t1

1
i];

t
1

1

: : :

: : : ;
t
m

1

[Cm

1
(Em

1
; vm

1
); : : : ; Cm

n
(Em

n
; vm

n
)]
�
;

�
[(E0

1
; v1); : : : ; (E

0
n
; vn)]

This completes the proof.

29



B Implementation Soundness

Theorem 3.4 has four parts

1. The global abstract function environments G of p forms a lattice of �nite height.

Proof: There are only a �nite number of functions in a program and each component of a function signature
is a lattice of �nite height.

2. I is monotonic in its G argument.

Proof: We prove that all the results of I are monotonic in both G and A. The proof is a straightforward
induction on the structure of expressions. In particular, � is monotonic.

3. A �xed point I(G; ;; p) = (G; a;A; s; false) exists i� a proof can be built with the inference rules of Figure 3.

Proof: Given a proof for a program p, an environment G is built from all the assumptions about signatures
embodied in applications of the [LetRec] rule. It is easy to verify that I(G; ;; p) = (G; a;A; s; false) for such
a G. The only case that can set error to true is an if, which occurs only if s2 t s3 = f , which is precluded
by the existence of a proof.

To prove the converse, we consider a slightly less restrictive version of the inference rules of Figure 3: we
remove the s2 t s3 � f requirement from [If-Multi]. It is obvious that all proofs in the old system are still
valid in the new one.

Given a �xed point G of I, I(G; ;; p) = (G; a;A; s; error) it is easy to build a proof in this expanded inference
system: The requirements of the [Fun] rule are implied by G being a �xed point, the assumptions needed for
[LetRec] are read from G. There is thus a one-to-one correspondence between proofs in the expanded systems
and �xed points of I. All �xed points for which error = true are valid in the new system, but not in the old,
while those for which error = false are valid in both. If all �xed points have error = true, it will not be
possible to build a proof in the old system. Thus a �xed point with error = false exists i� a proof exists in
the old system.

4. Any proof built from the inference rules de�nes a global abstract environment G0 such that G � G0, where G
is the least �xed-point of I. A proof can be built from G if any proof exists.

Proof: From point 3 it follows that the environment G0 de�ned by any proof is a �xed point I(G0; ;; p) =
(G0; a0; A0; s0; false). The least �xed point G of I satis�es the equation I(G; ;; p) = (G; a;A; error). By
de�nition, G � G0. From point 2, we conclude that error � false, i.e. error = false. So a proof can be
built from G.
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C Examples

This appendix shows the results produced by our inference system on the more complex examples from Figure 1.
The while loops of Figures 1b and 1e are rewritten using letrec so that we can directly apply the rules in Figure 3.
Figure 6 shows the new code.

letrec w1() = if random()

(barrier; w1())

else

0

in w1();

work1(); barrier();

work2(); barrier();

work3();

i <- 0;

letrec w2() = if (i < 10)

(if (i = 1) barrier;

i <- i + 1;

w2())

else

0

in w2();

barrier;
Example (b) Example (f)

Figure 6: Loops rewritten with letrec

� Figure 1b fails [If-Multi]. We end up trying to match

fw1 : (); ; ! +; ;;?g; ; ` random() : �; ;; �
fw1 : (); ; ! +; ;;?g; ; ` (barrier; w1()) : +; ;; b
fw1 : (); ; ! +; ;;?g; ; ` 0 : +; ;; �
b t � = f 6� f The rule fails

` if (random()) (barrier; w1()) else 0 :?

[If-Multi]

� Figure 1f succeeds with this signature for w2: (); (i : +)! +; (i : +); f .

� Figure 1g successfully passes [If-Multi]

` random() : �; ;; �
` (barrier; barrier) : +; ;; bb
` (work1(); barrier; work2(); barrier) : +; ;; bb
bb t bb = bb � f

` if (random()) (...) else (...) : �; ;; bb

[If-Multi]

� Figure 1h fails because both branches have abstract synchronization sequence f

` random() : �; ;; �
` (while ...) : +; ;; f
` (j = i + 10; ...) : +; ;; f
f t f = f 6� f The rule fails

` if (random()) (...) else (...) :?

[If-Multi]
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D Runtime Error Checking

Figure 7 adds new semantics rules to L that detect the following runtime errors: mismatch of barrier and
broadcast, and termination of some processes while others are waiting at a barrier or broadcast.

C Cont = Env�N ! State

State = FunEnv� Env� Cont� Expression+ Env�N+ ?

[: : : ; hFi; Ei; Ci; broadcasti; : : : ; hFj; Ej; Cj ; barrieri; : : :] ; [?; : : : ;?]

[: : : ; (Ei; vi); : : : ; hFj; Ej; Cj; barrier=broadcasti; : : :] ; [?; : : : ;?]

Figure 7: Semantic rules for runtime synchronization error detection

Theorem 3.3 is now stronger, as it implies that an evaluation does not terminate as [?; : : : ;?]. As it is impossible
to apply the new semantic rules of Figure 7 to a single process, Lemma 3.2 is valid in the new system, and therefore
so is Theorem 3.3.

As a consequence, barrier inference guarantees that a program cannot have a mismatch of a barrier or broadcast
and also that processes cannot wait at a barrier or broadcast when some processes of the SPMD program have
terminated. This eliminates the need for runtime error checking of these conditions.
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E Unstructured Single Inference

This appendix gives additional details and examples on the inference of single-valued variables in unstructured
control-
ow graphs. Global variables are considered as implicit arguments and results of functions and are otherwise
treated exactly as local variables.

Branch Outcome Dependences

A statement s is directly branch dependent on outcome o of branch b if s 2 CD (b) and s postdominates o, where
CD(b) is the set of statements control-dependent on b, and an outcome of a branch is one of its successors.

The branch-dependences relation is the closure of the direct branch dependence relation.

Figure 8 shows the branch dependences for three statements in a simple control-
ow graph. Statement s2 is
interesting because it depends on both outcomes of condition a. This captures the intuition that the outcome of
decision a is important to whether statement s2 gets evaluated, in that it determines what other condition (b or
c) gets tested to directly determine whether s2 gets executed or not. All of a, b, c must be single-valued for all
processes in a Split-C program to get the same value of x.

dependencies

b c

a

outcome
s2: x = 2

a1, c1

s1: x = 1 s3: x = 3

a0 a1

c1c0b0 b1

a0, b0 a0, a1, b1, c0

Figure 8: Branch outcome dependences

Single-valuedness at �-functions

The value of a �-function �(v1; v2) depends on branch b i� di�erent outcomes for branch b are found in

branch-dependences(definition(v1))

and
branch-dependences(definition(v2))

where definition(v) is the statement where v is assigned. The set of branches on which �-function s depends is
called �-dependences(s).

Any �-function with more than 2 arguments is handled by considering all pairs of variables.

Figure 9 adds some control-
ow merges to Figure 8. The branch dependences are:

� x4 depends on the a and b branches as x1 and x2 have di�erent branch outcomes in their branch dependence
sets. Notice that x4 is not dependent on outcomes of branch b.

� x5 depends on the a and c branches. It doesn't depend on b directly, but it depends on x4 that depends on
b.
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dependencies

b c

a

outcome

a0

a0, a1, c0

a1

c1c0b0 b1

a0, b0 a0, a1, b1, c0 a1, c1

s1: x1 = 1 s2: x2 = 2 s3: x3 = 3

x4 = phi(x1, x2)

x5 = phi(x4, x3)

Figure 9: Branch dependences at �-functions

Dependence Sets

The dependence set for v is the set of variables that must be invariant for v to be invariant. There are three cases:

1. v is the result of an assignment v = op(v1; v2; : : :). var-dependences(v) = fv1; v2; : : :g.

2. v is the result of an assignment v = �(v1; v2; : : :).

var-dependences(v) = fv1; v2; : : :g [ (
[

b2�-dependences(v=�(v1;v2;:::))

branch-variables(b))

where branch-variables(s) is the set of variables that determine the outcome of branch statement s.

3. v is assigned in some other fashion (e.g. a function call). v has no var-dependences set.

Building the Constraints

The maximal solution of this set of constraints gives the set of single-valued variables. Variables are either known
to be single-valued, known not to be single-valued, or depend on other variables.

For every variable v that has a dependence set, add the constraint

(
^

w2var-dependences(v)

w), v

A false , v is added for every input argument that is not single-valued, and for every function call result that is
not single-valued (global variables are considered implicit arguments to and results of functions).
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The language semantics may mandate the addition of other false , v constraints, e.g. pointer dereferences.

Solving the Constraints

The following algorithm �nds a maximal solution of the set of constraints S over variables V:

truevars = V

while S contains a constraint 'false <=> v'

truevars = truevars - { v }

S = S - { 'false <=> v' }

replace all constraints 'w1 & ... & wn <=> w' in S whose left hand side

contains v with 'false <=> w'

end

truevars is the maximal solution.
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